WorldWideScience

Sample records for metabolic stability analysis

  1. Systematic analysis of stability patterns in plant primary metabolism.

    Directory of Open Access Journals (Sweden)

    Dorothee Girbig

    Full Text Available Metabolic networks are characterized by complex interactions and regulatory mechanisms between many individual components. These interactions determine whether a steady state is stable to perturbations. Structural kinetic modeling (SKM is a framework to analyze the stability of metabolic steady states that allows the study of the system Jacobian without requiring detailed knowledge about individual rate equations. Stability criteria can be derived by generating a large number of structural kinetic models (SK-models with randomly sampled parameter sets and evaluating the resulting Jacobian matrices. Until now, SKM experiments applied univariate tests to detect the network components with the largest influence on stability. In this work, we present an extended SKM approach relying on supervised machine learning to detect patterns of enzyme-metabolite interactions that act together in an orchestrated manner to ensure stability. We demonstrate its application on a detailed SK-model of the Calvin-Benson cycle and connected pathways. The identified stability patterns are highly complex reflecting that changes in dynamic properties depend on concerted interactions between several network components. In total, we find more patterns that reliably ensure stability than patterns ensuring instability. This shows that the design of this system is strongly targeted towards maintaining stability. We also investigate the effect of allosteric regulators revealing that the tendency to stability is significantly increased by including experimentally determined regulatory mechanisms that have not yet been integrated into existing kinetic models.

  2. Implementation of a novel ultra fast metabolic stability analysis method using exact mass TOF-MS.

    Science.gov (United States)

    Manna, Joseph D; Richardson, Samantha J; Moghaddam, Mehran F

    2017-02-01

    Increasing numbers of compounds requiring stability data means highly optimized methods capable of rapid turnaround are desirable during early discovery. Materials and methods/results: An advanced, generic analytical workflow for metabolic stability has been developed that utilizing ballistic gradient LC (sub 1 min run times), exact mass TOF-MS (Waters Xevo-G2-XS Q-TOF) and automated data processing (Waters UNIFI software) allowed for rapid integration and interpretation of all data produced, eliminating the need for method development and manual processing. We can analyze and process 96 compounds across two species in quadruplicate in a 24-h period with no method development. An advanced bioanalytical workflow has increased our capacity threefold and reduced our instrument/processing needs threefold.

  3. Improved synthesis and metabolic stability analysis of the dopamine transporter ligand [{sup 18}F]FECT

    Energy Technology Data Exchange (ETDEWEB)

    Chitneni, Satish K. [Laboratory for Radiopharmacy, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, BE-3000, Leuven (Belgium); Garreau, Lucette [Medecine Nucleaire, CHRU Tours, F-37200, Fours (France); Cleynhens, Bernard; Evens, Nele [Laboratory for Radiopharmacy, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, BE-3000, Leuven (Belgium); Bex, Marva; Vermaelen, Peter [Department of Nuclear Medicine, Katholieke Universiteit Leuven, Leuven, BE-3000 (Belgium); Chalon, Sylvie [Medecine Nucleaire, CHRU Tours, F-37200, Fours (France); Busson, Roger [Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven, BE-3000 (Belgium); Guilloteau, Denis [Medecine Nucleaire, CHRU Tours, F-37200, Fours (France); Van Laere, Koen [Department of Nuclear Medicine, Katholieke Universiteit Leuven, Leuven, BE-3000 (Belgium); Verbruggen, Alfons [Laboratory for Radiopharmacy, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, BE-3000, Leuven (Belgium); Bormans, Guy [Laboratory for Radiopharmacy, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, BE-3000, Leuven (Belgium)], E-mail: guy.bormans@pharm.kuleuven.be

    2008-01-15

    Introduction: [2'-[{sup 18}F]Fluoroethyl (lR-2-exo-3-exe)-8-methyl-3-(4-chlorophenyl)-8-azabicyclo[3.2.1] -octane-2-carboxylate] ([{sup 18}F]FECT) is a positron emission tomography (PET) tracer for imaging the dopamine transporter (DAT) in vivo. We report an improved radiosynthesis procedure and affinity data and have analyzed both brain tissue and plasma samples for the presence of radiometabolites as a function of time post intravenous injection of [{sup 18}F]FECT to rats. Methods: The radiosynthesis of [{sup 18}F]FECT was carried out using [{sup 18}F]fluoroethyltriflate ([{sup 18}F]FEtOTf) as a labeling agent. The affinity of FECT for DAT was determined in vitro by binding experiments on rat striatal membranes. Three rats were injected with [{sup 18}F]FECT and blood samples were collected at 1 or 3 h post injection (p.i.). Plasma was separated and analyzed using reversed-phase high-performance liquid chromatography (RP-HPLC). Similarly, cerebrum and cerebellum were isolated after sacrifice of the animals at 3 h p.i. of the tracer and homogenized. HPLC analysis was performed on extracts of both samples to examine the presence of metabolites. Results: The radiochemical yield for [{sup 18}F]FECT was 85% relative to the starting activity of [{sup 18}F]FEtOTf. The inhibitory constant (K{sub i}) of FECT for DAT was found to be 6 nM. The fraction of radioactivity corresponding to intact [{sup 18}F]FECT was 93% in plasma at both 1 and 3 h p.i. and 96% in cerebrum as well as cerebellum samples at 3 h p.i. Conclusions: FECT has a high affinity for the dopamine transporter. [{sup 18}F]FECT was found to be stable in vivo and the amount of radiolabeled metabolites in plasma and brain at 3 h p.i. is negligible. Hence, [{sup 18}F]FECT can be used for the in vivo quantification of DAT using PET.

  4. An Automated High-Throughput Metabolic Stability Assay Using an Integrated High-Resolution Accurate Mass Method and Automated Data Analysis Software

    Science.gov (United States)

    Shah, Pranav; Kerns, Edward; Nguyen, Dac-Trung; Obach, R. Scott; Wang, Amy Q.; Zakharov, Alexey; McKew, John; Simeonov, Anton; Hop, Cornelis E. C. A.

    2016-01-01

    Advancement of in silico tools would be enabled by the availability of data for metabolic reaction rates and intrinsic clearance (CLint) of a diverse compound structure data set by specific metabolic enzymes. Our goal is to measure CLint for a large set of compounds with each major human cytochrome P450 (P450) isozyme. To achieve our goal, it is of utmost importance to develop an automated, robust, sensitive, high-throughput metabolic stability assay that can efficiently handle a large volume of compound sets. The substrate depletion method [in vitro half-life (t1/2) method] was chosen to determine CLint. The assay (384-well format) consisted of three parts: 1) a robotic system for incubation and sample cleanup; 2) two different integrated, ultraperformance liquid chromatography/mass spectrometry (UPLC/MS) platforms to determine the percent remaining of parent compound, and 3) an automated data analysis system. The CYP3A4 assay was evaluated using two long t1/2 compounds, carbamazepine and antipyrine (t1/2 > 30 minutes); one moderate t1/2 compound, ketoconazole (10 < t1/2 < 30 minutes); and two short t1/2 compounds, loperamide and buspirone (t½ < 10 minutes). Interday and intraday precision and accuracy of the assay were within acceptable range (∼12%) for the linear range observed. Using this assay, CYP3A4 CLint and t1/2 values for more than 3000 compounds were measured. This high-throughput, automated, and robust assay allows for rapid metabolic stability screening of large compound sets and enables advanced computational modeling for individual human P450 isozymes. PMID:27417180

  5. [Lead compound optimization strategy (1)--changing metabolic pathways and optimizing metabolism stability].

    Science.gov (United States)

    Wang, Jiang; Liu, Hong

    2013-10-01

    Lead compound optimization plays an important role in new drug discovery and development. The strategies for changing metabolic pathways can modulate pharmacokinetic properties, prolong the half life, improve metabolism stability and bioavailability of lead compounds. The strategies for changing metabolic pathways and improving metabolism stability are reviewed. These methods include blocking metabolic site, reduing lipophilicity, changing ring size, bioisosterism, and prodrug.

  6. Weight Gain and Metabolic Effects of Mood Stabilizers and Antipsychotics in Pediatric Bipolar Disorder: A Systematic Review and Pooled Analysis of Short-Term Trials

    Science.gov (United States)

    Correll, Christoph U.

    2007-01-01

    Objective: To review weight and metabolic effects of mood-stabilizing treatments in pediatric bipolar disorder. Method: Systematic PubMed/Medline search of studies reporting on change in weight and/or glucose/lipid values with mood-stabilizing drugs in at least nine pediatric patients with bipolar disorder. Results: Nineteen studies, including 24…

  7. Primary Metabolic Pathways and Metabolic Flux Analysis

    DEFF Research Database (Denmark)

    2015-01-01

    his chapter introduces the metabolic flux analysis (MFA) or stoichiometry-based MFA, and describes the quantitative basis for MFA. It discusses the catabolic pathways in which free energy is produced to drive the cell-building anabolic pathways. An overview of these primary pathways provides...

  8. Steady states and stability in metabolic networks without regulation.

    Science.gov (United States)

    Ivanov, Oleksandr; van der Schaft, Arjan; Weissing, Franz J

    2016-07-21

    Metabolic networks are often extremely complex. Despite intensive efforts many details of these networks, e.g., exact kinetic rates and parameters of metabolic reactions, are not known, making it difficult to derive their properties. Considerable effort has been made to develop theory about properties of steady states in metabolic networks that are valid for any values of parameters. General results on uniqueness of steady states and their stability have been derived with specific assumptions on reaction kinetics, stoichiometry and network topology. For example, deep results have been obtained under the assumptions of mass-action reaction kinetics, continuous flow stirred tank reactors (CFSTR), concordant reaction networks and others. Nevertheless, a general theory about properties of steady states in metabolic networks is still missing. Here we make a step further in the quest for such a theory. Specifically, we study properties of steady states in metabolic networks with monotonic kinetics in relation to their stoichiometry (simple and general) and the number of metabolites participating in every reaction (single or many). Our approach is based on the investigation of properties of the Jacobian matrix. We show that stoichiometry, network topology, and the number of metabolites that participate in every reaction have a large influence on the number of steady states and their stability in metabolic networks. Specifically, metabolic networks with single-substrate-single-product reactions have disconnected steady states, whereas in metabolic networks with multiple-substrates-multiple-product reactions manifolds of steady states arise. Metabolic networks with simple stoichiometry have either a unique globally asymptotically stable steady state or asymptotically stable manifolds of steady states. In metabolic networks with general stoichiometry the steady states are not always stable and we provide conditions for their stability. In order to demonstrate the biological

  9. Stability analysis of ferrofluids

    Directory of Open Access Journals (Sweden)

    Katharina Duda

    2015-09-01

    Full Text Available Superparamagnetic iron oxides (SPIOs are used as tracer for the new imaging technique Magnetic Particle Imaging. The stability of ferrofluids for medical application has a great importance, in addition to the particle size. The shell material, which protects the iron core prior from agglomeration and sedimentation, can be degraded by various processes. Another important aspect of stability is the constant performance of magnetisation. Therefore, the measurement of the magnetisation of the particles must be controlled in order to ensure the stability of the samples.

  10. Structural pairwise comparisons of HLM stability of phenyl derivatives: Introduction of the Pfizer metabolism index (PMI) and metabolism-lipophilicity efficiency (MLE).

    Science.gov (United States)

    Lewis, Mark L; Cucurull-Sanchez, Lourdes

    2009-02-01

    Data mining by pairwise comparison of over 150,000 human liver microsome (HLM) intrinsic clearance values stored within the internal Pfizer database has been performed by an automated tool. Systematic probability tables of specific structural changes on the intrinsic clearance of phenyl derivatives have been generated. From these data two new parameters, the Pfizer Metabolism Index (PMI) and Metabolism-Lipophilicity Efficiency (MLE) are introduced for each fragment. The findings are applied to a Topliss style analysis that focuses on metabolic stability.

  11. Slope Stability Analysis Using GIS

    Science.gov (United States)

    Bouajaj, Ahmed; Bahi, Lahcen; Ouadif, Latifa; Awa, Mohamed

    2016-10-01

    An analysis of slope stability using Geographic Information System (GIS) is presented in this paper. The methodology is based on the calculation of the safety factor in 2D and 3D using ArcGis. Hovland's Method in 3D and 2D were used in the stability analysis of the slope located at the 34 kilometer point (K.P.34) on the highway in the North of Morocco connecting Tangier to Ksar Sghir. Results shows that the safety factors obtained in 3D are always higher than those obtained in 2D and the slope becomes unstable when the water table level is less than 1 m.

  12. SLOPE STABILITY ANALYSIS USING GIS

    Directory of Open Access Journals (Sweden)

    A. Bouajaj

    2016-10-01

    Full Text Available An analysis of slope stability using Geographic Information System (GIS is presented in this paper. The methodology is based on the calculation of the safety factor in 2D and 3D using ArcGis. Hovland's Method in 3D and 2D were used in the stability analysis of the slope located at the 34 kilometer point (K.P.34 on the highway in the North of Morocco connecting Tangier to Ksar Sghir. Results shows that the safety factors obtained in 3D are always higher than those obtained in 2D and the slope becomes unstable when the water table level is less than 1 m.

  13. Stability analysis of nonlinear systems

    CERN Document Server

    Lakshmikantham, Vangipuram; Martynyuk, Anatoly A

    2015-01-01

    The book investigates stability theory in terms of two different measure, exhibiting the advantage of employing families of Lyapunov functions and treats the theory of a variety of inequalities, clearly bringing out the underlying theme. It also demonstrates manifestations of the general Lyapunov method, showing how this technique can be adapted to various apparently diverse nonlinear problems. Furthermore it discusses the application of theoretical results to several different models chosen from real world phenomena, furnishing data that is particularly relevant for practitioners. Stability Analysis of Nonlinear Systems is an invaluable single-sourse reference for industrial and applied mathematicians, statisticians, engineers, researchers in the applied sciences, and graduate students studying differential equations.

  14. Stability Analysis of Ecomorphodynamic Equations

    CERN Document Server

    Bärenbold, Fabian; Perona, Paolo

    2014-01-01

    Although riparian vegetation is present in or along many water courses of the world, its active role resulting from the interaction with flow and sediment processes has only recently become an active field of research. Especially, the role of vegetation in the process of river pattern formation has been explored and demonstrated mostly experimentally and numerically until now. In the present work, we shed light on this subject by performing a linear stability analysis on a simple model for riverbed vegetation dynamics coupled with the set of classical river morphodynamic equations. The vegetation model only accounts for logistic growth, local positive feedback through seeding and resprouting, and mortality by means of uprooting through flow shear stress. Due to the simplicity of the model, we can transform the set of equations into an eigenvalue problem and assess the stability of the linearized equations when slightly perturbated away from a spatially homogeneous solution. If we couple vegetation dynamics wi...

  15. ROBUST STABILITY ANALYSIS FOR RAILWAY VEHICLE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Wang Yong; Zeng Jing; Cao Dengqing

    2003-01-01

    The lateral stability for railway vehicle dynamic system with uncertain parameters and nonlinear uncertain force vector is studied by using the Lyapunov stability theory. A robust stability condition for the considered system is derived, and the obtained stability bounds are not necessarily symmetric with respect to the origin in the parameter space. The lateral stability analysis for a railway bogie model is analyzed by using the proposed approach. The symmetric and asymmetric results are both given and the influence of the adjustable parameter ( on the stability bounds is also discussed. With the help of the proposed method, the robust stability analysis can provide a reference for the design of the railway vehicle systems.

  16. CRITICAL ANALYSIS OF MECHANOSTAT THEORY PART II. STABILITY OF MECHANO-METABOLIC SKELETON ENVIRONMENT AND HOMEOSTATIC PARAMETERS OF CALCIUM IN ORGANISM

    Directory of Open Access Journals (Sweden)

    A. S. Avrunin

    2013-01-01

    Full Text Available Aim: Basing on own and literature date to characterize biological necessity of modification the ability of bone structures to be deformed and carrying capacity of lacunar-channel system to provide the basis for interaction between this pathways and parameters of calcium homeostasis. Results: There are two ways of bone matrix remodeling. The first group of pathways is responsible for slow adaptation of bone structures ability to be deformed within physiological range during weeks, months, years. The second group ensures rapid response of carrying capacity of lacunar-channel system (minutes and ours. This two mechanisms function in conjunction with hierarchically organized calcium metabolism. The first level of the latter is direct two-phase exchange of ionized calcium between extracellular liquid of bone tissue and blood: a paracellular arrival of ionized calcium from blood into the bone; b transcellular arrival of ionized calcium from extracellular liquid of bone into blood. The second hierarchical level is remodeling of perilacunar matrix by osteocytes. The third hierarchical level is bone remodeling with collaboration both osteoclasts and osteoblasts.

  17. Stability Analysis of MEMS Gyroscope Dynamic Systems

    OpenAIRE

    M. Naser-Moghadasi; S. A. Olamaei; F. Setoudeh

    2013-01-01

    In this paper, the existence of a common quadratic Lyapunov function for stability analysis of MEMS Gyroscope dynamic systems has been studied then a new method based on stochastic stability of MEMS Gyroscope system has been proposed.

  18. ANALYSIS OF MOTORCAR COURSE-KEEPING STABILITY

    Directory of Open Access Journals (Sweden)

    Makarov, V.

    2012-06-01

    Full Text Available The generalized scheme and graph-model with factors influencing the motorcar course-keeping stability are suggested. The analysis of possible variants improving the motorcar course-keeping stability is presented in the graph-model.

  19. Flux-P: Automating Metabolic Flux Analysis

    OpenAIRE

    Ebert, Birgitta E.; Anna-Lena Lamprecht; Bernhard Steffen; Blank, Lars M.

    2012-01-01

    Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in ...

  20. Portable Unit for Metabolic Analysis

    Science.gov (United States)

    Dietrich, Daniel L.; Pitch, Nancy D.; Lewis, Mark E.; Juergens, Jeffrey R.; Lichter, Michael J.; Stuk, Peter M.; Diedrick, Dale M.; Valentine, Russell W.; Pettegrew, Richard D.

    2007-01-01

    The Portable Unit for Metabolic Analysis (PUMA) is an instrument that measures several quantities indicative of human metabolic function. Specifically, this instrument makes time-resolved measurements of temperature, pressure, flow, and the partial pressures of oxygen and carbon dioxide in breath during both inhalation and exhalation. Portable instruments for measuring these quantities have been commercially available, but the response times of those instruments are too long to enable temporal resolution of phenomena on the time scales of human respiration cycles. In contrast, the response time of the PUMA is significantly shorter than characteristic times of human respiration phenomena, making it possible to analyze varying metabolic parameters, not only on sequential breath cycles but also at successive phases of inhalation and exhalation within the same breath cycle. In operation, the PUMA is positioned to sample breath near the subject s mouth. Commercial off-the-shelf sensors are used for three of the measurements: a miniature pressure transducer for pressure, a thermistor for temperature, and an ultrasonic sensor for flow. Sensors developed at Glenn Research Center are used for measuring the partial pressures of oxygen and carbon dioxide: The carbon dioxide sensor exploits the relatively strong absorption of infrared light by carbon dioxide. Light from an infrared source passes through the stream of inhaled or exhaled gas and is focused on an infrared- sensitive photodetector. The oxygen sensor exploits the effect of oxygen in quenching the fluorescence of ruthenium-doped organic molecules in a dye on the tip of an optical fiber. A blue laser diode is used to excite the fluorescence, and the optical fiber carries the fluorescent light to a photodiode, the temporal variation of the output of which bears a known relationship with the rate of quenching of fluorescence and, hence, with the partial pressure of oxygen. The outputs of the sensors are digitized

  1. Stability Analysis of ISS Medications

    Science.gov (United States)

    Wotring, V. E.

    2014-01-01

    the United States Pharmacopeia (USP) to measure the amount of intact active ingredient, identify degradation products and measure their amounts. Some analyses were conducted by an independent analytical laboratory, but certain (Schedule) medications could not be shipped to their facility and were analyzed at JSC. RESULTS Nine medications were analyzed with respect to active pharmaceutical ingredient (API) and degradant amounts. Results were compared to the USP requirements for API and degradants/impurities content for every FDA-approved medication. One medication met USP requirements at 5 months after its expiration date. Four of the nine (44% of those tested) medications tested met USP requirements up to 8 months post-expiration. Another 3 medications (33% of those tested) met USP guidelines 2-3 months before expiration. One medication, a compound classed by the FDA as a dietary supplement and sometimes used as a sleep aid, failed to meet USP requirements at 11 months post-expiration. CONCLUSION Analysis of each medication at a single time point provides limited information on the stability of a medication stored in particular conditions; it is not possible to predict how long a medication may be safe and effective from these data. Notwithstanding, five of the nine medications tested (56%) met USP requirements for API and degradants/impurities at least 5 months past expiration dates. The single compound that failed to meet USP requirements is not regulated as strictly as prescription medications are during manufacture; it is unknown if this medication would have met the requirements prior to flight. Notably, it was the furthest beyond its expiration date. Only more comprehensive analysis of flight-aged samples compared to appropriate ground controls will permit determination of spaceflight effects on medication stability.

  2. Sign Stability via Root Locus Analysis

    CERN Document Server

    Gibson, Travis E

    2015-01-01

    With the rise of network science old topics in ecology and economics are resurfacing. One such topic is structural stability (often referred to as qualitative stability or sign stability). A system is deemed structurally stable if the system remains stable for all possible parameter variations so long as the parameters do not change sign. This type of stability analysis is appealing when studying real systems as the underlying stability result only requires the scientist or engineer to know the sign of the parameters in the model and not the specific values. The necessary and sufficient conditions for qualitative stability however are opaque. In order to shed light on those conditions root locus analysis is employed. This technique allows us to illustrate the necessary conditions for qualitative stability.

  3. The Variation and Stability Analysis of Wheat Dough Stability Time

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-chun; HU Rui-bo; DENG Zhi-ying; WANG Yan-xun

    2007-01-01

    Farinograph dough stability time is an important index for classifying wheat, and it often indicates the most appropriate end use for the wheat cultivars. This study aimed at the problem of large fluctuations in dough stability time that occurs during the commercial wheat production. The variations in the dough stability time and its consistency across locations and years were analyzed using 12 principal high-quality wheat cultivars (varieties) obtained from Shandong Province,China, which were grown at nine different locations for three successive years. The results showed that the coefficient of variation for the dough stability time ranged from 24.29 to 49.60% across different varieties, locations, and years. Additive main effects and multiplicative interaction (AMMI) analysis indicated that there were significant interactions for the dough stability time between the varieties, the growth locations, and the years. The genotype effect was the most noticeable, followed by the interaction of the genotype and the environment. The environmental effect was the least significant. The interactions between the varieties and the locations differ considerably, however, each cultivar (variety) apparently has a specific adaptability to the growth location. Therefore, for the successful commercial scale production of the high-quality wheat varieties, both the selection of proper cultivars and its most suitable growth locations to meet the desired requirements for the dough mixing stability time are important.

  4. Discovery of highly potent and selective Bruton's tyrosine kinase inhibitors: Pyridazinone analogs with improved metabolic stability.

    Science.gov (United States)

    Young, Wendy B; Barbosa, James; Blomgren, Peter; Bremer, Meire C; Crawford, James J; Dambach, Donna; Eigenbrot, Charles; Gallion, Steve; Johnson, Adam R; Kropf, Jeffrey E; Lee, Seung H; Liu, Lichuan; Lubach, Joseph W; Macaluso, Jen; Maciejewski, Pat; Mitchell, Scott A; Ortwine, Daniel F; Di Paolo, Julie; Reif, Karin; Scheerens, Heleen; Schmitt, Aaron; Wang, Xiaojing; Wong, Harvey; Xiong, Jin-Ming; Xu, Jianjun; Yu, Christine; Zhao, Zhongdong; Currie, Kevin S

    2016-01-15

    BTK inhibitor GDC-0834 (1) was found to be rapidly metabolized in human studies, resulting in a suspension of clinical trials. The primary route of metabolism was through cleavage of the acyclic amide bond connecting the terminal tetrahydrobenzothiophene with the central linker aryl ring. SAR studies were focused on reducing metabolic cleavage of this amide, and resulted in the identification of several central aryl linker substituents that conferred improved stability. The most promising substituted aryl linkers were then incorporated into an optimized pyridazinone scaffold, resulting in the identification of lead analog 23, possessing improved potency, metabolic stability and preclinical properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Analysis of metabolic flux using dynamic labelling and metabolic modelling.

    Science.gov (United States)

    Fernie, A R; Morgan, J A

    2013-09-01

    Metabolic fluxes and the capacity to modulate them are a crucial component of the ability of the plant cell to react to environmental perturbations. Our ability to quantify them and to attain information concerning the regulatory mechanisms that control them is therefore essential to understand and influence metabolic networks. For all but the simplest of flux measurements labelling methods have proven to be the most informative. Both steady-state and dynamic labelling approaches have been adopted in the study of plant metabolism. Here the conceptual basis of these complementary approaches, as well as their historical application in microbial, mammalian and plant sciences, is reviewed, and an update on technical developments in label distribution analyses is provided. This is supported by illustrative cases studies involving the kinetic modelling of secondary metabolism. One issue that is particularly complex in the analysis of plant fluxes is the extensive compartmentation of the plant cell. This problem is discussed from both theoretical and experimental perspectives, and the current approaches used to address it are assessed. Finally, current limitations and future perspectives of kinetic modelling of plant metabolism are discussed.

  6. Prediction of in vitro metabolic stability of calcitriol analogs by QSAR

    Science.gov (United States)

    Jensen, Berith F.; Sørensen, Morten D.; Kissmeyer, Anne-Marie; Björkling, Fredrik; Sonne, Kim; Engelsen, Søren B.; Nørgaard, Lars

    2003-12-01

    The metabolic stability of a drug is an important property for potential drug candidates. Measuring this property, however, can be costly and time-consuming. The use of quantitative structure-activity relationships (QSAR) to estimate the in vitro stability is an attractive alternative to experimental measurements. A data set of 130 calcitriol analogs with known values of in vitro metabolic stability was used to develop QSAR models. The analogs were encoded with molecular structure descriptors computed mainly with the commercial software QikProp and DiverseSolutions. Variable selection was carried out by five different variable selection techniques and Partial Least Squares Regression (PLS) models were generated from the 130 analogs. The models were used for prediction of the metabolic stability of 244 virtual calcitriol analogs. Twenty of the 244 analogs were selected and the in vitro metabolic stability was determined experimentally. The PLS models were able to predict the correct metabolic stability for 17 of the 20 selected analogs, corresponding to a prediction performance of 85%. The results clearly demonstrate the utility of QSAR models in predicting the in vitro metabolic stability of calcitriol analogs.

  7. Stability Analysis of Path-vector Routing

    CERN Document Server

    Dimitri, Papadimitriou

    2012-01-01

    Most studies on path-vector routing stability have been conducted empirically by means of ad-hoc analysis of BGP data traces. None of them consider prior specification of an analytic method including the use of stability measurement metrics for the systematic analysis of BGP traces and associated meta-processing for determining the local state of the routing system. In this paper, we define a set of metrics that characterize the local stability properties of path-vector routing such as BGP (Border Gateway Protocol). By means of these stability metrics, we propose a method to analyze the effects of BGP policy- and protocol-induced instability on local routers.

  8. Analysis of Path-vector Routing Stability

    CERN Document Server

    Dimitri, Papadimitriou

    2012-01-01

    Most studies on path-vector routing stability have been conducted empirically by means of ad-hoc analysis of BGP data traces. None of them consider prior specification of an analytic method including the use of stability measurement metrics for the systematic analysis of BGP traces and associated meta-processing for determining the local state of the routing system. In this paper, we define a set of metrics that characterize the local stability properties of path-vector routing such as BGP (Border Gateway Protocol). By means of these stability metrics, we propose a method to analyze the effects of BGP policy- and protocol-induced instability on local routers.

  9. Steady states and stability in metabolic networks without regulation

    NARCIS (Netherlands)

    Ivanov, Oleksandr; van der Schaft, Arjan; Weissing, Franz J

    2016-01-01

    Metabolic networks are often extremely complex. Despite intensive efforts many details of these networks, e.g., exact kinetic rates and parameters of metabolic reactions, are not known, making it difficult to derive their properties. Considerable effort has been made to develop theory about properti

  10. Profile Orientation and Slope Stability Analysis

    Directory of Open Access Journals (Sweden)

    Zhe-Ping Shen

    2016-01-01

    Full Text Available This paper presents an analysis of soil slope stability using a terrestrial laser scanner, particle swarm optimization, and the force equilibrium method. The aim of this study was to demonstrate that a slope needed to be analyzed in many different directions in order to assess its stability conclusively, rather than using just one cross-sectional profile to represent the entire slope. To achieve this purpose, this study illustrates how a particle swarm optimization algorithm can be successfully incorporated into the analysis with slope stability analysis software, STABL. This study compares results obtained with those of previous studies and makes important observations.

  11. Strategies for improving the solubility and metabolic stability of griseofulvin analogues

    DEFF Research Database (Denmark)

    Petersen, Asger Bjørn; Konotop, G.; Hanafiah, N. H. M.;

    2016-01-01

    We report two types of modifications to the natural product griseofulvin as strategies to improve solubility and metabolic stability: the conversion of aryl methyl ethers into aryl difluoromethyl ethers at metabolic hotspots and the conversion of the C-ring ketone into polar oximes. The syntheses...

  12. The computer in shell stability analysis

    Science.gov (United States)

    Almroth, B. O.; Starnes, J. H., Jr.

    1975-01-01

    Some examples in which the high-speed computer has been used to improve the static stability analysis capability for general shells are examined. The fundamental concepts of static stability are reviewed with emphasis on the differences between linear bifurcation buckling and nonlinear collapse. The analysis is limited to the stability of conservative systems. Three examples are considered. The problem of cylinders subjected to bending loads is used as an example to illustrate that a simple structure can have a sufficiently complicated nonlinear behavior to require a computer analysis for accurate results. An analysis of the problems involved in the modeling of stiffening elements in plate and shell structures illustrates the necessity that the analyst recognizes all important deformation modes. The stability analysis of the Skylab structure indicates the size of problems that can be solved with current state-of-the-art capability.

  13. Power system stability modelling, analysis and control

    CERN Document Server

    Sallam, Abdelhay A

    2015-01-01

    This book provides a comprehensive treatment of the subject from both a physical and mathematical perspective and covers a range of topics including modelling, computation of load flow in the transmission grid, stability analysis under both steady-state and disturbed conditions, and appropriate controls to enhance stability.

  14. Jacobi stability analysis of Rikitake system

    Science.gov (United States)

    Gupta, M. K.; Yadav, C. K.

    2016-06-01

    We study the Rikitake system through the method of differential geometry, i.e. Kosambi-Cartan-Chern (KCC) theory for Jacobi stability analysis. For applying KCC theory we reformulate the Rikitake system as two second-order nonlinear differential equations. The five KCC invariants are obtained which express the intrinsic properties of nonlinear dynamical system. The deviation curvature tensor and its eigenvalues are obtained which determine the stability of the system. Jacobi stability of the equilibrium points is studied and obtain the conditions for stability. We study the dynamics of Rikitake system which shows the chaotic behaviour near the equilibrium points.

  15. Computer Aided Transient Stability Analysis

    Directory of Open Access Journals (Sweden)

    Nihad M. Al-Rawi

    2007-01-01

    Full Text Available A program for handling and improving the transient stability of the Iraqi Super Grid electrical network was developed. The idea was demonstrated by applying it to the outages of the main generating units. The methodology was built upon a state of increasing power transfer through the healthy portion of network during disturbances. There were three parts concerned; the first part was the developing of the load flow program using fast decoupled method and the transient stability program using Modified Euler’s method in the step by step solution, the second part was the engagement between the two programs, the third part was the application of the new program on the Iraqi supper grid network (400 kV.

  16. Temporal expression-based analysis of metabolism.

    Directory of Open Access Journals (Sweden)

    Sara B Collins

    Full Text Available Metabolic flux is frequently rerouted through cellular metabolism in response to dynamic changes in the intra- and extra-cellular environment. Capturing the mechanisms underlying these metabolic transitions in quantitative and predictive models is a prominent challenge in systems biology. Progress in this regard has been made by integrating high-throughput gene expression data into genome-scale stoichiometric models of metabolism. Here, we extend previous approaches to perform a Temporal Expression-based Analysis of Metabolism (TEAM. We apply TEAM to understanding the complex metabolic dynamics of the respiratorily versatile bacterium Shewanella oneidensis grown under aerobic, lactate-limited conditions. TEAM predicts temporal metabolic flux distributions using time-series gene expression data. Increased predictive power is achieved by supplementing these data with a large reference compendium of gene expression, which allows us to take into account the unique character of the distribution of expression of each individual gene. We further propose a straightforward method for studying the sensitivity of TEAM to changes in its fundamental free threshold parameter θ, and reveal that discrete zones of distinct metabolic behavior arise as this parameter is changed. By comparing the qualitative characteristics of these zones to additional experimental data, we are able to constrain the range of θ to a small, well-defined interval. In parallel, the sensitivity analysis reveals the inherently difficult nature of dynamic metabolic flux modeling: small errors early in the simulation propagate to relatively large changes later in the simulation. We expect that handling such "history-dependent" sensitivities will be a major challenge in the future development of dynamic metabolic-modeling techniques.

  17. Flux-P: Automating Metabolic Flux Analysis

    Directory of Open Access Journals (Sweden)

    Birgitta E. Ebert

    2012-11-01

    Full Text Available Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in this complex analysis, but requires several steps that have to be carried out manually, hence restricting the use of this software for data interpretation to a rather small number of experiments. In this paper, we present Flux-P as an approach to automate and standardize 13C-based metabolic flux analysis, using the Bio-jETI workflow framework. Exemplarily based on the FiatFlux software, it demonstrates how services can be created that carry out the different analysis steps autonomously and how these can subsequently be assembled into software workflows that perform automated, high-throughput intracellular flux analysis of high quality and reproducibility. Besides significant acceleration and standardization of the data analysis, the agile workflow-based realization supports flexible changes of the analysis workflows on the user level, making it easy to perform custom analyses.

  18. Synthesis and formulation studies of griseofulvin analogues with improved solubility and metabolic stability

    DEFF Research Database (Denmark)

    Petersen, Asger Bjørn; Andersen, Nikolaj Sten; Konotop, Gleb

    2017-01-01

    potency in vitro. Analogue 2 was also shown to retard tumor growth through inhibition of centrosomal clustering in murine xenograft models of colon cancer and multiple myeloma. However, similar to griseofulvin, compound 2 exhibited poor metabolic stability and aqueous solubility. In order to improve...... the poor pharmacokinetic properties, 11 griseofulvin analogues were synthesized and evaluated for biological activity and physiological stabilities including SGF, plasma, and metabolic stability. Finally, the most promising compounds were investigated in respect to thermodynamic solubility and formulation...... studies. The 2'-benzylamine analogue 10 proved to be the most promising compound with low μM in vitro anticancer potency, a 200-fold increase in PBS solubility over compound 2, and with improved metabolic stability. Furthermore, this analogue proved compatible with formulations suitable for both oral...

  19. Pareto optimality in organelle energy metabolism analysis.

    Science.gov (United States)

    Angione, Claudio; Carapezza, Giovanni; Costanza, Jole; Lió, Pietro; Nicosia, Giuseppe

    2013-01-01

    In low and high eukaryotes, energy is collected or transformed in compartments, the organelles. The rich variety of size, characteristics, and density of the organelles makes it difficult to build a general picture. In this paper, we make use of the Pareto-front analysis to investigate the optimization of energy metabolism in mitochondria and chloroplasts. Using the Pareto optimality principle, we compare models of organelle metabolism on the basis of single- and multiobjective optimization, approximation techniques (the Bayesian Automatic Relevance Determination), robustness, and pathway sensitivity analysis. Finally, we report the first analysis of the metabolic model for the hydrogenosome of Trichomonas vaginalis, which is found in several protozoan parasites. Our analysis has shown the importance of the Pareto optimality for such comparison and for insights into the evolution of the metabolism from cytoplasmic to organelle bound, involving a model order reduction. We report that Pareto fronts represent an asymptotic analysis useful to describe the metabolism of an organism aimed at maximizing concurrently two or more metabolite concentrations.

  20. Stability analysis of free piston Stirling engines

    Science.gov (United States)

    Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe

    2013-03-01

    This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.

  1. Computational approaches to the topology, stability and dynamics of metabolic networks.

    Science.gov (United States)

    Steuer, Ralf

    2007-01-01

    Cellular metabolism is characterized by an intricate network of interactions between biochemical fluxes, metabolic compounds and regulatory interactions. To investigate and eventually understand the emergent global behavior arising from such networks of interaction is not possible by intuitive reasoning alone. This contribution seeks to describe recent computational approaches that aim to asses the topological and functional properties of metabolic networks. In particular, based on a recently proposed method, it is shown that it is possible to acquire a quantitative picture of the possible dynamics of metabolic systems, without assuming detailed knowledge of the underlying enzyme-kinetic rate equations and parameters. Rather, the method builds upon a statistical exploration of the comprehensive parameter space to evaluate the dynamic capabilities of a metabolic system, thus providing a first step towards the transition from topology to function of metabolic pathways. Utilizing this approach, the role of feedback mechanisms in the maintenance of stability is discussed using minimal models of cellular pathways.

  2. Metabolic cost of lateral stabilization during walking in people with incomplete spinal cord injury.

    Science.gov (United States)

    Matsubara, J H; Wu, M; Gordon, K E

    2015-02-01

    People with incomplete spinal cord injury (iSCI) expend considerable energy to walk, which can lead to rapid fatigue and limit community ambulation. Selecting locomotor patterns that enhance lateral stability may contribute to this population's elevated cost of transport. The goal of the current study was to quantify the metabolic energy demands of maintaining lateral stability during gait in people with iSCI. To quantify this metabolic cost, we observed ten individuals with iSCI walking with and without external lateral stabilization. We hypothesized that with external lateral stabilization, people with iSCI would adapt their gait by decreasing step width, which would correspond with a substantial decrease in cost of transport. Our findings support this hypothesis. Subjects significantly (p<0.05) decreased step width by 22%, step width variability by 18%, and minimum lateral margin of stability by 25% when they walked with external lateral stabilization compared to unassisted walking. Metabolic cost of transport also decreased significantly (p<0.05) by 10% with external lateral stabilization. These findings suggest that this population is capable of adapting their gait to meet changing demands placed on balance. The percent reduction in cost of transport when walking with external lateral stabilization was strongly correlated with functional impairment level as assessed by subjects' scores on the Berg Balance Scale (r=0.778) and lower extremity motor score (r=0.728). These relationships suggest that as functional balance and strength decrease, the amount of metabolic energy used to maintain lateral stability during gait will increase.

  3. Linear stability analysis of heated parallel channels

    Science.gov (United States)

    Nourbakhsh, H. P.; Isbin, H. S.

    An analyis is presented of thermal hydraulic stability of flow in parallel channels covering the range from inlet subcooling to exit superheat. The model is based on a one-dimensional drift velocity formulation of the two phase flow conservation equations. The system of equations is linearized by assuming small disturbances about the steady state. The dynamic response of the system to an inlet flow perturbation is derived yielding the characteristic equation which predicts the onset of instabilities. A specific application is carried out for homogeneous and regional uniformly heated systems. The particular case of equal characteristic frequencies of two-phase and single phase vapor region is studied in detail. The D-partition method and the Mikhailov stability criterion are used for determining the marginal stability boundary. Stability predictions from the present analysis are compared with the experimental data from the solar test facility.

  4. Resource niche overlap promotes stability of bacterial community metabolism in experimental microcosms

    Directory of Open Access Journals (Sweden)

    Ellard Roy Hunting

    2015-02-01

    Full Text Available Decomposition of organic matter is an important ecosystem process governed in part by bacteria. The process of decomposition is expected to benefit from interspecific bacterial interactions such as resource partitioning and facilitation. However, the relative importance of resource niche breadth (metabolic diversity and resource niche overlap (functional redundancy on decomposition and the temporal stability of ecosystem processes received little scientific attention. Therefore, this study aims to evaluate the effect of an increase in bacterial community resemblance on both decomposition and the stability of bacterial metabolism in aquatic sediments. To this end, we performed laboratory microcosm experiments in which we examined the influence of bacterial consortia differing in number and composition of species on bacterial activity (Electron Transport System Activity, ETSA, dissolved organic carbon production and wavelet transformed measurements of redox potential (Eh. Single substrate affinities of the individual bacterial species in order to calculate the metabolic diversity of the microbial community. Results presented here indicate that bacterial activity and organic matter decomposition increase with widening of the resource niche breadth, and that metabolic stability increases with increasing overlap in bacterial resource niches, hinting that resource niche overlap can promote the stability of bacterial community metabolism.

  5. Stock market stability: Diffusion entropy analysis

    Science.gov (United States)

    Li, Shouwei; Zhuang, Yangyang; He, Jianmin

    2016-05-01

    In this article, we propose a method to analyze the stock market stability based on diffusion entropy, and conduct an empirical analysis of Dow Jones Industrial Average. Empirical results show that this method can reflect the volatility and extreme cases of the stock market.

  6. Hierarchical multivariate covariance analysis of metabolic connectivity.

    Science.gov (United States)

    Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J

    2014-12-01

    Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).

  7. Metabolic stabilization of acetylcholine receptors in vertebrate neuromuscular junction by muscle activity

    Energy Technology Data Exchange (ETDEWEB)

    Rotzler, S.; Brenner, H.R. (Univ. of Basel (Switzerland))

    1990-08-01

    The effects of muscle activity on the growth of synaptic acetylcholine receptor (AChR) accumulations and on the metabolic AChR stability were investigated in rat skeletal muscle. Ectopic end plates induced surgically in adult soleus muscle were denervated early during development when junctional AChR number and stability were still low and, subsequently, muscles were either left inactive or they were kept active by chronic exogenous stimulation. AChR numbers per ectopic AChR cluster and AChR stabilities were estimated from the radioactivity and its decay with time, respectively, of end plate sites whose AChRs had been labeled with {sup 125}I-alpha-bungarotoxin (alpha-butx). The results show that the metabolic stability of the AChRs in ectopic clusters is reversibly increased by muscle activity even when innervation is eliminated very early in development. 1 d of stimulation is sufficient to stabilize the AChRs in ectopic AChR clusters. Muscle stimulation also produced an increase in the number of AChRs at early denervated end plates. Activity-induced cluster growth occurs mainly by an increase in area rather than in AChR density, and for at least 10 d after denervation is comparable to that in normally developing ectopic end plates. The possible involvement of AChR stabilization in end plate growth is discussed.

  8. Reliability analysis method applied in slope stability: slope prediction and forecast on stability analysis

    Institute of Scientific and Technical Information of China (English)

    Wenjuan ZHANG; Li CHEN; Ning QU; Hai'an LIANG

    2006-01-01

    Landslide is one kind of geologic hazards that often happens all over the world. It brings huge losses to human life and property; therefore, it is very important to research it. This study focused in combination between single and regional landslide, traditional slope stability analysis method and reliability analysis method. Meanwhile, methods of prediction of slopes and reliability analysis were discussed.

  9. The combined effects of reactant kinetics and enzyme stability explain the temperature dependence of metabolic rates.

    Science.gov (United States)

    DeLong, J P; Gibert, J P; Luhring, T M; Bachman, G; Reed, B; Neyer, A; Montooth, K L

    2017-06-01

    A mechanistic understanding of the response of metabolic rate to temperature is essential for understanding thermal ecology and metabolic adaptation. Although the Arrhenius equation has been used to describe the effects of temperature on reaction rates and metabolic traits, it does not adequately describe two aspects of the thermal performance curve (TPC) for metabolic rate-that metabolic rate is a unimodal function of temperature often with maximal values in the biologically relevant temperature range and that activation energies are temperature dependent. We show that the temperature dependence of metabolic rate in ectotherms is well described by an enzyme-assisted Arrhenius (EAAR) model that accounts for the temperature-dependent contribution of enzymes to decreasing the activation energy required for reactions to occur. The model is mechanistically derived using the thermodynamic rules that govern protein stability. We contrast our model with other unimodal functions that also can be used to describe the temperature dependence of metabolic rate to show how the EAAR model provides an important advance over previous work. We fit the EAAR model to metabolic rate data for a variety of taxa to demonstrate the model's utility in describing metabolic rate TPCs while revealing significant differences in thermodynamic properties across species and acclimation temperatures. Our model advances our ability to understand the metabolic and ecological consequences of increases in the mean and variance of temperature associated with global climate change. In addition, the model suggests avenues by which organisms can acclimate and adapt to changing thermal environments. Furthermore, the parameters in the EAAR model generate links between organismal level performance and underlying molecular processes that can be tested for in future work.

  10. Exploring the Metabolic Stability of Engineered Hairy Roots after 16 Years Maintenance

    Science.gov (United States)

    Häkkinen, Suvi T.; Moyano, Elisabeth; Cusidó, Rosa M.; Oksman-Caldentey, Kirsi-Marja

    2016-01-01

    Plants remain a major source of new drugs, leads and fine chemicals. Cell cultures deriving from plants offer a fascinating tool to study plant metabolic pathways and offer large scale production systems for valuable compounds – commercial examples include compounds such as paclitaxel. The major constraint with undifferentiated cell cultures is that they are generally considered to be genetically unstable and cultured cells tend to produce low yields of secondary metabolites especially over time. Hairy roots, a tumor tissue caused by infection of Agrobacterium rhizogenes is a relevant alternative for plant secondary metabolite production for being fast growing, able to grow without phytohormones, and displaying higher stability than undifferentiated cells. Although genetic and metabolic stability has often been connected to transgenic hairy roots, there are only few reports on how a very long-term subculturing effects on the production capacity of hairy roots. In this study, hairy roots producing high tropane alkaloid levels were subjected to 16-year follow-up in relation to genetic and metabolic stability. Cryopreservation method for hairy roots of Hyoscyamus muticus was developed to replace laborious subculturing, and although the post-thaw recovery rates remained low, the expression of transgene remained unaltered in cryopreserved roots. It was shown that although displaying some fluctuation in the metabolite yields, even an exceedingly long-term subculturing was successfully applied without significant loss of metabolic activity. PMID:27746806

  11. Exploring the metabolic stability of engineered hairy roots after 16 years maintenance

    Directory of Open Access Journals (Sweden)

    Suvi Tuulikki Häkkinen

    2016-09-01

    Full Text Available Plants remain a major source of new drugs, leads and fine chemicals. Cell cultures deriving from plants offer a fascinating tool to study plant metabolic pathways and offer large scale production systems for valuable compounds – commercial examples include compounds such as paclitaxel. The major constraint with undifferentiated cell cultures is that they are generally considered to be genetically unstable and cultured cells tend to produce low yields of secondary metabolites especially over time. Hairy roots, a tumour tissue caused by infection of Agrobacterium rhizogenes is a relevant alternative for plant secondary metabolite production for being fast growing, able to grow without phytohormones, and displaying higher stability than undifferentiated cells. Although genetic and metabolic stability has often been connected to transgenic hairy roots, there are only few reports on how a very long-term subculturing effects on the production capacity of hairy roots. In this study, hairy roots producing high tropane alkaloid levels were subjected to 16 -year follow-up in relation to genetic and metabolic stability. Cryopreservation method for hairy roots of H. muticus was developed to replace laborious subculturing, and although the post-thaw recovery rates remained low, the expression of transgene remained unaltered in cryopreserved roots. It was shown that although displaying some fluctuation in the metabolite yields, even an exceedingly long-term subculturing was successfully applied without significant loss of metabolic activity.

  12. Metabolic stability and determination of cytochrome P450 isoenzymes' contribution to the metabolism of medetomidine in dog liver microsomes.

    Science.gov (United States)

    Duhamel, Marie-Claude; Troncy, Eric; Beaudry, Francis

    2010-08-01

    Medetomidine is a potent and selective alpha2-adrenergic agonist. The activation of alpha2-adrenergic receptor mediates a variety of effects including sedation, analgesia, relief of anxiety, vasoconstriction and bradycardia. However, our main interest is the sedative effects of medetomidine when used as a premedicant prior surgery in companion animals, especially in dogs. Recently, data suggested that following intravenous infusion at six dosing regiments non-linear pharmacokinetics was observed. Major causes of non-linear pharmacokinetics are the elimination of the drug not following a simple first-order kinetics and/or the elimination half-life changing due to saturation of an enzyme system. The goal of this study was to establish the metabolic stability and determine the metabolic pathway of medetomidine in dog liver microsomes. Consequently, Michaelis-Menten parameters (V(max), K(m)), T(1/2) and CL(i) were determined. The incubations were performed in a microcentrifuge tube and containing various concentrations of medetomidine (10-5000 nM), 1 mg/mL of microsomal proteins suspended in 0.1 M phosphate buffer, pH 7.4. Microsomal suspensions were preincubated with NADPH (1 mM) for 5 min at 37 degrees C prior to fortification with medetomidine. Samples were taken at various time points for kinetic information and the initial velocity (v(i)) was determined after 10 min incubation. The reaction was stopped by the addition of an internal standard solution (100 ng/mL of dextrometorphan in acetone). Medetomidine concentrations were determined using a selective and sensitive HPLC-ESI/MS/MS method. Using non-linear regression, we determined a K(m) value of 577 nM, indicating relatively low threshold enzyme saturation consistent with previous in vivo observation. The metabolic stability was determined at a concentration of 100 nm (dog liver microsomes, also consistent with previous in vivo data. Moreover, results suggest that principally medetomidine is metabolized by the

  13. Nonlinear physical systems spectral analysis, stability and bifurcations

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam

  14. Linear Stability Analysis of Dynamical Quadratic Gravity

    CERN Document Server

    Ayzenberg, Dimitry; Yunes, Nicolas

    2013-01-01

    We perform a linear stability analysis of dynamical, quadratic gravity in the high-frequency, geometric optics approximation. This analysis is based on a study of gravitational and scalar modes propagating on spherically-symmetric and axially-symmetric, vacuum solutions of the theory. We find dispersion relations that do no lead to exponential growth of the propagating modes, suggesting the theory is linearly stable on these backgrounds. The modes are found to propagate at subluminal and superluminal speeds, depending on the propagating modes' direction relative to the background geometry, just as in dynamical Chern-Simons gravity.

  15. Reliability Analysis of High Rockfill Dam Stability

    Directory of Open Access Journals (Sweden)

    Ping Yi

    2015-01-01

    Full Text Available A program 3DSTAB combining slope stability analysis and reliability analysis is developed and validated. In this program, the limit equilibrium method is utilized to calculate safety factors of critical slip surfaces. The first-order reliability method is used to compute reliability indexes corresponding to critical probabilistic surfaces. When derivatives of the performance function are calculated by finite difference method, the previous iteration’s critical slip surface is saved and used. This sequential approximation strategy notably improves efficiency. Using this program, the stability reliability analyses of concrete faced rockfill dams and earth core rockfill dams with different heights and different slope ratios are performed. The results show that both safety factors and reliability indexes decrease as the dam’s slope increases at a constant height and as the dam’s height increases at a constant slope. They decrease dramatically as the dam height increases from 100 m to 200 m while they decrease slowly once the dam height exceeds 250 m, which deserves attention. Additionally, both safety factors and reliability indexes of the upstream slope of earth core rockfill dams are higher than that of the downstream slope. Thus, the downstream slope stability is the key failure mode for earth core rockfill dams.

  16. Kick Stability Analysis of the LHC Inflectors

    CERN Document Server

    Ducimetière, L; Schröder, G; Vossenberg, Eugène B; Barnes, M J; Wait, G D

    1996-01-01

    Two sets of four LHC inflector magnet systems must produce a kick of 1.36 Tm each with a duration of 6.5 µs, a rise time of 750 ns, and an overall stability of ± 0.5%. The electrical circuit of the complete system, including all known stray quantities, has been simulated with PSpice. Many stray elements were determined from Opera2D simulations which included eddy-currents. 3D analyses have also been carried out for the kicker magnet using the electromagnetic analysis code Opera3D. Equivalent circuits which simulate the frequency dependence of inductance and resistance of the Pulse Forming Network (PFN) have been derived. The dimensions of the PFN coil have been selected to give the correct pulse response. The end cells of the PFN have also been optimised. The discharge stability of various PFN capacitors has been measured. This paper presents the results of both the analyses and measurements.

  17. Reliability Analysis of Dynamic Stability in Waves

    DEFF Research Database (Denmark)

    Søborg, Anders Veldt

    2004-01-01

    exhibit sufficient characteristics with respect to slope at zero heel (GM value), maximum leverarm, positive range of stability and area below the leverarm curve. The rule-based requirements to calm water leverarm curves are entirely based on experience obtained from vessels in operation and recorded......-4 per ship year such brute force Monte-Carlo simulations are not always feasible due to the required computational resources. Previous studies of dynamic stability of ships in waves typically focused on the capsizing event. In this study the objective is to establish a procedure that can identify...... the distribution of the exceedance probability may be established by an estimation of the out-crossing rate of the "safe set" defined by the utility function. This out-crossing rate will be established using the so-called Madsen's Formula. A bi-product of this analysis is a set of short wave time series...

  18. Novel DTA method for thermal stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berty, J.M.; Gandhi, R.J.; Lee, S.

    1986-01-01

    A Differential Thermal Analysis (DTA) technique to study the kinetics of highly exothermic reactions for estimating thermal stability parameters has been developed. The technique involves measuring and analyzing the heat generated due to the reaction from a differential temperature curve. The technique has been tested by studying the kinetics of the reaction between sodium thiosulfate and hydrogen peroxide whose kinetic parameters are already known and whose thermal stability has been analyzed by a different technique. First the envisiones experiment was simulated on computer, then the DTA experimental equipment was designed on the basis of the computer simulation and finally the actual reaction between Na/sub 2/S/sub 2/O/sub 4/ and H/sub 2/O was performed. The satisfactory results demonstrated the feasibility of the DTA technique for estimating the kinetic parameters.

  19. Stability Analysis and Stabilization of Miduk Heap Leaching Structure, Iran

    Directory of Open Access Journals (Sweden)

    Mehdi Amini

    2013-06-01

    Full Text Available To construct copper heap leaching structures, a stepped heap of ore is placed over an isolated sloping surface and then washed with sulphuric acid. The isolated bed of such a heap consists of some natural and geosynthetic layers. Shear strength parameters between these layers are low, so they form the possible sliding surfaces of the heaps. Economic and environmental considerations call for studying such slides. In this study, firstly, results of the laboratory tests carried on the materials of the heap leaching structures bed are presented. Then, the instability mechanisms of such structures are investigated and proper approaches are summarized for their stabilization. Finally, stability of the Miduk copper heap is evaluated as a case history, and appropriate approaches and their effects are discussed for its stabilization.

  20. 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production

    OpenAIRE

    Weihua Guo; Jiayuan Sheng; Xueyang Feng

    2015-01-01

    Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (1...

  1. Dynamic metabolic flux analysis--tools for probing transient states of metabolic networks.

    Science.gov (United States)

    Antoniewicz, Maciek R

    2013-12-01

    Computational approaches for analyzing dynamic states of metabolic networks provide a practical framework for design, control, and optimization of biotechnological processes. In recent years, two promising modeling approaches have emerged for characterizing transients in cellular metabolism, dynamic metabolic flux analysis (DMFA), and dynamic flux balance analysis (DFBA). Both approaches combine metabolic network analysis based on pseudo steady-state (PSS) assumption for intracellular metabolism with dynamic models for extracellular environment. One strategy to capture dynamics is by combining network analysis with a kinetic model. Predictive models are thus established that can be used to optimize bioprocessing conditions and identify useful genetic manipulations. Alternatively, by combining network analysis with methods for analyzing extracellular time-series data, transients in intracellular metabolic fluxes can be determined and applied for process monitoring and control.

  2. Stability analysis of rubblemound breakwater using ANN

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Rao, S.; Manjunath, Y.R.; Kim, D.H.

    are of rubble mound type which consists of one or two layers of heavier armor stones, one or two filter layers consisting of relatively smaller stones and a core of quarry run. The design of the breakwater section, which is normally of a trapezoidal shape... relation is not clear. In more practical terms networks are non-linear modeling tools and they can be used to model complex relationship between input and output system. Earlier applications of neural networks for stability analysis of rubble mound...

  3. Stability analysis of cylindrical Vlasov equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Short, R.W.

    1979-01-01

    A general method of stability analysis is described which may be applied to a large class of such problems, namely those which are described dynamically by the Vlasov equation, and geometrically by cylindrical symmetry. The method is presented for the simple case of the Vlasov-Poisson (electrostatic) equations, and the results are applied to a calculation of the lower-hybrid-drift instability in a plasma with a rigid rotor distribution function. The method is extended to the full Vlasov-Maxwell (electromagnetic) equations. These results are applied to a calculation of the instability of the extraordinary electromagnetic mode in a relativistic E-layer interacting with a background plasma.

  4. Metabolic stability of superoxide adducts derived from newly developed cyclic nitrone spin traps.

    Science.gov (United States)

    Bézière, Nicolas; Hardy, Micael; Poulhès, Florent; Karoui, Hakim; Tordo, Paul; Ouari, Olivier; Frapart, Yves-Michel; Rockenbauer, Antal; Boucher, Jean-Luc; Mansuy, Daniel; Peyrot, Fabienne

    2014-02-01

    Reactive oxygen species are by-products of aerobic metabolism involved in the onset and evolution of various pathological conditions. Among them, the superoxide radical is of special interest as the origin of several damaging species such as H2O2, hydroxyl radical, or peroxynitrite (ONOO(-)). Spin trapping coupled with ESR is a method of choice to characterize these species in chemical and biological systems and the metabolic stability of the spin adducts derived from reaction of superoxide and hydroxyl radicals with nitrones is the main limit to the in vivo application of the method. Recently, new cyclic nitrones bearing a triphenylphosphonium or permethylated β-cyclodextrin moiety have been synthesized and their spin adducts demonstrated increased stability in buffer. In this article, we studied the stability of the superoxide adducts of four new cyclic nitrones in the presence of liver subcellular fractions and biologically relevant reductants using an original setup combining a stopped-flow device and an ESR spectrometer. The kinetics of disappearance of the spin adducts were analyzed using an appropriate simulation program. Our results highlight the interest of the new spin trapping agents CD-DEPMPO and CD-DIPPMPO for specific detection of superoxide with high stability of the superoxide adducts in the presence of liver microsomes.

  5. Metabolic flux analysis on arachidonic acid fermentation

    Institute of Scientific and Technical Information of China (English)

    JIN Mingjie; HUANG He; ZHANG Kun; YAN Jie; GAO Zhen

    2007-01-01

    The analysis of flux distributions in metabolic networks has become an important approach for understanding the fermentation characteristics of the process.A model of metabolic flux analysis of arachidonic acid (AA) synthesis in Mortierella alpina ME-1 was established and carbon flux distributions were estimated in different fermentation phases with different concentrations of N-source.During the exponential,decelerating and stationary phase,carbon fluxes to AA were 3.28%,8.80% and 6.97%,respectively,with sufficient N-source broth based on the flux of glucose uptake,and those were increased to 3.95%,19.21% and 39.29%,respectively,by regulating the shifts of carbon fluxes via fermentation with limited N-source broth and adding 0.05%NaNO3 at 96 h.Eventually AA yield was increased from 1.3 to 3.5 g.L-1.These results suggest a way to improve AA fermentation,that is,fermentation with limited N-source broth and adding low concentration N-source during the stationary phase.

  6. Kinetic analysis of complex metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Stephanopoulos, G. [MIT, Cambridge, MA (United States)

    1996-12-31

    A new methodology is presented for the analysis of complex metabolic networks with the goal of metabolite overproduction. The objective is to locate a small number of reaction steps in a network that have maximum impact on network flux amplification and whose rate can also be increased without functional network derangement. This method extends the concepts of Metabolic Control Analysis to groups of reactions and offers the means for calculating group control coefficients as measures of the control exercised by groups of reactions on the overall network fluxes and intracellular metabolite pools. It is further demonstrated that the optimal strategy for the effective increase of network fluxes, while maintaining an uninterrupted supply of intermediate metabolites, is through the coordinated amplification of multiple (as opposed to a single) reaction steps. Satisfying this requirement invokes the concept of the concentration control to coefficient, which emerges as a critical parameter in the identification of feasible enzymatic modifications with maximal impact on the network flux. A case study of aromatic aminoacid production is provided to illustrate these concepts.

  7. Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer

    Science.gov (United States)

    Barbier-Torres, Lucía; Delgado, Teresa C.; García-Rodríguez, Juan L.; Zubiete-Franco, Imanol; Fernández-Ramos, David; Buqué, Xabier; Cano, Ainara; Juan, Virginia Gutiérrez-de; Fernández-Domínguez, Itziar; Lopitz-Otsoa, Fernando; Fernández-Tussy, Pablo; Boix, Loreto; Bruix, Jordi; Villa, Erica; Castro, Azucena; Lu, Shelly C.; Aspichueta, Patricia; Xirodimas, Dimitris; Varela-Rey, Marta; Mato, José M.; Beraza, Naiara; Martínez-Chantar, María L.

    2015-01-01

    The current view of cancer progression highlights that cancer cells must undergo through a post-translational regulation and metabolic reprogramming to progress in an unfriendly environment. In here, the importance of neddylation modification in liver cancer was investigated. We found that hepatic neddylation was specifically enriched in liver cancer patients with bad prognosis. In addition, the treatment with the neddylation inhibitor MLN4924 in Phb1-KO mice, an animal model of hepatocellular carcinoma showing elevated neddylation, reverted the malignant phenotype. Tumor cell death in vivo translating into liver tumor regression was associated with augmented phosphatidylcholine synthesis by the PEMT pathway, known as a liver-specific tumor suppressor, and restored mitochondrial function and TCA cycle flux. Otherwise, in protumoral hepatocytes, neddylation inhibition resulted in metabolic reprogramming rendering a decrease in oxidative phosphorylation and concomitant tumor cell apoptosis. Moreover, Akt and LKB1, hallmarks of proliferative metabolism, were altered in liver cancer being new targets of neddylation. Importantly, we show that neddylation-induced metabolic reprogramming and apoptosis were dependent on LKB1 and Akt stabilization. Overall, our results implicate neddylation/signaling/metabolism, partly mediated by LKB1 and Akt, in the development of liver cancer, paving the way for novel therapeutic approaches targeting neddylation in hepatocellular carcinoma. PMID:25650664

  8. Dynamic Analysis of Power System Voltage Stability.

    Science.gov (United States)

    Gebreselassie, Assefa

    This thesis investigates the effects of loads and voltage regulators on the dynamic voltage stability of power systems. The analysis focuses on the interactions of machine flux dynamics with loads and voltage control devices. The results are based on eigenvalue analysis of the linearized models and time simulation of the nonlinear models, using models from the Power System Toolbox, a Matlab -based package for the simulation and small signal analysis of nonlinear power systems. The voltage stability analysis results are developed using a single machine single load system with typical machine and network parameters and the NPCC 10-machine system. Dynamic models for generators, exciters and loads are used. The generator is modeled with a pair of poles and one damper circuit in both the d-axis and the q-axis. Saturation effects are included in the model. The IEEE Type DC1 DC commutator exciter model is used for all the exciters. Five different types of loads: constant impedance, constant current, constant power, a first order induction motor model (slip model) and a third order induction motor model (slip-flux model) are considered. The modes of instability and the stability limits of the different representation of loads are examined for two different operating modes of the exciters. The first, when all the exciters are on automatic control and the second when some exciters are on manual control. Modal participation factors are used to determine the characteristics of the critical modes. The characteristics of the unstable modes are verified by performing time simulation of the nonlinear models. Oscillatory and non-oscillatory instabilities are experienced by load buses when all the exciters are on automatic control and some exciters are on manual control respectively, for loads which are predominantly constant power and induction motors. It is concluded that the mode of instability does not depend on the type of loads but on the operating condition of the exciters

  9. Metabolic flux analysis using 13C peptide label measurements

    Science.gov (United States)

    13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate cellular metabolism. MFA has established flux maps of central metabolism for dozens of microbes, cell cultures, and plant seeds. Steady-state MFA utilizes isotopic labeling measurements of amino acids obtai...

  10. Truck Roll Stability Data Collection and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, SS

    2001-07-02

    The principal objective of this project was to collect and analyze vehicle and highway data that are relevant to the problem of truck rollover crashes, and in particular to the subset of rollover crashes that are caused by the driver error of entering a curve at a speed too great to allow safe completion of the turn. The data are of two sorts--vehicle dynamic performance data, and highway geometry data as revealed by vehicle behavior in normal driving. Vehicle dynamic performance data are relevant because the roll stability of a tractor trailer depends both on inherent physical characteristics of the vehicle and on the weight and distribution of the particular cargo that is being carried. Highway geometric data are relevant because the set of crashes of primary interest to this study are caused by lateral acceleration demand in a curve that exceeds the instantaneous roll stability of the vehicle. An analysis of data quality requires an evaluation of the equipment used to collect the data because the reliability and accuracy of both the equipment and the data could profoundly affect the safety of the driver and other highway users. Therefore, a concomitant objective was an evaluation of the performance of the set of data-collection equipment on the truck and trailer. The objective concerning evaluation of the equipment was accomplished, but the results were not entirely positive. Significant engineering apparently remains to be done before a reliable system can be fielded. Problems were identified with the trailer to tractor fiber optic connector used for this test. In an over-the-road environment, the communication between the trailer instrumentation and the tractor must be dependable. In addition, the computer in the truck must be able to withstand the rigors of the road. The major objective--data collection and analysis--was also accomplished. Using data collected by instruments on the truck, a ''bad-curve'' database can be generated. Using

  11. BioMet Toolbox: genome-wide analysis of metabolism

    OpenAIRE

    Cvijovic, M.; R. Olivares-Hernandez; Agren, R.; Dahr, N.; Vongsangnak, W.; Nookaew, I.; K. R. Patil; Nielsen, J.

    2010-01-01

    The rapid progress of molecular biology tools for directed genetic modifications, accurate quantitative experimental approaches, high-throughput measurements, together with development of genome sequencing has made the foundation for a new area of metabolic engineering that is driven by metabolic models. Systematic analysis of biological processes by means of modelling and simulations has made the identification of metabolic networks and prediction of metabolic capabilities under different co...

  12. Integrated intracellular metabolic profiling and pathway analysis approaches reveal complex metabolic regulation by Clostridium acetobutylicum.

    Science.gov (United States)

    Liu, Huanhuan; Huang, Di; Wen, Jianping

    2016-02-15

    Clostridium acetobutylicum is one of the most important butanol producing strains. However, environmental stress in the fermentation process usually leads to a lower yield, seriously hampering its industrialization. In order to systematically investigate the key intracellular metabolites that influence the strain growth and butanol production, and find out the critical regulation nodes, an integrated analysis approach has been carried out in this study. Based on the gas chromatography-mass spectrometry technology, the partial least square discriminant analysis and the pathway analysis, 40 metabolic pathways linked with 43 key metabolic nodes were identified. In-depth analysis showed that lots of amino acids metabolism promoted cell growth but exerted slight influence on butanol production, while sugar metabolism was favorable for cell growth but unfavorable for butanol synthesis. Besides, both lysine and succinic acid metabolism generated a complex effect on the whole metabolic network. Dicarboxylate metabolism exerted an indispensable role on cell growth and butanol production. Subsequently, rational feeding strategies were proposed to verify these conclusions and facilitate the butanol biosynthesis. Feeding amino acids, especially glycine and serine, could obviously improve cell growth while yeast extract, citric acid and ethylene glycol could significantly enhance both growth and butanol production. The feeding experiment confirmed that metabolic profiling combined with pathway analysis provided an accurate, reasonable and practical approach to explore the cellular metabolic activity and supplied a basis for improving butanol production. These strategies can also be extended for the production of other important bio-chemical compounds.

  13. Flux analysis and metabolomics for systematic metabolic engineering of microorganisms.

    Science.gov (United States)

    Toya, Yoshihiro; Shimizu, Hiroshi

    2013-11-01

    Rational engineering of metabolism is important for bio-production using microorganisms. Metabolic design based on in silico simulations and experimental validation of the metabolic state in the engineered strain helps in accomplishing systematic metabolic engineering. Flux balance analysis (FBA) is a method for the prediction of metabolic phenotype, and many applications have been developed using FBA to design metabolic networks. Elementary mode analysis (EMA) and ensemble modeling techniques are also useful tools for in silico strain design. The metabolome and flux distribution of the metabolic pathways enable us to evaluate the metabolic state and provide useful clues to improve target productivity. Here, we reviewed several computational applications for metabolic engineering by using genome-scale metabolic models of microorganisms. We also discussed the recent progress made in the field of metabolomics and (13)C-metabolic flux analysis techniques, and reviewed these applications pertaining to bio-production development. Because these in silico or experimental approaches have their respective advantages and disadvantages, the combined usage of these methods is complementary and effective for metabolic engineering.

  14. Global stability analysis of axisymmetric boundary layers

    CERN Document Server

    Vinod, N

    2016-01-01

    This paper presents the linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inlet. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes(LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes are nega...

  15. STABILITY ANALYSIS OF RIVERBANK SUBJECT TO SEEPAGE

    Institute of Scientific and Technical Information of China (English)

    Yan LU; Yongjun LU; Xingnong ZHANG

    2007-01-01

    The stability of riverbanks subject to seepage is studied experimentally and theoretically in this paper. By including seepage in a 3-dimensional theoretical analysis, the study first shows how the critical slope or angle of repose of a cohesionless material is related to the ratio of the hydraulic gradient of seepage to its critical value under the fluidization condition. The critical stable slope is shown to be related to not only the hydraulic gradient but also the seepage direction. Measured laboratory data reasonably fit well with the theoretical relationship for the case of injection and suction. The data reveal that the slope is reduced with injection and increased with suction, respectively. Additionally, the study identifies the seepage direction which results in a minimum critical stable slope for a certain hydraulic gradient of seepage.

  16. Nuclear Magnetic Resonance Strategies for Metabolic Analysis.

    Science.gov (United States)

    Heude, Clement; Nath, Jay; Carrigan, John Bosco; Ludwig, Christian

    2017-01-01

    NMR spectroscopy is a powerful tool for metabolomic studies, offering highly reproducible and quantitative analyses. This burgeoning field of NMR metabolomics has been greatly aided by the development of modern spectrometers and software, allowing high-throughput analysis with near real-time feedback. Whilst one-dimensional proton (1D-(1)H) NMR analysis is best described and remains most widely used, a plethora of alternative NMR techniques are now available that offer additional chemical and structural information and resolve many of the limitations of conventional 1D-(1)H NMR such as spectral overlay. In this book chapter, we review the principal concepts of practical NMR spectroscopy, from common sample preparation protocols to the benefits and theoretical concepts underpinning the commonly used pulse sequences. Finally, as a case study to highlight the utility of NMR as a method for metabolomic investigation, we have detailed how NMR has been used to gain valuable insight into the metabolism occurring in kidneys prior to transplantation and the potential implications of this.

  17. FUZZY STABILITY ANALYSIS OF MODE COUPLING CHATTER ON CUTTING PROCESS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The influence of fuzzy uncertainty factors is considered on the analysis of chatter occurring during machine tool cutting process. Using fuzzy mathematics analysis methods, a detailed discussion over fuzzy stability analysis problems is presented related to the mode coupling chatter with respect to intrinsic structure fuzzy factors, and the possibility distribution of the fuzzy stability cutting range and the confidence level expressions of the fuzzy stability cutting width are given.

  18. ANALYSIS AND OPTIMISATION OF DYNAMIC STABILITY OF MOBILE WORKING MACHINES

    Directory of Open Access Journals (Sweden)

    Peter BIGOŠ

    2014-09-01

    Full Text Available This paper describes an investigation of the dynamic stability, which is specified for the mobile working machines. There are presented the basic theoretical principles of the stability theory together with an introduction of two illustrative examples of the dynamic stability analysis.

  19. Black tea: chemical analysis and stability.

    Science.gov (United States)

    Li, Shiming; Lo, Chih-Yu; Pan, Min-Hsiung; Lai, Ching-Shu; Ho, Chi-Tang

    2013-01-01

    Tea is the most popular flavored and functional drink worldwide. The nutritional value of tea is mostly from the tea polyphenols that are reported to possess a broad spectrum of biological activities, including anti-oxidant properties, reduction of various cancers, inhibition of inflammation, and protective effects against diabetes, hyperlipidemia and obesity. Tea polyphenols include catechins and gallic acid in green and white teas, and theaflavins and thearubigins as well as other catechin polymers in black and oolong teas. Accurate analysis of black tea polyphenols plays a significant role in the identification of black tea contents, quality control of commercial tea beverages and extracts, differentiation of various contents of theaflavins and catechins and correlations of black tea identity and quality with biological activity, and most importantly, the establishment of the relationship between quantitative tea polyphenol content and its efficacy in animal or human studies. Global research in tea polyphenols has generated much in vitro and in vivo data rationally correlating tea polyphenols with their preventive and therapeutic properties in human diseases such as cancer, and metabolic and cardiovascular diseases etc. Based on these scientific findings, numerous tea products have been developed including flavored tea drinks, tea-based functional drinks, tea extracts and concentrates, and dietary supplements and food ingredients, demonstrating the broad applications of tea and its extracts, particularly in the field of functional food.

  20. Metabolism

    Science.gov (United States)

    ... Surgery? Choosing the Right Sport for You Shyness Metabolism KidsHealth > For Teens > Metabolism Print A A A ... food through a process called metabolism. What Is Metabolism? Metabolism (pronounced: meh-TAB-uh-lih-zem) is ...

  1. Stability Analysis and Design for Nonlinear Singular Systems

    CERN Document Server

    Yang, Chunyu; Zhou, Linna

    2013-01-01

    Singular systems which are also referred to as descriptor systems, semi-state systems, differential- algebraic systems or generalized state-space systems have attracted much attention because of their extensive applications in the Leontief dynamic model, electrical and mechanical models, etc. This monograph presented up-to-date research developments and references on stability analysis and design of nonlinear singular systems. It investigated the problems of practical stability, strongly absolute stability, input-state stability and observer design for nonlinear singular systems and the problems of absolute stability and multi-objective control for nonlinear singularly perturbed systems by using Lyapunov stability theory, comparison principle, S-procedure and linear matrix inequality (LMI), etc. Practical stability, being quite different from stability in the sense of Lyapunov, is a significant performance specification from an engineering point of view. The basic concepts and results on practical stability f...

  2. Flux analysis in plant metabolic networks: increasing throughput and coverage.

    Science.gov (United States)

    Junker, Björn H

    2014-04-01

    Quantitative information about metabolic networks has been mainly obtained at the level of metabolite contents, transcript abundance, and enzyme activities. However, the active process of metabolism is represented by the flow of matter through the pathways. These metabolic fluxes can be predicted by Flux Balance Analysis or determined experimentally by (13)C-Metabolic Flux Analysis. These relatively complicated and time-consuming methods have recently seen significant improvements at the level of coverage and throughput. Metabolic models have developed from single cell models into whole-organism dynamic models. Advances in lab automation and data handling have significantly increased the throughput of flux measurements. This review summarizes advances to increase coverage and throughput of metabolic flux analysis in plants.

  3. Stability analysis and stabilization of networked linear systems with random packet losses

    Institute of Scientific and Technical Information of China (English)

    XIE LiHua

    2009-01-01

    This paper Is concerned with the stability analysis and stabilization of networked discrete-time and sampled-data linear systems with random packet losses.Asymptotic stability,mean-square stability,and stochastic stability are considered.For networked discrete-time linear systems,the packet loss period is assumed to be a finite-state Markov chain.We establish that the mean-square stability of a related discrete-time system which evolves in random time Implies the mean-square stability of the system in deterministic time by using the equivalence of stability properties of Markovian jump linear systems in random time.We also establish the equivalence of asymptotic stability for the systems in deterministic discrete time and in random time.For networked sampled-data systems,a binary Markov chain Is used to characterize the packet loss phenomenon of the network.In this case,the packet loss period between two transmission instants is driven by an identically Independently distributed sequence assuming any positive values.Two approaches,namely the Markov jump linear system approach and randomly sampled system approach,are introduced.Based on the stability results derived,we present methods for stabilization of networked sampled-data systems in terms of matrix inequalities.Numerical examples are given to Illustrate the design methods of stabilizing controllers.

  4. Transient Stability Analysis Using Transmission Line Measurement

    Institute of Scientific and Technical Information of China (English)

    蔡国伟; 程浩忠; 陈家荣; 王承民

    2004-01-01

    The novel quantitative assessment method using transmission line measurement was developed. A new style of stability criterion was suggested which is based on the line measurement. The stability indices for lines,cutsets and power system according to features of transient energy in the lines were given, which not only provide a reliable and accurate assessment of the transient stability of power system, but also can be used to assess the effect of lines and cutsets on the transient stability and identify the weak transmission segment. Examples were presented by simulation on the IEEE-39 buses test system.

  5. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates.

    Science.gov (United States)

    Haubner, Roland; Kuhnast, Bertrand; Mang, Christian; Weber, Wolfgang A; Kessler, Horst; Wester, Hans-Jürgen; Schwaiger, Markus

    2004-01-01

    It has been demonstrated in various murine tumor models that radiolabeled RGD-peptides can be used for noninvasive determination of alphavbeta3 integrin expression. Introduction of sugar moieties improved the pharmacokinetic properties of these peptides and led to tracer with good tumor-to-background ratios. Here we describe the synthesis, radiolabeling, and the metabolic stability of a glycosylated RGD-peptide ([18F]Galacto-RGD) and give first radiation dose estimates for this tracer. The peptide was assembled on a solid support using Fmoc-protocols and cyclized under high dilution conditions. It was conjugated with a sugar amino acid, which can be synthesized via a four-step synthesis starting from pentaacetyl-protected galactose. For radiolabeling of the glycopeptide, 4-nitrophenyl-2-[18F]fluoropropionate was used. This prosthetic group allowed synthesis of [18F]Galacto-RGD with a maximum decay-corrected radiochemical yield of up to 85% and radiochemical purity >98%. The overall radiochemical yield was 29 +/- 5% with a total reaction time including final HPLC preparation of 200 +/- 18 min. The metabolic stability of [18F]Galacto-RGD was determined in mouse blood and liver, kidney, and tumor homogenates 2 h after tracer injection. The average fraction of intact tracer in these organs was approximately 87%, 76%, 69%, and 87%, respectively, indicating high in vivo stability of the radiolabeled glycopeptide. The expected radiation dose to humans after injection of [18F]Galacto-RGD has been estimated on the basis of dynamic PET studies with New Zealand white rabbits. According to the residence times in these animals the effective dose was calculated using the MIRDOSE 3.0 program as 2.2 x 10(-2) mGy/MBq. In conclusion, [18F]Galacto-RGD can be synthesized in high radiochemical yields and radiochemical purity. Despite the time-consuming synthesis of the prosthetic group 185 MBq of [18F]Galacto-RGD, a sufficient dose for patient studies, can be produced starting with

  6. Extraction, purification, methylation and GC-MS analysis of short-chain carboxylic acids for metabolic flux analysis.

    Science.gov (United States)

    Tivendale, Nathan D; Jewett, Erin M; Hegeman, Adrian D; Cohen, Jerry D

    2016-08-15

    Dynamic metabolic flux analysis requires efficient and effective methods for extraction, purification and analysis of a plethora of naturally-occurring compounds. One area of metabolism that would be highly informative to study using metabolic flux analysis is the tricarboxylic acid (TCA) cycle, which consists of short-chain carboxylic acids. Here, we describe a newly-developed method for extraction, purification, derivatization and analysis of short-chain carboxylic acids involved in the TCA cycle. The method consists of snap-freezing the plant material, followed by maceration and a 12-15h extraction at -80 °C. The extracts are then subject to reduction (to stabilize β-keto acids), purified by strong anion exchange solid phase extraction and methylated with methanolic HCl. This method could also be readily adapted to quantify many other short-chain carboxylic acids.

  7. Hepatic biotransformation pathways and ruminal metabolic stability of the novel anthelmintic monepantel in sheep and cattle.

    Science.gov (United States)

    Ballent, M; Virkel, G; Maté, L; Viviani, P; Lanusse, C; Lifschitz, A

    2016-10-01

    Monepantel (MNP) is a new amino-acetonitrile derivative anthelmintic drug used for the treatment of gastrointestinal (GI) nematodes in sheep. The present work investigated the main enzymatic pathways involved in the hepatic biotransformation of MNP in sheep and cattle. The metabolic stability in ruminal fluid of both the parent drug and its main metabolite (monepantel sulphone, MNPSO2 ) was characterized as well. Additionally, the relative distribution of both anthelmintic molecules between the fluid and particulate phases of the ruminal content was studied. Liver microsomal fractions from six (6) rams and five (5) steers were incubated with a 40 μm of MNP. Heat pretreatment (50 °C for 2 min) of liver microsomes was performed for inactivation of the flavin-monooxygenase (FMO) system. Additionally, MNP was incubated in the presence of 4, 40, and 80 μm of methimazole (MTZ), a FMO inhibitor, or equimolar concentrations of piperonyl butoxide (PBx), a well-known general cytochrome P450 (CYP) inhibitor. In both ruminant species, MNPSO2 was the main metabolite detected after MNP incubation with liver microsomes. The conversion rate of MNP into MNPSO2 was fivefold higher (P MNP oxidation in cattle liver microsomes. On the other hand, PBx inhibited the production of MNPSO2 in liver microsomes of both sheep (58 to 98%, in a dose-dependent manner) and cattle (almost 100%, independently of the PBx concentration added). The incubation of MNP and MNPSO2 with ruminal contents of both species showed a high chemical stability without evident metabolism and/or degradation as well as an extensive degree of adsorption (83% to 90%) to the solid phase of the ruminal content. Overall, these results are a further contribution to the understanding of the metabolic fate of this anthelmintic drug in ruminants.

  8. Remarks on boiling water reactor stability analysis. Pt. 2. Stability monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Carsten; Hennig, Dieter; Hurtado, Antonio [Technische Univ. Dresden (Germany). Chair of Hydrogen and Nuclear Energy; Schuster, Roland [Kernkraftwerk Brunsbuettel GmbH und Co. oHG, Brunsbuettel (Germany); Lukas, Bernard [EnBW Kernkraft GmbH, Philippsburg (Germany). Kernkraftwerk Philippsburg; Aguirre, Carlos [Kernkraftwerk Leibstadt AG, Aargau (Switzerland)

    2012-12-15

    In part 1 of this article we explained the partly relative complex solution manifold of the differential equations describing the stability behaviour of a BWR, in particular the coexistence of different types of solutions, such as the coexistence of unstable limit cycles and stable fixed points are of interest from the operational safety point of view. The part 2 is devoted to the surveillance of the stability behaviour. We summarize some stability monitoring methods and suggest to support stability tests by RAM-ROM analyses in order to reveal in advance the stability 'landscape' of the BWR in a parameter region high sensitive for appearing of linear unstable states. The analysis of an especial stability test, performed at NPP Leibstadt (KKL), makes it clear that the measurement results can only be interpreted by application of bifurcation analysis. (orig.)

  9. Stochastic stabilization analysis of networked control systems

    Institute of Scientific and Technical Information of China (English)

    Ma Changlin; Fang Huajing

    2007-01-01

    Considering the stochastic delay problems existing in networked control systems, a new control mode is proposed for networked control systems whose delay is longer than a sampling period. Under the control mode, the mathematical model of such a system is established. A stochastic stabilization condition for the system is given. The maximum delay can be derived from the stabilization condition.

  10. Computational systems analysis of dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Zhen Qi

    Full Text Available A prominent feature of Parkinson's disease (PD is the loss of dopamine in the striatum, and many therapeutic interventions for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact of risk factors of the disease.

  11. Reliability Analysis of Dynamic Stability in Waves

    DEFF Research Database (Denmark)

    Søborg, Anders Veldt

    2004-01-01

    exhibit sufficient characteristics with respect to slope at zero heel (GM value), maximum leverarm, positive range of stability and area below the leverarm curve. The rule-based requirements to calm water leverarm curves are entirely based on experience obtained from vessels in operation and recorded......The assessment of a ship's intact stability is traditionally based on a semi-empirical deterministic concept that evaluates the characteristics of ship's calm water restoring leverarm curves. Today the ship is considered safe with respect to dynamic stability if its calm water leverarm curves...... accidents in the past. The rules therefore only leaves little room for evaluation and improvement of safety of a ship's dynamic stability. A few studies have evaluated the probability of ship stability loss in waves using Monte Carlo simulations. However, since this probability may be in the order of 10...

  12. Stability and in vitro metabolism of dipeptide model prodrugs with affinity for the oligopeptide transporter

    DEFF Research Database (Denmark)

    Lepist, E I; Kusk, T; Larsen, D H

    2000-01-01

    -Glu(OBzl)-Ala and Asp(OBzl)-Sar in aqueous solution and in relevant biological media and to compare these results with those of our previous study of D-Asp(OBzl)-Ala. Furthermore, the resulting aqueous stability and in vitro metabolism data are related to our previous affinity data to evaluate if Glu-Sar, D......-Glu-Ala, and Asp-Sar have potential as pro-moieties in these kinds of prodrugs. The degradation rates follow first-order kinetics, show maximun stability at pH 4-5 with maximum half-lives for Asp(OBzl)-Sar, Glu(OBzl)-Sar, and D-Glu(OBzl)-Ala of 115 h, 30 days and 152 days, respectively. The stability was dependent...... on buffer concentration, temperature, pH, and ionic strength. In biological media such as 80% human plasma, human gastric juice and intestinal fluid, and 10% rat jejunal homogenate at 37 degrees C, the half-lives were greater than 1 h except for the hydrolysis of Glu(OBzl)-Sar in 10% rat jejunal homogenate...

  13. 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production

    Directory of Open Access Journals (Sweden)

    Weihua Guo

    2015-12-01

    Full Text Available Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA has been continuously developed and widely applied to rigorously investigate cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, many 13C-MFA studies have been performed in academic labs and biotechnology industries to pinpoint key issues related to microbe-based chemical production. Insightful information about the metabolic rewiring has been provided to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this review, we will introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied via integration with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production for various host microorganisms

  14. Dye Fluorescence Analysis from Bacterial Metabolism.

    Science.gov (United States)

    1984-04-01

    M were reported for the cell-free extracts of the cultured mouse lymphoma cells mentioned above and an in vitAo solution of porcine pancreas lipase ...fluorescence Fluorescent product Diacetyl fluorescein Lipase Bacterial metabolism 20. ABTRACT fCauhw a o de dif rNooeel md ~Id1)fp by block number) A...nonfluorescing dye is metabolized intracel- lularly by an organism through an enzyme-specific reaction . This produces a fluorescent product which when

  15. Milling Stability Analysis Based on Chebyshev Segmentation

    Science.gov (United States)

    HUANG, Jianwei; LI, He; HAN, Ping; Wen, Bangchun

    2016-09-01

    Chebyshev segmentation method was used to discretize the time period contained in delay differential equation, then the Newton second-order difference quotient method was used to calculate the cutter motion vector at each time endpoint, and the Floquet theory was used to determine the stability of the milling system after getting the transfer matrix of milling system. Using the above methods, a two degree of freedom milling system stability issues were investigated, and system stability lobe diagrams were got. The results showed that the proposed methods have the following advantages. Firstly, with the same calculation accuracy, the points needed to represent the time period are less by the Chebyshev Segmentation than those of the average segmentation, and the computational efficiency of the Chebyshev Segmentation is higher. Secondly, if the time period is divided into the same parts, the stability lobe diagrams got by Chebyshev segmentation method are more accurate than those of the average segmentation.

  16. Reliability Analysis of Slope Stability by Central Point Method

    OpenAIRE

    Li, Chunge; WU Congliang

    2015-01-01

    Given uncertainty and variability of the slope stability analysis parameter, the paper proceed from the perspective of probability theory and statistics based on the reliability theory. Through the central point method of reliability analysis, performance function about the reliability of slope stability analysis is established. What’s more, the central point method and conventional limit equilibrium methods do comparative analysis by calculation example. The approach’s numerical ...

  17. Exploring mitochondrial evolution and metabolism organization principles by comparative analysis of metabolic networks.

    Science.gov (United States)

    Chang, Xiao; Wang, Zhuo; Hao, Pei; Li, Yuan-Yuan; Li, Yi-Xue

    2010-06-01

    The endosymbiotic theory proposed that mitochondrial genomes are derived from an alpha-proteobacterium-like endosymbiont, which was concluded from sequence analysis. We rebuilt the metabolic networks of mitochondria and 22 relative species, and studied the evolution of mitochondrial metabolism at the level of enzyme content and network topology. Our phylogenetic results based on network alignment and motif identification supported the endosymbiotic theory from the point of view of systems biology for the first time. It was found that the mitochondrial metabolic network were much more compact than the relative species, probably related to the higher efficiency of oxidative phosphorylation of the specialized organelle, and the network is highly clustered around the TCA cycle. Moreover, the mitochondrial metabolic network exhibited high functional specificity to the modules. This work provided insight to the understanding of mitochondria evolution, and the organization principle of mitochondrial metabolic network at the network level.

  18. Anthropometric parameters as indicators of metabolic derangements in schizophrenia patients stabilized on olanzapine in an Indian rural population

    Directory of Open Access Journals (Sweden)

    Jayanta Kumar Rout

    2012-01-01

    Full Text Available Context: For any given body mass, Asian Indians have higher central obesity than Europeans. A periodic measurement of body mass index (BMI and waist hip ratio (WHR is practically more feasible than other parameters of metabolic syndrome by repeated blood collection. However, few studies are available on the relative importance of BMI and WHR as markers of dyslipidemia and insulin resistance in schizophrenia patients stabilized on second generation antipsychotics in Indian population. Aim: We conducted the present study on such patients to examine whether BMI or WHR can better predict dyslipidemia and insulin resistance in these patients in a rural area. Settings and Design: The study was a hospital based case control study under rural settings on 38 schizophrenia patients stabilized on olanzapine and 30 matched controls. Materials and Methods: Fasting concentrations of blood glucose, lipid parameters and serum insulin were assessed. Data for Homeostatic model for assessment of insulin resistance (HOMA-IR, BMI, and WHR were obtained to assess the insulin resistance, overall body fat distribution and abdominal fat dispensation respectively. Statistical analysis used: ′t′ test was performed to assay any difference in corresponding mean values between cases and controls. Dependence of HOMA-IR on key parameters was assessed by analysis of co-variance (ANCOVA study. Results: Cases exhibited significantly higher values for HOMA-IR, serum triglyceride and low density lipoprotein cholesterol (LDLc with a significantly lower high density lipoprotein cholesterol (HDLc level. ANCOVA study reflected that irrespective of age and sex, HOMA-IR was dependent on serum triglyceride level and WHR (F=8.3 and 5.7 respectively, P<0.05, but not on BMI (F<0.001, P=0.997. Conclusions: Central obesity could be more closely associated with the pathogenesis of prediabetic state in our case group. So, WHR is a better anthropometric parameter than BMI for an early

  19. Random Access Broadcast: Stability and Throughput Analysis

    CERN Document Server

    Shrader, Brooke

    2007-01-01

    A wireless network in which packets are broadcast to a group of receivers through use of a random access protocol is considered in this work. The relation to previous work on networks of interacting queues is discussed and subsequently, the stability and throughput regions of the system are analyzed and presented. A simple network of two source nodes and two destination nodes is considered first. The broadcast service process is analyzed assuming a channel that allows for packet capture and multipacket reception. In this small network, the stability and throughput regions are observed to coincide. The same problem for a network with N sources and M destinations is considered next. The channel model is simplified in that multipacket reception is no longer permitted. Bounds on the stability region are developed using the concept of stability rank and the throughput region of the system is compared to the bounds. Our results show that as the number of destination nodes increases, the stability and throughput reg...

  20. Stability analysis of spacecraft power systems

    Science.gov (United States)

    Halpin, S. M.; Grigsby, L. L.; Sheble, G. B.; Nelms, R. M.

    1990-01-01

    The problems in applying standard electric utility models, analyses, and algorithms to the study of the stability of spacecraft power conditioning and distribution systems are discussed. Both single-phase and three-phase systems are considered. Of particular concern are the load and generator models that are used in terrestrial power system studies, as well as the standard assumptions of load and topological balance that lead to the use of the positive sequence network. The standard assumptions regarding relative speeds of subsystem dynamic responses that are made in the classical transient stability algorithm, which forms the backbone of utility-based studies, are examined. The applicability of these assumptions to a spacecraft power system stability study is discussed in detail. In addition to the classical indirect method, the applicability of Liapunov's direct methods to the stability determination of spacecraft power systems is discussed. It is pointed out that while the proposed method uses a solution process similar to the classical algorithm, the models used for the sources, loads, and networks are, in general, more accurate. Some preliminary results are given for a linear-graph, state-variable-based modeling approach to the study of the stability of space-based power distribution networks.

  1. Synergizing (13)C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production.

    Science.gov (United States)

    Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang

    2017-04-20

    Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, (13)C Metabolic Flux Analysis ((13)C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, (13)C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of (13)C-MFA and illustrate how (13)C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.

  2. Linear stability analysis of supersonic axisymmetric jets

    Directory of Open Access Journals (Sweden)

    Zhenhua Wan

    2014-01-01

    Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.

  3. Stability analysis of automobile driver steering control

    Science.gov (United States)

    Allen, R. W.

    1981-01-01

    In steering an automobile, the driver must basically control the direction of the car's trajectory (heading angle) and the lateral deviation of the car relative to a delineated pathway. A previously published linear control model of driver steering behavior which is analyzed from a stability point of view is considered. A simple approximate expression for a stability parameter, phase margin, is derived in terms of various driver and vehicle control parameters, and boundaries for stability are discussed. A field test study is reviewed that includes the measurement of driver steering control parameters. Phase margins derived for a range of vehicle characteristics are found to be generally consistent with known adaptive properties of the human operator. The implications of these results are discussed in terms of driver adaptive behavior.

  4. Liquefaction mathematical analysis for improvement structures stability

    Directory of Open Access Journals (Sweden)

    Azam Khodashenas Pelko

    2010-10-01

    Full Text Available The stability of any structure is possible if foundation is appropriately designed. The Bandar abbas is the largest and most important port of Iran, with high seismicity and occurring strong earthquakes in this territory, the soil mechanical properties of different parts of city have been selected as the subject of current research. The data relating to the design of foundation for improvement of structure at different layer of subsoil have been collected and, accordingly, soil mechanical properties have been evaluated. The results of laboratory experiments can be used for evaluation of geotechnical characteristics of urban area for development a region with high level of structural stability. Ultimately, a new method for calculation of liquefaction force is suggested. It is applicable for improving geotechnical and structure codes and also for reanalysis of structure stability of previously constructed buildings.

  5. Metabolic attributes, yield and stability of milk in Jersey cows fed diets containing sodium citrate and sodium bicarbonate

    OpenAIRE

    2013-01-01

    The objective of this work was to evaluate the inclusion of sodium citrate and sodium bicarbonate in the diet of lactating Jersey cows, and its effects on the metabolic attributes, productivity and stability of milk. We evaluated urinary pH, levels of glucose and urea in blood, body weight, body condition score, milk yield, milk stability (ethanol test), and milk physicochemical properties of 17 cows fed diets containing sodium citrate (100 g per cow per day), sodium bicarbonate (40 g per cow...

  6. Stability Analysis for Stochastic Optimization Problems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Stochastic optimization offers a means of considering the objectives and constrains with stochastic parameters. However, it is generally difficult to solve the stochastic optimization problem by employing conventional methods for nonlinear programming when the number of random variables involved is very large. Neural network models and algorithms were applied to solve the stochastic optimization problem on the basis of the stability theory. Stability for stochastic programs was discussed. If random vector sequence converges to the random vector in the original problem in distribution, the optimal value of the corresponding approximation problems converges to the optimal value of the original stochastic optimization problem.

  7. An Analysis of the Stability Pact

    NARCIS (Netherlands)

    Uhlig, H.F.H.V.S.; Beetsma, R.M.W.J.

    1997-01-01

    We analyse the proposed "Stability Pact" for countries joining a European Monetary Union (EMU). In an EMU shortsighted governments fail to fully internalise the inflationary consequences of their debt policies. This results in excessive debt accumulation. Therefore, while in the absence of EMU gover

  8. On-line metabolic pathway analysis based on metabolic signal flow diagram.

    Science.gov (United States)

    Shi, H; Shimizu, K

    In this work, an integrated modeling approach based on a metabolic signal flow diagram and cellular energetics was used to model the metabolic pathway analysis for the cultivation of yeast on glucose. This approach enables us to make a clear analysis of the flow direction of the carbon fluxes in the metabolic pathways as well as of the degree of activation of a particular pathway for the synthesis of biomaterials for cell growth. The analyses demonstrate that the main metabolic pathways of Saccharomyces cerevisiae change significantly during batch culture. Carbon flow direction is toward glycolysis to satisfy the increase of requirement for precursors and energy. The enzymatic activation of TCA cycle seems to always be at normal level, which may result in the overflow of ethanol due to its limited capacity. The advantage of this approach is that it adopts both virtues of the metabolic signal flow diagram and the simple network analysis method, focusing on the investigation of the flow directions of carbon fluxes and the degree of activation of a particular pathway or reaction loop. All of the variables used in the model equations were determined on-line; the information obtained from the calculated metabolic coefficients may result in a better understanding of cell physiology and help to evaluate the state of the cell culture process. Copyright 1998 John Wiley & Sons, Inc.

  9. Assessment of Stability of Craniofacial Implants by Resonant Frequency Analysis.

    Science.gov (United States)

    Ivanjac, Filip; Konstantinović, Vitomir S; Lazić, Vojkan; Dordević, Igor; Ihde, Stefan

    2016-03-01

    Implant stability is a principal precondition for the success of implant therapy. Extraoral implants (EO) are mainly used for anchoring of maxillofacial epithesis. However, assessment of implant stability is mostly based on principles derived from oral implants. The aim of this study was to investigate clinical stability of EO craniofacial disk implants (single, double, and triple) by resonance frequency analysis at different stages of the bone's healing. Twenty patients with orbital (11), nasal (5), and auricular (4) defects with 50 EO implants placed for epithesis anchorage were included. Implant stability was measured 3 times; after implant placement, at 3 months and at least after 6 months. A significant increase in implant stability values was noted between all of the measurements, except for triple-disk implants between third and sixth months, and screw implants between 0 and third months. Disk implants showed lower implant stability quotient (ISQ) values compared with screw implants. Triple-disk implants showed better stability compared with single and double-disk implants. Based on resonance frequency analysis values, disk implants could be safely loaded when their ISQ values are 38 (single disks), 47 (double disks), and 48 (triple disks). According to resonance frequency analysis, disk implant stability increased over time, which showed good osseointegration and increasing mineralization. Although EO screw implants showed higher ISQ values than disk implants, disk-type implants can be safely loaded even if lower values of stability are measured.

  10. Investigation of Biological Soil Crusts Metabolic Webs Using Exometabolomic Analysis

    Science.gov (United States)

    Northen, T.; Karaoz, U.; Jenkins, S.; Lau, R.; Bowen, B.; Cadillo-Quiroz, H.; Garcia-Pichel, F.; Brodie, E.; Richard, B.

    2014-12-01

    Desert biological soil crusts are simple cyanobacteria-dominated surface soil microbial communities found in areas with infrequent wetting, often extreme temperatures, low coverage of vascular plants and constitute the world's largest biofilm. They exist for extended periods in a desiccated dormant state, yet rapidly re-boot metabolism within minutes of wetting. These soil microbial communities are highly dependent on filamentous cyanobacteria such as Microcoleus vaginatusto stabilize the soil and to act as primary producers for the community through the release carbon sources to feed a diversity of heterotrophs. Exometabolomic analysis was performed using liquid chromatography coupled to tandem mass spectrometry on biological soil crust pore water and spent media of key soil bacterial isolates. Comparison of spent vs. fresh media was used to determine uptake or release of metabolites by specific microbes. To link pore water experiments with isolate studies, metabolite extracts of authentic soil were used as supplements for isolate exometabolomic profiling. Our soil metabolomics methods detected hundreds of metabolites from soils including may novel compounds. Only a small set of which being targeted by all isolates. Beyond these few metabolites, the individual bacteria examined showed specialization towards specific metabolites. Surprisingly, many of the most abundant oligosaccharides and other metabolites were ignored by these isolates. The observed specialization of biological soil crust bacteria may play a significant role in determining community structure.

  11. Contribution to stability analysis of nonlinear control systems

    Directory of Open Access Journals (Sweden)

    Švarc Ivan

    2003-12-01

    Full Text Available The Popov criterion for the stability of nonlinear control systems is considered. The Popov criterion gives sufficient conditions for stability of nonlinear systems in the frequency domain. It has a direct graphical interpretation and is convenient for both design and analysis. In the article presented, a table of transfer functions of linear parts of nonlinear systems is constructed. The table includes frequency response functions and offers solutions to the stability of the given systems. The table makes a direct stability analysis of selected nonlinear systems possible. The stability analysis is solved analytically and graphically.Then it is easy to find out if the nonlinear system is or is not stable; the task that usually ranks among the difficult task in engineering practice.

  12. Stability analysis of underground engineering based on multidisciplinary design optimization

    Institute of Scientific and Technical Information of China (English)

    MA Rong; ZHOU Ke-ping; GAO Feng

    2008-01-01

    Aiming at characteristics of underground engineering,analyzed the feasibility of Multidisciplinary Design Optimization (MDO) used in underground engineering,and put forward a modularization-based MDO method and the idea of MDO to resolve problems in stability analysis,proving the validity and feasibility of using MDO in underground engineering.Characteristics of uncertainty,complexity and nonlinear become bottle-neck to carry on underground engineering stability analysis by MDO.Therefore,the application of MDO in underground engineering stability analysis is still at a stage of exploration,which need some deep research.

  13. Stability analysis of underground engineering based on multidisciplinary design optimization

    Institute of Scientific and Technical Information of China (English)

    MA Rong; ZHOU Ke-ping; GAO Feng

    2008-01-01

    Aiming at characteristics of underground engineering, analyzed the feasibility of Multidisciplinary Design Optimization (MDO) used in underground engineering, and put forward a modularization-based MDO method and the idea of MDO to resolve problems in stability analysis, proving the validity and feasibility of using MDO in underground engi-neering. Characteristics of uncertainty, complexity and nonlinear become bottle-neck to carry on underground engineering stability analysis by MDO. Therefore, the application of MDO in underground engineering stability analysis is still at a stage of exploration, which need some deep research.

  14. Quantification of Metabolic Rearrangements During Neural Stem Cells Differentiation into Astrocytes by Metabolic Flux Analysis.

    Science.gov (United States)

    Sá, João V; Kleiderman, Susanne; Brito, Catarina; Sonnewald, Ursula; Leist, Marcel; Teixeira, Ana P; Alves, Paula M

    2017-01-01

    Proliferation and differentiation of neural stem cells (NSCs) have a crucial role to ensure neurogenesis and gliogenesis in the mammalian brain throughout life. As there is growing evidence for the significance of metabolism in regulating cell fate, knowledge on the metabolic programs in NSCs and how they evolve during differentiation into somatic cells may provide novel therapeutic approaches to address brain diseases. In this work, we applied a quantitative analysis to assess how the central carbon metabolism evolves upon differentiation of NSCs into astrocytes. Murine embryonic stem cell (mESC)-derived NSCs and astrocytes were incubated with labelled [1-(13)C]glucose and the label incorporation into intracellular metabolites was followed by GC-MS. The obtained (13)C labelling patterns, together with uptake/secretion rates determined from supernatant analysis, were integrated into an isotopic non-stationary metabolic flux analysis ((13)C-MFA) model to estimate intracellular flux maps. Significant metabolic differences between NSCs and astrocytes were identified, with a general downregulation of central carbon metabolism during astrocytic differentiation. While glucose uptake was 1.7-fold higher in NSCs (on a per cell basis), a high lactate-secreting phenotype was common to both cell types. Furthermore, NSCs consumed glutamine from the medium; the highly active reductive carboxylation of alpha-ketoglutarate indicates that this was converted to citrate and used for biosynthetic purposes. In astrocytes, pyruvate entered the TCA cycle mostly through pyruvate carboxylase (81%). This pathway supported glutamine and citrate secretion, recapitulating well described metabolic features of these cells in vivo. Overall, this fluxomics study allowed us to quantify the metabolic rewiring accompanying astrocytic lineage specification from NSCs.

  15. Application of modern time series analysis to high stability oscillators

    Science.gov (United States)

    Farrell, B. F.; Mattison, W. M.; Vessot, R. F. C.

    1980-01-01

    Techniques of modern time series analysis useful for investigating the characteristics of high-stability oscillators and identifying systematic perturbations are discussed with reference to an experiment in which the frequencies of superconducting cavity-stabilized oscillators and hydrogen masers were compared. The techniques examined include transformation to stationarity, autocorrelation and cross-correlation, superresolution, and transfer function determination.

  16. Mathematical modelling and linear stability analysis of laser fusion cutting

    Science.gov (United States)

    Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich

    2016-06-01

    A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process' amount of dynamic behavior.

  17. The research analysis and application of stability of ventilation system

    Institute of Scientific and Technical Information of China (English)

    卢国斌; 陈长华; 葛少成

    2002-01-01

    The stability of ventilation system includes stabilities of branch, network and main fan. The ventilation system is a dynamic process. The parameters in the ventilation system vary with time. In the paper, a group of mathematical models of quantitative analysis are set up, and the mathematical models are suitable to any ventilation system.

  18. Stability analysis on Jinjia dam hydropower project in Chongqing City

    Institute of Scientific and Technical Information of China (English)

    Fuzhi XIE; Hong FENG; Xiaohan YANG; Jingzong YU

    2006-01-01

    The stability analysis is one of the chief problems at hydropower stations. The Jinjia Hydropower Station is a significant project in Southwest China. The paper adopts the rigidity limited equilibrium theory and evaluated stability of the slope body, which will provide the evidences for further detail design.

  19. Stability Analysis for Class of Switched Nonlinear Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; How, Jonathan P.

    2010-01-01

    Stability analysis for a class of switched nonlinear systems is addressed in this paper. Two linear matrix inequality (LMI) based sufficient conditions for asymptotic stability are proposed for switched nonlinear systems. These conditions are analogous counterparts for switched linear systems which...

  20. Performance and stability analysis of a photovoltaic power system

    Science.gov (United States)

    Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.

    1978-01-01

    The performance and stability characteristics of a 10 kVA photovoltaic power system are studied using linear Bode analysis and a nonlinear analog simulation. Power conversion efficiencies, system stability, and system transient performance results are given for system operation at various levels of solar insolation. Additionally, system operation and the modeling of system components for the purpose of computer simulation are described.

  1. Stability analysis of interacting queues in the ALOHA system

    Science.gov (United States)

    Rao, Ramesh

    The author considers the finite-user, infinite-buffer slotted ALOHA system and analytically extends the known bounds for its stability region. The technique used consists of expressing the stability region in terms of certain status probabilities and then solving for the status probabilities by using results from the analysis of dependent queues and that of Markov chains.

  2. Four-year stability of anthropometric and cardio-metabolic parameters in a prospective cohort of older adults

    NARCIS (Netherlands)

    Jackson, S.E.; Jaarsveld, C.H.M. van; Beeken, R.J.; Gunter, M.J.; Steptoe, A.; Wardle, J.

    2015-01-01

    AIM: To examine the medium-term stability of anthropometric and cardio-metabolic parameters in the general population. MATERIALS & METHODS: Participants were 5160 men and women from the English Longitudinal Study of Ageing (age >/=50 years) assessed in 2004 and 2008. Anthropometric data included

  3. BioMet Toolbox: genome-wide analysis of metabolism

    DEFF Research Database (Denmark)

    Cvijovic, M.; Olivares Hernandez, Roberto; Agren, R.

    2010-01-01

    models. Systematic analysis of biological processes by means of modelling and simulations has made the identification of metabolic networks and prediction of metabolic capabilities under different conditions possible. For facilitating such systemic analysis, we have developed the BioMet Toolbox, a web......-based resource for stoichiometric analysis and for integration of transcriptome and interactome data, thereby exploiting the capabilities of genome-scale metabolic models. The BioMet Toolbox provides an effective user-friendly way to perform linear programming simulations towards maximized or minimized growth...... rates, substrate uptake rates and metabolic production rates by detecting relevant fluxes, simulate single and double gene deletions or detect metabolites around which major transcriptional changes are concentrated. These tools can be used for high-throughput in silico screening and allows fully...

  4. Stability analysis of dielectric elastomer film actuator

    Institute of Scientific and Technical Information of China (English)

    LIU YanJu; LIU LiWu; SUN ShouHua; ZHANG Zhen; LENG JinSong

    2009-01-01

    Dielectric elastomer (DE) is the most promising electroactive polymer material for smart actuators. When a piece of DE film is sandwiched between two compliant electrodes with a high electric field, due to the electrostatic force between the two electrodes, the film expands in-plane and contracts out-of-plane so that its thickness becomes thinner. The thinner thickness results in a higher electric field which inversely squeezes the film again. When the electric field exceeds the critical value, the dielectric field breaks down and the actuator becomes invalid. An elastic strain energy function with two material constants is used to analyze the stability of the dielectric elastomer actuator based on the nonlinear electromechanical field theory. The result shows that the actuator improves its stability as the ratio k of the material constants increases, which can be applied to design of actuators. Finally, this method is extended to study the stability of dielectric elastomers with elastic strain energy functions containing three and more material constants.

  5. Stability analysis of dielectric elastomer film actuator

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Dielectric elastomer (DE) is the most promising electroactive polymer material for smart actuators. When a piece of DE film is sandwiched between two compliant electrodes with a high electric field,due to the electrostatic force between the two electrodes,the film expands in-plane and contracts out-of-plane so that its thickness becomes thinner. The thinner thickness results in a higher electric field which inversely squeezes the film again. When the electric field exceeds the critical value,the dielectric field breaks down and the actuator becomes invalid. An elastic strain energy function with two material constants is used to analyze the stability of the dielectric elastomer actuator based on the nonlinear electromechanical field theory. The result shows that the actuator improves its stability as the ratio k of the material constants increases,which can be applied to design of actuators. Finally,this method is extended to study the stability of dielectric elastomers with elastic strain energy functions containing three and more material constants.

  6. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis.

    Science.gov (United States)

    Nargund, Shilpa; Qiu, Jinshu; Goudar, Chetan T

    2015-01-01

    (13)C-metabolic flux analysis was used to understand copper deficiency-related restructuring of energy metabolism, which leads to excessive lactate production in recombinant protein-producing CHO cells. Stationary-phase labeling experiments with U-(13)C glucose were conducted on CHO cells grown under high and limiting copper in 3 L fed-batch bioreactors. The resultant labeling patterns of soluble metabolites were measured by GC-MS and used to estimate metabolic fluxes in the central carbon metabolism pathways using OpenFlux. Fluxes were evaluated 300 times from stoichiometrically feasible random guess values and their confidence intervals calculated by Monte Carlo simulations. Results from metabolic flux analysis exhibited significant carbon redistribution throughout the metabolic network in cells under Cu deficiency. Specifically, glycolytic fluxes increased (25%-79% relative to glucose uptake) whereas fluxes through the TCA and pentose phosphate pathway (PPP) were lower (15%-23% and 74%, respectively) compared with the Cu-containing condition. Furthermore, under Cu deficiency, 33% of the flux entering TCA via the pyruvate node was redirected to lactate and malate production. Based on these results, we hypothesize that Cu deficiency disrupts the electron transport chain causing ATP deficiency, redox imbalance, and oxidative stress, which in turn drive copper-deficient CHO cells to produce energy via aerobic glycolysis, which is associated with excessive lactate production, rather than the more efficient route of oxidative phosphorylation.

  7. 13C-based metabolic flux analysis: fundamentals and practice.

    Science.gov (United States)

    Yang, Tae Hoon

    2013-01-01

    Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, (13)C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement (13)C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing (13)C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation. In this regard, the modeling fundamentals of (13)C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at (13)C-based metabolic flux analysis in vivo.

  8. ORIGINAL ARTICLE Stability Analysis of Delayed Cournot Model in ...

    African Journals Online (AJOL)

    HP

    and Lyapunov method of nonlinear stability analysis are employed. It is ascertained ... MATLAB2012a is used to demonstrate the applicability and accuracy of the results. ...... computation, 149(3), 843-860. ... Science and Complexity, Elsevier.

  9. Mean flow stability analysis of oscillating jet experiments

    CERN Document Server

    Oberleithner, Kilian; Soria, Julio

    2014-01-01

    Linear stability analysis is applied to the mean flow of an oscillating round jet with the aim to investigate the robustness and accuracy of mean flow stability wave models. The jet's axisymmetric mode is excited at the nozzle lip through a sinusoidal modulation of the flow rate at amplitudes ranging from 0.1 % to 100 %. The instantaneous flow field is measured via particle image velocimetry and decomposed into a mean and periodic part utilizing proper orthogonal decomposition. Local linear stability analysis is applied to the measured mean flow adopting a weakly nonparallel flow approach. The resulting global perturbation field is carefully compared to the measurements in terms of spatial growth rate, phase velocity, and phase and amplitude distribution. It is shown that the stability wave model accurately predicts the excited flow oscillations during their entire growth phase and during a large part of their decay phase. The stability wave model applies over a wide range of forcing amplitudes, showing no pr...

  10. Metabolic attributes, yield and stability of milk in Jersey cows fed diets containing sodium citrate and sodium bicarbonate

    Directory of Open Access Journals (Sweden)

    Marcelo Tempel Stumpf

    2013-05-01

    Full Text Available The objective of this work was to evaluate the inclusion of sodium citrate and sodium bicarbonate in the diet of lactating Jersey cows, and its effects on the metabolic attributes, productivity and stability of milk. We evaluated urinary pH, levels of glucose and urea in blood, body weight, body condition score, milk yield, milk stability (ethanol test, and milk physicochemical properties of 17 cows fed diets containing sodium citrate (100 g per cow per day, sodium bicarbonate (40 g per cow per day or no additives. Assessments were made at the 28th and 44th days. Supply of sodium citrate or bicarbonate has no influence on the metabolic attributes, productivity, body weight, and body condition score of the cows, neither on the composition and stability of milk.

  11. Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Henning Knoop

    Full Text Available Cyanobacteria are versatile unicellular phototrophic microorganisms that are highly abundant in many environments. Owing to their capability to utilize solar energy and atmospheric carbon dioxide for growth, cyanobacteria are increasingly recognized as a prolific resource for the synthesis of valuable chemicals and various biofuels. To fully harness the metabolic capabilities of cyanobacteria necessitates an in-depth understanding of the metabolic interconversions taking place during phototrophic growth, as provided by genome-scale reconstructions of microbial organisms. Here we present an extended reconstruction and analysis of the metabolic network of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Building upon several recent reconstructions of cyanobacterial metabolism, unclear reaction steps are experimentally validated and the functional consequences of unknown or dissenting pathway topologies are discussed. The updated model integrates novel results with respect to the cyanobacterial TCA cycle, an alleged glyoxylate shunt, and the role of photorespiration in cellular growth. Going beyond conventional flux-balance analysis, we extend the computational analysis to diurnal light/dark cycles of cyanobacterial metabolism.

  12. Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp. PCC 6803

    Science.gov (United States)

    Knoop, Henning; Gründel, Marianne; Zilliges, Yvonne; Lehmann, Robert; Hoffmann, Sabrina; Lockau, Wolfgang; Steuer, Ralf

    2013-01-01

    Cyanobacteria are versatile unicellular phototrophic microorganisms that are highly abundant in many environments. Owing to their capability to utilize solar energy and atmospheric carbon dioxide for growth, cyanobacteria are increasingly recognized as a prolific resource for the synthesis of valuable chemicals and various biofuels. To fully harness the metabolic capabilities of cyanobacteria necessitates an in-depth understanding of the metabolic interconversions taking place during phototrophic growth, as provided by genome-scale reconstructions of microbial organisms. Here we present an extended reconstruction and analysis of the metabolic network of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Building upon several recent reconstructions of cyanobacterial metabolism, unclear reaction steps are experimentally validated and the functional consequences of unknown or dissenting pathway topologies are discussed. The updated model integrates novel results with respect to the cyanobacterial TCA cycle, an alleged glyoxylate shunt, and the role of photorespiration in cellular growth. Going beyond conventional flux-balance analysis, we extend the computational analysis to diurnal light/dark cycles of cyanobacterial metabolism. PMID:23843751

  13. Stability analysis of impulsive functional differential equations

    CERN Document Server

    Stamova, Ivanka

    2009-01-01

    This book is devoted to impulsive functional differential equations which are a natural generalization of impulsive ordinary differential equations (without delay) and of functional differential equations (without impulses). At the present time the qualitative theory of such equationsis under rapid development. After a presentation of the fundamental theory of existence, uniqueness and continuability of solutions, a systematic development of stability theory for that class of problems is given which makes the book unique. It addresses to a wide audience such as mathematicians, applied research

  14. Stability Analysis for Regularized Least Squares Regression

    OpenAIRE

    Rudin, Cynthia

    2005-01-01

    We discuss stability for a class of learning algorithms with respect to noisy labels. The algorithms we consider are for regression, and they involve the minimization of regularized risk functionals, such as L(f) := 1/N sum_i (f(x_i)-y_i)^2+ lambda ||f||_H^2. We shall call the algorithm `stable' if, when y_i is a noisy version of f*(x_i) for some function f* in H, the output of the algorithm converges to f* as the regularization term and noise simultaneously vanish. We consider two flavors of...

  15. In vitro metabolic stability and intestinal transport of P57AS3 (P57) from Hoodia gordonii and its interaction with drug metabolizing enzymes.

    Science.gov (United States)

    Madgula, Vamsi L M; Avula, Bharathi; Pawar, Rahul S; Shukla, Yatin J; Khan, Ikhlas A; Walker, Larry A; Khan, Shabana I

    2008-08-01

    Hoodia gordonii, a succulent cactus-like plant growing in South Africa, has been used in traditional medicine for its appetite suppressant properties. Its use as a dietary supplement to promote weight loss has recently gained popularity. An oxypregnane steroidal glycoside P57AS3 (P57) is reported to be the active constituent of the sap extract responsible for anorexigenic activity. No information is available about its metabolic stability, intestinal transport and interaction with drug metabolizing enzymes. In the present investigation, the metabolic stability of P57 in human liver microsomes and its interaction with drug metabolizing enzymes (CYP1A2, 2C9, 3A4 and 2D6) were determined. Intestinal transport of P57 was studied in the Caco-2 cell model of intestinal transport and absorption. P57 was metabolically stable in the presence of human liver microsomes. The compound inhibited CYP3A4 activity with an IC50 value of 45 microM, whereas the activity of CYP 1A2, 2C9 and 2D6 was not inhibited. In the Caco-2 model, P57 exhibited a higher transport in the secretory direction than in the absorptive direction with efflux ratios of 3.1 and 3.8 at 100 and 200 microM, respectively. The efflux was inhibited by selective inhibitors of multidrug resistance associated proteins MRP1/MRP2 (MK-571) and P-gp (verapamil). In conclusion, intestinal transport of P57 was mediated by P-gp and MRP transporters. The compound was metabolically stable and showed weak inhibition of CYP 3A4.

  16. Modeling, Stability Analysis and Active Stabilization of Multiple DC-Microgrids Clusters

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    ), and more especially during interconnection with other MGs, creating dc MG clusters. This paper develops a small signal model for dc MGs from the control point of view, in order to study stability analysis and investigate effects of CPLs and line impedances between the MGs on stability of these systems......DC microgrids (MGs), as an alternative option, have attracted increasing interest in recent years due to many potential advantages as compare to the ac system. Stability of these systems can be an important issue under high penetration of load converters which behaves as constant power loads (CPLs....... This model can be also used to synthesis and study dynamics of control loops in dc MGs and also dc MG clusters. An active stabilization method is proposed to be implemented as a dc active power filter (APF) inside the MGs in order to not only increase damping of dc MGs at the presence of CPLs but also...

  17. Simulation analysis of construction process of high rock slope's stabilization

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhan-yuan; LING Xian-zhang; WANG Xuan-qing; ZOU Zu-yin

    2008-01-01

    A self-developed elasto-plastic finite element program was used to analyze the construction sequence of high rock slope' s stabilization in a coal-coking plant, and the result was compared with that employing the ultimate equilibrium method. Based on the results of finite element analysis, the stress contour graphs and dis-placement vector graphs at different construction steps were obtained, and the behavior of the slope during stabi-lization construction process was analyzed quantitatively. Based on the analysis of safety factors of three different schemes of stabilization and two different construction schemes, the assessment of stability and bracing design of the construction process were performed. The results show that the original reinforcement design is improper;the stability of the rock slope is controlled by a developed structural plane, the stability factor after excavation is less than 1, and the free surface should be braced in time ; for stability, the construction sequence should adopt that bracing follows excavation step by step up to down; the local slide occurred during the construction process agrees with the dangerous slide determined by the numerical analysis, which proves the validity and rationality of the adopted method.

  18. Voltage stability analysis in the new deregulated environment

    Science.gov (United States)

    Zhu, Tong

    Nowadays, a significant portion of the power industry is under deregulation. Under this new circumstance, network security analysis is more critical and more difficult. One of the most important issues in network security analysis is voltage stability analysis. Due to the expected higher utilization of equipment induced by competition in a power market that covers bigger power systems, this issue is increasingly acute after deregulation. In this dissertation, some selected topics of voltage stability analysis are covered. In the first part, after a brief review of general concepts of continuation power flow (CPF), investigations on various matrix analysis techniques to improve the speed of CPF calculation for large systems are reported. Based on these improvements, a new CPF algorithm is proposed. This new method is then tested by an inter-area transaction in a large inter-connected power system. In the second part, the Arnoldi algorithm, the best method to find a few minimum singular values for a large sparse matrix, is introduced into the modal analysis for the first time. This new modal analysis is applied to the estimation of the point of voltage collapse and contingency evaluation in voltage security assessment. Simulations show that the new method is very efficient. In the third part, after transient voltage stability component models are investigated systematically, a novel system model for transient voltage stability analysis, which is a logical-algebraic-differential-difference equation (LADDE), is offered. As an example, TCSC (Thyristor controlled series capacitors) is addressed as a transient voltage stabilizing controller. After a TCSC transient voltage stability model is outlined, a new TCSC controller is proposed to enhance both fault related and load increasing related transient voltage stability. Its ability is proven by the simulation.

  19. Combining p53 stabilizers with metformin induces synergistic apoptosis through regulation of energy metabolism in castration-resistant prostate cancer.

    Science.gov (United States)

    Chen, Long; Ahmad, Nihal; Liu, Xiaoqi

    2016-01-01

    Since altered energy metabolism is a hallmark of cancer, many drugs targeting metabolic pathways are in active clinical trials. The tumor suppressor p53 is often inactivated in cancer, either through downregulation of protein or loss-of-function mutations. As such, stabilization of p53 is considered as one promising approach to treat those cancers carrying wild type (WT) p53. Herein, SIRT1 inhibitor Tenovin-1 and polo-like kinase 1 (Plk1) inhibitor BI2536 were used to stabilize p53. We found that both Tennovin-1 and BI2536 increased the anti-neoplastic activity of metformin, an inhibitor of oxidative phosphorylation, in a p53 dependent manner. Since p53 has also been shown to regulate metabolic pathways, we further analyzed glycolysis and oxidative phosphorylation upon drug treatments. We showed that both Tennovin-1 and BI2536 rescued metformin-induced glycolysis and that both Tennovin-1 and BI2536 potentiated metformin-associated inhibition of oxidative phosphorylation. Of significance, castration-resistant prostate cancer (CRPC) C4-2 cells show a much more robust response to the combination treatment than the parental androgen-dependent prostate cancer LNCaP cells, indicating that targeting energy metabolism with metformin plus p53 stabilizers might be a valid approach to treat CRPC carrying WT p53.

  20. Analysis of lateral stability of I-section aluminum beams

    Institute of Scientific and Technical Information of China (English)

    CHENG Ming; SHI Yongjiu; WANG Yuanqing

    2006-01-01

    This paper focuses on the lateral buckling of laterally-unrestrained aluminum beams subjected to a concentrated, uniformly loading and pure-bending action. The design methods of lateral stability of aluminum beams in the current codes are discussed. The influence of material property on the lateral buckling of aluminum beams is investigated with finite element analysis (FEA) methods. Some numerical examples are given, and the results from current codes are compared with the FEA solutions. The design method on lateral stability of steel beams specified in the Chinese standard GB 50017-2003 is modified to calibrate the stability factors of aluminum beams according to the European code, British code, and American code, and the modified method is verified by FEA results. Through comparison with the available test results, the modified design method for overall stability of aluminum bending members is proposed in this paper and proved applicable in the design of lateral stability of aluminum beams.

  1. Cellular metabolic network analysis: discovering important reactions in Treponema pallidum.

    Science.gov (United States)

    Chen, Xueying; Zhao, Min; Qu, Hong

    2015-01-01

    T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum's metabolism. Here, we apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pallidum, critical reactions are identified. As a comparison, we also apply the analytical approaches to the metabolic network of H. pylori to find coregulated drug targets and unique drug targets for different microorganisms. Based on the clustering results, all reactions are further classified into various roles. Therefore, the general picture of their metabolic network is obtained and two types of reactions, both of which are involved in nucleic acid metabolism, are found to be essential for T. pallidum. It is also discovered that both hubs of reactions and the isolated reactions in purine and pyrimidine metabolisms play important roles in T. pallidum. These reactions could be potential drug targets for treating syphilis.

  2. In vivo NMR for ¹³C Metabolic Flux Analysis.

    Science.gov (United States)

    Roscher, Albrecht; Troufflard, Stéphanie; Taghki, Abdelghani Idrissi

    2014-01-01

    The use of in vivo NMR within the framework of Metabolic Flux Analysis in plants is presented. In vivo NMR allows to visualize the active metabolic network, to determine metabolic and isotopic steady state and to measure metabolic fluxes which are not necessarily accessible by isotopic steady state (stationary) Metabolic Flux Analysis. The kinetic data can be used as input for dynamic (nonstationary) Metabolic Flux Analysis. Both 1D and 2D NMR methods are employed.

  3. Solar Dynamic Power System Stability Analysis and Control

    Science.gov (United States)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  4. Stability Analysis of Neural Networks-Based System Identification

    Directory of Open Access Journals (Sweden)

    Talel Korkobi

    2008-01-01

    Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.

  5. Stability Analysis for Stochastic Delayed High-order Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, the global asymptotic stability analysis problem is considered for a class of stochastic high-order neural networks with time-delays. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, several sufficient conditions are derived in order to guarantee the global asymptotic convergence of the equilibrium point in the mean square. Investigation shows that the addressed stochastic highorder delayed neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities (LMIs). Hence, the global asymptotic stability of the studied stochastic high-order delayed neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global stability criteria.

  6. Fully Parallel MHD Stability Analysis Tool

    Science.gov (United States)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2015-11-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.

  7. Kinematic analysis of rope skipper's stability

    Science.gov (United States)

    Ab Ghani, Nor Atikah; Rambely, Azmin Sham

    2014-06-01

    There are various kinds of jumping that can be done while performing rope skipping activity. This activity was always associated with injury. But, if the rope skipper can perform the activity in a right way, it is believed that the injury might be reduced. The main purpose of this paper is to observe the stability of rope skipper from a biomechanics perspective, which are the centre of mass, angle at the ankle, knee and hip joints and also the trajectory for the ipsilateral leg between the two types of skip which is one leg and two legs. Six healthy, physically active subject, two males and four females (age: 8.00±1.25 years, weight: 17.90±6.85 kg and height: 1.22±0.08 m) participated in this study. Kinematic data of repeated five cycles of rope skipping activity was captured by using Vicon Nexus system. Based on the data collected, skipping with two legs shows more stable behavior during preparation, flight and landing phases. It is concluded that landing on the balls of the feet, lowering the trajectory positions of the feet from the ground as well as flexion of each joint which would reduce the injury while landing.

  8. (13)C metabolic flux analysis of recombinant expression hosts.

    Science.gov (United States)

    Young, Jamey D

    2014-12-01

    Identifying host cell metabolic phenotypes that promote high recombinant protein titer is a major goal of the biotech industry. (13)C metabolic flux analysis (MFA) provides a rigorous approach to quantify these metabolic phenotypes by applying isotope tracers to map the flow of carbon through intracellular metabolic pathways. Recent advances in tracer theory and measurements are enabling more information to be extracted from (13)C labeling experiments. Sustained development of publicly available software tools and standardization of experimental workflows is simultaneously encouraging increased adoption of (13)C MFA within the biotech research community. A number of recent (13)C MFA studies have identified increased citric acid cycle and pentose phosphate pathway fluxes as consistent markers of high recombinant protein expression, both in mammalian and microbial hosts. Further work is needed to determine whether redirecting flux into these pathways can effectively enhance protein titers while maintaining acceptable glycan profiles.

  9. Stability analysis for natural slope by kinematical approach

    Institute of Scientific and Technical Information of China (English)

    孙志彬; 覃长兵

    2014-01-01

    The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was constructed. The stability factor formulation by the upper bound theorem leads to a classical nonlinear programming problem, when the external work rate and internal energy dissipation were solved, and the constraint condition of the programming problem was given. The upper bound optimization problem can be solved efficiently by applying a nonlinear SQP algorithm, and stability factor was obtained, which agrees well with previous achievements.

  10. Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for (13)C metabolic flux analysis.

    Science.gov (United States)

    Au, Jennifer; Choi, Jungik; Jones, Shawn W; Venkataramanan, Keerthi P; Antoniewicz, Maciek R

    2014-11-01

    In this work, we provide new insights into the metabolism of Clostridium acetobutylicum ATCC 824 obtained using a systematic approach for quantifying fluxes based on parallel labeling experiments and (13)C-metabolic flux analysis ((13)C-MFA). Here, cells were grown in parallel cultures with [1-(13)C]glucose and [U-(13)C]glucose as tracers and (13)C-MFA was used to quantify intracellular metabolic fluxes. Several metabolic network models were compared: an initial model based on current knowledge, and extended network models that included additional reactions that improved the fits of experimental data. While the initial network model did not produce a statistically acceptable fit of (13)C-labeling data, an extended network model with five additional reactions was able to fit all data with 292 redundant measurements. The model was subsequently trimmed to produce a minimal network model of C. acetobutylicum for (13)C-MFA, which could still reproduce all of the experimental data. The flux results provided valuable new insights into the metabolism of C. acetobutylicum. First, we found that TCA cycle was effectively incomplete, as there was no measurable flux between α-ketoglutarate and succinyl-CoA, succinate and fumarate, and malate and oxaloacetate. Second, an active pathway was identified from pyruvate to fumarate via aspartate. Third, we found that isoleucine was produced exclusively through the citramalate synthase pathway in C. acetobutylicum and that CAC3174 was likely responsible for citramalate synthase activity. These model predictions were confirmed in several follow-up tracer experiments. The validated metabolic network model established in this study can be used in future investigations for unbiased (13)C-flux measurements in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer

    Science.gov (United States)

    Chaika, Nina V.; Gebregiworgis, Teklab; Lewallen, Michelle E.; Purohit, Vinee; Radhakrishnan, Prakash; Liu, Xiang; Zhang, Bo; Mehla, Kamiya; Brown, Roger B.; Caffrey, Thomas; Yu, Fang; Johnson, Keith R.; Powers, Robert; Hollingsworth, Michael A.; Singh, Pankaj K.

    2012-01-01

    Aberrant glucose metabolism is one of the hallmarks of cancer that facilitates cancer cell survival and proliferation. Here, we demonstrate that MUC1, a large, type I transmembrane protein that is overexpressed in several carcinomas including pancreatic adenocarcinoma, modulates cancer cell metabolism to facilitate growth properties of cancer cells. MUC1 occupies the promoter elements of multiple genes directly involved in glucose metabolism and regulates their expression. Furthermore, MUC1 expression enhances glycolytic activity in pancreatic cancer cells. We also demonstrate that MUC1 expression enhances in vivo glucose uptake and expression of genes involved in glucose uptake and metabolism in orthotopic implantation models of pancreatic cancer. The MUC1 cytoplasmic tail is known to activate multiple signaling pathways through its interactions with several transcription factors/coregulators at the promoter elements of various genes. Our results indicate that MUC1 acts as a modulator of the hypoxic response in pancreatic cancer cells by regulating the expression/stability and activity of hypoxia-inducible factor-1α (HIF-1α). MUC1 physically interacts with HIF-1α and p300 and stabilizes the former at the protein level. By using a ChIP assay, we demonstrate that MUC1 facilitates recruitment of HIF-1α and p300 on glycolytic gene promoters in a hypoxia-dependent manner. Also, by metabolomic studies, we demonstrate that MUC1 regulates multiple metabolite intermediates in the glucose and amino acid metabolic pathways. Thus, our studies indicate that MUC1 acts as a master regulator of the metabolic program and facilitates metabolic alterations in the hypoxic environments that help tumor cells survive and proliferate under such conditions. PMID:22869720

  12. Synergy between 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in e. coli

    Science.gov (United States)

    Genome-based Flux Balance Analysis (FBA, constraints based flux analysis) and steady state isotopic-labeling-based Metabolic Flux Analysis (MFA) are complimentary approaches to predicting and measuring the operation and regulation of metabolic networks. Here a genome-derived model of E. coli metabol...

  13. Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity.

    Science.gov (United States)

    Horikoshi, Mina; Yura, Takashi; Tsuchimoto, Sachie; Fukumori, Yoshihiro; Kanemori, Masaaki

    2004-11-01

    Escherichia coli heat shock transcription factor sigma32 is rapidly degraded in vivo, with a half-life of about 1 min. A set of proteins that includes the DnaK chaperone team (DnaK, DnaJ, GrpE) and ATP-dependent proteases (FtsH, HslUV, etc.) are involved in degradation of sigma32. To gain further insight into the regulation of sigma32 stability, we isolated sigma32 mutants that were markedly stabilized. Many of the mutants had amino acid substitutions in the N-terminal half (residues 47 to 55) of region 2.1, a region highly conserved among bacterial sigma factors. The half-lives ranged from about 2-fold to more than 10-fold longer than that of the wild-type protein. Besides greater stability, the levels of heat shock proteins, such as DnaK and GroEL, increased in cells producing stable sigma32. Detailed analysis showed that some stable sigma32 mutants have higher transcriptional activity than the wild type. These results indicate that the N-terminal half of region 2.1 is required for modulating both metabolic stability and the activity of sigma32. The evidence suggests that sigma32 stabilization does not result from an elevated affinity for core RNA polymerase. Region 2.1 may, therefore, be involved in interactions with the proteolytic machinery, including molecular chaperones.

  14. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  15. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  16. Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seohyoung; Seol, Eunhee; Park, Sunghoon [Department of Chemical and Biochemical Engineering, Pusan National University, Busan 609-735 (Korea); Oh, You-Kwan [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-543 (Korea); Wang, G.Y. [Department of Oceanography, University of Hawaii at Manoa Honolulu, HI 96822 (United States)

    2009-09-15

    Escherichia coli can produce H{sub 2} from glucose via formate hydrogen lyase (FHL). In order to improve the H{sub 2} production rate and yield, metabolically engineered E. coli strains, which included pathway alterations in their H{sub 2} production and central carbon metabolism, were developed and characterized by batch experiments and metabolic flux analysis. Deletion of hycA, a negative regulator for FHL, resulted in twofold increase of FHL activity. Deletion of two uptake hydrogenases (1 (hya) and hydrogenase 2 (hyb)) increased H{sub 2} production yield from 1.20 mol/mol glucose to 1.48 mol/mol glucose. Deletion of lactate dehydrogenase (ldhA) and fumarate reductase (frdAB) further improved the H{sub 2} yield; 1.80 mol/mol glucose under high H{sub 2} pressure or 2.11 mol/mol glucose under reduced H{sub 2} pressure. Several batch experiments at varying concentrations of glucose (2.5-10 g/L) and yeast extract (0.3 or 3.0 g/L) were conducted for the strain containing all these genetic alternations, and their carbon and energy balances were analyzed. The metabolic flux analysis revealed that deletion of ldhA and frdAB directed most of the carbons from glucose to the glycolytic pathway leading to H{sub 2} production by FHL, not to the pentose phosphate pathway. (author)

  17. Stability Analysis for a Multi-Camera Photogrammetric System

    Directory of Open Access Journals (Sweden)

    Ayman Habib

    2014-08-01

    Full Text Available Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction.

  18. Probabilistic approaches for geotechnical site characterization and slope stability analysis

    CERN Document Server

    Cao, Zijun; Li, Dianqing

    2017-01-01

    This is the first book to revisit geotechnical site characterization from a probabilistic point of view and provide rational tools to probabilistically characterize geotechnical properties and underground stratigraphy using limited information obtained from a specific site. This book not only provides new probabilistic approaches for geotechnical site characterization and slope stability analysis, but also tackles the difficulties in practical implementation of these approaches. In addition, this book also develops efficient Monte Carlo simulation approaches for slope stability analysis and implements these approaches in a commonly available spreadsheet environment. These approaches and the software package are readily available to geotechnical practitioners and alleviate them from reliability computational algorithms. The readers will find useful information for a non-specialist to determine project-specific statistics of geotechnical properties and to perform probabilistic analysis of slope stability.

  19. Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils

    Science.gov (United States)

    Park, J. E.; Lee, B. T.; Son, A.

    2015-12-01

    Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.

  20. ANALYSIS OF TIPOVER STABILITY FOR NOVEL SHAPE SHIFTING MODULAR ROBOT

    Institute of Scientific and Technical Information of China (English)

    LIU Jinguo; WANG Yuechao; MA Shugen; LI Bin

    2006-01-01

    A novel three-module robot has been introduced. It can change its configuration toadapt to the uneven terrain and to improve its tipover stability. This three-module tracked robot has three kinds of symmetry configuration. They are line type, triangle type, and row type. After the factors and the countermeasures of mobile robot's tipover problem are analyzed, stability pyramid and tipover stability index are proposed to globally determinate the mobile robot's static stability and dynamic stability.The shape shifting robot is tested by this technique under the combined disturbance of pitch, roll and yaw in simulation. The simulation result shows that this technique is effective for the analysis of mobile robot's tipover stability, especially for the reconfigurable or shape shifting modular robot.Experiments on three symmetry configurations are made under unstructured environments. The environment experiment shows the same result as that of the simulation that the triangle type configuration has the best stability. Both simulation and experiment provide a valid reference for the reconfigurable robot's potential application.

  1. Stability analysis of an encapsulated microbubble against gas diffusion.

    Science.gov (United States)

    Katiyar, Amit; Sarkar, Kausik

    2010-03-01

    Linear stability analysis is performed for a mathematical model of diffusion of gases from an encapsulated microbubble. It is an Epstein-Plesset model modified to account for encapsulation elasticity and finite gas permeability. Although bubbles, containing gases other than air, are considered, the final stable bubble, if any, contains only air, and stability is achieved only when the surrounding medium is saturated or oversaturated with air. In absence of encapsulation elasticity, only a neutral stability is achieved for zero surface tension, the other solution being unstable. For an elastic encapsulation, different equilibrium solutions are obtained depending on the saturation level and whether the surface tension is smaller or higher than the elasticity. For an elastic encapsulation, elasticity can stabilize the bubble. However, imposing a non-negativity condition on the effective surface tension (consisting of reference surface tension and the elastic stress) leads to an equilibrium radius which is only neutrally stable. If the encapsulation can support a net compressive stress, it achieves actual stability. The linear stability results are consistent with our recent numerical findings. Physical mechanisms for the stability or instability of various equilibriums are provided.

  2. Matrix properties relating to stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Di Caprio, U. [ENEL s.p.a., Cologno Monzese (Italy)

    2001-03-01

    With reference to a multimachine power system are presented properties and conditions to be satisfied by matrices M, K, D (inertia coefficients, synchronizing coefficients and damping coefficients) in order that the system can be stable. The analysis is carried out with the assumption that the transfer-conductances are negligible while the damping effects (of the field and damper circuits) are taken into account. The formulation is general, i.e. it can be applied to any system with n degrees of freedom, subjected to conservative positional forces and to dissipative forces linearly dependent upon the speed. (author)

  3. Stability analysis of an aeroelastic system with friction

    Institute of Scientific and Technical Information of China (English)

    Tan Tiancai; Li Min; Liu Baihui

    2013-01-01

    In this paper,harmonic balance method,exact formulation and numerical simulation method are adopted to study the effects of different friction stiffness on the stability of 1.5 degrees of freedom aeroelastic system.On this basis,the expressions of input energy and dissipated energy are deduced,and the energy method is used to reveal the mechanisms of the stable boundary and unstable boundary existing in the system and the effects of different friction stiffness on the stability of the system.Studies have shown that the stability region and the critical aerodynamic damping ratio of the system rise with the increase of the friction stiffness,while the friction stiffness has little effect on the stability boundary.In the analysis of the stability of system,the results of harmonic balance method,exact formulation and Newmark of numerical simulation method are in good agreement.Compared with exact formulation and numerical simulation method,the concept and conclusion of harmonic balance method are simple in the system stability analysis.

  4. Static Voltage Stability Analysis by Using SVM and Neural Network

    Directory of Open Access Journals (Sweden)

    Mehdi Hajian

    2013-01-01

    Full Text Available Voltage stability is an important problem in power system networks. In this paper, in terms of static voltage stability, and application of Neural Networks (NN and Supported Vector Machine (SVM for estimating of voltage stability margin (VSM and predicting of voltage collapse has been investigated. This paper considers voltage stability in power system in two parts. The first part calculates static voltage stability margin by Radial Basis Function Neural Network (RBFNN. The advantage of the used method is high accuracy in online detecting the VSM. Whereas the second one, voltage collapse analysis of power system is performed by Probabilistic Neural Network (PNN and SVM. The obtained results in this paper indicate, that time and number of training samples of SVM, are less than NN. In this paper, a new model of training samples for detection system, using the normal distribution load curve at each load feeder, has been used. Voltage stability analysis is estimated by well-know L and VSM indexes. To demonstrate the validity of the proposed methods, IEEE 14 bus grid and the actual network of Yazd Province are used.

  5. PSAMM: A Portable System for the Analysis of Metabolic Models.

    Directory of Open Access Journals (Sweden)

    Jon Lund Steffensen

    2016-02-01

    Full Text Available The genome-scale models of metabolic networks have been broadly applied in phenotype prediction, evolutionary reconstruction, community functional analysis, and metabolic engineering. Despite the development of tools that support individual steps along the modeling procedure, it is still difficult to associate mathematical simulation results with the annotation and biological interpretation of metabolic models. In order to solve this problem, here we developed a Portable System for the Analysis of Metabolic Models (PSAMM, a new open-source software package that supports the integration of heterogeneous metadata in model annotations and provides a user-friendly interface for the analysis of metabolic models. PSAMM is independent of paid software environments like MATLAB, and all its dependencies are freely available for academic users. Compared to existing tools, PSAMM significantly reduced the running time of constraint-based analysis and enabled flexible settings of simulation parameters using simple one-line commands. The integration of heterogeneous, model-specific annotation information in PSAMM is achieved with a novel format of YAML-based model representation, which has several advantages, such as providing a modular organization of model components and simulation settings, enabling model version tracking, and permitting the integration of multiple simulation problems. PSAMM also includes a number of quality checking procedures to examine stoichiometric balance and to identify blocked reactions. Applying PSAMM to 57 models collected from current literature, we demonstrated how the software can be used for managing and simulating metabolic models. We identified a number of common inconsistencies in existing models and constructed an updated model repository to document the resolution of these inconsistencies.

  6. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    Science.gov (United States)

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements.

  7. The stability studies and in vitro hepatic microsomal metabolism of some alpha-phenyl-N-substituted nitrones in rats.

    Science.gov (United States)

    Bulut, Gülen; Oktav, Mehmet; Ulgen, Mert

    2004-01-01

    Nitrones are a very important class of synthetic chemicals as synthetic intermediates, antioxidant agents, and metabolic oxidation products of secondary amines and imines used drug, food, cosmetic and printing industry. In the present study, the stability experiments and in vitro metabolism studies using rat microsomal preparations fortified with NADPH were carried out using three different alpha-phenyl-N-substituted nitrones ie alpha-phenyl-N-tert-butylnitrone (PTBN), alpha-(2,6-dichlorophenyl)-N-phenylnitrone (DCPPN) and alpha-phenyl-N-adamantanylnitrone (PADN). The separation of these compounds from the potential degradation, isomerization and metabolic products were performed using a reverse phase HPLC system with a diodearray uv detection. Following stability experiments at 37 degrees C using methanolic nitrone solutions, it was observed that PTBN produced trace amounts of benzaldehyde and the corresponding amide. DCPPN also produced trace amounts of amide. After 12 hours, the amount of the amide significantly increased. PADN produced trace amount of benzaldehyde but not any amide. The proposed compounds were incubated with rat microsomal preparations fortified with NADPH, extracted into dichloromethane (DCM) and finally evaporated under nitrogen in the dark conditions. PTBN was metabolized into corresponding amide whereas DCPPN and PADN did not. With all of the substrates, the corresponding aldehydes are observed with both test and control tubes using denaturated microsomes and without co-factors.

  8. Performance and Stability Analysis of a Shrouded-Fan UAV

    CERN Document Server

    de Divitiis, Nicola

    2009-01-01

    This paper deals with the estimation of the performance and stability for a shrouded-fan unmanned rotorcraft whose mission profile also prescribes the flight in ground effect. The not so simple estimation of the aerodynamic coefficients and of the thrust in the various situations makes the performance calculation and the stability analysis difficult tasks. This is due to the strong interaction between the fan flow and shroud that causes quite different flow structures about the airframe depending on flight conditions. A further difficulty is related to the ground effect which produces substantial modifications in the rotor thrust and aerodynamic coefficients. To evaluate performance and stability, two models have been developed. One determines the aerodynamic coefficients of the shroud, whereas the other one calculates thrust and moment of the rotors system. Both models take into account the mutual interference between fan flow and fuselage and ground effect. Performance and stability are then discussed with ...

  9. Stability analysis of embedded nonlinear predictor neural generalized predictive controller

    Directory of Open Access Journals (Sweden)

    Hesham F. Abdel Ghaffar

    2014-03-01

    Full Text Available Nonlinear Predictor-Neural Generalized Predictive Controller (NGPC is one of the most advanced control techniques that are used with severe nonlinear processes. In this paper, a hybrid solution from NGPC and Internal Model Principle (IMP is implemented to stabilize nonlinear, non-minimum phase, variable dead time processes under high disturbance values over wide range of operation. Also, the superiority of NGPC over linear predictive controllers, like GPC, is proved for severe nonlinear processes over wide range of operation. The necessary conditions required to stabilize NGPC is derived using Lyapunov stability analysis for nonlinear processes. The NGPC stability conditions and improvement in disturbance suppression are verified by both simulation using Duffing’s nonlinear equation and real-time using continuous stirred tank reactor. Up to our knowledge, the paper offers the first hardware embedded Neural GPC which has been utilized to verify NGPC–IMP improvement in realtime.

  10. Computational Stability Analysis of Lotka-Volterra Systems

    Directory of Open Access Journals (Sweden)

    Polcz Péter

    2016-12-01

    Full Text Available This paper concerns the computational stability analysis of locally stable Lotka-Volterra (LV systems by searching for appropriate Lyapunov functions in a general quadratic form composed of higher order monomial terms. The Lyapunov conditions are ensured through the solution of linear matrix inequalities. The stability region is estimated by determining the level set of the Lyapunov function within a suitable convex domain. The paper includes interesting computational results and discussion on the stability regions of higher (3,4 dimensional LV models as well as on the monomial selection for constructing the Lyapunov functions. Finally, the stability region is estimated of an uncertain 2D LV system with an uncertain interior locally stable equilibrium point.

  11. Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    Seval Pinarbasi

    2012-01-01

    Full Text Available The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the literature on beam stability are concentrated on simple cases: uniform beams with ideal boundary conditions and simple loadings. This paper shows that complex beam stability problems, such as lateral torsional buckling of rectangular beams with variable cross-sections, can successfully be solved using homotopy perturbation method (HPM.

  12. Power system small signal stability analysis and control

    CERN Document Server

    Mondal, Debasish; Sengupta, Aparajita

    2014-01-01

    Power System Small Signal Stability Analysis and Control presents a detailed analysis of the problem of severe outages due to the sustained growth of small signal oscillations in modern interconnected power systems. The ever-expanding nature of power systems and the rapid upgrade to smart grid technologies call for the implementation of robust and optimal controls. Power systems that are forced to operate close to their stability limit have resulted in the use of control devices by utility companies to improve the performance of the transmission system against commonly occurring power system

  13. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production.

    Science.gov (United States)

    Zhong, Cheng; Zhang, Gui-Cai; Liu, Miao; Zheng, Xin-Tong; Han, Pei-Pei; Jia, Shi-Ru

    2013-07-01

    Metabolic flux analysis was used to reveal the metabolic distributions in Gluconacetobacter xylinus (CGMCC no. 2955) cultured on different carbon sources. Compared with other sources, glucose, fructose, and glycerol could achieve much higher bacterial cellulose (BC) yields from G. xylinus (CGMCC no. 2955). The glycerol led to the highest BC production with a metabolic yield of 14.7 g/mol C, which was approximately 1.69-fold and 2.38-fold greater than that produced using fructose and glucose medium, respectively. The highest BC productivity from G. xylinus CGMCC 2955 was 5.97 g BC/L (dry weight) when using glycerol as the sole carbon source. Metabolic flux analysis for the central carbon metabolism revealed that about 47.96 % of glycerol was transformed into BC, while only 19.05 % of glucose and 24.78 % of fructose were transformed into BC. Instead, when glucose was used as the sole carbon source, 40.03 % of glucose was turned into the by-product gluconic acid. Compared with BC from glucose and fructose, BC from the glycerol medium showed the highest tensile strength at 83.5 MPa, with thinner fibers and lower porosity. As a main byproduct of biodiesel production, glycerol holds great potential to produce BC with superior mechanical and microstructural characteristics.

  14. Dynamic metabolic flux analysis of plant cell wall synthesis.

    Science.gov (United States)

    Chen, Xuewen; Alonso, Ana P; Shachar-Hill, Yair

    2013-07-01

    The regulation of plant cell wall synthesis pathways remains poorly understood. This has become a bottleneck in designing bioenergy crops. The goal of this study was to analyze the regulation of plant cell wall precursor metabolism using metabolic flux analysis based on dynamic labeling experiments. Arabidopsis T87 cells were cultured heterotrophically with (13)C labeled sucrose. The time course of ¹³C labeling patterns in cell wall precursors and related sugar phosphates was monitored using liquid chromatography tandem mass spectrometry until steady state labeling was reached. A kinetic model based on mass action reaction mechanisms was developed to simulate the carbon flow in the cell wall synthesis network. The kinetic parameters of the model were determined by fitting the model to the labeling time course data, cell wall composition, and synthesis rates. A metabolic control analysis was performed to predict metabolic regulations that may improve plant biomass composition for biofuel production. Our results describe the routes and rates of carbon flow from sucrose to cell wall precursors. We found that sucrose invertase is responsible for the entry of sucrose into metabolism and UDP-glucose-4-epimerase plays a dominant role in UDP-Gal synthesis in heterotrophic Aradidopsis cells under aerobic conditions. We also predicted reactions that exert strong regulatory influence over carbon flow to cell wall synthesis and its composition.

  15. Expanded flux variability analysis on metabolic network of Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    CHEN Tong; XIE ZhengWei; OUYANG Qi

    2009-01-01

    Flux balance analysis,based on the mass conservation law in a cellular organism,has been extensively employed to study the interplay between structures and functions of cellular metabolic networks.Consequently,the phenotypes of the metabolism can be well elucidated.In this paper,we introduce the Expanded Flux Variability Analysis (EFVA) to characterize the intrinsic nature of metabolic reactions,such as flexibility,modularity and essentiality,by exploring the trend of the range,the maximum and the minimum flux of reactions.We took the metabolic network of Escherichia coli as an example and analyzed the variability of reaction fluxes under different growth rate constraints.The average variability of all reactions decreases dramatically when the growth rate increases.Consider the noise effect on the metabolic system,we thus argue that the microorganism may practically grow under a suboptimal state.Besides,under the EFVA framework,the reactions are easily to be grouped into catabolic and anabolic groups.And the anabolic groups can be further assigned to specific biomass constitute.We also discovered the growth rate dependent essentiality of reactions.

  16. Surficial Stability Analysis for Landslide Prediction

    Science.gov (United States)

    Cho, Sung Eun

    2017-04-01

    In Korea where rainfall of strong intensities is frequent, the depth of weathered residual soil is shallow in mountainous region. Therefore, full saturation of soil layer caused by the reaching of rainwater from the slope surface to impermeable bedrock is one of important causes of landslide. In this study, a shallow slope failure analysis method for slopes with shallow bedrock was developed to predict landslide based on one-dimensional Green-Ampt model. Constant intensities of rainfall were considered and shallow impermeable boundary condition was imposed on the Green-Ampt model to simulate the impermeable bedrock underlying the shallow weathered residual soil. The prediction results showed that the proposed method can be used to predict the landslide due to rainfall infiltration by efficiently considering the movement of the saturated region in the hillslope with shallow impermeable bedrock. Acknowledgements This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2012M3A2A1050981).

  17. Reliability analysis method for slope stability based on sample weight

    Directory of Open Access Journals (Sweden)

    Zhi-gang YANG

    2009-09-01

    Full Text Available The single safety factor criteria for slope stability evaluation, derived from the rigid limit equilibrium method or finite element method (FEM, may not include some important information, especially for steep slopes with complex geological conditions. This paper presents a new reliability method that uses sample weight analysis. Based on the distribution characteristics of random variables, the minimal sample size of every random variable is extracted according to a small sample t-distribution under a certain expected value, and the weight coefficient of each extracted sample is considered to be its contribution to the random variables. Then, the weight coefficients of the random sample combinations are determined using the Bayes formula, and different sample combinations are taken as the input for slope stability analysis. According to one-to-one mapping between the input sample combination and the output safety coefficient, the reliability index of slope stability can be obtained with the multiplication principle. Slope stability analysis of the left bank of the Baihetan Project is used as an example, and the analysis results show that the present method is reasonable and practicable for the reliability analysis of steep slopes with complex geological conditions.

  18. Methods and advances in metabolic flux analysis: a mini-review.

    Science.gov (United States)

    Antoniewicz, Maciek R

    2015-03-01

    Metabolic flux analysis (MFA) is one of the pillars of metabolic engineering. Over the past three decades, it has been widely used to quantify intracellular metabolic fluxes in both native (wild type) and engineered biological systems. Through MFA, changes in metabolic pathway fluxes are quantified that result from genetic and/or environmental interventions. This information, in turn, provides insights into the regulation of metabolic pathways and may suggest new targets for further metabolic engineering of the strains. In this mini-review, we discuss and classify the various methods of MFA that have been developed, which include stoichiometric MFA, (13)C metabolic flux analysis, isotopic non-stationary (13)C metabolic flux analysis, dynamic metabolic flux analysis, and (13)C dynamic metabolic flux analysis. For each method, we discuss key advantages and limitations and conclude by highlighting important recent advances in flux analysis approaches.

  19. Qualitative and quantitative stability analysis of penta-rhythmic circuits

    Science.gov (United States)

    Schwabedal, Justus T. C.; Knapper, Drake E.; Shilnikov, Andrey L.

    2016-12-01

    Inhibitory circuits of relaxation oscillators are often-used models for dynamics of biological networks. We present a qualitative and quantitative stability analysis of such a circuit constituted by three generic oscillators (of a Fitzhugh-Nagumo type) as its nodes coupled reciprocally. Depending on inhibitory strengths, and parameters of individual oscillators, the circuit exhibits polyrhythmicity of up to five simultaneously stable rhythms. With methods of bifurcation analysis and phase reduction, we investigate qualitative changes in stability of these circuit rhythms for a wide range of parameters. Furthermore, we quantify robustness of the rhythms maintained under random perturbations by monitoring phase diffusion in the circuit. Our findings allow us to describe how circuit dynamics relate to dynamics of individual nodes. We also find that quantitative and qualitative stability properties of polyrhythmicity do not always align.

  20. An Efficient and Configurable Preprocessing Algorithm to Improve Stability Analysis.

    Science.gov (United States)

    Sesia, Ilaria; Cantoni, Elena; Cernigliaro, Alice; Signorile, Giovanna; Fantino, Gianluca; Tavella, Patrizia

    2016-04-01

    The Allan variance (AVAR) is widely used to measure the stability of experimental time series. Specifically, AVAR is commonly used in space applications such as monitoring the clocks of the global navigation satellite systems (GNSSs). In these applications, the experimental data present some peculiar aspects which are not generally encountered when the measurements are carried out in a laboratory. Space clocks' data can in fact present outliers, jumps, and missing values, which corrupt the clock characterization. Therefore, an efficient preprocessing is fundamental to ensure a proper data analysis and improve the stability estimation performed with the AVAR or other similar variances. In this work, we propose a preprocessing algorithm and its implementation in a robust software code (in MATLAB language) able to deal with time series of experimental data affected by nonstationarities and missing data; our method is properly detecting and removing anomalous behaviors, hence making the subsequent stability analysis more reliable.

  1. A Method for stability analysis of magnetic bearings : Basic stability criteria

    CERN Document Server

    Shayak, B

    2016-01-01

    In this work I outline a general procedure for dynamic modeling and stability analysis of a magnetic bearing, which is a rotating shaft confined inside a chamber through electromagnetic forces alone. I consider the simplest type of self-propelled bearing, namely a permanent magnet synchronous motor and an induction motor rotor freely suspended inside the corresponding stator, and having no eccentricity-fedback control algorithm. Writing Euler's equations for the rotor mechanics and Maxwell's equations for the electromagnetic field leads to a systematic technique for analysing the dynamics of the complete system. Physical arguments indicate that that two essential components for rotor confinement are a spatial gradient in the stator magnetic field and a torque angle lying in the second quadrant. These predictions are confirmed through the linear stability analysis. The direct practical utility of the results is mitigated by the presence of a repeated eigenvalue in the linearized equations. Despite this limitat...

  2. Stability Analysis for Compliant Constant-Force Compression Mechanisms

    Directory of Open Access Journals (Sweden)

    Ikechukwu Celestine UGWUOKE

    2009-12-01

    Full Text Available Stability analysis in compliant mechanism (CM design is of utmostimportance. From a practical point of view, a CM that is unstable is of nosignificance (has no practical value. Three useful plots were considered in theevaluation of each of the dynamic models of nine configurations of compliantconstant-force compression mechanisms (CCFCMs for their stabilitycharacteristics, which includes the polar plot based on the Routh-Hurwitzstability criterion, the Bode plot, and the Nyquist diagram which considersstability in the real frequency domain. Frequency-domain stability criterion isvery useful for determining suitable approaches to adjusting the CCFCMparameters in order to increase its relative stability. The results obtained showthat the CCFCMs investigated do exhibit higher relative stability for highervalues of damping ratio, and for zero damping ratio, all the CCFCMsinvestigated were unstable. The result also show that for the CCFCMsinvestigated to be stable, damping ratio must be greater than 0.03 (ξ > 0.03and depending on what attributes are most desirable, the CCFCM parameterscan be optimized to achieve the desired results. Nyquist criterion provides uswith suitable information concerning the absolute stability and furthermore,can be utilized to define and ascertain the relative stability of a system.

  3. Symbolic flux analysis for genome-scale metabolic networks

    Directory of Open Access Journals (Sweden)

    Peterson Pearu

    2011-05-01

    Full Text Available Abstract Background With the advent of genomic technology, the size of metabolic networks that are subject to analysis is growing. A common task when analyzing metabolic networks is to find all possible steady state regimes. There are several technical issues that have to be addressed when analyzing large metabolic networks including accumulation of numerical errors and presentation of the solution to the researcher. One way to resolve those technical issues is to analyze the network using symbolic methods. The aim of this paper is to develop a routine that symbolically finds the steady state solutions of large metabolic networks. Results A symbolic Gauss-Jordan elimination routine was developed for analyzing large metabolic networks. This routine was tested by finding the steady state solutions for a number of curated stoichiometric matrices with the largest having about 4000 reactions. The routine was able to find the solution with a computational time similar to the time used by a numerical singular value decomposition routine. As an advantage of symbolic solution, a set of independent fluxes can be suggested by the researcher leading to the formation of a desired flux basis describing the steady state solution of the network. These independent fluxes can be constrained using experimental data. We demonstrate the application of constraints by calculating a flux distribution for the central metabolic and amino acid biosynthesis pathways of yeast. Conclusions We were able to find symbolic solutions for the steady state flux distribution of large metabolic networks. The ability to choose a flux basis was found to be useful in the constraint process and provides a strong argument for using symbolic Gauss-Jordan elimination in place of singular value decomposition.

  4. Symbolic flux analysis for genome-scale metabolic networks.

    Science.gov (United States)

    Schryer, David W; Vendelin, Marko; Peterson, Pearu

    2011-05-23

    With the advent of genomic technology, the size of metabolic networks that are subject to analysis is growing. A common task when analyzing metabolic networks is to find all possible steady state regimes. There are several technical issues that have to be addressed when analyzing large metabolic networks including accumulation of numerical errors and presentation of the solution to the researcher. One way to resolve those technical issues is to analyze the network using symbolic methods. The aim of this paper is to develop a routine that symbolically finds the steady state solutions of large metabolic networks. A symbolic Gauss-Jordan elimination routine was developed for analyzing large metabolic networks. This routine was tested by finding the steady state solutions for a number of curated stoichiometric matrices with the largest having about 4000 reactions. The routine was able to find the solution with a computational time similar to the time used by a numerical singular value decomposition routine. As an advantage of symbolic solution, a set of independent fluxes can be suggested by the researcher leading to the formation of a desired flux basis describing the steady state solution of the network. These independent fluxes can be constrained using experimental data. We demonstrate the application of constraints by calculating a flux distribution for the central metabolic and amino acid biosynthesis pathways of yeast. We were able to find symbolic solutions for the steady state flux distribution of large metabolic networks. The ability to choose a flux basis was found to be useful in the constraint process and provides a strong argument for using symbolic Gauss-Jordan elimination in place of singular value decomposition.

  5. Mathematical modeling of isotope labeling experiments for metabolic flux analysis.

    Science.gov (United States)

    Nargund, Shilpa; Sriram, Ganesh

    2014-01-01

    Isotope labeling experiments (ILEs) offer a powerful methodology to perform metabolic flux analysis. However, the task of interpreting data from these experiments to evaluate flux values requires significant mathematical modeling skills. Toward this, this chapter provides background information and examples to enable the reader to (1) model metabolic networks, (2) simulate ILEs, and (3) understand the optimization and statistical methods commonly used for flux evaluation. A compartmentalized model of plant glycolysis and pentose phosphate pathway illustrates the reconstruction of a typical metabolic network, whereas a simpler example network illustrates the underlying metabolite and isotopomer balancing techniques. We also discuss the salient features of commonly used flux estimation software 13CFLUX2, Metran, NMR2Flux+, FiatFlux, and OpenFLUX. Furthermore, we briefly discuss methods to improve flux estimates. A graphical checklist at the end of the chapter provides a reader a quick reference to the mathematical modeling concepts and resources.

  6. Experimental bifurcation analysis of an impact oscillator – Determining stability

    DEFF Research Database (Denmark)

    Bureau, Emil; Schilder, Frank; Elmegård, Michael

    2014-01-01

    We propose and investigate three different methods for assessing stability of dynamical equilibrium states during experimental bifurcation analysis, using a control-based continuation method. The idea is to modify or turn off the control at an equilibrium state and study the resulting behavior. A...

  7. A tutorial on incremental stability analysis using contraction theory

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Fossen, Thor I.

    2010-01-01

    This paper introduces a methodology for dierential nonlinear stability analysis using contraction theory (Lohmiller and Slotine, 1998). The methodology includes four distinct steps: the descriptions of two systems to be compared (the plant and the observer in the case of observer convergence anal...

  8. Transient stability analysis of a distribution network with distributed generators

    NARCIS (Netherlands)

    Xyngi, I.; Ishchenko, A.; Popov, M.; Van der Sluis, L.

    2009-01-01

    This letter describes the transient stability analysis of a 10-kV distribution network with wind generators, microturbines, and CHP plants. The network being modeled in Matlab/Simulink takes into account detailed dynamic models of the generators. Fault simulations at various locations are investigat

  9. Bank stability analysis for fluvial erosion and mass failure

    Science.gov (United States)

    The central objective of this study was to highlight the differences in magnitude between mechanical and fluvial streambank erosional strength with the purpose of developing a more comprehensive bank stability analysis. Mechanical erosion and ultimately failure signifies the general movement or coll...

  10. Exhaustive Analysis of a Genotype Space Comprising 10(15 Central Carbon Metabolisms Reveals an Organization Conducive to Metabolic Innovation.

    Directory of Open Access Journals (Sweden)

    Sayed-Rzgar Hosseini

    2015-08-01

    Full Text Available All biological evolution takes place in a space of possible genotypes and their phenotypes. The structure of this space defines the evolutionary potential and limitations of an evolving system. Metabolism is one of the most ancient and fundamental evolving systems, sustaining life by extracting energy from extracellular nutrients. Here we study metabolism's potential for innovation by analyzing an exhaustive genotype-phenotype map for a space of 10(15 metabolisms that encodes all possible subsets of 51 reactions in central carbon metabolism. Using flux balance analysis, we predict the viability of these metabolisms on 10 different carbon sources which give rise to 1024 potential metabolic phenotypes. Although viable metabolisms with any one phenotype comprise a tiny fraction of genotype space, their absolute numbers exceed 10(9 for some phenotypes. Metabolisms with any one phenotype typically form a single network of genotypes that extends far or all the way through metabolic genotype space, where any two genotypes can be reached from each other through a series of single reaction changes. The minimal distance of genotype networks associated with different phenotypes is small, such that one can reach metabolisms with novel phenotypes--viable on new carbon sources--through one or few genotypic changes. Exceptions to these principles exist for those metabolisms whose complexity (number of reactions is close to the minimum needed for viability. Increasing metabolic complexity enhances the potential for both evolutionary conservation and evolutionary innovation.

  11. Determining the metabolic footprints of hydrocarbon degradation using multivariate analysis.

    Science.gov (United States)

    Smith, Renee J; Jeffries, Thomas C; Adetutu, Eric M; Fairweather, Peter G; Mitchell, James G

    2013-01-01

    The functional dynamics of microbial communities are largely responsible for the clean-up of hydrocarbons in the environment. However, knowledge of the distinguishing functional genes, known as the metabolic footprint, present in hydrocarbon-impacted sites is still scarcely understood. Here, we conducted several multivariate analyses to characterise the metabolic footprints present in a variety of hydrocarbon-impacted and non-impacted sediments. Non-metric multi-dimensional scaling (NMDS) and canonical analysis of principal coordinates (CAP) showed a clear distinction between the two groups. A high relative abundance of genes associated with cofactors, virulence, phages and fatty acids were present in the non-impacted sediments, accounting for 45.7% of the overall dissimilarity. In the hydrocarbon-impacted sites, a high relative abundance of genes associated with iron acquisition and metabolism, dormancy and sporulation, motility, metabolism of aromatic compounds and cell signalling were observed, accounting for 22.3% of the overall dissimilarity. These results suggest a major shift in functionality has occurred with pathways essential to the degradation of hydrocarbons becoming overrepresented at the expense of other, less essential metabolisms.

  12. Determining the metabolic footprints of hydrocarbon degradation using multivariate analysis.

    Directory of Open Access Journals (Sweden)

    Renee J Smith

    Full Text Available The functional dynamics of microbial communities are largely responsible for the clean-up of hydrocarbons in the environment. However, knowledge of the distinguishing functional genes, known as the metabolic footprint, present in hydrocarbon-impacted sites is still scarcely understood. Here, we conducted several multivariate analyses to characterise the metabolic footprints present in a variety of hydrocarbon-impacted and non-impacted sediments. Non-metric multi-dimensional scaling (NMDS and canonical analysis of principal coordinates (CAP showed a clear distinction between the two groups. A high relative abundance of genes associated with cofactors, virulence, phages and fatty acids were present in the non-impacted sediments, accounting for 45.7% of the overall dissimilarity. In the hydrocarbon-impacted sites, a high relative abundance of genes associated with iron acquisition and metabolism, dormancy and sporulation, motility, metabolism of aromatic compounds and cell signalling were observed, accounting for 22.3% of the overall dissimilarity. These results suggest a major shift in functionality has occurred with pathways essential to the degradation of hydrocarbons becoming overrepresented at the expense of other, less essential metabolisms.

  13. Non-stationary (13)C-metabolic flux ratio analysis.

    Science.gov (United States)

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media.

  14. [{sup 68}Ga]NODAGA-RGD - Metabolic stability, biodistribution, and dosimetry data from patients with hepatocellular carcinoma and liver cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Haubner, Roland; Rangger, Christine; Decristoforo, Clemens; Virgolini, Irene J. [Medical University of Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Finkenstedt, Armin; Zoller, Heinz [Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck (Austria); Stegmayr, Armin [Medical University of Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); FH Gesundheit/University of Applied Sciences Tyrol, Innsbruck (Austria)

    2016-10-15

    This study was designed to determine safety, tolerability, and radiation burden of a [{sup 68}Ga]NODAGA-RGD-PET for imaging integrin α{sub v}β{sub 3} expression in patients with hepatocellular carcinoma (HCC) and liver cirrhosis. Moreover, metabolic stability and biokinetic data were compiled. After injection of 154-184 MBq [{sup 68}Ga]NODAGA-RGD three consecutive PET/CT scans were acquired starting 8.3 ± 2.1, 36.9 ± 2.8, and 75.1 ± 3.4 min after tracer injection. For metabolite analysis, blood and urine samples were analyzed by HPLC. For dosimetry studies, residence time VOIs were placed in the corresponding organs. The OLINDA/EXM program was used to estimate the absorbed radiation dose. The radiopharmaceutical was well tolerated and no drug-related adverse effects were observed. No metabolites could be detected in blood (30 and 60 min p.i.) and urine (60 min p.i.). [{sup 68}Ga]NODAGA-RGD showed rapid and predominantly renal elimination. Background radioactivity in blood, intestine, lung, and muscle tissue was low (%ID/l 60 min p.i. was 0.56 ± 0.43, 0.54 ± 0.39, 0.22 ± 0.05, and 0.16 ± 0.8, respectively). The calculated effective dose was 21.5 ± 5.4 μSv/MBq, and the highest absorbed radiation dose was found for the urinary bladder wall (0.26 ± 0.09 mSv/MBq). No increased uptake of the tracer was found in HCC compared with the background liver tissue. [{sup 68}Ga]NODAGA-RGD uptake in the HCCs lesions was not sufficient to use this tracer for imaging these tumors. [{sup 68}Ga]NODAGA-RGD was well tolerated and metabolically stable. Due to rapid renal excretion, background radioactivity was low in most of the body, resulting in low radiation burden and indicating the potential of [{sup 68}Ga]NODAGA-RGD PET for non-invasive determination of integrin α{sub v}β{sub 3} expression. (orig.)

  15. Stability Analysis of Some Nonlinear Anaerobic Digestion Models

    Directory of Open Access Journals (Sweden)

    Ivan Simeonov

    2010-04-01

    Full Text Available Abstract: The paper deals with local asymptotic stability analysis of some mass balance dynamic models (based on one and on two-stage reaction schemes of the anaerobic digestion (AD in CSTR. The equilibrium states for models based on one (with Monod, Contois and Haldane shapes for the specific growth rate and on two-stage (only with Monod shapes for both the specific growth rate of acidogenic and methanogenic bacterial populations reaction schemes have been determined solving sets of nonlinear algebraic equations using Maples. Their stability has been analyzed systematically, which provides insight and guidance for AD bioreactors design, operation and control.

  16. Stability analysis of cosmological models through Liapunov's method

    CERN Document Server

    Charters, T C; Mimoso, J P; Charters, Tiago C.; Mimoso, Jose P.

    2001-01-01

    We investigate the general asymptotic behaviour of Friedman-Robertson-Walker (FRW) models with an inflaton field, scalar-tensor FRW cosmological models and diagonal Bianchi-IX models by means of Liapunov's method. This method provides information not only about the asymptotic stability of a given equilibrium point but also about its basin of attraction. This cannot be obtained by the usual methods found in the literature, such as linear stability analysis or first order perturbation techniques. Moreover, Liapunov's method is also applicable to non-autonomous systems. We use this advantadge to investigate the mechanism of reheating for the inflaton field in FRW models.

  17. Stability analysis of a buck regulator employing input filter compensation

    Science.gov (United States)

    Kelkar, S. S.; Lee, F. C.

    1983-01-01

    The interaction between the input filter and the regulator often causes serious degradation of performance. The reduction in loop gain due to input filter interaction can result in system instability. An exact stability analysis of the buck regulator system is presented. The input filter parameter values are varied and system instability is predicted for the case without feedforward. The eigenvalues of the system can be brought back into the unit circle and the system thus stabilized with the addition of the feedforward loop. Measurements made for the cases with and without feedforward confirm the analytical prediction.

  18. Evolution of amino acid metabolism inferred through cladistic analysis.

    Science.gov (United States)

    Cunchillos, Chomin; Lecointre, Guillaume

    2003-11-28

    Because free amino acids were most probably available in primitive abiotic environments, their metabolism is likely to have provided some of the very first metabolic pathways of life. What were the first enzymatic reactions to emerge? A cladistic analysis of metabolic pathways of the 16 aliphatic amino acids and 2 portions of the Krebs cycle was performed using four criteria of homology. The analysis is not based on sequence comparisons but, rather, on coding similarities in enzyme properties. The properties used are shared specific enzymatic activity, shared enzymatic function without substrate specificity, shared coenzymes, and shared functional family. The tree shows that the earliest pathways to emerge are not portions of the Krebs cycle but metabolisms of aspartate, asparagine, glutamate, and glutamine. The views of Horowitz (Horowitz, N. H. (1945) Proc. Natl. Acad. Sci. U. S. A. 31, 153-157) and Cordón (Cordón, F. (1990) Tratado Evolucionista de Biologia, Aguilar, Madrid, Spain), according to which the upstream reactions in the catabolic pathways and the downstream reactions in the anabolic pathways are the earliest in evolution, are globally corroborated; however, with some exceptions. These are due to later opportunistic connections of pathways (actually already suggested by these authors). Earliest enzymatic functions are mostly catabolic; they were deaminations, transaminations, and decarboxylations. From the consensus tree we extracted four time spans for amino acid metabolism development. For some amino acids catabolism and biosynthesis occurred at the same time (Asp, Glu, Lys, Leu, Ala, Val, Ile, Pro, Arg). For others ultimate reactions that use amino acids as a substrate or as a product are distinct in time, with catabolism preceding anabolism for Asn, Gln, and Cys and anabolism preceding catabolism for Ser, Met, and Thr. Cladistic analysis of the structure of biochemical pathways makes hypotheses in biochemical evolution explicit and parsimonious.

  19. Stability analysis of underground openings for extraction of natural stone

    Directory of Open Access Journals (Sweden)

    Karmen Fifer Bizjak

    2003-06-01

    Full Text Available Extraction of natural stone is usually carried out in surface quarries. Underground excavation is not a frequently used method. Due to the restrictive environmental legislature and limited stores of natural stone, underground extraction has become quite an interestingalternative. Dimensions of underground openings are determined with stability analyses.Prior to starting a numerical analysis of a large underground opening it is very important to determine the mechanism of failure and set up a proper numerical model. The continuum method is usually used in rock mechanics. A disadvantage of this calculation is that it cannotbe applied to a large number of joints. Other methods are preferred, such as the numerical discrete method, which allows joint systems to be involved into calculations. The most probable failure of rock with several joint systems is block sliding. In the example of themarble of Hotavlje both methods were used. It was established that the continuum method is convenient for the global stability prediction of the underground opening. Further discretemethod enable the block stability calculation. The analytical block analysis is still accurate for the a stability calculation of single block. The prerequisite for a good numerical analysis is sufficient quality data on geomechanical properties of rock. In-situ tests, laboratory tests and geotechnical measurements on the site are therefore necessary. Optimum dimensions of underground chambers in the Quarry of Hotavlje were calculated by using several numericalmodels, and the maximum chamber width of 12 m was obtained.

  20. QUANTITATIVE METHODOLOGY FOR STABILITY ANALYSIS OF NONLINEAR ROTOR SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hui-ping; XUE Yu-sheng; CHEN Yu-shu

    2005-01-01

    Rotor-bearings systems applied widely in industry are nonlinear dynamic systems of multi-degree-of-freedom. Modem concepts on design and maintenance call for quantitative stability analysis. Using trajectory based stability-preserving and dimensional-reduction, a quanttative stability analysis method for rotor systems is presented. At first, an n-dimensional nonlinear non-autonomous rotor system is decoupled into n subsystems after numerical integration. Each of them has only onedegree-of-freedom and contains time-varying parameters to represent all other state variables. In this way, n-dimensional trajectory is mapped into a set of one-dimensional trajectories. Dynamic central point (DCP) of a subsystem is then defined on the extended phase plane, namely, force-position plane. Characteristics of curves on the extended phase plane and the DCP's kinetic energy difference sequence for general motion in rotor systems are studied. The corresponding stability margins of trajectory are evaluated quantitatively. By means of the margin and its sensitivity analysis, the critical parameters of the period doubling bifurcation and the Hopf bifurcation in a flexible rotor supported by two short journal beatings with nonlinear suspensionare are determined.

  1. THE FINANCIAL STABILITY ANALYSIS THROUGH THE WORKING CAPITAL

    Directory of Open Access Journals (Sweden)

    LĂPĂDUŞI MIHAELA LOREDANA

    2012-12-01

    Full Text Available The main goal of any business is to maintain the financial stability not only on the short term but also on medium and long term, in other words to maintain a harmony between financial sources and financial needs, respectively the equality between the assets and liabilities from the balance sheet. On short term, maintaining the financial stability involves correlating the temporary resources with the temporary uses by using the necessary working capital, and on the long-term, the financial stability involves comparing the permanent resources with the permanent uses by working capital indicator. The determination of the financial state of the company at a certain moment represents the key moment in establishing and adopting the economic and financial decisions in the management of the company. Maintaining the financial stability of the company represents one of the main objectives of the financial analysis and management and it also provides the optimum development of the entire economic and financial activity of the company. The analysis of the working capital size is based on the financial statement data and information, and based on this analysis is considered the financial situation of the company, the financial equilibrium state at a certain moment. The purpose of this article is to highlight the fact that the maintenance of the financial stability on medium and long term is subordinated to the “working capital” indicator, its content and interpretation evolving in time and varying differently from one company to another. The results of this research may have broad applicability in the field of the companies’ activity and it materializes in the complex approach of the working capital regarded as a classic indicator, frequently used in the financial analysis and with profound significance in establishing the financial state in general and the equilibrium state in particular.

  2. Stability Analysis on Speed Control System of Autonomous Underwater Vehicle

    Institute of Scientific and Technical Information of China (English)

    LI Ye; PANG Yong-jie; WAN Lei; WANG Fang; LIAO Yu-lei

    2009-01-01

    The stability of the motion control system is one of the decisive factors of the control quality for Autonomous Underwater Vehicle (AUV).The divergence of control,which the unstable system may be brought about,is fatal to the operation of AUV.The stability analysis of the PD and S-surface speed controllers based on the Lyapunov' s direct method is proposed in this paper.After decoupling the six degree-of-freedom (DOF) motions of the AUV,the axial dynamic behavior is discussed and the condition is deduced,in which the parameters selection within stability domain can guarantee the system asymptotically stable.The experimental results in a tank and on the sea have successfully verified the algorithm reliability,which can be served as a good reference for analyzing other AUV nonlinear control systems.

  3. Constitutive models in stability analysis of rock slope

    Institute of Scientific and Technical Information of China (English)

    言志信; 段建; 王后裕

    2008-01-01

    Equivalent Mohr-Coulomb yield criterion was established,and the relationship between different constitutive models was studied.The application of equivalent Mohr-Coulomb yield criterion in Ansys was achieved by means of transforming material parameters.The stability research aiming at the most common rock slope without conspicuous slide surface was accomplished,the methods of measurably assessing the stability of rock slope without conspicuous slide surface were explored,and the disadvantages of method of minimum slide-resisted reserve as dangerous slide path were pointed out.The results show that through the calculation and analysis of cases,the conception that measurable assessment of the stability of rock slope without conspicuous slide surface can be achieved under condition that equivalent Mohr-Coulomb yield criterion is validated.Its safety parameter formula is explicit in theory and credible in results.The results obtained are approximate to those obtained by using finite element intensity reducing method.

  4. Stability and Sensitivity Analysis of Fuzzy Control Systems. Mechatronics Applications

    Directory of Open Access Journals (Sweden)

    Radu-Emil Precup

    2006-01-01

    Full Text Available The development of fuzzy control systems is usually performed by heuristicmeans, incorporating human skills, the drawback being in the lack of general-purposedevelopment methods. A major problem, which follows from this development, is theanalysis of the structural properties of the control system, such as stability, controllabilityand robustness. Here comes the first goal of the paper, to present a stability analysismethod dedicated to fuzzy control systems with mechatronics applications based on the useof Popov’s hyperstability theory. The second goal of this paper is to perform the sensitivityanalysis of fuzzy control systems with respect to the parametric variations of the controlledplant for a class of servo-systems used in mechatronics applications based on theconstruction of sensitivity models. The stability and sensitivity analysis methods provideuseful information to the development of fuzzy control systems. The case studies concerningfuzzy controlled servo-systems, accompanied by digital simulation results and real-timeexperimental results, validate the presented methods.

  5. A New Approach for Aeroelastic Robust Stability Analysis

    Institute of Scientific and Technical Information of China (English)

    Wu Zhigang; Yang Chao

    2008-01-01

    Air vehicles undergo variations in structural mass and stiffness because of fuel consumption and the failure of structural components, which might lead to serious influences on the aeroelastic characteristics. An approach for aeroelastic robust stability analysis taking into account the perturbations of structural mass and stiffness is developed. Applying the perturbation method and harmonic unsteady aerodynamic forces, the frequency-domain linear fractal transformation (LFT) representation of pertorbed aeroelastic system is modeled.Then, the robust stability is analyzed by using the structured singular value μ-method. The numerical results of a bi-spar wing show its effectiveness and low computational time in dealing with the robust problems with mass and stiffness perturbations. In engineering analysis for solving aeroelastic problems, the robust approach can be applied to flutter analysis for airplane with the fuel load variation and taking the damage conditions into consideration.

  6. Global analysis on slope stability and its engineering application

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In hydraulic engineering, sometimes it is necessary to consider the stability of sliding bodies with lateral frictional boundaries. Neither the existing three dimensional limit equilibrium methods nor the commercial software products are able to treat such situations. The three dimensional factor of safety is accordingly underestimated; while the shearing strength based on the three dimensional back analysis is overestimated. In this study, the lateral boundaries are regarded as the part of the slip surface. Based on the expression of the normal pressure on the slip surface and the patch interpolation, a rigorous solution for the three dimensional limit equilibrium analysis is realized. Meanwhile, the proposed procedure is applied to the stability analysis of the slope with a cable platform on the right bank in Da Gang Shan hydraulic project under construction.

  7. Interspecies Variation of In Vitro Stability and Metabolic Diversity of YZG-331, a Promising Sedative-Hypnotic Compound

    Directory of Open Access Journals (Sweden)

    Zhihao Liu

    2017-08-01

    Full Text Available YZG-331, a synthetic adenosine derivative, express the sedative and hypnotic effects via binding to the adenosine receptor. The current study was taken to investigate the metabolic pathway of YZG-331 as well as species-specific differences in vitro. YZG-331 was reduced by 14, 11, 6, 46, and 11% within 120 min incubation in human, monkey, dog, rat, and mouse liver microsomes (LMs, respectively. However, YZG-331 was stable in human, monkey, dog, rat, and mouse liver cytoplasm. In addition, YZG-331 was unstable in rat or mouse gut microbiota with more than 50% of prototype drug degraded within 120 min incubation. Interestingly, the systemic exposure of M2 and M3 in rats and mice treated with antibiotics were significantly decreased in the pseudo germ-free group. YZG-331 could be metabolized in rat and human liver under the catalysis of CYP enzymes, and the metabolism showed species variation. In addition, 3 phase I metabolites were identified via hydroxyl (M1, hydrolysis (M2, or hydrolysis/ hydroxyl (M3 pathway. Flavin-containing monooxygenase 1 (FMO1 and FMO3 participated in the conversion of YZG-331 in rat LMs. Nevertheless, YZG-331 expressed stability with recombinant human FMOs, which further confirmed the species variation in the metabolism. Overall, these studies suggested that YZG-331 is not stable in LMs and gut microbiota. CYP450 enzymes and FMOs mediated the metabolism of YZG-331, and the metabolic pathway showed species difference. Special attention must be paid when extrapolating data from other species to humans.

  8. Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism

    National Research Council Canada - National Science Library

    Nardozza, Simona; Boldingh, Helen L; Osorio, Sonia; Höhne, Melanie; Wohlers, Mark; Gleave, Andrew P; MacRae, Elspeth A; Richardson, Annette C; Atkinson, Ross G; Sulpice, Ronan; Fernie, Alisdair R; Clearwater, Michael J

    2013-01-01

    ... deliciosa genotypes contrasting in starch concentration and size, this study identified the metabolic changes occurring during kiwifruit development, including the metabolic hallmarks of starch accumulation and turnover...

  9. 13C labeling analysis of sugars by high resolution-mass spectrometry for metabolic flux analysis.

    Science.gov (United States)

    Acket, Sébastien; Degournay, Anthony; Merlier, Franck; Thomasset, Brigitte

    2017-02-14

    Metabolic flux analysis is particularly complex in plant cells because of highly compartmented metabolism. Analysis of free sugars is interesting because it provides data to define fluxes around hexose, pentose, and triose phosphate pools in different compartment. In this work, we present a method to analyze the isotopomer distribution of free sugars labeled with carbon 13 using a liquid chromatography-high resolution mass spectrometry, without derivatized procedure, adapted for Metabolic flux analysis. Our results showed a good sensitivity, reproducibility and better accuracy to determine isotopic enrichments of free sugars compared to our previous methods [5, 6].

  10. Analysis of Subclinical Hyperthyroidism Influence on Parameters of Bone Metabolism

    Directory of Open Access Journals (Sweden)

    I.V. Pankiv

    2015-04-01

    Full Text Available State of subclinical hypothyroidism can be considered as the optimal model for assessing the significance of thyroid stimulating hormone (TSH for bone tissue in clinical practice. Objective: to make a comparative analysis of the impact of subclinical hyperthyroidism of various origins on the performance of bone mineral density (BMD and bone metabolism parameters. Materials and methods. The study in an outpatient setting included 112 women with a diagnosis of subclinical hyperthyroidism and duration of menopause for at least 5 years. Among the examinees, endogenous subclinical hyperthyroidism has been detected in 78 women (group I, exogenous subclinical hyperthyroidism on the background of suppressive levothyroxine therapy (group II — in 34. The control group (group III included 20 women without thyroid dysfunction. Results. The study first conducted a comparative analysis of bone metabolism, BMD indicators, as well as parameters of phosphorus and calcium, blood lipids in women with subclinical hyperthyroidism of various origins. A positive correlation between markers of bone metabolism and free triiodothyronine (fT3 as hormones necessary for the development of the skeleton and to maintain its homeostasis indicates a physiological effect of parathyroid hormone and fT3 on bone tissue. It is shown that the bone metabolism and BMD depend not only on the content of TSH, but also on the causes of subclinical hyperthyroidism.Conclusions. In postmenopausal women with endogenous subclinical hyperthyroidism, there is a significant decline in BMD indices, more pronounced in the bones with the cortical structure. A negative correlation between markers of bone metabolism and TSH has been observed among all patients included in the study.

  11. Quorum Sensing Coordinates Cooperative Expression of Pyruvate Metabolism Genes To Maintain a Sustainable Environment for Population Stability

    Science.gov (United States)

    Hawver, Lisa A.; Giulietti, Jennifer M.; Baleja, James D.

    2016-01-01

    ABSTRACT Quorum sensing (QS) is a microbial cell-cell communication system that regulates gene expression in response to population density to coordinate collective behaviors. Yet, the role of QS in resolving the stresses caused by the accumulation of toxic metabolic by-products at high cell density is not well defined. In response to cell density, QS could be involved in reprogramming of the metabolic network to maintain population stability. Using unbiased metabolomics, we discovered that Vibrio cholerae mutants genetically locked in a low cell density (LCD) QS state are unable to alter the pyruvate flux to convert fermentable carbon sources into neutral acetoin and 2,3-butanediol molecules to offset organic acid production. As a consequence, LCD-locked QS mutants rapidly lose viability when grown with fermentable carbon sources. This key metabolic switch relies on the QS-regulated small RNAs Qrr1-4 but is independent of known QS regulators AphA and HapR. Qrr1-4 dictate pyruvate flux by translational repression of the enzyme AlsS, which carries out the first step in acetoin and 2,3-butanediol biosynthesis. Consistent with the idea that QS facilitates the expression of a common trait in the population, AlsS needs to be expressed cooperatively in a group of cells. Heterogeneous populations with high percentages of cells not expressing AlsS are unstable. All of the cells, regardless of their respective QS states, succumb to stresses caused by toxic by-product accumulation. Our results indicate that the ability of the bacteria to cooperatively control metabolic flux through QS is critical in maintaining a sustainable environment and overall population stability. PMID:27923919

  12. PFA toolbox: a MATLAB tool for Metabolic Flux Analysis.

    Science.gov (United States)

    Morales, Yeimy; Bosque, Gabriel; Vehí, Josep; Picó, Jesús; Llaneras, Francisco

    2016-07-11

    Metabolic Flux Analysis (MFA) is a methodology that has been successfully applied to estimate metabolic fluxes in living cells. However, traditional frameworks based on this approach have some limitations, particularly when measurements are scarce and imprecise. This is very common in industrial environments. The PFA Toolbox can be used to face those scenarios. Here we present the PFA (Possibilistic Flux Analysis) Toolbox for MATLAB, which simplifies the use of Interval and Possibilistic Metabolic Flux Analysis. The main features of the PFA Toolbox are the following: (a) It provides reliable MFA estimations in scenarios where only a few fluxes can be measured or those available are imprecise. (b) It provides tools to easily plot the results as interval estimates or flux distributions. (c) It is composed of simple functions that MATLAB users can apply in flexible ways. (d) It includes a Graphical User Interface (GUI), which provides a visual representation of the measurements and their uncertainty. (e) It can use stoichiometric models in COBRA format. In addition, the PFA Toolbox includes a User's Guide with a thorough description of its functions and several examples. The PFA Toolbox for MATLAB is a freely available Toolbox that is able to perform Interval and Possibilistic MFA estimations.

  13. Metabolic characterization of AH-7921, a synthetic opioid designer drug: in vitro metabolic stability assessment and metabolite identification, evaluation of in silico prediction, and in vivo confirmation.

    Science.gov (United States)

    Wohlfarth, Ariane; Scheidweiler, Karl B; Pang, Shaokun; Zhu, Mingshe; Castaneto, Marisol; Kronstrand, Robert; Huestis, Marilyn A

    2016-08-01

    AH-7921 (3,4-dichloro-N-[(1-dimethylamino)cyclohexylmethyl]benzamide) is a new synthetic opioid and has led to multiple non-fatal and fatal intoxications. To comprehensively study AH-7921 metabolism, we assessed human liver microsome (HLM) metabolic stability, determined AH-7921's metabolic profile after human hepatocytes incubation, confirmed our findings in a urine case specimen, and compared results to in silico predictions. For metabolic stability, 1 µmol/L AH-7921 was incubated with HLM for up to 1 h; for metabolite profiling, 10 µmol/L was incubated with pooled human hepatocytes for up to 3 h. Hepatocyte samples were analyzed by liquid chromatography quadrupole/time-of-flight high-resolution mass spectrometry (MS). High-resolution full scan MS and information-dependent acquisition MS/MS data were analyzed with MetabolitePilot™ (SCIEX) using multiple data processing algorithms. The presence of AH-7921 and metabolites was confirmed in the urine case specimen. In silico prediction of metabolite structures was performed with MetaSite™ (Molecular Discovery). AH-7921 in vitro half-life was 13.5 ± 0.4 min. We identified 12 AH-7921 metabolites after hepatocyte incubation, predominantly generated by demethylation, less dominantly by hydroxylation, and combinations of different biotransformations. Eleven of 12 metabolites identified in hepatocytes were found in the urine case specimen. One metabolite, proposed to be di-demethylated, N-hydroxylated and glucuronidated, eluted after AH-7921 and was the most abundant metabolite in non-hydrolyzed urine. MetaSite™ correctly predicted the two most abundant metabolites and the majority of observed biotransformations. The two most dominant metabolites after hepatocyte incubation (also identified in the urine case specimen) were desmethyl and di-desmethyl AH-7921. Together with the glucuronidated metabolites, these are likely suitable analytical targets for documenting AH-7921 intake. Copyright © 2015

  14. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  15. Analysis of Data on Xanthan Fermentation in Stationary Phase Using Black Box and Metabolic Network Models

    Institute of Scientific and Technical Information of China (English)

    马红武; 赵学明; 唐寅杰

    1999-01-01

    The xanthan fermentation data in the stationary phase was analyzed using the black box and the metabolic network models. The data consistency ls checked through the elemental balance in the black box model. In the metabolic network model, the metabolic flux distribution in the cell is calculated using the metabolic flux analysis method, then the maintenance coefficients is calculated.

  16. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.S.

    1994-08-23

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment.

  17. An advanced precision analysis of the SM vacuum stability

    Science.gov (United States)

    Bednyakov, A. V.

    2017-09-01

    The talk is devoted to the problem of stability of the Standard Model vacuum. The effective potential for the Higgs field, which can potentialy exhibit additional, deeper minimum, is considered as a convenient tool for addressing the problem. Different methods and approximations used to calculate the potential are considered. Special attention is paid to the renomalization-group approach that allows one to carry out three-loop analysis of the problem. By means of an explicit gauge-independent procedure the absolute stability bounds on the observed Higgs and top-quark masses are derived. The importance of high-order corrections is demonstrated. In addition, potential metastablity of the SM is discussed together with modifications of the analysis due to some New Physics.

  18. Linear stability analysis of magnetized jets: the rotating case

    CERN Document Server

    Bodo, G; Rossi, P; Mignone, A

    2016-01-01

    We perform a linear stability analysis of magnetized rotating cylindrical jet flows in the approximation of zero thermal pressure. We focus our analysis on the effect of rotation on the current driven mode and on the unstable modes introduced by rotation. We find that rotation has a stabilizing effect on the current driven mode only for rotation velocities of the order of the Alfv\\'en velocity. Rotation introduces also a new unstable centrifugal buoyancy mode and the "cold" magnetorotational instability. The first mode is analogous to the Parker instability with the centrifugal force playing the role of effective gravity. The magnetorotational instability can be present, but only in a very limited region of the parameter space and is never dominant. The current driven mode is characterized by large wavelenghts and is dominant at small values of the rotational velocity, while the buoyancy mode becomes dominant as rotation is increased and is characterized by small wavelenghts.

  19. An advanced precision analysis of the SM vacuum stability

    CERN Document Server

    Bednyakov, A V

    2016-01-01

    The talk is devoted to the problem of stability of the Standard Model vacuum. The effective potential for the Higgs field, which can potentialy exhibit additional, deeper minimum, is considered as a convenient tool for addressing the problem. Different methods and approximations used to calculate the potential are considered. Special attention is paid to the renomalization-group approach that allows one to carry out three-loop analysis of the problem. By means of an explicit gauge-independent procedure the absolute stability bounds on the observed Higgs and top-quark masses are derived. The importance of high-order corrections is demonstrated. In addition, potential metastablity of the SM is discussed together with modifications of the analysis due to some New Physics.

  20. Stability analysis of direct current control in current source rectifier

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    Current source rectifier with high switching frequency has a great potential for improving the power efficiency and power density in ac-dc power conversion. This paper analyzes the stability of direct current control based on the time delay effect. Small signal model including dynamic behaviors...... of dc link is developed to identify the control plants of grid ac current control and dc current control. Analysis on the poles and zeros under dq frame is carried out. Base on this model, it turns out that the phase lag caused by the time delay can stabilized the grid ac current control while reduces...... the stable region for dc current control. Simulation and experimental results are presented to validate the theoretical analysis....

  1. 13C metabolic flux analysis at a genome-scale.

    Science.gov (United States)

    Gopalakrishnan, Saratram; Maranas, Costas D

    2015-11-01

    Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on prediction fidelity of scaling-up mapping models to a genome-scale. The core mapping model employed in this study accounts for (75 reactions and 65 metabolites) primarily from central metabolism. The genome-scale metabolic mapping model (GSMM) (697 reaction and 595 metabolites) is constructed using as a basis the iAF1260 model upon eliminating reactions guaranteed not to carry flux based on growth and fermentation data for a minimal glucose growth medium. Labeling data for 17 amino acid fragments obtained from cells fed with glucose labeled at the second carbon was used to obtain fluxes and ranges. Metabolic fluxes and confidence intervals are estimated, for both core and genome-scale mapping models, by minimizing the sum of square of differences between predicted and experimentally measured labeling patterns using the EMU decomposition algorithm. Overall, we find that both topology and estimated values of the metabolic fluxes remain largely consistent between core and GSM model. Stepping up to a genome-scale mapping model leads to wider flux inference ranges for 20 key reactions present in the core model. The glycolysis flux range doubles due to the possibility of active gluconeogenesis, the TCA flux range expanded by 80% due to the availability of a bypass through arginine consistent with labeling data, and the transhydrogenase reaction flux was essentially unresolved due to the presence of as many as five routes for the inter-conversion of NADPH to NADH afforded by the genome-scale model. By globally accounting for ATP demands in the GSMM model the unused ATP decreased drastically with the lower bound matching the maintenance ATP requirement. A non

  2. Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem

    KAUST Repository

    Antonietti, Paola F.

    2015-11-21

    We consider semi-discrete discontinuous Galerkin approximations of both displacement and displacement-stress formulations of the elastodynamics problem. We prove the stability analysis in the natural energy norm and derive optimal a-priori error estimates. For the displacement-stress formulation, schemes preserving the total energy of the system are introduced and discussed. We verify our theoretical estimates on two and three dimensions test problems.

  3. Tools for voltage stability analysis, including a probabilistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Filho, X.; Martins, N.; Bianco, A.; Pinto, H.J.C.P. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Pereira, M.V.F. [Power System Research (PSR), Inc., Rio de Janeiro, RJ (Brazil); Gomes, P.; Santos, M.G. dos [ELETROBRAS, Rio de Janeiro, RJ (Brazil)

    1994-12-31

    This paper reviews some voltage stability analysis tools that are being used or envisioned for expansion and operational planning studies in the Brazilian system, as well as, their applications. The paper also shows that deterministic tools can be linked together in a probabilistic framework, so as to provide complementary help to the analyst in choosing the most adequate operation strategies, or the best planning solutions for a given system. (author) 43 refs., 8 figs., 8 tabs.

  4. Stability analysis of fixed points via chaos control.

    Science.gov (United States)

    Locher, M.; Johnson, G. A.; Hunt, E. R.

    1997-12-01

    This paper reviews recent advances in the application of chaos control techniques to the stability analysis of two-dimensional dynamical systems. We demonstrate how the system's response to one or multiple feedback controllers can be utilized to calculate the characteristic multipliers associated with an unstable periodic orbit. The experimental results, obtained for a single and two coupled diode resonators, agree well with the presented theory. (c) 1997 American Institute of Physics.

  5. ANALYSIS METHODS ON STABILITY OF TALL AND BEDDIIG CREEP SLOPE

    Institute of Scientific and Technical Information of China (English)

    RUIYongqin; JIANGZhiming; LIUJinghui

    1995-01-01

    Based on the model of slope engineering geology,the creep and its failure mechanism of tall and bedding slope are deeply analyzed in this paper .The creep laws of weak intercalations are also discussed.The analysis om the stability of creep slope and the age forecasting of sliding slope have been conducted through mumerical simulations using Finite Element Method (FEM)and Dintimct Element Method(DEM).

  6. Metabolic control analysis of xylose catabolism in Aspergillus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Gabelgaard, J.B.; Wanchanthuek, P.

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out...... specifying that flux control often resides at the step following an intermediate present at high concentrations was, therefore, shown not to hold. The intracellular xylitol concentration was measured in batch cultivations of two different strains of Aspergillus niger and two different strains of Aspergillus...

  7. Stability Analysis of a Reaction-Diffusion System Modeling Atherogenesis

    KAUST Repository

    Ibragimov, Akif

    2010-01-01

    This paper presents a linear, asymptotic stability analysis for a reaction-diffusionconvection system modeling atherogenesis, the initiation of atherosclerosis, as an inflammatory instability. Motivated by the disease paradigm articulated by Ross, atherogenesis is viewed as an inflammatory spiral with a positive feedback loop involving key cellular and chemical species interacting and reacting within the intimal layer of muscular arteries. The inflammatory spiral is initiated as an instability from a healthy state which is defined to be an equilibrium state devoid of certain key inflammatory markers. Disease initiation is studied through a linear, asymptotic stability analysis of a healthy equilibrium state. Various theorems are proved, giving conditions on system parameters guaranteeing stability of the health state, and a general framework is developed for constructing perturbations from a healthy state that exhibit blow-up, which are interpreted as corresponding to disease initiation. The analysis reveals key features that arterial geometry, antioxidant levels, and the source of inflammatory components (through coupled third-kind boundary conditions or through body sources) play in disease initiation. © 2010 Society for Industrial and Applied Mathematics.

  8. Software applications toward quantitative metabolic flux analysis and modeling.

    Science.gov (United States)

    Dandekar, Thomas; Fieselmann, Astrid; Majeed, Saman; Ahmed, Zeeshan

    2014-01-01

    Metabolites and their pathways are central for adaptation and survival. Metabolic modeling elucidates in silico all the possible flux pathways (flux balance analysis, FBA) and predicts the actual fluxes under a given situation, further refinement of these models is possible by including experimental isotopologue data. In this review, we initially introduce the key theoretical concepts and different analysis steps in the modeling process before comparing flux calculation and metabolite analysis programs such as C13, BioOpt, COBRA toolbox, Metatool, efmtool, FiatFlux, ReMatch, VANTED, iMAT and YANA. Their respective strengths and limitations are discussed and compared to alternative software. While data analysis of metabolites, calculation of metabolic fluxes, pathways and their condition-specific changes are all possible, we highlight the considerations that need to be taken into account before deciding on a specific software. Current challenges in the field include the computation of large-scale networks (in elementary mode analysis), regulatory interactions and detailed kinetics, and these are discussed in the light of powerful new approaches.

  9. Pressure potential and stability analysis in an acoustical noncontact transportation

    Science.gov (United States)

    Li, J.; Liu, C. J.; Zhang, W. J.

    2017-01-01

    Near field acoustic traveling wave is one of the most popular principles in noncontact manipulations and transportations. The stability behavior is a key factor in the industrial applications of acoustical noncontact transportation. We present here an in-depth analysis of the transportation stability of a planar object levitated in near field acoustic traveling waves. To more accurately describe the pressure distributions on the radiation surface, a 3D nonlinear traveling wave model is presented. A closed form solution is derived based on the pressure potential to quantitatively calculate the restoring forces and moments under small disturbances. The physical explanations of the effects of fluid inertia and the effects of non-uniform pressure distributions are provided in detail. It is found that a vibration rail with tapered cross section provides more stable transportation than a rail with rectangular cross section. The present study sheds light on the issue of quantitative evaluation of stability in acoustic traveling waves and proposes three main factors that influence the stability: (a) vibration shape, (b) pressure distribution and (c) restoring force/moment. It helps to provide a better understanding of the physics behind the near field acoustic transportation and provide useful design and optimization tools for industrial applications.

  10. Metabolic control analysis of Aspergillus niger L-arabinose catabolism

    DEFF Research Database (Denmark)

    de Groot, M.J.L.; Prathumpai, Wai; Visser, J.

    2005-01-01

    -arabinose, a level that resulted in realistic intermediate concentrations in the model, flux control coefficients for L-arabinose reductase, L-arabitol dehydrogenase and L-xylulose reductase were 0.68, 0.17 and 0.14, respectively. The analysis can be used as a guide to identify targets for metabolic engineering......, and their kinetic properties were characterized. For the other enzymes of the pathway the kinetic data were available from the literature. The metabolic model was used to analyze flux and metabolite concentration control of the L-arabinose catabolic pathway. The model demonstrated that flux control does not reside...... at the enzyme following the intermediate with the highest concentration, L-arabitol, but is distributed over the first three steps in the pathway, preceding and following L-arabitol. Flux control appeared to be strongly dependent on the intracellular L-arabinose concentration. At 5 mM intracellular L...

  11. Analysis of a Compartmental Model of Endogenous Immunoglobulin G Metabolism with Application to Multiple Myeloma

    Science.gov (United States)

    Kendrick, Felicity; Evans, Neil D.; Arnulf, Bertrand; Avet-Loiseau, Hervé; Decaux, Olivier; Dejoie, Thomas; Fouquet, Guillemette; Guidez, Stéphanie; Harel, Stéphanie; Hebraud, Benjamin; Javaugue, Vincent; Richez, Valentine; Schraen, Susanna; Touzeau, Cyrille; Moreau, Philippe; Leleu, Xavier; Harding, Stephen; Chappell, Michael J.

    2017-01-01

    Immunoglobulin G (IgG) metabolism has received much attention in the literature for two reasons: (i) IgG homeostasis is regulated by the neonatal Fc receptor (FcRn), by a pH-dependent and saturable recycling process, which presents an interesting biological system; (ii) the IgG-FcRn interaction may be exploitable as a means for extending the plasma half-life of therapeutic monoclonal antibodies, which are primarily IgG-based. A less-studied problem is the importance of endogenous IgG metabolism in IgG multiple myeloma. In multiple myeloma, quantification of serum monoclonal immunoglobulin plays an important role in diagnosis, monitoring and response assessment. In order to investigate the dynamics of IgG in this setting, a mathematical model characterizing the metabolism of endogenous IgG in humans is required. A number of authors have proposed a two-compartment nonlinear model of IgG metabolism in which saturable recycling is described using Michaelis–Menten kinetics; however it may be difficult to estimate the model parameters from the limited experimental data that are available. The purpose of this study is to analyse the model alongside the available data from experiments in humans and estimate the model parameters. In order to achieve this aim we linearize the model and use several methods of model and parameter validation: stability analysis, structural identifiability analysis, and sensitivity analysis based on traditional sensitivity functions and generalized sensitivity functions. We find that all model parameters are identifiable, structurally and taking into account parameter correlations, when several types of model output are used for parameter estimation. Based on these analyses we estimate parameter values from the limited available data and compare them with previously published parameter values. Finally we show how the model can be applied in future studies of treatment effectiveness in IgG multiple myeloma with simulations of serum monoclonal

  12. Linear stability analysis reveals exclusion zone for sliding bed transport

    Directory of Open Access Journals (Sweden)

    Talmon Arnold M.

    2015-06-01

    Full Text Available A bend or any another pipe component disturbs solids transport in pipes. Longitudinal pressure profiles downstream of such a component may show a stationary transient harmonic wave, as revealed by a recent settling slurry laboratory experiment. Therefore the fundamental transient response of the two-layer model for fully stratified flow is investigated as a first approach. A linear stability analysis of the sliding bed configuration is conducted. No stationary transient harmonic waves are found in this analysis, but adaptation lengths for exponential recovery are quantified. An example calculation is given for a 0.1 m diameter pipeline.

  13. Differential producibility analysis (DPA) of transcriptomic data with metabolic networks: deconstructing the metabolic response of M. tuberculosis.

    Science.gov (United States)

    Bonde, Bhushan K; Beste, Dany J V; Laing, Emma; Kierzek, Andrzej M; McFadden, Johnjoe

    2011-06-01

    A general paucity of knowledge about the metabolic state of Mycobacterium tuberculosis within the host environment is a major factor impeding development of novel drugs against tuberculosis. Current experimental methods do not allow direct determination of the global metabolic state of a bacterial pathogen in vivo, but the transcriptional activity of all encoded genes has been investigated in numerous microarray studies. We describe a novel algorithm, Differential Producibility Analysis (DPA) that uses a metabolic network to extract metabolic signals from transcriptome data. The method utilizes Flux Balance Analysis (FBA) to identify the set of genes that affect the ability to produce each metabolite in the network. Subsequently, Rank Product Analysis is used to identify those metabolites predicted to be most affected by a transcriptional signal. We first apply DPA to investigate the metabolic response of E. coli to both anaerobic growth and inactivation of the FNR global regulator. DPA successfully extracts metabolic signals that correspond to experimental data and provides novel metabolic insights. We next apply DPA to investigate the metabolic response of M. tuberculosis to the macrophage environment, human sputum and a range of in vitro environmental perturbations. The analysis revealed a previously unrecognized feature of the response of M. tuberculosis to the macrophage environment: a down-regulation of genes influencing metabolites in central metabolism and concomitant up-regulation of genes that influence synthesis of cell wall components and virulence factors. DPA suggests that a significant feature of the response of the tubercle bacillus to the intracellular environment is a channeling of resources towards remodeling of its cell envelope, possibly in preparation for attack by host defenses. DPA may be used to unravel the mechanisms of virulence and persistence of M. tuberculosis and other pathogens and may have general application for extracting

  14. Stability Analysis of Methane Hydrate-Bearing Soils Considering Dissociation

    Directory of Open Access Journals (Sweden)

    Hiromasa Iwai

    2015-06-01

    Full Text Available It is well known that the methane hydrate dissociation process may lead to unstable behavior such as large ground deformations, uncontrollable gas production, etc. A linear instability analysis was performed in order to investigate which variables have a significant effect on the onset of the instability behavior of methane hydrate-bearing soils subjected to dissociation. In the analysis a simplified viscoplastic constitutive equation is used for the soil sediment. The stability analysis shows that the onset of instability of the material system mainly depends on the strain hardening-softening parameter, the degree of strain, and the permeability for water and gas. Then, we conducted a numerical analysis of gas hydrate-bearing soil considering hydrate dissociation in order to investigate the effect of the parameters on the system. The simulation method used in the present study can describe the chemo-thermo-mechanically coupled behaviors such as phase changes from hydrates to water and gas, temperature changes and ground deformation. From the numerical results, we found that basically the larger the permeability for water and gas is, the more stable the simulation results are. These results are consistent with those obtained from the linear stability analysis.

  15. Progress Toward the Analysis of the Kinetic Stabilizer Concept

    Energy Technology Data Exchange (ETDEWEB)

    Post, R F; Byers, J A; Cohen, R H; Fowler, T K; Ryutov, D D; Tung, L S

    2005-02-08

    The Kinetic Stabilizer (K-S) concept [1] represents a means for stabilizing axisymmetric mirror and tandem-mirror (T-M) magnetic fusion systems against MHD interchange instability modes. Magnetic fusion research has given us examples of axisymmetric mirror confinement devices in which radial transport rates approach the classical ''Spitzer'' level, i.e. situations in which turbulence if present at all, is at too low a level to adversely affect the radial transport [2,3,4]. If such a low-turbulence condition could be achieved in a T-M system it could lead to a fusion power system that would be simpler, smaller, and easier to develop than one based on closed-field confinement, e.g., the tokamak, where the transport is known to be dominated by turbulence. However, since conventional axisymmetric mirror systems suffer from the MHD interchange instability, the key to exploiting this new opportunity is to find a practical way to stabilize this mode. The K-S represents one avenue to achieving this goal. The starting point for the K-S concept is a theoretical analysis by Ryutov [5]. He showed that a MHD-unstable plasma contained in an axisymmetric mirror cell can be MHD-stabilized by the presence of a low-density plasma on the expanding field lines outside the mirrors. If this plasma communicates well electrically with the plasma in the then this exterior plasma can stabilize the interior, confined, plasma. This stabilization technique was conclusively demonstrated in the Gas Dynamic Trap (GDT) experiment [6] at Novosibirsk, Russia, at mirror-cell plasma beta values of 40 percent. The GDT operates in a high collisionality regime. Thus the effluent plasma leaking through the mirrors, though much lower in density than that of the confined plasma, is still high enough to satisfy the stabilization criterion. This would not, however, be the case in a fusion T-M with axisymmetric plug and central cell fields. In such a case the effluent plasma would be far

  16. Stability of metabolic correlations under changing environmental conditions in Escherichia coli--a systems approach.

    Directory of Open Access Journals (Sweden)

    Jedrzej Szymanski

    Full Text Available BACKGROUND: Biological systems adapt to changing environments by reorganizing their cellular and physiological program with metabolites representing one important response level. Different stresses lead to both conserved and specific responses on the metabolite level which should be reflected in the underlying metabolic network. METHODOLOGY/PRINCIPAL FINDINGS: Starting from experimental data obtained by a GC-MS based high-throughput metabolic profiling technology we here develop an approach that: (1 extracts network representations from metabolic condition-dependent data by using pairwise correlations, (2 determines the sets of stable and condition-dependent correlations based on a combination of statistical significance and homogeneity tests, and (3 can identify metabolites related to the stress response, which goes beyond simple observations about the changes of metabolic concentrations. The approach was tested with Escherichia coli as a model organism observed under four different environmental stress conditions (cold stress, heat stress, oxidative stress, lactose diauxie and control unperturbed conditions. By constructing the stable network component, which displays a scale free topology and small-world characteristics, we demonstrated that: (1 metabolite hubs in this reconstructed correlation networks are significantly enriched for those contained in biochemical networks such as EcoCyc, (2 particular components of the stable network are enriched for functionally related biochemical pathways, and (3 independently of the response scale, based on their importance in the reorganization of the correlation network a set of metabolites can be identified which represent hypothetical candidates for adjusting to a stress-specific response. CONCLUSIONS/SIGNIFICANCE: Network-based tools allowed the identification of stress-dependent and general metabolic correlation networks. This correlation-network-based approach does not rely on major changes in

  17. Thermodynamic principles governing metabolic operation : inference, analysis, and prediction

    NARCIS (Netherlands)

    Niebel, Bastian

    2015-01-01

    The principles governing metabolic flux are poorly understood. Because diverse organisms show similar metabolic flux patterns, we hypothesized that fundamental thermodynamic constraints might shape cellular metabolism. We developed a constraint-based model for Saccharomyces cerevisiae that included

  18. Stability analysis on natural circulation boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au) 26 tabs., 88 ills.

  19. Stability and modal analysis of shock/boundary layer interactions

    Science.gov (United States)

    Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio

    2016-06-01

    The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).

  20. Floquet stability analysis of Ott Grebogi Yorke and difference control

    Science.gov (United States)

    Claussen, Jens Christian

    2008-06-01

    Stabilization of instable periodic orbits of nonlinear dynamical systems has been a widely explored field theoretically and in applications. The techniques can be grouped into time-continuous control schemes based on Pyragas, and the two Poincaré-based chaos control schemes, Ott-Gebogi-Yorke (OGY) and difference control. Here, a new stability analysis of these two Poincaré-based chaos control schemes is given by means of the Floquet theory. This approach allows to calculate exactly the stability restrictions occurring for small measurement delays and for an impulse length shorter than the length of the orbit. This is of practical experimental relevance; to avoid a selection of the relative impulse length by trial and error, it is advised to investigate whether the used control scheme itself shows systematic limitations on the choice of the impulse length. To investigate this point, a Floquet analysis is performed. For OGY control the influence of the impulse length is marginal. As an unexpected result, difference control fails when the impulse length is taken longer than a maximal value that is approximately one half of the orbit length for small Ljapunov numbers and decreases with the Ljapunov number.

  1. Numerical stability analysis in respiratory control system models

    Directory of Open Access Journals (Sweden)

    Laszlo E. Kollar

    2005-04-01

    Full Text Available Stability of the unique equilibrium in two mathematical models (based on chemical balance dynamics of human respiration is examined using numerical methods. Due to the transport delays in the respiratory control system these models are governed by delay differential equations. First, a simplified two-state model with one delay is considered, then a five-state model with four delays (where the application of numerical methods is essential is investigated. In particular, software is developed to perform linearized stability analysis and simulations of the model equations. Furthermore, the Matlab package DDE-BIFTOOL v.~2.00 is employed to carry out numerical bifurcation analysis. Our main goal is to study the effects of transport delays on the stability of the model equations. Critical values of the transport delays (i.e., where Hopf bifurcations occur are determined, and stable periodic solutions are found as the delays pass their critical values. The numerical findings are in good agreement with analytic results obtained earlier for the two-state model.

  2. Stability and modal analysis of shock/boundary layer interactions

    Science.gov (United States)

    Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio

    2017-02-01

    The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).

  3. Stability Analysis for Seed Yield over Environments in Coriander

    Directory of Open Access Journals (Sweden)

    Sangeeta Yadav

    2016-11-01

    Full Text Available Thirty five genotypes of coriander (Coriandrum sativum L. were tested in four artificially created environments to judge their stability in performance of seed yield. The differences among genotypes and environments were significant for seed yield. Stability parameters varied considerably among the tested genotypes in all the methods used. The variation in result in different methods was due to non-fulfillment of assumption of different models. However, AMMI analysis provides the information on main effects as well as interaction effects and depiction of PCA score gives better understanding of the pattern of genotype – environment interaction. The sum of squares due to PCAs was also used for the computation of AMMI stability values for better understanding of the adaptability behavior of genotypes hence, additive main effects and multiplicative interaction (AMMI model was most appropriate for the analysis of G x E interactions for seed yield in coriander. Genotypes RVC 15, RVC 19, RVC 22, RVC 25 and Panipat local showed wider adaptability while, Simpo S 33 exhibited specific adaptability to favourable conditions of high fertility. These genotypes could be utilized in breeding programmers to transfer the adaptability genes into high yielding genetic back ground of coriander.

  4. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions

    Directory of Open Access Journals (Sweden)

    Edwards Jeremy S

    2000-07-01

    Full Text Available Abstract Background Genome sequencing and bioinformatics are producing detailed lists of the molecular components contained in many prokaryotic organisms. From this 'parts catalogue' of a microbial cell, in silico representations of integrated metabolic functions can be constructed and analyzed using flux balance analysis (FBA. FBA is particularly well-suited to study metabolic networks based on genomic, biochemical, and strain specific information. Results Herein, we have utilized FBA to interpret and analyze the metabolic capabilities of Escherichia coli. We have computationally mapped the metabolic capabilities of E. coli using FBA and examined the optimal utilization of the E. coli metabolic pathways as a function of environmental variables. We have used an in silico analysis to identify seven gene products of central metabolism (glycolysis, pentose phosphate pathway, TCA cycle, electron transport system essential for aerobic growth of E. coli on glucose minimal media, and 15 gene products essential for anaerobic growth on glucose minimal media. The in silico tpi-, zwf, and pta- mutant strains were examined in more detail by mapping the capabilities of these in silico isogenic strains. Conclusions We found that computational models of E. coli metabolism based on physicochemical constraints can be used to interpret mutant behavior. These in silica results lead to a further understanding of the complex genotype-phenotype relation. Supplementary information: http://gcrg.ucsd.edu/supplementary_data/DeletionAnalysis/main.htm

  5. The amyloid precursor protein copper binding domain histidine residues 149 and 151 mediate APP stability and metabolism.

    Science.gov (United States)

    Spoerri, Loredana; Vella, Laura J; Pham, Chi L L; Barnham, Kevin J; Cappai, Roberto

    2012-08-03

    One of the key pathological hallmarks of Alzheimer disease (AD) is the accumulation of the APP-derived amyloid β peptide (Aβ) in the brain. Altered copper homeostasis has also been reported in AD patients and is thought to increase oxidative stress and to contribute to toxic Aβ accumulation and regulate APP metabolism. The potential involvement of the N-terminal APP copper binding domain (CuBD) in these events has not been investigated. Based on the tertiary structure of the APP CuBD, we examined the histidine residues of the copper binding site (His(147), His(149), and His(151)). We report that histidines 149 and 151 are crucial for CuBD stability and APP metabolism. Co-mutation of the APP CuBD His(149) and His(151) to asparagine decreased APP proteolytic processing, impaired APP endoplasmic reticulum-to-Golgi trafficking, and promoted aberrant APP oligomerization in HEK293 cells. Expression of the triple H147N/H149N/H151N-APP mutant led to up-regulation of the unfolded protein response. Using recombinant protein encompassing the APP CuBD, we found that insertion of asparagines at positions 149 and 151 altered the secondary structure of the domain. This study identifies two APP CuBD residues that are crucial for APP metabolism and suggests an additional role of this domain in APP folding and stability besides its previously identified copper binding activity. These findings are of major significance for the design of novel AD therapeutic drugs targeting this APP domain.

  6. The Amyloid Precursor Protein Copper Binding Domain Histidine Residues 149 and 151 Mediate APP Stability and Metabolism*

    Science.gov (United States)

    Spoerri, Loredana; Vella, Laura J.; Pham, Chi L. L.; Barnham, Kevin J.; Cappai, Roberto

    2012-01-01

    One of the key pathological hallmarks of Alzheimer disease (AD) is the accumulation of the APP-derived amyloid β peptide (Aβ) in the brain. Altered copper homeostasis has also been reported in AD patients and is thought to increase oxidative stress and to contribute to toxic Aβ accumulation and regulate APP metabolism. The potential involvement of the N-terminal APP copper binding domain (CuBD) in these events has not been investigated. Based on the tertiary structure of the APP CuBD, we examined the histidine residues of the copper binding site (His147, His149, and His151). We report that histidines 149 and 151 are crucial for CuBD stability and APP metabolism. Co-mutation of the APP CuBD His149 and His151 to asparagine decreased APP proteolytic processing, impaired APP endoplasmic reticulum-to-Golgi trafficking, and promoted aberrant APP oligomerization in HEK293 cells. Expression of the triple H147N/H149N/H151N-APP mutant led to up-regulation of the unfolded protein response. Using recombinant protein encompassing the APP CuBD, we found that insertion of asparagines at positions 149 and 151 altered the secondary structure of the domain. This study identifies two APP CuBD residues that are crucial for APP metabolism and suggests an additional role of this domain in APP folding and stability besides its previously identified copper binding activity. These findings are of major significance for the design of novel AD therapeutic drugs targeting this APP domain. PMID:22685292

  7. Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems.

    Science.gov (United States)

    Schilling, C H; Edwards, J S; Letscher, D; Palsson, B Ø

    The elucidation of organism-scale metabolic networks necessitates the development of integrative methods to analyze and interpret the systemic properties of cellular metabolism. A shift in emphasis from single metabolic reactions to systemically defined pathways is one consequence of such an integrative analysis of metabolic systems. The constraints of systemic stoichiometry, and limited thermodynamics have led to the definition of the flux space within the context of convex analysis. The flux space of the metabolic system, containing all allowable flux distributions, is constrained to a convex polyhedral cone in a high-dimensional space. From metabolic pathway analysis, the edges of the high-dimensional flux cone are vectors that correspond to systemically defined "extreme pathways" spanning the capabilities of the system. The addition of maximum flux capacities of individual metabolic reactions serves to further constrain the flux space and has led to the development of flux balance analysis using linear optimization to calculate optimal flux distributions. Here we provide the precise theoretical connections between pathway analysis and flux balance analysis allowing for their combined application to study integrated metabolic function. Shifts in metabolic behavior are calculated using linear optimization and are then interpreted using the extreme pathways to demonstrate the concept of pathway utilization. Changes to the reaction network, such as the removal of a reaction, can lead to the generation of suboptimal phenotypes that can be directly attributed to the loss of pathway function and capabilities. Optimal growth phenotypes are calculated as a function of environmental variables, such as the availability of substrate and oxygen, leading to the definition of phenotypic phase planes. It is illustrated how optimality properties of the computed flux distributions can be interpreted in terms of the extreme pathways. Together these developments are applied to an

  8. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability.

    Science.gov (United States)

    Albacete, Alfonso A; Martínez-Andújar, Cristina; Pérez-Alfocea, Francisco

    2014-01-01

    Securing food production for the growing population will require closing the gap between potential crop productivity under optimal conditions and the yield captured by farmers under a changing environment, which is termed agronomical stability. Drought and salinity are major environmental factors contributing to the yield gap ultimately by inducing premature senescence in the photosynthetic source tissues of the plant and by reducing the number and growth of the harvestable sink organs by affecting the transport and use of assimilates between and within them. However, the changes in source-sink relations induced by stress also include adaptive changes in the reallocation of photoassimilates that influence crop productivity, ranging from plant survival to yield stability. While the massive utilization of -omic technologies in model plants is discovering hundreds of genes with potential impacts in alleviating short-term applied drought and salinity stress (usually measured as plant survival), only in relatively few cases has an effect on crop yield stability been proven. However, achieving the former does not necessarily imply the latter. Plant survival only requires water status conservation and delayed leaf senescence (thus maintaining source activity) that is usually accompanied by growth inhibition. However, yield stability will additionally require the maintenance or increase in sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves and to delayed stress-induced leaf senescence. This review emphasizes the role of several metabolic and hormonal factors influencing not only the source strength, but especially the sink activity and their inter-relations, and their potential to improve yield stability under drought and salinity stresses.

  9. Stability Analysis of a Variant of the Prony Method

    Directory of Open Access Journals (Sweden)

    Rodney Jaramillo

    2012-01-01

    Full Text Available Prony type methods are used in many engineering applications to determine the exponential fit corresponding to a dataset. In this paper we study a variant of Prony's method that was used by Martín-Landrove et al., in a process of segmentation of T2-weighted MRI brain images. We show the equivalence between that method and the classical Prony method and study the stability of the computed solutions with respect to noise in the data set. In particular, we show that the relative error in the calculation of the exponential fit parameters is linear with respect to noise in the data. Our analysis is based on classical results from linear algebra, matrix computation theory, and the theory of stability for roots of polynomials.

  10. STABILITY ANALYSIS AND DESIGN OF PRESSURE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Duraid F. Ahmed

    2013-05-01

    Full Text Available      The performance of pressure control system and stability analysis was studied for different types of controllers. A theoretical model for closed-loop system is developed and dynamic behavior of the control system was studied by introducing a step change in the pressure of the inlet stream. The results show that the theoretical response is faster than the experimental response due to the lags of the control valve and measuring elements. The pressure control system is stable for all conditions and for different control action because the real parts of roots of characteristics equation are negative but the response at PID controller is oscillatory stable. when PID controller used the response is improve due to eliminate the offset and stabilizing effect of derivative allow the proportional gain to be increased and increasing the speed of response compared to proportional and proportional-integral controllers.  

  11. Analysis of the stability and density waves for traffic flow

    Institute of Scientific and Technical Information of China (English)

    薛郁

    2002-01-01

    In this paper, the optimal velocity model of traffic is extended to take into account the relative velocity. Thestability and density waves for traffic flow are investigated analytically with the perturbation method. The stabilitycriterion is derived by the linear stability analysis. It is shown that the triangular shock wave, soliton wave and kinkwave appear respectively in our model for density waves in the three regions: stable, metastable and unstable regions.These correspond to the solutions of the Burgers equation, Kortewegg-de Vries equation and modified Korteweg-de Vriesequation.The analytical results are confirmed to be in good agreement with those of numerical simulation. All theresults indicate that the interaction of a car with relative velocity can affect the stability of the traffic flow and raisecritical density.

  12. Stability Analysis and Design of Impulsive Control Lorenz Systems Family

    Institute of Scientific and Technical Information of China (English)

    YU Yong-Bin; ZHANG Hong-Bin; ZHANG Feng-Li; YU Jue-Bang; LIAO Xiao-Feng

    2009-01-01

    Lorenz systems family unifying Lorenz system, Chen system and Lu system is a typical chaotic family.In this paper, we consider impulsive control Lorenz chaotic systems family with time-varying impulse intervals. By establishing an effective tool of a set of inequalities, we analyze the asymptotic stability of impulsive control Lorenz systems family and obtain some new less conservative conditions. Based on the stability analysis, we design a novel impulsive controller with time-varying impulse intervals. Illustrative examples are provided to show the feasibility and effectiveness of our method. The obtained results not only can be used to design impulsive control for Lorenz systems family, but also can be extended to other chaotic systems.

  13. Aeroelastic stability analysis of flexible overexpanded rocket nozzle

    Science.gov (United States)

    Bekka, N.; Sellam, M.; Chpoun, A.

    2016-07-01

    The aim of this paper is to present a new aeroelastic stability model taking into account the viscous effects for a supersonic nozzle flow in overexpanded regimes. This model is inspired by the Pekkari model which was developed initially for perfect fluid flow. The new model called the "Modified Pekkari Model" (MPM) considers a more realistic wall pressure profile for the case of a free shock separation inside the supersonic nozzle using the free interaction theory of Chapman. To reach this objective, a code for structure computation coupled with aerodynamic excitation effects is developed that allows the analysis of aeroelastic stability for the overexpanded nozzles. The main results are presented in a comparative manner using existing models (Pekkari model and its extended version) and the modified Pekkari model developed in this work.

  14. Thermal stability analysis of the liquid phase methanol synthesis reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gogate, M.R.; Desirazu, S.; Berty, J.M.; Lee, S. (Akron University, Akron, OH (USA). Dept. of Chemical Engineering)

    1992-01-01

    The effect of addition of an inert liquid phase on the rate of heat generation in the catalytic synthesis of methanol from syngas has been studied. Gas compositions typical of product gases from Lurgi and Koppers-Totzek gasifiers, represented by H[sub 2]-rich and CO-rich syngas respectively, were used to experimentally verify the 'slope' and 'dynamic' criteria in a three-phase fixed bed recycle reactor. The liquid medium, Witco-40 oil, has been effective in controlling the rate of heat generation and in preventing catalyst overheating, signifying that the liquid phase synthesis is thermally far more stable than the vapour phase synthesis. The experimental thermal stability study provides crucial and valuable information in commercializing the liquid phase methanol synthesis process. The current approach of thermal stability analysis does not require any a priori assumption or predetermined reaction kinetics. 22 refs., 6 figs., 7 tabs.

  15. Comparative metabolic pathway analysis with special reference to nucleotide metabolism-related genes in chicken primordial germ cells.

    Science.gov (United States)

    Rengaraj, Deivendran; Lee, Bo Ram; Jang, Hyun-Jun; Kim, Young Min; Han, Jae Yong

    2013-01-01

    Metabolism provides energy and nutrients required for the cellular growth, maintenance, and reproduction. When compared with genomics and proteomics, metabolism studies provide novel findings in terms of cellular functions. In this study, we examined significant and differentially expressed genes in primordial germ cells (PGCs), gonadal stromal cells, and chicken embryonic fibroblasts compared with blastoderms using microarray. All upregulated genes (1001, 1118, and 974, respectively) and downregulated genes (504, 627, and 1317, respectively) in three test samples were categorized into functional groups according to gene ontology. Then all selected genes were tested to examine their involvement in metabolic pathways through Kyoto Encyclopedia of Genes and Genomes pathway database using overrepresentation analysis. In our results, most of the upregulated and downregulated genes were involved in at least one subcategory of seven major metabolic pathways. The main objective of this study is to compare the PGC expressed genes and their metabolic pathways with blastoderms, gonadal stromal cells, and chicken embryonic fibroblasts. Among the genes involved in metabolic pathways, a higher number of PGC upregulated genes were identified in retinol metabolism, and a higher number of PGC downregulated genes were identified in sphingolipid metabolism. In terms of the fold change, acyl-CoA synthetase medium-chain family member 3 (ACSM3), which is involved in butanoate metabolism, and N-acetyltransferase, pineal gland isozyme NAT-10 (PNAT10), which is involved in energy metabolism, showed higher expression in PGCs. To validate these gene changes, the expression of 12 nucleotide metabolism-related genes in chicken PGCs was examined by real-time polymerase chain reaction. The results of this study provide new information on the expression of genes associated with metabolism function of PGCs and will facilitate more basic research on animal PGC differentiation and function

  16. Experimental Testing for Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Groza, Voicu; Isleifsson, Fridrik Rafn

    2012-01-01

    Experimental Testing for Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads......Experimental Testing for Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads...

  17. Analysis and Engineering of Metabolic Pathway Fluxes in Corynebacterium glutamicum

    Science.gov (United States)

    Wittmann, Christoph

    The Gram-positive soil bacterium Corynebacterium glutamicum was discovered as a natural overproducer of glutamate about 50 years ago. Linked to the steadily increasing economical importance of this microorganism for production of glutamate and other amino acids, the quest for efficient production strains has been an intense area of research during the past few decades. Efficient production strains were created by applying classical mutagenesis and selection and especially metabolic engineering strategies with the advent of recombinant DNA technology. Hereby experimental and computational approaches have provided fascinating insights into the metabolism of this microorganism and directed strain engineering. Today, C. glutamicum is applied to the industrial production of more than 2 million tons of amino acids per year. The huge achievements in recent years, including the sequencing of the complete genome and efficient post genomic approaches, now provide the basis for a new, fascinating era of research - analysis of metabolic and regulatory properties of C. glutamicum on a global scale towards novel and superior bioprocesses.

  18. METABOLISM

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Objective: To determine the allele frequencies of genetic variants 373 Ala→Pro and 451 Arg→Gln of cholesteryl ester transfer protein (CETP) and to explore their potential impacts on serum lipid metabolism. Methods: The genotypes in CETP codon 373 and 451 in 91 German healthy students and 409 an-

  19. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis.

    Science.gov (United States)

    Hoefnagel, Marcel H N; Starrenburg, Marjo J C; Martens, Dirk E; Hugenholtz, Jeroen; Kleerebezem, Michiel; Van Swam, Iris I; Bongers, Roger; Westerhoff, Hans V; Snoep, Jacky L

    2002-04-01

    Everyone who has ever tried to radically change metabolic fluxes knows that it is often harder to determine which enzymes have to be modified than it is to actually implement these changes. In the more traditional genetic engineering approaches 'bottle-necks' are pinpointed using qualitative, intuitive approaches, but the alleviation of suspected 'rate-limiting' steps has not often been successful. Here the authors demonstrate that a model of pyruvate distribution in Lactococcus lactis based on enzyme kinetics in combination with metabolic control analysis clearly indicates the key control points in the flux to acetoin and diacetyl, important flavour compounds. The model presented here (available at http://jjj.biochem.sun.ac.za/wcfs.html) showed that the enzymes with the greatest effect on this flux resided outside the acetolactate synthase branch itself. Experiments confirmed the predictions of the model, i.e. knocking out lactate dehydrogenase and overexpressing NADH oxidase increased the flux through the acetolactate synthase branch from 0 to 75% of measured product formation rates.

  20. Primary metabolism in Lactobacillus sakei food isolates by proteomic analysis

    Directory of Open Access Journals (Sweden)

    Champomier-Vergès Marie-Christine

    2010-04-01

    Full Text Available Abstract Background Lactobacillus sakei is an important food-associated lactic acid bacterium commonly used as starter culture for industrial meat fermentation, and with great potential as a biopreservative in meat and fish products. Understanding the metabolic mechanisms underlying the growth performance of a strain to be used for food fermentations is important for obtaining high-quality and safe products. Proteomic analysis was used to study the primary metabolism in ten food isolates after growth on glucose and ribose, the main sugars available for L. sakei in meat and fish. Results Proteins, the expression of which varied depending on the carbon source were identified, such as a ribokinase and a D-ribose pyranase directly involved in ribose catabolism, and enzymes involved in the phosphoketolase and glycolytic pathways. Expression of enzymes involved in pyruvate and glycerol/glycerolipid metabolism were also affected by the change of carbon source. Interestingly, a commercial starter culture and a protective culture strain down-regulated the glycolytic pathway more efficiently than the rest of the strains when grown on ribose. The overall two-dimensional gel electrophoresis (2-DE protein expression pattern was similar for the different strains, though distinct differences were seen between the two subspecies (sakei and carnosus, and a variation of about 20% in the number of spots in the 2-DE gels was observed between strains. A strain isolated from fermented fish showed a higher expression of stress related proteins growing on both carbon sources. Conclusions It is obvious from the data obtained in this study that the proteomic approach efficiently identifies differentially expressed proteins caused by the change of carbon source. Despite the basic similarity in the strains metabolic routes when they ferment glucose and ribose, there were also interesting differences. From the application point of view, an understanding of regulatory

  1. Dynamic metabolic flux analysis using a convex analysis approach: Application to hybridoma cell cultures in perfusion.

    Science.gov (United States)

    Fernandes de Sousa, Sofia; Bastin, Georges; Jolicoeur, Mario; Vande Wouwer, Alain

    2016-05-01

    In recent years, dynamic metabolic flux analysis (DMFA) has been developed in order to evaluate the dynamic evolution of the metabolic fluxes. Most of the proposed approaches are dedicated to exactly determined or overdetermined systems. When an underdetermined system is considered, the literature suggests the use of dynamic flux balance analysis (DFBA). However the main challenge of this approach is to determine an appropriate objective function, which remains valid over the whole culture. In this work, we propose an alternative dynamic metabolic flux analysis based on convex analysis, DMFCA, which allows the determination of bounded intervals for the fluxes using the available knowledge of the metabolic network and information provided by the time evolution of extracellular component concentrations. Smoothing splines and mass balance differential equations are used to estimate the time evolution of the uptake and excretion rates from this experimental data. The main advantage of the proposed procedure is that it does not require additional constraints or objective functions, and provides relatively narrow intervals for the intracellular metabolic fluxes. DMFCA is applied to experimental data from hybridoma HB58 cell perfusion cultures, in order to investigate the influence of the operating mode (batch and perfusion) on the metabolic flux distribution.

  2. Metabolic control analysis of xylose catabolism in Aspergillus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Gabelgaard, J.B.; Wanchanthuek, P.

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out......, and flux control was shown to be dependent on the metabolite levels. Due to thermodynamic constraints, flux control may reside at the first step in the pathway, i.e., at the xylose reductase, even when the intracellular xylitol concentration is high. On the basis of the kinetic analysis, the general dogma...... specifying that flux control often resides at the step following an intermediate present at high concentrations was, therefore, shown not to hold. The intracellular xylitol concentration was measured in batch cultivations of two different strains of Aspergillus niger and two different strains of Aspergillus...

  3. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  4. Stability and Accuracy Analysis for Taylor Series Numerical Method

    Institute of Scientific and Technical Information of China (English)

    赵丽滨; 姚振汉; 王寿梅

    2004-01-01

    The Taylor series numerical method (TSNM) is a time integration method for solving problems in structural dynamics. In this paper, a detailed analysis of the stability behavior and accuracy characteristics of this method is given. It is proven by a spectral decomposition method that TSNM is conditionally stable and belongs to the category of explicit time integration methods. By a similar analysis, the characteristic indicators of time integration methods, the percentage period elongation and the amplitude decay of TSNM, are derived in a closed form. The analysis plays an important role in implementing a procedure for automatic searching and finding convergence radii of TSNM. Finally, a linear single degree of freedom undamped system is analyzed to test the properties of the method.

  5. Analysis of Brace Stiffness Influence on Stability of the Truss

    Directory of Open Access Journals (Sweden)

    Krajewski M.

    2015-02-01

    Full Text Available The paper is devoted to the numerical and experimental research of stability of a truss with side elastic supports at the top chord. The structure is a model of a real roof truss scaled by factor ¼. The linear buckling analysis and non-linear static analysis were carried out. The buckling length factor for the compressed top chord was calculated and the limit load for the imperfect truss shell model with respect to brace stiffness was obtained. The relation between brace normal force and loading of the truss is presented. The threshold stiffness of braces necessary to obtain the maximum buckling load was found. The truss load bearing capacity obtained from numerical analysis was compared with Eurocode 3 requirements.

  6. Analysis of temporal stability of autostereoscopic 3D displays

    Science.gov (United States)

    Rubiño, Manuel; Salas, Carlos; Pozo, Antonio M.; Castro, J. J.; Pérez-Ocón, Francisco

    2013-11-01

    An analysis has been made of the stability of the images generated by electronic autostereoscopic 3D displays, studying the time course of the photometric and colorimetric parameters. The measurements were made on the basis of the procedure recommended in the European guideline EN 61747-6 for the characterization of electronic liquid-crystal displays (LCD). The study uses 3 different models of autostereoscopic 3D displays of different sizes and numbers of pixels, taking the measurements with a spectroradiometer (model PR-670 SpectraScan of PhotoResearch). For each of the displays, the time course is shown for the tristimulus values and the chromaticity coordinates in the XYZ CIE 1931 system and values from the time periods required to reach stable values of these parameters are presented. For the analysis of how the procedure recommended in the guideline EN 61747-6 for 2D displays influenced the results, and for the adaption of the procedure to the characterization of 3D displays, the experimental conditions of the standard procedure were varied, making the stability analysis in the two ocular channels (RE and LE) of the 3D mode and comparing the results with those corresponding to the 2D. The results of our study show that the stabilization time of a autostereoscopic 3D display with parallax barrier technology depends on the tristimulus value analysed (X, Y, Z) as well as on the presentation mode (2D, 3D); furthermore, it was found that whether the 3D mode is used depends on the ocular channel evaluated (RE, LE).

  7. Global stability analysis of turbulent 3D wakes

    Science.gov (United States)

    Rigas, Georgios; Sipp, Denis; Juniper, Matthew

    2015-11-01

    At low Reynolds numbers, corresponding to laminar and transitional regimes, hydrodynamic stability theory has aided the understanding of the dynamics of bluff body wake-flows and the application of effective control strategies. However, flows of fundamental importance to many industries, in particular the transport industry, involve high Reynolds numbers and turbulent wakes. Despite their turbulence, such wake flows exhibit organisation which is manifested as coherent structures. Recent work has shown that the turbulent coherent structures retain the shape of the symmetry-breaking laminar instabilities and only those manifest as large-scale structures in the near wake (Rigas et al., JFM vol. 750:R5 2014, JFM vol. 778:R2 2015). Based on the findings of the persistence of the laminar instabilities at high Reynolds numbers, we investigate the global stability characteristics of a turbulent wake generated behind a bluff three-dimensional axisymmetric body. We perform a linear global stability analysis on the experimentally obtained mean flow and we recover the dynamic characteristics and spatial structure of the coherent structures, which are linked to the transitional instabilities. A detailed comparison of the predictions with the experimental measurements will be provided.

  8. Stability Estimation of ABWR on the Basis of Noise Analysis

    Science.gov (United States)

    Furuya, Masahiro; Fukahori, Takanori; Mizokami, Shinya; Yokoya, Jun

    In order to investigate the stability of a nuclear reactor core with an oxide mixture of uranium and plutonium (MOX) fuel installed, channel stability and regional stability tests were conducted with the SIRIUS-F facility. The SIRIUS-F facility was designed and constructed to provide a highly accurate simulation of thermal-hydraulic (channel) instabilities and coupled thermalhydraulics-neutronics instabilities of the Advanced Boiling Water Reactors (ABWRs). A real-time simulation was performed by modal point kinetics of reactor neutronics and fuel-rod thermal conduction on the basis of a measured void fraction in a reactor core section of the facility. A time series analysis was performed to calculate decay ratio and resonance frequency from a dominant pole of a transfer function by applying auto regressive (AR) methods to the time-series of the core inlet flow rate. Experiments were conducted with the SIRIUS-F facility, which simulates ABWR with MOX fuel installed. The variations in the decay ratio and resonance frequency among the five common AR methods are within 0.03 and 0.01 Hz, respectively. In this system, the appropriate decay ratio and resonance frequency can be estimated on the basis of the Yule-Walker method with the model order of 30.

  9. Graph theory and stability analysis of protein complex interaction networks.

    Science.gov (United States)

    Huang, Chien-Hung; Chen, Teng-Hung; Ng, Ka-Lok

    2016-04-01

    Protein complexes play an essential role in many biological processes. Complexes can interact with other complexes to form protein complex interaction network (PCIN) that involves in important cellular processes. There are relatively few studies on examining the interaction topology among protein complexes; and little is known about the stability of PCIN under perturbations. We employed graph theoretical approach to reveal hidden properties and features of four species PCINs. Two main issues are addressed, (i) the global and local network topological properties, and (ii) the stability of the networks under 12 types of perturbations. According to the topological parameter classification, we identified some critical protein complexes and validated that the topological analysis approach could provide meaningful biological interpretations of the protein complex systems. Through the Kolmogorov-Smimov test, we showed that local topological parameters are good indicators to characterise the structure of PCINs. We further demonstrated the effectiveness of the current approach by performing the scalability and data normalization tests. To measure the robustness of PCINs, we proposed to consider eight topological-based perturbations, which are specifically applicable in scenarios of targeted, sustained attacks. We found that the degree-based, betweenness-based and brokering-coefficient-based perturbations have the largest effect on network stability.

  10. Stability analysis of implicit multi-fluid schemes

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, R.F.; Cope, W.K. [Lockheed Martin, Schenectady, NY (United States); Venkateswaran, S. [Pennsylvania State Univ., University Park, PA (United States)

    1997-06-01

    A new implicit method has been developed for solving the viscous full multi-fluid equations, which incorporate transport and generation of mass and momentum for each component present in a system. This work presents stability analysis and application of the important full multi-fluid system in a fully implicit algorithm. The stability analyses presented demonstrate the performance of several iterative schemes applied to the solution of the linearized systems which arise in the formulation. These include block Jacobi and symmetric block Gauss-Siedel schemes with various preconditioners applied. A hierarchy of increasing physical complexity is pursued, starting with one-dimensional, two-fluid systems with minimum inter-field dynamic coupling and no mass transfer. These analyses are extended to systems employing physically important inter-field forces (drag, turbulence dispersion, virtual mass). The effects of mass transfer, multiple fields (i.e., n{phi} > 2) and multiple dimensions are also considered. A two-fluid Navier-Stokes code has been developed based on this new scheme. Results are presented which verify the validity of the stability analyses presented for the coupled scheme. Multi-phase flows which require full multi-fluid modeling arise in a wide class of engineering problems, where non-equilibrium dynamics and thermodynamics of the interfaces between constituents play important roles in the evolution of the ensemble averaged mean flow. Examples include cyclone separators, two-phase flow in jets and curved ducts and boiling flow in heat exchangers.

  11. Sensitivity analysis of influencing parameters in cavern stability

    Institute of Scientific and Technical Information of China (English)

    Abolfazl Abdollahipour; Reza Rahmannejad

    2012-01-01

    In order to analyze the stability of the underground rock structures,knowing the sensitivity of geomechanical parameters is important.To investigate the priority of these geomechanical properties in the stability of cavern,a sensitivity analysis has been performed on a single cavern in various rock mass qualities according to RMR using Phase 2.The stability of cavern has been studied by investigating the side wall deformation.Results showed that most sensitive properties are coefficient of lateral stress and modulus of deformation.Also parameters of Hoek-Brown criterion and σc have no sensitivity when cavern is in a perfect elastic state.But in an elasto-plastic state,parameters of Hoek-Brown criterion and σc affect the deformability; such effect becomes more remarkable with increasing plastic area.Other parameters have different sensitivities concerning rock mass quality (RMR).Results have been used to propose the best set of parameters for study on prediction of sidewall displacement.

  12. Visual optimality and stability analysis of 3DCT scan positions.

    Science.gov (United States)

    Amirkhanov, Artem; Heinzl, Christoph; Reiter, Michael; Gröller, Eduard

    2010-01-01

    Industrial cone-beam X-Ray computed tomography (CT) systems often face problems due to artifacts caused by a bad placement of the specimen on the rotary plate. This paper presents a visual-analysis tool for CT systems, which provides a simulation-based preview and estimates artifacts and deviations of a specimen's placement using the corresponding 3D geometrical surface model as input. The presented tool identifies potentially good or bad placements of a specimen and regions of a specimen, which cause the major portion of artefacts. The tool can be used for a preliminary analysis of the specimen before CT scanning, in order to determine the optimal way of placing the object. The analysis includes: penetration lengths, placement stability and an investigation in Radon space. Novel visualization techniques are applied to the simulation data. A stability widget is presented for determining the placement parameters' robustness. The performance and the comparison of results provided by the tool compared with real world data is demonstrated using two specimens.

  13. Stability Analysis for Multi-Parameter Linear Periodic Systems

    DEFF Research Database (Denmark)

    Seyranian, A.P.; Solem, Frederik; Pedersen, Pauli

    1999-01-01

    This paper is devoted to stability analysis of general linear periodic systems depending on real parameters. The Floquet method and perturbation technique are the basis of the development. We start out with the first and higher-order derivatives of the Floquet matrix with respect to problem...... parameters. Then the behaviour of simple and multiple multipliers of the system with a change of parameters is studied. Weak and strong interactions of multipliers in the complex plane are treated separately. The presented theory is exemplified and discussed....

  14. Multiple integral inequalities and stability analysis of time delay systems

    OpenAIRE

    Gyurkovics, Eva; Takacs, Tibor

    2016-01-01

    This paper is devoted to stability analysis of continuous-time delay systems based on a set of Lyapunov-Krasovskii functionals. New multiple integral inequalities are derived that involve the famous Jensen's and Wirtinger's inequalities, as well as the recently presented Bessel-Legendre inequalities of A. Seuret and F. Gouaisbaut, (2015) and the Wirtinger-based multiple-integral inequalities of M. Park et al. (2015) and T.H. Lee et al. (2015). The present paper aims at showing that the propos...

  15. Stability analysis of peer-to-peer networks against churn

    Indian Academy of Sciences (India)

    Bivas Mitra; Sujoy Ghose; Niloy Ganguly; Fernando Peruani

    2008-08-01

    Users of the peer-to-peer system join and leave the network randomly, which makes the overlay network dynamic and unstable in nature. In this paper, we propose an analytical framework to assess the robustness of p2p networks in the face of user churn. We model the peer churn through degree-independent as well as degree-dependent node failure. Lately, superpeer networks are becoming the most widely used topology among the p2p networks. Therefore, we perform the stability analysis of superpeer networks as a case study. We validate the analytically derived results with the help of simulation.

  16. Dynamic and Static Combination Analysis Method of Slope Stability Analysis during Earthquake

    Directory of Open Access Journals (Sweden)

    Liang Lu

    2014-01-01

    Full Text Available The results of laboratory model tests for simulating the slope failure due to vibration, including unreinforced slope and the slope reinforced by using geotextile, show that the slope failure occurs when a cumulative plastic displacement exceeds a certain critical value. To overcome the defects of conventional stability analysis, which evaluates the slope characteristics only by its strength parameters, a numerical procedure considering the stiffness and deformation of materials and geosynthetics is proposed to evaluate the seismic slope stability. In the proposed procedure, the failure of slope is defined when the cumulative plastic displacement calculated by a dynamic response analysis using actual seismic wave exceeds the critical value of displacement estimated by a static stability analysis considering seismic coefficient. The proposed procedure is applied to the laboratory model tests and an actual failure of slope in earthquake. The case study shows the possibility that the proposed procedure gives the realistic evaluation of seismic slope stability.

  17. Metabolic inactivation of resolvin E1 and stabilization of its anti-inflammatory actions.

    Science.gov (United States)

    Arita, Makoto; Oh, Sungwhan F; Chonan, Tomomichi; Hong, Song; Elangovan, Siva; Sun, Yee-Ping; Uddin, Jasim; Petasis, Nicos A; Serhan, Charles N

    2006-08-11

    The resolvins (Rv) are lipid mediators derived from omega-3 polyunsaturated fatty acids that act within a local inflammatory milieu to stop leukocyte recruitment and promote resolution. Resolvin E1 (RvE1; (5S,12R,18R)-trihydroxy-6Z,8E,10E,14Z,16E-eicosapentaenoic acid) is an oxygenase product derived from omega-3 eicosapentaenoic acid that displays potent anti-inflammation/pro-resolution actions in vivo. Here, we determined whether oxidoreductase enzymes catalyze the conversion of RvE1 and assessed the biological activity of the RvE1 metabolite. With NAD+ as a cofactor, recombinant 15-hydroxyprostaglandin dehydrogenase acted as an 18-hydroxyl dehydrogenase to form 18-oxo-RvE1. In the murine lung, dehydrogenation of the hydroxyl group at carbon 18 position to form 18-oxo-RvE1 represented the major initial metabolic route for RvE1. At a concentration where RvE1 potently reduced polymorphonuclear leukocyte (PMN) recruitment in zymosan-induced peritonitis, 18-oxo-RvE1 was devoid of activity. In human neutrophils, carbon 20 hydroxylation of RvE1 was the main route of conversion. An RvE1 analog, i.e. 19-(p-fluorophenoxy)-RvE1, was synthesized that resisted rapid metabolic inactivation and proved to retain biological activity reducing PMN infiltration and pro-inflammatory cytokine/chemokine production in vivo. These results established the structure of a novel RvE1 initial metabolite, indicating that conversion of RvE1 to the oxo product represents a mode of RvE1 inactivation. Moreover, the designed RvE1 analog, which resisted further metabolism/inactivation, could be a useful tool to evaluate the actions of RvE1 in complex disease models.

  18. Metabolic profiling of body fluids and multivariate data analysis.

    Science.gov (United States)

    Trezzi, Jean-Pierre; Jäger, Christian; Galozzi, Sara; Barkovits, Katalin; Marcus, Katrin; Mollenhauer, Brit; Hiller, Karsten

    2017-01-01

    Metabolome analyses of body fluids are challenging due pre-analytical variations, such as pre-processing delay and temperature, and constant dynamical changes of biochemical processes within the samples. Therefore, proper sample handling starting from the time of collection up to the analysis is crucial to obtain high quality samples and reproducible results. A metabolomics analysis is divided into 4 main steps: 1) Sample collection, 2) Metabolite extraction, 3) Data acquisition and 4) Data analysis. Here, we describe a protocol for gas chromatography coupled to mass spectrometry (GC-MS) based metabolic analysis for biological matrices, especially body fluids. This protocol can be applied on blood serum/plasma, saliva and cerebrospinal fluid (CSF) samples of humans and other vertebrates. It covers sample collection, sample pre-processing, metabolite extraction, GC-MS measurement and guidelines for the subsequent data analysis. Advantages of this protocol include: •Robust and reproducible metabolomics results, taking into account pre-analytical variations that may occur during the sampling process•Small sample volume required•Rapid and cost-effective processing of biological samples•Logistic regression based determination of biomarker signatures for in-depth data analysis.

  19. Landslide stability analysis on basis of LIDAR data extraction

    Science.gov (United States)

    Hu, Hui; Fernandez-Steeger, Tomas M.; Dong, Mei; Azzam, Rafig

    2010-05-01

    Currently, existing contradictory between remediation and acquisition from natural resource induces a series of divergences. With regard to open pit mining, legal regulation requires human to fill back the open pit area with water or recreate new landscape by other materials; on the other hand, human can not help excavating the mining area due to the shortage of power resource. However, to engineering geologists, one coincident problem which takes place not only in filling but also in mining operation should be paid more attention to, i.e. the slope stability analysis within these areas. There are a number of construction activities during remediation or mining process which can directly or indirectly cause slope failure. Lives can be endangered since local failure either while or after remediation; for mining process, slope failure in a bench, which carries a main haul road or is adjacent to human activity area, would be significant catastrophe to the whole mining program. The stability of an individual bench or slope is controlled by several factors, which are geological condition, morphology, climate, excavation techniques and transportation approach. The task which takes the longest time is to collect the morphological data. Consequently, it is one of the most dangerous tasks due to the time consuming in mining field. LIDAR scanning for morphological data collecting can help to skip this obstacle since advantages of LIDAR techniques as follows: • Dynamic range available on the market: from 3 m to beyond 1 km, • Ruggedly designed for demanding field applications, • Compact, easily hand-carried and deployed by a single operator. In 2009, scanning campaigns for 2 open pit quarry have been carried out. The aim for these LIDAR detections is to construct a detailed 3D quarry model and analyze the bench stability to support the filling planning. The 3D quarry surface was built up by using PolyWorks 10.1 on basis of LIDAR data. LIDAR data refining takes an

  20. Stability analysis of liver cancer-related microRNAs

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Zhenggang Jiang; Lijian Xu; Hu Yao; Jiangfeng Guo; Xianfeng Ding

    2011-01-01

    MicroRNAs(miRNAs)are non-coding,single-stranded RNAs of ~22 nt and constitute a novel class of gene regulators that are found in both plants and animals.Several studies have demonstrated that serum miRNAs could serve as potential biomarkers for the detection of various cancers and other diseases.A few documents regarding the stability of liver cancer-related miRNAs in serum are available.A systemic analysis of the stability of miRNA in serum is quite necessary.The purpose of this study was to evaluate the stability of miRNAs from three different sources,cultured liver cancer Huh-7 cell line,clinical liver cancer,and serum under different experimental conditions,including different temperature,time duration,pH values,Rnase A digestion,Dnase Ⅰ digestion,and various freeze-thaw cycles.The qRT-PCR analysis demonstrated that liver cancer-related miRNAs were detectable under each of test conditions,indicating that miRNAs were extremely stable and resistant to destruction and degradation under harsh environmental conditions.However,ribosomal RNA was fragile and easily degraded by demonstrating sharp decrease of relative expression under the non-physiological test conditions.We also established a robust procedure for serum RNA extraction,which is greatly important not only for the miRNA profiling studies bat also for the disease prognosis based on abnormal miRNA expression.

  1. Global stability analysis on a class of cellular neural networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Yi

    2001-01-01

    stability of delay Hopfield Neural networks, International J. Sys. Sci., 1996, (9): 895.[17]Liao, X., Yu, J., Qualitative analysis of bidirection associative memory networks with time delays, Int. J. Of Circuit Theory and Applications, 1998, (3): 219.[18]Takahashi, N., Chua, L. O., A new sufficient condition for nonsymmetric CNN's to have a stable equilibrium point, IEEE Trans. CAS-I, 1998, (12): 1092.[19]Zhang Yi, Qualitative analysis of bidirectional associative memory neural networks with delays, Journal of Computer Research and Development, 1999, 36(2): 150.

  2. Local stability analysis of an endoreversible Carnot refrigerator

    Science.gov (United States)

    He, Jizhou; Miao, Guiling; Nie, Wenjie

    2010-08-01

    A local stability analysis of an endoreversible Carnot refrigerator, working at the maximum objective function of the product of the cooling rate R and the coefficient of performance ɛ, is presented. The endoreversible Carnot refrigerator consists of a reversible Carnot refrigerator that exchanges heat with the heat reservoirs TH through the thermal conductance α and with the cold reservoirs TL through the thermal conductance β. In addition, the working fluid has the same heat capacity C in the two isothermal branches of the cycle. By linearization and stability analysis, we find that the relaxation times are a function of α, β, the heat capacity C and τ=TL /TH; that the endoreversible Carnot refrigerator is stable for every value of α, β, C and τ that after a perturbation, the system state exponentially decays to the steady state with either of two different relaxation times; that both relaxation times are proportional to α/2C and that one of them is a monotonically increasing function τ and the other is almost independent of τ. Finally, the phase portraits for the trajectories after a small perturbation over the steady-state values of internal temperatures are presented.

  3. An Effective Distributed Model for Power System Transient Stability Analysis

    Directory of Open Access Journals (Sweden)

    MUTHU, B. M.

    2011-08-01

    Full Text Available The modern power systems consist of many interconnected synchronous generators having different inertia constants, connected with large transmission network and ever increasing demand for power exchange. The size of the power system grows exponentially due to increase in power demand. The data required for various power system applications have been stored in different formats in a heterogeneous environment. The power system applications themselves have been developed and deployed in different platforms and language paradigms. Interoperability between power system applications becomes a major issue because of the heterogeneous nature. The main aim of the paper is to develop a generalized distributed model for carrying out power system stability analysis. The more flexible and loosely coupled JAX-RPC model has been developed for representing transient stability analysis in large interconnected power systems. The proposed model includes Pre-Fault, During-Fault, Post-Fault and Swing Curve services which are accessible to the remote power system clients when the system is subjected to large disturbances. A generalized XML based model for data representation has also been proposed for exchanging data in order to enhance the interoperability between legacy power system applications. The performance measure, Round Trip Time (RTT is estimated for different power systems using the proposed JAX-RPC model and compared with the results obtained using traditional client-server and Java RMI models.

  4. Floquet stability analysis of viscoelastic flow over a cylinder

    KAUST Repository

    Richter, David

    2011-06-01

    A Floquet linear stability analysis has been performed on a viscoelastic cylinder wake. The FENE-P model is used to represent the non-Newtonian fluid, and the analysis is done using a modified version of an existing nonlinear code to compute the linearized initial value problem governing the growth of small perturbations in the wake. By measuring instability growth rates over a wide range of disturbance spanwise wavenumbers α, the effects of viscoelasticity were identified and compared directly to Newtonian results.At a Reynolds number of 300, two unstable bands exist over the range 0. ≤ α≤ 10 for Newtonian flow. For the low α band, associated with the "mode A" wake instability, a monotonic reduction in growth rates is found for increasing polymer extensibility L. For the high α band, associated with the "mode B" instability, first a rise, then a significant decrease to a stable state is found for the instability growth rates as L is increased from L= 10 to L= 30. The mechanism behind this stabilization of both mode A and mode B instabilities is due to the change of the base flow, rather than a direct effect of viscoelasticity on the perturbation. © 2011 Elsevier B.V.

  5. Combining in silico protein stability calculations with structure-function relationships to explore the effect of polymorphic variation on cytochrome P450 drug metabolism.

    Science.gov (United States)

    Arendse, Lauren; Blundell, Tom L; Blackburn, Jonathan

    2013-09-01

    We carried out an in silico structural analysis of 348 non-synonymous single nucleotide polymorphisms, found across nine of the major human drug metabolising cytochrome P450 isoforms, to determine the effects of mutations on enzyme structure and function. Previous functional studies in our group have delineated regions of the cytochrome P450 structure important for substrate recognition, substrate and product access and egress from the active site and interaction with the cytochrome P450 reductase. Here we combine the information from those studies with new in silico calculations on the effect of mutations on protein stability and we compare our results to experimental data in order to establish the likely causes of altered drug metabolism observed for cytochrome P450 variants in functional assays to date, in the process creating a cytochrome P450 polymorphic variant map. Using the computational tool Site Directed Mutator we predicted destabilising mutations that result in altered enzyme function in vitro with a specificity of 83%. We found that 75% of all cytochrome P450 mutations that show altered activity in vitro are either predicted to be destabilising to protein structure or are found within regions predicted to be important for catalytic activity. Furthermore, we found that 70% of the mutations that showed similar activity to the wild-type enzyme in in vitro studies lie outside of functional regions important for catalytic activity and are predicted to have no effect on protein stability. Our resultant cytochrome P450 polymorphic variant map should therefore find utility in predicting the likely functional effect of uncharacterised variants on drug metabolism.

  6. Proteomic analysis reveals metabolic and regulatory systems involved the syntrophic and axenic lifestyle of Syntrophomonas wolfei.

    Directory of Open Access Journals (Sweden)

    Jessica Rhea Sieber

    2015-02-01

    Full Text Available Microbial syntrophy is a vital metabolic interaction necessary for the complete oxidation of organic biomass to methane in all-anaerobic ecosystems. However, this process is thermodynamically constrained and represents an ecosystem-level metabolic bottleneck. To gain insight into the physiology of this process, a shotgun proteomic approach was used to quantify the protein landscape of the model syntrophic metabolizer, Syntrophomonas wolfei, grown axenically and syntrophically with Methanospirillum hungatei. Remarkably, the abundance of most proteins as represented by normalized spectral abundance factor (NSAF value changed very little between the pure and coculture growth conditions. Among the most abundant proteins detected were GroEL and GroES chaperonins, a small heat shock protein, and proteins involved in electron transfer, beta-oxidation, and ATP synthesis. Several putative energy conservation enzyme systems that utilize NADH and ferredoxin were present. The abundance of an EtfAB2 and the membrane-bound iron-sulfur oxidoreductase (Swol_0698 gene product delineated a potential conduit for electron transfer between acyl-CoA dehydrogenases and membrane redox carriers. Proteins detected only when S. wolfei was grown with M. hungatei included a zinc-dependent dehydrogenase with a GroES domain, whose gene is present in genomes in many organisms capable of syntrophy, and transcriptional regulators responsive to environmental stimuli or the physiological status of the cell. The proteomic analysis revealed an emphasis macromolecular stability and energy metabolism to S. wolfei and presence of regulatory mechanisms responsive to external stimuli and cellular physiological status.

  7. Rheological analysis of stabilized cerium-gadolinium oxide (CGO) dispersions

    DEFF Research Database (Denmark)

    Marani, Debora; Hjelm, Johan; Wandel, Marie

    2014-01-01

    The objective of the present work is to generate general rheological criteria to investigate high solid loading dispersions suitable for the shaping of homogeneous ceramic bodies. Systematic analysis of the rheological properties of moderately low specific surface area (SSA) Ce0.9Gd0.1O3-δ (CGO10......) dispersions was performed in rotational and oscillatory modes. The dispersant content was optimized to attain fully stabilized dispersions. A critical upper limit for the ceramic content was introduced and denoted ϕh. It defines the limit to non-Newtonian flow and corresponds to the highest feasible volume...... fraction to which reproducible dispersions are achieved. The method proposed for its determination is based on the analysis of the flow index as function of the ceramic volume fraction. For the CGO dispersions formulated in this work, ϕh was found to be around (0.34 ± 0.04). The maximum volume fraction (ϕm...

  8. Stability Analysis of BLDC Motor Drive based on Input Shaping

    Directory of Open Access Journals (Sweden)

    M.Murugan

    2013-10-01

    Full Text Available The main objective of this work is to analyze the brushless DC (BLDC motor drive system with input shaping using classical control theory. In this paper, different values of damping ratio are used to understand the generalized drive performance. The transient response of the BLDC motor drive system is analyzed using time response analysis. The dynamic behaviour and steady state performance of the BLDC motor drive system is judged and compared by its steady state error to various standard test signals. The relative stability of this drive system is determined by Bode Plot. These analysis spotlights that it is possible to obtain a finite-time setting response without oscillation in BLDC motor drive by applying input in four steps of different amplitude to the drive system. These analyses are helpful to design a precise speed control system and current control system for BLDC motor drive with fast response. The Matlab/Simulink software is used to perform the simulation.

  9. Stability Analysis of Closed-loop Water System

    Institute of Scientific and Technical Information of China (English)

    Yongzheng FU; Keqi WU; Yaqiao CAI

    2006-01-01

    Aiming at closed-loop water system, by the method that shutting certain subcircuit, and solving the piping network, computing flow deviation of other subcircuits, then analyzing the rules of variation of stability with various factors, following conclusions are obtained: When reducing the resistance in main pipes, increasing resistance of subcircuits, system stability can be improved. Centralized regulation by changing power has no influence on system stability; centralized regulation by changing resistances will decrease system stability. Pump characteristics curve influences system stability, stability of the flat characteristic is superior to the steep one. For direct return system (DRS), the stability of subcircuit which is farthest from the heat source is the worst. For reverse return system (RRS), the stability of subcircuit in the middle of the pipe-network has the worst stability.Overall, stability of RRS is inferior to that of DRS.

  10. Analysis of Dictyostelium discoideum Inositol Pyrophosphate Metabolism by Gel Electrophoresis

    Science.gov (United States)

    Pisani, Francesca; Livermore, Thomas; Rose, Giuseppina; Chubb, Jonathan Robert; Gaspari, Marco; Saiardi, Adolfo

    2014-01-01

    The social amoeba Dictyostelium discoideum was instrumental in the discovery and early characterization of inositol pyrophosphates, a class of molecules possessing highly-energetic pyrophosphate bonds. Inositol pyrophosphates regulate diverse biological processes and are attracting attention due to their ability to control energy metabolism and insulin signalling. However, inositol pyrophosphate research has been hampered by the lack of simple experimental procedures to study them. The recent development of polyacrylamide gel electrophoresis (PAGE) and simple staining to resolve and detect inositol pyrophosphate species has opened new investigative possibilities. This technology is now commonly applied to study in vitro enzymatic reactions. Here we employ PAGE technology to characterize the D. discoideum inositol pyrophosphate metabolism. Surprisingly, only three major bands are detectable after resolving acidic extract on PAGE. We have demonstrated that these three bands correspond to inositol hexakisphosphate (IP6 or Phytic acid) and its derivative inositol pyrophosphates, IP7 and IP8. Biochemical analyses and genetic evidence were used to establish the genuine inositol phosphate nature of these bands. We also identified IP9 in D. discoideum cells, a molecule so far detected only from in vitro biochemical reactions. Furthermore, we discovered that this amoeba possesses three different inositol pentakisphosphates (IP5) isomers, which are largely metabolised to inositol pyrophosphates. Comparison of PAGE with traditional Sax-HPLC revealed an underestimation of the cellular abundance of inositol pyrophosphates by traditional methods. In fact our study revealed much higher levels of inositol pyrophosphates in D. discoideum in the vegetative state than previously detected. A three-fold increase in IP8 was observed during development of D. discoideum a value lower that previously reported. Analysis of inositol pyrophosphate metabolism using ip6k null amoeba revealed

  11. Analysis of Dictyostelium discoideum inositol pyrophosphate metabolism by gel electrophoresis.

    Science.gov (United States)

    Pisani, Francesca; Livermore, Thomas; Rose, Giuseppina; Chubb, Jonathan Robert; Gaspari, Marco; Saiardi, Adolfo

    2014-01-01

    The social amoeba Dictyostelium discoideum was instrumental in the discovery and early characterization of inositol pyrophosphates, a class of molecules possessing highly-energetic pyrophosphate bonds. Inositol pyrophosphates regulate diverse biological processes and are attracting attention due to their ability to control energy metabolism and insulin signalling. However, inositol pyrophosphate research has been hampered by the lack of simple experimental procedures to study them. The recent development of polyacrylamide gel electrophoresis (PAGE) and simple staining to resolve and detect inositol pyrophosphate species has opened new investigative possibilities. This technology is now commonly applied to study in vitro enzymatic reactions. Here we employ PAGE technology to characterize the D. discoideum inositol pyrophosphate metabolism. Surprisingly, only three major bands are detectable after resolving acidic extract on PAGE. We have demonstrated that these three bands correspond to inositol hexakisphosphate (IP₆ or Phytic acid) and its derivative inositol pyrophosphates, IP₇ and IP₈. Biochemical analyses and genetic evidence were used to establish the genuine inositol phosphate nature of these bands. We also identified IP₉ in D. discoideum cells, a molecule so far detected only from in vitro biochemical reactions. Furthermore, we discovered that this amoeba possesses three different inositol pentakisphosphates (IP₅) isomers, which are largely metabolised to inositol pyrophosphates. Comparison of PAGE with traditional Sax-HPLC revealed an underestimation of the cellular abundance of inositol pyrophosphates by traditional methods. In fact our study revealed much higher levels of inositol pyrophosphates in D. discoideum in the vegetative state than previously detected. A three-fold increase in IP₈ was observed during development of D. discoideum a value lower that previously reported. Analysis of inositol pyrophosphate metabolism using ip6k null amoeba

  12. Analysis of Dictyostelium discoideum inositol pyrophosphate metabolism by gel electrophoresis.

    Directory of Open Access Journals (Sweden)

    Francesca Pisani

    Full Text Available The social amoeba Dictyostelium discoideum was instrumental in the discovery and early characterization of inositol pyrophosphates, a class of molecules possessing highly-energetic pyrophosphate bonds. Inositol pyrophosphates regulate diverse biological processes and are attracting attention due to their ability to control energy metabolism and insulin signalling. However, inositol pyrophosphate research has been hampered by the lack of simple experimental procedures to study them. The recent development of polyacrylamide gel electrophoresis (PAGE and simple staining to resolve and detect inositol pyrophosphate species has opened new investigative possibilities. This technology is now commonly applied to study in vitro enzymatic reactions. Here we employ PAGE technology to characterize the D. discoideum inositol pyrophosphate metabolism. Surprisingly, only three major bands are detectable after resolving acidic extract on PAGE. We have demonstrated that these three bands correspond to inositol hexakisphosphate (IP₆ or Phytic acid and its derivative inositol pyrophosphates, IP₇ and IP₈. Biochemical analyses and genetic evidence were used to establish the genuine inositol phosphate nature of these bands. We also identified IP₉ in D. discoideum cells, a molecule so far detected only from in vitro biochemical reactions. Furthermore, we discovered that this amoeba possesses three different inositol pentakisphosphates (IP₅ isomers, which are largely metabolised to inositol pyrophosphates. Comparison of PAGE with traditional Sax-HPLC revealed an underestimation of the cellular abundance of inositol pyrophosphates by traditional methods. In fact our study revealed much higher levels of inositol pyrophosphates in D. discoideum in the vegetative state than previously detected. A three-fold increase in IP₈ was observed during development of D. discoideum a value lower that previously reported. Analysis of inositol pyrophosphate metabolism using

  13. Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii.

    Science.gov (United States)

    Kochhann, Daiani; Campos, Derek Felipe; Val, Adalberto Luis

    2015-12-01

    The primary goal of this study was to understand how changes in temperature and oxygen could influence social behaviour and aerobic metabolism of the Amazonian dwarf cichlid Apistogramma agassizii. Social hierarchies were established over a period of 96h by observing the social interactions, feeding behaviour and shelter use in groups of four males. In the experimental environment, temperature was increased to 29°C in the high-temperature treatment, and oxygen lowered to 1.0mg·L(-1)O2 in the hypoxia treatment. Fish were maintained at this condition for 96h. The control was maintained at 26°C and 6.6mg·L(-1)O2. After the experimental exposure, metabolism was measured as routine metabolic rate (RMR) and electron transport system (ETS) activity. There was a reduction in hierarchy stability at high-temperature. Aggression changed after environmental changes. Dominant and subdominant fish at high temperatures increased their biting, compared with control-dominant. In contrast, hypoxia-dominant fish decreased their aggressive acts compared with all other fish. Shelter use decreased in control and hypoxic dominant fish. Dominant fish from undisturbed environments eat more than their subordinates. There was a decrease of RMR in fish exposed to the hypoxic environment when compared with control or high-temperature fish, independent of social position. Control-dominant fish had higher RMR than their subordinates. ETS activity increased in fish exposed to high temperatures; however, there was no effect on social rank. Our study reinforces the importance of environmental changes for the maintenance of hierarchies and their characteristics and highlights that most of the changes occur in the dominant position. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Metabolic stability of new anticonvulsants in body fluids and organ homogenates.

    Science.gov (United States)

    Marszałek, Dorota; Goldnik, Anna; Pluciński, Franciszek; Mazurek, Aleksander P; Jakubiak, Anna; Lis, Ewa; Tazbir, Piotr; Koziorowska, Agnieszka

    2012-01-01

    The stability as a function of time of compounds with established anticonvulsant activity: picolinic acid benzylamide (Pic-BZA), picolinic acid 2-fluorobenzylamide (Pic-2-F-BZA), picolinic acid 3-fluorobenzylamide (Pic-3-F-BZA), picolinic acid 4-fluorobenzylamide (Pic-4-F-BZA) and picolinic acid 2-methylbenzylamide (Pic-2-Me-BZA) in body fluids and homogenates of body organs were determined after incubation. It was found that they decompose relatively rapidly in liver and kidney and are stable against enzymes present in body fluids and some organs. These results are consistent with the bond strength expressed as total energy of amide bonds (calculated by quantum chemical methods) in the studied anticonvulsants. The calculated values of the amide bond energy are: 199.4 kcal/mol, 200.2 kcal/mol, 207.5 kcal/mol, 208.4 kcal/mol and 198.2 kcal/mol, respectively. The strength of the amide bonds in the studied anticonvulsants correctly reflects their stability in liver or kidney.

  15. Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor: Metabolic analysis

    NARCIS (Netherlands)

    Dalm, M.C.F.; Lamers, P.P.; Cuijten, S.M.R.; Tjeerdsma, A.M.; Grunsven, van W.M.J.; Tramper, J.; Martens, D.E.

    2007-01-01

    For the development of optimal perfusion processes, insight into the effect of feed and bleed rate on cell growth, productivity, and metabolism is essential. In the here presented study the effect of the feed and bleed rate on cell metabolism was investigated using metabolic flux analysis. Under all

  16. Stability, metabolism and transport of D-Asp(OBzl)-Ala--a model prodrug with affinity for the oligopeptide transporter

    DEFF Research Database (Denmark)

    Steffansen, B; Lepist, E I; Taub, M E

    1999-01-01

    The model prodrug D-Asp(OBzl)-Ala has previously been shown to have affinity and to be transported by the oligopeptide transporter PepT1 expressed in Caco-2 cells. The main objective of the present study was to investigate the aqueous stability of D-Asp(OBzl)-Ala and its in vitro metabolism...... in different gastrointestinal media arising from rats and humans, as well as in human plasma. The second major aim of the study was to evaluate our previous study in Caco-2 cell culture, by determining the effective intestinal permeability (Peff) of D-Asp(OBzl)-Ala in situ using the single-pass rat perfusion...... model. The aqueous stability studies show water, general buffer, as well as specific acid and base catalysis of D-Asp(OBzl)-Ala. The degradation of the model prodrug was independent of ionic strength. The half-lives in rat jejunal fluid and homogenate were >3 h. In human gastric and intestinal fluids...

  17. Stability analysis of offshore wind farm and marine current farm

    Science.gov (United States)

    Shawon, Mohammad Hasanuzzaman

    -trend for large electric energy production using offshore wind generators and marine current generators, respectively. Thus DFIG based offshore wind farm can be an economic solution to stabilize squirrel cage induction generator based marine current farm without installing any addition FACTS devices. This thesis first focuses on the stabilization of fixed speed IG based marine current farm using SDBR. Also stabilization of DFIG based variable speed wind farm utilizing SDBR is studied in this work. Finally a co-operative control strategy is proposed where DFIG is controlled in such a way that it can even provide necessary reactive power demand of induction generator, so that additional cost of FACTS devices can be avoided. In that way, the DFIGs of the offshore wind farm (OWF) will actively compensate the reactive power demand of adjacent IGs of the marine current farm (MCF) during grid fault. Detailed modeling and control scheme for the proposed system are demonstrated considering some realistic scenarios. The power system small signal stability analysis is also carried out by eigenvalue analysis for marine current generator topology, wind turbine generator topology and integrated topology. The relation between the modes and state variables are discussed in light of modal and sensitivity analyses. The results of theoretical analyses are verified by MATLAB/SIMULINK and laboratory standard power system simulator PSCAD/EMTDC.

  18. Metabolic Control Analysis: Separable Matrices and Interdependence of Control Coefficients.

    Science.gov (United States)

    Elsner; Giersch

    1998-08-21

    A central quantity for the analysis of the interdependence of control coefficients is the Jacobian H of the pathway. For a simple metabolic chain, H is known to be tridiagonal. Its inverse H-1, which is required to calculate control coefficients, is semi-separable. A semi-separable nxn matrix (aij) has the characteristic property that it is decomposable into two triangles for each of which there are vectors r=(r1, . . . ,rn) and t=(t1, . . . ,tn) with aij=ritj. The exact definitions of semi-separability and the related separability of matrices are given in Appendix B. Owing to the semi-separability of H-1, the determinants of all 2x2 sub-matrices of elements located within one of the triangles are zero. Therefore, these triangles are regions of vanishing two-minors. The flux control coefficient matrix CJ is hown to be separable and the concentration control coefficient matrix Cs to be semi separable. Cs has, in addition, the peculiarity that the row vector is the same for both its upper and lower triangle. A feedback loop gives rise to a new sub-region of vanishing two-minors, thereby disturbing the semi-separability of the upper triangle of Cs. A recipe is given to graphically construct the regions of vanishing two-minors of concentration control coefficients. The notion of (semi-)separability allows assessment of all dependences of control coefficients for metabolic pathways.Copyright 1998 Academic Press

  19. Metabolic disease risk in children by salivary biomarker analysis.

    Science.gov (United States)

    Goodson, J Max; Kantarci, Alpdogan; Hartman, Mor-Li; Denis, Gerald V; Stephens, Danielle; Hasturk, Hatice; Yaskell, Tina; Vargas, Jorel; Wang, Xiaoshan; Cugini, Maryann; Barake, Roula; Alsmadi, Osama; Al-Mutawa, Sabiha; Ariga, Jitendra; Soparkar, Pramod; Behbehani, Jawad; Behbehani, Kazem; Welty, Francine

    2014-01-01

    The study of obesity-related metabolic syndrome or Type 2 diabetes (T2D) in children is particularly difficult because of fear of needles. We tested a non-invasive approach to study inflammatory parameters in an at-risk population of children to provide proof-of-principle for future investigations of vulnerable subjects. We evaluated metabolic differences in 744, 11-year old children selected from underweight, normal healthy weight, overweight and obese categories by analyzing fasting saliva samples for 20 biomarkers. Saliva supernatants were obtained following centrifugation and used for analyses. Salivary C-reactive protein (CRP) was 6 times higher, salivary insulin and leptin were 3 times higher, and adiponectin was 30% lower in obese children compared to healthy normal weight children (all P<0.0001). Categorical analysis suggested that there might be three types of obesity in children. Distinctly inflammatory characteristics appeared in 76% of obese children while in 13%, salivary insulin was high but not associated with inflammatory mediators. The remaining 11% of obese children had high insulin and reduced adiponectin. Forty percent of the non-obese children were found in groups which, based on biomarker characteristics, may be at risk for becoming obese. Significantly altered levels of salivary biomarkers in obese children from a high-risk population, suggest the potential for developing non-invasive screening procedures to identify T2D-vulnerable individuals and a means to test preventative strategies.

  20. Metabolic disease risk in children by salivary biomarker analysis.

    Directory of Open Access Journals (Sweden)

    J Max Goodson

    Full Text Available OBJECTIVE: The study of obesity-related metabolic syndrome or Type 2 diabetes (T2D in children is particularly difficult because of fear of needles. We tested a non-invasive approach to study inflammatory parameters in an at-risk population of children to provide proof-of-principle for future investigations of vulnerable subjects. DESIGN AND METHODS: We evaluated metabolic differences in 744, 11-year old children selected from underweight, normal healthy weight, overweight and obese categories by analyzing fasting saliva samples for 20 biomarkers. Saliva supernatants were obtained following centrifugation and used for analyses. RESULTS: Salivary C-reactive protein (CRP was 6 times higher, salivary insulin and leptin were 3 times higher, and adiponectin was 30% lower in obese children compared to healthy normal weight children (all P<0.0001. Categorical analysis suggested that there might be three types of obesity in children. Distinctly inflammatory characteristics appeared in 76% of obese children while in 13%, salivary insulin was high but not associated with inflammatory mediators. The remaining 11% of obese children had high insulin and reduced adiponectin. Forty percent of the non-obese children were found in groups which, based on biomarker characteristics, may be at risk for becoming obese. CONCLUSIONS: Significantly altered levels of salivary biomarkers in obese children from a high-risk population, suggest the potential for developing non-invasive screening procedures to identify T2D-vulnerable individuals and a means to test preventative strategies.

  1. A scientific workflow framework for (13)C metabolic flux analysis.

    Science.gov (United States)

    Dalman, Tolga; Wiechert, Wolfgang; Nöh, Katharina

    2016-08-20

    Metabolic flux analysis (MFA) with (13)C labeling data is a high-precision technique to quantify intracellular reaction rates (fluxes). One of the major challenges of (13)C MFA is the interactivity of the computational workflow according to which the fluxes are determined from the input data (metabolic network model, labeling data, and physiological rates). Here, the workflow assembly is inevitably determined by the scientist who has to consider interacting biological, experimental, and computational aspects. Decision-making is context dependent and requires expertise, rendering an automated evaluation process hardly possible. Here, we present a scientific workflow framework (SWF) for creating, executing, and controlling on demand (13)C MFA workflows. (13)C MFA-specific tools and libraries, such as the high-performance simulation toolbox 13CFLUX2, are wrapped as web services and thereby integrated into a service-oriented architecture. Besides workflow steering, the SWF features transparent provenance collection and enables full flexibility for ad hoc scripting solutions. To handle compute-intensive tasks, cloud computing is supported. We demonstrate how the challenges posed by (13)C MFA workflows can be solved with our approach on the basis of two proof-of-concept use cases.

  2. Electromagnetic respiratory effort harvester: human testing and metabolic cost analysis.

    Science.gov (United States)

    Shahhaidar, E; Padasdao, B; Romine, R; Stickley, C; Lubecke, O Boric

    2015-03-01

    Remote health monitoring is increasingly recognized as a valuable tool in chronic disease management. Continuous respiratory monitoring could be a powerful tool in managing chronic diseases, however it is infrequently performed because of obtrusiveness and inconvenience of the existing methods. The movements of the chest wall and abdominal area during normal breathing can be monitored and harvested to enable self-powered wearable biosensors for continuous remote monitoring. This paper presents human testing results of a light-weight (30 g), wearable respiratory effort energy harvesting sensor. The harvester output voltage, power, and its metabolic burden, are measured on twenty subjects in two resting and exercise conditions each lasting 5 min. The system includes two off-the-shelf miniature electromagnetic generators harvesting and sensing thoracic and abdominal movements. Modules can be placed in series to increase the output voltage for rectification purposes. Electromagnetic respiratory effort harvester/sensor system can produce up to 1.4 V, 6.44 mW, and harvests 30.4 mJ during a 5-min exercise stage. A statistical paired t-test analysis of the calculated EE confirmed there is no significant change ( P > 0.05 ) in the metabolic rate of subjects wearing the electromagnetic harvester and biosensor.

  3. A Dynamic State Metabolic Journey: From Mass Spectrometry to Network Analysis via Estimation of Kinetic Parameters

    OpenAIRE

    Dhanasekaran, Arockia R.

    2011-01-01

    In the post-genomic era, there is a dire need for tools to perform metabolic analyses that include the structural, functional, and regulatory analysis of metabolic networks. This need arose because of the lag between the two phases of metabolic engineering, namely, synthesis and analysis. Molecular biological tools for synthesis like recombinant DNA technology and genetic engineering have advanced a lot farther than tools for systemic analysis. Consequently, bioinformatics is poised to play ...

  4. Flux Analysis Uncovers Key Role of Functional Redundancy in Formaldehyde Metabolism

    OpenAIRE

    Christopher J Marx; Van Dien, Stephen J.; Mary E Lidstrom

    2005-01-01

    Genome-scale analysis of predicted metabolic pathways has revealed the common occurrence of apparent redundancy for specific functional units, or metabolic modules. In many cases, mutation analysis does not resolve function, and instead, direct experimental analysis of metabolic flux under changing conditions is necessary. In order to use genome sequences to build models of cellular function, it is important to define function for such apparently redundant systems. Here we describe direct flu...

  5. Metabolic effects of a stabilizing peptide fusion protein of leptin in normal mice.

    Science.gov (United States)

    Park, H; Lee, S-B; Koh, J; Kim, J

    2012-06-01

    Leptin is a protein hormone produced by adipocytes. It is secreted into the blood stream and plays a key role in regulating body energy homeostasis by inhibiting feeding behavior followed by decreased body weight. Because protein aggregation is a major problem in therapeutic proteins, we previously demonstrated that a stabilizing peptide (SP) fusion protein of leptin (SP-leptin) appeared to resist aggregation induced by agitation, freezing/thawing, or heat stress. In this study, we fused mouse leptin with the stabilizing peptide and compared the biological activities of leptin and SP-leptin in vivo using a male C57Bl mouse model and ex vivo using MCF7 breast cancer cell lines. Each group of mice was treated with saline, leptin, and SP-leptin for 20 days and the differences in body weight, food intake, abdominal fat contents, and TG concentration were measured. The SP-leptin appeared to decrease the body weight and food intake in male C57Bl mice more significantly than wild type leptin, and the SP-leptin treated MCF7 cells displayed better cell proliferation than leptin. As a consequence of decreased body weight, the SP-leptin treated mouse group showed decreased abdominal fat contents and low triglyceride (TG) concentration. Moreover, the SP-leptin treated mouse group had fewer lipid droplets in liver and reduced lipid droplet size when analyzed by Oil red O and H & E staining. These results demonstrated that SP-leptin is more effective than wild type leptin in normal mice in lowering their body weight and fat contents in the abdominal region, the serum, and the liver.

  6. Postural Stability Analysis with Inertial Measurement Units in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Miguel F. Gago

    2014-01-01

    Full Text Available Background: The cause of frequent falls in patients with Alzheimer's disease (AD is still not well understood. Nevertheless, balance control and sensory organization are known to be critical for moving safely and adapting to the environment. Methods: We evaluated postural stability in 20 AD patients (11 fallers and 9 nonfallers and 16 healthy controls with an inertial measurement unit (triaxial accelerometers and gyroscopes attached to the center of mass (COM in different balance conditions (Romberg on flat surface and frontward/backward-inclined surface, with or without visual suppression in a motor lab. Results: In AD patients, the group of fallers showed a different kinetic pattern of postural stability characterized by higher vulnerability to visual suppression, higher total/maximal displacement and a mediolateral/anteroposterior range of sway, and a consequent need for more corrections of COM pitch and roll angles. Conclusion: Further studies are needed to consolidate the normative values of the discriminatory kinetic variables with the potential of inclusion in a multifactorial analysis of the risk of falls. Nevertheless, these results highlight signs of impairment of central postural control in AD, which may require early therapeutic intervention.

  7. Model and Stability Analysis of a Flexible Bladed Rotor

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available This paper presents a fully bladed flexible rotor and outlines the associated stability analysis. From an energetic approach based on the complete energies and potentials for Euler-Bernoulli beams, a system of equations is derived, in the rotational frame, for the rotor. This later one is made of a hollow shaft modelled by an Euler-Bernoulli beam supported by a set of bearings. It is connected to a rigid disk having a rotational inertia. A full set of flexible blades is also modelled by Euler-Bernoulli beams clamped in the disk. The flexural vibrations of the blades as well as those of the shaft are considered. The evolution of the eigenvalues of this rotor, in the corotational frame, is studied. A stability detection method, bringing coalescence and loci separation phenomena to the fore, in case of an asymmetric rotor, is undertaken in order to determine a parametric domain where turbomachinery cannot encounter damage. Finally, extensive parametric studies including the length and the stagger angle of the blades as well as their flexibility are presented in order to obtain robust criteria for stable and unstable areas prediction.

  8. Probabilistic Approach in Wellbore Stability Analysis during Drilling

    Directory of Open Access Journals (Sweden)

    Mahmood R. Al-Khayari

    2016-01-01

    Full Text Available In oil industry, wellbore instability is the most costly problem that a well drilling operation may encounter. One reason for wellbore failure can be related to ignoring rock mechanics effects. A solution to overcome this problem is to adopt in situ stresses in conjunction with a failure criterion to end up with a deterministic model that calculates collapse pressure. However, the uncertainty in input parameters can make this model misleading and useless. In this paper, a new probabilistic wellbore stability model is presented to predict the critical drilling fluid pressure before the onset of a wellbore collapse. The model runs Monte Carlo simulation to capture the effects of uncertainty in in situ stresses, drilling trajectories, and rock properties. The developed model was applied to different in situ stress regimes: normal faulting, strike slip, and reverse faulting. Sensitivity analysis was applied to all carried out simulations and found that well trajectories have the biggest impact factor in wellbore instability followed by rock properties. The developed model improves risk management of wellbore stability. It helps petroleum engineers and field planners to make right decisions during drilling and fields’ development.

  9. Wellbore stability analysis in chemically active shale formations

    Directory of Open Access Journals (Sweden)

    Shi Xiang-Chao

    2016-01-01

    Full Text Available Maintaining wellbore stability involves significant challenges when drilling in low-permeability reactive shale formations. In the present study, a non-linear thermo-chemo-poroelastic model is provided to investigate the effect of chemical, thermal, and hydraulic gradients on pore pressure and stress distributions near the wellbores. The analysis indicates that when the solute concentration of the drilling mud is higher than that of the formation fluid, the pore pressure and the effective radial and tangential stresses decrease, and v. v. Cooling of the lower salinity formation decreases the pore pressure, radial and tangential stresses. Hole enlargement is the combined effect of shear and tensile failure when drilling in high-temperature shale formations. The shear and tensile damage indexes reveal that hole enlargement occurs in the vicinity of the wellbore at an early stage of drilling. This study also demonstrates that shale wellbore stability exhibits a time-delay effect due to changes in the pore pressure and stress. The delay time computed with consideration of the strength degradation is far less than that without strength degradation.

  10. Core Stability in Athletes: A Critical Analysis of Current Guidelines.

    Science.gov (United States)

    Wirth, Klaus; Hartmann, Hagen; Mickel, Christoph; Szilvas, Elena; Keiner, Michael; Sander, Andre

    2017-03-01

    Over the last two decades, exercise of the core muscles has gained major interest in professional sports. Research has focused on injury prevention and increasing athletic performance. We analyzed the guidelines for so-called functional strength training for back pain prevention and found that programs were similar to those for back pain rehabilitation; even the arguments were identical. Surprisingly, most exercise specifications have neither been tested for their effectiveness nor compared with the load specifications normally used for strength training. Analysis of the scientific literature on core stability exercises shows that adaptations in the central nervous system (voluntary activation of trunk muscles) have been used to justify exercise guidelines. Adaptations of morphological structures, important for the stability of the trunk and therefore the athlete's health, have not been adequately addressed in experimental studies or in reviews. In this article, we explain why the guidelines created for back pain rehabilitation are insufficient for strength training in professional athletes. We critically analyze common concepts such as 'selective activation' and training on unstable surfaces.

  11. Stability

    Directory of Open Access Journals (Sweden)

    Nada S. Abdelwahab

    2017-05-01

    Full Text Available The present work concerns with the development of stability indicating the RP-HPLC method for simultaneous determination of guaifenesin (GUF and pseudoephedrine hydrochloride (PSH in the presence of guaifenesin related substance (Guaiacol. GUC, and in the presence of syrup excepients with minimum sample pre-treatment. In the developed RP-HPLC method efficient chromatographic separation was achieved for GUF, PSH, GUC and syrup excepients using ODS column as a stationary phase and methanol: water (50:50, v/v, pH = 4 with orthophosphoric acid as a mobile phase with a flow rate of 1 mL min−1 and UV detection at 210 nm. The chromatographic run time was approximately 10 min. Calibration curves were drawn relating the integrated area under peak to the corresponding concentrations of PSH, GUF and GUC in the range of 1–8, 1–20, 0.4–8 μg mL−1, respectively. The developed method has been validated and met the requirements delineated by ICH guidelines with respect to linearity, accuracy, precision, specificity and robustness. The validated method was successfully applied for determination of the studied drugs in triaminic chest congestion® syrup; moreover its results were statistically compared with those obtained by the official method and no significant difference was found between them.

  12. Quantitative Analysis of Cancer Metabolism: From pSIRM to MFA.

    Science.gov (United States)

    Zasada, Christin; Kempa, Stefan

    Metabolic reprogramming is a required step during oncogenesis and essential for cellular proliferation. It is triggered by activation of oncogenes and loss of tumor suppressor genes. Beside the combinatorial events leading to cancer, common changes within the central metabolism are reported. Increase of glycolysis and subsequent lactic acid formation has been a focus of cancer metabolism research for almost a century. With the improvements of bioanalytical techniques within the last decades, a more detailed analysis of metabolism is possible and recent studies demonstrate a wide range of metabolic rearrangements in various cancer types. However, a systematic and mechanistic understanding is missing thus far. Therefore, analytical and computational tools have to be developed allowing for a dynamic and quantitative analysis of cancer metabolism. In this chapter, we outline the application of pulsed stable isotope resolved metabolomics (pSIRM) and describe the interface toward computational analysis of metabolism.

  13. Models and Stability Analysis of Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    John Dorning

    2002-04-15

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is

  14. Metabolic flux analysis of the halophilic archaeon Haladaptatus paucihalophilus

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guangxiu; Zhang, Manxiao [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000 (China); Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000 (China); Mo, Tianlu [Department of Chemistry, Fudan University, Shanghai, 200433 (China); He, Lian [Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071 (China); Zhang, Wei [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000 (China); Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000 (China); Yu, Yi, E-mail: yu_yi@whu.edu.cn [Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071 (China); Zhang, Qi, E-mail: qizhang@sioc.ac.cn [Department of Chemistry, Fudan University, Shanghai, 200433 (China); Ding, Wei, E-mail: dingw@lzu.edu.cn [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000 (China); Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000 (China); Department of Chemistry, Fudan University, Shanghai, 200433 (China)

    2015-11-27

    This work reports the {sup 13}C-assisted metabolic flux analysis of Haladaptatus paucihalophilus, a halophilic archaeon possessing an intriguing osmoadaption mechanism. We showed that the carbon flow is through the oxidative tricarboxylic acid (TCA) cycle whereas the reductive TCA cycle is not operative in H. paucihalophilus. In addition, both threonine and the citramalate pathways contribute to isoleucine biosynthesis, whereas lysine is synthesized through the diaminopimelate pathway and not through the α-aminoadipate pathway. Unexpected, the labeling patterns of glycine from the cells grown on [1-{sup 13}C]pyruvate and [2-{sup 13}C]pyruvate suggest that, unlike all the organisms investigated so far, in which glycine is produced exclusively from the serine hydroxymethyltransferase (SHMT) pathway, glycine biosynthesis in H. paucihalophilus involves different pathways including SHMT, threonine aldolase (TA) and the reverse reaction of glycine cleavage system (GCS), demonstrating for the first time that other pathways instead of SHMT can also make a significant contribution to the cellular glycine pool. Transcriptional analysis confirmed that both TA and GCS genes were transcribed in H. paucihalophilus, and the transcriptional level is independent of salt concentrations in the culture media. This study expands our understanding of amino acid biosynthesis and provides valuable insights into the metabolism of halophilic archaea. - Highlights: • Serine hydroxymethyltransferase, threonine aldolase, and glycine cleavage system all contribute to the glycine pool of H. paucihalophilus. • Threonine and the citramalate pathways contribute equally to the isoleucine biosynthesis in H. paucihalophilus. • Lysine in H. paucihalophilus is synthesized through the diaminopimelate pathway and not through the α-aminoadipate pathway. • Glycine biosynthesis is likely unrelated to the cell osmoadaption mechanism.

  15. Fluxomers: a new approach for 13C metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Young Jamey D

    2011-08-01

    Full Text Available Abstract Background The ability to perform quantitative studies using isotope tracers and metabolic flux analysis (MFA is critical for detecting pathway bottlenecks and elucidating network regulation in biological systems, especially those that have been engineered to alter their native metabolic capacities. Mathematically, MFA models are traditionally formulated using separate state variables for reaction fluxes and isotopomer abundances. Analysis of isotope labeling experiments using this set of variables results in a non-convex optimization problem that suffers from both implementation complexity and convergence problems. Results This article addresses the mathematical and computational formulation of 13C MFA models using a new set of variables referred to as fluxomers. These composite variables combine both fluxes and isotopomer abundances, which results in a simply-posed formulation and an improved error model that is insensitive to isotopomer measurement normalization. A powerful fluxomer iterative algorithm (FIA is developed and applied to solve the MFA optimization problem. For moderate-sized networks, the algorithm is shown to outperform the commonly used 13CFLUX cumomer-based algorithm and the more recently introduced OpenFLUX software that relies upon an elementary metabolite unit (EMU network decomposition, both in terms of convergence time and output variability. Conclusions Substantial improvements in convergence time and statistical quality of results can be achieved by applying fluxomer variables and the FIA algorithm to compute best-fit solutions to MFA models. We expect that the fluxomer formulation will provide a more suitable basis for future algorithms that analyze very large scale networks and design optimal isotope labeling experiments.

  16. Voltage stability analysis of grid-connected wind farms with FACTS: Static and dynamic analysis

    Directory of Open Access Journals (Sweden)

    Kevin Zibran Heetun

    2016-01-01

    Full Text Available Recently, analysis of some major blackouts and failures of power system shows that voltage instability problem has been one of the main reasons of these disturbances and network collapses. In this article, a systematic approach to voltage stability analysis using various techniques for the IEEE 14-bus case study is presented. Static analysis is used to analyze the voltage stability of the system under study, while the dynamic analysis is used to evaluate the performance of compensators. The static techniques used are power flow, V–P curve analysis, and Q–V modal analysis. In this study, Flexible Alternating Current Transmission system (FACTS devices—namely, static synchronous compensators (STATCOMs and static var compensators (SVCs—are used as reactive power compensators, taking into account maintaining the violated voltage magnitudes of the weak buses within the acceptable limits defined in ANSI C84.1. Simulation results validate that both the STATCOMs and the SVCs can be effectively used to enhance the static voltage stability and increasing network loadability margin. Additionally, based on the dynamic analysis results, it has been shown that STATCOMs have superior performance, in dynamic voltage stability enhancement, compared to SVCs.

  17. Discovery of metabolically stabilized electronegative polyacridine-PEG peptide DNA open polyplexes.

    Science.gov (United States)

    Fernandez, Christian A; Baumhover, Nicholas J; Anderson, Kevin; Rice, Kevin G

    2010-04-21

    Cationic condensing peptides and polymers bind electrostatically to DNA to form cationic polyplexes. While many cationic polyplexes are able to achieve in vitro transfection mediated through electrostatic interactions, few have been able to mediate gene transfer in vivo. The present study describes the development and testing of polyacridine PEG-peptides that bind to plasmid DNA by intercalation resulting in electronegative open polyplex DNA. Polyacridine PEG-peptides were prepared by chemically conjugating 6-(9-acridinylamino) hexanoic acid onto side chains of Lys in PEG-Cys-Trp-(Lys)(3, 4, or 5). The resulting PEG-Cys-Trp-(Lys-(Acr))(3, 4, or 5) peptides bound tightly to DNA by polyintercalation, rather than electrostatic binding. Unlike polycationic polyplexes, polyacridine PEG-peptide polyplexes were anionic and open coiled, as revealed by zeta potential and atomic force microscopy. PEG-Cys-Trp-(Lys-(Acr))(5) showed the highest DNA binding affinity and the greatest ability to protect DNA from metabolism by DNase. Polyacridine PEG-peptide DNA open polyplexes were dosed intramuscularly and electroporated in mice to demonstrate their functional activity in gene transfer. These results establish polyacridine PEG-peptide DNA open polyplexes as a novel gene delivery method for in vivo use.

  18. Linear stability analysis of capillary instabilities for concentric cylindrical shells

    CERN Document Server

    Liang, X; Nave, J -C; Johnson, S G

    2010-01-01

    Motivated by complex multi-fluid geometries currently being explored in fibre-device manufacturing, we study capillary instabilities in concentric cylindrical flows of N fluids with arbitrary viscosities, thicknesses, densities, and surface tensions in both the Stokes regime and for the full Navier--Stokes problem. Generalising previous work by Tomotika (N=2), Stone & Brenner (N=3, equal viscosities) and others, we present a full linear stability analysis of the growth modes and rates, reducing the system to a linear generalised eigenproblem in the Stokes case. Furthermore, we demonstrate by Plateau-style geometrical arguments that only axisymmetric instabilities need be considered. We show that the N=3 case is already sufficient to obtain several interesting phenomena: limiting cases of thin shells or low shell viscosity that reduce to N=2 problems, and a system with competing breakup processes at very different length scales. The latter is demonstrated with full 3-dimensional simulations. Many $N > 3$ c...

  19. Analysis of Stability and Bifurcation in Nonlinear Mechanics with Dissipation

    Directory of Open Access Journals (Sweden)

    Claude Stolz

    2011-01-01

    Full Text Available The analysis of stability and bifurcation is studied in nonlinear mechanics with dissipative mechanisms: plasticity, damage, fracture. The description is based on introduction of a set of internal variables. This framework allows a systematic description of the material behaviour via two potentials: the free energy and the potential of dissipation. In the framework of standard generalized materials the internal state evolution is governed by a variational inequality which depends on the mechanism of dissipation. This inequality is obtained through energetic considerations in an unified description based upon energy and driving forces associated to the dissipative process. This formulation provides criterion for existence and uniqueness of the system evolution. Examples are presented for plasticity, fracture and for damaged materials.

  20. Analysis on Stability of a Network Based on RED Scheme

    Directory of Open Access Journals (Sweden)

    Shengbo Hu

    2011-04-01

    Full Text Available The RED scheme allows to prevent global synchronization of the sources associated with drop-tail buffers. However, from a control point of view, the drop-tail discipline could lead to strong oscillations and complex behavior of the system. In this paper, the behavior of TCP in high bandwidth-delay product network is analyzed. Secondly, a model of TCP network using RED is described, including RED drop function and model of TCP source. Thirdly, the linear analysis of a single link topology is focused. Finally, a sufficient condition for the stability of a network using RED is given and an engineering approach to select network and protocols’ parameters that lead to stable operation of the linear feedback control system is presented.

  1. Stability Analysis of Non-Newtonian Rimming Flow

    CERN Document Server

    Fomin, Sergei; Haine, Peter

    2015-01-01

    The rimming flow of a viscoelastic thin film inside a rotating horizontal cylinder is studied theoretically. Attention is given to the onset of non-Newtonian free-surface instability in creeping flow. This non-inertial instability has been observed in experiments, but current theoretical models of Newtonian fluids can neither describe its origin nor explain its onset. This study examines two models of non Newtonian fluids to see if the experimentally observed instability can be predicted analytically. The non-Newtonian viscosity and elastic properties of the fluid are described by the Generalized Newtonian Fluid (GNF) and Second Order Viscoelastic Fluid (SOVF) constitutive models, respectively. With linear stability analysis, it is found that, analogously to the Newtonian fluid, rimming flow of viscous non-Newtonian fluids (modeled by GNF) is neutrally stable. However, the viscoelastic properties of the fluid (modeled by SOVF) are found to contribute to the flow destabilization. The instability is shown to in...

  2. Dynamic Stability Analysis Using High-Order Interpolation

    Directory of Open Access Journals (Sweden)

    Juarez-Toledo C.

    2012-10-01

    Full Text Available A non-linear model with robust precision for transient stability analysis in multimachine power systems is proposed. The proposed formulation uses the interpolation of Lagrange and Newton's Divided Difference. The High-Order Interpolation technique developed can be used for evaluation of the critical conditions of the dynamic system.The technique is applied to a 5-area 45-machine model of the Mexican interconnected system. As a particular case, this paper shows the application of the High-Order procedure for identifying the slow-frequency mode for a critical contingency. Numerical examples illustrate the method and demonstrate the ability of the High-Order technique to isolate and extract temporal modal behavior.

  3. Stability analysis for bad cavity lasers with inhomogeneously broadened gain

    CERN Document Server

    Kazakov, Georgy A

    2016-01-01

    Bad cavity lasers are experiencing renewed interest in the context of active optical frequency standards, due to their enhanced robustness against fluctuations of the laser cavity. The gain medium would consist of narrow-linewidth atoms, either trapped inside the cavity or intersecting the cavity mode dynamically. A finite velocity distribution, atomic interactions, or interactions of realistic multilevel atoms with external field leads to an inhomogeneous broadening of the atomic gain profile. This can bring the bad cavity laser to operate in unstable regimes characterized by complex temporal patterns of the field amplitude. We present a new and efficient method for the stability analysis of bad cavity lasers with inhomogeneously broadened gain. We apply this method to identify the steady-state solutions for the metrology-relevant case of spin-1/2 atoms interacting with an external magnetic field.

  4. Exploring stability of entropy analysis for signal with different trends

    Science.gov (United States)

    Zhang, Yin; Li, Jin; Wang, Jun

    2017-03-01

    Considering the effects of environment disturbances and instrument systems, the actual detecting signals always are carrying different trends, which result in that it is difficult to accurately catch signals complexity. So choosing steady and effective analysis methods is very important. In this paper, we applied entropy measures-the base-scale entropy and approximate entropy to analyze signal complexity, and studied the effect of trends on the ideal signal and the heart rate variability (HRV) signals, that is, linear, periodic, and power-law trends which are likely to occur in actual signals. The results show that approximate entropy is unsteady when we embed different trends into the signals, so it is not suitable to analyze signal with trends. However, the base-scale entropy has preferable stability and accuracy for signal with different trends. So the base-scale entropy is an effective method to analyze the actual signals.

  5. Analysis of stability of community structure across multiple hierarchical levels

    CERN Document Server

    Li, Hui-Jia

    2015-01-01

    The analysis of stability of community structure is an important problem for scientists from many fields. Here, we propose a new framework to reveal hidden properties of community structure by quantitatively analyzing the dynamics of Potts model. Specifically we model the Potts procedure of community structure detection by a Markov process, which has a clear mathematical explanation. Critical topological information regarding to multivariate spin configuration could also be inferred from the spectral significance of the Markov process. We test our framework on some example networks and find it doesn't have resolute limitation problem at all. Results have shown the model we proposed is able to uncover hierarchical structure in different scales effectively and efficiently.

  6. Modeling and Stability Analysis of Wedge Clutch System

    Directory of Open Access Journals (Sweden)

    Jian Yao

    2014-01-01

    Full Text Available A wedge clutch with unique features of self-reinforcement and small actuation force was designed. Its self-reinforcement feature, associated with different factors such as the wedge angle and friction coefficient, brings different dynamics and unstable problem with improper parameters. To analyze this system, a complete mathematical model of the actuation system is built, which includes the DC motor, the wedge mechanism, and the actuated clutch pack. By considering several nonlinear factors, such as the slip-stick friction and the contact or not of the clutch plates, the system is piecewise linear. Through the stability analysis of the linearized system in clutch slipping phase, the stable condition of the designed parameters is obtained as α>arctan⁡(μc. The mathematical model of the actuation system is validated by prototype testing. And with the validated model, the system dynamics in both stable and unstable conditions is investigated and discussed in engineering side.

  7. Remarks on boiling water reactor stability analysis. Pt. 1. Theory and application of bifurcation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Carsten; Hurtado, Antonio [Technische Univ. Dresden (Germany). Chair of Hydrogen and Nuclear Energy; Schuster, Roland [Kernkraftwerk Brunsbuettel GmbH und Co. oHG, Brunsbuettel (Germany); Lukas, Bernard [EnBW Kernkraft GmbH, Philippsburg (Germany). Kernkraftwerk Philippsburg; Aguirre, Carlos [Kernkraftwerk Leibstadt AG, Aargau (Switzerland); Hennig, Dieter

    2012-11-15

    Modern theoretical methods for analysing the stability behaviour of Boiling Water Reactors (BWRs) are relatively reliable. The analysis is performed by comprehensive validated system codes comprising 3D core models and one-dimensional thermal-hydraulic parallel channel models in the frequency (linearized models) or time domain. Nevertheless the spontaneous emergence of stable or unstable periodic orbits as solutions of the coupled nonlinear differential equations determining the stability properties of the coupled thermal-hydraulic and neutron kinetic (highly) nonlinear BWR system is a surprising phenomenon, and it is worth thinking about the mathematical background controlling such behaviour. In particular the coexistence of different types of solutions, such as the coexistence of unstable limit cycles and stable fixed points, are states of stability, not all nuclear engineers are familiar with. Hence the part I of this paper is devoted to the mathematical background of linear and nonlinear stability analysis and introduces a novel efficient approach to treat the nonlinear BWR stability behaviour with both system codes and so-called (advanced) reduced order models (ROMs). The efficiency of this approach, called the RAM-ROM method, will be demonstrated by some results of stability analyses for different power plants. (orig.)

  8. Analysis of stability problems via matrix Lyapunov functions

    Directory of Open Access Journals (Sweden)

    Anatoly A. Martynyuk

    1990-01-01

    Full Text Available The stability of nonlinear systems is analyzed by the direct Lyapunov's method in terms of Lyapunov matrix functions. The given paper surveys the main theorems on stability, asymptotic stability and nonstability. They are applied to systems of nonlinear equations, singularly-perturbed systems and hybrid systems. The results are demonstrated by an example of a two-component system.

  9. Linear stability analysis of Clarke-Riley diffusion flames

    Science.gov (United States)

    Gomez-Lendinez, Daniel; Coenen, Wilfried; Sanchez, Antonio L.

    2016-11-01

    The buoyancy-driven laminar flow associated with the Burke-Schumann diffusion flame developing from the edge of a semi-infinite horizontal fuel surface burning in a quiescent oxidizing atmosphere displays a self-similar structure, first described by Clarke and Riley (Journal of Fluid Mechanics, 74:415-431). Their analysis was performed for unity reactant Lewis numbers, with the viscosity and thermal conductivity taken to be linearly proportional to the temperature. Our work extends this seminal work by considering fuels with non-unity Lewis numbers and gas mixtures with a realistic power-law dependence of the different transport properties. The problem is formulated in terms of chemistry-free, Shvab-Zel'dovich, linear combinations of the temperature and reactant mass fractions, not changed directly by the reactions, as conserved scalars. The resulting self-similar base-flow solution is used in a linear stability analysis to determine the critical value of the boundary-layer thickness-measured by the local Grashof number-at which the flow becomes unstable, leading to the development of Görtler-like streamwise vortices. The analysis provides the dependence of the critical Grashof number on the relevant flame parameters.

  10. Space Shuttle Main Engine real time stability analysis

    Science.gov (United States)

    Kuo, F. Y.

    1993-01-01

    The Space Shuttle Main Engine (SSME) is a reusable, high performance, liquid rocket engine with variable thrust. The engine control system continuously monitors the engine parameters and issues propellant valve control signals in accordance with the thrust and mixture ratio commands. A real time engine simulation lab was installed at MSFC to verify flight software and to perform engine dynamic analysis. A real time engine model was developed on the AD100 computer system. This model provides sufficient fidelity on the dynamics of major engine components and yet simplified enough to be executed in real time. The hardware-in-the-loop type simulation and analysis becomes necessary as NASA is continuously improving the SSME technology, some with significant changes in the dynamics of the engine. The many issues of interfaces between new components and the engine can be better understood and be resolved prior to the firing of the engine. In this paper, the SSME real time simulation Lab at the MSFC, the SSME real time model, SSME engine and control system stability analysis, both in real time and non-real time is presented.

  11. In vitro stability and metabolism of salvinorin A in rat plasma.

    Science.gov (United States)

    Tsujikawa, K; Kuwayama, K; Miyaguchi, H; Kanamori, T; Iwata, Y T; Inoue, H

    2009-05-01

    Salvinorin A is the main active psychoactive ingredient in Salvia divinorum, a Mexican plant that has been widely available as a hallucinogen in recent years. The aims of this study were to investigate the stability of salvinorin A in rat plasma, esterases responsible for its degradation, and estimation of the degradation products. The apparent first-order rate constants of salvinorin A at 37 degrees C, 25 degrees C, and 4 degrees C were 3.8 x 10(-1), 1.1 x 10(-1), and Salvinorin A degradation was markedly inhibited by the addition of sodium fluoride, an esterase inhibitor. Moreover, phenylmethylsulfonyl fluoride (serine esterase inhibitor) and bis-p-nitrophenylphosphate (carboxylesterase inhibitor) also inhibited salvinorin A degradation. In contrast, little or no suppression of the degradation was seen with 5,5'-dithiobis-2-nitrobenzoic acid (arylesterase inhibitor),ethopropazine (butyrylcholinesterase inhibitor), and BW284c51 (acetylcholineseterase inhibitor). These findings indicated that carboxylesterase was mainly involved in the salvinorin A hydrolysis in rat plasma.4. The degradation products of salvinorin A estimated by liquid chromatography-mass spectrometry included the deacetylated form (salvinorin B) and the lactone-ring-open forms of salvinorin A and salvinorin B. This lactone-ring-opening reactions were involved in calcium-dependent lactonase.

  12. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears.

    Science.gov (United States)

    Schwab, Clarissa; Gänzle, Michael

    2011-03-01

    The composition of the intestinal microbiota depends on gut physiology and diet. Ursidae possess a simple gastrointestinal system composed of a stomach, small intestine, and indistinct hindgut. This study determined the composition and stability of fecal microbiota of 3 captive polar bears by group-specific quantitative PCR and PCR-DGGE (denaturing gradient gel electrophoresis) using the 16S rRNA gene as target. Intestinal metabolic activity was determined by analysis of short-chain fatty acids in feces. For comparison, other Carnivora and mammals were included in this study. Total bacterial abundance was approximately log 8.5 DNA gene copies·(g feces)-1 in all 3 polar bears. Fecal polar bear microbiota was dominated by the facultative anaerobes Enterobacteriaceae and enterococci, and the Clostridium cluster I. The detection of the Clostridium perfringens α-toxin gene verified the presence of C. perfringens. Composition of the fecal bacterial population was stable on a genus level; according to results obtained by PCR-DGGE, dominant bacterial species fluctuated. The total short-chain fatty acid content of Carnivora and other mammals analysed was comparable; lactate was detected in feces of all carnivora but present only in trace amounts in other mammals. In comparison, the fecal microbiota and metabolic activity of captive polar bears mostly resembled the closely related grizzly and black bears.

  13. Analysis of Absolute Stability for Time-delay Teleoperation Systems

    Institute of Scientific and Technical Information of China (English)

    Qi-Wen Deng; Qing Wei; Ze-Xiang Li

    2007-01-01

    In this paper, a new bilateral control algorithm based on absolute stability theory is put forward, which aims at the time-delay teleoperation system with force feedback from the slave directly. In the new control algorithm, the delay-dependent stability,instead of delay-independent stability, is taken as the aim of control design. It improves the transparency of the system at the price of unnecessary stability. With this algorithm, the time-delay teleoperation systems have good transparency and stability. A simulation system is established to verify the effect of this algorithm.

  14. Parallel labeling experiments for pathway elucidation and (13)C metabolic flux analysis.

    Science.gov (United States)

    Antoniewicz, Maciek R

    2015-12-01

    Metabolic pathway models provide the foundation for quantitative studies of cellular physiology through the measurement of intracellular metabolic fluxes. For model organisms metabolic models are well established, with many manually curated genome-scale model reconstructions, gene knockout studies and stable-isotope tracing studies. However, for non-model organisms a similar level of knowledge is often lacking. Compartmentation of cellular metabolism in eukaryotic systems also presents significant challenges for quantitative (13)C-metabolic flux analysis ((13)C-MFA). Recently, innovative (13)C-MFA approaches have been developed based on parallel labeling experiments, the use of multiple isotopic tracers and integrated data analysis, that allow more rigorous validation of pathway models and improved quantification of metabolic fluxes. Applications of these approaches open new research directions in metabolic engineering, biotechnology and medicine.

  15. Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network.

    Science.gov (United States)

    Galhardo, Mafalda; Sinkkonen, Lasse; Berninger, Philipp; Lin, Jake; Sauter, Thomas; Heinäniemi, Merja

    2014-02-01

    Metabolic diseases and comorbidities represent an ever-growing epidemic where multiple cell types impact tissue homeostasis. Here, the link between the metabolic and gene regulatory networks was studied through experimental and computational analysis. Integrating gene regulation data with a human metabolic network prompted the establishment of an open-sourced web portal, IDARE (Integrated Data Nodes of Regulation), for visualizing various gene-related data in context of metabolic pathways. Motivated by increasing availability of deep sequencing studies, we obtained ChIP-seq data from widely studied human umbilical vein endothelial cells. Interestingly, we found that association of metabolic genes with multiple transcription factors (TFs) enriched disease-associated genes. To demonstrate further extensions enabled by examining these networks together, constraint-based modeling was applied to data from human preadipocyte differentiation. In parallel, data on gene expression, genome-wide ChIP-seq profiles for peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (CEBP) α, liver X receptor (LXR) and H3K4me3 and microRNA target identification for miR-27a, miR-29a and miR-222 were collected. Disease-relevant key nodes, including mitochondrial glycerol-3-phosphate acyltransferase (GPAM), were exposed from metabolic pathways predicted to change activity by focusing on association with multiple regulators. In both cell types, our analysis reveals the convergence of microRNAs and TFs within the branched chain amino acid (BCAA) metabolic pathway, possibly providing an explanation for its downregulation in obese and diabetic conditions.

  16. Stability analysis of a PFTR reactor for a first order kinetic reaction using the Lyapunov functionals

    Directory of Open Access Journals (Sweden)

    Héctor Armando Durán Peralta

    2010-04-01

    Full Text Available The stability of reactors having encompassing concentration and temperature parameters, such as continuous flow stirred tank reactors (CSTR, has been widely explored in the literature; however, there are few papers about the stability of tubular reactor having distributed spatial concentration and temperature parameters such as the plow flow tubular reactor (PFTR. This paper analyses the stability of isothermal and non-isothermal PFTR reactors using the Lyapunov functional method. The first order kinetic reaction was selected because one of this paper’s oblectives was to apply Lyapunov functionals to stability analysis of distributed parameter reactors (technique used in electrical engineering systems’ stability analysis. The stability analysis revealed asymptotically stable tempe- rature and concentration profiles for isothermal PFTR, non-isothermal PFTR with kinetic constant independent of temperature and adiabatic non-isothermal PFTR. Analysis revealed an asymptotically stability region for the heat exchange reactor and an uncertain region where it may have oscillations.

  17. Application of Bounded Linear Stability Analysis Method for Metrics-Driven Adaptive Control

    Science.gov (United States)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics-driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a second order system that represents a pitch attitude control of a generic transport aircraft. The analysis shows that the system with the metrics-conforming variable adaptive gain becomes more robust to unmodeled dynamics or time delay. The effect of analysis time-window for BLSA is also evaluated in order to meet the stability margin criteria.

  18. Linear Stability Analysis of an Acoustically Vaporized Droplet

    Science.gov (United States)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi

    2015-11-01

    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  19. A parabolized stability analysis of a trailing vortex wake

    Science.gov (United States)

    Edstrand, Adam; Schmid, Peter; Taira, Kunihiko; Cattafesta, Louis

    2016-11-01

    To aid in understanding how best to control a trailing vortex, we perform a parabolized stability analysis on a flow past a wing at a chord-based Reynolds number of 1000. At the upstream position, the wake instability branch dominates, with only a single vortex instability present in the spectrum. With downstream progression, the growth rate of the wake instability decays, but remains unstable 10 chords downstream. With the wake mode being unstable so far downstream, these results imply that the excitation of the wake instability, despite the varying base flow, will continue to see growth and potentially disrupt the trailing vortex. Conversely, the vortex instability in its formative region rapidly decays to the stable half-plane, then at 11 chords downstream becomes unstable again. We hypothesized the renewed instability growth far downstream is developing as a result of vortex instabilities, however the excitation of these instabilities proves to be challenging in the vortex far field. From these results, control near the two-dimensional wake behind the airfoil may better interfere with the trailing vortex formation; however, to determine the optimal disturbances, an adjoint analysis is required and is included in the future work of the project. ONR Grants N00014-10-1-0832 and N00014-15-1-2403.

  20. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers.

    Science.gov (United States)

    Leng, Y; Wang, Z; Tsai, L-K; Leeds, P; Fessler, E B; Wang, J; Chuang, D-M

    2015-02-01

    Fibroblast growth factor-21 (FGF-21) is a new member of the FGF super-family and an important endogenous regulator of glucose and lipid metabolism. It has been proposed as a therapeutic target for diabetes and obesity. Its function in the central nervous system (CNS) remains unknown. Previous studies from our laboratory demonstrated that aging primary neurons are more vulnerable to glutamate-induced excitotoxicity, and that co-treatment with the mood stabilizers lithium and valproic acid (VPA) induces synergistic neuroprotective effects. This study sought to identify molecule(s) involved in these synergistic effects. We found that FGF-21 mRNA was selectively and markedly elevated by co-treatment with lithium and VPA in primary rat brain neurons. FGF-21 protein levels were also robustly increased in neuronal lysates and culture medium following lithium-VPA co-treatment. Combining glycogen synthase kinase-3 (GSK-3) inhibitors with VPA or histone deacetylase (HDAC) inhibitors with lithium synergistically increased FGF-21 mRNA levels, supporting that synergistic effects of lithium and VPA are mediated via GSK-3 and HDAC inhibition, respectively. Exogenous FGF-21 protein completely protected aging neurons from glutamate challenge. This neuroprotection was associated with enhanced Akt-1 activation and GSK-3 inhibition. Lithium-VPA co-treatment markedly prolonged lithium-induced Akt-1 activation and augmented GSK-3 inhibition. Akt-1 knockdown markedly decreased FGF-21 mRNA levels and reduced the neuroprotection induced by FGF-21 or lithium-VPA co-treatment. In addition, FGF-21 knockdown reduced lithium-VPA co-treatment-induced Akt-1 activation and neuroprotection against excitotoxicity. Together, our novel results suggest that FGF-21 is a key mediator of the effects of these mood stabilizers and a potential new therapeutic target for CNS disorders.

  1. (1)H NMR metabolomics analysis of renal cell carcinoma cells: Effect of VHL inactivation on metabolism.

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava; Cormier, Kevin; Touaibia, Mohamed; Reyjal, Julie; Robichaud, Sarah; Belbraouet, Mehdi; Turcotte, Sandra

    2016-05-15

    Von Hippel-Lindau (VHL) is an onco-suppressor involved in oxygen and energy-dependent promotion of protein ubiquitination and proteosomal degradation. Loss of function mutations of VHL (VHL-cells) result in organ specific cancers with the best studied example in renal cell carcinomas. VHL has a well-established role in deactivation of hypoxia-inducible factor (HIF-1) and in regulation of PI3K/AKT/mTOR activity. Cell culture metabolomics analysis was utilized to determined effect of VHL and HIF-1α or HIF-2α on metabolism of renal cell carcinomas (RCC). RCC cells were stably transfected with VHL or shRNA designed to silence HIF-1α or HIF-2α genes. Obtained metabolic data was analysed qualitatively, searching for overall effects on metabolism as well as quantitatively, using methods developed in our group in order to determine specific metabolic changes. Analysis of the effect of VHL and HIF silencing on cellular metabolic footprints and fingerprints provided information about the metabolic pathways affected by VHL through HIF function as well as independently of HIF. Through correlation network analysis as well as statistical analysis of significant metabolic changes we have determined effects of VHL and HIF on energy production, amino acid metabolism, choline metabolism as well as cell regulation and signaling. VHL was shown to influence cellular metabolism through its effect on HIF proteins as well as by affecting activity of other factors.

  2. Comparison of biological stability and metabolism of CCK2 receptor targeting peptides, a collaborative project under COST BM0607

    Energy Technology Data Exchange (ETDEWEB)

    Ocak, Meltem [Innsbruck Medical University, Clinical Department of Nuclear Medicine, Innsbruck (Austria); Istanbul University, Department of Pharmaceutical Technology, Pharmacy Faculty, Istanbul (Turkey); Helbok, Anna; Rangger, Christine; Decristoforo, Clemens [Innsbruck Medical University, Clinical Department of Nuclear Medicine, Innsbruck (Austria); Peitl, Petra Kolenc [University Medical Centre Ljubljana, Department for Nuclear Medicine, Ljubljana (Slovenia); Nock, Berthold A. [National Center for Scientific Research Demokritos, Molecular Radiopharmacy, Institute of Radioisotopes-Radiodiagnostic Products, Athens (Greece); Morelli, Giancarlo [University of Naples ' ' Federico II' ' and IBB-CN, Department of Biological Sciences, CIRPeB, Naples (Italy); Eek, Annemarie [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Institute of Cancer, Barts and the London Queen Mary' s School of Medicine and Dentistry, Centre for Molecular Oncology and Imaging, London (United Kingdom); Breeman, W.A.P. [Erasmus MC Rotterdam, Department of Nuclear Medicine, Rotterdam (Netherlands); Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research Institute of Pathology, Berne (Switzerland)

    2011-08-15

    Stability of radiolabelled cholecystokinin 2 (CCK2) receptor targeting peptides has been a major limitation in the use of such radiopharmaceuticals especially for targeted radionuclide therapy applications, e.g. for treatment of medullary thyroid carcinoma (MTC). The purpose of this study was to compare the in vitro stability of a series of peptides binding to the CCK2 receptor [selected as part of the COST Action on Targeted Radionuclide Therapy (BM0607)] and to identify major cleavage sites. Twelve different 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)-minigastrin/CCK conjugates were provided within an European COST Action (BM0607) by different laboratories and radiolabelled with {sup 177}Lu. Their in vitro stabilities were tested in fresh human serum. Radiochemical yields (RCY) and intact radioligands for half-life calculations were determined by radio-HPLC. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) analysis of metabolites was performed to identify cleavage products using conjugates labelled with excess stable {sup nat}Lu, incubated in serum at 37 C. Urine metabolite analysis after injection in normal mice was performed by radio-HPLC analysis. Variable stability in human serum was found for the different peptides with calculated half-lives between 4.5 {+-} 0.1 h and 198 {+-} 0.1 h (n = 2). In urine of normal mice only metabolised peptide fragments were detected even at short times after injection for all peptides. MALDI-TOF MS revealed a major cleavage site of all minigastrin derivatives between Asp and Phe-NH{sub 2} at the C-terminal end. Development of CCK2 receptor ligands especially for therapeutic purposes in patients with MTC or small cell lung cancer (SCLC) is still ongoing in different laboratories. This comparative study provided valuable insight into the importance of biological stability especially in the context of other results of this comparative

  3. Structure and Stability of Steady Protostellar Accretion Flows - Part Two - Linear Stability Analysis

    Science.gov (United States)

    Balluch, M.

    1991-03-01

    Recent developments concerning spherically symmetric (1D-) numerical models of protostellar evolution show that steady protostellar accretion flows (resp. their shockfronts) may be unstable at least in the very early (Tscharnuter 1987a) and late stages (Balluch 1988) of accretion. A global, linear stability analysis of the structure of steady protostellar accretion flows with a shock discontinuity (Balluch 1990) is therefore presented to investigate such flows by different methods. Thereby three characteristic wave types, the radiation-, radiation diffusion- and acoustic modes were found. In the `ideal case' of a perfect gas law and constant opacity, the shockfront appears to be oscillatory unstable due to critical cooling as long as the mass flux rate is larger than a critical one of Mṡcrit = 10-6 Msun yr-1. In the `real case' with more realistic constitutive relations, an additional vibrational instability occurs due to the κ-mechanism in the outer layers of the core. This is shown to be the case in the whole range of core masses between 0.01 and 1 Msun, mass flow rates between 10-3 and 10-7 Msun yr-1 and different outer boundary conditions (corresponding to different states of the surrounding interstellar cloud). Analysing the first, outer protostellar cores before they get dynamically unstable due to H2-dissociation in their interiors, similar instabilities as mentioned above were found. Now the unstable κ-behaviour is due to dust instead of the deep ionisation zone as in the case of second, inner cores. According to the linear analysis, the instabilities should first appear in the velocity and the radiation flux in the settling zone. In the case of first, outer cores, these variations should be accompanied by an oscillation of the radiation flux in the region upstream from the shock up to r = 1014 cm. Sooner or later, the shockfront should oscillate in both cases too. These results are finally compared with the characteristics of the accretion shock

  4. In situ metabolic flux analysis to quantify the liver metabolic response to experimental burn injury.

    Science.gov (United States)

    Izamis, Maria-Louisa; Sharma, Nripen S; Uygun, Basak; Bieganski, Robert; Saeidi, Nima; Nahmias, Yaakov; Uygun, Korkut; Yarmush, Martin L; Berthiaume, Francois

    2011-04-01

    Trauma such as burns induces a hypermetabolic response associated with altered central carbon and nitrogen metabolism. The liver plays a key role in these metabolic changes; however, studies to date have evaluated the metabolic state of liver using ex vivo perfusions or isotope labeling techniques targeted to specific pathways. Herein, we developed a unique mass balance approach to characterize the metabolic state of the liver in situ, and used it to quantify the metabolic changes to experimental burn injury in rats. Rats received a sham (control uninjured), 20% or 40% total body surface area (TBSA) scald burn, and were allowed to develop a hypermetabolic response. One day prior to evaluation, all animals were fasted to deplete glycogen stores. Four days post-burn, blood flow rates in major vessels of the liver were measured, and blood samples harvested. We combined measurements of metabolite concentrations and flow rates in the major vessels entering and leaving the liver with a steady-state mass balance model to generate a quantitative picture of the metabolic state of liver. The main findings were: (1) Sham-burned animals exhibited a gluconeogenic pattern, consistent with the fasted state; (2) the 20% TBSA burn inhibited gluconeogenesis and exhibited glycolytic-like features with very few other significant changes; (3) the 40% TBSA burn, by contrast, further enhanced gluconeogenesis and also increased amino acid extraction, urea cycle reactions, and several reactions involved in oxidative phosphorylation. These results suggest that increasing the severity of injury does not lead to a simple dose-dependent metabolic response, but rather leads to qualitatively different responses.

  5. 40 CFR 1065.190 - PM-stabilization and weighing environments for gravimetric analysis.

    Science.gov (United States)

    2010-07-01

    ... environments for gravimetric analysis. 1065.190 Section 1065.190 Protection of Environment ENVIRONMENTAL... § 1065.190 PM-stabilization and weighing environments for gravimetric analysis. (a) This section describes the two environments required to stabilize and weigh PM for gravimetric analysis: the...

  6. Stability Analysis of the LHC Cables for Transient Heat Depositions

    CERN Document Server

    Granieri, P P; Xydi, P; Baudouy, B; Bocian, D; Bottura, L; Breschi, M; Siemko, A

    2008-01-01

    The commissioning and the exploitation of the LHC require a good knowledge of the stability margins of the superconducting magnets with respect to beam induced heat depositions. Previous studies showed that simple numerical models are suitable to carry out stability calculations of multi-strands cables, and highlighted the relevance of the heat transfer model with the surrounding helium. In this paper we present a systematic scan of the stability margin of all types of LHC cables working at 1.9 Kagainst transient heat depositions. We specifically discuss the dependence of the stability margin on the parameters of the model, which provide an estimate of the uncertainty of the values quoted. The stability margin calculations have been performed using a zero-dimensional (0-D) numerical model, and a cooling model taking into account the relevant helium phases which may appear during a stability experiment: it includes Kapitza thermal resistance in superfluid He, boundary layer formation and heat transfer in He I,...

  7. Stability Analysis of Uncertain Discrete Time-Delay Control Systems

    Institute of Scientific and Technical Information of China (English)

    Long Xuming; Duan Ping

    2006-01-01

    Based on Lyapunov stability theory, a less conservative sufficient conditions for the stabilities of uncertain discrete delay-independent and delay-dependent control systems are obtained by using the linear matrix inequality (LMI) approach. Judgement of the stability of time-delay systems is transformed to judgement of the feasible solution of an LMI, and hence is solved by use of MATLAB. Numerical simulations verify the validity of the proposed method.

  8. Stability Analysis of Grasps with a Robotic Multifingered Hand

    Institute of Scientific and Technical Information of China (English)

    WAN An-hua

    2005-01-01

    Stability is a significant property for a robot hand grasp to perform complex tasks similar to human hands. The common method to investigate the stability of robotic multi-fingered grasp system is Lyapunov direct method, but usually it is rather difficult to construct a proper Lyapunov function. Avoiding the hard work of constructing a Lyapunov function, we propose the sufficient conditions for stability of the robotic grasp system.

  9. Dental implant stability analysis by using resonance frequency method

    OpenAIRE

    Harirforoush, Reza

    2012-01-01

    The use of dental implants in the rehabilitation of partially and completely edentulous patients has been significantly increased in recent years. Although high survival rates of implants supporting prosthesis have been reported, failure still happens due to bone loss as results of primary and secondary implant stability. Primary stability of an implant mostly comes from mechanical interaction with cortical bone while secondary stability happens through bone regeneration and remodelling at th...

  10. Large-signal stability analysis of PWM converters

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, P.T. [Philips Labs., Briarcliff Manor, NY (United States); Cho, B.H. [Seoul National Univ. (Korea, Republic of). Dept. of Electrical Engineering

    1995-12-31

    Investigation of the effects of existing nonlinearities on the stability of PWM converters is performed. The bilinear structure, the duty cycle saturation, and the opamp saturation are the principal nonlinearities in PWM converters. These nonlinearities are incorporated in the large-signal analytical models of PWM converters, and the basic input-output stability theory is applied to analyze their stability. Design and optimization of the small-signal loop gains to counteract the undesirable nonlinear effects are also discussed.

  11. A small - signal stability analysis of DFIG wind generation

    OpenAIRE

    Vittal, Eknath; O'Malley, Mark; Keane, Andrew

    2009-01-01

    This paper examines the small-signal stability impacts of high penetrations of doubly-fed induction generator (DFIG) wind turbines on power systems. It provides a basic overview of small-signal stability concepts and then examines the response of DFIG generation to two local contingency event. Using the New England 39 bus test system, this paper will demonstrate the stability implications of DFIG turbines utilizing terminal voltage control and fixed power factor control in response...

  12. Analysis of Physical Education Students’ Emotional Stability and Reactibility

    Directory of Open Access Journals (Sweden)

    Radka Peřinová

    2015-03-01

    Full Text Available Analysis of Physical Education Students’ Emotional Stability and Reactibility This paper will aim to show the possible association between emotional stability and reaction time variability of Physical Education students. It can be stated that our study confirmed our suppositions which were based on works that have focused on similar topics. Our research sample showed the expected characteristics: primarily lower neuroticism values and higher extraversion when compared to the non-sporting population. Emotional stability which was reflected in the neuroticism dimension in EPQ-R (Eysenck Personality Questionnaire was shown to be connected with variability of the reaction time in the test of reactability to selected visual stimulus, disregarding the reaction rate. The effect of extraversion is partly reflected by the tendency of the sanguine temperament type to react in a balanced manner (i.e. with low reaction time variability during the reactability test. Due to the relatively low number of other temperament types in our sample, it is not possible to draw any conclusions in this regard. Analýza emocionální stability a reaktibility studentů tělesné výchovy Tento příspěvek poukazuje na možnou asociaci mezi emocionální stabilitou a časovou variabilitou dob reakcí u studentů tělesné výchovy. Lze konstatovat, že studie potvrdila naše předpoklady vycházející z odborných prací na obdobná témata. Výzkumný soubor vykazoval předpokládané charakteristiky, především nižších hodnot neuroticismu a vyšší extroverze oproti nesportující populaci. Emocionální stabilita vyjádřená pomocí dimenze neuroticismu (v EPQ-R se ukázala v asociaci s časovou variabilitou dob reakcí v testu reaktibility na výběrový zrakový podnět bez ohledu na rychlost reakce. Vliv extroverze do jisté míry odráží naznačená tendence sangvinického typu temperamentu reagovat vyrovnaně (tedy s nízkou časovou variabilitou dob

  13. Analysis of requirements for teaching materials based on the course bioinformatics for plant metabolism

    Science.gov (United States)

    Balqis, Widodo, Lukiati, Betty; Amin, Mohamad

    2017-05-01

    A way to improve the quality of learning in the course of Plant Metabolism in the Department of Biology, State University of Malang, is to develop teaching materials. This research evaluates the needs of bioinformatics-based teaching material in the course Plant Metabolism by the Analyze, Design, Develop, Implement, and Evaluate (ADDIE) development model. Data were collected through questionnaires distributed to the students in the Plant Metabolism course of the Department of Biology, University of Malang, and analysis of the plan of lectures semester (RPS). Learning gains of this course show that it is not yet integrated into the field of bioinformatics. All respondents stated that plant metabolism books do not include bioinformatics and fail to explain the metabolism of a chemical compound of a local plant in Indonesia. Respondents thought that bioinformatics can explain examples and metabolism of a secondary metabolite analysis techniques and discuss potential medicinal compounds from local plants. As many as 65% of the respondents said that the existing metabolism book could not be used to understand secondary metabolism in lectures of plant metabolism. Therefore, the development of teaching materials including plant metabolism-based bioinformatics is important to improve the understanding of the lecture material in plant metabolism.

  14. Genetic Analysis of Early Generation Stability in Rice

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Jun; Ao Guang-Hui; XIAO Yi; WU Xian-Jun; LI Shi-Gui

    2005-01-01

    The mechanism of early generation stability (EGS) in rice was studied via genetic analysis. Three types of crosses were made, namely between EGS varieties, EGS and conventional rice variety, and conventional rice varieties. The genetic analysis was based on the stable lines in F2 population. The stable lines may appear from some combinations of EGS rice crossing with each other and EGS rice crossing with conventional varieties at different frequencies, but stable lines didn't appear in conventional varieties crossing with conventional varieties. Genetic analysis results indicated that the EGS phenomena should just exist in special rice materials, and the frequency of stable lines was closely related to the EGS traits of parents. The EGS traits were neither qualitative nor quantitative traits, and they were controlled by neither dominant genes nor recessive genes. The EGS traits might be inherited by F1 single plant, and the traits of F3 and F4 were corresponded to those of F2 population, i.e. F3 and F4 lines derived from non-segregating F2 showed uniform agronomic traits, and those from segregating F2.did not. The agronomic traits of EGS lines were consistent with those of F1 single plant. On the other hand, when EGS lines occurred, the segregating lines in Mendelian manner were also observed in all F2 population of the same combination. It was suggested that the reason why the stable strains occurred might be a special factor to control (open/close) gene at the beginning of cell division in zygote, resulting in closing mitosis and opening somatic reduction. The somatic reduction of zygote resulted in recombination and homozygosity forming in F1 single plant,and some lines with uniform agronomic traits were observed in some lines of F2 population.

  15. In situ vitrification: application analysis for stabilization of transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Oma, K.H.; Farnsworth, R.K.; Rusin, J.M.

    1982-09-01

    The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10/sup -5/ parts per year. 32 figures, 30 tables.

  16. Metabolomic analysis identifies altered metabolic pathways in Multiple Sclerosis.

    Science.gov (United States)

    Poddighe, Simone; Murgia, Federica; Lorefice, Lorena; Liggi, Sonia; Cocco, Eleonora; Marrosu, Maria Giovanna; Atzori, Luigi

    2017-07-16

    Multiple sclerosis (MS) is a chronic, demyelinating disease that affects the central nervous system and is characterized by a complex pathogenesis and difficult management. The identification of new biomarkers would be clinically useful for more accurate diagnoses and disease monitoring. Metabolomics, the identification of small endogenous molecules, offers an instantaneous molecular snapshot of the MS phenotype. Here the metabolomic profiles (utilizing plasma from patients with MS) were characterized with a Gas cromatography-mass spectrometry-based platform followed by a multivariate statistical analysis and comparison with a healthy control (HC) population. The obtained partial least square discriminant analysis (PLS-DA) model identified and validated significant metabolic differences between individuals with MS and HC (R2X=0.223, R2Y=0.82, Q2=0.562; p<0.001). Among discriminant metabolites phosphate, fructose, myo-inositol, pyroglutamate, threonate, l-leucine, l-asparagine, l-ornithine, l-glutamine, and l-glutamate were correctly identified, and some resulted as unknown. A receiver operating characteristic (ROC) curve with AUC 0.84 (p=0.01; CI: 0.75-1) generated with the concentrations of the discriminant metabolites, supported the strength of the model. Pathway analysis indicated asparagine and citrulline biosynthesis as the main canonical pathways involved in MS. Changes in the citrulline biosynthesis pathway suggests the involvement of oxidative stress during neuronal damage. The results confirmed metabolomics as a useful approach to better understand the pathogenesis of MS and to provide new biomarkers for the disease to be used together with clinical data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Metabolic Flux Analysis of Shewanella spp. Reveals Evolutionary Robustness in Central Carbon Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Martin, Hector Garcia; Dehal, Paramvir S.; Deutschbauer, Adam; Llora, Xavier; Meadows, Adam; Arkin, Adam; Keasling, Jay D.

    2009-08-19

    Shewanella spp. are a group of facultative anaerobic bacteria widely distributed in marine and fresh-water environments. In this study, we profiled the central metabolic fluxes of eight recently sequenced Shewanella species grown under the same condition in minimal med-ium with [3-13C] lactate. Although the tested Shewanella species had slightly different growth rates (0.23-0.29 h31) and produced different amounts of acetate and pyruvate during early exponential growth (pseudo-steady state), the relative intracellular metabolic flux distributions were remarkably similar. This result indicates that Shewanella species share similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: the maintenance of metabolic robustness is not only evident in a single species under genetic perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636-640), but also observed through evolutionary related microbial species. This remarkable conservation of relative flux profiles through phylogenetic differences prompts us to introduce the concept of metabotype as an alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display flexibility in the relative flux profiles when switching their metabolism from consuming lactate to consuming pyruvate and acetate.

  18. Analysis of the gyroscopic stabilization of a system of rigid bodies

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Seyranian, Alexander P.

    1997-01-01

    We study the gyroscopic stability of a three-body system. A new method of finding stability regions, based on mechanism and criteria for gyroscopic stabilization, is presented. Of particular interest in this connection is the theory of interaction of eigenvalues. This leads to a complete 3......-dimensional analysis, which shows the regions of stability, divergence, and flutter of a simple model of a rotating spaceship....

  19. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8.

    Science.gov (United States)

    Swarup, Aditi; Lu, Jing; DeWoody, Kathleen C; Antoniewicz, Maciek R

    2014-07-01

    Thermus thermophilus is an extremely thermophilic bacterium with significant biotechnological potential. In this work, we have characterized aerobic growth characteristics of T. thermophilus HB8 at temperatures between 50 and 85°C, constructed a metabolic network model of its central carbon metabolism and validated the model using (13)C-metabolic flux analysis ((13)C-MFA). First, cells were grown in batch cultures in custom constructed mini-bioreactors at different temperatures to determine optimal growth conditions. The optimal temperature for T. thermophilus grown on defined medium with glucose was 81°C. The maximum growth rate was 0.25h(-1). Between 50 and 81°C the growth rate increased by 7-fold and the temperature dependence was described well by an Arrhenius model with an activation energy of 47kJ/mol. Next, we performed a (13)C-labeling experiment with [1,2-(13)C] glucose as the tracer and calculated intracellular metabolic fluxes using (13)C-MFA. The results provided support for the constructed network model and highlighted several interesting characteristics of T. thermophilus metabolism. We found that T. thermophilus largely uses glycolysis and TCA cycle to produce biosynthetic precursors, ATP and reducing equivalents needed for cells growth. Consistent with its proposed metabolic network model, we did not detect any oxidative pentose phosphate pathway flux or Entner-Doudoroff pathway activity. The biomass precursors erythrose-4-phosphate and ribose-5-phosphate were produced via the non-oxidative pentose phosphate pathway, and largely via transketolase, with little contribution from transaldolase. The high biomass yield on glucose that was measured experimentally was also confirmed independently by (13)C-MFA. The results presented here provide a solid foundation for future studies of T. thermophilus and its metabolic engineering applications.

  20. Metabolic Engineering: Techniques for analysis of targets for genetic manipulations

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1998-01-01

    enzymes. Despite the prospect of obtaining major improvement through metabolic engineering, this approach is, however, not expected to completely replace the classical approach to strain improvement-random mutagenesis followed by screening. Identification of the optimal genetic changes for improvement......Metabolic engineering has been defined as the purposeful modification of intermediary metabolism using recombinant DNA techniques. With this definition metabolic engineering includes: (1) inserting new pathways in microorganisms with the aim of producing novel metabolites, e.g., production...... of polyketides by Streptomyces; (2) production of heterologous peptides, e.g., production of human insulin, erythropoitin, and tPA; and (3) improvement of both new and existing processes, e.g., production of antibiotics and industrial enzymes. Metabolic engineering is a multidisciplinary approach, which involves...

  1. O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells.

    Science.gov (United States)

    Itkonen, Harri M; Minner, Sarah; Guldvik, Ingrid J; Sandmann, Mareike Julia; Tsourlakis, Maria Christina; Berge, Viktor; Svindland, Aud; Schlomm, Thorsten; Mills, Ian G

    2013-08-15

    Metabolic disruptions that occur widely in cancers offer an attractive focus for generalized treatment strategies. The hexosamine biosynthetic pathway (HBP) senses metabolic status and produces an essential substrate for O-linked β-N-acetylglucosamine transferase (OGT), which glycosylates and thereby modulates the function of its target proteins. Here, we report that the HBP is activated in prostate cancer cells and that OGT is a central regulator of c-Myc stability in this setting. HBP genes were overexpressed in human prostate cancers and androgen regulated in cultured human cancer cell lines. Immunohistochemical analysis of human specimens (n = 1987) established that OGT is upregulated at the protein level and that its expression correlates with high Gleason score, pT and pN stages, and biochemical recurrence. RNA interference-mediated siliencing or pharmacologic inhibition of OGT was sufficient to decrease prostate cancer cell growth. Microarray profiling showed that the principal effects of OGT inhibition in prostate cancer cells were related to cell-cycle progression and DNA replication. In particular, c-MYC was identified as a candidate upstream regulator of OGT target genes and OGT inhibition elicited a dose-dependent decrease in the levels of c-MYC protein but not c-MYC mRNA in cell lines. Supporting this relationship, expression of c-MYC and OGT was tightly correlated in human prostate cancer samples (n = 1306). Our findings identify HBP as a modulator of prostate cancer growth and c-MYC as a key target of OGT function in prostate cancer cells.

  2. Short sleep duration predicts risk of metabolic syndrome: a systematic review and meta-analysis.

    Science.gov (United States)

    Xi, Bo; He, Dan; Zhang, Min; Xue, Jian; Zhou, Donghao

    2014-08-01

    Sleep duration has been suggested to play a key role in the development of metabolic syndrome (MS). However, the results have been inconsistent. The objective of this study was to clarify the association between sleep duration and MS risk. PubMed and Embase databases were searched for eligible publications. Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated using random- or fixed-model. A total of 12 studies (18,720 MS cases and 70,833 controls) were included in the meta-analysis. Short sleep duration was significantly associated with increased risk of MS (OR = 1.27, 95%CI = 1.09-1.47, p = 0.002). Long sleep duration was not associated with increased risk of MS (OR = 1.07, 95%CI = 0.87-1.32, p = 0.535). Similar results were found in both men and women. The sensitivity analysis confirmed the stability of the results and no publication bias was detected. The present meta-analysis suggests that short rather than long sleep duration is significantly associated with risk of MS. Large-scale well-design prospective studies are required to further investigate the association between sleep duration and MS risk.

  3. Community health orientation of Indian Journal of Endocrinology and Metabolism: A bibliometric analysis of Indian Journal of Endocrinology and Metabolism

    Directory of Open Access Journals (Sweden)

    Kanica Kaushal

    2015-01-01

    Full Text Available Background: Endocrine and metabolic diseases especially diabetes have become focus areas for public health professionals. Indian Journal of Endocrinology and Metabolism (IJEM, a publication of Endocrine Society of India, is a peer-reviewed online journal, which covers technical and clinical studies related to health, ethical and social issues in field of diabetes, endocrinology and metabolism. This bibliometric analysis assesses the journal from a community health perspective. Materials and Methods: Every article published in IJEM over a period of 4 years (2011-2014 was accessed to review coverage of community health in the field of endocrinology. Results: Seven editorials, 30 review articles, 41 original articles, 12 brief communications, 20 letter to editors, 4 articles on guidelines and 2 in the section "endocrinology and gender" directly or indirectly dealt with community health aspects of endocrinology. Together these amounted to 17% of all articles published through these 4 years. There were 14 articles on general, 60 pertaining to pancreas and diabetes, 10 on thyroid, 7 on pituitary/adrenal/gonads, 21 on obesity and metabolism and 4 on parathyroid and bone; all community medicine related. Conclusion: Community health is an integral part of the modern endocrinology diabetology and metabolism practice and it received adequate journal space during the last 4 years. The coverage is broad based involving all the major endocrine disorders.

  4. Community health orientation of Indian Journal of Endocrinology and Metabolism: A bibliometric analysis of Indian Journal of Endocrinology and Metabolism

    Science.gov (United States)

    Kaushal, Kanica; Kalra, Sanjay

    2015-01-01

    Background: Endocrine and metabolic diseases especially diabetes have become focus areas for public health professionals. Indian Journal of Endocrinology and Metabolism (IJEM), a publication of Endocrine Society of India, is a peer-reviewed online journal, which covers technical and clinical studies related to health, ethical and social issues in field of diabetes, endocrinology and metabolism. This bibliometric analysis assesses the journal from a community health perspective. Materials and Methods: Every article published in IJEM over a period of 4 years (2011–2014) was accessed to review coverage of community health in the field of endocrinology. Results: Seven editorials, 30 review articles, 41 original articles, 12 brief communications, 20 letter to editors, 4 articles on guidelines and 2 in the section “endocrinology and gender” directly or indirectly dealt with community health aspects of endocrinology. Together these amounted to 17% of all articles published through these 4 years. There were 14 articles on general, 60 pertaining to pancreas and diabetes, 10 on thyroid, 7 on pituitary/adrenal/gonads, 21 on obesity and metabolism and 4 on parathyroid and bone; all community medicine related. Conclusion: Community health is an integral part of the modern endocrinology diabetology and metabolism practice and it received adequate journal space during the last 4 years. The coverage is broad based involving all the major endocrine disorders. PMID:25932398

  5. A comprehensive metabolic profile of cultured astrocytes using isotopic transient metabolic flux analysis and 13C-labeled glucose

    Directory of Open Access Journals (Sweden)

    Ana I Amaral

    2011-09-01

    Full Text Available Metabolic models have been used to elucidate important aspects of brain metabolism in recent years. This work applies for the first time the concept of isotopic transient 13C metabolic flux analysis (MFA to estimate intracellular fluxes of cultured astrocytes. This methodology comprehensively explores the information provided by 13C labeling time-courses of intracellular metabolites after administration of a 13C labeled substrate. Cells were incubated with medium containing [1-13C]glucose for 24 h and samples of cell supernatant and extracts collected at different time-points were then analyzed by mass spectrometry and/or HPLC. Metabolic fluxes were estimated by fitting a carbon labeling network model to isotopomer profiles experimentally determined. Both the fast isotopic equilibrium of glycolytic metabolite pools and the slow labeling dynamics of TCA cycle intermediates are described well by the model. The large pools of glutamate and aspartate which are linked to the TCA cycle via reversible aminotransferase reactions are likely to be responsible for the observed delay in equilibration of TCA cycle intermediates. Furthermore, it was estimated that 11% of the glucose taken up by astrocytes was diverted to the pentose phosphate pathway. In addition, considerable fluxes through pyruvate carboxylase (PC (PC/pyruvate dehydrogenase (PDH ratio = 0.5, malic enzyme (5% of the total pyruvate production and catabolism of branched-chained amino acids (contributing with ~40% to total acetyl-CoA produced confirmed the significance of these pathways to astrocytic metabolism. Consistent with the need of maintaining cytosolic redox potential, the fluxes through the malate-aspartate shuttle and the PDH pathway were comparable. Finally, the estimated glutamate/α-ketoglutarate exchange rate (~0.7 µmol.mg prot-1.h-1 was similar to the TCA cycle flux. In conclusion, this work demonstrates the potential of isotopic transient MFA for a comprehensive analysis of

  6. Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells

    LENUS (Irish Health Repository)

    Burleigh, Susan C

    2011-10-18

    Abstract Background The glycosylation of recombinant proteins can be altered by a range of parameters including cellular metabolism, metabolic flux and the efficiency of the glycosylation process. We present an experimental set-up that allows determination of these key processes associated with the control of N-linked glycosylation of recombinant proteins. Results Chinese hamster ovary cells (CHO) were cultivated in shake flasks at 0 mM glutamine and displayed a reduced growth rate, glucose metabolism and a slower decrease in pH, when compared to other glutamine-supplemented cultures. The N-linked glycosylation of recombinant human chorionic gonadotrophin (HCG) was also altered under these conditions; the sialylation, fucosylation and antennarity decreased, while the proportion of neutral structures increased. A continuous culture set-up was subsequently used to understand the control of HCG glycosylation in the presence of varied glutamine concentrations; when glycolytic flux was reduced in the absence of glutamine, the glycosylation changes that were observed in shake flask culture were similarly detected. The intracellular content of UDP-GlcNAc was also reduced, which correlated with a decrease in sialylation and antennarity of the N-linked glycans attached to HCG. Conclusions The use of metabolic flux analysis illustrated a case of steady state multiplicity, where use of the same operating conditions at each steady state resulted in altered flux through glycolysis and the TCA cycle. This study clearly demonstrated that the control of glycoprotein microheterogeneity may be examined by use of a continuous culture system, metabolic flux analysis and assay of intracellular nucleotides. This system advances our knowledge of the relationship between metabolic flux and the glycosylation of biotherapeutics in CHO cells and will be of benefit to the bioprocessing industry.

  7. Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells

    Directory of Open Access Journals (Sweden)

    Rudd Pauline M

    2011-10-01

    Full Text Available Abstract Background The glycosylation of recombinant proteins can be altered by a range of parameters including cellular metabolism, metabolic flux and the efficiency of the glycosylation process. We present an experimental set-up that allows determination of these key processes associated with the control of N-linked glycosylation of recombinant proteins. Results Chinese hamster ovary cells (CHO were cultivated in shake flasks at 0 mM glutamine and displayed a reduced growth rate, glucose metabolism and a slower decrease in pH, when compared to other glutamine-supplemented cultures. The N-linked glycosylation of recombinant human chorionic gonadotrophin (HCG was also altered under these conditions; the sialylation, fucosylation and antennarity decreased, while the proportion of neutral structures increased. A continuous culture set-up was subsequently used to understand the control of HCG glycosylation in the presence of varied glutamine concentrations; when glycolytic flux was reduced in the absence of glutamine, the glycosylation changes that were observed in shake flask culture were similarly detected. The intracellular content of UDP-GlcNAc was also reduced, which correlated with a decrease in sialylation and antennarity of the N-linked glycans attached to HCG. Conclusions The use of metabolic flux analysis illustrated a case of steady state multiplicity, where use of the same operating conditions at each steady state resulted in altered flux through glycolysis and the TCA cycle. This study clearly demonstrated that the control of glycoprotein microheterogeneity may be examined by use of a continuous culture system, metabolic flux analysis and assay of intracellular nucleotides. This system advances our knowledge of the relationship between metabolic flux and the glycosylation of biotherapeutics in CHO cells and will be of benefit to the bioprocessing industry.

  8. Linear Stability Analysis of Compressible Channel Flow with Porous Walls

    CERN Document Server

    Rahbari, Iman

    2015-01-01

    We have investigated the effects of permeable walls, modeled by linear acoustic impedance with zero reactance, on compressible channel flow via linear stability analysis (LSA). Base flow profiles are taken from impermeable isothermal-wall laminar and turbulent channel flow simulations at bulk Reynolds number, $Re_b$= 6900 and Mach numbers, $M_b$ = 0.2, 0.5, 0.85. For a sufficiently high value of permeability, two dominant modes are excited: a bulk pressure mode, causing symmetric expulsion and suction of mass from the porous walls (Mode 0); a standing-wave-like mode, with a pressure node at the centerline (Mode 1). In the case of turbulent mean flow profiles, both modes generate additional Reynolds shear stresses augmenting the (base) turbulent ones, but concentrated in the viscous sublayer region; the trajectories of the two modes in the complex phase velocity space follow each other very closely for values of wall permeability spanning two orders of magnitude, suggesting their coexistence. The transition fr...

  9. Slope stability analysis using limit equilibrium method in nonlinear criterion.

    Science.gov (United States)

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.

  10. Stability analysis of lower dimensional gravastars in noncommutative geometry

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata (India); Hansraj, Sudan [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2016-11-15

    The Banados et al. (Phys. Rev. Lett 69:1849, 1992), black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry (Phys. Rev. D 87:084014, 2013). In this article, we explore the exact gravastar solutions in three-dimensional anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size √(α) and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, a stability analysis is carried out for the specific case when χ < 0.214 under radial perturbations about the static equilibrium solutions. To give theoretical support we are also trying to explore their physical properties and characteristics. (orig.)

  11. Stability Analysis of Reactive Multiphase Slug Flows in Microchannels

    Directory of Open Access Journals (Sweden)

    Alejandro A. Munera Parra

    2014-05-01

    Full Text Available Conducting multiphase reactions in micro-reactors is a promising strategy for intensifying chemical and biochemical processes. A major unresolved challenge is to exploit the considerable benefits offered by micro-scale operation for industrial scale throughputs by numbering-up whilst retaining the underlying advantageous flow characteristics of the single channel system in multiple parallel channels. Fabrication and installation tolerances in the individual micro-channels result in different pressure losses and, thus, a fluid maldistribution. In this work, an additional source of maldistribution, namely the flow multiplicities, which can arise in a multiphase reactive or extractive flow in otherwise identical micro-channels, was investigated. A detailed experimental and theoretical analysis of the flow stability with and without reaction for both gas-liquid and liquid-liquid slug flow has been developed. The model has been validated using the extraction of acetic acid from n-heptane with the ionic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate. The results clearly demonstrate that the coupling between flow structure, the extent of reaction/extraction and pressure drop can result in multiple operating states, thus, necessitating an active measurement and control concept to ensure uniform behavior and optimal performance.

  12. Lidov-Kozai Mechanism in Hydrodynamical Disks: Linear Stability Analysis

    Science.gov (United States)

    Zanazzi, J. J.; Lai, Dong

    2017-01-01

    Recent SPH simulations by Martin et al. (2014) suggest a circumstellar gaseous disk may exhibit coherent eccentricity-inclination oscillations due to the tidal forcing of an inclined binary companion, in a manner that resembles Lidov-Kozai oscillations in hierarchical triple systems. We carry out linear stability analysis for the eccentricity growth of circumstellar disks in binaries, including the effects of gas pressure and viscosity and secular (orbital-averaged) tidal force from the inclined companion. We find that the growth of disk eccentricity depends on the dimensionless ratio (S) between c_s^2 (the disk sound speed squared) and the tidal torque acting on the disk (per unit mass) from the companion. For S ≪ 1, the standard Lidov-Kozai result is recovered for a thin disk annulus: eccentricity excitation occurs when the mutual inclination I between the disk and binary lies between 39° and 141°. As S increases, the inclination window for eccentricity growth generally becomes narrower. For S ≳ a few, eccentricity growth is suppressed for all inclination angles. Surprisingly, we find that for S ˜ 1 and certain disk density/pressure profiles, eccentricity excitation can occur even when I is much less than 39°.

  13. Crack stability analysis of low alloy steel primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  14. Stability analysis of Lower Dimensional Gravastars in noncommutative geometry

    CERN Document Server

    Banerjee, Ayan

    2016-01-01

    The Ba\\~{n}ados, Teitelboim and Zanelli \\cite{BTZ1992}, black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry \\cite{Rahaman(2013)}. In this article, we explore the exact gravastar solutions in three-dimension anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size $\\sqrt{\\alpha}$ and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, stability analysis is carried out for the dynamic case for the specific case when $\\chi < 0. 214$ under radial perturbations about static equilibrium solutions. To give theoretical support we also trying to explore...

  15. Pod yield stability analysis of runner peanut lines using AMMI

    Directory of Open Access Journals (Sweden)

    Eder Jorge de Oliveira

    2006-01-01

    Full Text Available The interaction between genotypes and environment (GxE can influence the selection process andrecommendation of peanut cultivars. The objective of this study was therefore to evaluate the influence of GxE interaction ofpeanut pod yield using AMMI. The yield of 18 peanut lines and the cultivars IAC Caiapo and Runner IAC 886 was assessedin 10 field trials in the state of São Paulo. Significant effects of genotypes, environments and GxE interactions were detected inthe analysis. The first AMMI principal component (IPCA1 explained 42.3% of the sum of squares of the GxE interaction.Sixteen of the twenty lines/cultivars under evaluation presented medium to high stability. Genotypes L127, L118, L123 line andRunner IAC 886 accounted for the greatest part of GxE interaction. Lines L132, L149 and L1-50P presented the higheststability and pod yields, above the overall mean, reflecting outstanding potential for cultivar recommendation.

  16. Stability analysis of convection in the intracluster medium

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, H., E-mail: hiugupta@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, U.P. 208016 (India); Rathor, S.K., E-mail: skrathor@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, U.P. 208016 (India); Pessah, M.E., E-mail: mpessah@nbi.dk [Niels Bohr International Academy, Niels Bohr Institute, 2100, Copenhagen Ø (Denmark); Chakraborty, S., E-mail: sagarc@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, U.P. 208016 (India); Mechanics & Applied Mathematics Group, Indian Institute of Technology Kanpur, U.P. 208016 (India)

    2016-07-15

    We use the machinery usually employed for studying the onset of Rayleigh–Bénard convection in hydro- and magnetohydro-dynamic settings to address the onset of convection induced by the magnetothermal instability and the heat-flux-buoyancy-driven-instability in the weakly-collisional magnetized plasma permeating the intracluster medium. Since most of the related numerical simulations consider the plasma being bounded between two ‘plates’ on which boundary conditions are specified, our strategy provides a framework that could enable a more direct connection between analytical and numerical studies. We derive the conditions for the onset of these instabilities considering the effects of induced magnetic tension resulting from a finite plasma beta. We provide expressions for the Rayleigh number in terms of the wave vector associated with a given mode, which allow us to characterize the modes that are first to become unstable. For both the heat-flux-buoyancy-driven-instability and the magnetothermal instability, oscillatory marginal stable states are possible. - Highlights: • Stability analysis of the HBI and the MTI are presented taking into account the boundary conditions employed in the simulations. • It has been shown that the HBI doesn't set in as an oscillatory marginal state whereas the MTI can do so. • The HBI and the MTI criteria have been modified to include the affects of the magnetic tension.

  17. Preliminary Analysis of Slope Stability in Kuok and Surrounding Areas

    Directory of Open Access Journals (Sweden)

    Dewandra Bagus Eka Putra

    2016-12-01

    Full Text Available The level of slope influenced by the condition of the rocks beneath the surface. On high level of slopes, amount of surface runoff and water transport energy is also enlarged. This caused by greater gravity, in line with the surface tilt from the horizontal plane. In other words, topsoil eroded more and more. When the slope becomes twice as steep, then the amount of erosion per unit area be 2.0 - 2.5 times more. Kuok and surrounding area is the road access between the West Sumatra and Riau which plays an important role economies of both provinces. The purpose of this study is to map the locations that have fairly steep slopes and potential mode of landslides. Based on SRTM data obtained,  the roads in Kuok area has a minimum elevation of + 33 m and a maximum  + 217.329 m. Rugged road conditions with slope ranging from 24.08 ° to 44.68 ° causing this area having frequent landslides. The result of slope stability analysis in a slope near the Water Power Plant Koto Panjang, indicated that mode of active failure is toppling failure or rock fall and the potential zone of failure is in the center part of the slope.

  18. Genome-Wide Analysis of Human MicroRNA Stability

    Directory of Open Access Journals (Sweden)

    Yang Li

    2013-01-01

    Full Text Available Increasing studies have shown that microRNA (miRNA stability plays important roles in physiology. However, the global picture of miRNA stability remains largely unknown. Here, we had analyzed genome-wide miRNA stability across 10 diverse cell types using miRNA arrays. We found that miRNA stability shows high dynamics and diversity both within individual cells and across cell types. Strikingly, we observed a negative correlation between miRNA stability and miRNA expression level, which is different from current findings on other biological molecules such as proteins and mRNAs that show positive and not negative correlations between stability and expression level. This finding indicates that miRNA has a distinct action mode, which we called “rapid production, rapid turnover; slow production, slow turnover.” This mode further suggests that high expression miRNAs normally degrade fast and may endow the cell with special properties that facilitate cellular status-transition. Moreover, we revealed that the stability of miRNAs is affected by cohorts of factors that include miRNA targets, transcription factors, nucleotide content, evolution, associated disease, and environmental factors. Together, our results provided an extensive description of the global landscape, dynamics, and distinct mode of human miRNA stability, which provide help in investigating their functions in physiology and pathophysiology.

  19. Robust Stability Analysis of Nonlinear Switched Systems with Filippov Solutions

    DEFF Research Database (Denmark)

    Ahmadi, Mohamadreza; Mojallali, Hamed; Wisniewski, Rafal

    2012-01-01

    . Based on the theory of differential inclusions, a Lyapunov stability theorem is brought forward. These results are also extended to autonomous switched systems subject to polytopic uncertainty. Furthermore, the proposed stability theorems are reformulated using the sum of squares decomposition method...... which provides sufficient means to construct the corresponding Lyapunov functions via available semi-definite programming techniques....

  20. Stability analysis of generalized predictive control based on Kleinman's controllers

    Institute of Scientific and Technical Information of China (English)

    DING Baocang; XI Yugeng

    2004-01-01

    With Kleinman's controller, its extended form and Riccati iteration as analyzing tools, the stability of GPC under various parameter cases is discussed. The overall closed-loop stability conclusions of GPC in equivalence with Kleinman's controller are obtained, which cover some existing results and provide the theoretical foundation for stable design of predictive control.

  1. Stability analysis of a class of fractional delay differential equations

    Indian Academy of Sciences (India)

    Sachin B Bhalekar

    2013-08-01

    In this paper we analyse stability of nonlinear fractional order delay differential equations of the form $D^{} y(t) = af(y(t - )) - {\\text{by}} (t)$, where $D^{}$ is a Caputo fractional derivative of order 0 < ≤ 1. We describe stability regions using critical curves. To explain the proposed theory, we discuss fractional order logistic equation with delay.

  2. Determination of bone metabolic marker levels in perio-implant crevicular fluid and analysis of dental implants stability by resonance frequency in the early stage of healing%早期愈合阶段牙种植体周沟液骨代谢相关因子的检测和种植体稳定性共振频率分析

    Institute of Scientific and Technical Information of China (English)

    韩劼; 陈智滨; 李玮; 孟焕新

    2015-01-01

    Objective: To investigate the changes of osteoprotegerin ( OPG) and receptor activator of nuclear factor kappa B ligand ( RANKL) level in perio-implant crevicular fluid ( PICF) and to monitor the development of the stability of Straumann ® tissue-level implants by resonance frequency analysis ( RFA) during the early phases of healing .Methods: A total of 35 implants ( length 10 mm ) were placed.PICF samples were collected with filter paper strips at baseline , 1, 2, 3, 4, 6, 8, and 12 weeks post-surgery, respectively.The OPG, RANKL levels were determined by ELISA method .At the same time points, the implant stability quotient (ISQ) values were determined with Osstell TM mentor.Results:During healing , PICF-OPG levels increased significantly 2 weeks after surgery when compared with the 4th-, 6th-, 8th-and 12th-week reevaluation (P<0.05).The OPG/RANKL ratio in PICF was significantly higher ( P<0 .05 ) than that in gingival crevicular fluid at 1 week post-surgery .ISQ slightly fluctuated within the first 4 weeks after installation .Following this, the ISQ values increased steadily for all the implants and up to 12 weeks.Significant differences were noted between the mean ISQ values at the 12th-week and other observation time points .Conclusion: The PICF-OPG levels may be effective in monito-ring the process of osseointegration .All the ISQ values indicated the stability of Straumann ® implants over a 12-week healing period .RFA is a reliable and effective assistant to monitor implant stability .%目的:观察牙种植体周沟液中骨保护素( osteoprotegerin,OPG)、核因子κB受体活化因子配体( receptor activator of nuclear factor kappa B ligand , RANKL)在Straumann®种植体骨愈合期的动态变化,结合种植体稳定性变化情况的共振频率分析,评价种植体周沟液和共振频率分析在监测种植体周围软组织健康状况和骨组织的改建更新过程中的作用。方法:35例牙齿缺失患者非潜

  3. Stability analysis of single planet systems and their habitable zones

    CERN Document Server

    Kopparapu, Ravi kumar

    2010-01-01

    We study the dynamical stability of planetary systems consisting of one hypothetical terrestrial mass planet ($1 $ or $10 \\mearth$) and one massive planet ($10 \\mearth - 10 \\mjup$). We consider masses and orbits that cover the range of observed planetary system architectures (including non-zero initial eccentricities), determine the stability limit through N-body simulations, and compare it to the analytic Hill stability boundary. We show that for given masses and orbits of a two planet system, a single parameter, which can be calculated analytically, describes the Lagrange stability boundary (no ejections or exchanges) but which diverges significantly from the Hill stability boundary. However, we do find that the actual boundary is fractal, and therefore we also identify a second parameter which demarcates the transition from stable to unstable evolution. We show the portions of the habitable zones of $\\rho$ CrB, HD 164922, GJ 674, and HD 7924 which can support a terrestrial planet. These analyses clarify th...

  4. Effects of long-term zinc treatment in Japanese patients with Wilson disease: efficacy, stability, and copper metabolism.

    Science.gov (United States)

    Shimizu, Norikazu; Fujiwara, Junko; Ohnishi, Shin; Sato, Mari; Kodama, Hiroko; Kohsaka, Takao; Inui, Ayano; Fujisawa, Tomoo; Tamai, Hiroshi; Ida, Shinobu; Itoh, Susumu; Ito, Michinori; Horiike, Norio; Harada, Masaru; Yoshino, Makoto; Aoki, Tsugutoshi

    2010-12-01

    Wilson disease is an autosomal recessive disorder with copper metabolism. In Japan, the standard treatment is the administration of copper chelating agents, such as D-penicillamine and trientine. In this study, the authors used zinc acetate to treat Japanese patients with Wilson disease and investigated its efficacy. The 37 patients that comprise this study were found to have Wilson disease using clinical and biochemical tests and were administrated zinc acetate for 48 weeks. The authors followed the clinical symptoms and laboratory findings of the patients by assessing their complete blood counts, biochemical findings, as well as the results of urinalysis and special laboratory tests for copper and zinc metabolism. We also examined side effects of the treatment. Zinc acetate did not aggravate the hepatic or neurological symptoms of any of the patients. Blood biochemical analysis also did not reveal elevation of alanine aminotransferase, aspartate aminotransferase, and γ-glutamyltranspeptidase levels. Zinc treatment did not aggravate the patients' clinical signs and/or laboratory findings. However, it did improve some clinical symptoms of the Wilson disease patients. Although this agent had some side effects, none of them were severe. The authors measured spot urinary copper excretion, which gave an indication of the efficacy of treatment and of the sufficient dosage of zinc. We recommend maintaining a spot urinary copper excretion less than 0.075-μg/mg creatinine. The authors conclude that zinc acetate is an effective and safe treatment for Japanese patients with Wilson disease.

  5. Perturbation Experiments: Approaches for Metabolic Pathway Analysis in Bioreactors.

    Science.gov (United States)

    Weiner, Michael; Tröndle, Julia; Albermann, Christoph; Sprenger, Georg A; Weuster-Botz, Dirk

    2016-01-01

    In the last decades, targeted metabolic engineering of microbial cells has become one of the major tools in bioprocess design and optimization. For successful application, a detailed knowledge is necessary about the relevant metabolic pathways and their regulation inside the cells. Since in vitro experiments cannot display process conditions and behavior properly, process data about the cells' metabolic state have to be collected in vivo. For this purpose, special techniques and methods are necessary. Therefore, most techniques enabling in vivo characterization of metabolic pathways rely on perturbation experiments, which can be divided into dynamic and steady-state approaches. To avoid any process disturbance, approaches which enable perturbation of cell metabolism in parallel to the continuing production process are reasonable. Furthermore, the fast dynamics of microbial production processes amplifies the need of parallelized data generation. These points motivate the development of a parallelized approach for multiple metabolic perturbation experiments outside the operating production reactor. An appropriate approach for in vivo characterization of metabolic pathways is presented and applied exemplarily to a microbial L-phenylalanine production process on a 15 L-scale.

  6. Analysis of the linear stability of compressible boundary layers using the PSE. [parabolic stability equations

    Science.gov (United States)

    Bertolotti, F. P.; Herbert, TH.

    1991-01-01

    The application of linearized parabolic stability equations (PSE) to compressible flow is considered. The effect of mean-flow nonparallelism is found to be weak on 2D waves and strong on 3D waves. Results for a single choice of free-stream parameters that corresponds to the atmospheric conditions at 15,000 m above sea level are presented.

  7. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis

    OpenAIRE

    Emilio M. Ungerfeld

    2015-01-01

    Maximizing the flow of metabolic hydrogen ([H]) in the rumen away from CH4 and towards volatile fatty acids (VFA) would increase the efficiency of ruminant production and decrease its environmental impact. The objectives of this meta-analysis were: i) To quantify shifts in metabolic hydrogen sinks when inhibiting ruminal methanogenesis in vitro; and ii) To understand the variation in shifts of metabolic hydrogen sinks among experiments and between batch and continuous cultures systems when me...

  8. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis.

    Science.gov (United States)

    He, Fei; Fromion, Vincent; Westerhoff, Hans V

    2013-11-21

    Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. This study integrates control engineering and classical MCA augmented with supply-demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the 'integral control' (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of 'integral control' should rarely be expected to lead to the 'perfect adaptation': although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems

  9. A stability analysis of a real space split operator method for the Klein-Gordon equation

    CERN Document Server

    Blumenthal, Frederick

    2011-01-01

    We carry out a stability analysis for the real space split operator method for the propagation of the time-dependent Klein-Gordon equation that has been proposed in J. Comput. Phys. 228 (24) (2009) 9092-9106. The region of algebraic stability is determined analytically by means of a von-Neumann stability analysis for systems with homogeneous scalar and vector potentials. Algebraic stability implies convergence of the real space split operator method for smooth absolutely integrable initial conditions. In the limit of small spatial grid spacings h in each of the d spatial dimensions and small temporal steps, the stability condition becomes h/{\\tau}>\\surddc for second order finite differences and \\surd3h/(2{\\tau})>\\surddc for fourth order finite differences, respectively, with c denoting the speed of light. Furthermore, we demonstrate numerically that the stability region for systems with inhomogeneous potentials coincides almost with the region of algebraic stability for homogeneous potentials.

  10. Stability analysis of discrete-time BAM neural networks based on standard neural network models

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sen-lin; LIU Mei-qin

    2005-01-01

    To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks.

  11. Stability Analysis of Train Movement with Uncertain Factors

    Directory of Open Access Journals (Sweden)

    JingJing Ye

    2015-01-01

    Full Text Available We propose a new traffic model which is based on the traditional OV (optimal velocity car-following model. Here, some realistic factors are regarded as uncertain quantity, such as the headway distance. Our aim is to analyze and discuss the stability of car-following model under the constraint of uncertain factors. Then, according to the principle of expected value in fuzzy theory, an improved OV traffic model is constructed. Simulation results show that our proposed model can avoid collisions effectively under uncertain environment, and its stability can also be improved. Moreover, we discuss its stability as some parameters change, such as the relaxation time.

  12. Stochastic Stability Analysis for Markovian Jump Neutral Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2012-10-01

    Full Text Available In this paper, the stability problem is studied for a class of Markovian jump neutral nonlinear systems with time-varying delay. By Lyapunov-Krasovskii function approach, a novel mean-square exponential stability criterion is derived for the situations that the system's transition rates are completely accessible, partially accessible and non-accessible, respectively. Moreover, the developed stability criterion is extended to the systems with different bounded sector nonlinear constraints. Finally, some numerical examples are provided to illustrate the effectiveness of the proposed methods.

  13. Consensus and Stability Analysis of Networked Multiagent Predictive Control Systems.

    Science.gov (United States)

    Liu, Guo-Ping

    2017-04-01

    This paper is concerned with the consensus and stability problem of multiagent control systems via networks with communication delays and data loss. A networked multiagent predictive control scheme is proposed to achieve output consensus and also compensate for the communication delays and data loss actively. The necessary and sufficient conditions of achieving both consensus and stability of the closed-loop networked multiagent control systems are derived. An important result that is obtained is that the consensus and stability of closed-loop networked multiagent predictive control systems are not related to the communication delays and data loss. An example illustrates the performance of the networked multiagent predictive control scheme.

  14. On monolithic stability and reinforcement analysis of high arch dams

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Monolithic stability safety and reinforcement based on monolithic stability are very important for arch dam design.In this paper,the issue is addressed based on deformation reinforcement theory.In this approach,plastic complementary energy norm can be taken as safety Index for monolithic stability.According to deformation reinforcement theory,the areas where unbalanced force exists require reinforcement,and the required reinforcement forces are just the unbalanced forces with opposite direction.Results show that areas with unbalanced force mainly concentrate in dam-toes,dam-heels and faults.

  15. Integrated metabolic flux and omics analysis of Synechocystis sp. PCC 6803 under mixotrophic and photoheterotrophic conditions.

    Science.gov (United States)

    Nakajima, Tsubasa; Kajihata, Shuichi; Yoshikawa, Katsunori; Matsuda, Fumio; Furusawa, Chikara; Hirasawa, Takashi; Shimizu, Hiroshi

    2014-09-01

    Cyanobacteria have flexible metabolic capability that enables them to adapt to various environments. To investigate their underlying metabolic regulation mechanisms, we performed an integrated analysis of metabolic flux using transcriptomic and metabolomic data of a cyanobacterium Synechocystis sp. PCC 6803, under mixotrophic and photoheterotrophic conditions. The integrated analysis indicated drastic metabolic flux changes, with much smaller changes in gene expression levels and metabolite concentrations between the conditions, suggesting that the flux change was not caused mainly by the expression levels of the corresponding genes. Under photoheterotrophic conditions, created by the addition of the photosynthesis inhibitor atrazine in mixotrophic conditions, the result of metabolic flux analysis indicated the significant repression of carbon fixation and the activation of the oxidative pentose phosphate pathway (PPP). Moreover, we observed gluconeogenic activity of upstream of glycolysis, which enhanced the flux of the oxidative PPP to compensate for NADPH depletion due to the inhibition of the light reaction of photosynthesis. 'Omics' data suggested that these changes were probably caused by the repression of the gap1 gene, which functions as a control valve in the metabolic network. Since metabolic flux is the outcome of a complicated interplay of cellular components, integrating metabolic flux with other 'omics' layers can identify metabolic changes and narrow down these regulatory mechanisms more effectively.

  16. Quantitative analysis of cellular metabolic dissipative, self-organized structures

    OpenAIRE

    Ildefonso Martínez de la Fuente

    2010-01-01

    One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the ...

  17. A quantitative analysis of Salmonella Typhimurium metabolism during infection

    OpenAIRE

    Steeb, Benjamin

    2012-01-01

    In this thesis, Salmonella metabolism during infection was investigated. The goal was to gain a quantitative and comprehensive understanding of Salmonella in vivo nutrient supply, utilization and growth. To achieve this goal, we used a combined experimental / in silico approach. First, we generated a reconstruction of Salmonella metabolism ([1], see 2.1). This reconstruction was then combined with in vivo data from experimental mutant phenotypes to build a comprehensive quantitative in viv...

  18. Analysis of complex metabolic behavior through pathway decomposition

    OpenAIRE

    Ip Kuhn; Colijn Caroline; Lun Desmond S

    2011-01-01

    Abstract Background Understanding complex systems through decomposition into simple interacting components is a pervasive paradigm throughout modern science and engineering. For cellular metabolism, complexity can be reduced by decomposition into pathways with particular biochemical functions, and the concept of elementary flux modes provides a systematic way for organizing metabolic networks into such pathways. While decomposition using elementary flux modes has proven to be a powerful tool ...

  19. Analysis of complex metabolic behavior through pathway decomposition

    Directory of Open Access Journals (Sweden)

    Ip Kuhn

    2011-06-01

    Full Text Available Abstract Background Understanding complex systems through decomposition into simple interacting components is a pervasive paradigm throughout modern science and engineering. For cellular metabolism, complexity can be reduced by decomposition into pathways with particular biochemical functions, and the concept of elementary flux modes provides a systematic way for organizing metabolic networks into such pathways. While decomposition using elementary flux modes has proven to be a powerful tool for understanding and manipulating cellular metabolism, its utility, however, is severely limited since the number of modes in a network increases exponentially with its size. Results Here, we present a new method for decomposition of metabolic flux distributions into elementary flux modes. Our method can easily operate on large, genome-scale networks since it does not require all relevant modes of the metabolic network to be generated. We illustrate the utility of our method for metabolic engineering of Escherichia coli and for understanding the survival of Mycobacterium tuberculosis (MTB during infection. Conclusions Our method can achieve computational time improvements exceeding 2000-fold and requires only several seconds to generate elementary mode decompositions on genome-scale networks. These improvements arise from not having to generate all relevant elementary modes prior to initiating the decomposition. The decompositions from our method are useful for understanding complex flux distributions and debugging genome-scale models.

  20. Exometabolom analysis of breast cancer cell lines: Metabolic signature.

    Science.gov (United States)

    Willmann, Lucas; Erbes, Thalia; Halbach, Sebastian; Brummer, Tilman; Jäger, Markus; Hirschfeld, Marc; Fehm, Tanja; Neubauer, Hans; Stickeler, Elmar; Kammerer, Bernd

    2015-08-21

    Cancer cells show characteristic effects on cellular turnover and DNA/RNA modifications leading to elevated levels of excreted modified nucleosides. We investigated the molecular signature of different subtypes of breast cancer cell lines and the breast epithelial cell line MCF-10A. Prepurification of cell culture supernatants was performed by cis-diol specific affinity chromatography using boronate-derivatized polyacrylamide gel. Samples were analyzed by application of reversed phase chromatography coupled to a triple quadrupole mass spectrometer. Collectively, we determined 23 compounds from RNA metabolism, two from purine metabolism, five from polyamine/methionine cycle, one from histidine metabolism and two from nicotinate and nicotinamide metabolism. We observed major differences of metabolite excretion pattern between the breast cancer cell lines and MCF-10A, just as well as between the different breast cancer cell lines themselves. Differences in metabolite excretion resulting from cancerous metabolism can be integrated into altered processes on the cellular level. Modified nucleosides have great potential as biomarkers in due consideration of the heterogeneity of breast cancer that is reflected by the different molecular subtypes of breast cancer. Our data suggests that the metabolic signature of breast cancer cell lines might be a more subtype-specific tool to predict breast cancer, rather than a universal approach.

  1. Joint analysis of epistemic and aleatory uncertainty in stability analysis for geo-hazard assessments

    Science.gov (United States)

    Rohmer, Jeremy; Verdel, Thierry

    2017-04-01

    Uncertainty analysis is an unavoidable task of stability analysis of any geotechnical systems. Such analysis usually relies on the safety factor SF (if SF is below some specified threshold), the failure is possible). The objective of the stability analysis is then to estimate the failure probability P for SF to be below the specified threshold. When dealing with uncertainties, two facets should be considered as outlined by several authors in the domain of geotechnics, namely "aleatoric uncertainty" (also named "randomness" or "intrinsic variability") and "epistemic uncertainty" (i.e. when facing "vague, incomplete or imprecise information" such as limited databases and observations or "imperfect" modelling). The benefits of separating both facets of uncertainty can be seen from a risk management perspective because: - Aleatoric uncertainty, being a property of the system under study, cannot be reduced. However, practical actions can be taken to circumvent the potentially dangerous effects of such variability; - Epistemic uncertainty, being due to the incomplete/imprecise nature of available information, can be reduced by e.g., increasing the number of tests (lab or in site survey), improving the measurement methods or evaluating calculation procedure with model tests, confronting more information sources (expert opinions, data from literature, etc.). Uncertainty treatment in stability analysis usually restricts to the probabilistic framework to represent both facets of uncertainty. Yet, in the domain of geo-hazard assessments (like landslides, mine pillar collapse, rockfalls, etc.), the validity of this approach can be debatable. In the present communication, we propose to review the major criticisms available in the literature against the systematic use of probability in situations of high degree of uncertainty. On this basis, the feasibility of using a more flexible uncertainty representation tool is then investigated, namely Possibility distributions (e

  2. FINANCIAL STABILITY AND PRICE STABILITY: AN EMPIRICAL ANALYSIS IN EURO AREA

    Directory of Open Access Journals (Sweden)

    Cristi Spulbăr

    2012-12-01

    Full Text Available In this paper we study the relationship between price stability and financial stability. We try to determine whether asset prices are useful indicators for determining future inflation rates and we analyze the tensions in the interbank market during the last five years by means of a GARCH (1,1 model. The results show that the interest rate leads to a decrease in the inflation rate, while oil and real estate prices give a positive impulse. Before the crisis, Euribor-Eoniaswap spread had a low volatility. But the intervention of central banks by injecting liquidity into the banking system led to a considerable increase in its volatility. Another explanation for the evolution of this phenomenon is due to the loss of control by the ECB on the MBR and Eoniaswap spread.

  3. Financial Stability – Comparative Analysis: Montenegro, Serbia and the Netherlands

    Directory of Open Access Journals (Sweden)

    Vučinić Milena

    2015-01-01

    Full Text Available The global financial crisis has had far-reaching effects on financial systems and economies all over the world, thus putting the importance of safeguarding financial stability in the focus of interest of the global economy.

  4. Compositional Finite-Time Stability analysis of nonlinear systems

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Blanke, Mogens

    2014-01-01

    for the system but with bounded disturbance. Sufficient conditions for finite-time stability and finite-time boundedness of nonlinear systems as well as a computational method based on sum of squares programming to check the conditions are given. The problem of finite-time stability for a system that consists......This paper, investigates finite-time stability and finite-time boundedness for nonlinear systems with polynomial vector fields. Finite-time stability requires the states of the system to remain a given bounded set in a finite-time interval and finite-time boundedness considers the same problem...... of an interconnection of subsystems is also considered and we show how to decompose the problem into subproblems for each subsystem with coupling constraints. A solution to the problem using sum of squares programming and dual decomposition is presented. The method is demonstrated through some examples....

  5. Kinematic Analysis of a Posterior-stabilized Knee Prosthesis

    Directory of Open Access Journals (Sweden)

    Zhi-Xin Zhao

    2015-01-01

    Full Text Available Background: The goal of total knee arthroplasty (TKA is to restore knee kinematics. Knee prosthesis design plays a very important role in successful restoration. Here, kinematics models of normal and prosthetic knees were created and validated using previously published data. Methods: Computed tomography and magnetic resonance imaging scans of a healthy, anticorrosive female cadaver were used to establish a model of the entire lower limbs, including the femur, tibia, patella, fibula, distal femur cartilage, and medial and lateral menisci, as well as the anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments. The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis, which was then validated by comparison with a previous study. The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0-135° flexion. Results: Both the output data trends and the measured values derived from the normal knee′s kinematics model were very close to the results reported in a previous in vivo study, suggesting that this model can be used for further analyses. The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient, or insufficiently aggressive, "rollback" compared with the lateral femur of the normal knee. In addition, a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis. Conclusions: There were still several differences between the kinematics of the PS knee prosthesis and a normal knee, suggesting room for improving the design of the PS knee prosthesis. The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis.

  6. Kinematic Analysis of a Posterior-stabilized Knee Prosthesis

    Institute of Scientific and Technical Information of China (English)

    Zhi-Xin Zhao; Liang Wen; Tie-Bing Qu; Li-Li Hou; Dong Xiang; Jia Bin

    2015-01-01

    Background:The goal of total knee arthroplasty (TKA) is to restore knee kinematics.Knee prosthesis design plays a very important role in successful restoration.Here,kinematics models of normal and prosthetic knees were created and validated using previously published data.Methods:Computed tomography and magnetic resonance imaging scans of a healthy,anticorrosive female cadaver were used to establish a model of the entire lower limbs,including the femur,tibia,patella,fibula,distal femur cartilage,and medial and lateral menisci,as well as the anterior cruciate,posterior cruciate,medial collateral,and lateral collateral ligaments.The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS) knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis,which was then validated by comparison with a previous study.The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0-135° flexion.Results:Both the output data trends and the measured values derived from the normal knee's kinematics model were very close to the results reported in a previous in vivo study,suggesting that this model can be used for further analyses.The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient,or insufficiently aggressive,"rollback" compared with the lateral femur of the normal knee.In addition,a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis.Conclusions:There were still several differences between the kinematics of the PS knee prosthesis and a normal knee,suggesting room for improving the design of the PS knee prosthesis.The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis.

  7. Asymptotical stability analysis of linear fractional differential systems

    Institute of Scientific and Technical Information of China (English)

    LI Chang-pin; ZHAO Zhen-gang

    2009-01-01

    It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary layer effects in ducts,electromagnetic waves, quantitative finance, quantum evolution of complex systems, and fractional kinetics. In this paper, the asymptotical stability of higher-dimensional linear fractional differential systems with the Riemann-Liouville fractional order and Caputo fractional order were studied. The asymptotical stability theorems were also derived.

  8. Stability and Sensitivity Analysis of Fuzzy Control Systems. Mechatronics Applications

    OpenAIRE

    Radu-Emil Precup; Stefan Preitl

    2006-01-01

    The development of fuzzy control systems is usually performed by heuristicmeans, incorporating human skills, the drawback being in the lack of general-purposedevelopment methods. A major problem, which follows from this development, is theanalysis of the structural properties of the control system, such as stability, controllabilityand robustness. Here comes the first goal of the paper, to present a stability analysismethod dedicated to fuzzy control systems with mechatronics applications bas...

  9. Thermal Stability of Large Al-stabilized Superconducting Magnets Theoritical Analysis of CMS Solenoid.

    CERN Document Server

    Juster, F P

    1998-01-01

    The CMS detector magnet presently under design for the future Large Hadron Collider at CERN is an epoxy-impregnated structure, indirectly cooled by two-phase flow liquid helium. This magnet, based on aluminum-stabilized, mechanically reinforced conductor, is not cryostable : the heat generated by a thermal disturbance can be removed only by thermal diffusivity through the windings. In order to study the thermal stability of the magnet, we have developed numerical codes able to predict the thermal behaviour of an anisotropic and non-homogeneous medium against thermal perturbations due to friction or epoxy cracking. Our 3D finite element codes can calculate the propagation or the recovery of a normal zone in a superconducting magnet, taking into account the current diffusion effect, which strongly affects the heat generated by a transition in the case of large Al-stabilized conductors. Two different codes, CASTEM 2000 and HEATING are described in this paper. We present the results of the CMS Solenoid magnet sta...

  10. A Canonical Correlation Analysis of AIDS Restriction Genes and Metabolic Pathways Identifies Purine Metabolism as a Key Cooperator

    Directory of Open Access Journals (Sweden)

    Hanhui Ye

    2016-01-01

    Full Text Available Human immunodeficiency virus causes a severe disease in humans, referred to as immune deficiency syndrome. Studies on the interaction between host genetic factors and the virus have revealed dozens of genes that impact diverse processes in the AIDS disease. To resolve more genetic factors related to AIDS, a canonical correlation analysis was used to determine the correlation between AIDS restriction and metabolic pathway gene expression. The results show that HIV-1 postentry cellular viral cofactors from AIDS restriction genes are coexpressed in human transcriptome microarray datasets. Further, the purine metabolism pathway comprises novel host factors that are coexpressed with AIDS restriction genes. Using a canonical correlation analysis for expression is a reliable approach to exploring the mechanism underlying AIDS.

  11. Integration of a constraint-based metabolic model of Brassica napus developing seeds with (13)C-metabolic flux analysis.

    Science.gov (United States)

    Hay, Jordan O; Shi, Hai; Heinzel, Nicolas; Hebbelmann, Inga; Rolletschek, Hardy; Schwender, Jorg

    2014-01-01

    The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML) model and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM) standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction (GPR) associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using B. napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for (13)C-Metabolic Flux Analysis ((13)C-MFA) with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from (13)C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA). Using this combined approach we characterize the difference in metabolic flux of developing seeds of two B. napus genotypes contrasting in starch and oil content.

  12. Integration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-Metabolic Flux Analysis

    Directory of Open Access Journals (Sweden)

    Jordan eHay

    2014-12-01

    Full Text Available The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML model and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using Brassica napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for 13C-Metabolic Flux Analysis (13C-MFA with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from 13C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA. Using this combined approach we characterize the difference in metabolic flux of developing seeds of two Brassica napus genotypes contrasting in starch and

  13. Dynamic remedial action scheme using online transient stability analysis

    Science.gov (United States)

    Shrestha, Arun

    Economic pressure and environmental factors have forced the modern power systems to operate closer to their stability limits. However, maintaining transient stability is a fundamental requirement for the operation of interconnected power systems. In North America, power systems are planned and operated to withstand the loss of any single or multiple elements without violating North American Electric Reliability Corporation (NERC) system performance criteria. For a contingency resulting in the loss of multiple elements (Category C), emergency transient stability controls may be necessary to stabilize the power system. Emergency control is designed to sense abnormal conditions and subsequently take pre-determined remedial actions to prevent instability. Commonly known as either Remedial Action Schemes (RAS) or as Special/System Protection Schemes (SPS), these emergency control approaches have been extensively adopted by utilities. RAS are designed to address specific problems, e.g. to increase power transfer, to provide reactive support, to address generator instability, to limit thermal overloads, etc. Possible remedial actions include generator tripping, load shedding, capacitor and reactor switching, static VAR control, etc. Among various RAS types, generation shedding is the most effective and widely used emergency control means for maintaining system stability. In this dissertation, an optimal power flow (OPF)-based generation-shedding RAS is proposed. This scheme uses online transient stability calculation and generator cost function to determine appropriate remedial actions. For transient stability calculation, SIngle Machine Equivalent (SIME) technique is used, which reduces the multimachine power system model to a One-Machine Infinite Bus (OMIB) equivalent and identifies critical machines. Unlike conventional RAS, which are designed using offline simulations, online stability calculations make the proposed RAS dynamic and adapting to any power system

  14. MultiMetEval : Comparative and Multi-Objective Analysis of Genome-Scale Metabolic Models

    NARCIS (Netherlands)

    Zakrzewski, Piotr; Medema, Marnix H.; Gevorgyan, Albert; Kierzek, Andrzej M.; Breitling, Rainer; Takano, Eriko; Fong, Stephen S.

    2012-01-01

    Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the co

  15. MID Max: LC–MS/MS Method for Measuring the Precursor and Product Mass Isotopomer Distributions of Metabolic Intermediates and Cofactors for Metabolic Flux Analysis Applications

    DEFF Research Database (Denmark)

    McCloskey, Douglas; Young, Jamey D.; Xu, Sibei

    2016-01-01

    The analytical challenges to acquire accurate isotopic data of intracellular metabolic intermediates for stationary, nonstationary, and dynamic metabolic flux analysis (MFA) are numerous. This work presents MID Max, a novel LC–MS/MS workflow, acquisition, and isotopomer deconvolution method for MFA...... product spectra) with accuracy and precision. The compounds measured included metabolic intermediates in central carbohydrate metabolism and cofactors of peripheral metabolism (e.g., ATP). Using only a subset of the acquired MIDs, the method was found to improve the precision of flux estimations...... and number of resolved exchange fluxes for wild-type E. coli compared to traditional methods and previously published data sets....

  16. Stability analysis of supercritical-pressure light water-cooled reactor in constant pressure operation

    Energy Technology Data Exchange (ETDEWEB)

    Suhwan, JI; Shirahama, H.; Koshizuka, S.; Oka, Y. [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    2001-07-01

    The purpose of this study is to evaluate the thermal-hydraulic and the thermal-nuclear coupled stabilities of a supercritical pressure light water-cooled reactor. A stability analysis code at supercritical pressure is developed. Using this code, stabilities of full and partial-power reactor operating at supercritical pressure are investigated by the frequency-domain analysis. Two types of SCRs are analyzed; a supercritical light water reactor (SCLWR) and a supercritical water-cooled fast reactor (SCFR). The same stability criteria as Boiling Water Reactor are applied. The thermal-hydraulic stability of SCLWR and SCFR satisfies the criteria with a reasonable orifice loss coefficient. The decay ratio of the thermal-nuclear coupled stability in SCFR is almost zero because of a small coolant density coefficient of the fast reactor. The evaluated decay ratio of the thermal-nuclear coupled stability is 3,41 {approx} 10{sup -V} at 100% power in SCFR and 0,028 at 100% power in SCLWR. The sensitivity is investigated. It is found that the thermal-hydraulic stability is sensitive to the mass flow rate strongly and the thermal-nuclear coupled stability to the coolant density coefficient. The bottom power peak distribution makes the thermal-nuclear stability worse and the thermal-nuclear stability better. (author)

  17. INCA: a computational platform for isotopically non-stationary metabolic flux analysis.

    Science.gov (United States)

    Young, Jamey D

    2014-05-01

    13C flux analysis studies have become an essential component of metabolic engineering research. The scope of these studies has gradually expanded to include both isotopically steady-state and transient labeling experiments, the latter of which are uniquely applicable to photosynthetic organisms and slow-to-label mammalian cell cultures. Isotopomer network compartmental analysis (INCA) is the first publicly available software package that can perform both steady-state metabolic flux analysis and isotopically non-stationary metabolic flux analysis. The software provides a framework for comprehensive analysis of metabolic networks using mass balances and elementary metabolite unit balances. The generation of balance equations and their computational solution is completely automated and can be performed on networks of arbitrary complexity.

  18. Development of a screening approach for exploring cell factory potential through metabolic flux analysis and physiology

    DEFF Research Database (Denmark)

    Knudsen, Peter Boldsen; Nielsen, Kristian Fog; Thykær, Jette

    2012-01-01

    The recent developments within the field of metabolic engineering have significantly increased the speed by which fungal recombinant strains are being constructed, pushing focus towards physiological characterisation and analysis. This raises demand for a tool for diligent analysis of the recombi...... and work-load connected with screening and selection of potential cell factories with attractive properties, compared with more “traditional” methodologies where metabolic flux analysis is applied at a much later state in the characterisation process.......The recent developments within the field of metabolic engineering have significantly increased the speed by which fungal recombinant strains are being constructed, pushing focus towards physiological characterisation and analysis. This raises demand for a tool for diligent analysis...... on a Hamilton robotic system. This method aimed at characterising physiology at two levels: (1) An approach focusing on the traditional growth related parameters, i.e. growth rate, yield coefficients and extracellular metabolites. (2) 13C-labelling experiments, where metabolic fluxes are quantified...

  19. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation

    Energy Technology Data Exchange (ETDEWEB)

    Bordbar, Aarash; Mo, Monica L.; Nakayasu, Ernesto S.; Rutledge, Alexandra C.; Kim, Young-Mo; Metz, Thomas O.; Jones, Marcus B.; Frank, Bryan C.; Smith, Richard D.; Peterson, Scott N.; Hyduke, Daniel R.; Adkins, Joshua N.; Palsson, Bernhard O.

    2012-06-26

    Macrophages are central players in the immune response, manifesting divergent phenotypes to control inflammation and innate immunity through the release of cytokines and other regulatory factor-dependent signaling pathways. In recent years, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features critical for macrophage functions. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of macrophage activation. Metabolites well-known to be associated with immunoactivation (e.g., glucose and arginine) and immunosuppression (e.g., tryptophan and vitamin D3) were amongst the most critical effectors. Intracellular metabolic mechanisms linked to critical suppressive effectors were then assessed, identifying a suppressive role for de novo nucleotide synthesis. Finally, the underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying metabolic connections between activation and metabolic effectors.

  20. Cluster stability in the analysis of mass cytometry data.

    Science.gov (United States)

    Melchiotti, Rossella; Gracio, Filipe; Kordasti, Shahram; Todd, Alan K; de Rinaldis, Emanuele

    2017-01-01

    Manual gating has been traditionally applied to cytometry data sets to identify cells based on protein expression. The advent of mass cytometry allows for a higher number of proteins to be simultaneously measured on cells, therefore providing a means to define cell clusters in a high dimensional expression space. This enhancement, whilst opening unprecedented opportunities for single cell-level analyses, makes the incremental replacement of manual gating with automated clustering a compelling need. To this aim many methods have been implemented and their successful applications demonstrated in different settings. However, the reproducibility of automatically generated clusters is proving challenging and an analytical framework to distinguish spurious clusters from more stable entities, and presumably more biologically relevant ones, is still missing. One way to estimate cell clusters' stability is the evaluation of their consistent re-occurrence within- and between-algorithms, a metric that is commonly used to evaluate results from gene expression. Herein we report the usage and importance of cluster stability evaluations, when applied to results generated from three popular clustering algorithms - SPADE, FLOCK and PhenoGraph - run on four different data sets. These algorithms were shown to generate clusters with various degrees of statistical stability, many of them being unstable. By comparing the results of automated clustering with manually gated populations, we illustrate how information on cluster stability can assist towards a more rigorous and informed interpretation of clustering results. We also explore the relationships between statistical stability and other properties such as clusters' compactness and isolation, demonstrating that whilst cluster stability is linked to other properties it cannot be reliably predicted by any of them. Our study proposes the introduction of cluster stability as a necessary checkpoint for cluster interpretation and

  1. The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture.

    Science.gov (United States)

    Caetano-Anollés, Gustavo; Kim, Hee Shin; Mittenthal, Jay E

    2007-05-29

    Metabolism represents a complex collection of enzymatic reactions and transport processes that convert metabolites into molecules capable of supporting cellular life. Here we explore the origins and evolution of modern metabolism. Using phylogenomic information linked to the structure of metabolic enzymes, we sort out recruitment processes and discover that most enzymatic activities were associated with the nine most ancient and widely distributed protein fold architectures. An analysis of newly discovered functions showed enzymatic diversification occurred early, during the onset of the modern protein world. Most importantly, phylogenetic reconstruction exercises and other evidence suggest strongly that metabolism originated in enzymes with the P-loop hydrolase fold in nucleotide metabolism, probably in pathways linked to the purine metabolic subnetwork. Consequently, the first enzymatic takeover of an ancient biochemistry or prebiotic chemistry was related to the synthesis of nucleotides for the RNA world.

  2. Metabolic flux analysis of Escherichia coli knockouts: lessons from the Keio collection and future outlook.

    Science.gov (United States)

    Long, Christopher P; Antoniewicz, Maciek R

    2014-08-01

    Cellular metabolic and regulatory systems are of fundamental interest to biologists and engineers. Incomplete understanding of these complex systems remains an obstacle to progress in biotechnology and metabolic engineering. An established method for obtaining new information on network structure, regulation and dynamics is to study the cellular system following a perturbation such as a genetic knockout. The Keio collection of all viable Escherichia coli single-gene knockouts is facilitating a systematic investigation of the regulation and metabolism of E. coli. Of all omics measurements available, the metabolic flux profile (the fluxome) provides the most direct and relevant representation of the cellular phenotype. Recent advances in (13)C-metabolic flux analysis are now permitting highly precise and accurate flux measurements for investigating cellular systems and guiding metabolic engineering efforts.

  3. Continuous-time Markov chain-based flux analysis in metabolism.

    Science.gov (United States)

    Huo, Yunzhang; Ji, Ping

    2014-09-01

    Metabolic flux analysis (MFA), a key technology in bioinformatics, is an effective way of analyzing the entire metabolic system by measuring fluxes. Many existing MFA approaches are based on differential equations, which are complicated to be solved mathematically. So MFA requires some simple approaches to investigate metabolism further. In this article, we applied continuous-time Markov chain to MFA, called MMFA approach, and transformed the MFA problem into a set of quadratic equations by analyzing the transition probability of each carbon atom in the entire metabolic system. Unlike the other methods, MMFA analyzes the metabolic model only through the transition probability. This approach is very generic and it could be applied to any metabolic system if all the reaction mechanisms in the system are known. The results of the MMFA approach were compared with several chemical reaction equilibrium constants from early experiments by taking pentose phosphate pathway as an example.

  4. Efficient Modeling of MS/MS Data for Metabolic Flux Analysis.

    Science.gov (United States)

    Tepper, Naama; Shlomi, Tomer

    2015-01-01

    Metabolic flux analysis (MFA) is a widely used method for quantifying intracellular metabolic fluxes. It works by feeding cells with isotopic labeled nutrients, measuring metabolite isotopic labeling, and computationally interpreting the measured labeling data to estimate flux. Tandem mass-spectrometry (MS/MS) has been shown to be useful for MFA, providing positional isotopic labeling data. Specifically, MS/MS enables the measurement of a metabolite tandem mass-isotopomer distribution, representing the abundance in which certain parent and product fragments of a metabolite have different number of labeled atoms. However, a major limitation in using MFA with MS/MS data is the lack of a computationally efficient method for simulating such isotopic labeling data. Here, we describe the tandemer approach for efficiently computing metabolite tandem mass-isotopomer distributions in a metabolic network, given an estimation of metabolic fluxes. This approach can be used by MFA to find optimal metabolic fluxes, whose induced metabolite labeling patterns match tandem mass-isotopomer distributions measured by MS/MS. The tandemer approach is applied to simulate MS/MS data in a small-scale metabolic network model of mammalian methionine metabolism and in a large-scale metabolic network model of E. coli. It is shown to significantly improve the running time by between two to three orders of magnitude compared to the state-of-the-art, cumomers approach. We expect the tandemer approach to promote broader usage of MS/MS technology in metabolic flux analysis.

  5. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by (13)C metabolic flux analysis.

    Science.gov (United States)

    Gonzalez, Jacqueline E; Long, Christopher P; Antoniewicz, Maciek R

    2017-01-01

    Glucose and xylose are the two most abundant sugars derived from the breakdown of lignocellulosic biomass. While aerobic glucose metabolism is relatively well understood in E. coli, until now there have been only a handful of studies focused on anaerobic glucose metabolism and no (13)C-flux studies on xylose metabolism. In the absence of experimentally validated flux maps, constraint-based approaches such as MOMA and RELATCH cannot be used to guide new metabolic engineering designs. In this work, we have addressed this critical gap in current understanding by performing comprehensive characterizations of glucose and xylose metabolism under aerobic and anaerobic conditions, using recent state-of-the-art techniques in (13)C metabolic flux analysis ((13)C-MFA). Specifically, we quantified precise metabolic fluxes for each condition by performing parallel labeling experiments and analyzing the data through integrated (13)C-MFA using the optimal tracers [1,2-(13)C]glucose, [1,6-(13)C]glucose, [1,2-(13)C]xylose and [5-(13)C]xylose. We also quantified changes in biomass composition and confirmed turnover of macromolecules by applying [U-(13)C]glucose and [U-(13)C]xylose tracers. We demonstrated that under anaerobic growth conditions there is significant turnover of lipids and that a significant portion of CO2 originates from biomass turnover. Using knockout strains, we also demonstrated that β-oxidation is critical for anaerobic growth on xylose. Quantitative analysis of co-factor balances (NADH/FADH2, NADPH, and ATP) for different growth conditions provided new insights regarding the interplay of energy and redox metabolism and the impact on E. coli cell physiology.

  6. Network-based analysis of the sphingolipid metabolism in hypertension

    DEFF Research Database (Denmark)

    Fenger, Mogens; Linneberg, Allan; Jeppesen, Jørgen

    2015-01-01

    revealed that epistasis does not necessarily reflects the topology of the metabolic pathways i.e., the flow of metabolites. Rather, the enzymes and proteins are integrated in complex cellular substructures where communication flows between the components of the networks, which may be composite in structure......-step procedure is presented in which physiological heterogeneity is disentangled and genetic effects are analyzed by variance decomposition of genetic interactions and by an information theoretical approach including 162 single nucleotide polymorphisms (SNP) in 84 genes in the sphingolipid metabolism and related...... networks in blood pressure regulation. As expected, almost no genetic main effects were detected. In contrast, two-gene interactions established the entire sphingolipid metabolic and related genetic network to be highly involved in the regulation of blood pressure. The pattern of interaction clearly...

  7. Analysis of the aspartic acid metabolic pathway using mutant genes.

    Science.gov (United States)

    Azevedo, R A

    2002-01-01

    Amino acid metabolism is a fundamental process for plant growth and development. Although a considerable amount of information is available, little is known about the genetic control of enzymatic steps or regulation of several pathways. Much of the information about biochemical pathways has arisen from the use of mutants lacking key enzymes. Although mutants were largely used already in the 60's, by bacterial and fungal geneticists, it took plant research a long time to catch up. The advance in this area was rapid in the 80's, which was followed in the 90's by the development of techniques of plant transformation. In this review we present an overview of the aspartic acid metabolic pathway, the key regulatory enzymes and the mutants and transgenic plants produced for lysine and threonine metabolism. We also discuss and propose a new study of high-lysine mutants.

  8. Analytic robust stability analysis of SVD orbit feedback

    CERN Document Server

    Pfingstner, Jürgen

    2012-01-01

    Orbit feedback controllers are indispensable for the operation of modern particle accelerators. Many such controllers are based on the decoupling of the inputs and outputs of the system to be controlled with the help of the singular value decomposition (SVD controller). It is crucial to verify the stability of SVD controllers, also in the presence of mismatches between the used accelerator model and the real machine (robust stability problem). In this paper, analytical criteria for guaranteed stability margins of SVD orbit feedback systems for three different types of model mismatches are presented: scaling errors of actuators and BPMs (beam position monitors) and additive errors of the orbit response matrix. For the derivation of these criteria, techniques from robust control theory have been used, e.g the small gain theorem. The obtained criteria can be easily applied directly to other SVD orbit feedback systems. As an example, the criteria were applied to the orbit feedback system of the Compact Linear ...

  9. Stability analysis of the Euler discretization for SIR epidemic model

    Energy Technology Data Exchange (ETDEWEB)

    Suryanto, Agus [Department of Mathematics, Faculty of Sciences, Brawijaya University, Jl. Veteran Malang 65145 (Indonesia)

    2014-06-19

    In this paper we consider a discrete SIR epidemic model obtained by the Euler method. For that discrete model, existence of disease free equilibrium and endemic equilibrium is established. Sufficient conditions on the local asymptotical stability of both disease free equilibrium and endemic equilibrium are also derived. It is found that the local asymptotical stability of the existing equilibrium is achieved only for a small time step size h. If h is further increased and passes the critical value, then both equilibriums will lose their stability. Our numerical simulations show that a complex dynamical behavior such as bifurcation or chaos phenomenon will appear for relatively large h. Both analytical and numerical results show that the discrete SIR model has a richer dynamical behavior than its continuous counterpart.

  10. Stability analysis of machine tool spindle under uncertainty

    Directory of Open Access Journals (Sweden)

    Wei Dou

    2016-05-01

    Full Text Available Chatter is a harmful machining vibration that occurs between the workpiece and the cutting tool, usually resulting in irregular flaw streaks on the finished surface and severe tool wear. Stability lobe diagrams could predict chatter by providing graphical representations of the stable combinations of the axial depth of the cut and spindle speed. In this article, the analytical model of a spindle system is constructed, including a Timoshenko beam rotating shaft model and double sets of angular contact ball bearings with 5 degrees of freedom. Then, the stability lobe diagram of the model is developed according to its dynamic properties. The Monte Carlo method is applied to analyse the bearing preload influence on the system stability with uncertainty taken into account.

  11. ANALYSIS OF NONLINEAR DYNAMIC STABILITY OF LIQUID-CONVEYING PIPES

    Institute of Scientific and Technical Information of China (English)

    张立翔; 黄文虎

    2002-01-01

    Nonlinearly dynamic stability of flexible liquid-conveying pipe in fluid structure interaction was analyzed by using modal disassembling technique. The effects of Poisson,Junction and Friction couplings in the wave-flowing-vibration system on the pipe dynamic stability were included in the analytical model constituted by four nonlinear differential equations. An analyzing example of cantilevered pipe was done to illustrate the dynamic stability characteristics of the pipe in the full coupling mechanisms, and the phase curves related to the first four modal motions were drawn. The results show that the dynamic stable characteristics of the pipe are very complicated in the complete coupling mechanisms, and the kinds of the singularity points corresponding to the various modal motions are different.

  12. Toxicokinetics of new psychoactive substances: plasma protein binding, metabolic stability, and human phase I metabolism of the synthetic cannabinoid WIN 55,212-2 studied using in vitro tools and LC-HR-MS/MS.

    Science.gov (United States)

    Mardal, Marie; Gracia-Lor, Emma; Leibnitz, Svenja; Castiglioni, Sara; Meyer, Markus R

    2016-10-01

    The new psychoactive substance WIN 55,212-2 ((R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone) is a potent synthetic cannabinoid receptor agonist. The metabolism of WIN 55,212-2 in man has never been reported. Therefore, the aim of this study was to identify the human in vitro metabolites of WIN 55,212-2 using pooled human liver microsomes and liquid chromatography-high resolution-tandem mass spectrometry (LC-HR-MS/MS) to provide targets for toxicological, doping, and environmental screening procedures. Moreover, a metabolic stability study in pooled human liver microsomes (pHLM) was carried out. In total, 19 metabolites were identified and the following partly overlapping metabolic steps were deduced: degradation of the morpholine ring via hydroxylation, N- and O-dealkylation, and oxidative deamination, hydroxylations on either the naphthalene or morpholine ring or the alkyl spacer with subsequent oxidation, epoxide formation with subsequent hydrolysis, or combinations. In conclusion, WIN 55,212-2 was extensively metabolized in human liver microsomes incubations and the calculated hepatic clearance was comparably high, indicating a fast and nearly complete metabolism in vivo. This is in line with previous findings on other synthetic cannabinoids. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. High-throughput metabolic state analysis: The missing link in integrated functional genomics of yeasts

    DEFF Research Database (Denmark)

    Villas-Bôas, Silas Granato; Moxley, Joel. F; Åkesson, Mats Fredrik

    2005-01-01

    The lack of comparable metabolic state assays severely limits understanding the metabolic changes caused by genetic or environmental perturbations. The present study reports the application of a novel derivatization method for metabolome analysis of yeast, coupled to data-mining software that ach......The lack of comparable metabolic state assays severely limits understanding the metabolic changes caused by genetic or environmental perturbations. The present study reports the application of a novel derivatization method for metabolome analysis of yeast, coupled to data-mining software...... that achieve comparable throughput, effort and cost compared with DNA arrays. Our sample workup method enables simultaneous metabolite measurements throughout central carbon metabolism and amino acid biosynthesis, using a standard GC-MS platform that was optimized for this Purpose. As an implementation proof...

  14. Differential proteomic analysis highlights metabolic strategies associated with balhimycin production in Amycolatopsis balhimycina chemostat cultivations

    DEFF Research Database (Denmark)

    Gallo, Giuseppe; Alduina, Rosa; Renzone, Giovanni

    2010-01-01

    , used to generate biomass for proteomic analysis, mycelia grew with the same rate and with similar glucose-biomass conversion efficiencies. Global gene expression analysis revealed a differential metabolic adaptation, highlighting strategies for energetic supply and biosynthesis of metabolic...... to balhimycin biosynthesis, and of phoP, phoR, pstS and phoD, known to be associated to Pi limitation stress response. 2D-Differential Gel Electrophoresis (DIGE) and protein identification, performed by mass spectrometry and computer-assisted 2 D reference-map http......://www.unipa.it/ampuglia/Abal-proteome-maps webcite matching, demonstrated a differential expression for proteins involved in many metabolic pathways or cellular processes, including central carbon and phosphate metabolism. Interestingly, proteins playing a key role in generation of primary metabolism intermediates and cofactors required...

  15. Stability Analysis of Buffer Priority Scheduling Policies Using Petri Nets

    Institute of Scientific and Technical Information of China (English)

    LIN Chuang(林闯); XU MingWei(徐明伟)

    2003-01-01

    A Petri net approach to determining the conditions for stability of a re-entrantsystem with buffer priority scheduling policy is described in this paper. The concept of bufferboundedness based on the dynamic behavior of the markings in the system model is emphasized.The method is used to demonstrate the stability of the first buffer first served (FBFS) and thelast buffer first served (LBFS) scheduling policies. Finally a sufficient condition for instability ofsystems with a positive feedback loop (PFL) is established, and an example is given.

  16. Linear and nonlinear Stability analysis for finite difference discretizations of higher order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrmann, David R.; Bingham, Harry B.; Madsen, Per A.;

    2004-01-01

    This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly nonlinear and extremely dispersive water waves. The analysis demonstrates the near-equivalence of classical linear Fourier (von Neumann......) techniques with matrix-based methods for formulations in both one and two horizontal dimensions. The matrix-based method is also extended to show the local de-stabilizing effects of the nonlinear terms, as well as the stabilizing effects of numerical dissipation. A comparison of the relative stability...... moderately non-normal, suggesting that the eigenvalues are likely suitable for analysis purposes. Numerical experiments demonstrate excellent agreement with the linear analysis, and good qualitative agreement with the local nonlinear analysis. The various methods of analysis combine to provide significant...

  17. Insights into primary metabolism in oilseeds from labeling and flux analysis

    Science.gov (United States)

    Labeling investigations along with metabolic flux analysis have enabled quantification of important cellular phenotypes. These descriptions have documented uses of enzymes in unique ways and characterized the contributions of pathways to oil, protein and carbohydrate compositions in seeds. The diffe...

  18. Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach spaces

    Institute of Scientific and Technical Information of China (English)

    LI Shoufu

    2005-01-01

    A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.

  19. Advanced techniques for the analysis of crisis stability, deterrence, and latency

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1997-12-01

    Studies on crisis stability, deterrence, and latency are presented in chronological order, which also reflects their logical order of development, captures the main features of stability analysis; relates first strike, crisis, and arms control stability as seen from US and Russian perspective; and addresses questions such as whether uncertainty in damage preference or defense deployment can be destabilizing. It illustrates the problems with alternative metrics, latency and reconstitution, and deep unilateral and proportional force reductions.

  20. STABILITY ANALYSIS FOR THE LARGE-SCALE SYSTEMS WITH TIME-DELAY

    Institute of Scientific and Technical Information of China (English)

    Jingru Qu; Cunchen GAO

    2006-01-01

    The stability analysis problems were put forward for the large-scale systems with time-delay by using the partial decomposition method. With the stability of the isolated subsystems without time-delay, some sufficient criterions for the asymptotical stability of the whole system were obtained by making a Lyapunov function with the Razumikhin condition and a Lyapunov functional for the retarded type and neutral type, respectively.

  1. Formation stability analysis of unmanned multi-vehicles under interconnection topologies

    OpenAIRE

    Yang, Aolei; Naeem, Wasif; Fei, Munrei

    2015-01-01

    In this paper, the overall formation stability of unmanned multi-vehicle is mathematically presented under interconnection topologies. A novel definition of formation error is first given and followed by the proposed formation stability hypothesis. Based on this hypothesis, a unique extension-decomposition-aggregation scheme is then employed to support the stability analysis for the overall multi-vehicle formation under a mesh topology. It is proved that the overall formation control system c...

  2. Novel 5-Substituted 2-(Aylmethylthio-4-chloro-N-(5-aryl-1,2,4-triazin-3-ylbenzenesulfonamides: Synthesis, Molecular Structure, Anticancer Activity, Apoptosis-Inducing Activity and Metabolic Stability

    Directory of Open Access Journals (Sweden)

    Beata Żołnowska

    2016-06-01

    Full Text Available A series of novel 5-substituted 2-(arylmethylthio-4-chloro-N-(5-aryl-1,2,4-triazin-3-yl benzenesulfonamide derivatives 27–60 have been synthesized by the reaction of aminoguanidines with an appropriate phenylglyoxal hydrate in glacial acetic acid. A majority of the compounds showed cytotoxic activity toward the human cancer cell lines HCT-116, HeLa and MCF-7, with IC50 values below 100 μM. It was found that for the analogues 36–38 the naphthyl moiety contributed significantly to the anticancer activity. Cytometric analysis of translocation of phosphatidylserine as well as mitochondrial membrane potential and cell cycle revealed that the most active compounds 37 (HCT-116 and HeLa and 46 (MCF-7 inhibited the proliferation of cells by increasing the number of apoptotic cells. Apoptotic-like, dose dependent changes in morphology of cell lines were also noticed after treatment with 37 and 46. Moreover, triazines 37 and 46 induced caspase activity in the HCT-116, HeLa and MCF-7 cell lines. Selected compounds were tested for metabolic stability in the presence of pooled human liver microsomes and NADPH, both R2 and Ar = 4-CF3-C6H4 moiety in 2-(R2-methylthio-N-(5-aryl-1,2,4-triazin-3-ylbenzenesulfonamides simultaneously increased metabolic stability. The results pointed to 37 as a hit compound with a good cytotoxicity against HCT-116 (IC50 = 36 μM, HeLa (IC50 = 34 μM cell lines, apoptosis-inducing activity and moderate metabolic stability.

  3. Biochemical characterization of human gluconokinase and the proposed metabolic impact of gluconic Acid as determined by constraint based metabolic network analysis

    DEFF Research Database (Denmark)

    Rohatgi, Neha; Nielsen, Tine Kragh; Bjørn, Sara Petersen

    2014-01-01

    and strict specificity towards gluconate out of 122 substrates tested. In order to evaluate the metabolic impact of gluconate in humans we modeled gluconate metabolism using steady state metabolic network analysis. The results indicate that significant metabolic flux changes in anabolic pathways linked......The metabolism of gluconate is well characterized in prokaryotes where it is known to be degraded following phosphorylation by gluconokinase. Less is known of gluconate metabolism in humans. Human gluconokinase activity was recently identified proposing questions about the metabolic role...... to the hexose monophosphate shunt (HMS) are induced through a small increase in gluconate concentration. We argue that the enzyme takes part in a context specific carbon flux route into the HMS that, in humans, remains incompletely explored. Apart from the biochemical description of human gluconokinase...

  4. Inborn errors of metabolism revealed by organic acid profile analysis ...

    African Journals Online (AJOL)

    Objective: To determine the prevalence and types of inborn errors of amino ... of a metabolic disorder were studied, their ages ranged from 3 days to 12 years. ... cases (54 %), glutaric aciduria type I 3cases (13 %), phenylketonuria 2 cases (9 ...

  5. Development of a Portable Unit for Metabolic Analysis

    Science.gov (United States)

    Dietrich, D. L.; Piltch, N. D.; Juergens, J. R.; Lewis, M. E.; Lichter, M. J.; Struk, P. M.; Pettegrew, R. D.; Valentine, R. W.; Cabrera, M. E.

    2004-01-01

    The purpose of this research is to develop, test and calibrate a prototype portable device that will measure human metabolic activity; namely time resolved measurements of gas temperature, pressure and flow-rate, and oxygen and carbon dioxide partial pressure during inhalation and exhalation.

  6. Quantifying plant phenotypes with isotopic labeling and metabolic flux analysis

    Science.gov (United States)

    Analyses of metabolic flux using stable isotopes in plants have traditionally been restricted to tissues with presumed homogeneous cell populations such as developing seeds, cell suspensions, or cultured roots and root tips. It is now possible to describe these and other more complex tissues such a...

  7. A clustering analysis of lipoprotein diameters in the metabolic syndrome

    Science.gov (United States)

    The presence of smaller low-density lipoproteins (LDL) has been associated with atherosclerosis risk, and the insulin resistance (IR) underlying the metabolic syndrome (MetS). In addition, some research has supported the association of very low-, low- and high-density lipoprotein (VLDL HDL) particle...

  8. Genome-scale metabolic models: reconstruction and analysis

    NARCIS (Netherlands)

    Baart, G.J.; Martens, D.E.

    2012-01-01

    Metabolism can be defined as the complete set of chemical reactions that occur in living organisms in order to maintain life. Enzymes are the main players in this process as they are responsible for catalyzing the chemical reactions. The enzyme-reaction relationships can be used for the reconstructi

  9. OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis

    OpenAIRE

    Nielsen Lars K; Wittmann Christoph; Quek Lake-Ee; Krömer Jens O

    2009-01-01

    Abstract Background The quantitative analysis of metabolic fluxes, i.e., in vivo activities of intracellular enzymes and pathways, provides key information on biological systems in systems biology and metabolic engineering. It is based on a comprehensive approach combining (i) tracer cultivation on 13C substrates, (ii) 13C labelling analysis by mass spectrometry and (iii) mathematical modelling for experimental design, data processing, flux calculation and statistics. Whereas the cultivation ...

  10. Stability analysis of nonlinear systems with slope restricted nonlinearities.

    Science.gov (United States)

    Liu, Xian; Du, Jiajia; Gao, Qing

    2014-01-01

    The problem of absolute stability of Lur'e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP) lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.

  11. Studies of iso-alpha-acids : analysis, purification, and stability.

    NARCIS (Netherlands)

    Khatib, Alfi

    2006-01-01

    The female cones of hop (Humulus lupulus L.) are added to beer, providing taste and flavour and contributing to the stability of foam. The main constituents of hop related to these properties are generically known as alpha-acids. During the brewing process, these acids are isomerized, resulting in

  12. Variability and stability analysis of walking of transfemoral amputees

    NARCIS (Netherlands)

    Lamoth, Claudine C.; Ainsworth, Erik; Polomski, Wojtek; Houdijk, Han

    2010-01-01

    Variability and stability of walking of eight transfemoral amputees and eight healthy controls was studied under four conditions walking inside on a smooth terrain walking while performing a dual-task and walking outside on (ir)regular surfaces Trunk accelerations were recorded with a tri-axial acce

  13. Intact stability analysis of dead ship conditions using FORM

    DEFF Research Database (Denmark)

    Choi, Ju Hyuck; Jensen, Jørgen Juncher; Kristensen, Hans Otto Holmegaard

    2017-01-01

    The IMO Weather Criterion has proven to be the governing stability criteria regarding minimum GM for e.g. small ferries and large passenger ships. The formulation of the Weather Criterion is based on some empirical relations derived many years ago for vessels not necessarily representative for cu...

  14. Studies of iso-alpha-acids : analysis, purification, and stability.

    NARCIS (Netherlands)

    Khatib, Alfi

    2006-01-01

    The female cones of hop (Humulus lupulus L.) are added to beer, providing taste and flavour and contributing to the stability of foam. The main constituents of hop related to these properties are generically known as alpha-acids. During the brewing process, these acids are isomerized, resulting in t

  15. Absolute stability analysis of linear systems with Duhem hysteresis operator

    NARCIS (Netherlands)

    Ouyang, Ruiyue; Jayawardhana, Bayu

    2014-01-01

    In this paper, we investigate the stability of positive and negative feedback interconnections of a linear system and a Duhem hysteresis operator. We provide sufficient conditions on the linear plant and on the Duhem operator which are based on the counterclockwise (CCW) or clockwise (CW) input–outp

  16. Dynamical behavior and Jacobi stability analysis of wound strings

    CERN Document Server

    Lake, Matthew J

    2016-01-01

    We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of $\\mathbb{R}^2$, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an $S^2$ of constant radius $\\mathcal{R}$. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in t...

  17. Post Earthquack Slope Stability Analysis of Rubble Mound Breakwater

    Directory of Open Access Journals (Sweden)

    Amin Moradi

    2017-03-01

    Full Text Available Rubble mound breakwaters are structures built mainly of quarried rock. Generally armourstone or artificial concrete armour units are used for the outer armour layer,which should protect the structure againist wave attack. Armour stones and concrete armoure unites in this outer layer are usually placed with care to obtain effective interlocking and consequently better stability .

  18. Stability analysis of impulsive functional systems of fractional order

    Science.gov (United States)

    Stamova, Ivanka; Stamov, Gani

    2014-03-01

    In this paper, a class of impulsive fractional functional differential systems is investigated. Sufficient conditions for stability of the zero solution are proved, extending the corresponding theory of impulsive functional differential equations. The investigations are carried out by using the comparison principle, coupled with the Lyapunov function method. We apply our results to an impulsive single species model of Lotka-Volterra type.

  19. Analysis and stability of fatty acid esterified xanthophylls from microalgae

    NARCIS (Netherlands)

    Weesepoel, Y.J.A.

    2014-01-01

    Fatty acid esterified xanthophylls (e.g. astaxanthin) produced by microalgae are regarded as a natural alternative for food colourants, but little is known on the stability of these compounds in foods. The aims of this research were (i) to develop protocols to analyze esterified xanthophylls, and th

  20. Stability Analysis of Nonlinear Systems with Slope Restricted Nonlinearities

    Directory of Open Access Journals (Sweden)

    Xian Liu

    2014-01-01

    Full Text Available The problem of absolute stability of Lur’e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.

  1. ANALYSIS OF THE TRANSIENT STABILITY LIMIT OF NIGERIA'S ...

    African Journals Online (AJOL)

    user

    Keywords: Disturbance, Transient stability, Grid Fragility, Network, Nigerian ... http://dx.doi.org/10.4314/njt.v36i1.26 ..... using generalized regression neural networks” Int. J. Applied .... of the extreme learning machine method; Int. J, Electrical.

  2. A Point Dynamic Model for Stability Analysis of the PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Pham Nhu Viet; Choi, Sun Rock; Lee, Min Jae; Kang, Chang Moo; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To ensure the enhanced safety criteria for an advanced reactor system, the PGSFR design is highly based on the inherent safety mechanisms, i.e., passive responses to abnormal and emergency conditions, and thereby minimizes the need for active or engineered safety systems. In this regard, various inherent reactivity feedbacks in the PGSFR including thermal expansion of the sodium coolant, fuel temperature change, thermal bowing of the fuel, thermal expansion of the core and structure, and thermal expansion of the control rod drive line should be carefully evaluated in the design process. Of primary importance is to clarify the influence of the inherent reactivity feedbacks on the reactor dynamics and stability against small reactivity disturbances under power operating conditions. The reactor response to such small reactivity disturbances is determined by the interaction of the various reactivity coefficients, magnitude of the initial reactivity insertion, and nature of the heat removal system. It was shown that the stability property of the PGSFR is the same for all the three considered forcing functions. Furthermore, the PGSFR was found to be inherently stable thanks to the inherent negative reactivity coefficients and its stability is even more enhanced with fuel burnup in the equilibrium cycle. Especially, the conditions under which the PGSFR can become unstable in the presence of one or more positive reactivity coefficients were revealed. As a result, this study can provide designers useful information about the reactor dynamics along with the impacts of positive reactivity coefficients for further improvements of the reactor stability under power operating conditions.

  3. Dynamical behavior and Jacobi stability analysis of wound strings

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Matthew J. [Naresuan University, The Institute for Fundamental Study, ' ' The Tah Poe Academia Institute' ' , Phitsanulok (Thailand); Thailand Center of Excellence in Physics, Ministry of Education, Bangkok (Thailand); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom)

    2016-06-15

    We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of R{sup 2}, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S{sup 2} of constant radius R. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods. (orig.)

  4. STABILITY ANALYSIS OF HOPFIELD NEURAL NETWORKS WITH TIME DELAY

    Institute of Scientific and Technical Information of China (English)

    王林山; 徐道义

    2002-01-01

    The global asymptotic stability for Hopfield neural networks with time delay was investigated. A theorem and two corollaries were obtained, in which the boundedness and differentiability offjon R in some articles were deleted. Some sufficient conditions for the existence of global asymptotic stable equilibrium of the networks in this paper are better than the sufficient conditions in quoted articles.

  5. Identifying failure mechanisms in LDMOS transistors by analytical stability analysis

    NARCIS (Netherlands)

    Ferrara, A.; Steeneken, P.G.; Boksteen, B.K.; Heringa, A.; Scholten, A.J.; Schmitz, J.; Hueting, R.J.E.

    2014-01-01

    In this work, analytical stability equations are derived and combined with a physics-based model of an LDMOS transistor in order to identify the primary cause of failure in different operating and bias conditions. It is found that there is a gradual boundary between an electrical failure region at h

  6. Analysis of Stability of a gaseous Muon Detector in CMS

    CERN Document Server

    Maheshwari, Bhagesh

    2014-01-01

    The objective of this project is to analyze the stability of the Resistive Plate Chamber (RPCs) gaseous muon detectors based on the current drawn by the detector and eventually spots aging effects after 10 years from the construction of the chambers.

  7. Transient Stability Performance Analysis of Power System Using Facts Devices

    Directory of Open Access Journals (Sweden)

    M. Srinivasa Rao

    2014-02-01

    Full Text Available Transient stability is increasingly important for secure loading. Transient stability evaluation of large scale power systems is an extremely intricate and highly non linear problem. An important function of transient evaluation is to appraise the capability of the power system to with stand serious contingency in time, so that some emergencies or preventive control can be carried out to prevent system breakdown, the fault current so produced is diverted to the capacitor by using dual-STATCOM controller, results proved that voltage is maintained nearly constant, surge currents decreased and oscillations in generator have damped and hence system stability and continuity of supply are enhanced. If for UPFC, replacing series controller with shunt controller, it works as dual STATCOM. It has advantages as series pulse controller is not required and same pulses can be given to both STATCOMs. The shunt controller is so designed to act as low impedance path for short circuit current, thereby surge currents can be diverted to VSC. A general program for transient stability studies to incorporate FACTS devices is developed using MATLAB/SIMULINK.

  8. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis.

    Science.gov (United States)

    He, Lian; Xiao, Yi; Gebreselassie, Nikodimos; Zhang, Fuzhong; Antoniewiez, Maciek R; Tang, Yinjie J; Peng, Lifeng

    2014-03-01

    We engineered a fatty acid overproducing Escherichia coli strain through overexpressing tesA (“pull”) and fadR (“push”) and knocking out fadE (“block”). This “pull-push-block” strategy yielded 0.17 g of fatty acids (C12–C18) per gram of glucose (equivalent to 48% of the maximum theoretical yield) in batch cultures during the exponential growth phase under aerobic conditions. Metabolic fluxes were determined for the engineered E. coli and its control strain using tracer ([1,2-13C]glucose) experiments and 13C-metabolic flux analysis. Cofactor (NADPH) and energy (ATP) balances were also investigated for both strains based on estimated fluxes. Compared to the control strain, fatty acid overproduction led to significant metabolic responses in the central metabolism: (1) Acetic acid secretion flux decreased 10-fold; (2) Pentose phosphate pathway and Entner–Doudoroff pathway fluxes increased 1.5- and 2.0-fold, respectively; (3) Biomass synthesis flux was reduced 1.9-fold; (4) Anaplerotic phosphoenolpyruvate carboxylation flux decreased 1.7-fold; (5) Transhydrogenation flux converting NADH to NADPH increased by 1.7-fold. Real-time quantitative RT-PCR analysis revealed the engineered strain increased the transcription levels of pntA (encoding the membrane-bound transhydrogenase) by 2.1-fold and udhA (encoding the soluble transhydrogenase) by 1.4-fold, which is in agreement with the increased transhydrogenation flux. Cofactor and energy balances analyses showed that the fatty acid overproducing E. coli consumed significantly higher cellular maintenance energy than the control strain. We discussed the strategies to future strain development and process improvements for fatty acid production in E. coli.

  9. SYNTHESIS, METABOLIC STABILITY AND ANTIVIRAL EVALUATION OF VARIOUS ALKOXYALKYL ESTERS OF CIDOFOVIR AND (S)-[3-HYDROXY-2-(PHOSPHONOMETHOXY)PROPYL]ADENINE

    Science.gov (United States)

    Ruiz, Jacqueline; Beadle, James R.; Buller, R. Mark; Schreiwer, Jill; Prichard, Mark N.; Keith, Kathy A.; Lewis, Kenneth C.; Hostetler, Karl Y.

    2011-01-01

    Alkoxyalkyl esters of cidofovir (CDV) are orally active agents which inhibit the replication of a variety of double stranded DNA (dsDNA) viruses including variola, vaccinia, ectromelia, herpes simplex virus, cytomegalovirus, adenovirus and others. One of these compounds, hexadecyloxypropyl-CDV (HDP-CDV, CMX001) is in clinical development for prevention and treatment of poxvirus infection, vaccination complications, and for infections caused by cytomegalovirus, adenovirus, herpesviruses and other dsDNA viruses. This class of lipid analogs is potentially prone to undergo omega oxidation of the alkyl moiety which can lead to a short chain carboxylic acid lacking antiviral activity. To address this issue, we synthesized a series of alkoxyalkyl or alkyl glycerol esters of CDV and (S)-HPMPA having modifications in the structure of the alkyl residue. Antiviral activity was assessed in cells infected with vaccinia, cowpox or ectromelia viruses. Metabolic stability was determined in S9 membrane fractions from rat, guinea pig, monkey and human liver. All compounds had substantial antiviral activity in cells infected with vaccinia, cowpox or ectromelia. Metabolic stability was lowest in monkey liver S9 incubations where rapid disappearance of HDP-CDV and HDP-(S)-HPMPA was noted. Metabolic stability in monkey preparations increased substantially when a ω-1 methyl group (15-methyl-HDP-CDV) or a terminal cyclopropyl residue (14-cyclopropyl-tetradecyloxypropyl-CDV) was present in the alkyl chain. The most stable compound was 1-O-octadecyl-2-O-benzyl-sn-glycero-3-CDV (ODBG-CDV) which was not metabolized extensively by monkey liver S9. In rat, guinea pig or human liver S9 incubations, most of the modified antiviral compounds were considerably more stable. PMID:21493074

  10. OpenMebius: An Open Source Software for Isotopically Nonstationary 13C-Based Metabolic Flux Analysis

    OpenAIRE

    Shuichi Kajihata; Chikara Furusawa; Fumio Matsuda; Hiroshi Shimizu

    2014-01-01

    The in vivo measurement of metabolic flux by 13C-based metabolic flux analysis (13C-MFA) provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a 13C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model to the isotopic labeling enrichment of intracellular metabolites measured by mass spectrometry. Whereas 13...

  11. Overcoming the metabolic burden of protein secretion in Schizosaccharomyces pombe--a quantitative approach using 13C-based metabolic flux analysis.

    Science.gov (United States)

    Klein, Tobias; Lange, Sabrina; Wilhelm, Nadine; Bureik, Matthias; Yang, Tae-Hoon; Heinzle, Elmar; Schneider, Konstantin

    2014-01-01

    Protein secretion in yeast is generally associated with a burden to cellular metabolism. To investigate this metabolic burden in Schizosaccharomyces pombe, we constructed a set of strains secreting the model protein maltase in different amounts. We quantified the influence of protein secretion on the metabolism applying (13)C-based metabolic flux analysis in chemostat cultures. Analysis of the macromolecular biomass composition revealed an increase in cellular lipid content at elevated levels of protein secretion and we observed altered metabolic fluxes in the pentose phosphate pathway, the TCA cycle, and around the pyruvate node including mitochondrial NADPH supply. Supplementing acetate to glucose or glycerol minimal media was found to improve protein secretion, accompanied by an increased cellular lipid content and carbon flux through the TCA cycle as well as increased mitochondrial NADPH production. Thus, systematic metabolic analyses can assist in identifying factors limiting protein secretion and in deriving strategies to overcome these limitations.

  12. Effect of Xinfuning V combined with western medicine therapy on serum blood viscosity, lipid metabolism and plaque stability in patients with coronary heart disease and angina pectoris

    Institute of Scientific and Technical Information of China (English)

    Guo-Feng Ma; Xiang-Yang Wu; Ya-Ning Wang; Jun-De Li

    2016-01-01

    Objective:To analyze the effect of Xinfuning V combined with western medicine therapy on serum blood viscosity, lipid metabolism and plaque stability in patients with coronary heart disease and angina pectoris.Methods: A total of 200 patients with coronary heart disease and angina pectoris were randomly divided into observation group and control group (n=100), control group received routine western medicine therapy, observation group received routine western medicine treatment + adjuvant Xinfuning V treatment, and then the differences in with serum blood viscosity, lipid metabolism, plaque stability parameters, etc were compared between the two groups after treatment.Results: The whole blood viscosity under different shear rate (1/s, 5/s, 30/s and 200/s), plasma viscosity and fibrinogen content in peripheral blood of observation group after 4 weeks of treatment were significantly lower than those of control group; lipid metabolism indexes TC, TG, LDL-C and ApoB content in serum were lower than those of control group while HDL-C content was higher than that of control group; inflammatory factors Lp-PLA2, sICAM-1, NF-κB, hs-CRP and TNF-α content in serum were lower than those of control group; plaque stability parameters AT, TTP, mTT, PI, BI and EI levels were significantly lower than those of control group.Conclusions:Xinfuning V combined with western medicine therapy can optimize the circulating internal environment in patients with coronary heart disease and angina pectoris, and also has a remarkable effect on stabilizing plaque properties.

  13. Carbon 13-Metabolic Flux Analysis derived constraint-based metabolic modelling of Clostridium acetobutylicum in stressed chemostat conditions.

    Science.gov (United States)

    Wallenius, Janne; Maaheimo, Hannu; Eerikäinen, Tero

    2016-11-01

    The metabolism of butanol producing bacteria Clostridium acetobutylicum was studied in chemostat with glucose limited conditions, butanol stimulus, and as a reference cultivation. COnstraint-Based Reconstruction and Analysis (COBRA) was applied using additional constraints from (13)C Metabolic Flux Analysis ((13)C-MFA) and experimental measurement results. A model consisting of 451 metabolites and 604 reactions was utilized in flux balance analysis (FBA). The stringency of the flux spaces considering different optimization objectives, i.e. growth rate maximization, ATP maintenance, and NADH/NADPH formation, for flux variance analysis (FVA) was studied in the different modelled conditions. Also a previously uncharacterized exopolysaccharide (EPS) produced by C. acetobutylicum was characterized on monosaccharide level. The major monosaccharide components of the EPS were 40n-% rhamnose, 34n-% glucose, 13n-% mannose, 10n-% galactose, and 2n-% arabinose. The EPS was studied to have butanol adsorbing property, 70(butanol)mg(EPS)g(-1) at 37°C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Does Premarital Cohabitation Predict Subsequent Marital Stability and Marital Quality? A Meta-Analysis

    Science.gov (United States)

    Jose, Anita; O'Leary, K. Daniel; Moyer, Anne

    2010-01-01

    Cohabitation with a romantic partner has become common in recent decades. This meta-analysis examined the link between premarital cohabitation and marital stability (k = 16) and marital quality (k = 12). Cohabitation had a significant negative association with both marital stability and marital quality. The negative predictive effect on marital…

  15. Stability and Change in Work Values: A Meta-Analysis of Longitudinal Studies

    Science.gov (United States)

    Jin, Jing; Rounds, James

    2012-01-01

    A meta-analysis of longitudinal studies was conducted to investigate stability and change in work values across the life span. Both rank-order stability and mean-level change were investigated using an integrative classification for intrinsic, extrinsic, social and status work values (Ross, Schwartz, & Surkis, 1999). Results of rank-order…

  16. Nonlinear Mathematical Simulation and Analysis of Dha Regulon for Glycerol Metabolism in Klebsiella pneumoniae

    Institute of Scientific and Technical Information of China (English)

    孙亚琴; 叶剑雄; 牟晓佳; 滕虎; 冯恩民; 曾安平; 修志龙

    2012-01-01

    Glycerol may be converted to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae under anaerobic conditions and glycerol dismutation involves two parallel pathways controlled by the dha regulon. In this study, a fourteen-dimensional nonlinear dynamic system is presented to describe the continuous culture and multiplicity analysis, in which two regulated negative-feedback mechanisms of repression and enzyme inhibition are investigated. The model describing the expression of gene-mRNA-enzyme-product was established according to the repression of the dha regulon by 3-hydroxypropionaldehy (3-HPA). Comparisons between simulated and experimental results indicate that the model can be used to describe the production of 1,3-PD under continuous fermentation. The new model is translated into the corresponding S-system version. The robustness of this model is discussed by using the S-system model and the sensitivity analysis shows that the model is sufficiently robust. The influences of initial glycerol concentration and dilution rate on the biosynthesis of 1,3-PD and the stability of the dha regulon model are investigated. The intracellular concentrations of glycerol, 1,3-PD, 3-HPA, repressor mRNA, repressor, mRNA and protein levels of glycerol dehydratase (GDHt) and 1,3-PD oxydoreductase (PDOR) can be predicted for continuous cultivation. The results of simulation and analysis indicate that 3-HPA accumulation will repress the expression of the dha regulon at the transcriptional level. This model gives new insights into the regulation of glycerol metabolism in K. pneumoniae and explain some of the experimental observations.

  17. An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models.

    Science.gov (United States)

    Chindelevitch, Leonid; Trigg, Jason; Regev, Aviv; Berger, Bonnie

    2014-10-07

    Constraint-based models are currently the only methodology that allows the study of metabolism at the whole-genome scale. Flux balance analysis is commonly used to analyse constraint-based models. Curiously, the results of this analysis vary with the software being run, a situation that we show can be remedied by using exact rather than floating-point arithmetic. Here we introduce MONGOOSE, a toolbox for analysing the structure of constraint-based metabolic models in exact arithmetic. We apply MONGOOSE to the analysis of 98 existing metabolic network models and find that the biomass reaction is surprisingly blocked (unable to sustain non-zero flux) in nearly half of them. We propose a principled approach for unblocking these reactions and extend it to the problems of identifying essential and synthetic lethal reactions and minimal media. Our structural insights enable a systematic study of constraint-based metabolic models, yielding a deeper understanding of their possibilities and limitations.

  18. C-13 Tracer experiments and metabolite balancing for metabolic flux analysis

    DEFF Research Database (Denmark)

    Schmidt, Karsten; Marx, A.; de Graaf, A. A.

    1998-01-01

    Conventional metabolic flux analysis uses the information gained from determination of measurable fluxes and a steady-state assumption for intracellular metabolites to calculate the metabolic fluxes in a given metabolic network. The determination of intracellular fluxes depends heavily...... on the correctness of the assumed stoichiometry including the presence of all reactions with a noticeable impact on the model metabolite balances. Determination of fluxes in complex metabolic networks often requires the inclusion of NADH and NADPH balances, which are subject: to controversial debate...... through the pentose phosphate pathway. Hence, wrong assumptions on the presence or activity of transhydrogenation reactions will result in wrong estimations of the intracellular flux distribution. Using C-13 tracer experiments and NMR analysis, flux analysis can be performed on the basis of only well...

  19. Advanced techniques for the analysis of crisis stability, deterrence, and latency

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The principal results of studies on crisis stability, deterrence, and latency are presented in their order of development. They capture the main features of stability analysis; relate first strike, crisis, and arms control stability as seen from US and Russian perspective; and address whether different metrics, uncertain damage preferences, or the deployment of defenses can be destabilizing. The report explores differences between unilateral and proportional force reductions in the region of deep reductions where concern shifts from stability to latency.

  20. Reproducibility analysis of the stability and treatment of vertebral metastatic lesions

    Directory of Open Access Journals (Sweden)

    Raphael de Rezende Pratali

    2014-09-01

    Full Text Available OBJECTIVES: To investigate the reproducibility among spine surgeons in defining the treatment of vertebral metastatic lesions, taking into account the mechanical stability of injuries. METHODS: Twenty cases of isolated vertebral metastatic lesions were presented to ten experts. Their opinion was then asked about the stability of the lesion, as well as their treatment option. RESULTS: The interobserver Kappa coefficient obtained both for stability analysis as to the decision of the treatment was poor (0.334 and 0.248, respectively. CONCLUSIONS: Poor interobserver reproducibility was observed in deciding the treatment of vertebral metastatic lesions when considering the stability of the lesions.

  1. Reliability analysis of tunnel surrounding rock stability by Monte-Carlo method

    Institute of Scientific and Technical Information of China (English)

    XI Jia-mi; YANG Geng-she

    2008-01-01

    Discussed advantages of improved Monte-Carlo method and feasibility aboutproposed approach applying in reliability analysis for tunnel surrounding rock stability. Onthe basis of deterministic parsing for tunnel surrounding rock, reliability computing methodof surrounding rock stability was derived from improved Monte-Carlo method. The com-puting method considered random of related parameters, and therefore satisfies relativityamong parameters. The proposed method can reasonably determine reliability of sur-rounding rock stability. Calculation results show that this method is a scientific method indiscriminating and checking surrounding rock stability.

  2. Linear stability analysis of Poiseuille flow in porous medium with small suction and injection

    CERN Document Server

    Hinvi, L A; Orou, J B Chabi

    2014-01-01

    We investigate the effect of small suction Reynolds number and permeability parameter on the stability of Poiseuille fluid flow in a porous medium between two parallel horizontal stationary porous plates . We have shown that the perturbed flow is governed by an equation named modified Orr-Sommerfeld equation. We find also that the normalization of the wall-normal velocity with characteristic small suction (or small injection) velocity is important for a perfect command of porous medium fluid flow stability analysis. The stabilizing effect of the parameters in general and small suction Reynolds number and permeability parameters in particular on the linear stability are found.

  3. Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction

    Directory of Open Access Journals (Sweden)

    Palsson Bernhard

    2009-04-01

    Full Text Available Abstract Background Infections with Salmonella cause significant morbidity and mortality worldwide. Replication of Salmonella typhimurium inside its host cell is a model system for studying the pathogenesis of intracellular bacterial infections. Genome-scale modeling of bacterial metabolic networks provides a powerful tool to identify and analyze pathways required for successful intracellular replication during host-pathogen interaction. Results We have developed and validated a genome-scale metabolic network of Salmonella typhimurium LT2 (iRR1083. This model accounts for 1,083 genes that encode proteins catalyzing 1,087 unique metabolic and transport reactions in the bacterium. We employed flux balance analysis and in silico gene essentiality analysis to investigate growth under a wide range of conditions that mimic in vitro and host cell environments. Gene expression profiling of S. typhimurium isolated from macrophage cell lines was used to constrain the model to predict metabolic pathways that are likely to be operational during infection. Conclusion Our analysis suggests that there is a robust minimal set of metabolic pathways that is required for successful replication of Salmonella inside the host cell. This model also serves as platform for the integration of high-throughput data. Its computational power allows identification of networked metabolic pathways and generation of hypotheses about metabolism during infection, which might be used for the rational design of novel antibiotics or vaccine strains.

  4. Beam positioning stability analysis on large laser facilities

    Institute of Scientific and Technical Information of China (English)

    Fang; Liu; Zhigang; Liu; Liunian; Zheng; Hongbiao; Huang; Jianqiang; Zhu

    2013-01-01

    Beam positioning stability in a laser-driven inertial confinement fusion(ICF) facility is a vital problem that needs to be fixed. Each laser beam in the facility is transmitted in lots of optics for hundreds of meters, and then targeted in a micro-sized pellet to realize controllable fusion. Any turbulence in the environment in such long-distance propagation would affect the displacement of optics and further result in beam focusing and positioning errors. This study concluded that the errors on each of the optics contributed to the target, and it presents an efficient method of enhancing the beam stability by eliminating errors on error-sensitive optics. Optimizations of the optical system and mechanical supporting structures are also presented.

  5. ANALYSIS AND ESTIMATION OF HYDRAULIC STABILITY OF FRANCIS HYDRO TURBINE

    Institute of Scientific and Technical Information of China (English)

    LAI Xi-de

    2004-01-01

    With the development of large-capacity hydro turbines, the hydraulic instability of bydro turbines has become one of the most important problems that affect the stable operation of the hydro-electric units. The hydraulic vibration and unstable operation of Francis hydro turbines are primarily caused by the unsteady pressure pulsations inside draft tubes.The forced rotating vortex core at the runner exit and the channel vortices inside Francis turbine runners are origins of the unsteady pressure pulsations when operating at partial load. This paper briefly analyzes the hydraulic instability of operation caused by the vortex core and channel vortices at partial load, then, presents a way to estimate the hydraulic stability by calculation of the flow behavior at the runner exit.The validity of estimation is examined by comparison with experimental data. This will be helpful to evaluate the alternative design and predict the hydraulic stability for both the prototype and model hydro turbines.

  6. Stability analysis for nonlinear multi-variable delay perturbation problems

    Institute of Scientific and Technical Information of China (English)

    WangHongshan; ZhangChengjian

    2003-01-01

    This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems(MVDPP) of the form x′(t) = f(x(t),x(t - τ1(t)),…,x(t -τm(t)),y(t),y(t - τ1(t)),…,y(t - τm(t))), and gy′(t) = g(x(t),x(t- τ1(t)),…,x(t- τm(t)),y(t),y(t- τ1(t)),…,y(t- τm(t))), where 0 < ε <<1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.

  7. Thermal stability analysis of the fine structure of solar prominences

    Science.gov (United States)

    Demoulin, Pascal; Malherbe, Jean-Marie; Schmieder, Brigitte; Raadu, Mickael A.

    1986-01-01

    The linear thermal stability of a 2D periodic structure (alternatively hot and cold) in a uniform magnetic field is analyzed. The energy equation includes wave heating (assumed proportional to density), radiative cooling and both conduction parallel and orthogonal to magnetic lines. The equilibrium is perturbed at constant gas pressure. With parallel conduction only, it is found to be unstable when the length scale 1// is greater than 45 Mn. In that case, orthogonal conduction becomes important and stabilizes the structure when the length scale is smaller than 5 km. On the other hand, when the length scale is greater than 5 km, the thermal equilibrium is unstable, and the corresponding time scale is about 10,000 s: this result may be compared to observations showing that the lifetime of the fine structure of solar prominences is about one hour; consequently, our computations suggest that the size of the unresolved threads could be of the order of 10 km only.

  8. STABILITY ANALYSIS OF RADIAL TURNING PROCESS FOR SUPERALLOYS

    Directory of Open Access Journals (Sweden)

    Alberto JIMÉNEZ

    2017-07-01

    Full Text Available Stability detection in machining processes is an essential component for the design of efficient machining processes. Automatic methods are able to determine when instability is happening and prevent possible machine failures. In this work a variety of methods are proposed for detecting stability anomalies based on the measured forces in the radial turning process of superalloys. Two different methods are proposed to determine instabilities. Each one is tested on real data obtained in the machining of Waspalloy, Haynes 282 and Inconel 718. Experimental data, in both Conventional and High Pressure Coolant (HPC environments, are set in four different states depending on materials grain size and Hard-ness (LGA, LGS, SGA and SGS. Results reveal that PCA method is useful for visualization of the process and detection of anomalies in online processes.

  9. STABILITY ANALYSIS OF THE DYNAMIC INPUT-OUTPUT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    GuoChonghui; TangHuanwen

    2002-01-01

    The dynamic input-output model is well known in economic theory and practice. In this paper, the asymptotic stability and balanced growth solutions of the dynamic input-output system are considered. Under some natural assumptions which do not require the technical coefficient matrix to be indecomposable,it has been proved that the dynamic input-output system is not asymptotically stable and the closed dynamic input-output model has a balanced growth solution.

  10. Stability Analysis of a Variable Meme Transmission Model

    OpenAIRE

    Reem Al-Amoudi; Salma Al-Tuwairqi; Sarah Al-Sheikh

    2014-01-01

    Memes propagation is a usual form of social interaction. Understanding the dynamics of memes transmission enables one to find the conditions that leads to persistence or disappearance of memes. In this paper we analyze qualitatively a mathematical model of variable meme transmission. Two equilibrium points of the model are examined: meme free equilibrium and meme existence equilibrium. The reproduction number R₀ that generates new memes is found. Local and global stability of the equilibrium ...

  11. Stability analysis of linear multistep methods for delay differential equations

    Directory of Open Access Journals (Sweden)

    V. L. Bakke

    1986-01-01

    Full Text Available Stability properties of linear multistep methods for delay differential equations with respect to the test equation y′(t=ay(λt+by(t,   t≥0,0<λ<1, are investigated. It is known that the solution of this equation is bounded if and only if |a|<−b and we examine whether this property is inherited by multistep methods with Lagrange interpolation and by parametrized Adams methods.

  12. Stability analysis of collisionless plasmas with specularly reflecting boundary

    CERN Document Server

    Nguyen, Toan

    2011-01-01

    In this paper we provide sharp criteria for linear stability or instability of equilibria of collisionless plasmas in the presence of boundaries. Specifically, we consider the relativistic Vlasov-Maxwell system with specular reflection at the boundary for the particles and with the perfectly conducting boundary condition for the electromagnetic field. Here we initiate our investigation in the simple geometry of radial and longitudinal symmetry.

  13. Thermal Stability Analysis for a Heliocentric Gravitational Radiation Detection Mission

    Science.gov (United States)

    Folkner, W.; McElroy, P.; Miyake, R.; Bender, P.; Stebbins, R.; Supper, W.

    1994-01-01

    The Laser Interferometer Space Antenna (LISA) mission is designed for detailed studies of low-frequency gravitational radiation. The mission is currently a candidate for ESA's post-Horizon 2000 program. Thermal noise affects the measurement in at least two ways. Thermal variation of the length of the optical cavity to which the lasers are stabilized introduces phase variations in the interferometer signal, which have to be corrected for by using data from the two arms separately.

  14. STABILITY ANALYSIS OF TWO-SECTORS STOCHASTIC ECONOMIC GROWTH MODEL

    Institute of Scientific and Technical Information of China (English)

    Shaobo ZHOU; Shigeng HU

    2007-01-01

    In the paper, we investigate the stability of a two-sector economic growth model under stochastic case. A two-dimensional stochastic differential system is deduced by Ito's formula, by using Lyapunov function methods, whether the growth rates of physical capital and human capital are exponentially stable or unstable depends on the values for parameters. Finally, we also illustrate the results with two examples.

  15. (13)C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids.

    Science.gov (United States)

    Ghosh, Amit; Ando, David; Gin, Jennifer; Runguphan, Weerawat; Denby, Charles; Wang, George; Baidoo, Edward E K; Shymansky, Chris; Keasling, Jay D; García Martín, Héctor

    2016-01-01

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined (13)C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. These genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.

  16. 13C Metabolic Flux Analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids.

    Directory of Open Access Journals (Sweden)

    Amit Ghosh

    2016-10-01

    Full Text Available Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here we used flux-based modeling approaches to improve yields of fatty acids in S. cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Y. lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for down-regulation in terms of acetyl-CoA consumption. These genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg L of free fatty acids. With the addition of ATP citrate lyase and down-regulation of malate synthase the engineered strain produced 26 per cent more free fatty acids. Further increases in free fatty acid production of 33 per cent were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by 70 per cent.

  17. Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders--a systematic review and meta-analysis.

    Science.gov (United States)

    Mitchell, Alex J; Vancampfort, Davy; Sweers, Kim; van Winkel, Ruud; Yu, Weiping; De Hert, Marc

    2013-03-01

    Individuals with schizophrenia have high levels of medical comorbidity and cardiovascular risk factors. The presence of 3 or more specific factors is indicative of metabolic syndrome, which is a significant influence upon future morbidity and mortality. We aimed to clarify the prevalence and predictors of metabolic syndrome (MetS) in adults with schizophrenia and related disorders, accounting for subgroup differences. A PRISMA systematic search, appraisal, and meta-analysis were conducted of 126 analyses in 77 publications (n = 25,692). The overall rate of MetS was 32.5% (95% CI = 30.1%-35.0%), and there were only minor differences according to the different definitions of MetS, treatment setting (inpatient vs outpatient), by country of origin and no appreciable difference between males and females. Older age had a modest influence on the rate of MetS (adjusted R(2) = .20; P 38 y) are shown in supplementary appendix 2 online. Regarding prescribed antipsychotic medication, highest rates were seen in those prescribed clozapine (51.9%) and lowest rates of MetS in those who were unmedicated (20.2%). Present findings strongly support the notion that patients with schizophrenia should be considered a high-risk group. Patients with schizophrenia should receive regular monitoring and adequate treatment of cardio-metabolic risk factors.

  18. General metabolism of Laribacter hongkongensis: a genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Curreem Shirly O

    2011-04-01

    Full Text Available Abstract Background Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes and pathways of the general metabolism of L. hongkongensis and correlated them with its phenotypic characteristics. Results The L. hongkongensis genome possesses the pentose phosphate and gluconeogenesis pathways and tricarboxylic acid and glyoxylate cycles, but incomplete Embden-Meyerhof-Parnas and Entner-Doudoroff pathways, in agreement with its asaccharolytic phenotype. It contains enzymes for biosynthesis and β-oxidation of saturated fatty acids, biosynthesis of all 20 universal amino acids and selenocysteine, the latter not observed in Neisseria gonorrhoeae, Neisseria meningitidis and Chromobacterium violaceum. The genome contains a variety of dehydrogenases, enabling it to utilize different substrates as electron donors. It encodes three terminal cytochrome oxidases for respiration using oxygen as the electron acceptor under aerobic and microaerophilic conditions and four reductases for respiration with alternative electron acceptors under anaerobic conditions. The presence of complete tetrathionate reductase operon may confer survival advantage in mammalian host in association with diarrhea. The genome contains CDSs for incorporating sulfur and nitrogen by sulfate assimilation, ammonia assimilation and nitrate reduction. The existence of both glutamate dehydrogenase and glutamine synthetase/glutamate synthase pathways suggests an importance of ammonia metabolism in the living environments that it may encounter. Conclusions The L. hongkongensis genome possesses a variety of genes and pathways for carbohydrate, amino acid and lipid metabolism, respiratory chain and sulfur and nitrogen metabolism. These allow the bacterium to utilize various substrates for energy production and survive in different environmental niches.

  19. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Patricia M.; He, Qiang; Valente, Filipa M.A.; Xavier, Antonio V.; Zhou, Jizhong; Pereira, Ines A.C.; Louro, Ricardo O.

    2007-11-01

    Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressed genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe]hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energymetabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.

  20. Experimental stability analysis of different water-based nanofluids

    Science.gov (United States)

    Fedele, Laura; Colla, Laura; Bobbo, Sergio; Barison, Simona; Agresti, Filippo

    2011-12-01

    In the recent years, great interest has been devoted to the unique properties of nanofluids. The dispersion process and the nanoparticle suspension stability have been found to be critical points in the development of these new fluids. For this reason, an experimental study on the stability of water-based dispersions containing different nanoparticles, i.e. single wall carbon nanohorns (SWCNHs), titanium dioxide (TiO2) and copper oxide (CuO), has been developed in this study. The aim of this study is to provide stable nanofluids for selecting suitable fluids with enhanced thermal characteristics. Different dispersion techniques were considered in this study, including sonication, ball milling and high-pressure homogenization. Both the dispersion process and the use of some dispersants were investigated as a function of the nanoparticle concentration. The high-pressure homogenization was found to be the best method, and the addition of n-dodecyl sulphate and polyethylene glycol as dispersants, respectively in SWCNHs-water and TiO2-water nanofluids, improved the nanofluid stability.