WorldWideScience

Sample records for metabolic profiling studies

  1. Profiling metabolic networks to study cancer metabolism.

    Science.gov (United States)

    Hiller, Karsten; Metallo, Christian M

    2013-02-01

    Cancer is a disease of unregulated cell growth and survival, and tumors reprogram biochemical pathways to aid these processes. New capabilities in the computational and bioanalytical characterization of metabolism have now emerged, facilitating the identification of unique metabolic dependencies that arise in specific cancers. By understanding the metabolic phenotype of cancers as a function of their oncogenic profiles, metabolic engineering may be applied to design synthetically lethal therapies for some tumors. This process begins with accurate measurement of metabolic fluxes. Here we review advanced methods of quantifying pathway activity and highlight specific examples where these approaches have uncovered potential opportunities for therapeutic intervention. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Study of protein and metabolic profile of sugarcane workers

    Energy Technology Data Exchange (ETDEWEB)

    Polachini, G.M.; Tajara, E.H. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil); Santos, U.P. [Universidade de Sao Paulo (USP), SP (Brazil); Zeri, A.C.M.; Paes Leme, A.F. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: The National Alcohol Program (Proalcool) is a successful Brazilian renewable fuel initiative aiming to reduce the country's oil dependence. Producing ethanol from sugar cane, the program has shown positive results although accompanied by potential damage. The environmental impact mainly derives from the particulate matter emissions due to sugarcane burning, which is potentially harmful to human health. The physical activity of sugarcane workers is repetitive and exhaustive and is carried out in presence of dust, smoke and soot. The efforts by the sugarcane workers during the labor process result in increased risks of nervous, respiratory and cardiovascular system diseases and also in premature death. The aim of the present study was to investigate the effect of occupational stress on protein and metabolic profile of sugarcane workers. Forty serum samples were analyzed by 1-DE and LC MS/MS proteomic shotgun strategy and nuclear magnetic resonance (NMR). A set of proteins was found to be altered in workers after crops when compared with controls. The analysis of NMR spectra by Chenomx also showed differences in the expression of metabolites. For example, lactate displayed higher levels in control subjects than in sugarcane workers, and vice versa for the acetate. The concentrations of the two metabolites were lower after the crop, except in the case of acetate, which remained uniform in the control subjects before and after the crop. The present findings can have important application for rational designs of preventive measures and early disease detection in sugarcane workers. (author)

  3. Study of protein and metabolic profile of sugarcane workers

    International Nuclear Information System (INIS)

    Polachini, G.M.; Tajara, E.H.; Santos, U.P.; Zeri, A.C.M.; Paes Leme, A.F.

    2012-01-01

    Full text: The National Alcohol Program (Proalcool) is a successful Brazilian renewable fuel initiative aiming to reduce the country's oil dependence. Producing ethanol from sugar cane, the program has shown positive results although accompanied by potential damage. The environmental impact mainly derives from the particulate matter emissions due to sugarcane burning, which is potentially harmful to human health. The physical activity of sugarcane workers is repetitive and exhaustive and is carried out in presence of dust, smoke and soot. The efforts by the sugarcane workers during the labor process result in increased risks of nervous, respiratory and cardiovascular system diseases and also in premature death. The aim of the present study was to investigate the effect of occupational stress on protein and metabolic profile of sugarcane workers. Forty serum samples were analyzed by 1-DE and LC MS/MS proteomic shotgun strategy and nuclear magnetic resonance (NMR). A set of proteins was found to be altered in workers after crops when compared with controls. The analysis of NMR spectra by Chenomx also showed differences in the expression of metabolites. For example, lactate displayed higher levels in control subjects than in sugarcane workers, and vice versa for the acetate. The concentrations of the two metabolites were lower after the crop, except in the case of acetate, which remained uniform in the control subjects before and after the crop. The present findings can have important application for rational designs of preventive measures and early disease detection in sugarcane workers. (author)

  4. Metabolic and inflammatory profiles of biomarkers in obesity, metabolic syndrome, and diabetes in a Mediterranean population. DARIOS Inflammatory study.

    Science.gov (United States)

    Fernández-Bergés, Daniel; Consuegra-Sánchez, Luciano; Peñafiel, Judith; Cabrera de León, Antonio; Vila, Joan; Félix-Redondo, Francisco Javier; Segura-Fragoso, Antonio; Lapetra, José; Guembe, María Jesús; Vega, Tomás; Fitó, Montse; Elosua, Roberto; Díaz, Oscar; Marrugat, Jaume

    2014-08-01

    There is a paucity of data regarding the differences in the biomarker profiles of patients with obesity, metabolic syndrome, and diabetes mellitus as compared to a healthy, normal weight population. We aimed to study the biomarker profile of the metabolic risk continuum defined by the transition from normal weight to obesity, metabolic syndrome, and diabetes mellitus. We performed a pooled analysis of data from 7 cross-sectional Spanish population-based surveys. An extensive panel comprising 20 biomarkers related to carbohydrate metabolism, lipids, inflammation, coagulation, oxidation, hemodynamics, and myocardial damage was analyzed. We employed age- and sex-adjusted multinomial logistic regression models for the identification of those biomarkers associated with the metabolic risk continuum phenotypes: obesity, metabolic syndrome, and diabetes mellitus. A total of 2851 subjects were included for analyses. The mean age was 57.4 (8.8) years, 1269 were men (44.5%), and 464 participants were obese, 443 had metabolic syndrome, 473 had diabetes mellitus, and 1471 had a normal weight (healthy individuals). High-sensitivity C-reactive protein, apolipoprotein B100, leptin, and insulin were positively associated with at least one of the phenotypes of interest. Apolipoprotein A1 and adiponectin were negatively associated. There are differences between the population with normal weight and that having metabolic syndrome or diabetes with respect to certain biomarkers related to the metabolic, inflammatory, and lipid profiles. The results of this study support the relevance of these mechanisms in the metabolic risk continuum. When metabolic syndrome and diabetes mellitus are compared, these differences are less marked. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  5. Longitudinal plasma metabolic profiles, infant feeding, and islet autoimmunity in the MIDIA study

    DEFF Research Database (Denmark)

    Jørgenrud, Benedicte; Stene, Lars C; Tapia, German

    2017-01-01

    Aims: The aim of this study was to investigate the longitudinal plasma metabolic profiles in healthy infants and the potential association with breastfeeding duration and islet autoantibodies predictive of type 1 diabetes. Method: Up to four longitudinal plasma samples from age 3 months from case......-chain amino acids, and lower levels of methionine and 3,4-dihydroxybutyric acid.......Aims: The aim of this study was to investigate the longitudinal plasma metabolic profiles in healthy infants and the potential association with breastfeeding duration and islet autoantibodies predictive of type 1 diabetes. Method: Up to four longitudinal plasma samples from age 3 months from case...

  6. Metabolic Profiles of Brain Metastases

    Directory of Open Access Journals (Sweden)

    Tone F. Bathen

    2013-01-01

    Full Text Available Metastasis to the brain is a feared complication of systemic cancer, associated with significant morbidity and poor prognosis. A better understanding of the tumor metabolism might help us meet the challenges in controlling brain metastases. The study aims to characterize the metabolic profile of brain metastases of different origin using high resolution magic angle spinning (HR-MAS magnetic resonance spectroscopy (MRS to correlate the metabolic profiles to clinical and pathological information. Biopsy samples of human brain metastases (n = 49 were investigated. A significant correlation between lipid signals and necrosis in brain metastases was observed (p < 0.01, irrespective of their primary origin. The principal component analysis (PCA showed that brain metastases from malignant melanomas cluster together, while lung carcinomas were metabolically heterogeneous and overlap with other subtypes. Metastatic melanomas have higher amounts of glycerophosphocholine than other brain metastases. A significant correlation between microscopically visible lipid droplets estimated by Nile Red staining and MR visible lipid signals was observed in metastatic lung carcinomas (p = 0.01, indicating that the proton MR visible lipid signals arise from cytoplasmic lipid droplets. MRS-based metabolomic profiling is a useful tool for exploring the metabolic profiles of metastatic brain tumors.

  7. Depressive symptom profiles, cardio-metabolic risk and inflammation: Results from the MIDUS study.

    Science.gov (United States)

    Chirinos, Diana A; Murdock, Kyle W; LeRoy, Angie S; Fagundes, Christopher

    2017-08-01

    This study aimed to (1) provide a comprehensive characterization of depressive symptoms profiles, and (2) examine the cross-sectional association between depressive symptom profiles and cardio-metabolic outcomes, including metabolic syndrome and obesity, while controlling for sociodemographic variables, health behaviors and inflammation. Our sample was comprised of 1085 participants (55.80% female) enrolled in the MIDUS-II biomarker study. Latent profile analysis (LPA) was used to derive depressive symptom profiles using subscales of the Mood and Anxiety Symptom Questionnaire (MASQ) and the Center for Epidemiologic Studies Depression Scale (CES-D) subscales as well as Pittsburgh Sleep Quality Index (PSQI) global score. Metabolic syndrome was defined according to the Interim Joint Statement definition. CRP was used as a marker of inflammation. Four depressive symptom profiles were identified. The "No Symptoms" subgroup (60.65% of the sample) had the lowest overall scores across subscales. The "Mild Symptoms" subgroup (26.73%) was characterized by lower scores across indicators, with subscales measuring somatic symptoms being the highest within group. The "Moderate Symptoms" subgroup (10.32%) had higher scores across subscales (1 SD above the mean), with subscales measuring negative affect/loss of interest being the highest within group. Finally, the "Acute symptoms" subgroup (2.30%) was characterized by the highest overall scores (1.5-3 SD above the mean) on all indicators. After controlling for sociodemographic characteristics and health behaviors, the "Moderate Symptoms" subgroup was significantly associated with metabolic syndrome (OR=1.595, p=0.035) and obesity (OR=1.555, p=0.046). Further, there was a trend between the "Mild Symptoms" subgroup and the presence of obesity (OR=1.345, p=0.050). Inflammation attenuated these associations. Four depressive symptom profiles were identified among healthy mid-life individuals in the US. These profiles are differentially

  8. Earwax metabolomics: An innovative pilot metabolic profiling study for assessing metabolic changes in ewes during periparturition period.

    Directory of Open Access Journals (Sweden)

    Engy Shokry

    Full Text Available Important metabolic changes occur during transition period of late pregnancy and early lactation to meet increasing energy demands of the growing fetus and for milk production. The aim of this investigation is to present an innovative and non-invasive tool using ewe earwax sample analysis to assess the metabolic profile in ewes during late pregnancy and early lactation. In this work, earwax samples were collected from 28 healthy Brazilian Santa Inês ewes divided into 3 sub-groups: 9 non-pregnant ewes, 6 pregnant ewes in the last 30 days of gestation, and 13 lactating ewes ≤ 30 days postpartum. Then, a range of metabolites including volatile organic compounds (VOC, amino acids (AA, and minerals were profiled and quantified in the samples by applying headspace gas chromatography/mass spectrometry, high performance liquid chromatography/tandem mass spectrometry, and inductively coupled plasma-optical emission spectrometry, respectively. As evident in our results, significant changes were observed in the metabolite profile of earwax between the studied groups where a remarkable elevation was detected in the levels of non-esterified fatty acids, alcohols, ketones, and hydroxy urea in the VOC profile of samples obtained from pregnant and lactating ewes. Meanwhile, a significant decrease was detected in the levels of 9 minerals and 14 AA including essential AA (leucine, phenyl alanine, lysine, isoleucine, threonine, valine, conditionally essential AA (arginine, glycine, tyrosine, proline, serine, and a non-essential AA (alanine. Multivariate analysis using robust principal component analysis and hierarchical cluster analysis was successfully applied to discriminate the three study groups using the variations of metabolites in the two stress states (pregnancy and lactation from the healthy non-stress condition. The innovative developed method was successful in evaluating pre- and post-parturient metabolic changes using earwax and can in the future be

  9. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children: The ABCD Study.

    Directory of Open Access Journals (Sweden)

    Tanja G M Vrijkotte

    Full Text Available In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system activation and metabolic profile and its components in children at age of 5-6 years.Cross-sectional data from an apparently healthy population (within the ABCD study were collected at age 5-6 years in 1540 children. Heart rate (HR, respiratory sinus arrhythmia (RSA; parasympathetic activity and pre-ejection period (PEP; sympathetic activity were assessed during rest. Metabolic components were waist-height ratio (WHtR, systolic blood pressure (SBP, fasting triglycerides, glucose and HDL-cholesterol. Individual components, as well as a cumulative metabolic score, were analyzed.In analysis adjusted for child's physical activity, sleep, anxiety score and other potential confounders, increased HR and decreased RSA were associated with higher WHtR (P< 0.01, higher SBP (p<0.001 and a higher cumulative metabolic score (HR: p < 0.001; RSA: p < 0.01. Lower PEP was only associated with higher SBP (p <0.05. Of all children, 5.6% had 3 or more (out of 5 adverse metabolic components; only higher HR was associated with this risk (per 10 bpm increase: OR = 1.56; p < 0.001.This study shows that decreased parasympathetic activity is associated with central adiposity and higher SBP, indicative of increased metabolic risk, already at age 5-6 years.

  10. Metabolic Profiles of Obesity in American Indians: The Strong Heart Family Study.

    Science.gov (United States)

    Zhao, Qi; Zhu, Yun; Best, Lyle G; Umans, Jason G; Uppal, Karan; Tran, ViLinh T; Jones, Dean P; Lee, Elisa T; Howard, Barbara V; Zhao, Jinying

    2016-01-01

    Obesity is a typical metabolic disorder resulting from the imbalance between energy intake and expenditure. American Indians suffer disproportionately high rates of obesity and diabetes. The goal of this study is to identify metabolic profiles of obesity in 431 normoglycemic American Indians participating in the Strong Heart Family Study. Using an untargeted liquid chromatography-mass spectrometry, we detected 1,364 distinct m/z features matched to known compounds in the current metabolomics databases. We conducted multivariate analysis to identify metabolic profiles for obesity, adjusting for standard obesity indicators. After adjusting for covariates and multiple testing, five metabolites were associated with body mass index and seven were associated with waist circumference. Of them, three were associated with both. Majority of the obesity-related metabolites belongs to lipids, e.g., fatty amides, sphingolipids, prenol lipids, and steroid derivatives. Other identified metabolites are amino acids or peptides. Of the nine identified metabolites, five metabolites (oleoylethanolamide, mannosyl-diinositol-phosphorylceramide, pristanic acid, glutamate, and kynurenine) have been previously implicated in obesity or its related pathways. Future studies are warranted to replicate these findings in larger populations or other ethnic groups.

  11. Metabolic Profiles of Obesity in American Indians: The Strong Heart Family Study.

    Directory of Open Access Journals (Sweden)

    Qi Zhao

    Full Text Available Obesity is a typical metabolic disorder resulting from the imbalance between energy intake and expenditure. American Indians suffer disproportionately high rates of obesity and diabetes. The goal of this study is to identify metabolic profiles of obesity in 431 normoglycemic American Indians participating in the Strong Heart Family Study. Using an untargeted liquid chromatography-mass spectrometry, we detected 1,364 distinct m/z features matched to known compounds in the current metabolomics databases. We conducted multivariate analysis to identify metabolic profiles for obesity, adjusting for standard obesity indicators. After adjusting for covariates and multiple testing, five metabolites were associated with body mass index and seven were associated with waist circumference. Of them, three were associated with both. Majority of the obesity-related metabolites belongs to lipids, e.g., fatty amides, sphingolipids, prenol lipids, and steroid derivatives. Other identified metabolites are amino acids or peptides. Of the nine identified metabolites, five metabolites (oleoylethanolamide, mannosyl-diinositol-phosphorylceramide, pristanic acid, glutamate, and kynurenine have been previously implicated in obesity or its related pathways. Future studies are warranted to replicate these findings in larger populations or other ethnic groups.

  12. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children : The ABCD Study

    NARCIS (Netherlands)

    Vrijkotte, Tanja G M; van den Born, Bert-Jan H; Hoekstra, Christine M C A; Gademan, Maaike G J; van Eijsden, Manon; de Rooij, Susanne R; Twickler, Marcel T B

    2015-01-01

    BACKGROUND: In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system

  13. Studies of the transition cow under a pasture-based milk production system: metabolic profiles.

    Science.gov (United States)

    Cavestany, D; Blanc, J E; Kulcsar, M; Uriarte, G; Chilibroste, P; Meikle, A; Febel, H; Ferraris, A; Krall, E

    2005-02-01

    This study describes the effect of parity (multiparous versus primiparous) and body condition score (BCS) at calving ( or =3; scale 1-5) on variations of BCS, body weight (BW) and metabolic profiles in Holstein cows grazing on improved pastures. Forty-two cows were studied (21 multiparous and 21 primiparous) from 2 months before to 3 months after calving. BCS, BW and milk production were measured every 2 weeks. Blood samples were taken every 2 weeks to determine total protein, albumin, urea, non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), cholesterol, aspartate aminotransferase (AST), calcium, phosphorus and magnesium. Primiparous cows had lower BCS during the early postpartum (PP) period and produced less milk than multiparous. In primiparous cows NEFA concentrations were higher during the early postpartum period; BHB levels were similar in both categories during this period. Primiparous cows showed a more unbalanced metabolic profile than multiparous cows, reflecting that they are recovering from the loss of BCS after calving with less success.

  14. Observational study of lipid profile and LDL particle size in patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Martínez-Mernández Pedro

    2011-09-01

    Full Text Available Abstract Background The atherogenic lipoprotein phenotype is characterized by an increase in plasma triglycerides, a decrease in high-density lipoprotein cholesterol (HDLc, and the prevalence of small, dense-low density lipoprotein cholesterol (LDLc particles. The aim of this study was to establish the importance of LDL particle size measurement by gender in a group of patients with Metabolic Syndrome (MS attending at a Cardiovascular Risk Unit in Primary Care and their classification into phenotypes. Subjects and methods One hundred eighty-five patients (93 men and 92 women from several areas in the South of Spain, for a period of one year in a health centre were studied. Laboratory parameters included plasma lipids, lipoproteins, low-density lipoprotein size and several atherogenic rates were determinated. Results We found differences by gender between anthropometric parameters, blood pressure and glucose measures by MS status. Lipid profile was different in our two study groups, and gender differences in these parameters within each group were also remarkable, in HDLc and Apo A-I values. According to LDL particle size, we found males had smaller size than females, and patients with MS had also smaller than those without MS. We observed inverse relationship between LDL particle size and triglycerides in patients with and without MS, and the same relationship between all atherogenic rates in non-MS patients. When we considered our population in two classes of phenotypes, lipid profile was worse in phenotype B. Conclusion In conclusion, we consider worthy the measurement of LDL particle size due to its relationship with lipid profile and cardiovascular risk.

  15. A proton nuclear magnetic resonance-based metabonomics study of metabolic profiling in immunoglobulin a nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Weiguo; Che, Wenti; Guimai, Zuo; Chen, Jiejing [181st Hospital Guangxi, Central Laboratory, Laboratory of Metabolic Diseases Research, Guangxi Province (China); Li, Liping [Guangxi Normal University, The Life Science College, Guangxi Province (China); Li, Wuxian [Key Laboratory of Laboratory Medical Diagnostics of Education Ministry, Chongqiong Medical University, Chongqing (China); Dai, Yong [Clinical Medical Research Center, the Second Clinical Medical College of Jinan University (Shenzhen People' s Hospital), Shenzhen, Guangdong Province (China)

    2012-07-01

    Objectives: Immunoglobulin A nephropathy is the most common cause of chronic renal failure among primary glomerulonephritis patients. The ability to diagnose immunoglobulin A nephropathy remains poor. However, renal biopsy is an inconvenient, invasive, and painful examination, and no reliable biomarkers have been developed for use in routine patient evaluations. The aims of the present study were to identify immunoglobulin A nephropathy patients, to identify useful biomarkers of immunoglobulin A nephropathy and to establish a human immunoglobulin A nephropathy metabolic profile. Methods: Serum samples were collected from immunoglobulin A nephropathy patients who were not using immunosuppressants. A pilot study was undertaken to determine disease-specific metabolite biomarker profiles in three groups: healthy controls (N = 23), low-risk patients in whom immunoglobulin A nephropathy was confirmed as grades I-II by renal biopsy (N = 23), and high-risk patients with nephropathies of grades IV-V (N = 12). Serum samples were analyzed using proton nuclear magnetic resonance spectroscopy and by applying multivariate pattern recognition analysis for disease classification. Results: Compared with the healthy controls, both the low-risk and high-risk patients had higher levels of phenylalanine, myo-inositol, lactate, L6 lipids ( CH-CH{sub 2}-CH = O), L5 lipids (-CH{sub 2}-C = O), and L3 lipids (-CH{sub 2}-CH{sub 2}-C = O) as well as lower levels of {beta}-glucose, {alpha}-glucose, valine, tyrosine, phosphocholine, lysine, isoleucine, glycerolphosphocholine, glycine, glutamine, glutamate, alanine, acetate, 3-hydroxybutyrate, and 1-methylhistidine. Conclusions: These metabolites investigated in this study may serve as potential biomarkers of immunoglobulin A nephropathy. Point scoring of pattern recognition analysis was able to distinguish immunoglobulin A nephropathy patients from healthy controls. However, there were no obvious differences between the low-risk and high

  16. A proton nuclear magnetic resonance-based metabonomics study of metabolic profiling in immunoglobulin a nephropathy

    International Nuclear Information System (INIS)

    Sui, Weiguo; Che, Wenti; Guimai, Zuo; Chen, Jiejing; Li, Liping; Li, Wuxian; Dai, Yong

    2012-01-01

    Objectives: Immunoglobulin A nephropathy is the most common cause of chronic renal failure among primary glomerulonephritis patients. The ability to diagnose immunoglobulin A nephropathy remains poor. However, renal biopsy is an inconvenient, invasive, and painful examination, and no reliable biomarkers have been developed for use in routine patient evaluations. The aims of the present study were to identify immunoglobulin A nephropathy patients, to identify useful biomarkers of immunoglobulin A nephropathy and to establish a human immunoglobulin A nephropathy metabolic profile. Methods: Serum samples were collected from immunoglobulin A nephropathy patients who were not using immunosuppressants. A pilot study was undertaken to determine disease-specific metabolite biomarker profiles in three groups: healthy controls (N = 23), low-risk patients in whom immunoglobulin A nephropathy was confirmed as grades I-II by renal biopsy (N = 23), and high-risk patients with nephropathies of grades IV-V (N = 12). Serum samples were analyzed using proton nuclear magnetic resonance spectroscopy and by applying multivariate pattern recognition analysis for disease classification. Results: Compared with the healthy controls, both the low-risk and high-risk patients had higher levels of phenylalanine, myo-inositol, lactate, L6 lipids ( CH-CH 2 -CH = O), L5 lipids (-CH 2 -C = O), and L3 lipids (-CH 2 -CH 2 -C = O) as well as lower levels of β-glucose, α-glucose, valine, tyrosine, phosphocholine, lysine, isoleucine, glycerolphosphocholine, glycine, glutamine, glutamate, alanine, acetate, 3-hydroxybutyrate, and 1-methylhistidine. Conclusions: These metabolites investigated in this study may serve as potential biomarkers of immunoglobulin A nephropathy. Point scoring of pattern recognition analysis was able to distinguish immunoglobulin A nephropathy patients from healthy controls. However, there were no obvious differences between the low-risk and high-risk groups in our research

  17. A proton nuclear magnetic resonance-based metabonomics study of metabolic profiling in immunoglobulin a nephropathy

    Directory of Open Access Journals (Sweden)

    Weiguo Sui

    2012-01-01

    Full Text Available OBJECTIVES: Immunoglobulin A nephropathy is the most common cause of chronic renal failure among primary glomerulonephritis patients. The ability to diagnose immunoglobulin A nephropathy remains poor. However, renal biopsy is an inconvenient, invasive, and painful examination, and no reliable biomarkers have been developed for use in routine patient evaluations. The aims of the present study were to identify immunoglobulin A nephropathy patients, to identify useful biomarkers of immunoglobulin A nephropathy and to establish a human immunoglobulin A nephropathy metabolic profile. METHODS: Serum samples were collected from immunoglobulin A nephropathy patients who were not using immunosuppressants. A pilot study was undertaken to determine disease-specific metabolite biomarker profiles in three groups: healthy controls (N = 23, low-risk patients in whom immunoglobulin A nephropathy was confirmed as grades I-II by renal biopsy (N = 23, and high-risk patients with nephropathies of grades IV-V (N = 12. Serum samples were analyzed using proton nuclear magnetic resonance spectroscopy and by applying multivariate pattern recognition analysis for disease classification. RESULTS: Compared with the healthy controls, both the low-risk and high-risk patients had higher levels of phenylalanine, myo-Inositol, lactate, L6 lipids ( = CH-CH2-CH = O, L5 lipids (-CH2-C = O, and L3 lipids (-CH2-CH2-C = O as well as lower levels of β -glucose, α-glucose, valine, tyrosine, phosphocholine, lysine, isoleucine, glycerolphosphocholine, glycine, glutamine, glutamate, alanine, acetate, 3-hydroxybutyrate, and 1-methylhistidine. CONCLUSIONS: These metabolites investigated in this study may serve as potential biomarkers of immunoglobulin A nephropathy. Point scoring of pattern recognition analysis was able to distinguish immunoglobulin A nephropathy patients from healthy controls. However, there were no obvious differences between the low-risk and high-risk groups in our

  18. Distinct transcriptional and metabolic profiles associated with empathy in Buddhist priests: a pilot study.

    Science.gov (United States)

    Ohnishi, Junji; Ayuzawa, Satoshi; Nakamura, Seiji; Sakamoto, Shigeko; Hori, Miyo; Sasaoka, Tomoko; Takimoto-Ohnishi, Eriko; Tanatsugu, Masakazu; Murakami, Kazuo

    2017-09-02

    Growing evidence suggests that spiritual/religious involvement may have beneficial effects on both psychological and physical functions. However, the biological basis for this relationship remains unclear. This study explored the role of spiritual/religious involvement across a wide range of biological markers, including transcripts and metabolites, associated with the psychological aspects of empathy in Buddhist priests. Ten professional Buddhist priests and 10 age-matched non-priest controls were recruited. The participants provided peripheral blood samples for the analysis of gene expression and metabolic profiles. The participants also completed validated questionnaires measuring empathy, the Health-Promoting Lifestyle Profile-II (HPLP-II), and a brief-type self-administered diet history questionnaire (BDHQ). The microarray analyses revealed that the distinct transcripts in the Buddhist priests included up-regulated genes related to type I interferon (IFN) innate anti-viral responses (i.e., MX1, RSAD2, IFIT1, IFIT3, IFI27, IFI44L, and HERC5), and the genes C17orf97 (ligand of arginyltranseferase 1; ATE1), hemoglobin γA (HBG1), keratin-associated protein (KRTAP10-12), and sialic acid Ig-like lectin 14 (SIGLEC14) were down-regulated at baseline. The metabolomics analysis revealed that the metabolites, including 3-aminoisobutylic acid (BAIBA), choline, several essential amino acids (e.g., methionine, phenylalanine), and amino acid derivatives (e.g., 2-aminoadipic acid, asymmetric dimethyl-arginine (ADMA), symmetric dimethyl-arginine (SMDA)), were elevated in the Buddhist priests. By contrast, there was no significant difference of healthy lifestyle behaviors and daily nutrient intakes between the priests and the controls in this study. With regard to the psychological aspects, the Buddhist priests showed significantly higher empathy compared with the control. Spearman's rank correlation analysis showed that empathy aspects in the priests were significantly

  19. [Lipid and metabolic profiles in adolescents are affected more by physical fitness than physical activity (AVENA study)].

    Science.gov (United States)

    García-Artero, Enrique; Ortega, Francisco B; Ruiz, Jonatan R; Mesa, José L; Delgado, Manuel; González-Gross, Marcela; García-Fuentes, Miguel; Vicente-Rodríguez, Germán; Gutiérrez, Angel; Castillo, Manuel J

    2007-06-01

    To determine whether the level of physical activity or physical fitness (i.e., aerobic capacity and muscle strength) in Spanish adolescents influences lipid and metabolic profiles. From a total of 2859 Spanish adolescents (age 13.0-18.5 years) taking part in the AVENA (Alimentación y Valoración del Estado Nutricional en Adolescentes) study, 460 (248 male, 212 female) were randomly selected for blood analysis. Their level of physical activity was determined by questionnaire. Aerobic capacity was assessed using the Course-Navette test. Muscle strength was evaluated using manual dynamometry, the long jump test, and the flexed arm hang test. A lipid-metabolic cardiovascular risk index was derived from the levels of triglycerides, low-density lipoprotein cholesterol (LDLC), high-density lipoprotein cholesterol (HDLC), and glucose. No relationship was found between the level of physical activity and lipid-metabolic index in either sex. In contrast, there was an inverse relationship between the lipid-metabolic index and aerobic capacity in males (P=.003) after adjustment for physical activity level and muscle strength. In females, a favorable lipid-metabolic index was associated with greater muscle strength (P=.048) after adjustment for aerobic capacity. These results indicate that, in adolescents, physical fitness, and not physical activity, is related to lipid and metabolic cardiovascular risk. Higher aerobic capacity in males and greater muscle strength in females were associated with lower lipid and metabolic risk factors for cardiovascular disease.

  20. Sample preparation optimization in fecal metabolic profiling.

    Science.gov (United States)

    Deda, Olga; Chatziioannou, Anastasia Chrysovalantou; Fasoula, Stella; Palachanis, Dimitris; Raikos, Νicolaos; Theodoridis, Georgios A; Gika, Helen G

    2017-03-15

    Metabolomic analysis of feces can provide useful insight on the metabolic status, the health/disease state of the human/animal and the symbiosis with the gut microbiome. As a result, recently there is increased interest on the application of holistic analysis of feces for biomarker discovery. For metabolomics applications, the sample preparation process used prior to the analysis of fecal samples is of high importance, as it greatly affects the obtained metabolic profile, especially since feces, as matrix are diversifying in their physicochemical characteristics and molecular content. However there is still little information in the literature and lack of a universal approach on sample treatment for fecal metabolic profiling. The scope of the present work was to study the conditions for sample preparation of rat feces with the ultimate goal of the acquisition of comprehensive metabolic profiles either untargeted by NMR spectroscopy and GC-MS or targeted by HILIC-MS/MS. A fecal sample pooled from male and female Wistar rats was extracted under various conditions by modifying the pH value, the nature of the organic solvent and the sample weight to solvent volume ratio. It was found that the 1/2 (w f /v s ) ratio provided the highest number of metabolites under neutral and basic conditions in both untargeted profiling techniques. Concerning LC-MS profiles, neutral acetonitrile and propanol provided higher signals and wide metabolite coverage, though extraction efficiency is metabolite dependent. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cross-sectional and longitudinal comparisons of metabolic profiles between vegetarian and non-vegetarian subjects: a matched cohort study.

    Science.gov (United States)

    Chiu, Yen-Feng; Hsu, Chih-Cheng; Chiu, Tina H T; Lee, Chun-Yi; Liu, Ting-Ting; Tsao, Chwen Keng; Chuang, Su-Chun; Hsiung, Chao A

    2015-10-28

    Several previous cross-sectional studies have shown that vegetarians have a better metabolic profile than non-vegetarians, suggesting that a vegetarian dietary pattern may help prevent chronic degenerative diseases. However, longitudinal studies on the impact of vegetarian diets on metabolic traits are scarce. We studied how several sub-types of vegetarian diets affect metabolic traits, including waist circumference, BMI, systolic blood pressure (SBP), diastolic blood pressure, fasting blood glucose, total cholesterol (TC), HDL, LDL, TAG and TC:HDL ratio, through both cross-sectional and longitudinal study designs. The study used the MJ Health Screening database, with data collected from 1994 to 2008 in Taiwan, which included 4415 lacto-ovo-vegetarians, 1855 lacto-vegetarians and 1913 vegans; each vegetarian was matched with five non-vegetarians based on age, sex and study site. In the longitudinal follow-up, each additional year of vegan diet lowered the risk of obesity by 7 % (95 % CI 0·88, 0·99), whereas each additional year of lacto-vegetarian diet lowered the risk of elevated SBP by 8 % (95 % CI 0·85, 0·99) and elevated glucose by 7 % (95 % CI 0·87, 0·99), and each additional year of ovo-lacto-vegetarian diet increased abnormal HDL by 7 % (95 % CI 1·03, 1·12), compared with non-vegetarians. In the cross-sectional comparisons, all sub-types of vegetarians had lower likelihoods of abnormalities compared with non-vegetarians on all metabolic traits (Pvegetarians is partially attributable to lower BMI. With proper management of TAG and HDL, along with caution about the intake of refined carbohydrates and fructose, a plant-based diet may benefit all aspects of the metabolic profile.

  2. Effects of switching from olanzapine to aripiprazole on the metabolic profiles of patients with schizophrenia and metabolic syndrome: a double-blind, randomized, open-label study [Corrigendum

    Directory of Open Access Journals (Sweden)

    Wani RA

    2015-03-01

    Full Text Available Wani RA, Dar MA, Chandel RK, et al Title of paper should have been “Effects of switching from olanzapine to aripiprazole on the metabolic profiles of patients with schizophrenia and metabolic syndrome: a randomized, open-label study”.  Read the original paper 

  3. Association between muscle mass and adipo-metabolic profile: a cross-sectional study in older subjects

    Directory of Open Access Journals (Sweden)

    Perna S

    2015-02-01

    Full Text Available Simone Perna,1,* Davide Guido,2,* Mario Grassi,2 Mariangela Rondanelli1 1Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di Pavia, Pavia, Italy; 2Medical and Genomic Statistics Unit, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy *These authors contributed equally to this work Background: Sarcopenia, the decrease in muscle mass and function, may lead to various negative health outcomes in elderly. The association among sarcopenia with adiposity and metabolic markers has rarely been studied in the elderly population, with controversial results. The aim of this study is to evaluate this relationship in older subjects.Methods: A cross-sectional study was conducted in 290 elderly patients, focusing on the possible association between muscle mass loss, assessed by relative skeletal muscle mass (RSMM, and an adipo-metabolic profile (AMP defined by adiposity and metabolic biochemical markers. Measurements of body composition were assessed by dual energy X-ray absorptiometry. Biochemical parameters, such as albumin, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol, triglycerides, C-reactive protein, and homocysteine and its related markers (folate and vitamin B12 were measured. Using canonical correlation analysis and structural equation modeling, an individual score of AMP was created and correlated with RSMM.Results: The AMP–RSMM correlation was equal to +0.642 (95% confidence interval, +0.512 to +0.773; P<0.001. Hence, a negative association between sarcopenia severity and adiposity/metabolic biochemical markers was highlighted.Conclusion: This study contained a novel way to examine the relationship between the variables of interest based on a composite index of adiposity and metabolic conditions. Results shed light on the orientation and magnitude of

  4. Metabolic profiling studies on the toxicological effects of realgar in rats by 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing; Pei Fengkui; Li Weisheng; Wu Yijie

    2009-01-01

    The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of 1 H NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. 1 H NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar. Signs of impairment of amino acid metabolism were supported by increased hepatic glutamate levels, increased methionine and decreased alanine levels in serum, and hypertaurinuria. The observed increase in glutathione in liver tissue aqueous extracts could be a biomarker of realgar induced oxidative injury. Serum clinical chemistry analyses showed increased levels of lactate dehydrogenase, aspartate aminotransferase, and alkaline phosphatase as well as increased levels of blood urea nitrogen and creatinine, indicating slight liver and kidney injury. The time-dependent biochemical variations induced by realgar were achieved using pattern recognition methods. This work illustrated the high reliability of NMR-based metabonomic approach on the study of the biochemical effects induced by traditional Chinese medicine

  5. Studies of (±)-3,4-methylenedioxymethamphetamine (MDMA) metabolism and disposition in rats and mice: relationship to neuroprotection and neurotoxicity profile.

    Science.gov (United States)

    Mueller, Melanie; Maldonado-Adrian, Concepcion; Yuan, Jie; McCann, Una D; Ricaurte, George A

    2013-02-01

    The neurotoxicity of (±)-3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") is influenced by temperature and varies according to species. The mechanisms underlying these two features of MDMA neurotoxicity are unknown, but differences in MDMA metabolism have recently been implicated in both. The present study was designed to 1) assess the effect of hypothermia on MDMA metabolism, 2) determine whether the neuroprotective effect of hypothermia is related to inhibition of MDMA metabolism, and 3) determine if different neurotoxicity profiles in mice and rats are related to differences in MDMA metabolism and/or disposition in the two species. Rats and mice received single neurotoxic oral doses of MDMA at 25°C and 4°C, and body temperature, pharmacokinetic parameters, and serotonergic and dopaminergic neuronal markers were measured. Hypothermia did not alter MDMA metabolism in rats and only modestly inhibited MDMA metabolism in mice; however, it afforded complete neuroprotection in both species. Rats and mice metabolized MDMA in a similar pattern, with 3,4-methylenedioxyamphetamine being the major metabolite, followed by 4-hydroxy-3-methoxymethamphetamine and 3,4-dihydroxymethamphetamine, respectively. Differences between MDMA pharmacokinetics in rats and mice, including faster elimination in mice, did not account for the different profile of MDMA neurotoxicity in the two species. Taken together, the results of these studies indicate that inhibition of MDMA metabolism is not responsible for the neuroprotective effect of hypothermia in rodents, and that different neurotoxicity profiles in rats and mice are not readily explained by differences in MDMA metabolism or disposition.

  6. The effect of dietary and physical activity pattern on metabolic profile in individuals with schizophrenia: a cross-sectional study.

    Science.gov (United States)

    Ratliff, Joseph C; Palmese, Laura B; Reutenauer, Erin L; Liskov, Ellen; Grilo, Carlos M; Tek, Cenk

    2012-10-01

    With the rate of obesity on the rise worldwide, individuals with schizophrenia represent a particularly vulnerable population. The aim of this study was to assess the metabolic profile of individuals with schizophrenia in relation to dietary and physical activity habits compared with healthy controls. Dietary and physical activity habits of 130 individuals with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition diagnosis of schizophrenia or schizoaffective disorder were compared with 250 body mass index-, age-, and sex-matched and racially matched controls from the 2005-2008 National Health and Nutrition Examination Surveys using a 24-hour diet recall and a self-report physical activity questionnaire. Individuals with schizophrenia had significantly higher levels of glycosylated hemoglobin and insulin compared with matched controls. In addition, these individuals had an increased waist circumference and diastolic blood pressure than did the comparison group. Daily energy intake was not different between groups; however, individuals with schizophrenia consumed significantly greater amounts of sugar and fat. Individuals with schizophrenia reported engaging in moderate physical activity less frequently compared with the National Health and Nutrition Examination Surveys group, but there was no difference in reported vigorous physical activity. These findings suggest that the dietary and physical activity habits of individuals with schizophrenia contribute to an adverse metabolic profile. Increased opportunities for physical activity and access to healthy foods for individuals with schizophrenia may ease the burden of disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Metabolic profiling for studying chemotype variations in Withania somnifera (L.) Dunal fruits using GC-MS and NMR spectroscopy.

    Science.gov (United States)

    Bhatia, Anil; Bharti, Santosh K; Tewari, Shri K; Sidhu, Om P; Roy, Raja

    2013-09-01

    Withania somnifera (L.) Dunal (Solanaceae), commonly known as Ashwagandha, is one of the most valued Indian medicinal plant with several pharmaceutical and nutraceutical applications. Metabolic profiling was performed by GC-MS and NMR spectroscopy on the fruits obtained from four chemotypes of W. somnifera. A combination of (1)H NMR spectroscopy and GC-MS identified 82 chemically diverse metabolites consisting of organic acids, fatty acids, aliphatic and aromatic amino acids, polyols, sugars, sterols, tocopherols, phenolic acids and withanamides in the fruits of W. somnifera. The range of metabolites identified by GC-MS and NMR of W. somnifera fruits showed various known and unknown metabolites. The primary and secondary metabolites observed in this study represent MVA, DOXP, shikimic acid and phenylpropanoid biosynthetic metabolic pathways. Squalene and tocopherol have been rated as the most potent naturally occurring compounds with antioxidant properties. These compounds have been identified by us for the first time in the fruits of W. somnifera. Multivariate principal component analysis (PCA) on GC-MS and NMR data revealed clear distinctions in the primary and secondary metabolites among the chemotypes. The variation in the metabolite concentration among different chemotypes of the fruits of W. somnifera suggest that specific chemovars can be used to obtain substantial amounts of bioactive ingredients for use as potential pharmacological and nutraceuticals agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Metabolic profile at first-time schizophrenia diagnosis

    DEFF Research Database (Denmark)

    Horsdal, Henriette Thisted; Benros, Michael Eriksen; Köhler-Forsberg, Ole

    2017-01-01

    OBJECTIVE: Schizophrenia and/or antipsychotic drug use are associated with metabolic abnormalities; however, knowledge regarding metabolic status and physician's monitoring of metabolic status at first schizophrenia diagnosis is sparse. We assessed the prevalence of monitoring for metabolic blood...... abnormalities and characterized the metabolic profiles in people with a first-time schizophrenia diagnosis. METHODS: This is a population-based cross-sectional study including all adults born in Denmark after January 1, 1955, with their first schizophrenia diagnosis between 2000 and 2012 in the Central Denmark......-time schizophrenia diagnosis were identified, of whom 1,040 (42.4%) were monitored for metabolic abnormalities. Among those monitored, 58.4% had an abnormal lipid profile and 13.8% had an abnormal glucose profile. People who had previously filled prescription(s) for antipsychotic drugs were more likely to present...

  9. Study of metabolic profile of Rhizopus oryzae to enhance fumaric acid production under low pH condition.

    Science.gov (United States)

    Liu, Ying; Xu, Qing; Lv, Chunwei; Yan, Caixia; Li, Shuang; Jiang, Ling; Huang, He; Ouyang, Pingkai

    2015-12-01

    Ensuring a suitable pH is a major problem in industrial organic acid fermentation. To circumvent this problem, we used a metabolic profiling approach to analyze metabolite changes in Rhizopus oryzae under different pH conditions. A correlation between fumaric acid production and intracellular metabolic characteristics of R. oryzae was revealed by principal component analysis. The results showed that to help cell survival in the presence of low pH, R. oryzae altered amino acid and fatty acid metabolism and promoted sugar or sugar alcohol synthesis, corresponding with a suppressing of energy metabolism, phenylalanine, and tyrosine synthesis and finally resulting in the low performance of fumaric acid production. Based on this observation, 1 % linoleic acid was added to the culture medium in pH 3.0 to decrease the carbon demand for cell survival, and the fumaric acid titer was enhanced by 39.7 % compared with the control (pH 3.0 without linoleic acid addition), reaching 18.3 g/L after 84 h of fermentation. These findings provide new insights into the mechanism by which R. oryzae responds to acidic stress and would be helpful for the development of efficient strategies for fumaric acid production at low pH.

  10. Favourable metabolic profile sustains mitophagy and prevents metabolic abnormalities in metabolically healthy obese individuals.

    Science.gov (United States)

    Bhansali, Shipra; Bhansali, Anil; Dhawan, Veena

    2017-01-01

    Obesity-mediated oxidative stress results in mitochondrial dysfunction, which has been implicated in the pathogenesis of metabolic syndrome and T2DM. Recently, mitophagy, a cell-reparative process has emerged as a key facet in maintaining the mitochondrial health, which may contribute to contain the metabolic abnormalities in obese individuals. However, the status of mitophagy in metabolically healthy obese (MHO) and metabolically abnormal diabetic obese (MADO) subjects remains to be elucidated. Hence, the present study aims to unravel the alterations in mitochondrial oxidative stress (MOS) and mitophagy in these subjects. 60 subjects including MHNO (metabolically healthy non-obese), MHO and MADO were enrolled as per the Asian criteria for obesity (n = 20 each). Biochemical parameters, MOS indices, transcriptional and translational expression of mitophagy markers ( PINK1 , PARKIN , MFN2 , NIX , LC3 - II , and LAMP - 2 ), and transmission electron microscopic (TEM) studies were performed in peripheral blood mononuclear cells. The MHO subjects displayed a favorable metabolic profile, despite accompanied by an increased adiposity as compared to the MHNO group; while MADO group exhibited several metabolic abnormalities, inspite of similar body composition as MHO subjects. A progressive rise in the MOS was observed in MHO and MADO subjects as compared to the MHNO group, and it showed a positive and significant correlation with the body composition in these groups. Further, mitophagy remained unaltered in the MHO group, while it was significantly downregulated in the MADO group. In addition, TEM studies revealed a significant increase in the percentage of damaged mitochondria in MADO patients as compared to other groups, while MHO and MHNO groups did not show any significant alterations for the same. A favorable metabolic profile and moderate levels of MOS in the MHO group may play a crucial role in the sustenance of mitophagy, which may further limit the aggravation

  11. The evolution of metabolic profiling in parasitology.

    Science.gov (United States)

    Holmes, E

    2010-08-01

    The uses of metabolic profiling technologies such as mass spectrometry and nuclear magnetic resonance spectroscopy in parasitology have been multi-faceted. Traditional uses of spectroscopic platforms focused on determining the chemical composition of drugs or natural products used for treatment of parasitic infection. A natural progression of the use of these tools led to the generation of chemical profiles of the parasite in in vitro systems, monitoring the response of the parasite to chemotherapeutics, profiling metabolic consequences in the host organism and to deriving host-parasite interactions. With the dawn of the post-genomic era the paradigm in many research areas shifted towards Systems Biology and the integration of biomolecular interactions at the level of the gene, protein and metabolite. Although these technologies have yet to deliver their full potential, metabolic profiling has a key role to play in defining diagnostic or even prognostic metabolic signatures of parasitic infection and in deciphering the molecular mechanisms underpinning the development of parasite-induced pathologies. The strengths and weaknesses of the various spectroscopic technologies and analytical strategies are summarized here with respect to achieving these goals.

  12. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS µNMR Metabolic Profiling of whole Saccharomyces cervisiae cells: A Demonstrative Study

    Directory of Open Access Journals (Sweden)

    Alan eWong

    2014-06-01

    Full Text Available The low sensitivity of Nuclear Magnetic Resonance (NMR is its prime shortcoming compared to other analytical methods for metabolomic studies. It relies on large sample volume (30–50 µl for HR-MAS for rich metabolic profiling, hindering high-throughput screening especially when the sample requires a labor-intensive preparation or is a sacred specimen. This is indeed the case for some living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volume (250 nl whole bacterial cells, Saccharomyces cervisiae, using an emerging micro-NMR technology: high-resolution magic-angle coil spinning (HR-MACS. As a demonstrative study for whole cells, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging.

  13. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS) - NMR Metabolic Profiling of whole Saccharomyces cervisiae cells: A Demonstrative Study

    Science.gov (United States)

    Wong, Alan; Boutin, Celine; Aguiar, Pedro

    2014-06-01

    The low sensitivity of Nuclear Magnetic Resonance (NMR) is its prime shortcoming compared to other analytical methods for metabolomic studies. It relies on large sample volume (30-50 µl for HR-MAS) for rich metabolic profiling, hindering high-throughput screening especially when the sample requires a labor-intensive preparation or is a sacred specimen. This is indeed the case for some living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volume (250 nl) whole bacterial cells, Saccharomyces cervisiae, using an emerging micro-NMR technology: high-resolution magic-angle coil spinning (HR-MACS). As a demonstrative study for whole cells, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging.

  14. Effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile and inflammation markers in metabolic syndrome - a randomized study (SYSDIET)

    DEFF Research Database (Denmark)

    Uusitupa, M; Hermansen, Kjeld; Savolainen, M J

    2013-01-01

    BACKGROUND: Different healthy food patterns may modify cardiometabolic risk. We investigated the effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile, blood pressure and inflammatory markers in people with metabolic syndrome. METHODS: We conducted a randomized dietary...... study lasting for 18-24 weeks in individuals with features of metabolic syndrome (mean age 55 years, BMI 31.6 kg m-2 , 67% women). Altogether 309 individuals were screened, 200 started the intervention after 4-week run-in period, and 96 (proportion of dropouts 7.9%) and 70 individuals (dropouts 27......%, beta estimate 4.28, 0.02; 8.53, P = 0.049) and magnesium (mg, -0.23, -0.41; -0.05, P = 0.012) were associated with IL-1 Ra. CONCLUSIONS: Healthy Nordic diet improved lipid profile and had a beneficial effect on low-grade inflammation....

  15. MetAssimulo:Simulation of Realistic NMR Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    De Iorio Maria

    2010-10-01

    Full Text Available Abstract Background Probing the complex fusion of genetic and environmental interactions, metabolic profiling (or metabolomics/metabonomics, the study of small molecules involved in metabolic reactions, is a rapidly expanding 'omics' field. A major technique for capturing metabolite data is 1H-NMR spectroscopy and this yields highly complex profiles that require sophisticated statistical analysis methods. However, experimental data is difficult to control and expensive to obtain. Thus data simulation is a productive route to aid algorithm development. Results MetAssimulo is a MATLAB-based package that has been developed to simulate 1H-NMR spectra of complex mixtures such as metabolic profiles. Drawing data from a metabolite standard spectral database in conjunction with concentration information input by the user or constructed automatically from the Human Metabolome Database, MetAssimulo is able to create realistic metabolic profiles containing large numbers of metabolites with a range of user-defined properties. Current features include the simulation of two groups ('case' and 'control' specified by means and standard deviations of concentrations for each metabolite. The software enables addition of spectral noise with a realistic autocorrelation structure at user controllable levels. A crucial feature of the algorithm is its ability to simulate both intra- and inter-metabolite correlations, the analysis of which is fundamental to many techniques in the field. Further, MetAssimulo is able to simulate shifts in NMR peak positions that result from matrix effects such as pH differences which are often observed in metabolic NMR spectra and pose serious challenges for statistical algorithms. Conclusions No other software is currently able to simulate NMR metabolic profiles with such complexity and flexibility. This paper describes the algorithm behind MetAssimulo and demonstrates how it can be used to simulate realistic NMR metabolic profiles with

  16. Metabolic profiling of fatty liver in young and middle‐aged adults: Cross‐sectional and prospective analyses of the Young Finns Study

    Science.gov (United States)

    Würtz, Peter; Suomela, Emmi; Lehtovirta, Miia; Kangas, Antti J.; Jula, Antti; Mikkilä, Vera; Viikari, Jorma S.A.; Juonala, Markus; Rönnemaa, Tapani; Hutri‐Kähönen, Nina; Kähönen, Mika; Lehtimäki, Terho; Soininen, Pasi; Ala‐Korpela, Mika; Raitakari, Olli T.

    2016-01-01

    Nonalcoholic fatty liver is associated with obesity‐related metabolic disturbances, but little is known about the metabolic perturbations preceding fatty liver disease. We performed comprehensive metabolic profiling to assess how circulating metabolites, such as lipoprotein lipids, fatty acids, amino acids, and glycolysis‐related metabolites, reflect the presence of and future risk for fatty liver in young adults. Sixty‐eight lipids and metabolites were quantified by nuclear magnetic resonance metabolomics in the population‐based Young Finns Study from serum collected in 2001 (n = 1,575), 2007 (n = 1,509), and 2011 (n = 2,002). Fatty liver was diagnosed by ultrasound in 2011 when participants were aged 34‐49 years (19% prevalence). Cross‐sectional associations as well as 4‐year and 10‐year risks for fatty liver were assessed by logistic regression. Metabolites across multiple pathways were strongly associated with the presence of fatty liver (P fatty acids including omega‐6 (OR = 0.37, 0.32‐0.42). The metabolic associations were attenuated but remained significant after adjusting for waist, physical activity, alcohol consumption, and smoking (P fatty liver diagnosis. Conclusion: Circulating lipids, fatty acids, and amino acids reflect fatty liver independently of routine metabolic risk factors; these metabolic aberrations appear to precede the development of fatty liver in young adults. (Hepatology 2017;65:491‐500). PMID:27775848

  17. Metabolic Profiling of Alpine and Ecuadorian Lichens

    Directory of Open Access Journals (Sweden)

    Verena K. Mittermeier

    2015-10-01

    Full Text Available Non-targeted 1H-NMR methods were used to determine metabolite profiles from crude extracts of Alpine and Ecuadorian lichens collected from their natural habitats. In control experiments, the robustness of metabolite detection and quantification was estimated using replicate measurements of Stereocaulon alpinum extracts. The deviations in the overall metabolite fingerprints were low when analyzing S. alpinum collections from different locations or during different annual and seasonal periods. In contrast, metabolite profiles observed from extracts of different Alpine and Ecuadorian lichens clearly revealed genus- and species-specific profiles. The discriminating functions determining cluster formation in principle component analysis (PCA were due to differences in the amounts of genus-specific compounds such as sticticin from the Sticta species, but also in the amounts of ubiquitous metabolites, such as sugar alcohols or trehalose. However, varying concentrations of these metabolites from the same lichen species e.g., due to different environmental conditions appeared of minor relevance for the overall cluster formation in PCA. The metabolic clusters matched phylogenetic analyses using nuclear ribosomal DNA (nrDNA internal transcribed spacer (ITS sequences of lichen mycobionts, as exemplified for the genus Sticta. It can be concluded that NMR-based non-targeted metabolic profiling is a useful tool in the chemo-taxonomy of lichens. The same approach could also facilitate the discovery of novel lichen metabolites on a rapid and systematical basis.

  18. Sheathless capillary electrophoresis-mass spectrometry for anionic metabolic profiling.

    Science.gov (United States)

    Gulersonmez, Mehmet Can; Lock, Stephen; Hankemeier, Thomas; Ramautar, Rawi

    2016-04-01

    The performance of CE coupled on-line to MS via a sheathless porous tip sprayer was evaluated for anionic metabolic profiling. A representative metabolite mixture and biological samples were used for the evaluation of various analytical parameters, such as peak efficiency (plate numbers), migration time and peak area repeatability, and LODs. The BGE, i.e. 10% acetic acid (pH 2.2), previously used for cationic metabolic profiling was now assessed for anionic metabolic profiling by using MS detection in negative ion mode. For test compounds, RSDs for migration times and peak areas were below 2 and 11%, respectively, and plate numbers ranged from 60 000 to 40 0000 demonstrating a high separation efficiency. Critical metabolites with low or no retention on reversed-phase LC could be efficiently separated and selectively analyzed by the sheathless CE-MS method. An injection volume of only circa 20 nL resulted in LODs between 10 and 200 nM (corresponding to an amount of 0.4-4 fmol), which was an at least tenfold improvement as compared to LODs obtained by conventional CE-MS approaches for these analytes. The methodology was applied to anionic metabolic profiling of glioblastoma cell line extracts. Overall, a sheathless CE-MS method has been developed for highly efficient and sensitive anionic metabolic profiling studies, which can also be used for cationic metabolic profiling studies by only switching the MS detection and separation voltage polarity. © 2015 The Authors ELECTROPHORESIS Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Metabolic Profiling in Patients with Pneumonia on Intensive Care.

    Science.gov (United States)

    Antcliffe, David; Jiménez, Beatriz; Veselkov, Kirill; Holmes, Elaine; Gordon, Anthony C

    2017-04-01

    Clinical features and investigations lack predictive value when diagnosing pneumonia, especially when patients are ventilated and when patients develop ventilator associated pneumonia (VAP). New tools to aid diagnosis are important to improve outcomes. This pilot study examines the potential for metabolic profiling to aid the diagnosis in critical care. In this prospective observational study ventilated patients with brain injuries or pneumonia were recruited in the intensive care unit and serum samples were collected soon after the start of ventilation. Metabolic profiles were produced using 1D 1 H NMR spectra. Metabolic data were compared using multivariate statistical techniques including Principal Component Analysis (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). We recruited 15 patients with pneumonia and 26 with brain injuries, seven of whom went on to develop VAP. Comparison of metabolic profiles using OPLS-DA differentiated those with pneumonia from those with brain injuries (R 2 Y=0.91, Q 2 Y=0.28, p=0.02) and those with VAP from those without (R 2 Y=0.94, Q 2 Y=0.27, p=0.05). Metabolites that differentiated patients with pneumonia included lipid species, amino acids and glycoproteins. Metabolic profiling shows promise to aid in the diagnosis of pneumonia in ventilated patients and may allow a more timely diagnosis and better use of antibiotics. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Development of personalized functional foods needs metabolic profiling.

    Science.gov (United States)

    Claus, Sandrine Paule

    2014-11-01

    There is growing interest in applying metabolic profiling technologies to food science as this approach is now embedded into the foodomics toolbox. This review aims at exploring how metabolic profiling can be applied to the development of functional foods. One of the biggest challenges of modern nutrition is to propose a healthy diet to populations worldwide that must suit high inter-individual variability driven by complex gene-nutrient-environment interactions. Although a number of functional foods are now proposed in support of a healthy diet, a one-size-fits-all approach to nutrition is inappropriate and new personalized functional foods are necessary. Metabolic profiling technologies can assist at various levels of the development of functional foods, from screening for food composition to identification of new biomarkers of food intake to support diet intervention and epidemiological studies. Modern 'omics' technologies, including metabolic profiling, will support the development of new personalized functional foods of high relevance to 21st century medical challenges, such as controlling the worldwide spread of metabolic disorders and ensuring healthy ageing.

  1. Plasma Metabolic Profiles in Women are Menopause Dependent.

    Directory of Open Access Journals (Sweden)

    Chaofu Ke

    Full Text Available Menopause is an endocrinological transition that greatly affects health and disease susceptibility in middle-aged and elderly women. To gain new insights into the metabolic process of menopause, plasma metabolic profiles in 115 pre- and post-menopausal women were systematically analyzed by ultra-performance liquid chromatography/mass spectrometry in conjunction with univariate and multivariate statistical analysis. Metabolic signatures revealed considerable differences between pre- and post-menopausal women, and clear separations were observed between the groups in partial least-squares discriminant analysis score plots. In total, 28 metabolites were identified as potential metabolite markers for menopause, including up-regulated acylcarnitines, fatty acids, lysophosphatidylcholines, lysophosphatidylethanolamines, and down-regulated pregnanediol-3-glucuronide, dehydroepiandrosterone sulfate, p-hydroxyphenylacetic acid and dihydrolipoic acid. These differences highlight that significant alterations occur in fatty acid β-oxidation, phospholipid metabolism, hormone metabolism and amino acid metabolism in post-menopausal women. In conclusion, our plasma metabolomics study provides novel understanding of the metabolic profiles related to menopause, and will be useful for investigating menopause-related diseases and assessing metabolomic confounding factors.

  2. Expression profiling and comparative sequence derived insights into lipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Callow, Matthew J.; Rubin, Edward M.

    2001-12-19

    Expression profiling and genomic DNA sequence comparisons are increasingly being applied to the identification and analysis of the genes involved in lipid metabolism. Not only has genome-wide expression profiling aided in the identification of novel genes involved in important processes in lipid metabolism such as sterol efflux, but the utilization of information from these studies has added to our understanding of the regulation of pathways participating in the process. Coupled with these gene expression studies, cross species comparison, searching for sequences conserved through evolution, has proven to be a powerful tool to identify important non-coding regulatory sequences as well as the discovery of novel genes relevant to lipid biology. An example of the value of this approach was the recent chance discovery of a new apolipoprotein gene (apo AV) that has dramatic effects upon triglyceride metabolism in mice and humans.

  3. First and second trimester urinary metabolic profiles and fetal growth restriction: an exploratory nested case-control study within the infant development and environment study.

    Science.gov (United States)

    Luthra, Gauri; Vuckovic, Ivan; Bangdiwala, A; Gray, H; Redmon, J B; Barrett, E S; Sathyanarayana, S; Nguyen, R H N; Swan, S H; Zhang, S; Dzeja, P; Macura, S I; Nair, K S

    2018-02-08

    Routine prenatal care fails to identify a large proportion of women at risk of fetal growth restriction (FGR). Metabolomics, the comprehensive analysis of low molecular weight molecules (metabolites) in biological samples, can provide new and earlier biomarkers of prenatal health. Recent research has suggested possible predictive first trimester urine metabolites correlating to fetal growth restriction in the third trimester. Our objective in this current study was to examine urinary metabolic profiles in the first and second trimester of pregnancy in relation to third trimester FGR in a US population from a large, multi-center cohort study of healthy pregnant women. We conducted a nested case-control study within The Infant Development and the Environment Study (TIDES), a population-based multi-center pregnancy cohort study. We identified 53 cases of FGR based on the AUDIPOG [Neonatal growth - AUDIPOG [Internet]. [cited 29 Nov 2016]. Available from: http://www.audipog.net/courbes_morpho.php?langue=en ] formula for birthweight percentile considering maternal height, age, and prenatal weight, as well as infant sex, gestational age, and birth rank. Cases were matched to 106 controls based on study site, maternal age (± 2 years), parity, and infant sex. NMR spectroscopy was used to assess concentrations of four urinary metabolites that have been previously associated with FGR (tyrosine, acetate, formate, and trimethylamine) in first and second trimester urine samples. We fit multivariate conditional logistic regression models to estimate the odds of FGR in relation to urinary concentrations of these individual metabolites in the first and second trimesters. Exploratory analyses of custom binned spectroscopy results were run to consider other potentially related metabolites. We found no significant association between the relative concentrations of each of the four metabolites and odds of FGR. Exploratory analyses did not reveal any significant differences in urinary

  4. High-performance metabolic profiling with dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) for study of the exposome.

    Science.gov (United States)

    Soltow, Quinlyn A; Strobel, Frederick H; Mansfield, Keith G; Wachtman, Lynn; Park, Youngja; Jones, Dean P

    2013-03-01

    Studies of gene-environment (G × E) interactions require effective characterization of all environmental exposures from conception to death, termed the exposome. The exposome includes environmental exposures that impact health. Improved metabolic profiling methods are needed to characterize these exposures for use in personalized medicine. In the present study, we compared the analytic capability of dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) to previously used liquid chromatography-FTMS (LC-FTMS) analysis for high-throughput, top-down metabolic profiling. For DC-FTMS, we combined data from sequential LC-FTMS analyses using reverse phase (C18) chromatography and anion exchange (AE) chromatography. Each analysis was performed with electrospray ionization in the positive ion mode and detection from m/z 85 to 850. Run time for each column was 10 min with gradient elution; 10 µl extracts of plasma from humans and common marmosets were used for analysis. In comparison to analysis with the AE column alone, addition of the second LC-FTMS analysis with the C18 column increased m/z feature detection by 23-36%, yielding a total number of features up to 7,000 for individual samples. Approximately 50% of the m/z matched to known chemicals in metabolomic databases, and 23% of the m/z were common to analyses on both columns. Database matches included insecticides, herbicides, flame retardants, and plasticizers. Modularity clustering algorithms applied to MS-data showed the ability to detection clusters and ion interactions. DC-FTMS thus provides improved capability for high-performance metabolic profiling of the exposome and development of personalized medicine.

  5. Body composition, metabolism, sleep, psychological and eating patterns of overtraining syndrome: Results of the EROS study (EROS-PROFILE).

    Science.gov (United States)

    Cadegiani, Flavio A; Kater, Claudio E

    2018-01-09

    Overtraining syndrome (OTS) is caused by an imbalance between training, nutrition and resting, and leads to decreased performance and fatigue; however, the precise underlying triggers of OTS remain unclear. This study investigated the body composition, metabolism, eating, sleeping patterns and mood states among participants with OTS. Selected participants were divided into OTS-affected athletes (OTS, n = 14), healthy athletes (ATL, n = 25), and healthy non-physically active controls (NCS, n = 12). Compared to ATL, OTS showed decreased sleep quality (p = 0.004); increased duration of work or study (p sleep, and increased cognitive activity are likely OTS triggers. OTS appears to induce dehydration, increase body fat, decrease libido, and worsen mood.

  6. Circulating Metabolic Profile of High Producing Holstein Dairy Cows

    Directory of Open Access Journals (Sweden)

    Aliasghar CHALMEH

    2015-07-01

    Full Text Available Assessing the metabolic profile based on the concept that the laboratory measurement of certain circulating components is a tool to evaluate metabolic status of dairy cows. Veterinarian also can evaluate the energy input-output relationships by assessing the metabolic profile to prevent and control of negative energy balance, metabolic disorders and nutritional insufficiencies. In the present study, 25 multiparous Holstein dairy cows were divided to 5 equal groups containing early, mid and late lactation, and far-off and close-up dry. Blood samples were collected from all cows through jugular venipuncture and sera were evaluated for glucose, insulin, β-hydroxybutyric acid (BHBA, non-esterified fatty acid (NEFA, cholesterol, triglyceride (TG, high, low and very low density lipoproteins (HDL, LDL and VLDL. Insulin levels in mid lactation and close-up dry cows were significantly higher than other groups (P<0.05 and the lowest insulin concentration was detected in far-off dry group. Serum concentrations of NEFA and BHBA in early and mid-lactation and close-up dry cows were significantly higher than late lactation and far-off dry animals (P<0.05. Baseline levels of cholesterol in mid and late lactation were significantly higher than other groups. The level of LDL in mid lactation cows was higher than others significantly, and its value in far-off dry cows was significantly lower than other group (P<0.05. It may be concluded that the detected changes among different groups induce commonly by negative energy balance, lactogenesis and fetal growth in each state. The presented metabolic profile can be considered as a tool to assess the energy balance in dairy cows at different physiologic states. It can be used to evaluate the metabolic situations of herd and manage the metabolic and production disorders.

  7. Analysis of Serum Metabolic Profile by Ultra-performance Liquid Chromatography-mass Spectrometry for Biomarkers Discovery: Application in a Pilot Study to Discriminate Patients with Tuberculosis

    Directory of Open Access Journals (Sweden)

    Shuang Feng

    2015-01-01

    Full Text Available Background: Tuberculosis (TB is a chronic wasting inflammatory disease characterized by multisystem involvement, which can cause metabolic derangements in afflicted patients. Metabolic signatures have been exploited in the study of several diseases. However, the serum that is successfully used in TB diagnosis on the basis of metabolic profiling is not by much. Methods: Orthogonal partial least-squares discriminant analysis was capable of distinguishing TB patients from both healthy subjects and patients with conditions other than TB. Therefore, TB-specific metabolic profiling was established. Clusters of potential biomarkers for differentiating TB active from non-TB diseases were identified using Mann-Whitney U-test. Multiple logistic regression analysis of metabolites was calculated to determine the suitable biomarker group that allows the efficient differentiation of patients with TB active from the control subjects. Results: From among 271 participants, 12 metabolites were found to contribute to the distinction between the TB active group and the control groups. These metabolites were mainly involved in the metabolic pathways of the following three biomolecules: Fatty acids, amino acids, and lipids. The receiver operating characteristic curves of 3D, 7D, and 11D-phytanic acid, behenic acid, and threoninyl-γ-glutamate exhibited excellent efficiency with area under the curve (AUC values of 0.904 (95% confidence interval [CI]: 0863-0.944, 0.93 (95% CI: 0.893-0.966, and 0.964 (95% CI: 00.941-0.988, respectively. The largest and smallest resulting AUCs were 0.964 and 0.720, indicating that these biomarkers may be involved in the disease mechanisms. The combination of lysophosphatidylcholine (18:0, behenic acid, threoninyl-γ-glutamate, and presqualene diphosphate was used to represent the most suitable biomarker group for the differentiation of patients with TB active from the control subjects, with an AUC value of 0.991. Conclusion: The

  8. Meat and Seafood Consumption in Relation to Plasma Metabolic Profiles in a Chinese Population: A Combined Untargeted and Targeted Metabolomics Study.

    Science.gov (United States)

    Lu, Yonghai; Zou, Li; Su, Jin; Tai, E Shyong; Whitton, Clare; Dam, Rob M van; Ong, Choon Nam

    2017-06-30

    We examined the relationship between different patterns of meat and seafood consumption and plasma metabolic profiles in an Asian population. We selected 270 ethnic Chinese men and women from the Singapore Prospective Study Program based on their dietary habits assessed with a validated food frequency questionnaire. Participants were divided into four subgroups: high meat and high seafood ( n = 60), high meat and low seafood ( n = 64), low meat and high seafood ( n = 60), and low meat and low seafood ( n = 86) consumers. Plasma metabolites were measured using both targeted and untargeted mass spectroscopy-based analyses. A total of 42 metabolites differed significantly by dietary group. Higher concentrations of essential amino acids, polyunsaturated fatty acids, and d-glucose were found in high meat and/or seafood consumers as compared with the group with a low consumption of these animal foods. Red meat, poultry, fish, shellfish, soy products, and dairy were each correlated with at least one differential metabolite ( r = -0.308 to 0.448). Some observations, such as the correlation between fish and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), confirmed previous studies. Other observations, such as the correlation between shellfish and phosphatidylethanolamine (p36:4), were novel. We also observed significant correlations between plasma metabolites and clinical characteristics, such as CMPF with fasting blood glucose ( r = 0.401). These findings demonstrate a significant influence of meat and seafood consumption on metabolic profiles in the Asian population.

  9. Effect of genome and environment on metabolic and inflammatory profiles.

    Directory of Open Access Journals (Sweden)

    Marina Sirota

    Full Text Available Twin and family studies have established the contribution of genetic factors to variation in metabolic, hematologic and immunological parameters. The majority of these studies analyzed single or combined traits into pre-defined syndromes. In the present study, we explore an alternative multivariate approach in which a broad range of metabolic, hematologic, and immunological traits are analyzed simultaneously to determine the resemblance of monozygotic (MZ twin pairs, twin-spouse pairs and unrelated, non-cohabiting individuals. A total of 517 participants from the Netherlands Twin Register, including 210 MZ twin pairs and 64 twin-spouse pairs, took part in the study. Data were collected on body composition, blood pressure, heart rate, and multiple biomarkers assessed in fasting blood samples, including lipid levels, glucose, insulin, liver enzymes, hematological measurements and cytokine levels. For all 51 measured traits, pair-wise Pearson correlations, correcting for family relatedness, were calculated across all the individuals in the cohort. Hierarchical clustering techniques were applied to group the measured traits into sub-clusters based on similarity. Sub-clusters were observed among metabolic traits and among inflammatory markers. We defined a phenotypic profile as the collection of all the traits measured for a given individual. Average within-pair similarity of phenotypic profiles was determined for the groups of MZ twin pairs, spouse pairs and pairs of unrelated individuals. The average similarity across the full phenotypic profile was higher for MZ twin pairs than for spouse pairs, and lowest for pairs of unrelated individuals. Cohabiting MZ twins were more similar in their phenotypic profile compared to MZ twins who no longer lived together. The correspondence in the phenotypic profile is therefore determined to a large degree by familial, mostly genetic, factors, while household factors contribute to a lesser degree to profile

  10. Drug-drug interaction and doping, part 1: an in vitro study on the effect of non-prohibited drugs on the phase I metabolic profile of toremifene.

    Science.gov (United States)

    Mazzarino, Monica; de la Torre, Xavier; Fiacco, Ilaria; Palermo, Amelia; Botrè, Francesco

    2014-05-01

    The present study was designed to provide preliminary information on the potential impact of metabolic drug-drug interaction on the effectiveness of doping control strategies currently followed by the anti-doping laboratories to detect the intake of banned agents. In vitro assays based on the use of human liver microsomes and recombinant CYP isoforms were designed and performed to characterize the phase I metabolic profile of the prohibited agent toremifene, selected as a prototype drug of the class of selective oestrogen receptor modulators, both in the absence and in the presence of medicaments (fluconazole, ketoconazole, itraconazole, miconazole, cimetidine, ranitidine, fluoxetine, paroxetine, nefazodone) not included in the World Anti-Doping Agency list of prohibited substances and methods and frequently administered to athletes. The results show that the in vitro model developed in this study was adequate to simulate the in vivo metabolism of toremifene, confirming the results obtained in previous studies. Furthermore, our data also show that ketoconazole, itraconazole, miconazole and nefazodone cause a marked modification in the production of the metabolic products (i.e. hydroxylated and carboxylated metabolites) normally selected by the anti-doping laboratories as target analytes to detect toremifene intake; moderate variations were registered in the presence of fluconazole, paroxetine and fluoxetine; while no significant modifications were measured in the presence of ranitidine and cimetidine. This evidence imposes that the potential effect of drug-drug interactions is duly taken into account in anti-doping analysis, also for a broader significance of the analytical results. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    International Nuclear Information System (INIS)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  12. Microalgal Metabolic Network Model Refinement through High Throughput Functional Metabolic Profiling

    Directory of Open Access Journals (Sweden)

    Amphun eChaiboonchoe

    2014-12-01

    Full Text Available Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The Phenotype Microarray (PM technology (Biolog, Hayward, CA, USA provides an efficient, high throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi but it has not been reported for the phenotyping of microalgae. Here we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of D-amino acids, L-dipeptides, and L-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  13. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling.

    Science.gov (United States)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  14. The metabolic profile of long-lived Drosophila melanogaster

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Pedersen, Simon Metz Mariendal; Nielsen, Niels Chr

    2012-01-01

    We investigated the age-related changes in the metabolic profile of male Drosophila melanogaster and compared the metabolic profile of flies selected for increased longevity to that of control flies of equal age. We found clear differences in metabolite composition between selection regimes...

  15. A Mediterranean-type diet is associated with better metabolic profile in urban Polish adults: Results from the HAPIEE study

    Science.gov (United States)

    Grosso, Giuseppe; Stepaniak, Urszula; Micek, Agnieszka; Topor-Mądry, Roman; Stefler, Denes; Szafraniec, Krystyna; Bobak, Martin; Pająk, Andrzej

    2015-01-01

    Objective The aim of this study was to evaluate the relationship between adherence to a Mediterranean-type diet and metabolic syndrome (MetS) in the Polish arm of the Health, Alcohol and Psychosocial factors In Eastern Europe (HAPIEE) cohort study. Materials/methods A cross-sectional survey including 8821 adults was conducted in Krakow, Poland. Food intake was evaluated through a validated food frequency questionnaire and adherence to the dietary pattern was assessed using a score specifically developed for non-Mediterranean countries (MedTypeDiet score). Linear and logistic regression models were performed to estimate beta and odds ratios (ORs) and 95% confidence intervals (CIs), respectively. Results Significant associations between the MedTypeDiet score and waist circumference (β = − 0.307 ± 0.239 cm), systolic blood pressure (β = − 0.440 ± 0.428 mmHg), and triglycerides (β = − 0.021 ± 0.016 mmol/L) were observed. After multivariable adjustment, individuals in the highest quartile of the score were less likely to have MetS, central obesity, high triglycerides, and hypertension. Increase of one standard deviation of the score was associated with 7% less odds of having MetS (OR 0.93, 95% CI: 0.88, 0.97). When analyzing the relation of single components of the MedTypeDiet score, wine, dairy products, and the total unsaturated:saturated fatty acids ratio were associated with MetS. Conclusions Adherence to a Mediterranean-like diet may decrease the risk of MetS also among non-Mediterranean populations. PMID:25752843

  16. Temporal metabolic profiling of plasma during endotoxemia in humans.

    Science.gov (United States)

    Kamisoglu, Kubra; Sleight, Kirsten E; Calvano, Steve E; Coyle, Susette M; Corbett, Siobhan A; Androulakis, Ioannis P

    2013-12-01

    Endotoxemia induced by the administration of low-dose lipopolysaccharide (LPS) to healthy human volunteers is a well-established experimental protocol and has served as a reproducible platform for investigating the responses to systemic inflammation. Because metabolic composition of a tissue or body fluid is uniquely altered by stimuli and provides information about the dominant regulatory mechanisms at various cellular processes, understanding the global metabolic response to systemic inflammation constitutes a major part in this investigation complementing the studies undertaken so far in both clinical and systems biology fields. This article communicates the first proof-of-principle metabonomic analysis, which comprised global biochemical profiles in human plasma samples from healthy subjects given intravenous endotoxin at 2 ng/kg. Concentrations of a total of 366 plasma biochemicals were determined in archived blood samples collected from 15 endotoxin-treated subjects at five time points within 24 h after treatment and compared with control samples collected from four saline-treated subjects. Principal component analysis within this data set determined the sixth hour as a critical time point separating development and recovery phases of the LPS-induced metabolic changes. Consensus clustering of the differential metabolites identified two distinct subsets of metabolites that displayed common coherent profiles with opposing directionality. The first group of metabolites, which were mostly associated with pathways related to lipid metabolism, was upregulated within the first 6 h and downregulated by the 24th hour following LPS administration. The second group of metabolites, in contrast, was first downregulated until the sixth hour, then upregulated. Metabolites in this group were predominantly amino acids or their derivatives. In summary, nontargeted biochemical profiling and unsupervised multivariate analyses highlighted the prominent roles of lipid and protein

  17. Observability of plant metabolic networks is reflected in the correlation of metabolic profiles

    DEFF Research Database (Denmark)

    Schwahn, Kevin; Küken, Anika; Kliebenstein, Daniel James

    2016-01-01

    -of-the-art genome-scale metabolic networks. By using metabolic data profiles from a set of seven environmental perturbations as well as from natural variability, we demonstrate that the data profiles of sensor metabolites are more correlated than those of nonsensor metabolites. This pattern was confirmed...

  18. A comparative study of the metabolic profile, insulin sensitivity and inflammatory response between organically and conventionally managed dairy cattle during the periparturient period.

    Science.gov (United States)

    Abuelo, A; Hernández, J; Benedito, J L; Castillo, C

    2014-09-01

    The number of organically managed cattle (OMC) within the European Union has increased tremendously in the last decade. However, there are still some concerns about animals under this farming system meeting their dietary requirements for milk production. The aim of this study was to compare the metabolic adaptations to the onset of lactation in three different herds, one conventional and two organic ones. Twenty-two conventionally managed cattle (CMC) and 20 from each organic farm were sampled throughout the periparturient period. These samplings were grouped into four different stages: (i) far-off dry, (ii) close-up dry, (iii) fresh and (iv) peak of lactation and compared among them. In addition, the results of periparturient animals were also compared within each management type with a control group (animals between the 4th and 5th months of pregnancy). Metabolic profiles were used to assess the health status of the herds, along with the quantification of the acute phase proteins haptoglobin and serum amyloid A, insulin and the calculation of different surrogate indices of insulin sensitivity. Generalised linear mixed models with repeated measurements were used to study the effect of the stage, management type or their interaction on the serum variables studied. The prevalence of subclinical ketosis was higher in OMC, although they showed better insulin sensitivity, a lower degree of inflammation and less liver injury, without a higher risk of macromineral deficiencies. Therefore, attention should be paid on organic farms to the nutritional management of cows around the time of calving in order to prevent the harmful consequences of excessive negative energy balance. Moreover, it must be taken into account that most of the common practices used to treat this condition in CMC are not allowed on a systematic basis in OMC.

  19. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Christine T Ferrara

    2008-03-01

    Full Text Available Although numerous quantitative trait loci (QTL influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptin(ob/ob and the diabetes-susceptible BTBR leptin(ob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines. We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.

  20. Serum uric acid and its relationship with metabolic syndrome and cardiovascular risk profile in patients with hypertension: insights from the I-DEMAND study.

    Science.gov (United States)

    Viazzi, F; Garneri, D; Leoncini, G; Gonnella, A; Muiesan, M L; Ambrosioni, E; Costa, F V; Leonetti, G; Pessina, A C; Trimarco, B; Volpe, M; Agabiti Rosei, E; Deferrari, G; Pontremoli, R

    2014-08-01

    The independent role of serum uric acid (SUA) as a marker of cardio-renal risk is debated. The aim of this study was to assess the relationship between SUA, metabolic syndrome (MS), and other cardiovascular (CV) risk factors in an Italian population of hypertensive patients with a high prevalence of diabetes. A total of 2429 patients (mean age 62 ± 11 years) among those enrolled in the I-DEMAND study were stratified on the basis of SUA gender specific quartiles. MS was defined according to the NCEP-ATP III criteria, chronic kidney disease (CKD) as an estimated GFR (CKD-Epi) <60 ml/min/1.73 m(2) or as the presence of microalbuminuria (albumin-to-creatinine ratio ≥2.5 mg/mmol in men and ≥3.5 mg/mmol in women). The prevalence of MS, CKD, and positive history for CV events was 72%, 43%, and 20%, respectively. SUA levels correlated with the presence of MS, its components, signs of renal damage and worse CV risk profile. Multivariate logistic regression analysis revealed that SUA was associated with a positive history of CV events and high Framingham risk score even after adjusting for MS and its components (OR 1.10, 95% CI 1.03-1.18; P = 0.0060; OR 1.28, 95% CI 1.15-1.42; P < 0.0001). These associations were stronger in patients without diabetes and with normal renal function. Mild hyperuricemia is a strong, independent marker of MS and high cardio-renal risk profile in hypertensive patients under specialist care. Intervention trials are needed to investigate whether the reduction of SUA levels favorably impacts outcome in patients at high CV risk. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Influence of common variants near INSIG2, in FTO, and near MC4R genes on overweight and the metabolic profile in adolescence : the TRAILS (TRacking Adolescents' Individual Lives Survey) Study

    NARCIS (Netherlands)

    Liem, E.T.; Vonk, J.M.; Sauer, P.J.J.; van der Steege, G.; Oosterom, E.; Stolk, R.P.; Snieder, H.

    Background: Overweight is a complex trait in which both environmental and genetic factors play a role. Objective: We aimed to evaluate the influence of common genetic variants identified by genome-wide association studies on overweight and the metabolic profile in adolescence. Design: In a

  2. Abdominal obesity has the highest impact on metabolic profile in an overweight African population

    DEFF Research Database (Denmark)

    Handlos, L. N.; Witte, D. R.; Mwaniki, D. L.

    2012-01-01

    Aim: The aim of this study was to determine the association between different anthropometric parameters and metabolic profile in an overweight, adult, black Kenyan population. Methods: An opportunity sample of 245 overweight adult Kenyans (body mass index (BMI) ≥ 25 kg/m2) was analysed. A score...... anthropometric variables tested, WC and VAT thickness had the strongest negative association with the metabolic profile (β = 0.17 (0.09; 0.24) and 0.15 (0.08; 0.23), respectively). Conclusions: WC and VAT thickness were the strongest anthropometric predictors for the metabolic profile in overweight adult Kenyans...

  3. Metabolic profiling study on potential toxicity and immunotoxicity-biomarker discovery in rats treated with cyclophosphamide using HPLC-ESI-IT-TOF-MS.

    Science.gov (United States)

    Li, Jing; Lin, Wensi; Lin, Weiwei; Xu, Peng; Zhang, Jianmei; Yang, Haisong; Ling, Xiaomei

    2015-05-01

    Despite the recent advances in understanding toxicity mechanism of cyclophosphamide (CTX), the development of biomarkers is still essential. CTX-induced immunotoxicity in rats by a metabonomics approach was investigated using high-performance liquid chromatography coupled with ion trap time-of-flight mass spectrometry (HPLC-ESI-IT-TOF-MS). The rats were orally administered CTX (30 mg/kg/day) for five consecutive days, and on the fifth day samples of urine, thymus and spleen were collected and analyzed. A significant difference in metabolic profiling was observed between the CTX-treated group and the control group by partial least squares-discriminant analysis (PLS-DA), which indicated that metabolic disturbances of immunotoxicity in CTX-treated rats had occurred. One potential biomarker in spleen, three in urine and three in thymus were identified. It is suggested that the CTX-toxicity mechanism may involve the modulation of tryptophan metabolism, phospholipid metabolism and energy metabolism. This research can help to elucidate the CTX-influenced pathways at a low dose and can further help to indicate the patients' pathological status at earlier stages of toxicological progression after drug administration. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Metabolic profiling of visceral adipose tissue from obese subjects with or without metabolic syndrome.

    Science.gov (United States)

    Candi, Eleonora; Tesauro, Manfredi; Cardillo, Carmine; Lena, Anna Maria; Schinzari, Francesca; Rodia, Giuseppe; Sica, Giuseppe; Gentileschi, Paolo; Rovella, Valentina; Annicchiarico-Petruzzelli, Margherita; Di Daniele, Nicola; Melino, Gerry

    2018-02-08

    Obesity represents one of the most complex public health challenges and has recently reached epidemic proportions.  Obesity is also considered to be primarily responsible for the rising prevalence of metabolic syndrome, defined as the coexistence in the same individual of several risk factors for atherosclerosis, including dyslipidaemia, hypertension and hyperglycaemia, as well as for cancer. Additionally, the presence of three of the five risk factors (abdominal obesity, low HDL cholesterol, high triglycerides, high fasting glucose and high blood pressure) characterizes metabolic syndrome, which has serious clinical consequences.  The current study was conducted in order to identify metabolic differences in visceral adipose tissue collected from obese (BMI 43-48) human subjects who were diagnosed with metabolic syndrome, obese individuals who were metabolically healthy and non-obese healthy controls. Extensive gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS/MS) analyses were used to obtain the untargeted visceral adipose tissue metabolomics profiles of 481 metabolites belonging to all biochemical pathways. Our results indicated consistent increases in oxidative stress markers from the pathologically obese samples in addition to subtle markers of elevated glucose levels that may be consistent with metabolic syndrome. In the tissue derived from the pathologically obese subjects, there were significantly elevated levels of plasmalogens, which may be increased in response to oxidative changes in addition to changes in glycerol-phosphorylcholine, glycerol-phosphorylethanolamine glycerol-phosphorylserine, ceramides and sphingolipids. These data could be potentially helpful for recognizing new pathways that underlie the metabolic-vascular complications of obesity and may lead to the development of innovative targeted therapies. ©2018 The Author(s).

  5. Metabolic profile of liver damage in non-cirrhotic virus C and autoimmune hepatitis: A proton decoupled31P-MRS study.

    Science.gov (United States)

    Hakkarainen, Antti; Puustinen, Lauri; Kivisaari, Reetta; Boyd, Sonja; Nieminen, Urpo; Arkkila, Perttu; Lundbom, Nina

    2017-05-01

    To study liver 31 P MRS, histology, transient elastography, and liver function tests in patients with virus C hepatitis (HCV) or autoimmune hepatitis (AIH) to test the hypothesis that 31 P MR metabolic profile of these diseases differ. 25 patients with HCV (n=12) or AIH (n=13) underwent proton decoupled 31 P MRS spectroscopy performed on a 3.0T MR imager. Intensities of phosphomonoesters (PME) of phosphoethanolamine (PE) and phosphocholine (PC), phosphodiesters (PDE) of glycerophosphoethanolamine (GPE) and glycerophosphocholine (GPC), and γ, α and β resonances of adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide phosphate (NADPH) were determined. Liver stiffness was measured by transient elastography. Inflammation and fibrosis were staged according to METAVIR from biopsy samples. Activities of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALT) and thromboplastin time (TT) were determined from serum samples. PME had a stronger correlation with AST (z=1.73, p=0.04) and ALT (z=1.77, p=0.04) in HCV than in AIH patients. PME, PME/PDE, PE/GPE correlated positively and PDE negatively with inflammatory activity. PE, PC and PME correlated positively with liver function tests. 31 P-MRS suggests a more serious liver damage in HCV than in AIH with similar histopathological findings. 31 P-MRS is more sensitive in detecting inflammation than fibrosis in the liver. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Proton NMR based serum metabolic profile correlates with the neurological recovery in treated acute spinal cord injury (ASCI) subjects: A pilot study.

    Science.gov (United States)

    Singh, Alka; Srivastava, Rajeshwar Nath; Agrahari, Ashok; Singh, Suruchi; Raj, Saloni; Chatterji, Tanushri; Mahdi, Abbas Ali; Garg, Ravindra Kumar; Roy, Raja

    2018-05-01

    Acute Spinal Cord Injury (ASCI) is still having substantial morbidity and mortality despite of advanced therapeutics. Major obstacles are paucity of monitoring tools or biomarkers for severity determination, recovery and prognostication. A prospective case control pilot study with serum 1 H NMR spectroscopic metabolic profiling was carried out to evaluate metabolites perturbations and its relationship with recovery and to see role of stem cells in facilitating neurological recovery. Twenty subjects with ASCI were classified on the basis of therapeutic modality into surgical fixation alone (Group-1, n = 10), stem cell adjuvant (Group-2, n = 10) and healthy controls (Group-0, n = 10). Serum samples were collected at admission (baseline) and after six months (follow-up). NMR data of serum sample were quantified and subjected to Wilcoxon and ANOVA tests. Further validation was performed using supervised OSC-PCA and OPLS-DA by incorporating substantial control samples. Twenty-eight metabolites were identified; well resolved resonances of fifteen metabolites were quantified wherein seven were statistically significant. Predominantly amino acids and ketone bodies played vital role in the differentiation of groups. Serum NMR spectroscopy reveals certain metabolites perturbations having clear correlation with pattern of recovery in treated ASCI subject. Stem cells treatment group had comparatively effective recovery. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Metabolic profile of clinically severe obese patients.

    Science.gov (United States)

    Faria, Silvia Leite; Faria, Orlando Pereira; Menezes, Caroline Soares; de Gouvêa, Heloisa Rodrigues; de Almeida Cardeal, Mariane

    2012-08-01

    Since low basal metabolic rate (BMR) is a risk factor for weight regain, it is important to measure BMR before bariatric surgery. We aimed to evaluate the BMR among clinically severe obese patients preoperatively. We compared it with that of the control group, with predictive formulas and correlated it with body composition. We used indirect calorimetry (IC) to collect BMR data and multifrequency bioelectrical impedance to collect body composition data. Our sample population consisted of 193 patients of whom 130 were clinically severe obese and 63 were normal/overweight individuals. BMR results were compared with the following predictive formulas: Harris-Benedict (HBE), Bobbioni-Harsch (BH), Cunningham (CUN), Mifflin-St. Jeor (MSJE), and Horie-Waitzberg & Gonzalez (HW & G). This study was approved by the Ethics Committee for Research of the University of Brasilia. Statistical analysis was used to compare and correlate variables. Clinically severe obese patients had higher absolute BMR values and lower adjusted BMR values (p BMR were found in both groups. Among the clinically severe obese patients, the formulas of HW & G and HBE overestimated BMR values (p = 0.0002 and p = 0.0193, respectively), while the BH and CUN underestimated this value; only the MSJE formulas showed similar results to those of IC. The clinically severe obese patients showed low BMR levels when adjusted per kilogram per body weight. Body composition may influence BMR. The use of the MSJE formula may be helpful in those cases where it is impossible to use IC.

  8. Metabolic Profiles in Children During Fasting

    NARCIS (Netherlands)

    van Veen, Merel R.; van Hasselt, Peter M.; de Sain-van der Velden, Monique G. M.; Verhoeven, Nanda; Hofstede, Floris C.; de Koning, Tom J.; Visser, Gepke

    BACKGROUND: Hypoglycemia is one of the most common metabolic derangements in childhood. To establish the cause of hypoglycemia, fasting tolerance tests can be used. Currently available reference values for fasting tolerance tests have limitations in their use in daily practice. OBJECTIVE: The aim of

  9. GRMD cardiac and skeletal muscle metabolism gene profiles are distinct.

    Science.gov (United States)

    Markham, Larry W; Brinkmeyer-Langford, Candice L; Soslow, Jonathan H; Gupte, Manisha; Sawyer, Douglas B; Kornegay, Joe N; Galindo, Cristi L

    2017-04-08

    Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, which codes for the dystrophin protein. While progress has been made in defining the molecular basis and pathogenesis of DMD, major gaps remain in understanding mechanisms that contribute to the marked delay in cardiac compared to skeletal muscle dysfunction. To address this question, we analyzed cardiac and skeletal muscle tissue microarrays from golden retriever muscular dystrophy (GRMD) dogs, a genetically and clinically homologous model for DMD. A total of 15 dogs, 3 each GRMD and controls at 6 and 12 months plus 3 older (47-93 months) GRMD dogs, were assessed. GRMD dogs exhibited tissue- and age-specific transcriptional profiles and enriched functions in skeletal but not cardiac muscle, consistent with a "metabolic crisis" seen with DMD microarray studies. Most notably, dozens of energy production-associated molecules, including all of the TCA cycle enzymes and multiple electron transport components, were down regulated. Glycolytic and glycolysis shunt pathway-associated enzymes, such as those of the anabolic pentose phosphate pathway, were also altered, in keeping with gene expression in other forms of muscle atrophy. On the other hand, GRMD cardiac muscle genes were enriched in nucleotide metabolism and pathways that are critical for neuromuscular junction maintenance, synaptic function and conduction. These findings suggest differential metabolic dysfunction may contribute to distinct pathological phenotypes in skeletal and cardiac muscle.

  10. Association between Metabolite Profiles, Metabolic Syndrome and Obesity Status

    Directory of Open Access Journals (Sweden)

    Bénédicte Allam-Ndoul

    2016-05-01

    Full Text Available Underlying mechanisms associated with the development of abnormal metabolic phenotypes among obese individuals are not yet clear. Our aim is to investigate differences in plasma metabolomics profiles between normal weight (NW and overweight/obese (Ov/Ob individuals, with or without metabolic syndrome (MetS. Mass spectrometry-based metabolite profiling was used to compare metabolite levels between each group. Three main principal components factors explaining a maximum of variance were retained. Factor 1’s (long chain glycerophospholipids metabolite profile score was higher among Ov/Ob with MetS than among Ov/Ob and NW participants without MetS. This factor was positively correlated to plasma total cholesterol (total-C and triglyceride levels in the three groups, to high density lipoprotein -cholesterol (HDL-C among participants without MetS. Factor 2 (amino acids and short to long chain acylcarnitine was positively correlated to HDL-C and negatively correlated with insulin levels among NW participants. Factor 3’s (medium chain acylcarnitines metabolite profile scores were higher among NW participants than among Ov/Ob with or without MetS. Factor 3 was negatively associated with glucose levels among the Ov/Ob with MetS. Factor 1 seems to be associated with a deteriorated metabolic profile that corresponds to obesity, whereas Factors 2 and 3 seem to be rather associated with a healthy metabolic profile.

  11. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Science.gov (United States)

    Jia, Gengjie; Stephanopoulos, Gregory; Gunawan, Rudiyanto

    2012-01-01

    Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA) kinetics. PMID:24957767

  12. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    Gengjie Jia

    2012-11-01

    Full Text Available Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA kinetics.

  13. Effect of probiotics on metabolic profiles in type 2 diabetes mellitus

    OpenAIRE

    Li, Caifeng; Li, Xin; Han, Hongqiu; Cui, Hailong; Peng, Min; Wang, Guolin; Wang, Zhiqiang

    2016-01-01

    Abstract Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease which is imposing heavy burden on global health and economy. Recent studies indicate gut microbiota play important role on the pathogenesis and metabolic disturbance of T2DM. As an effective mean of regulating gut microbiota, probiotics are live micro-organisms that are believed to provide a specific health benefit on the host. Whether probiotic supplementation could improve metabolic profiles by modifying gut microbiot...

  14. Metabolic Profiles in Ovulatory and Anovulatory Primiparous Dairy Cows During the First Follicular Wave Postpartum

    OpenAIRE

    Kawashima, Chiho; Sakaguchi, Minoru; Suzuki, Takahiro; Sasamoto, Yoshihiko; Takahashi, Yoshiyuki; Matsui, Motozumi; Miyamoto, Akio

    2007-01-01

    Metabolic hormones affect ovarian function in the cow. However, the relationship between metabolic factors and ovarian function is not clear in the postpartum primiparous cow because they are still growing. The aim of the present study was to investigate in detail the time-dependent profile of the metabolic hormones, metabolites, and milk yields of ovulatory and anovulatory primiparous cows during the first follicular wave postpartum. We used 16 primiparous Holstein cows and obtained blood sa...

  15. Antihypertensive drugs metabolism: an update to pharmacokinetic profiles and computational approaches.

    Science.gov (United States)

    Zisaki, Aikaterini; Miskovic, Ljubisa; Hatzimanikatis, Vassily

    2015-01-01

    Drug discovery and development is a high-risk enterprise that requires significant investments in capital, time and scientific expertise. The studies of xenobiotic metabolism remain as one of the main topics in the research and development of drugs, cosmetics and nutritional supplements. Antihypertensive drugs are used for the treatment of high blood pressure, which is one the most frequent symptoms of the patients that undergo cardiovascular diseases such as myocardial infraction and strokes. In current cardiovascular disease pharmacology, four drug clusters - Angiotensin Converting Enzyme Inhibitors, Beta-Blockers, Calcium Channel Blockers and Diuretics - cover the major therapeutic characteristics of the most antihypertensive drugs. The pharmacokinetic and specifically the metabolic profile of the antihypertensive agents are intensively studied because of the broad inter-individual variability on plasma concentrations and the diversity on the efficacy response especially due to the P450 dependent metabolic status they present. Several computational methods have been developed with the aim to: (i) model and better understand the human drug metabolism; and (ii) enhance the experimental investigation of the metabolism of small xenobiotic molecules. The main predictive tools these methods employ are rule-based approaches, quantitative structure metabolism/activity relationships and docking approaches. This review paper provides detailed metabolic profiles of the major clusters of antihypertensive agents, including their metabolites and their metabolizing enzymes, and it also provides specific information concerning the computational approaches that have been used to predict the metabolic profile of several antihypertensive drugs.

  16. Effects of lifestyle intervention in pregnancy and anthropometrics at birth on offspring metabolic profile at 2.8 years - results from the Lifestyle in Pregnancy and Offspring (LiPO) study

    DEFF Research Database (Denmark)

    Tanvig, Mette; Vinter, Christina A; Jørgensen, Jan S

    2014-01-01

    Context: Maternal obesity and gestational weight gain are linked to offspring adverse metabolic profile, and lifestyle intervention during pregnancy in obese women may have long-term positive effect on their children. Furthermore, although the association between birth weight and later metabolic...... outcomes is well established, little is known about the predictive value of abdominal circumference at birth. Objectives: To study: i) effects of lifestyle intervention during pregnancy in obese women on offspring metabolic risk factors and ii) predictive values of birth weight (BW) and birth abdominal...... circumference (BAC). Design: Follow-up of a randomized controlled trial; the Lifestyle in Pregnancy (LiP) study Setting: Odense and Aarhus University Hospitals, Denmark Participants: Offspring of LiP study participants (n=157) and offspring of normal weight mothers (external reference group, ER, n=97...

  17. Metabolic profiling of umbilical cord blood in macrosomia.

    Science.gov (United States)

    Sun, H; Wang, Y; Wang, C; Xu, X; Wang, Y; Yan, H; Yang, X

    2017-11-21

    The term macrosomia is used to describe neonates with a birth weight of 4000 g or more. Macrosomia is a potential risk factor for obesity and metabolic syndromes in postnatal and adult life, yet little is known about its associations with metabolic difference in the early-age. We performed metabolic profiling of umbilical cord blood to discover differential metabolites of macrosomia. We conducted a case-control study of full-term singletons with normal maternal glucose tolerance [50 cases (macrosomia, birth weight ⩾4000 g); 50 controls (normal weight, birth weight 2500-3999 g)]. Metabolites in umbilical cord blood were detected using an untargeted metabolomic approach based on gas chromatography/mass spectrometry. We performed logistic regression to evaluate the associations between metabolites and macrosomia. We also performed pathway analysis based on KEGG and MBRole. Compared with controls, the macrosomia cases had a greater male proportion, gestational age, paternal BMI, and maternal pre-pregnancy BMI. Forty-two metabolites differed between the cases and controls. After multivariable adjustment, 2-methylfumarate [adjusted odds ratio (AOR)=1.232, 95% confidence interval (CI): 1.102-1.376], uracil (AOR=38.494, 95% CI: 5.635-262.951), elaidic acid (AOR=0.834, 95% CI: 0.761-0.915), ribose (AOR=0.089, 95% CI: 0.021-0.378), lactulose (AOR=0.815, 95% CI: 0.743-0.894), and 4-aminobutyric acid (AOR=0.835, 95% CI: 0.764-0.912) remained significantly associated with macrosomia. Pyrimidine metabolism and pentose and glucuronate interconversions were the two top-ranking pathways enriched with those metabolites (-log P-value=3.49 and 2.47, respectively). Levels of 2-methylfumarate, uracil, ribose, elaidic acid, lactulose, and 4-aminobutyric acid were associated with the incidence of macrosomia. The alteration of pathways involving those factors might be linked with the incidence of macrosomia and relevant metabolic syndromes later in life, and further studies are

  18. Metabolic Profiles in Obese Children and Adolescents with Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Marko Kostovski

    2018-03-01

    CONCLUSION: Higher percentage of insulin-resistant participants was of female gender and was adolescents. In general, insulin resistant obese children and adolescents tend to have a worse metabolic profile in comparison to individuals without insulin resistance. It is of note that the highest insulin resistance was also linked with the highest concentrations of triglycerides.

  19. Indicators of dairy cow transition risks: Metabolic profiling revisited.

    Science.gov (United States)

    Van Saun, R J

    2016-01-01

    Periparturient disease conditions affecting transition dairy cows have been recognized as a critical contributor to impaired dairy performance and have become a focal point of herd diagnostic investigations. Over the past 40 years use of blood sampling in the form of metabolic profiling has been applied to herd diagnostics with mixed impressions of diagnostic robustness. Research has greatly increased our understanding of underpinning mechanisms related to cow biology, management, environment and their interactions responsible for peripartum diseases. Elevated β-hydroxybutyrate (BHB) concentration (> 1.2 mmol/l) within 7-10 days following calving identifies high risk cows for therapeutic intervention. Herd evaluations with 15-25% of first week fresh cows with elevated BHB indicates significant disease risk and productive losses. Elevated peripartal serum nonesterified fatty acids (NEFA) also indicate increased disease risk. This review discusses documented (BHB, NEFA) and other potential analytes using individual or pooled samples useful for disease risk assessment or nutritional status and their application in risk-based or herd screening methods of herd metabolic profiling diagnostics. A pooled sample approach modified from the original Compton Metabolic Profile allows for more economic assessment of multiple analytes, though interpretation and herd-size application may be limited. Pooled samples between 5 and 10 individuals accurately represent arithmetic means of individuals. Most importantly metabolic profiles must be used in concert with other diagnostic metrics of animal and facility evaluations, body condition scoring and ration evaluation to be fully useful in herd evaluations.

  20. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development

    Directory of Open Access Journals (Sweden)

    Alagna Fiammetta

    2012-09-01

    Full Text Available Abstract Background Olive (Olea europaea L. fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism. Results The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3–4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d’Andria, respectively during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF, suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development. Conclusions Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the

  1. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development

    Science.gov (United States)

    2012-01-01

    Background Olive (Olea europaea L.) fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism. Results The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3–4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d’Andria, respectively) during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF), suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development. Conclusions Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the olive tree. Our data

  2. DHEA-induced modulation of renal gluconeogenesis, insulin sensitivity and plasma lipid profile in the control- and dexamethasone-treated rabbits. Metabolic studies.

    Science.gov (United States)

    Kiersztan, Anna; Nagalski, Andrzej; Nalepa, Paweł; Tempes, Aleksandra; Trojan, Nina; Usarek, Michał; Jagielski, Adam K

    2016-02-01

    In view of antidiabetic and antiglucocorticoid effects of dehydroepiandrosterone (DHEA) both in vitro and in vivo studies were undertaken: (i) to elucidate the mechanism of action of both dexamethasone phosphate (dexP) and DHEA on glucose synthesis in primary cultured rabbit kidney-cortex tubules and (ii) to investigate the influence of DHEA on glucose synthesis, insulin sensitivity and plasma lipid profile in the control- and dexP-treated rabbits. Data show, that in cultured kidney-cortex tubules dexP significantly stimulated gluconeogenesis by increasing flux through fructose-1,6-bisphosphatase (FBPase). DexP-induced effects were dependent only upon glucocorticoid receptor. DHEA decreased glucose synthesis via inhibition of glucose-6-phosphatase (G6Pase) and suppressed the dexP-induced stimulation of renal gluconeogenesis. Studies with the use of inhibitors of DHEA metabolism in cultured renal tubules showed for the first time that DHEA directly affects renal gluconeogenesis. However, in view of analysis of glucocorticoids and DHEA metabolites levels in urine, it seems likely, that testosterone may also contribute to DHEA-evoked effects. In dexP-treated rabbits, plasma glucose level was not altered despite increased renal and hepatic FBPase and G6Pase activities, while a significant elevation of both plasma insulin and HOMA-IR was accompanied by a decline of ISI index. It thus appears that increased insulin levels were required to maintain normoglycaemia and to compensate the insulin resistance. DHEA alone affected neither plasma glucose nor lipid levels, while it increased insulin sensitivity and diminished both renal and hepatic G6Pase activities. Surprisingly, DHEA co-administrated with dexP did not alter insulin sensitivity, while it partially suppressed the dexP-induced elevation of renal G6Pase activity and plasma cholesterol and triglyceride contents. As (i) gluconeogenic pathway in rabbit is similar to that in human, and (ii) DHEA counteracts several

  3. Global profiling strategies for mapping dysregulated metabolic pathways in cancer.

    Science.gov (United States)

    Benjamin, Daniel I; Cravatt, Benjamin F; Nomura, Daniel K

    2012-11-07

    Cancer cells possess fundamentally altered metabolism that provides a foundation to support tumorigenicity and malignancy. Our understanding of the biochemical underpinnings of cancer has benefited from the integrated utilization of large-scale profiling platforms (e.g., genomics, proteomics, and metabolomics), which, together, can provide a global assessment of how enzymes and their parent metabolic networks become altered in cancer to fuel tumor growth. This review presents several examples of how these integrated platforms have yielded fundamental insights into dysregulated metabolism in cancer. We will also discuss questions and challenges that must be addressed to more completely describe, and eventually control, the diverse metabolic pathways that support tumorigenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Effects of a Physical Exercise Program (PEP-Aut on Autistic Children’s Stereotyped Behavior, Metabolic and Physical Activity Profiles, Physical Fitness, and Health-Related Quality of Life: A Study Protocol

    Directory of Open Access Journals (Sweden)

    José Pedro Ferreira

    2018-03-01

    Full Text Available Physical exercise has shown positive effects on symptomatology and on the reduction of comorbidities in population with autism spectrum disorder (ASD. However, there is still no consensus about the most appropriate exercise intervention model for children with ASD. The physical exercise program for children with autism (PEP-Aut protocol designed allow us to (i examine the multivariate associations between ASD symptoms, metabolic profile, physical activity level, physical fitness, and health-related quality of life of children with ASD; (ii assess the effects of a 40-week exercise program on all these aspects of children with ASD. The impact of the exercise program will be assessed based on the sequence of the two phases. Phase 1 is a 12-week cross-sectional study assessing the symptomatology, metabolic profile, physical fitness and physical activity levels, socioeconomic status profile, and health-related quality of life of participants. This phase is the baseline of the following phase. Phase 2 is a 48-week intervention study with a 40-week intervention with exercise that will take place in a specialized center for children with ASD in the city of Maceió-Alagoas, Brazil. The primary outcomes will be change in the symptomatic profile and the level of physical activity of children. Secondary outcomes will be anthropometric and metabolic profiles, aerobic function, grip strength, socioeconomic status, and health-related quality of life. The study will provide critical information on the efficacy of exercise for children with ASD and help guide design and delivery of future programs.

  5. Relative Handgrip Strength Is Inversely Associated with Metabolic Profile and Metabolic Disease in the General Population in China.

    Science.gov (United States)

    Li, Dongxue; Guo, Guanghong; Xia, Lili; Yang, Xinghua; Zhang, Biao; Liu, Feng; Ma, Jingang; Hu, Zhiping; Li, Yajun; Li, Wei; Jiang, Jiajia; Gaisano, Herbert; Shan, Guangliang; He, Yan

    2018-01-01

    Background: Absolute handgrip strength has been correlated with metabolic profile and metabolic disease. Whether relative handgrip strength is also associated with metabolic disease has not been assessed. This study aimed at assessing the association of relative handgrip strength with metabolic profile and metabolic disease in the general population in China. Methods: Data were derived from an ongoing cross-sectional survey of the 2013 National Physical and Health in Shanxi Province, which involved 5520 participants. Multiple linear regression or multiple logistic regression analysis were used to assess the association of absolute/relative handgrip strength with the metabolic profile, preclinical, and established stages of metabolic diseases. Results: This study revealed that relative handgrip strength, that is when normalized to BMI, was associated with: (1) in both genders for more favorable blood lipid levels of high-density lipoprotein cholesterol [males: b = 0.19 (0.15, 0.23); females: b = 0.22 (0.17, 0.28)], low-density lipoprotein cholesterol [males: b = -0.14 (-0.23, -0.05); females: b = -0.19 (-0.31, -0.18)], triglycerides [males: b = -0.58 (-0.74, -0.43); females: b = -0.55 (-0.74, -0.36)] and total cholesterol [males: b = -0.20 (-0.31, -0.10); females: b = -0.19 (-0.32, -0.06)]; and better serum glucose levels in males [ b = -0.30 (-0.46, -0.15)]. (2) lower risk of impaired fasting glucose in males {third quartile [OR = 0.66 (0.45-0.95)] and fourth quartile [OR = 0.46 (0.30-0.71)] vs. first quartile} and dyslipidemia in both genders {third quartile [males: OR = 0.65 (0.48-0.87); females: OR = 0.68 (0.53-0.86)] and fourth quartile [males: OR = 0.47 (0.35-0.64); females: OR = 0.47(0.36-0.61)] vs. first quartile}. (3) lower risk of hyperlipidemia in both genders third quartile [males: OR = 0.66 (0.50-0.87); females: OR = 0.57 (0.43-0.75)] and fourth quartile [males: OR = 0.35 (0.26-0.47); females: OR = 0.51 (0.38-0.70)] vs. first quartile. However, contrary

  6. Metabolic profiling of meat: assessment of pork hygiene and contamination with Salmonella typhimurium.

    Science.gov (United States)

    Xu, Yun; Cheung, William; Winder, Catherine L; Dunn, Warwick B; Goodacre, Royston

    2011-02-07

    Spoilage in meat is the result of the action of microorganisms and results in changes of meat and microbial metabolism. This process may include pathogenic food poisoning bacteria such as Salmonella typhimurium, and it is important that these are differentiated from the natural spoilage process caused by non-pathogenic microorganisms. In this study we investigated the application of metabolic profiling using gas chromatography-mass spectrometry, to assess the microbial contamination of pork. Metabolite profiles were generated from microorganisms, originating from the natural spoilage process and from the artificial contamination with S. typhimurium. In an initial experiment, we investigated changes in the metabolic profiles over a 72 hour time course at 25 °C and established time points indicative of the spoilage process. A further experiment was performed to provide in-depth analysis of the metabolites characteristic of contamination by S. typhimurium. We applied a three-way PARAllel FACtor analysis 2 (PARAFAC2) multivariate algorithm to model the metabolic profiles. In addition, two univariate statistical tests, two-sample Wilcoxon signed rank test and Friedman test, were employed to identify metabolites which showed significant difference between natural spoiled and S. typhimurium contaminated samples. Consistent results from the two independent experiments were obtained showing the discrimination of the metabolic profiles of the natural spoiled pork chops and those contaminated with S. typhimurium. The analysis identified 17 metabolites of significant interest (including various types of amino acid and fatty acid) in the discrimination of pork contaminated with the pathogenic microorganism.

  7. Equine atypical myopathy: A metabolic study.

    Science.gov (United States)

    Karlíková, R; Široká, J; Jahn, P; Friedecký, D; Gardlo, A; Janečková, H; Hrdinová, F; Drábková, Z; Adam, T

    2016-10-01

    Atypical myopathy (AM) is a potentially fatal disease of grazing horses. It is reportedly caused by the ingestion of sycamore seeds containing toxic hypoglycin A. In order to study metabolic changes, serum and urine samples from nine horses with atypical myopathy and 12 control samples from clinically healthy horses were collected and then analysed using a high-performance liquid chromatography coupled with tandem mass spectrometry; serum metabolic profiles as the disease progressed were also studied. Metabolic data were evaluated using unsupervised and supervised multivariate analyses. Significant differences were demonstrated in the concentrations of various glycine conjugates and acylcarnitines (C2-C26). Moreover, the concentrations of purine and pyrimidine metabolites, vitamins and their degradation products (riboflavin, trigonelline, pyridoxate, pantothenate), and selected organic and amino acids (aspartate, leucine, 2-oxoglutarate, etc.) were altered in horses with AM. These results represent a global view of altered metabolism in horses with atypical myopathy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Comparative study on intestinal metabolism and absorption in vivo of ginsenosides in sulphur-fumigated and non-fumigated ginseng by ultra performance liquid chromatography quadruple time-of-flight mass spectrometry based chemical profiling approach.

    Science.gov (United States)

    Zhu, He; Shen, Hong; Xu, Jun; Xu, Jin-Di; Zhu, Ling-Ying; Wu, Jie; Chen, Hu-Biao; Li, Song-Lin

    2015-04-01

    Our previous study indicated that sulphur-fumigation of ginseng in post-harvest handling processes could induce chemical transformation of ginsenosides to generate multiple ginsenoside sulphur derivatives. In this study, the influence of sulphur-fumigation on intestinal metabolism and absorption in vivo of ginsenosides in ginseng was sequentially studied. The intestinal metabolic and absorbed profiles of ginsenosides in rats after intra-gastric (i.g.) administration of sulphur-fumigated ginseng (SFG) and non-fumigated ginseng (NFG) were comparatively characterized by a newly established ultra performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) with electrospray ionization negative (ESI-) mode. A novel strategy based on the characteristic product ions and fragmentation pathways of different types of aglycones (saponin skeletons) and glycosyl moieties was proposed and successfully applied to rapid structural identification of ginsenoside sulphur derivatives and relevant metabolites. In total, 18 ginsenoside sulphur derivatives and 26 ginsenoside sulphur derivative metabolites in the faeces together with six ginsenoside sulphur derivatives in the plasma were identified in the SFG-administrated group but not in the NFG-administrated group. The results clearly demonstrated that the intestinal metabolic and absorbed profiles of ginsenosides in sulphur-fumigated and non-fumigated ginseng were quite different, which inspired that sulphur-fumigation of ginseng should not be recommended before the bioactivity and toxicity of the ginsenoside sulphur derivatives were systematically evaluated. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Metabolic profiling of the response to an oral glucose tolerance test detects subtle metabolic changes.

    NARCIS (Netherlands)

    Wopereis, S.; Rubingh, C.M. de; Erk, M.J. van; Verheij, E.R.; Vliet, T. van; Cnubben, N.H.; Smilde, A.K.; Greef, J. van der; Ommen, B. van; Hendriks, H.F.

    2009-01-01

    BACKGROUND: The prevalence of overweight is increasing globally and has become a serious health problem. Low-grade chronic inflammation in overweight subjects is thought to play an important role in disease development. Novel tools to understand these processes are needed. Metabolic profiling is one

  10. Radiation Changes the Metabolic Profiling of Melanoma Cell Line B16.

    Directory of Open Access Journals (Sweden)

    Lige Wu

    Full Text Available Radiation therapy can be an effective way to kill cancer cells using ionizing radiation, but some tumors are resistant to radiation therapy and the underlying mechanism still remains elusive. It is therefore necessary to establish an appropriate working model to study and monitor radiation-mediated cancer therapy. In response to cellular stress, the metabolome is the integrated profiling of changes in all metabolites in cells, which can be used to investigate radiation tolerance mechanisms and identify targets for cancer radiation sensibilization. In this study, using 1H nuclear magnetic resonance for untargeted metabolic profiling in radiation-tolerant mouse melanoma cell line B16, we comprehensively investigated changes in metabolites and metabolic network in B16 cells in response to radiation. Principal component analysis and partial least squares discriminant analysis indicated the difference in cellular metabolites between the untreated cells and X-ray radiated cells. In radiated cells, the content of alanine, glutamate, glycine and choline was increased, while the content of leucine, lactate, creatine and creatine phosphate was decreased. Enrichment analysis of metabolic pathway showed that the changes in metabolites were related to multiple metabolic pathways including the metabolism of glycine, arginine, taurine, glycolysis, and gluconeogenesis. Taken together, with cellular metabolome study followed by bioinformatic analysis to profile specific metabolic pathways in response to radiation, we deepened our understanding of radiation-resistant mechanisms and radiation sensibilization in cancer, which may further provide a theoretical and practical basis for personalized cancer therapy.

  11. The Effect of Season on the Metabolic Profile of the European Clam Ruditapes decussatus as Studied by 1H-NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Violetta Aru

    2017-07-01

    Full Text Available In this study, the metabolome of Ruditapes decussatus, an economically and ecologically important marine bivalve species widely distributed in the Mediterranean region, was characterized by using proton Nuclear Magnetic Resonance (1H-NMR spectroscopy. Significant seasonal variations in the content of carbohydrates and free amino acids were observed. The relative amounts of alanine and glycine were found to exhibit the same seasonal pattern as the temperature and salinity at the harvesting site. Several putative sex-specific biomarkers were also discovered. Substantial differences were found for alanine and glycine, whose relative amounts were higher in males, while acetoacetate, choline and phosphocholine were more abundant in female clams. These findings reveal novel insights into the baseline metabolism of the European clam and represent a step forward towards a comprehensive metabolic characterization of the species. Besides providing a holistic view on the prominent nutritional components, the characterization of the metabolome of this bivalve represents an important prerequisite for elucidating the underlying metabolic pathways behind the environment-organism interactions.

  12. Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation

    Energy Technology Data Exchange (ETDEWEB)

    Noecker, Cecilia; Eng, Alexander; Srinivasan, Sujatha; Theriot, Casey M.; Young, Vincent B.; Jansson, Janet K.; Fredricks, David N.; Borenstein, Elhanan; Sanchez, Laura M.

    2015-12-22

    health and disease.

    IMPORTANCEStudies characterizing both the taxonomic composition and metabolic profile of various microbial communities are becoming increasingly common, yet new computational methods are needed to integrate and interpret these data in terms of known biological mechanisms. Here, we introduce an analytical framework to link species composition and metabolite measurements, using a simple model to predict the effects of community ecology on metabolite concentrations and evaluating whether these predictions agree with measured metabolomic profiles. We find that a surprisingly large proportion of metabolite variation in the vaginal microbiome can be predicted based on species composition (including dramatic shifts associated with disease), identify putative mechanisms underlying these predictions, and evaluate the roles of individual bacterial species and genes. Analysis of gut microbiome data using this framework recovers similar community metabolic trends. This framework lays the foundation for model-based multi-omic integrative studies, ultimately improving our understanding of microbial community metabolism.

  13. Yogurt consumption is associated with better diet quality and metabolic profile in American men and women

    Science.gov (United States)

    Low-fat dairy products may be beneficial for health, but few studies have specifically focused on yogurt. We examined whether yogurt consumption was associated with better dietary patterns, diet quality, and metabolic profile. This cross-sectional study included the adults (n=6526) participating in ...

  14. Plasma metabolic profiling of dairy cows affected with clinical ketosis using LC/MS technology.

    Science.gov (United States)

    Li, Y; Xu, C; Xia, C; Zhang, Hy; Sun, Lw; Gao, Y

    2014-01-01

    Ketosis in dairy cattle is an important metabolic disorder. Currently, the plasma metabolic profile of ketosis as determined using liquid chromatography-mass spectrometry (LC/MS) has not been reported. To investigate plasma metabolic profiles from cows with clinical ketosis in comparison to control cows. Twenty Holstein dairy cows were divided into two groups based on clinical signs and plasma β-hydroxybutyric acid and glucose concentrations 7-21 days postpartum: clinical ketosis and control cows. Plasma metabolic profiles were analyzed using LC/MS. Data were processed using principal component analysis and orthogonal partial least-squares discriminant analysis. Compared to control cows, the levels of valine, glycine, glycocholic, tetradecenoic acid, and palmitoleic acid increased significantly in clinical ketosis. On the other hand, the levels of arginine, aminobutyric acid, leucine/isoleucine, tryptophan, creatinine, lysine, norcotinine, and undecanoic acid decreased markedly. Our results showed that the metabolic changes in cows with clinical ketosis involve complex metabolic networks and signal transduction. These results are important for future studies elucidating the pathogenesis, diagnosis, and prevention of clinical ketosis in dairy cows.

  15. Staphylococcus aureus methicillin resistance detected by HPLC-MS/MS targeted metabolic profiling.

    Science.gov (United States)

    Schelli, Katie; Rutowski, Joshua; Roubidoux, Julia; Zhu, Jiangjiang

    2017-03-15

    Recently, novel bioanalytical methods, such as NMR and mass spectrometry based metabolomics approaches, have started to show promise in providing rapid, sensitive and reproducible detection of Staphylococcus aureus antibiotic resistance. Here we performed a proof-of-concept study focused on the application of HPLC-MS/MS based targeted metabolic profiling for detecting and monitoring the bacterial metabolic profile changes in response to sub-lethal levels of methicillin exposure. One hundred seventy-seven targeted metabolites from over 20 metabolic pathways were specifically screened and one hundred and thirty metabolites from in vitro bacterial tests were confidently detected from both methicillin susceptible and methicillin resistant Staphylococcus aureus (MSSA and MRSA, respectively). The metabolic profiles can be used to distinguish the isogenic pairs of MSSA strains from MRSA strains, without or with sub-lethal levels of methicillin exposure. In addition, better separation between MSSA and MRSA strains can be achieved in the latter case using principal component analysis (PCA). Metabolite data from isogenic pairs of MSSA and MRSA strains were further compared without and with sub-lethal levels of methicillin exposure, with metabolic pathway analyses additionally performed. Both analyses suggested that the metabolic activities of MSSA strains were more susceptible to the perturbation of the sub-lethal levels of methicillin exposure compared to the MRSA strains. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effect of opium on glucose metabolism and lipid profiles in rats with streptozotocin-induced diabetes

    NARCIS (Netherlands)

    Sadeghian, Saeed; Boroumand, Mohammad Ali; Sotoudeh-Anvari, Maryam; Rahbani, Shahram; Sheikhfathollahi, Mahmood; Abbasi, Ali

    2009-01-01

    Background: This experimental study was performed to determine the impact of opium use on serum lipid profile and glucose metabolism in rats with streptozotocin-induced diabetes. Material and methods: To determine the effect of opium, 20 male rats were divided into control (n = 10) and opium-treated

  17. Vitamin C improves basal metabolic rate and lipid profile in alloxan ...

    Indian Academy of Sciences (India)

    Diabetes mellitus (DM) is a multi-factorial disease which is characterized by hyperglycaemia, lipoprotein abnormalities and oxidative stress. This study evaluated effect of oral vitamin C administration on basal metabolic rate and lipid profile of alloxan-induced diabetic rats. Vitamin C was administered at 200 mg/kg body wt.

  18. Normo- and hyperandrogenic women with polycystic ovary syndrome exhibit an adverse metabolic profile through life

    DEFF Research Database (Denmark)

    Pinola, Pekka; Puukka, Katri; Piltonen, Terhi

    2017-01-01

    OBJECTIVE: To compare the metabolic profiles of normo- and hyperandrogenic women with polycystic ovary syndrome (PCOS) with those of control women at different ages during reproductive life. DESIGN: Case-control study. SETTING: Not applicable. PATIENT(S): In all, 1,550 women with normoandrogenic (n...

  19. Comparing the impact of ultrafine particles from petrodiesel and biodiesel combustion to bacterial metabolism by targeted HPLC-MS/MS metabolic profiling.

    Science.gov (United States)

    Zhong, Fanyi; Xu, Mengyang; Schelli, Katie; Rutowski, Joshua; Holmén, Britt A; Zhu, Jiangjiang

    2017-08-01

    Alterations of gut bacterial metabolism play an important role in their host metabolism, and can result in diseases such as obesity and diabetes. While many factors were discovered influencing the gut bacterial metabolism, exposure to ultrafine particles (UFPs) from engine combustions were recently proposed to be a potential risk factor for the perturbation of gut bacterial metabolism, and consequentially to obesity and diabetes development. This study focused on evaluation of how UFPs from diesel engine combustions impact gut bacterial metabolism. We hypothesize that UFPs from different type of diesel (petrodiesel vs. biodiesel) will both impact bacterial metabolism, and the degree of impact is also diesel type-dependent. Targeted metabolic profiling of 221 metabolites were applied to three model gut bacteria in vitro, Streptococcus salivarius, Lactobacillus acidophilus and Lactobacillus fermentum. UFPs from two types of fuels, petrodiesel (B0) and a biodiesel blend (B20: 20% soy biodiesel/80% B0 by volume), were exposed to the bacteria and their metabolic changes were compared. For each bacterial strain, metabolites with significantly changed abundance were observed in both perturbations, and all three strains have increased number of altered metabolites detected from B20 UFPs perturbation in comparison to B0 UFPs. Multivariate statistical analysis further confirmed that the metabolic profiles were clearly different between testing groups. Metabolic pathway analyses also demonstrated several important metabolic pathways, including pathways involves amino acids biosynthesis and sugar metabolism, were significantly impacted by UFPs exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Magnetic resonance imaging of tumor oxygenation and metabolic profile

    DEFF Research Database (Denmark)

    Krishna, Murali C.; Matsumoto, Shingo; Saito, Keita

    2013-01-01

    The tumor microenvironment is distinct from normal tissue as a result of abnormal vascular network characterized by hypoxia, low pH, high interstitial fluid pressure and elevated glycolytic activity. This poses a barrier to treatments including radiation therapy and chemotherapy. Imaging methods...... which can characterize such features non-invasively and repeatedly will be of significant value in planning treatment as well as monitoring response to treatment. The three techniques based on magnetic resonance imaging (MRI) are reviewed here. Tumor pO2 can be measured by two MRI methods requiring...... an exogenous contrast agent: electron paramagnetic resonance imaging (EPRI) and Overhauser magnetic resonance imaging (OMRI). Tumor metabolic profile can be assessed by a third method, hyperpolarized metabolic MR, based on injection of hyperpolarized biological molecules labeled with 13C or 15N and MR...

  1. Metabolic and inflammatory profile in obese patients with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Poulain, M; Doucet, M; Drapeau, V; Fournier, G; Tremblay, A; Poirier, P; Maltais, F

    2008-01-01

    Overweight and obesity have been associated with better survival in patients with chronic obstructive pulmonary disease (COPD). On the other hand, excess body weight is associated with abnormal metabolic and inflammatory profiles that define the metabolic syndrome and predispose to cardiovascular diseases. This study was undertaken to evaluate the impact of overweight and obesity on the prevalence of the metabolic syndrome and on the metabolic and inflammatory profiles in patients with COPD. Twenty-eight male patients with COPD were divided into an overweight/obese group [ n = 16, body mass index (BMI) = 33.5 +/- 4.2 kg/m(2)] and normal weight group (n = 12, BMI = 21.1 +/- 2.6 kg/m(2)). Anthropometry, pulmonary function and body composition were assessed. The metabolic syndrome was diagnosed according to waist circumference, circulating levels of triglyceride and high-density lipoprotein cholesterol levels, fasting glycemia and blood pressure. C-reactive protein, tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), leptin and adiponectin plasma levels were measured. Airflow obstruction was less severe in overweight/obese compared with normal weight patients (forced expiratory volume(1): 51 +/- 19% versus 31 +/- 12% predicted, respectively, P leptin were significantly higher in overweight/obese patients whereas the adiponectin levels were reduced in the presence of excess weight. The metabolic syndrome was frequent in overweight/obese patients with COPD. Obesity in COPD was associated with a spectrum of metabolic and inflammatory abnormalities.

  2. Blood-Based Bioenergetic Profiling Reflects Differences in Brain Bioenergetics and Metabolism

    Directory of Open Access Journals (Sweden)

    Daniel J. Tyrrell

    2017-01-01

    Full Text Available Blood-based bioenergetic profiling provides a minimally invasive assessment of mitochondrial health shown to be related to key features of aging. Previous studies show that blood cells recapitulate mitochondrial alterations in the central nervous system under pathological conditions, including the development of Alzheimer’s disease. In this study of nonhuman primates, we focus on mitochondrial function and bioenergetic capacity assessed by the respirometric profiling of monocytes, platelets, and frontal cortex mitochondria. Our data indicate that differences in the maximal respiratory capacity of brain mitochondria are reflected by CD14+ monocyte maximal respiratory capacity and platelet and monocyte bioenergetic health index. A subset of nonhuman primates also underwent [18F] fluorodeoxyglucose positron emission tomography (FDG-PET imaging to assess brain glucose metabolism. Our results indicate that platelet respiratory capacity positively correlates to measures of glucose metabolism in multiple brain regions. Altogether, the results of this study provide early evidence that blood-based bioenergetic profiling is related to brain mitochondrial metabolism. While these measures cannot substitute for direct measures of brain metabolism, provided by measures such as FDG-PET, they may have utility as a metabolic biomarker and screening tool to identify individuals exhibiting systemic bioenergetic decline who may therefore be at risk for the development of neurodegenerative diseases.

  3. Gut microbiota composition modifies fecal metabolic profiles in mice.

    Science.gov (United States)

    Zhao, Ying; Wu, Junfang; Li, Jia V; Zhou, Ning-Yi; Tang, Huiru; Wang, Yulan

    2013-06-07

    The gut microbiome is known to be extensively involved in human health and disease. In order to reveal the metabolic relationship between host and microbiome, we monitored recovery of the gut microbiota composition and fecal profiles of mice after gentamicin and/or ceftriaxone treatments. This was performed by employing (1)H nuclear magnetic resonance (NMR)-based metabonomics and denaturing gradient gel electrophoresis (DGGE) fingerprint of gut microbiota. The common features of fecal metabolites postantibiotic treatment include decreased levels of short chain fatty acids (SCFAs), amino acids and primary bile acids and increased oligosaccharides, d-pinitol, choline and secondary bile acids (deoxycholic acid). This suggests suppressed bacterial fermentation, protein degradation and enhanced gut microbial modification of bile acids. Barnesiella, Prevotella, and Alistipes levels were shown to decrease as a result of the antibiotic treatment, whereas levels of Bacteroides, Enterococcus and Erysipelotrichaceae incertae sedis, and Mycoplasma increased after gentamicin and ceftriaxone treatment. In addition, there was a strong correlation between fecal profiles and levels of Bacteroides, Barnesiella, Alistipes and Prevotella. The integration of metabonomics and gut microbiota profiling provides important information on the changes of gut microbiota and their impact on fecal profiles during the recovery after antibiotic treatment. The correlation between gut microbiota and fecal metabolites provides important information on the function of bacteria, which in turn could be important in optimizing therapeutic strategies, and developing potential microbiota-based disease preventions and therapeutic interventions.

  4. Phthalate exposure changes the metabolic profile of cardiac muscle cells.

    Science.gov (United States)

    Posnack, Nikki Gillum; Swift, Luther M; Kay, Matthew W; Lee, Norman H; Sarvazyan, Narine

    2012-09-01

    Phthalates are common plasticizers present in medical-grade plastics and other everyday products. They can also act as endocrine-disrupting chemicals and have been linked to the rise in metabolic disorders. However, the effect of phthalates on cardiac metabolism remains largely unknown. We examined the effect of di(2-ethylhexyl)phthalate (DEHP) on the metabolic profile of cardiomyocytes because alterations in metabolic processes can lead to cell dysfunction. Neonatal rat cardiomyocytes were treated with DEHP at a concentration and duration comparable to clinical exposure (50-100 μg/mL, 72 hr). We assessed the effect of DEHP on gene expression using microarray analysis. Physiological responses were examined via fatty acid utilization, oxygen consumption, mitochondrial mass, and Western blot analysis. Exposure to DEHP led to up-regulation of genes associated with fatty acid transport, esterification, mitochondrial import, and β-oxidation. The functional outcome was an increase in myocyte fatty acid-substrate utilization, oxygen consumption, mitochondrial mass, PPARα (peroxisome proliferator-activated receptor α) protein expression, and extracellular acidosis. Treatment with a PPARα agonist (Wy-14643) only partially mimicked the effects observed in DEHP-treated cells. Data suggest that DEHP exposure results in metabolic remodeling of cardiomyocytes, whereby cardiac cells increase their dependence on fatty acids for energy production. This fuel switch may be regulated at both the gene expression and posttranscription levels. Our findings have important clinical implications because chronic dependence on fatty acids is associated with an accumulation in lipid intermediates, lactate, protons, and reactive oxygen species. This dependence can sensitize the heart to ischemic injury and ventricular dysfunction.

  5. Use of metabolic profiling to study grape skin polyphenol behavior as a result of canopy microclimate manipulation in a 'Pinot noir' vineyard.

    Science.gov (United States)

    Sternad Lemut, Melita; Sivilotti, Paolo; Franceschi, Pietro; Wehrens, Ron; Vrhovsek, Urska

    2013-09-18

    Canopy microclimate manipulation can have a significant effect on grapevine gene expression and can thus affect the yield of many important berry compounds. Focusing on only a few targeted phenolics in the past, advanced multimethod analytical approaches are opening up much wider possibilities to fill in the gaps of missing knowledge about plant secondary metabolism. Different leaf removal timings, leading to different microclimate scenarios, were thus introduced in a 'Pinot noir' vineyard to reveal related alterations of multiple classes of skin phenolics, including some rarely studied to date. Different accumulation trends during cluster development were detected not only between groups but also between individual compounds within groups. Although many significant changes were observed early in the season, these were later often less significant. However, at harvest, 31 of 72 detected compounds showed significant differences in comparison to control for at least one of three leaf removal approaches.

  6. Effects of Regular Physical Exercises in the Water on the Metabolic Profile of Women with Abdominal Obesity

    OpenAIRE

    Kasprzak, Zbigniew; Pilaczyńska-Szcześniak, Łucja

    2014-01-01

    Recreational physical exercise in the water is predominantly based on aerobic metabolism. Since it involves both carbohydrate and lipid sources of energy, aqua aerobics has a beneficial effect on metabolism of these substrates. The aim of the study was to assess the impact of a 3 month aqua aerobics training program on the metabolic profile of women with abdominal obesity. The study sample comprised 32 women aged 41-72 years. Somatic characteristics and variables characterizing carbohydrate a...

  7. Body weight regulation and obesity: dietary strategies to improve the metabolic profile.

    Science.gov (United States)

    Munsters, M J M; Saris, W H M

    2014-01-01

    This review discusses dietary strategies that may improve the metabolic profile and body weight regulation in obesity. Recent evidence demonstrated that long-term health effects seem to be more beneficial for low-glycemic index (GI) diets compared to high-protein diets. Still, these results need to be confirmed by other prospective cohort studies and long-term clinical trials, and the discrepancy between these study designs needs to be explored in more detail. Furthermore, the current literature is mixed with regard to the efficacy of increased meal frequency (or snacking) regimens in causing metabolic alterations, particularly in relation to body weight control. In conclusion, a growing body of evidence suggests that dietary strategies with the aim to reduce postprandial insulin response and increase fat oxidation, and that tend to restore metabolic flexibility, have a place in the prevention and treatment of obesity and associated metabolic disorders.

  8. Effect of Genome and Environment on Metabolic and Inflammatory Profiles

    NARCIS (Netherlands)

    Sirota, M.; Willemsen, G.; Sundar, P.; Pitts, S.J.; Potluri, S.; Prifti, E.; Kennedy, S.H.; Ehrlich, S.D.; Neuteboom, J.; Kluft, C.; Malone, K.E.; Cox, D.R.; de Geus, E.J.C.; Boomsma, D.I.

    2015-01-01

    Twin and family studies have established the contribution of genetic factors to variation in metabolic, hematologic and immunological parameters. The majority of these studies analyzed single or combined traits into pre-defined syndromes. In the present study, we explore an alternative multivariate

  9. Metabolic profiles of placenta in preeclampsia using HR-MAS MRS metabolomics.

    Science.gov (United States)

    Austdal, Marie; Thomsen, Liv Cecilie Vestrheim; Tangerås, Line Haugstad; Skei, Bente; Mathew, Seema; Bjørge, Line; Austgulen, Rigmor; Bathen, Tone Frost; Iversen, Ann-Charlotte

    2015-12-01

    Preeclampsia is a heterogeneous gestational disease characterized by maternal hypertension and proteinuria, affecting 2-7% of pregnancies. The disorder is initiated by insufficient placental development, but studies characterizing the placental disease components are lacking. Our aim was to phenotype the preeclamptic placenta using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS MRS). Placental samples collected after delivery from women with preeclampsia (n = 19) and normotensive pregnancies (n = 15) were analyzed for metabolic biomarkers including amino acids, osmolytes, and components of the energy and phospholipid metabolism. The metabolic biomarkers were correlated to clinical characteristics and inflammatory biomarkers in the maternal sera. Principal component analysis showed inherent differences in placental metabolic profiles between preeclamptic and normotensive pregnancies. Significant differences in metabolic profiles were found between placentas from severe and non-severe preeclampsia, but not between preeclamptic pregnancies with fetal growth restricted versus normal weight neonates. The placental metabolites correlated with the placental stress marker sFlt-1 and triglycerides in maternal serum, suggesting variation in placental stress signaling between different placental phenotypes. HR-MAS MRS is a sensitive method for defining the placental disease component of preeclampsia, identifying several altered metabolic pathways. Placental HR-MAS MRS analysis may improve insight into processes affected in the preeclamptic placenta, and represents a novel long-required tool for a sensitive placental phenotyping of this heterogeneous disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population

    Directory of Open Access Journals (Sweden)

    Ellis James K

    2012-06-01

    Full Text Available Abstract Background The 'exposome' represents the accumulation of all environmental exposures across a lifetime. Top-down strategies are required to assess something this comprehensive, and could transform our understanding of how environmental factors affect human health. Metabolic profiling (metabonomics/metabolomics defines an individual's metabolic phenotype, which is influenced by genotype, diet, lifestyle, health and xenobiotic exposure, and could also reveal intermediate biomarkers for disease risk that reflect adaptive response to exposure. We investigated changes in metabolism in volunteers living near a point source of environmental pollution: a closed zinc smelter with associated elevated levels of environmental cadmium. Methods High-resolution 1H NMR spectroscopy (metabonomics was used to acquire urinary metabolic profiles from 178 human volunteers. The spectral data were subjected to multivariate and univariate analysis to identify metabolites that were correlated with lifestyle or biological factors. Urinary levels of 8-oxo-deoxyguanosine were also measured, using mass spectrometry, as a marker of systemic oxidative stress. Results Six urinary metabolites, either associated with mitochondrial metabolism (citrate, 3-hydroxyisovalerate, 4-deoxy-erythronic acid or one-carbon metabolism (dimethylglycine, creatinine, creatine, were associated with cadmium exposure. In particular, citrate levels retained a significant correlation to urinary cadmium and smoking status after controlling for age and sex. Oxidative stress (as determined by urinary 8-oxo-deoxyguanosine levels was elevated in individuals with high cadmium exposure, supporting the hypothesis that heavy metal accumulation was causing mitochondrial dysfunction. Conclusions This study shows evidence that an NMR-based metabolic profiling study in an uncontrolled human population is capable of identifying intermediate biomarkers of response to toxicants at true environmental

  11. Hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine from antibiotic-treated rats

    NARCIS (Netherlands)

    Kok, Miranda G M; Swann, Jonathan R; Wilson, Ian D; Somsen, Govert W; de Jong, Gerhardus J

    Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared

  12. Hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine from antibiotic-treated rats

    NARCIS (Netherlands)

    Kok, Miranda G M; Swann, Jonathan R.; Wilson, Ian D.; Somsen, Govert W.; de Jong, Gerhardus J.

    2014-01-01

    Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared

  13. Spatially matched in vivo and ex vivo MR metabolic profiles of prostate cancer - investigation of a correlation with Gleason score

    NARCIS (Netherlands)

    Selnaes, K.M.; Gribbestad, I.S.; Bertilsson, H.; Wright, A.; Angelsen, A.; Heerschap, A.; Tessem, M.B.

    2013-01-01

    MR metabolic profiling of the prostate is promising as an additional diagnostic approach to separate indolent from aggressive prostate cancer. The objective of this study was to assess the relationship between the Gleason score and the metabolic biomarker (choline + creatine + spermine)/citrate

  14. Plasma proteome profiles associated with diet-induced metabolic syndrome and the early onset of metabolic syndrome in a pig model.

    Directory of Open Access Journals (Sweden)

    Marinus F W te Pas

    Full Text Available Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers enabling prevention of these diseases are still lacking. We used the pig as a model to study metabolic disease because humans and pigs share a multitude of metabolic similarities. Diabetes was chemically induced and control and diabetic pigs were either fed a high unsaturated fat (Mediterranean diet or a high saturated fat/cholesterol/sugar (cafeteria diet. Physiological parameters related to fat metabolism and diabetes were measured. Diabetic pigs' plasma proteome profiles differed more between the two diets than control pigs plasma proteome profiles. The expression levels of several proteins correlated well with (pathophysiological parameters related to the fat metabolism (cholesterol, VLDL, LDL, NEFA and diabetes (Glucose and to the diet fed to the animals. Studying only the control pigs as a model for metabolic syndrome when fed the two diets showed correlations to the same parameters but now more focused on insulin, glucose and abdominal fat depot parameters. We conclude that proteomic profiles can be used as a biomarker to identify pigs with developing metabolic syndrome (prediabetes and diabetes when fed a cafeteria diet. It could be developed into a potential biomarkers for the early recognition of metabolic diseases.

  15. Considerations for automated machine learning in clinical metabolic profiling: Altered homocysteine plasma concentration associated with metformin exposure.

    Science.gov (United States)

    Orlenko, Alena; Moore, Jason H; Orzechowski, Patryk; Olson, Randal S; Cairns, Junmei; Caraballo, Pedro J; Weinshilboum, Richard M; Wang, Liewei; Breitenstein, Matthew K

    2018-01-01

    With the maturation of metabolomics science and proliferation of biobanks, clinical metabolic profiling is an increasingly opportunistic frontier for advancing translational clinical research. Automated Machine Learning (AutoML) approaches provide exciting opportunity to guide feature selection in agnostic metabolic profiling endeavors, where potentially thousands of independent data points must be evaluated. In previous research, AutoML using high-dimensional data of varying types has been demonstrably robust, outperforming traditional approaches. However, considerations for application in clinical metabolic profiling remain to be evaluated. Particularly, regarding the robustness of AutoML to identify and adjust for common clinical confounders. In this study, we present a focused case study regarding AutoML considerations for using the Tree-Based Optimization Tool (TPOT) in metabolic profiling of exposure to metformin in a biobank cohort. First, we propose a tandem rank-accuracy measure to guide agnostic feature selection and corresponding threshold determination in clinical metabolic profiling endeavors. Second, while AutoML, using default parameters, demonstrated potential to lack sensitivity to low-effect confounding clinical covariates, we demonstrated residual training and adjustment of metabolite features as an easily applicable approach to ensure AutoML adjustment for potential confounding characteristics. Finally, we present increased homocysteine with long-term exposure to metformin as a potentially novel, non-replicated metabolite association suggested by TPOT; an association not identified in parallel clinical metabolic profiling endeavors. While warranting independent replication, our tandem rank-accuracy measure suggests homocysteine to be the metabolite feature with largest effect, and corresponding priority for further translational clinical research. Residual training and adjustment for a potential confounding effect by BMI only slightly modified

  16. Relative Handgrip Strength Is Inversely Associated with Metabolic Profile and Metabolic Disease in the General Population in China

    Directory of Open Access Journals (Sweden)

    Dongxue Li

    2018-02-01

    Full Text Available Background: Absolute handgrip strength has been correlated with metabolic profile and metabolic disease. Whether relative handgrip strength is also associated with metabolic disease has not been assessed. This study aimed at assessing the association of relative handgrip strength with metabolic profile and metabolic disease in the general population in China.Methods: Data were derived from an ongoing cross-sectional survey of the 2013 National Physical and Health in Shanxi Province, which involved 5520 participants. Multiple linear regression or multiple logistic regression analysis were used to assess the association of absolute/relative handgrip strength with the metabolic profile, preclinical, and established stages of metabolic diseases.Results: This study revealed that relative handgrip strength, that is when normalized to BMI, was associated with: (1 in both genders for more favorable blood lipid levels of high-density lipoprotein cholesterol [males: b = 0.19 (0.15, 0.23; females: b = 0.22 (0.17, 0.28], low-density lipoprotein cholesterol [males: b = −0.14 (−0.23, −0.05; females: b = −0.19 (−0.31, −0.18], triglycerides [males: b = −0.58 (−0.74, −0.43; females: b = −0.55 (−0.74, −0.36] and total cholesterol [males: b = −0.20 (−0.31, −0.10; females: b = −0.19 (−0.32, −0.06]; and better serum glucose levels in males [b = −0.30 (−0.46, −0.15]. (2 lower risk of impaired fasting glucose in males {third quartile [OR = 0.66 (0.45–0.95] and fourth quartile [OR = 0.46 (0.30–0.71] vs. first quartile} and dyslipidemia in both genders {third quartile [males: OR = 0.65 (0.48–0.87; females: OR = 0.68 (0.53–0.86] and fourth quartile [males: OR = 0.47 (0.35–0.64; females: OR = 0.47(0.36–0.61] vs. first quartile}. (3 lower risk of hyperlipidemia in both genders third quartile [males: OR = 0.66 (0.50–0.87; females: OR = 0.57 (0.43–0.75] and fourth quartile [males: OR = 0.35 (0.26–0.47; females: OR

  17. INFLUENCE FEEDING AND TRAINING ON THE METABOLIC PROFIL SPORT HORSES

    Directory of Open Access Journals (Sweden)

    M HALO

    2010-06-01

    Full Text Available In a group of 11 sport horses, the effect of the traianig process, inclunding training and resting periods, on the metabolic profile. Training proces was divided into four part: I. End of the sport season, II. End of the resting period, III. End of the quantitative training charged and IV. End of the qualitative training charged. The level glucose in the blood serum of the observed horses was stated within the reference limits, with the tendency towards the inncreased values in the 2-st and 4-st period (4,34 – 5,03 mmol.l-1. The average values global lipid and cholesterol was stated whitin the reference limits.

  18. Evaluate the effects of long-term valproic acid treatment on metabolic profiles in newly diagnosed or untreated female epileptic patients: A prospective study.

    Science.gov (United States)

    Sidhu, Harpreet Singh; Srinivas, R; Sadhotra, Akshay

    2017-05-01

    Excessive weight gain associated with sodium valproate (VPA) may predispose patients with epilepsy to other health problems such as insulin resistance. We prospectively evaluated the long-term impact of VPA monotherapy compared with lamotrigine (LTG) monotherapy on anthropometric and metabolic parameters in women with epilepsy. Our primary objective is to understand the underlying mechanism responsible for VPA-induced obesity. Sixty-six female patients with newly diagnosed or untreated epilepsy were included in the study. Thirty-four patients with VPA and thirty-two patients with LTG were treated for a period of one year in our center. Anthropometric and clinical data were collected at 5 time points: before, at 6th week, 3rd month, 6th month, 9th month and 12th month (last visit). Biochemical and hormonal data were collected 2 time points: before and last visit. Subjects in the VPA group had significantly higher body weight than LTG-treated subjects (64.88±3.25 vs. 58.28±2.43, P<0.001). HOMA-IR level was significantly increased (2.76 vs. 1.35, P<0.05), and adiponectin levels were significantly lower in the VPA group (3.46 vs. 6.22, P<0.05). Triglycerides levels were significantly increased (118 vs. 96, P<0.05), and HDL-C levels were significantly lower in the VPA group. Both the VPA-treated group and the LTG-treated group showed no significant difference in term of total cholesterol, LDL-C, fasting blood glucose and serum leptin levels. Based on the findings of this study, we proposed that VPA induced hypoadiponectinemia which correlates significantly with insulin resistance. These two factors may be responsible for weight gain, possible by stimulating appetite. Valproic acid appears to be use cautionally in obese females with epilepsy. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  19. Metabolic Engineering for Probiotics and their Genome-Wide Expression Profiling.

    Science.gov (United States)

    Yadav, Ruby; Singh, Puneet K; Shukla, Pratyoosh

    2018-01-01

    Probiotic supplements in food industry have attracted a lot of attention and shown a remarkable growth in this field. Metabolic engineering (ME) approaches enable understanding their mechanism of action and increases possibility of designing probiotic strains with desired functions. Probiotic microorganisms generally referred as industrially important lactic acid bacteria (LAB) which are involved in fermenting dairy products, food, beverages and produces lactic acid as final product. A number of illustrations of metabolic engineering approaches in industrial probiotic bacteria have been described in this review including transcriptomic studies of Lactobacillus reuteri and improvement in exopolysaccharide (EPS) biosynthesis yield in Lactobacillus casei LC2W. This review summaries various metabolic engineering approaches for exploring metabolic pathways. These approaches enable evaluation of cellular metabolic state and effective editing of microbial genome or introduction of novel enzymes to redirect the carbon fluxes. In addition, various system biology tools such as in silico design commonly used for improving strain performance is also discussed. Finally, we discuss the integration of metabolic engineering and genome profiling which offers a new way to explore metabolic interactions, fluxomics and probiogenomics using probiotic bacteria like Bifidobacterium spp and Lactobacillus spp. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Study of obesity associated proopiomelanocortin gene polymorphism: Relation to metabolic profile and eating habits in a sample of obese Egyptian children and adolescents

    Directory of Open Access Journals (Sweden)

    Farida El-Baz Mohamed

    2017-01-01

    Conclusion: This polymorphism was associated with higher fasting insulin levels in the obese patients only. These findings support the hypothesis that the melanocortin pathway may modulate glucose metabolism in obese subjects indicating a possible gene-environment interaction. POMC variant may be involved in the natural history of polygenic obesity, contributing to the link between type 2 diabetes and obesity.

  1. Impact of maternal obesity on the metabolic profiles of pregnant women and their offspring at birth

    OpenAIRE

    Desert , Romain; Canlet , Cécile; Costet , Nathalie; Cordier , Sylvaine; Bonvallot , Nathalie

    2015-01-01

    International audience; Obesity is currently an increasing public health problem. The intra-uterine environment plays a critical role in foetal development. The objective of this study is to investigate the association of obesity with modifications in the metabolic profiles of pregnant women, and their new-borns. Based on the PELAGIE cohort (Brittany, France), a sample of 321 pregnant women was divided into three groups according to their body mass index (BMI) (normal, over-weight and obese)....

  2. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis

    OpenAIRE

    Zhao, Yue; Fu, Li; Li, Rong; Wang, Li-Na; Yang, Yan; Liu, Na-Na; Zhang, Chun-Mei; Wang, Ying; Liu, Ping; Tu, Bin-Bin; Zhang, Xue; Qiao, Jie

    2012-01-01

    Background Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder accompanied with an increased risk of developing type 2 diabetes mellitus and cardiovascular disease; despite being a common condition, the pathogenesis of PCOS remains unclear. Our aim was to investigate the potential metabolic profiles for different phenotypes of PCOS, as well as for the early prognosis of complications. Methods A total of 217 women with PCOS and 48 healthy women as normal controls were studie...

  3. PHARMACOKINETICS AND METABOLISM OF A SELECTIVE ANDROGEN RECEPTOR MODULATOR IN RATS: IMPLICATION OF MOLECULAR PROPERTIES AND INTENSIVE METABOLIC PROFILE TO INVESTIGATE IDEAL PHARMACOKINETIC CHARACTERISTICS OF A PROPANAMIDE IN PRECLINICAL STUDY

    Science.gov (United States)

    Wu, Di; Wu, Zengru; Yang, Jun; Nair, Vipin A.; Miller, Duane D.; Dalton, James T.

    2007-01-01

    S-1 [3-(4-fluorophenoxy)-2-hydroxy-2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide] is one member of a series of potent selective androgen receptor modulators (SARMs) that are being explored and developed for androgen-dependent diseases. Recent studies showed that S-1 holds great promise as a novel therapeutic agent for benign hyperplasia [W. Gao, J. D. Kearbey, V. A. Nair, K. Chung, A. F. Parlow, D. D. Miller, and J. T. Dalton (2004) Endocrinology 145:5420–5428]. We examined the pharmacokinetics and metabolism of S-1 in rats as a component of our preclinical development of this compound and continued interest in structure-activation relationships for SARM action. Forty male Sprague-Dawley rats were randomly assigned to treatment groups and received either an i.v. or a p.o. dose of S-1 at a dose level of 0.1, 1, 10, or 30 mg/kg. S-1 demonstrated a low clearance (range, 3.6–5.2 ml/min/kg), a moderate volume of distribution (range, 1460–1560 ml/kg), and a terminal half-life ranging from 3.6 to 5.2 h after i.v. doses. The oral bioavailability of S-1 ranged from 55% to 60%. Forty phase I and phase II metabolites of S-1 were identified in the urine and feces of male Sprague-Dawley rats dosed at 50 mg/kg via the i.v. route. The two major urinary metabolites of S-1 were a carboxylic acid and a sulfate-conjugate of 4-nitro-3-trifluoromethylphenylamine. Phase I metabolites arising from A-ring nitro reduction to an aromatic amine and B-ring hydroxylation were also identified in the urinary and fecal samples of rats. Furthermore, a variety of phase II metabolites through sulfation, glucuronidation, and methylation were also found. These studies demonstrate that S-1 is rapidly absorbed, slowly cleared, moderately distributed, and extensively metabolized in rats. PMID:16381665

  4. Effects of regular physical exercises in the water on the metabolic profile of women with abdominal obesity.

    Science.gov (United States)

    Kasprzak, Zbigniew; Pilaczyńska-Szcześniak, Lucja

    2014-06-28

    Recreational physical exercise in the water is predominantly based on aerobic metabolism. Since it involves both carbohydrate and lipid sources of energy, aqua aerobics has a beneficial effect on metabolism of these substrates. The aim of the study was to assess the impact of a 3 month aqua aerobics training program on the metabolic profile of women with abdominal obesity. The study sample comprised 32 women aged 41-72 years. Somatic characteristics and variables characterizing carbohydrate and lipid metabolism were measured before the commencement and after the completion of the training program. During the 2nd measurement all mean anthropometric variables were found to be significantly lower (p≤0.01). In the blood lipid profile, the concentrations of total cholesterol, LDL-cholesterol and HOMAIR were significantly lower (paqua aerobics program contributed to positive changes in lipid metabolism, anthropometric variables, as well as the fasting insulin, glucose levels and insulin resistance index in women with abdominal obesity.

  5. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose.

    Science.gov (United States)

    Zhou, Yue-Yue; Ji, Xiong-Fei; Fu, Jian-Ping; Zhu, Xiao-Juan; Li, Rong-Hua; Mu, Chang-Kao; Wang, Chun-Lin; Song, Wei-Wei

    2015-01-01

    D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance.

  6. Transcriptome profiling of bovine milk oligosaccharide metabolism genes using RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    Saumya Wickramasinghe

    2011-04-01

    Full Text Available This study examines the genes coding for enzymes involved in bovine milk oligosaccharide metabolism by comparing the oligosaccharide profiles with the expressions of glycosylation-related genes. Fresh milk samples (n = 32 were collected from four Holstein and Jersey cows at days 1, 15, 90 and 250 of lactation and free milk oligosaccharide profiles were analyzed. RNA was extracted from milk somatic cells at days 15 and 250 of lactation (n = 12 and gene expression analysis was conducted by RNA-Sequencing. A list was created of 121 glycosylation-related genes involved in oligosaccharide metabolism pathways in bovine by analyzing the oligosaccharide profiles and performing an extensive literature search. No significant differences were observed in either oligosaccharide profiles or expressions of glycosylation-related genes between Holstein and Jersey cows. The highest concentrations of free oligosaccharides were observed in the colostrum samples and a sharp decrease was observed in the concentration of free oligosaccharides on day 15, followed by progressive decrease on days 90 and 250. Ninety-two glycosylation-related genes were expressed in milk somatic cells. Most of these genes exhibited higher expression in day 250 samples indicating increases in net glycosylation-related metabolism in spite of decreases in free milk oligosaccharides in late lactation milk. Even though fucosylated free oligosaccharides were not identified, gene expression indicated the likely presence of fucosylated oligosaccharides in bovine milk. Fucosidase genes were expressed in milk and a possible explanation for not detecting fucosylated free oligosaccharides is the degradation of large fucosylated free oligosaccharides by the fucosidases. Detailed characterization of enzymes encoded by the 92 glycosylation-related genes identified in this study will provide the basic knowledge for metabolic network analysis of oligosaccharides in mammalian milk. These candidate

  7. Associations between Ionomic Profile and Metabolic Abnormalities in Human Population

    Science.gov (United States)

    An, Peng; Yu, Danxia; Yu, Zhijie; Li, Huaixing; Sheng, Hongguang; Cai, Lu; Xue, Jun; Jing, Miao; Li, Yixue; Lin, Xu; Wang, Fudi

    2012-01-01

    Background Few studies assessed effects of individual and multiple ions simultaneously on metabolic outcomes, due to methodological limitation. Methodology/Principal Findings By combining advanced ionomics and mutual information, a quantifying measurement for mutual dependence between two random variables, we investigated associations of ion modules/networks with overweight/obesity, metabolic syndrome (MetS) and type 2 diabetes (T2DM) in 976 middle-aged Chinese men and women. Fasting plasma ions were measured by inductively coupled plasma mass spectroscopy. Significant ion modules were selected by mutual information to construct disease related ion networks. Plasma copper and phosphorus always ranked the first two among three specific ion networks associated with overweight/obesity, MetS and T2DM. Comparing the ranking of ion individually and in networks, three patterns were observed (1) “Individual ion,” such as potassium and chrome, which tends to work alone; (2) “Module ion,” such as iron in T2DM, which tends to act in modules/network; and (3) “Module-individual ion,” such as copper in overweight/obesity, which seems to work equivalently in either way. Conclusions In conclusion, by using the novel approach of the ionomics strategy and the information theory, we observed potential associations of ions individually or as modules/networks with metabolic disorders. Certainly, these findings need to be confirmed in future biological studies. PMID:22719963

  8. The associations between yogurt consumption, diet quality, and metabolic profiles in children in the USA.

    Science.gov (United States)

    Zhu, Yong; Wang, Huifen; Hollis, James H; Jacques, Paul F

    2015-06-01

    Recent studies have shown that yogurt consumption was associated with better diet quality and a healthier metabolic profile in adults. However, such associations have not been investigated in children. The present study examined the associations in children using data from a nationally representative survey. Data from 5,124 children aged 2-18 years, who participated in the National Health and Nutrition Examination Survey (NHANES) between 2003 and 2006 in the USA were analyzed. The frequency of yogurt consumption over 12 months was determined using a validated food frequency questionnaire. Diet quality was assessed by the Healthy Eating Index 2005 (HEI-2005) using one 24-HR dietary recall, and metabolic profiles were obtained from the NHANES laboratory data. It was found that only 33.1 % of children consumed yogurt at least once per week (frequent consumers). Adjusting for covariates, frequent consumers had better diet quality than infrequent consumers, as indicated by a higher HEI-2005 total score (P = 0.04). Frequent yogurt consumption was associated with a lower fasting insulin level (P yogurt consumption was not associated with body weight, fasting glucose, serum lipid profiles, C-reactive protein, and blood pressures (all P > 0.05). These results suggest that frequent yogurt consumption may contribute to improved diet quality and a healthier insulin profile in children. Future longitudinal studies and clinical trials in children are warranted to explore the health benefits of yogurt consumption.

  9. Differential Metabolic Profiles during the Developmental Stages of Plant-Parasitic Nematode Meloidogyne incognita

    Directory of Open Access Journals (Sweden)

    Parthiban Subramanian

    2017-06-01

    Full Text Available Meloidogyne incognita is a common root-knot nematode with a wide range of plant hosts. We aimed to study the metabolites produced at each stage of the nematode life cycle to understand its development. Metabolites of Meloidogyne incognita were extracted at egg, J2, J3, J4, and female stages and 110 metabolites with available standards were quantified using CE-TOF/MS. Analyses indicated abundance of stage-specific metabolites with the exception of J3 and J4 stages which shared similar metabolic profiles. The egg stage showed increased abundance in glycolysis and energy metabolism related metabolites while the J2 metabolites are associated with tissue formation, motility, and neurotransmission. The J3 and J4 stages indicated amino acid metabolism and urea cycle- related metabolites. The female stage was characterized with polyamine synthesis, antioxidant activity, and synthesis of reproduction related metabolites. Such metabolic profiling helps us understand the dynamic physiological changes related to each developmental stage of the root-knot nematode life cycle.

  10. Genetic dissection of scent metabolic profiles in diploid rose populations.

    Science.gov (United States)

    Spiller, M; Berger, R G; Debener, Thomas

    2010-05-01

    The scent of flowers is a very important trait in ornamental roses in terms of both quantity and quality. In cut roses, scented varieties are a rare exception. Although metabolic profiling has identified more than 500 scent volatiles from rose flowers so far, nothing is known about the inheritance of scent in roses. Therefore, we analysed scent volatiles and molecular markers in diploid segregating populations. We resolved the patterns of inheritance of three volatiles (nerol, neryl acetate and geranyl acetate) into single Mendelian traits, and we mapped these as single or oligogenic traits in the rose genome. Three other volatiles (geraniol, beta-citronellol and 2-phenylethanol) displayed quantitative variation in the progeny, and we mapped a total of six QTLs influencing the amounts of these volatiles onto the rose marker map. Because we included known scent related genes and newly generated ESTs for scent volatiles as markers, we were able to link scent related QTLs with putative candidate genes. Our results serve as a starting point for both more detailed analyses of complex scent biosynthetic pathways and the development of markers for marker-assisted breeding of scented rose varieties.

  11. Cardiac resynchronization therapy induces adaptive metabolic transitions in the metabolomic profile of heart failure.

    Science.gov (United States)

    Nemutlu, Emirhan; Zhang, Song; Xu, Yi-Zhou; Terzic, Andre; Zhong, Li; Dzeja, Petras D; Cha, Yong-Mei

    2015-06-01

    Heart failure (HF) is associated with ventricular dyssynchrony and energetic inefficiency, which can be alleviated by cardiac resynchronization therapy (CRT). The aim of this study was to determine the metabolomic signature in HF and its prognostic value regarding the response to CRT. This prospective study consisted of 24 patients undergoing CRT for advanced HF and 10 control patients who underwent catheter ablation for supraventricular arrhythmia but not CRT. Blood samples were collected before and 3 months after CRT. Metabolomic profiling of plasma samples was performed with the use of gas chromatography-mass spectrometry and nuclear magnetic resonance. The plasma metabolomic profile was altered in the HF patients, with a distinct panel of metabolites, including Krebs cycle and lipid, amino acid, and nucleotide metabolism. CRT improved the metabolomic profile. The succinate-glutamate ratio, an index of Krebs cycle activity, improved from 0.58 ± 0.13 to 2.84 ± 0.60 (P HF patients, indicating harmonization of myocardial energy substrate metabolism. CRT responders may have a favorable metabolomic profile as a potential biomarker for predicting CRT outcome. Published by Elsevier Inc.

  12. Serum metabolic profiling of human gastric cancer based on gas chromatography/mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hu; Peng, Jun-Sheng [Department of Gastrointestinal Surgery, the Sixth Affiliated Hospital (Gastrointestinal and Anal Hospital), Sun Yat-sen University, Guangzhou, Guangdong (China); Yao, Dong-Sheng [National Engineering Research Center of Genetic Medicine,Ji Nan University, Guangzhou, Guangdong (China); Yang, Zu-Li [Department of Gastrointestinal Surgery, the Sixth Affiliated Hospital (Gastrointestinal and Anal Hospital), Sun Yat-sen University, Guangzhou, Guangdong (China); Liu, Huan-Liang [Institute of Gastroenterology,Sun Yat-sen University, Guangzhou, Guangdong (China); Zeng, Yi-Ke [Department of Gastrointestinal Surgery, the Sixth Affiliated Hospital (Gastrointestinal and Anal Hospital), Sun Yat-sen University, Guangzhou, Guangdong (China); Shi, Xian-Ping; Lu, Bi-Yan [Institute of Gastroenterology,Sun Yat-sen University, Guangzhou, Guangdong (China)

    2011-11-25

    Research on molecular mechanisms of carcinogenesis plays an important role in diagnosing and treating gastric cancer. Metabolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis and help to non-invasively identify the potential biomarkers for the early diagnosis of human gastric cancer. The aims of this study were to explore the underlying metabolic mechanisms of gastric cancer and to identify biomarkers associated with morbidity. Gas chromatography/mass spectrometry (GC/MS) was used to analyze the serum metabolites of 30 Chinese gastric cancer patients and 30 healthy controls. Diagnostic models for gastric cancer were constructed using orthogonal partial least squares discriminant analysis (OPLS-DA). Acquired metabolomic data were analyzed by the nonparametric Wilcoxon test to find serum metabolic biomarkers for gastric cancer. The OPLS-DA model showed adequate discrimination between cancer and non-cancer cohorts while the model failed to discriminate different pathological stages (I-IV) of gastric cancer patients. A total of 44 endogenous metabolites such as amino acids, organic acids, carbohydrates, fatty acids, and steroids were detected, of which 18 differential metabolites were identified with significant differences. A total of 13 variables were obtained for their greatest contribution in the discriminating OPLS-DA model [variable importance in the projection (VIP) value >1.0], among which 11 metabolites were identified using both VIP values (VIP >1) and the Wilcoxon test. These metabolites potentially revealed perturbations of glycolysis and of amino acid, fatty acid, cholesterol, and nucleotide metabolism of gastric cancer patients. These results suggest that gastric cancer serum metabolic profiling has great potential in detecting this disease and helping to understand its metabolic mechanisms.

  13. Metagenomic and metabolic profiling of nonlithifying and lithifying stromatolitic mats of Highborne Cay, The Bahamas.

    Directory of Open Access Journals (Sweden)

    Christina L M Khodadad

    Full Text Available BACKGROUND: Stromatolites are laminated carbonate build-ups formed by the metabolic activity of microbial mats and represent one of the oldest known ecosystems on Earth. In this study, we examined a living stromatolite located within the Exuma Sound, The Bahamas and profiled the metagenome and metabolic potential underlying these complex microbial communities. METHODOLOGY/PRINCIPAL FINDINGS: The metagenomes of the two dominant stromatolitic mat types, a nonlithifying (Type 1 and lithifying (Type 3 microbial mat, were partially sequenced and compared. This deep-sequencing approach was complemented by profiling the substrate utilization patterns of the mats using metabolic microarrays. Taxonomic assessment of the protein-encoding genes confirmed previous SSU rRNA analyses that bacteria dominate the metagenome of both mat types. Eukaryotes comprised less than 13% of the metagenomes and were rich in sequences associated with nematodes and heterotrophic protists. Comparative genomic analyses of the functional genes revealed extensive similarities in most of the subsystems between the nonlithifying and lithifying mat types. The one exception was an increase in the relative abundance of certain genes associated with carbohydrate metabolism in the lithifying Type 3 mats. Specifically, genes associated with the degradation of carbohydrates commonly found in exopolymeric substances, such as hexoses, deoxy- and acidic sugars were found. The genetic differences in carbohydrate metabolisms between the two mat types were confirmed using metabolic microarrays. Lithifying mats had a significant increase in diversity and utilization of carbon, nitrogen, phosphorus and sulfur substrates. CONCLUSION/SIGNIFICANCE: The two stromatolitic mat types retained similar microbial communities, functional diversity and many genetic components within their metagenomes. However, there were major differences detected in the activity and genetic pathways of organic carbon

  14. Serum metabolic profiling of human gastric cancer based on gas chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Song, Hu; Peng, Jun-Sheng; Yao, Dong-Sheng; Yang, Zu-Li; Liu, Huan-Liang; Zeng, Yi-Ke; Shi, Xian-Ping; Lu, Bi-Yan

    2011-01-01

    Research on molecular mechanisms of carcinogenesis plays an important role in diagnosing and treating gastric cancer. Metabolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis and help to non-invasively identify the potential biomarkers for the early diagnosis of human gastric cancer. The aims of this study were to explore the underlying metabolic mechanisms of gastric cancer and to identify biomarkers associated with morbidity. Gas chromatography/mass spectrometry (GC/MS) was used to analyze the serum metabolites of 30 Chinese gastric cancer patients and 30 healthy controls. Diagnostic models for gastric cancer were constructed using orthogonal partial least squares discriminant analysis (OPLS-DA). Acquired metabolomic data were analyzed by the nonparametric Wilcoxon test to find serum metabolic biomarkers for gastric cancer. The OPLS-DA model showed adequate discrimination between cancer and non-cancer cohorts while the model failed to discriminate different pathological stages (I-IV) of gastric cancer patients. A total of 44 endogenous metabolites such as amino acids, organic acids, carbohydrates, fatty acids, and steroids were detected, of which 18 differential metabolites were identified with significant differences. A total of 13 variables were obtained for their greatest contribution in the discriminating OPLS-DA model [variable importance in the projection (VIP) value >1.0], among which 11 metabolites were identified using both VIP values (VIP >1) and the Wilcoxon test. These metabolites potentially revealed perturbations of glycolysis and of amino acid, fatty acid, cholesterol, and nucleotide metabolism of gastric cancer patients. These results suggest that gastric cancer serum metabolic profiling has great potential in detecting this disease and helping to understand its metabolic mechanisms

  15. Comparative metabolic profiling reveals the key role of amino acids metabolism in the rapamycin overproduction by Streptomyces hygroscopicus.

    Science.gov (United States)

    Wang, Baohua; Liu, Jiao; Liu, Huanhuan; Huang, Di; Wen, Jianping

    2015-06-01

    Rapamycin is an important natural macrolide antibiotic with antifungal, immunosuppressive and anticancer activity produced by Streptomyces hygroscopicus. In this study, a mutant strain obtained by ultraviolet mutagenesis displayed higher rapamycin production capacity compared to the wild-type S. hygroscopicus ATCC 29253. To gain insights into the mechanism of rapamycin overproduction, comparative metabolic profiling between the wild-type and mutant strain was performed. A total of 86 metabolites were identified by gas chromatography-mass spectrometry. Pattern recognition methods, including principal component analysis, partial least squares and partial least squares discriminant analysis, were employed to determine the key biomarkers. The results showed that 22 potential biomarkers were closely associated with the increase of rapamycin production and the tremendous metabolic difference was observed between the two strains. Furthermore, metabolic pathway analysis revealed that amino acids metabolism played an important role in the synthesis of rapamycin, especially lysine, valine, tryptophan, isoleucine, glutamate, arginine and ornithine. The inadequate supply of amino acids, or namely "nitrogen starvation" occurred in the mutant strain. Subsequently, the exogenous addition of amino acids into the fermentation medium of the mutant strain confirmed the above conclusion, and rapamycin production of the mutant strain increased to 426.7 mg/L after adding lysine, approximately 5.8-fold of that in the wild-type strain. Finally, the results of real-time PCR and enzyme activity assays demonstrated that dihydrodipicolinate synthase involved with lysine metabolism played vital role in the biosynthesis of rapamycin. These findings will provide a theoretical basis for further improving production of rapamycin.

  16. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sven van Eijl

    Full Text Available BACKGROUND: Human skin has the capacity to metabolise foreign chemicals (xenobiotics, but knowledge of the various enzymes involved is incomplete. A broad-based unbiased proteomics approach was used to describe the profile of xenobiotic metabolising enzymes present in human skin and hence indicate principal routes of metabolism of xenobiotic compounds. Several in vitro models of human skin have been developed for the purpose of safety assessment of chemicals. The suitability of these epidermal models for studies involving biotransformation was assessed by comparing their profiles of xenobiotic metabolising enzymes with those of human skin. METHODOLOGY/PRINCIPAL FINDINGS: Label-free proteomic analysis of whole human skin (10 donors was applied and analysed using custom-built PROTSIFT software. The results showed the presence of enzymes with a capacity for the metabolism of alcohols through dehydrogenation, aldehydes through dehydrogenation and oxidation, amines through oxidation, carbonyls through reduction, epoxides and carboxylesters through hydrolysis and, of many compounds, by conjugation to glutathione. Whereas protein levels of these enzymes in skin were mostly just 4-10 fold lower than those in liver and sufficient to support metabolism, the levels of cytochrome P450 enzymes were at least 300-fold lower indicating they play no significant role. Four epidermal models of human skin had profiles very similar to one another and these overlapped substantially with that of whole skin. CONCLUSIONS/SIGNIFICANCE: The proteomics profiling approach was successful in producing a comprehensive analysis of the biotransformation characteristics of whole human skin and various in vitro skin models. The results show that skin contains a range of defined enzymes capable of metabolising different classes of chemicals. The degree of similarity of the profiles of the in vitro models indicates their suitability for epidermal toxicity testing. Overall, these

  17. Tissue metabolic profiling of human gastric cancer assessed by 1H NMR

    International Nuclear Information System (INIS)

    Wang, Huijuan; Zhang, Hailong; Deng, Pengchi; Liu, Chunqi; Li, Dandan; Jie, Hui; Zhang, Hu; Zhou, Zongguang; Zhao, Ying-Lan

    2016-01-01

    Gastric cancer is the fourth most common cancer and the second most deadly cancer worldwide. Study on molecular mechanisms of carcinogenesis will play a significant role in diagnosing and treating gastric cancer. Metabolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis and help to identify the potential biomarkers for the early diagnosis of gastric cancer. In this study, we reported the metabolic profiling of tissue samples on a large cohort of human gastric cancer subjects (n = 125) and normal controls (n = 54) based on 1 H nuclear magnetic resonance ( 1 H NMR) together with multivariate statistical analyses (PCA, PLS-DA, OPLS-DA and ROC curve). The OPLS-DA model showed adequate discrimination between cancer tissues and normal controls, and meanwhile, the model excellently discriminated the stage-related of tissue samples (stage I, 30; stage II, 46; stage III, 37; stage IV, 12) and normal controls. A total of 48 endogenous distinguishing metabolites (VIP > 1 and p < 0.05) were identified, 13 of which were changed with the progression of gastric cancer. These modified metabolites revealed disturbance of glycolysis, glutaminolysis, TCA, amino acids and choline metabolism, which were correlated with the occurrence and development of human gastric cancer. The receiver operating characteristic diagnostic AUC of OPLS-DA model between cancer tissues and normal controls was 0.945. And the ROC curves among different stages cancer subjects and normal controls were gradually improved, the corresponding AUC values were 0.952, 0.994, 0.998 and 0.999, demonstrating the robust diagnostic power of this metabolic profiling approach. As far as we know, the present study firstly identified the differential metabolites in various stages of gastric cancer tissues. And the AUC values were relatively high. So these results suggest that the metabolic profiling of gastric cancer tissues has great potential in detecting this disease and helping

  18. Magnetic resonance metabolic profiling of breast cancer tissue obtained with core needle biopsy for predicting pathologic response to neoadjuvant chemotherapy.

    Directory of Open Access Journals (Sweden)

    Ji Soo Choi

    Full Text Available The purpose of this study was to determine whether metabolic profiling of core needle biopsy (CNB samples using high-resolution magic angle spinning (HR-MAS magnetic resonance spectroscopy (MRS could be used for predicting pathologic response to neoadjuvant chemotherapy (NAC in patients with locally advanced breast cancer. After institutional review board approval and informed consent were obtained, CNB tissue samples were collected from 37 malignant lesions in 37 patients before NAC treatment. The metabolic profiling of CNB samples were performed by HR-MAS MRS. Metabolic profiles were compared according to pathologic response to NAC using the Mann-Whitney test. Multivariate analysis was performed with orthogonal projections to latent structure-discriminant analysis (OPLS-DA. Various metabolites including choline-containing compounds were identified and quantified by HR-MAS MRS in all 37 breast cancer tissue samples obtained by CNB. In univariate analysis, the metabolite concentrations and metabolic ratios of CNB samples obtained with HR-MAS MRS were not significantly different between different pathologic response groups. However, there was a trend of lower levels of phosphocholine/creatine ratio and choline-containing metabolite concentrations in the pathologic complete response group compared to the non-pathologic complete response group. In multivariate analysis, the OPLS-DA models built with HR-MAS MR metabolic profiles showed visible discrimination between the pathologic response groups. This study showed OPLS-DA multivariate analysis using metabolic profiles of pretreatment CNB samples assessed by HR- MAS MRS may be used to predict pathologic response before NAC, although we did not identify the metabolite showing statistical significance in univariate analysis. Therefore, our preliminary results raise the necessity of further study on HR-MAS MR metabolic profiling of CNB samples for a large number of cancers.

  19. Metabolic Syndrome, Insulin Resistance and Cognitive Dysfunction: Does your metabolic profile affect your brain?

    DEFF Research Database (Denmark)

    Neergaard, Jesper S; Møller, Katrine Dragsbæk; Christiansen, Claus

    2017-01-01

    Dementia and type 2 diabetes are both characterized by long prodromal phases challenging the study of potential risk factors and their temporal relation. The progressive relation between metabolic syndrome, insulin resistance, and dementia has recently been questioned, wherefore the aim...... to be preventable by effective prevention and control of the insulin homeostasis....

  20. Metabolic profiling of follistatin overexpression: a novel therapeutic strategy for metabolic diseases

    Directory of Open Access Journals (Sweden)

    Singh R

    2018-03-01

    Full Text Available Rajan Singh,1,2 Shehla Pervin,1,2 Se-Jin Lee,3,4 Alan Kuo,5 Victor Grijalva,6 John David,7 Laurent Vergnes,8 Srinivasa T Reddy1,6 1Department of Obstetrics and Gynecology, UCLA School of Medicine, Los Angeles, CA, USA; 2Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA; 3The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; 4Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, CT, USA; 5Department of Biology, California State University Dominguez Hills, CA, USA; 6Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA, USA; 7Department of Comparative Medicine, Pfizer Inc, San Diego, CA, USA; 8Department of Human Genetics, UCLA School of Medicine, Los Angeles, CA, USA Background: Follistatin (Fst promotes brown adipocyte characteristics in adipose tissues.Methods: Abdominal fat volume (CT scan, glucose clearance (GTT test, and metabolomics analysis (mass spectrometry of adipose tissues from Fst transgenic (Fst-Tg and wild type (WT control mice were analyzed. Oxygen consumption (Seahorse Analyzer and lipidomics (gas chromatography was analyzed in 3T3-L1 cells.Results: Fst-Tg mice show significant decrease in abdominal fat content, increased glucose clearance, improved plasma lipid profiles and significant changes in several conventional metabolites compared to the WT mice. Furthermore, overexpression of Fst in 3T3-L1 cells resulted in up regulation of key brown/beige markers and changes in lipidomics profiles. Conclusion: Fst modulates key factors involved in promoting metabolic syndrome and could be used for therapeutic intervention. Keywords: follistatin, transgenic, adipocyte, fibroblast growth factor 21, AdipoQ

  1. Apolipoprotein B metabolism: tracer kinetics, models, and metabolic studies.

    Science.gov (United States)

    Burnett, John R; Barrett, P Hugh R

    2002-04-01

    The study of apolipoprotein (apo) B metabolism is central to our understanding of lipoprotein metabolism. However, the assembly and secretion of apoB-containing lipoproteins is a complex process. Specialized techniques, developed and applied to in vitro and in vivo studies of apoB metabolism, have provided insights into the mechanisms involved in the regulation of this process. Moreover, these studies have important implications for understanding both the pathophysiology as well as the therapeutic options for the dyslipidemias. The purpose of this review is to examine the role of apoB in lipoprotein metabolism and to explore the applications of kinetic analysis and multicompartmental modeling to the study of apoB metabolism. New developments and significant advances over the last decade are discussed.

  2. Metabolic profiling reveals potential metabolic markers associated with Hypoxia Inducible Factor-mediated signalling in hypoxic cancer cells.

    Science.gov (United States)

    Armitage, Emily G; Kotze, Helen L; Allwood, J William; Dunn, Warwick B; Goodacre, Royston; Williams, Kaye J

    2015-10-28

    Hypoxia inducible factors (HIFs) plays an important role in oxygen compromised environments and therefore in tumour survival. In this research, metabolomics has been applied to study HIFs metabolic function in two cell models: mouse hepatocellular carcinoma and human colon carcinoma, whereby the metabolism has been profiled for a range of oxygen potentials. Wild type cells have been compared to cells deficient in HIF signalling to reveal its effect on cellular metabolism under normal oxygen conditions as well as low oxygen, hypoxic and anoxic environments. Characteristic responses to hypoxia that were conserved across both cell models involved the anti-correlation between 2-hydroxyglutarate, 2-oxoglutarate, fructose, hexadecanoic acid, hypotaurine, pyruvate and octadecenoic acid with 4-hydroxyproline, aspartate, cysteine, glutamine, lysine, malate and pyroglutamate. Further to this, network-based correlation analysis revealed HIF specific pathway responses to each oxygen condition that were also conserved between cell models. From this, 4-hydroxyproline was revealed as a regulating hub in low oxygen survival of WT cells while fructose appeared to be in HIF deficient cells. Pathways surrounding these hubs were built from the direct connections of correlated metabolites that look beyond traditional pathways in order to understand the mechanism of HIF response to low oxygen environments.

  3. Adenovirus-36 Seropositivity and Its Relation with Obesity and Metabolic Profile in Children

    Directory of Open Access Journals (Sweden)

    Isela Parra-Rojas

    2013-01-01

    Full Text Available The human adenovirus 36 (Ad-36 is causally and correlatively associated in animals and humans, respectively, with increased adiposity and altered metabolic profile. In previous studies, the relationship between Ad-36 seropositivity with obesity was established in adults and children. We evaluated the association of positive antibodies to Ad-36 with obesity and metabolic profile in Mexican children. Seventy-five children with normal-weight and 82 with obesity were studied in this research. All children had a clinic assessment which included weight, height, body circumferences, and skinfold thickness. Laboratory analyzes included triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, and glucose and insulin levels. An enzyme-linked immunosorbent assay (ELISA was used to determine the antibodies to Ad-36 in the serum samples. The overall Ad-36 seroprevalence was 73.9%. Ad-36 seropositivity had a higher prevalence in obese children than in normal weight group (58.6 versus 41.4%, P=0.007. Ad-36 seropositivity was associated with obesity (OR=2.66, P=0.01 and high-density lipoprotein <40 mg/dL (OR=2.85, P=0.03. The Ad-36 seropositive group had greater risk of 4 metabolic abnormalities compared with those children without none alteration. In summary, Ad-36 seropositivity was associated with obesity and low HDL-c levels in the sample of children studied.

  4. Adenovirus-36 Seropositivity and Its Relation with Obesity and Metabolic Profile in Children

    Science.gov (United States)

    Del Moral-Hernández, Oscar; Salgado-Bernabé, Aralia B.; Guzmán-Guzmán, Iris P.; Salgado-Goytia, Lorenzo; Muñoz-Valle, José F.

    2013-01-01

    The human adenovirus 36 (Ad-36) is causally and correlatively associated in animals and humans, respectively, with increased adiposity and altered metabolic profile. In previous studies, the relationship between Ad-36 seropositivity with obesity was established in adults and children. We evaluated the association of positive antibodies to Ad-36 with obesity and metabolic profile in Mexican children. Seventy-five children with normal-weight and 82 with obesity were studied in this research. All children had a clinic assessment which included weight, height, body circumferences, and skinfold thickness. Laboratory analyzes included triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, and glucose and insulin levels. An enzyme-linked immunosorbent assay (ELISA) was used to determine the antibodies to Ad-36 in the serum samples. The overall Ad-36 seroprevalence was 73.9%. Ad-36 seropositivity had a higher prevalence in obese children than in normal weight group (58.6 versus 41.4%, P = 0.007). Ad-36 seropositivity was associated with obesity (OR = 2.66, P = 0.01) and high-density lipoprotein <40 mg/dL (OR = 2.85, P = 0.03). The Ad-36 seropositive group had greater risk of 4 metabolic abnormalities compared with those children without none alteration. In summary, Ad-36 seropositivity was associated with obesity and low HDL-c levels in the sample of children studied. PMID:24324491

  5. Metabolic Profile and Inflammatory Responses in Dairy Cows with Left Displaced Abomasum Kept under Small-Scaled Farm Conditions

    Directory of Open Access Journals (Sweden)

    Fenja Klevenhusen

    2015-10-01

    Full Text Available Left displaced abomasum (LDA is a severe metabolic disease of cattle with a strong negative impact on production efficiency of dairy farms. Metabolic and inflammatory alterations associated with this disease have been reported in earlier studies, conducted mostly in large dairy farms. This research aimed to: (1 evaluate metabolic and inflammatory responses in dairy cows affected by LDA in small-scaled dairy farms; and (2 establish an Animals 2015, 5 1022 association between lactation number and milk production with the outcome of metabolic variables. The cows with LDA had lower serum calcium (Ca, but greater concentrations of non-esterified fatty acids (NEFA and beta-hydroxy-butyrate (BHBA, in particular when lactation number was >2. Cows with LDA showed elevated levels of aspartate aminotransferase, glutamate dehydrogenase, and serum amyloid A (SAA, regardless of lactation number. In addition, this study revealed strong associations between milk yield and the alteration of metabolic profile but not with inflammation in the sick cows. Results indicate metabolic alterations, liver damage, and inflammation in LDA cows kept under small-scale farm conditions. Furthermore, the data suggest exacerbation of metabolic profile and Ca metabolism but not of inflammation and liver health with increasing lactation number and milk yield in cows affected by LDA.

  6. Analytical strategies for studying stem cell metabolism.

    Science.gov (United States)

    Arnold, James M; Choi, William T; Sreekumar, Arun; Maletić-Savatić, Mirjana

    2015-04-01

    Owing to their capacity for self-renewal and pluripotency, stem cells possess untold potential for revolutionizing the field of regenerative medicine through the development of novel therapeutic strategies for treating cancer, diabetes, cardiovascular and neurodegenerative diseases. Central to developing these strategies is improving our understanding of biological mechanisms responsible for governing stem cell fate and self-renewal. Increasing attention is being given to the significance of metabolism, through the production of energy and generation of small molecules, as a critical regulator of stem cell functioning. Rapid advances in the field of metabolomics now allow for in-depth profiling of stem cells both in vitro and in vivo , providing a systems perspective on key metabolic and molecular pathways which influence stem cell biology. Understanding the analytical platforms and techniques that are currently used to study stem cell metabolomics, as well as how new insights can be derived from this knowledge, will accelerate new research in the field and improve future efforts to expand our understanding of the interplay between metabolism and stem cell biology.

  7. Subclinical hypothyroidism does not influence the metabolic and hormonal profile of women with PCOS.

    Science.gov (United States)

    Trakakis, Eftihios; Pergialiotis, Vasilios; Hatziagelaki, Erifili; Panagopoulos, Periklis; Salloum, Ioannis; Papantoniou, Nikolaos

    2017-06-23

    Background Subclinical hypothyroidism (SCH) is present in 5%-10% of polycystic ovary syndrome (PCOS) patients. To date, its impact on the metabolic and hormonal profile of those women remains controversial. The purpose of our study is to evaluate the impact of SCH on the glycemic, lipid and hormonal profile of PCOS patients. Materials and methods We conducted a prospective case control study of patients that attended the Department of Gynecological Endocrinology of our hospital. Results Overall, 280 women with PCOS were enrolled during a time period of 7 years (2009-2015). Twenty-one patients (7.5%) suffered from SCH. The anthropometric characteristics were comparable among women with PCOS and those with SCH + PCOS. The prevalence of acne, hirsutism and anovulation did not differ. Significant differences were observed in the 2-h oral glucose tolerance test (OGTT) (p = 0.003 for glucose and p = 0.046 for insulin). The QUICKI, Matsuda and homeostatic model assessment-insulin resistance (HOMA-IR) indices where, however, similar. No difference in serum lipids was observed. Slightly elevated levels of follicle stimulating hormone (FSH) and testosterone were noted. The remaining hormonal parameters remained similar among groups. Similarly, the ovarian volume and the endometrial thickness did not differ. Conclusions The impact of SCH on the metabolic and hormonal profile of PCOS patients seems to be negligible. Future studies are needed in the field and their conduct in a multi-institutional basis seems to be required, given the small prevalence of SCH among women with PCOS.

  8. Inner workings of thrombolites: spatial gradients of metabolic activity as revealed by metatranscriptome profiling.

    Science.gov (United States)

    Mobberley, J M; Khodadad, C L M; Visscher, P T; Reid, R P; Hagan, P; Foster, J S

    2015-07-27

    Microbialites are sedimentary deposits formed by the metabolic interactions of microbes and their environment. These lithifying microbial communities represent one of the oldest ecosystems on Earth, yet the molecular mechanisms underlying the function of these communities are poorly understood. In this study, we used comparative metagenomic and metatranscriptomic analyses to characterize the spatial organization of the thrombolites of Highborne Cay, The Bahamas, an actively forming microbialite system. At midday, there were differences in gene expression throughout the spatial profile of the thrombolitic mat with a high abundance of transcripts encoding genes required for photosynthesis, nitrogen fixation and exopolymeric substance production in the upper three mm of the mat. Transcripts associated with denitrification and sulfate reduction were in low abundance throughout the depth profile, suggesting these metabolisms were less active during midday. Comparative metagenomics of the Bahamian thrombolites with other known microbialite ecosystems from across the globe revealed that, despite many shared core pathways, the thrombolites represented genetically distinct communities. This study represents the first time the metatranscriptome of living microbialite has been characterized and offers a new molecular perspective on those microbial metabolisms, and their underlying genetic pathways, that influence the mechanisms of carbonate precipitation in lithifying microbial mat ecosystems.

  9. Effect of Dietary Counseling on a Comprehensive Metabolic Profile from Childhood to Adulthood.

    Science.gov (United States)

    Lehtovirta, Miia; Pahkala, Katja; Niinikoski, Harri; Kangas, Antti J; Soininen, Pasi; Lagström, Hanna; Viikari, Jorma S A; Rönnemaa, Tapani; Jula, Antti; Ala-Korpela, Mika; Würtz, Peter; Raitakari, Olli T

    2018-04-01

    To study the effects of repeated, infancy-onset dietary counseling on a detailed metabolic profile. Effects of dietary saturated fat replacement on circulating concentrations of metabolic biomarkers still remain unknown. The Special Turku Coronary Risk Factor Intervention Project (STRIP) study is a longitudinal, randomized atherosclerosis prevention trial in which repeated dietary counseling aimed at reducing the proportion of saturated fat intake. Nuclear magnetic resonance metabolomics quantified circulating metabolites from serum samples assessed at age 9 (n = 554), 11 (n = 553), 13 (n = 508), 15 (n = 517), 17 (n = 457), and 19 (n = 417) years. The intervention reduced dietary intake of saturated fat (mean difference in daily percentage of total energy intake: -2.1 [95% CI -1.9 to -2.3]) and increased intake of polyunsaturated fat (0.6 [0.5-0.7]). The dietary counseling intervention led to greater serum proportions of polyunsaturated fatty acids (P replacement on the metabolic risk profile. ClinicalTrials.gov: NCT00223600. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Circadian gene methylation profiles are associated with obesity, metabolic disturbances and carbohydrate intake.

    Science.gov (United States)

    Ramos-Lopez, Omar; Samblas, Mirian; Milagro, Fermin I; Riezu-Boj, Jose I; Crujeiras, A B; Martinez, J Alfredo; Project, Mena

    2018-03-26

    The circadian clock regulates the daily rhythms of several physiological and behavioral processes. Disruptions in clock genes have been associated with obesity and related comorbidities. This study aimed to analyze the association of DNA methylation signatures at circadian rhythm pathway genes with body mass index (BMI), metabolic profiles and dietary intakes. DNA methylation profiling was determined by microarray in white blood cells from 474 adults from the Methyl Epigenome Network Association (MENA) project. Kyoto Encyclopedia of Genes and Genomes database was used to identify the genes integrating the circadian rhythm pathway. Network enrichment analyses were performed with the PathDIP platform. Associations between circadian methylation patterns with anthropometric measurements, the metabolic profile, clinical data and dietary intakes were analyzed. DNA methylation patterns of nine CpG sites at six circadian rhythm pathway genes were strongly correlated with BMI (false discovery rates <0.0001). These CpGs encompassed cg09578018 (RORA), cg20406576 (PRKAG2), cg10059324 (PER3), cg01180628 (BHLHE40), cg23871860 (FBXL3), cg16964728 (RORA), cg14129040 (CREB1), cg07012178 (PRKAG2) and cg24061580 (PRKAG2). Interestingly, network enrichment analyses revealed that the six BMI-associated genes statistically contributed to the regulation of the circadian rhythm pathway (p = 1.9E-10). In addition, methylation signatures at cg09578018 (RORA), cg24061580 (PRKAG2), cg01180628 (BHLHE40) and cg10059324 (PER3) also correlated with insulin resistance (p < 0.0001) and mean arterial blood pressure (p < 0.0001). Furthermore, relevant correlations (p < 0.05) between methylation at cg09578018 (RORA) and cg01180628 (BHLHE40) with total energy and carbohydrate intakes were found. This investigation revealed potential associations of DNA methylation profiles at circadian genes with obesity, metabolic disturbances and carbohydrate intake, with potential impact on weight

  11. Metabolic profiles in heart failure due to non-ischemic cardiomyopathy at rest and under exercise.

    Science.gov (United States)

    Mueller-Hennessen, Matthias; Sigl, Johanna; Fuhrmann, Jens C; Witt, Henning; Reszka, Regina; Schmitz, Oliver; Kastler, Jürgen; Fischer, Jenny J; Müller, Oliver J; Giannitsis, Evangelos; Weis, Tanja; Frey, Norbert; Katus, Hugo A

    2017-05-01

    Identification of metabolic signatures in heart failure (HF) patients and evaluation of their diagnostic potential to discriminate HF patients from healthy controls during baseline and exercise conditions. Plasma samples were collected from 22 male HF patients with non-ischemic idiopathic cardiomyopathy and left ventricular systolic dysfunction and 19 healthy controls before (t0), at peak (t1) and 1 h after (t2) symptom-limited cardiopulmonary exercise testing. Two hundred fifty-two metabolites were quantified by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC)-MS/MS-based metabolite profiling. Plasma metabolite profiles clearly differed between HF patients and controls at t0 ( P  HF was characterized by decreased levels of complex lipids and fatty acids, notably phosphatidylcholines, cholesterol, and sphingolipids. Moreover, reduced glutamine and increased glutamate plasma levels, significantly increased purine degradation products, as well as signs of impaired glucose metabolism were observed. The metabolic differences increased strongly according to New York Heart Association functional class and the addition of three metabolites further improved prediction of exercise capacity (Q 2  = 0.24 to 0.35). Despite a high number of metabolites changing significantly with exercise (30.2% at t1/t0), the number of significant alterations between HF and controls was almost unchanged at t 1 and t 2 (30.7 and 29.0% vs. 31.3% at t 0 ) with a similar predictive group separation (Q 2  = 0.50 for t0, 0.52 for t1, and 0.56 for t2, respectively). Our study identified a metabolic signature of non-ischemic HF with prominent changes in complex lipids including phosphatidylcholines, cholesterol, and sphingolipids. The metabolic changes were already evident at rest and largely preserved under exercise.

  12. Metabolic profiles in heart failure due to non‐ischemic cardiomyopathy at rest and under exercise

    Science.gov (United States)

    Mueller‐Hennessen, Matthias; Sigl, Johanna; Fuhrmann, Jens C.; Witt, Henning; Reszka, Regina; Schmitz, Oliver; Kastler, Jürgen; Fischer, Jenny J.; Müller, Oliver J.; Giannitsis, Evangelos; Weis, Tanja; Frey, Norbert

    2017-01-01

    Abstract Aims Identification of metabolic signatures in heart failure (HF) patients and evaluation of their diagnostic potential to discriminate HF patients from healthy controls during baseline and exercise conditions. Methods Plasma samples were collected from 22 male HF patients with non‐ischemic idiopathic cardiomyopathy and left ventricular systolic dysfunction and 19 healthy controls before (t0), at peak (t1) and 1 h after (t2) symptom‐limited cardiopulmonary exercise testing. Two hundred fifty‐two metabolites were quantified by gas chromatography‐mass spectrometry (GC‐MS) and liquid chromatography (LC)‐MS/MS‐based metabolite profiling. Results Plasma metabolite profiles clearly differed between HF patients and controls at t0 (P HF was characterized by decreased levels of complex lipids and fatty acids, notably phosphatidylcholines, cholesterol, and sphingolipids. Moreover, reduced glutamine and increased glutamate plasma levels, significantly increased purine degradation products, as well as signs of impaired glucose metabolism were observed. The metabolic differences increased strongly according to New York Heart Association functional class and the addition of three metabolites further improved prediction of exercise capacity (Q2 = 0.24 to 0.35). Despite a high number of metabolites changing significantly with exercise (30.2% at t1/t0), the number of significant alterations between HF and controls was almost unchanged at t1 and t2 (30.7 and 29.0% vs. 31.3% at t0) with a similar predictive group separation (Q2 = 0.50 for t0, 0.52 for t1, and 0.56 for t2, respectively). Conclusions Our study identified a metabolic signature of non‐ischemic HF with prominent changes in complex lipids including phosphatidylcholines, cholesterol, and sphingolipids. The metabolic changes were already evident at rest and largely preserved under exercise. PMID:28451455

  13. Effects of cadmium exposure on growth and metabolic profile of bermudagrass [Cynodon dactylon (L. Pers].

    Directory of Open Access Journals (Sweden)

    Yan Xie

    Full Text Available Metabolic responses to cadmium (Cd may be associated with variations in Cd tolerance in plants. The objectives of this study were to examine changes in metabolic profiles in bermudagrass in response to Cd stress and to identify predominant metabolites associated with differential Cd tolerance using gas chromatography-mass spectrometry. Two genotypes of bermudagrass with contrasting Cd tolerance were exposed to 0 and 1.5 mM CdSO4 for 14 days in hydroponics. Physiological responses to Cd were evaluated by determining turf quality, growth rate, chlorophyll content and normalized relative transpiration. All these parameters exhibited higher tolerance in WB242 than in WB144. Cd treated WB144 transported more Cd to the shoot than in WB242. The metabolite analysis of leaf polar extracts revealed 39 Cd responsive metabolites in both genotypes, mainly consisting of amino acids, organic acids, sugars, fatty acids and others. A difference in the metabolic profiles was observed between the two bermudagrass genotypes exposed to Cd stress. Seven amino acids (norvaline, glycine, proline, serine, threonine, glutamic acid and gulonic acid, four organic acids (glyceric acid, oxoglutaric acid, citric acid and malic acid, and three sugars (xylulose, galactose and talose accumulated more in WB242 than WB144. However, compared to the control, WB144 accumulated higher quantities of sugars than WB242 in the Cd regime. The differential accumulation of these metabolites could be associated with the differential Cd tolerance in bermudagrass.

  14. Urinary Metabolite Profiles in Premature Infants Show Early Postnatal Metabolic Adaptation and Maturation

    Directory of Open Access Journals (Sweden)

    Sissel J. Moltu

    2014-05-01

    Full Text Available Objectives: Early nutrition influences metabolic programming and long-term health. We explored the urinary metabolite profiles of 48 premature infants (birth weight < 1500 g randomized to an enhanced or a standard diet during neonatal hospitalization. Methods: Metabolomics using nuclear magnetic resonance spectroscopy (NMR was conducted on urine samples obtained during the first week of life and thereafter fortnightly. Results: The intervention group received significantly higher amounts of energy, protein, lipids, vitamin A, arachidonic acid and docosahexaenoic acid as compared to the control group. Enhanced nutrition did not appear to affect the urine profiles to an extent exceeding individual variation. However, in all infants the glucogenic amino acids glycine, threonine, hydroxyproline and tyrosine increased substantially during the early postnatal period, along with metabolites of the tricarboxylic acid cycle (succinate, oxoglutarate, fumarate and citrate. The metabolite changes correlated with postmenstrual age. Moreover, we observed elevated threonine and glycine levels in first-week urine samples of the small for gestational age (SGA; birth weight < 10th percentile for gestational age as compared to the appropriate for gestational age infants. Conclusion: This first nutri-metabolomics study in premature infants demonstrates that the physiological adaptation during the fetal-postnatal transition as well as maturation influences metabolism during the breastfeeding period. Elevated glycine and threonine levels were found in the first week urine samples of the SGA infants and emerged as potential biomarkers of an altered metabolic phenotype.

  15. Integrated transcriptional and metabolic profiling in human endotoxemia.

    Science.gov (United States)

    Kamisoglu, Kubra; Calvano, Steve E; Coyle, Susette M; Corbett, Siobhan A; Androulakis, Ioannis P

    2014-12-01

    In this meta-study, we aimed to integrate biological insights gained from two levels of -omics analyses on the response to systemic inflammation induced by lipopolysaccharide in humans. We characterized the interplay between plasma metabolite compositions and transcriptional response of leukocytes through integration of transcriptomics with plasma metabonomics. We hypothesized that the drastic changes in the immediate environment of the leukocytes might have an adaptive effect on shaping their transcriptional response in conjunction with the initial inflammatory stimuli. Indeed, we observed that leukocytes, most notably, tune the activity of lipid- and protein-associated processes at the transcriptional level in accordance with the fluctuations in metabolite compositions of surrounding plasma. A closer look into the transcriptional control of only metabolic pathways uncovered alterations in bioenergetics and defenses against oxidative stress closely associated with mitochondrial dysfunction and shifts in energy production observed during inflammatory processes.

  16. Metabolic profiling of residents in the vicinity of a petrochemical complex

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Tzu-Hsuen; Chung, Ming-Kei [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Lin, Ching-Yu [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chen, Shu-Ting; Wu, Kuen-Yuh [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chan, Chang-Chuan, E-mail: ccchan@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2016-04-01

    No previous studies have simultaneously measured the biomarkers of environmental exposure and metabolome perturbation in residents affected by industrial pollutants. This study aimed to investigate the metabolic effects of environmental pollutants such as vanadium and polycyclic aromatic hydrocarbons (PAHs) on residents in the vicinity of a petrochemical complex. The study subjects were 160 residents, including 80 high-exposure subjects exposed to high levels of vanadium and PAHs and 80 age- and gender-matched low-exposure subjects living within a 40-km radius of a petrochemical complex. The exposure biomarkers vanadium and 1-hydroxypyrene and four oxidative/nitrosative stress biomarkers were measured in these subjects. Plasma samples from the study subjects were also analyzed using {sup 1}H NMR spectroscopy for metabolic profiling. The results showed that the urinary levels of vanadium and 1-hydroxypyrene in the high-exposure subjects were 40- and 20-fold higher, respectively, than those in the low-exposure subjects. Higher urinary levels of stress biomarkers, including 8-OHdG, HNE-MA, 8-isoPF2α, and 8-NO{sub 2}Gua, were also observed among the high-exposure subjects compared with the low-exposure subjects. Partial least squares discriminant analysis of the plasma metabolome demonstrated a clear separation between the high- and low-exposure subjects; the intensities of amino acids and carbohydrate metabolites were lower in the high-exposure subjects compared with the low-exposure subjects. The exposure to vanadium and PAHs may cause a reduction in the levels of amino acids and carbohydrates by elevating PPAR and insulin signaling, as well as oxidative/nitrosative stress. - Highlights: • Metabolic effects when exposure to pollutants near a petrochemical complex • V and PAHs exposure associated with elevated oxidative/nitrosative stress responses • V and PAHs exposure related to reduced amino acid and carbohydrate levels • V and PAHs affect metabolic

  17. Metabolic profiling of residents in the vicinity of a petrochemical complex

    International Nuclear Information System (INIS)

    Yuan, Tzu-Hsuen; Chung, Ming-Kei; Lin, Ching-Yu; Chen, Shu-Ting; Wu, Kuen-Yuh; Chan, Chang-Chuan

    2016-01-01

    No previous studies have simultaneously measured the biomarkers of environmental exposure and metabolome perturbation in residents affected by industrial pollutants. This study aimed to investigate the metabolic effects of environmental pollutants such as vanadium and polycyclic aromatic hydrocarbons (PAHs) on residents in the vicinity of a petrochemical complex. The study subjects were 160 residents, including 80 high-exposure subjects exposed to high levels of vanadium and PAHs and 80 age- and gender-matched low-exposure subjects living within a 40-km radius of a petrochemical complex. The exposure biomarkers vanadium and 1-hydroxypyrene and four oxidative/nitrosative stress biomarkers were measured in these subjects. Plasma samples from the study subjects were also analyzed using 1 H NMR spectroscopy for metabolic profiling. The results showed that the urinary levels of vanadium and 1-hydroxypyrene in the high-exposure subjects were 40- and 20-fold higher, respectively, than those in the low-exposure subjects. Higher urinary levels of stress biomarkers, including 8-OHdG, HNE-MA, 8-isoPF2α, and 8-NO 2 Gua, were also observed among the high-exposure subjects compared with the low-exposure subjects. Partial least squares discriminant analysis of the plasma metabolome demonstrated a clear separation between the high- and low-exposure subjects; the intensities of amino acids and carbohydrate metabolites were lower in the high-exposure subjects compared with the low-exposure subjects. The exposure to vanadium and PAHs may cause a reduction in the levels of amino acids and carbohydrates by elevating PPAR and insulin signaling, as well as oxidative/nitrosative stress. - Highlights: • Metabolic effects when exposure to pollutants near a petrochemical complex • V and PAHs exposure associated with elevated oxidative/nitrosative stress responses • V and PAHs exposure related to reduced amino acid and carbohydrate levels • V and PAHs affect metabolic profiling by

  18. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice.

    Directory of Open Access Journals (Sweden)

    Melissa K Friswell

    2010-01-01

    Full Text Available The gastrointestinal tract microbiota (GTM of mammals is a complex microbial consortium, the composition and activities of which influences mucosal development, immunity, nutrition and drug metabolism. It remains unclear whether the composition of the dominant GTM is conserved within animals of the same strain and whether stable GTMs are selected for by host-specific factors or dictated by environmental variables.The GTM composition of six highly inbred, genetically distinct strains of mouse (C3H, C57, GFEC, CD1, CBA nu/nu and SCID was profiled using eubacterial -specific PCR-DGGE and quantitative PCR of feces. Animals exhibited strain-specific fecal eubacterial profiles that were highly stable (c. >95% concordance over 26 months for C57. Analyses of mice that had been relocated before and after maturity indicated marked, reproducible changes in fecal consortia and that occurred only in young animals. Implantation of a female BDF1 mouse with genetically distinct (C57 and Agoutie embryos produced highly similar GTM profiles (c. 95% concordance between mother and offspring, regardless of offspring strain, which was also reflected in urinary metabolite profiles. Marked institution-specific GTM profiles were apparent in C3H mice raised in two different research institutions.Strain-specific data were suggestive of genetic determination of the composition and activities of intestinal symbiotic consortia. However, relocation studies and uterine implantation demonstrated the dominance of environmental influences on the GTM. This was manifested in large variations between isogenic adult mice reared in different research institutions.

  19. Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the EPIC-Oxford cohort.

    Science.gov (United States)

    Schmidt, Julie A; Rinaldi, Sabina; Ferrari, Pietro; Carayol, Marion; Achaintre, David; Scalbert, Augustin; Cross, Amanda J; Gunter, Marc J; Fensom, Georgina K; Appleby, Paul N; Key, Timothy J; Travis, Ruth C

    2015-12-01

    Human metabolism is influenced by dietary factors and lifestyle, environmental, and genetic factors; thus, men who exclude some or all animal products from their diet might have different metabolic profiles than meat eaters. We aimed to investigate differences in concentrations of 118 circulating metabolites, including acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexose, and sphingolipids related to lipid, protein, and carbohydrate metabolism between male meat eaters, fish eaters, vegetarians, and vegans from the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. In this cross-sectional study, concentrations of metabolites were measured by mass spectrometry in plasma from 379 men categorized according to their diet group. Differences in mean metabolite concentrations across diet groups were tested by using ANOVA, and a false discovery rate-controlling procedure was used to account for multiple testing. Principal component analysis was used to investigate patterns in metabolic profiles. Concentrations of 79% of metabolites differed significantly by diet group. In the vast majority of these cases, vegans had the lowest concentration, whereas meat eaters most often had the highest concentrations of the acylcarnitines, glycerophospholipids, and sphingolipids, and fish eaters or vegetarians most often had the highest concentrations of the amino acids and a biogenic amine. A clear separation between patterns in the metabolic profiles of the 4 diet groups was seen, with vegans being noticeably different from the other groups because of lower concentrations of some glycerophospholipids and sphingolipids. Metabolic profiles in plasma could effectively differentiate between men from different habitual diet groups, especially vegan men compared with men who consume animal products. The difference in metabolic profiles was mainly explained by the lower concentrations of glycerophospholipids and sphingolipids in vegans.

  20. Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the EPIC-Oxford cohort12

    Science.gov (United States)

    Schmidt, Julie A; Rinaldi, Sabina; Ferrari, Pietro; Carayol, Marion; Achaintre, David; Scalbert, Augustin; Cross, Amanda J; Gunter, Marc J; Fensom, Georgina K; Appleby, Paul N; Key, Timothy J; Travis, Ruth C

    2015-01-01

    Background: Human metabolism is influenced by dietary factors and lifestyle, environmental, and genetic factors; thus, men who exclude some or all animal products from their diet might have different metabolic profiles than meat eaters. Objective: We aimed to investigate differences in concentrations of 118 circulating metabolites, including acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexose, and sphingolipids related to lipid, protein, and carbohydrate metabolism between male meat eaters, fish eaters, vegetarians, and vegans from the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. Design: In this cross-sectional study, concentrations of metabolites were measured by mass spectrometry in plasma from 379 men categorized according to their diet group. Differences in mean metabolite concentrations across diet groups were tested by using ANOVA, and a false discovery rate–controlling procedure was used to account for multiple testing. Principal component analysis was used to investigate patterns in metabolic profiles. Results: Concentrations of 79% of metabolites differed significantly by diet group. In the vast majority of these cases, vegans had the lowest concentration, whereas meat eaters most often had the highest concentrations of the acylcarnitines, glycerophospholipids, and sphingolipids, and fish eaters or vegetarians most often had the highest concentrations of the amino acids and a biogenic amine. A clear separation between patterns in the metabolic profiles of the 4 diet groups was seen, with vegans being noticeably different from the other groups because of lower concentrations of some glycerophospholipids and sphingolipids. Conclusions: Metabolic profiles in plasma could effectively differentiate between men from different habitual diet groups, especially vegan men compared with men who consume animal products. The difference in metabolic profiles was mainly explained by the lower concentrations of

  1. Effect of opium on glucose metabolism and lipid profiles in rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Sadeghian, Saeed; Boroumand, Mohammad Ali; Sotoudeh-Anvari, Maryam; Rabbani, Shahram; Sheikhfathollahi, Mahmood; Abbasi, Ali

    2009-01-01

    This experimental study was performed to determine the impact of opium use on serum lipid profile and glucose metabolism in rats with streptozotocin-induced diabetes. To determine the effect of opium, 20 male rats were divided into control (n = 10) and opium-treated (n = 10) groups. After diabetes induction, the animals were investigated for daily glucose measurements for 35 days. Serum lipid profile and haemoglobin A1c (HbA(1c)) were assayed at the baseline (before induction of diabetes) and at 35-day follow-up. The glycaemia levels in the rats treated with opium were similar to the levels measured in the control rats (544.8 +/- 62.2 mg/dl v. 524.6 +/- 50.0 mg/dl, P = 0.434). In addition, there was no difference between the opium-treated rats and control rats in HbA(1c) (6.5 +/- 0.5% v. 6.6 +/- 0.2%, P = 0.714). Compared to the control rats, the serum total cholesterol, high density lipoprotein (HDL), triglyceride and lipoprotein (a) in the test animals were similar. Opium use has no significant effect on glucose metabolism and serum lipid profile in rats with induced diabetes.

  2. Protocol for quality control in metabolic profiling of biological fluids by U(H)PLC-MS.

    Science.gov (United States)

    Gika, Helen G; Zisi, Chrysostomi; Theodoridis, Georgios; Wilson, Ian D

    2016-01-01

    The process of untargeted metabolic profiling/phenotyping of complex biological matrices, i.e., biological fluids such as blood plasma/serum, saliva, bile, and tissue extracts, provides the analyst with a wide range of challenges. Not the least of these challenges is demonstrating that the acquired data are of "good" quality and provide the basis for more detailed multivariate, and other, statistical analysis necessary to detect, and identify, potential biomarkers that might provide insight into the process under study. Here straightforward and pragmatic "quality control (QC)" procedures are described that allow investigators to monitor the analytical processes employed for global, untargeted, metabolic profiling. The use of this methodology is illustrated with an example from the analysis of human urine where an excel spreadsheet of the preprocessed LC-MS output is provided with embedded macros, calculations and visualization plots that can be used to explore the data. Whilst the use of these procedures is exemplified on human urine samples, this protocol is generally applicable to metabonomic/metabolomic profiling of biofluids, tissue and cell extracts from many sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. GC-MS methods for metabolic profiling of microbial fermentation products of dietary polyphenols in human and in vitro intervention studies

    NARCIS (Netherlands)

    Grün, C.H.; van Dorsten, F.A.; Jacobs, D.M.; Le Belleguic, M.; van Velzen, E.J.J.; Bingham, M.O.; Janssen, H.-G.; van Duynhoven, J.P.M.

    2008-01-01

    Flavonoids, a subclass of polyphenols, are major constituents of many plant-based foods and beverages, including tea, wine and chocolate. Epidemiological studies have shown that a flavonoid-rich diet is associated with reduced risk of cardiovascular diseases. The majority of the flavonoids survive

  4. Plasma, urine and ligament tissue metabolite profiling reveals potential biomarkers of ankylosing spondylitis using NMR-based metabolic profiles.

    Science.gov (United States)

    Wang, Wei; Yang, Gen-Jin; Zhang, Ju; Chen, Chen; Jia, Zhen-Yu; Li, Jia; Xu, Wei-Dong

    2016-10-22

    Ankylosing spondylitis (AS) is an autoimmune rheumatic disease mostly affecting the axial skeleton. Currently, anti-tumour necrosis factor α (anti-TNF-α) represents an effective treatment for AS that may delay the progression of the disease and alleviate the symptoms if the diagnosis can be made early. Unfortunately, effective diagnostic biomarkers for AS are still lacking; therefore, most patients with AS do not receive timely and effective treatment. The intent of this study was to determine several key metabolites as potential biomarkers of AS using metabolomic methods to facilitate the early diagnosis of AS. First, we collected samples of plasma, urine, and ligament tissue around the hip joint from AS and control groups. The samples were examined by nuclear magnetic resonance spectrometry, and multivariate data analysis was performed to find metabolites that differed between the groups. Subsequently, according to the correlation coefficients, variable importance for the projection (VIP) and P values of the metabolites obtained in the multivariate data analysis, the most crucial metabolites were selected as potential biomarkers of AS. Finally, metabolic pathways involving the potential biomarkers were determined using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the metabolic pathway map was drawn. Forty-four patients with AS agreed to provide plasma and urine samples, and 30 provided ligament tissue samples. An equal number of volunteers were recruited for the control group. Multidimensional statistical analysis suggested significant differences between the patients with AS and control subjects, and the models exhibited good discrimination and predictive ability. A total of 20 different metabolites ultimately met the requirements for potential biomarkers. According to KEGG analysis, these marker metabolites were primarily related to fat metabolism, intestinal microbial metabolism, glucose metabolism and choline metabolism pathways, and

  5. Effect of probiotics on metabolic profiles in type 2 diabetes mellitus

    Science.gov (United States)

    Li, Caifeng; Li, Xin; Han, Hongqiu; Cui, Hailong; Peng, Min; Wang, Guolin; Wang, Zhiqiang

    2016-01-01

    Abstract Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease which is imposing heavy burden on global health and economy. Recent studies indicate gut microbiota play important role on the pathogenesis and metabolic disturbance of T2DM. As an effective mean of regulating gut microbiota, probiotics are live micro-organisms that are believed to provide a specific health benefit on the host. Whether probiotic supplementation could improve metabolic profiles by modifying gut microbiota in T2DM or not is still in controversy. The aim of the study is to assess the effect of probiotic supplementation on metabolic profiles in T2DM. We searched PubMed, EMBASE, and Cochrane Library up to 12 April 2016. Two review authors independently assessed study eligibility, extracted data, and evaluated risk of bias of included studies. Data were pooled by using the random-effect model and expressed as standardized mean difference (SMD) with 95% confidence interval (CI). Heterogeneity was assessed and quantified (I2). A total of 12 randomized controlled trials (RCTs) were included. Lipid profiles (n = 508) and fasting blood glucose (FBG) (n = 520) were reported in 9 trials; the homeostasis model of assessment for insulin resistance index (HOMA-IR) (n = 368) and glycosylated hemoglobin (HbA1c) (n = 380) were reported in 6 trials. Probiotics could alleviate FBG (SMD –0.61 mmol/L, 95% CI [–0.92, –0.30], P = 0.0001). Probiotics could increase high-density lipoprotein-cholesterol (HDL-C) (SMD 0.42 mmol/L, 95% CI [0.08, 0.76], P = 0.01). There were no significant differences in low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), HbA1c and HOMA-IR between the treatment group and the control group. Probiotics may improve glycemic control and lipid metabolism in T2DM. Application of probiotic agents might become a new method for glucose management in T2DM. PMID:27368052

  6. Preadipocyte factor-1 is associated with metabolic profile in severe obesity.

    LENUS (Irish Health Repository)

    O'Connell, J

    2011-04-01

    Dysfunctional adipose tissue has been proposed as a key pathological process linking obesity and metabolic disease. Preadipocyte factor-1 (Pref-1) has been shown to inhibit differentiation in adipocyte precursor cells and could thereby play a role in determining adipocyte size, adipose tissue functioning, and metabolic profile in obese individuals.

  7. Metabolic profile and genotoxicity in obese rats exposed to cigarette smoke.

    Science.gov (United States)

    Damasceno, Debora C; Sinzato, Yuri K; Bueno, Aline; Dallaqua, Bruna; Lima, Paula H; Calderon, Iracema M P; Rudge, Marilza V C; Campos, Kleber E

    2013-08-01

    Experimental studies have shown that exposure to cigarette smoke has negative effects on lipid metabolism and oxidative stress status. Cigarette smoke exposure in nonpregnant and pregnant rats causes significant genotoxicity (DNA damage). However, no previous studies have directly evaluated the effects of obesity or the association between obesity and cigarette smoke exposure on genotoxicity. Therefore, the aim of the present investigation was to evaluate DNA damage levels, oxidative stress status and lipid profiles in obese Wistar rats exposed to cigarette smoke. Female rats subcutaneously (s.c.) received a monosodium glutamate solution or vehicle (control) during the neonatal period to induce obesity. The rats were randomly distributed into three experimental groups: control, obese exposed to filtered air, and obese exposed to tobacco cigarette smoke. After a 2-month exposure period, the rats were anesthetized and killed to obtain blood samples for genotoxicity, lipid profile, and oxidative stress status analyses. The obese rats exposed to tobacco cigarette smoke presented higher DNA damage, triglycerides, total cholesterol, free fatty acids, VLDL-c, HDL-c, and LDL-c levels compared to control and obese rats exposed to filtered air. Both obese groups showed reduced SOD activity. These results showed that cigarette smoke enhanced the effects of obesity. In conclusion, the association between obesity and cigarette smoke exposure exacerbated the genotoxicity, negatively impacted the biochemical profile and antioxidant defenses and caused early glucose intolerance. Thus, the changes caused by cigarette smoke exposure can trigger the earlier onset of metabolic disorders associated with obesity, such as diabetes and metabolic syndrome. Copyright © 2012 The Obesity Society.

  8. [Profile of free fatty acids (FFA) in serum of young Colombians with obesity and metabolic syndrome].

    Science.gov (United States)

    Bermudez, J A; Velásquez, C M

    2014-12-01

    Obesity produces greater circulation of free fatty acids (FFA). In adults, the FFA composition changes in states of obesity; in adolescents, the results are contradictory. This study compare the FFA profile of obese youth with and without Metabolic Syndrome (MetS) and explore the association between FFA and metabolic alterations of obesity and MetS. A cross-sectional study with 96 young people between 10 and 18 years old was divided into three groups: 1) obese youth with MetS, 2) obese youth without MetS; and 3) adequate weight (AW), matched according to age, gender, pubertal maturation and socioeconomic stratum. The nutritional status was classified according to the body-mass index (BMI), according to the World Health Organization 2007 (WHO, 2007); the waist circumference (WC), adiposity, lipid profile, highly-sensitive reactive C protein (hsRCP), glucose, insulin and insulin resistance (IR), according to the homeostatic model assessment (HOMA Calculator Version 2.2.2). The FFA serum concentration was determined by gas chromatography. Both obese groups had higher adiposity, inflamation (hsRCP), FFA totals and frequency palmitoleic-16:Jn7, compared to AW. The obese with MetS presented more metabolic alterations, a greater amount of dihomo-γ-linolenic (DHGL-20:3n6) and a 20:3n6/18:2n6 relation, indicative of increased activity of A6 desaturase (D6D). The FFA totals, palmitoleic-l6:1n7, DHGL-20:3n6, D6D activity and hsRCP significantly correlated with variables of adiposity, IR and triglicerides. The results in obese with MetS corroborate the association among central obesity, inflammation and increased lipolysis in visceral adipose tissue and metabolic alterations.

  9. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork

    Directory of Open Access Journals (Sweden)

    Samman S

    2014-06-01

    Full Text Available Samir Samman,1 Ben Crossett,2 Miles Somers,1 Kirstine J Bell,1 Nicole T Lai,1,3 David R Sullivan,3 Peter Petocz4 1Discipline of Nutrition and Metabolism, 2Discipline of Proteomics and Biotechnology, School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia; 3Department of Clinical Biochemistry, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 4Department of Statistics, Macquarie University, Sydney, NSW, Australia Abstract: Amino acid (AA status is determined by factors including nutrition, metabolic rate, and interactions between the metabolism of AA, carbohydrates, and lipids. Analysis of the plasma AA profile, together with markers of glucose and lipid metabolism, will shed light on metabolic regulation. The objectives of this study were to investigate the acute responses to the consumption of meals containing either pork (PM or chicken (CM, and to identify relationships between plasma AA and markers of glycemic and lipemic control. A secondary aim was to explore AA predictors of plasma zinc concentrations. Ten healthy adults participated in a postprandial study on two separate occasions. In a randomized cross-over design, participants consumed PM or CM. The concentrations of 21 AA, glucose, insulin, triglycerides, nonesterified fatty acids, and zinc were determined over 5 hours postprandially. The meal composition did not influence glucose, insulin, triglyceride, nonesterified fatty acid, or zinc concentrations. Plasma histidine was higher following the consumption of PM (P=0.014, with consistently higher changes observed after 60 minutes (P<0.001. Greater percentage increases were noted at limited time points for valine and leucine + isoleucine in those who consumed CM compared to PM. In linear regression, some AAs emerged as predictors of the metabolic responses, irrespective of the meal that was consumed. The present study demonstrates that a single meal of PM or CM produces a differential profile of AA in the

  10. Metabolite Profiling of Wheat Seedlings Induced by Chitosan: Revelation of the Enhanced Carbon and Nitrogen Metabolism

    Directory of Open Access Journals (Sweden)

    Xiaoqian Zhang

    2017-11-01

    Full Text Available Chitosan plays an important role in regulating growth and eliciting defense in many plant species. However, the exact metabolic response of plants to chitosan is still not clear. The present study performed an integrative analysis of metabolite profiles in chitosan-treated wheat seedlings and further investigated the response of enzyme activities and transcript expression related to the primary carbon (C and nitrogen (N metabolism. Metabolite profiling revealed that chitosan could induce significant difference of organic acids, sugars and amino acids in leaves of wheat seedlings. A higher accumulation of sucrose content was observed after chitosan treatment, accompanied by an increase in sucrose phosphate synthase (SPS and fructose 1, 6-2 phosphatase (FBPase activities as well as an up-regulation of relative expression level. Several metabolites associated with tricarboxylic acid (TCA cycle, including oxaloacetate and malate, were also improved along with an elevation of phosphoenolpyruvate carboxylase (PEPC and pyruvate dehydrogenase (PDH activities. On the other hand, chitosan could also enhance the N reduction and N assimilation. Glutamate, aspartate and some other amino acids were higher in chitosan-treated plants, accompanied by the activation of key enzymes of N reduction and glutamine synthetase/glutamate synthase (GS/GOGAT cycle. Together, these results suggested a pleiotropic modulation of carbon and nitrogen metabolism in wheat seedlings induced by chitosan and provided a significant insight into the metabolic mechanism of plants in response to chitosan for the first time, and it would give a basic guidance for the future application of chitosan in agriculture.

  11. Correlation of the lung microbiota with metabolic profiles in bronchoalveolar lavage fluid in HIV infection.

    Science.gov (United States)

    Cribbs, Sushma K; Uppal, Karan; Li, Shuzhao; Jones, Dean P; Huang, Laurence; Tipton, Laura; Fitch, Adam; Greenblatt, Ruth M; Kingsley, Lawrence; Guidot, David M; Ghedin, Elodie; Morris, Alison

    2016-01-20

    While 16S ribosomal RNA (rRNA) sequencing has been used to characterize the lung's bacterial microbiota in human immunodeficiency virus (HIV)-infected individuals, taxonomic studies provide limited information on bacterial function and impact on the host. Metabolic profiles can provide functional information on host-microbe interactions in the lungs. We investigated the relationship between the respiratory microbiota and metabolic profiles in the bronchoalveolar lavage fluid of HIV-infected and HIV-uninfected outpatients. Targeted sequencing of the 16S rRNA gene was used to analyze the bacterial community structure and liquid chromatography-high-resolution mass spectrometry was used to detect features in bronchoalveolar lavage fluid. Global integration of all metabolic features with microbial species was done using sparse partial least squares regression. Thirty-nine HIV-infected subjects and 20 HIV-uninfected controls without acute respiratory symptoms were enrolled. Twelve mass-to-charge ratio (m/z) features from C18 analysis were significantly different between HIV-infected individuals and controls (false discovery rate (FDR) = 0.2); another 79 features were identified by network analysis. Further metabolite analysis demonstrated that four features were significantly overrepresented in the bronchoalveolar lavage (BAL) fluid of HIV-infected individuals compared to HIV-uninfected, including cystine, two complex carbohydrates, and 3,5-dibromo-L-tyrosine. There were 231 m/z features significantly associated with peripheral blood CD4 cell counts identified using sparse partial least squares regression (sPLS) at a variable importance on projection (VIP) threshold of 2. Twenty-five percent of these 91 m/z features were associated with various microbial species. Bacteria from families Caulobacteraceae, Staphylococcaceae, Nocardioidaceae, and genus Streptococcus were associated with the greatest number of features. Glycerophospholipid and lineolate pathways correlated

  12. Obesity, metabolic profile, and inhibition failure: Young women under scrutiny.

    Science.gov (United States)

    Catoira, N P; Tapajóz, F; Allegri, R F; Lajfer, J; Rodríguez Cámara, M J; Iturry, M L; Castaño, G O

    2016-04-01

    The prevalence of obesity, as well as evidence about this pathology as a risk factor for cognitive decline and dementia in the elderly, is increasing worldwide. Executive functions have been found to be compromised in most studies, although the specific results are dissimilar. Obese young women constitute an interesting study and intervention group, having been found to be unaffected by age and hormonal negative effects on cognition and considering that their health problems affect not only themselves but their families and offspring. The objective of the present study was to compare the executive performance of obese young women with that of a healthy control group. A cross-sectional study was done among premenopausal women from a public hospital in Buenos Aires. The sample comprised 113 participants (32 healthy controls and 81 obese women), who were evaluated for depressive and anxiety symptoms (Beck Depression Inventory-II and State-Trait Anxiety Inventory) and executive functioning (Trail-Making Test B, Stroop Color and Word Test, Wisconsin Card Sorting Test, and verbal fluency test). Statistical analysis was done by using the SPSS version 20.0 software. Among executive functions, a significant difference was found between groups in inhibition (pobese group, there was a negative slightly correlation between this cognitive test and 2h post-load glucose level. Inhibition was decreased in our obese young women group, and glucose/lipid metabolism may be involved in this association. The cognitive impairment is comparable with that described in addictive conditions. Our conclusions support the concept of multidisciplinary management of obese patients from the time of diagnosis. Detecting and understanding cognitive dysfunction in this population is essential to providing appropriate treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Targeted and Untargeted Metabolic Profiling of Wild Grassland Plants identifies Antibiotic and Anthelmintic Compounds Targeting Pathogen Physiology, Metabolism and Reproduction.

    Science.gov (United States)

    French, Katherine E; Harvey, Joe; McCullagh, James S O

    2018-01-26

    Plants traditionally used by farmers to manage livestock ailments could reduce reliance on synthetic antibiotics and anthelmintics but in many cases their chemical composition is unknown. As a case study, we analyzed the metabolite profiles of 17 plant species and 45 biomass samples from agricultural grasslands in England using targeted and untargeted metabolite profiling by liquid-chromatography mass spectrometry. We identified a range of plant secondary metabolites, including 32 compounds with known antimicrobial/anthelmintic properties which varied considerably across the different plant samples. These compounds have been shown previously to target multiple aspects of pathogen physiology and metabolism in vitro and in vivo, including inhibition of quorum sensing in bacteria and egg viability in nematodes. The most abundant bioactive compounds were benzoic acid, myricetin, p-coumaric acid, rhamnetin, and rosmarinic acid. Four wild plants (Filipendula ulmaria (L.) Maxim., Prunella vulgaris L., Centuarea nigra L., and Rhinanthus minor L.) and two forage legumes (Medicago sativa L., Trifolium hybridium L.) contained high levels of these compounds. Forage samples from native high-diversity grasslands had a greater abundance of medicinal compounds than samples from agriculturally improved grasslands. Incorporating plants with antibiotic/anthelmintic compounds into livestock feeds may reduce global drug-resistance and preserve the efficacy of last-resort drugs.

  14. Neonatal diethylstilbestrol exposure alters the metabolic profile of uterine epithelial cells

    Directory of Open Access Journals (Sweden)

    Yan Yin

    2012-11-01

    Developmental exposure to diethylstilbestrol (DES causes reproductive tract malformations, affects fertility and increases the risk of clear cell carcinoma of the vagina and cervix in humans. Previous studies on a well-established mouse DES model demonstrated that it recapitulates many features of the human syndrome, yet the underlying molecular mechanism is far from clear. Using the neonatal DES mouse model, the present study uses global transcript profiling to systematically explore early gene expression changes in individual epithelial and mesenchymal compartments of the neonatal uterus. Over 900 genes show differential expression upon DES treatment in either one or both tissue layers. Interestingly, multiple components of peroxisome proliferator-activated receptor-γ (PPARγ-mediated adipogenesis and lipid metabolism, including PPARγ itself, are targets of DES in the neonatal uterus. Transmission electron microscopy and Oil-Red O staining further demonstrate a dramatic increase in lipid deposition in uterine epithelial cells upon DES exposure. Neonatal DES exposure also perturbs glucose homeostasis in the uterine epithelium. Some of these neonatal DES-induced metabolic changes appear to last into adulthood, suggesting a permanent effect of DES on energy metabolism in uterine epithelial cells. This study extends the list of biological processes that can be regulated by estrogen or DES, and provides a novel perspective for endocrine disruptor-induced reproductive abnormalities.

  15. Metabolic profiling of the protozoan parasite Entamoeba invadens revealed activation of unpredicted pathway during encystation.

    Directory of Open Access Journals (Sweden)

    Ghulam Jeelani

    Full Text Available Encystation, which is cellular differentiation from the motile, proliferative, labile trophozoite form to the dormant, resistant cyst form, is a crucial process found in parasitic and free-living protozoa such as Entamoeba, Giardia, Acanthamoeba, and Balamuthia. Since encystation is an essential process to deal with the adverse external environmental changes during the life cycle, and often integral to the transmission of the diseases, biochemical understanding of the process potentially provides useful measures against the infections caused by this group of protozoa. In this study, we investigated metabolic and transcriptomic changes that occur during encystation in Entamoeba invadens, the reptilian sibling of mammal-infecting E. histolytica, using capillary electrophoresis-tandem mass spectrometry-based metabolite profiling and DNA microarray-based expression profiling. As the encystation progressed, the levels of majority of metabolites involved in glycolysis and nucleotides drastically decreased, indicating energy generation is ceased. Furthermore, the flux of glycolysis was redirected toward chitin wall biosynthesis. We found remarkable temporal increases in biogenic amines such as isoamylamine, isobutylamine, and cadaverine, during the early period of encystation, when the trophozoites form large multicellular aggregates (precyst. We also found remarkable induction of γ-aminobutyric acid (GABA during encystation. This study has unveiled for the first time the dynamics of the transcriptional and metabolic regulatory networks during encystation, and should help in better understanding of the process in pathogenic eukaryotes, and further development of measures controlling infections they cause.

  16. Metabolic profiling as a tool for prioritizing antimicrobial compounds

    NARCIS (Netherlands)

    Wu, Changsheng; Choi, Young Hae; van Wezel, Gilles P.

    Metabolomics is an analytical technique that allows scientists to globally profile low molecular weight metabolites between samples in a medium- or high throughput environment. Different biological samples are statistically analyzed and correlated to a bioactivity of interest, highlighting

  17. Inborn errors of metabolism revealed by organic acid profile analysis ...

    African Journals Online (AJOL)

    MS) was performed to all patients. Results: 22(18.8 % of the total) cases were diagnosed with different types of aminoacidopathies or organic acidurias. The disease profile showed increased lactate in 12 cases (54 %), glutaric aciduria type I ...

  18. Metabolic profile and psychological variables after bariatric surgery: association with weight outcomes.

    Science.gov (United States)

    Brandão, Isabel; Ramalho, Sofia; Pinto-Bastos, Ana; Arrojado, Filipa; Faria, Gil; Calhau, Conceição; Coelho, Rui; Conceição, Eva

    2015-12-01

    This study aims to examine associations between metabolic profile and psychological variables in post-bariatric patients and to investigate if metabolic and psychological variables, namely high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), glycated hemoglobin (HbA 1c), impulsivity, psychological distress, depressive and eating disorder symptoms are independently associated with percentage of excess weight loss (%EWL) after bariatric surgery. One hundred and fifty bariatric patients (BMI = 33.04 ± 5.8 kg/m(2)) who underwent to bariatric surgery for more than 28.63 ± 4.9 months were assessed through a clinical interview, a set of self-report measures and venous blood samples. Pearson's correlations were used to assess correlations between %EWL, metabolic and psychological variables. Multiple linear regression was conducted to investigate which metabolic and psychological variables were independently associated with %EWL, while controlling for type of surgery. Higher TG blood levels were associated with higher disordered eating, psychological distress and depression scores. HDL-C was associated with higher depression scores. Both metabolic and psychological variables were associated with %EWL. Regression analyses showed that, controlling for type of surgery, higher % EWL is significantly and independently associated with less disordered eating symptoms and lower TG and HbA_1c blood concentrations (R (2) aj = 0.383, F (4, 82) = 14.34, p psychological variables, particularly concerning TG blood levels, disordered eating and psychological distress/depression was found. Only higher levels of disordered eating, TG and HbA_1c showed and independent correlation with less weight loss. Targeting maladaptive eating behaviors may be a reasonable strategy to avoid weight regain and optimize health status post-operatively.

  19. The metabolic profile of a rat model of chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Yohei Tanada

    2017-05-01

    Full Text Available Background The kidney is always subjected to high metabolic demand. The aim of this study was to characterize metabolic profiles of a rat model of chronic kidney disease (CKD with cardiorenal syndrome (CRS induced by prolonged hypertension. Methods We used inbred male Dahl salt-sensitive (DS rats fed an 8% NaCl diet from six weeks of age (high-salt; HS group or a 0.3% NaCl diet as controls (low-salt; LS group. We analyzed function, pathology, metabolome, and the gene expression related to energy metabolism of the kidney. Results DS rats with a high-salt diet showed hypertension at 11 weeks of age and elevated serum levels of creatinine and blood urea nitrogen with heart failure at 21 weeks of age. The fibrotic area in the kidneys increased at 21 weeks of age. In addition, gene expression related to mitochondrial function was largely decreased. The levels of citrate and isocitrate increased and the gene expression of alpha-ketoglutaratedehydrogenase and succinyl-CoA synthetase decreased; these are enzymes that metabolize citrate and isocitrate, respectively. In addition, the levels of succinate and acetyl Co-A, both of which are metabolites of the tricarboxylic acid (TCA cycle, decreased. Conclusions DS rats fed a high-salt diet were deemed a suitable model of CKD with CRS. Gene expression and metabolites related to energy metabolism and mitochondria in the kidney significantly changed in DS rats with hypertension in accordance with the progression of renal injury.

  20. Maternal chromium restriction modulates miRNA profiles related to lipid metabolism disorder in mice offspring.

    Science.gov (United States)

    Zhang, Qian; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-08-01

    Increasing evidence shows that maternal nutrition status has a vital effect on offspring susceptibility to obesity. MicroRNAs are related to lipid metabolism processes. This study aimed to evaluate whether maternal chromium restriction could affect miRNA expression involved in lipid metabolism in offspring. Weaning C57BL/6J mice born from mothers fed with normal control diet or chromium-restricted diet were fed for 13 weeks. The adipose miRNA expression profile was analyzed by miRNA array analysis. At 16 weeks old, pups from dams fed with chromium-restricted diet exhibit higher body weight, fat weight, and serum TC, TG levels. Six miRNAs were identified as upregulated in the RC group compared with the CC group, whereas eight miRNAs were lower than the threshold level set in the RC group. In the validated target genes of these differentially expressed miRNA, the MAPK signaling pathway serves an important role in the influence of early life chromium-restricted diet on lipid metabolism through miRNA. Long-term programming on various specific miRNA and MAPK signaling pathway may be involved in maternal chromium restriction in the adipose of female offspring. Impact statement For the first time, our study demonstrates important miRNA differences in the effect of maternal chromium restriction in offspring. These miRNAs may serve as "bridges" between the mother and the offspring by affecting the MAPK pathway.

  1. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions

    DEFF Research Database (Denmark)

    Østrup, Olga; Olbricht, Gayla; Østrup, Esben

    2013-01-01

    a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv) and in vitro produced (ivt) porcine embryos before (2-cell stage) and after (late 4-cell...... stage) EGA and determine major metabolic changes that regulate totipotency. The period before EGA was dominated by transcripts responsible for cell cycle regulation, mitosis, RNA translation and processing (including ribosomal machinery), protein catabolism, and chromatin remodelling. Following EGA...... an increase in the abundance of transcripts involved in transcription, translation, DNA metabolism, histone and chromatin modification, as well as protein catabolism was detected. The further analysis of members of overlapping GO terms revealed that despite that comparable cellular processes are taking place...

  2. Metabolic risk in schoolchildren is associated with low levels of cardiorespiratory fitness, obesity, and parents’ nutritional profile>

    Directory of Open Access Journals (Sweden)

    Pâmela Ferreira Todendi

    2016-08-01

    Full Text Available Abstract Objective Verify the association between metabolic risk profile in students with different levels of cardiorespiratory fitness and body mass index, as well as the nutritional status of their parents. Methods A cross-sectional study comprising 1.254 schoolchildren aged between seven and 17 years. The metabolic risk profile was calculated by summing the standardized values of high density lipoproteins and low density lipoproteins, triglycerides, glucose and systolic blood pressure. The parents’ nutritional status was evaluated by self-reported weight and height data, for body mass index calculating. The body mass index of schoolchildren was classified as underweight/normal weight and overweight/obesity. The cardiorespiratory fitness was assessed by 9-minute running/walk test, being categorized as fit (good levels and unfit (low levels. Data were analyzed using prevalence ratio values (PR. Results The data indicates a higher occurrence of developing metabolic risk in schoolchildren whose mother is obese (PR: 1.50; 95% CI: 1.01, 2.23, and even higher for those whose father and mother are obese (PR: 2, 79, 95% CI: 1.41; 5.51. Students who have low levels of cardiorespiratory fitness and overweight/obesity have higher occurrence of presenting metabolic risk profile (PR: 5.25; 95% CI: 3.31; 8.16. Conclusion the occurrence of developing metabolic risk in schoolchildren increase when they have low levels of cardiorespiratory fitness and overweight/obesity, and the presence of parental obesity.

  3. Effects of coronatine elicitation on growth and metabolic profiles of Lemna paucicostata culture.

    Directory of Open Access Journals (Sweden)

    Jin-Young Kim

    Full Text Available In this study, the effects of coronatine treatment on the growth, comprehensive metabolic profiles, and productivity of bioactive compounds, including phenolics and phytosterols, in whole plant cultures of Lemna paucicostata were investigated using gas chromatography-mass spectrometry (GC-MS coupled with multivariate statistical analysis. To determine the optimal timing of coronatine elicitation, coronatine was added on days 0, 23, and 28 after inoculation. The total growth of L. paucicostata was not significantly different between the coronatine treated groups and the control. The coronatine treatment in L. paucicostata induced increases in the content of hydroxycinnamic acids, such as caffeic acid, isoferulic acid, ρ-coumaric acid, sinapic acid, and phytosterols, such as campesterol and β-sitosterol. The productivity of these useful metabolites was highest when coronatine was added on day 0 and harvested on day 32. These results suggest that coronatine treatment on day 0 activates the phenolic and phytosterol biosynthetic pathways in L. paucicostata to a greater extent than in the control. To the best of our knowledge, this is the first report to investigate the effects of coronatine on the alteration of metabolism in L. paucicostata based on GC-MS profiling. The results of this research provide a foundation for designing strategies for enhanced production of useful metabolites for pharmaceutical and nutraceutical industries by cultivation of L. paucicostata.

  4. Effects of phototherapy plus physical training on metabolic profile and quality of life in postmenopausal women.

    Science.gov (United States)

    Paolillo, Fernanda Rossi; Borghi-Silva, Audrey; Arena, Ross; Parizotto, Nivaldo Antonio; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2017-10-01

    A cluster of metabolic abnormalities are markedly higher among postmenopausal women. The present study evaluated the effects of infrared light emitting diode (LED) during treadmill training on multiple metabolic markers, body fat, dietary habits and quality of life in postmenopausal women. Forty-five postmenopausal women aged 50-60 years were randomly assigned to one of three groups, and of these, 30 women successfully completed the full study. The three groups were as follows: (i) the LED group, which performed treadmill training associated with phototherapy (n = 10); (ii) the exercise group, which carried out treadmill training only (n = 10); and (iii) the sedentary group, which neither performed physical training nor underwent phototherapy (n = 10). Training was performed over a period of six months, twice a week for 45 min per session at 85-90% of maximal heart rate (HR max ), which was obtained during a progressive exercise testing. The average HR and velocity during treadmill training were 144 ± 9 bpm and 5.8 ± 1.3 km/h for both trained groups. The irradiation parameters were 100 mW, 39 mW/cm 2 and 108 J/cm 2 for 45 min. Anthropometric data, skinfolds thickness, biochemical exams (lipid profile, glucose and insulin levels), dietary habits and quality of life were evaluated. The sum of skinfolds significantly improved in the exercise and sedentary groups (p LED group only, with a significant reduction in the total WHQ score (p phototherapy may improve the metabolic profile. In addition, phototherapy together with treadmill training prevented an increase in subcutaneous fat and facilitated an improved quality of life in postmenopausal women.

  5. Enantioselective Effects of Metalaxyl Enantiomers on Breast Cancer Cells Metabolic Profiling Using HPLC-QTOF-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2017-01-01

    Full Text Available In this study, an integrative high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF based metabolomics approach was performed to evaluate the enantioselective metabolic perturbations in MCF-7 cells after treatment with R-metalaxyl and S-metalaxyl, respectively. Untargeted metabolomics profile, multivariate pattern recognition, metabolites identification, and pathway analysis were determined after metalaxyl enantiomer exposure. Principal component analysis (PCA and partitial least-squares discriminant analysis (PLS-DA directly reflected the enantioselective metabolic perturbations induced by metalaxyl enantiomers. On the basis of multivariate statistical results, a total of 49 metabolites including carbohydrates, amino acids, nucleotides, fatty acids, organic acids, phospholipids, indoles, derivatives, etc. were found to be the most significantly changed metabolites and metabolic fluctuations caused by the same concentration of R-metalaxyl and S-metalaxyl were enantioselective. Pathway analysis indicated that R-metalaxyl and S-metalaxyl mainly affected the 7 and 10 pathways in MCF-7 cells, respectively, implying the perturbed pathways induced by metalaxyl enantiomers were also enantioselective. Furthermore, the significantly perturbed metabolic pathways were highly related to energy metabolism, amino acid metabolism, lipid metabolism, and antioxidant defense. Such results provide more specific insights into the enantioselective metabolic effects of chiral pesticides in breast cancer progression, reveal the underlying mechanisms, and provide available data for the health risk assessments of chiral environmental pollutants at the molecular level.

  6. Enantioselective Effects of Metalaxyl Enantiomers on Breast Cancer Cells Metabolic Profiling Using HPLC-QTOF-Based Metabolomics.

    Science.gov (United States)

    Zhang, Ping; Zhu, Wentao; Wang, Dezhen; Yan, Jin; Wang, Yao; He, Lin

    2017-01-12

    In this study, an integrative high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF) based metabolomics approach was performed to evaluate the enantioselective metabolic perturbations in MCF-7 cells after treatment with R -metalaxyl and S -metalaxyl, respectively. Untargeted metabolomics profile, multivariate pattern recognition, metabolites identification, and pathway analysis were determined after metalaxyl enantiomer exposure. Principal component analysis (PCA) and partitial least-squares discriminant analysis (PLS-DA) directly reflected the enantioselective metabolic perturbations induced by metalaxyl enantiomers. On the basis of multivariate statistical results, a total of 49 metabolites including carbohydrates, amino acids, nucleotides, fatty acids, organic acids, phospholipids, indoles, derivatives, etc. were found to be the most significantly changed metabolites and metabolic fluctuations caused by the same concentration of R -metalaxyl and S -metalaxyl were enantioselective. Pathway analysis indicated that R -metalaxyl and S -metalaxyl mainly affected the 7 and 10 pathways in MCF-7 cells, respectively, implying the perturbed pathways induced by metalaxyl enantiomers were also enantioselective. Furthermore, the significantly perturbed metabolic pathways were highly related to energy metabolism, amino acid metabolism, lipid metabolism, and antioxidant defense. Such results provide more specific insights into the enantioselective metabolic effects of chiral pesticides in breast cancer progression, reveal the underlying mechanisms, and provide available data for the health risk assessments of chiral environmental pollutants at the molecular level.

  7. Obese Patients With a Binge Eating Disorder Have an Unfavorable Metabolic and Inflammatory Profile.

    Science.gov (United States)

    Succurro, Elena; Segura-Garcia, Cristina; Ruffo, Mariafrancesca; Caroleo, Mariarita; Rania, Marianna; Aloi, Matteo; De Fazio, Pasquale; Sesti, Giorgio; Arturi, Franco

    2015-12-01

    To evaluate whether obese patients with a binge eating disorder (BED) have an altered metabolic and inflammatory profile related to their eating behaviors compared with non-BED obese.A total of 115 White obese patients consecutively recruited underwent biochemical, anthropometrical evaluation, and a 75-g oral glucose tolerance test. Patients answered the Binge Eating Scale and were interviewed by a psychiatrist. The patients were subsequently divided into 2 groups according to diagnosis: non-BED obese (n = 85) and BED obese (n = 30). Structural equation modeling analysis was performed to elucidate the relation between eating behaviors and metabolic and inflammatory profile.BED obese exhibited significantly higher percentages of altered eating behaviors, body mass index (P obese. Binge eating disorder obese also had a worse metabolic and inflammatory profile, exhibiting significantly lower high-density lipoprotein cholesterol levels (P obese. All differences remained significant after adjusting for body mass index. No significant differences in fasting plasma glucose or 2-hour postchallenge plasma glucose were found. Structural equation modeling analysis confirmed the relation between the altered eating behaviors of BED and the metabolic and inflammatory profile.Binge eating disorder obese exhibited an unfavorable metabolic and inflammatory profile, which is related to their characteristic eating habits.

  8. Body composition and metabolic profile in adults with vitamin D deficiency

    Directory of Open Access Journals (Sweden)

    Liane Murari ROCHA

    Full Text Available ABSTRACT Objective: To investigate the body composition and metabolic profile in individuals in terms of different concentrations of serum vitamin D, ranging from deficiency to sufficiency. Methods: A cross-sectional study of 106 adults of both genders, who were divided into three groups according to vitamin D levels: deficiency: <20ng/mL; insufficiency: 20-29.9ng/mL; and sufficiency: 30-100ng/mL. Anthropometric evaluation included weight, height, and body circumferences. Fat mass and lean mass were assessed using the Tetrapolar bioelectrical impedance method. Clinical and biochemical evaluations were also carried out. Insulin resistance was estimated using the Homeostasis Model Assessment Insulin index. Results: The analysis showed that the main alterations in individuals in the vitamin D deficiency group were higher triglycerides, very low density lipoprotein - cholesterol, fasting blood glucose, insulin, glycated hemoglobin, body mass index, body fat percentage, lean mass percentage, waist circumference, and Homeostasis Model Assessment Insulin than those of the vitamin D sufficient group (p<0.05. Conclusion: It was found that vitamin D deficiency causes important body composition and metabolic changes, which may lead to diseases such as diabetes Mellitus and metabolic syndrome.

  9. Metabolic profiling for detection of Staphylococcus aureus infection and antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Henrik Antti

    Full Text Available Due to slow diagnostics, physicians must optimize antibiotic therapies based on clinical evaluation of patients without specific information on causative bacteria. We have investigated metabolomic analysis of blood for the detection of acute bacterial infection and early differentiation between ineffective and effective antibiotic treatment. A vital and timely therapeutic difficulty was thereby addressed: the ability to rapidly detect treatment failures because of antibiotic-resistant bacteria. Methicillin-resistant Staphylococcus aureus (MRSA and methicillin-sensitive S. aureus (MSSA were used in vitro and for infecting mice, while natural MSSA infection was studied in humans. Samples of bacterial growth media, the blood of infected mice and of humans were analyzed with combined Gas Chromatography/Mass Spectrometry. Multivariate data analysis was used to reveal the metabolic profiles of infection and the responses to different antibiotic treatments. In vitro experiments resulted in the detection of 256 putative metabolites and mice infection experiments resulted in the detection of 474 putative metabolites. Importantly, ineffective and effective antibiotic treatments were differentiated already two hours after treatment start in both experimental systems. That is, the ineffective treatment of MRSA using cloxacillin and untreated controls produced one metabolic profile while all effective treatment combinations using cloxacillin or vancomycin for MSSA or MRSA produced another profile. For further evaluation of the concept, blood samples of humans admitted to intensive care with severe sepsis were analyzed. One hundred thirty-three putative metabolites differentiated severe MSSA sepsis (n = 6 from severe Escherichia coli sepsis (n = 10 and identified treatment responses over time. Combined analysis of human, in vitro, and mice samples identified 25 metabolites indicative of effective treatment of S. aureus sepsis. Taken together, this

  10. Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum

    Directory of Open Access Journals (Sweden)

    Beisser Daniela

    2012-06-01

    Full Text Available Abstract Background Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade Milnesium tardigradum were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress. Results In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites and 4,378 edges (reactions. Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurable metabolism (e.g. glycolysis and amino acid anabolism during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from

  11. Endobacteria affect the metabolic profile of their host Gigaspora margarita, an arbuscular mycorrhizal fungus.

    Science.gov (United States)

    Salvioli, Alessandra; Chiapello, Marco; Fontaine, Joel; Hadj-Sahraoui, Anissa Lounes; Grandmougin-Ferjani, Anne; Lanfranco, Luisa; Bonfante, Paola

    2010-08-01

    The aim of this paper was to understand whether the endobacterium identified as Candidatus Glomeribacter gigasporarum has an effect on the biology of its host, the arbuscular mycorrhizal fungus Gigaspora margarita, through the study of the modifications induced on the fungal proteome and lipid profile. The availability of G. margarita cured spores (i.e. spores that do not contain bacteria), represented a crucial tool to enable the comparison between two fungal homogeneous populations in the presence and the absence of the bacterial components. Our results demonstrate that the endobacterial presence leads to a modulation of fungal protein expression in all the different conditions we tested (quiescent, germinating and strigolactone-elicited germinating spores), and in particular after treatment with a strigolactone analogue. The fungal fatty acid profile resulted to be modified both quantitatively and qualitatively in the absence of endobacteria, being fatty acids less abundant in the cured spores. The results offer one of the first comparative metabolic studies of an AM fungus investigated under different physiological conditions, reveal that endobacteria have an important impact on the host fungal activity, influencing both protein expression and lipid profile, and suggest that the bacterial absence is perceived by G. margarita as a stimulus which activates stress-responsive proteins. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Predicting future biomass yield inMiscanthususing the carbohydrate metabolic profile as a biomarker.

    Science.gov (United States)

    Maddison, Anne L; Camargo-Rodriguez, Anyela; Scott, Ian M; Jones, Charlotte M; Elias, Dafydd M O; Hawkins, Sarah; Massey, Alice; Clifton-Brown, John; McNamara, Niall P; Donnison, Iain S; Purdy, Sarah J

    2017-07-01

    In perennial energy crop breeding programmes, it can take several years before a mature yield is reached when potential new varieties can be scored. Modern plant breeding technologies have focussed on molecular markers, but for many crop species, this technology is unavailable. Therefore, prematurity predictors of harvestable yield would accelerate the release of new varieties. Metabolic biomarkers are routinely used in medicine, but they have been largely overlooked as predictive tools in plant science. We aimed to identify biomarkers of productivity in the bioenergy crop, Miscanthus, that could be used prognostically to predict future yields. This study identified a metabolic profile reflecting productivity in Miscanthus by correlating the summer carbohydrate composition of multiple genotypes with final yield 6 months later. Consistent and strong, significant correlations were observed between carbohydrate metrics and biomass traits at two separate field sites over 2 years. Machine-learning feature selection was used to optimize carbohydrate metrics for support vector regression models, which were able to predict interyear biomass traits with a correlation ( R ) of >0.67 between predicted and actual values. To identify a causal basis for the relationships between the glycome profile and biomass, a 13 C-labelling experiment compared carbohydrate partitioning between high- and low-yielding genotypes. A lower yielding and slower growing genotype partitioned a greater percentage of the 13 C pulse into starch compared to a faster growing genotype where a greater percentage was located in the structural biomass. These results supported a link between plant performance and carbon flow through two rival pathways (starch vs. sucrose), with higher yielding plants exhibiting greater partitioning into structural biomass, via sucrose metabolism, rather than starch. Our results demonstrate that the plant metabolome can be used prognostically to anticipate future yields and

  13. Influence of common preanalytical variations on the metabolic profile of serum samples in biobanks

    Energy Technology Data Exchange (ETDEWEB)

    Fliniaux, Ophelie [University of Picardie Jules Verne, Laboratoire de Phytotechnologie EA 3900-BioPI (France); Gaillard, Gwenaelle [Biobanque de Picardie (France); Lion, Antoine [University of Picardie Jules Verne, Laboratoire de Phytotechnologie EA 3900-BioPI (France); Cailleu, Dominique [Batiment Serres-Transfert, rue de Mai/rue Dallery, Plateforme Analytique (France); Mesnard, Francois, E-mail: francois.mesnard@u-picardie.fr [University of Picardie Jules Verne, Laboratoire de Phytotechnologie EA 3900-BioPI (France); Betsou, Fotini [Integrated Biobank of Luxembourg (Luxembourg)

    2011-12-15

    A blood pre-centrifugation delay of 24 h at room temperature influenced the proton NMR spectroscopic profiles of human serum. A blood pre-centrifugation delay of 24 h at 4 Degree-Sign C did not influence the spectroscopic profile as compared with 4 h delays at either room temperature or 4 Degree-Sign C. Five or ten serum freeze-thaw cycles also influenced the proton NMR spectroscopic profiles. Certain common in vitro preanalytical variations occurring in biobanks may impact the metabolic profile of human serum.

  14. Influence of common preanalytical variations on the metabolic profile of serum samples in biobanks

    International Nuclear Information System (INIS)

    Fliniaux, Ophélie; Gaillard, Gwenaelle; Lion, Antoine; Cailleu, Dominique; Mesnard, François; Betsou, Fotini

    2011-01-01

    A blood pre-centrifugation delay of 24 h at room temperature influenced the proton NMR spectroscopic profiles of human serum. A blood pre-centrifugation delay of 24 h at 4°C did not influence the spectroscopic profile as compared with 4 h delays at either room temperature or 4°C. Five or ten serum freeze–thaw cycles also influenced the proton NMR spectroscopic profiles. Certain common in vitro preanalytical variations occurring in biobanks may impact the metabolic profile of human serum.

  15. Metabolic gene profile in early human fetal heart development.

    Science.gov (United States)

    Iruretagoyena, J I; Davis, W; Bird, C; Olsen, J; Radue, R; Teo Broman, A; Kendziorski, C; Splinter BonDurant, S; Golos, T; Bird, I; Shah, D

    2014-07-01

    The primitive cardiac tube starts beating 6-8 weeks post fertilization in the developing embryo. In order to describe normal cardiac development during late first and early second trimester in human fetuses this study used microarray and pathways analysis and created a corresponding 'normal' database. Fourteen fetal hearts from human fetuses between 10 and 18 weeks of gestational age (GA) were prospectively collected at the time of elective termination of pregnancy. RNA from recovered tissues was used for transcriptome analysis with Affymetrix 1.0 ST microarray chip. From the amassed data we investigated differences in cardiac development within the 10-18 GA period dividing the sample by GA in three groups: 10-12 (H1), 13-15 (H2) and 16-18 (H3) weeks. A fold change of 2 or above adjusted for a false discovery rate of 5% was used as initial cutoff to determine differential gene expression for individual genes. Test for enrichment to identify functional groups was carried out using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Array analysis correctly identified the cardiac specific genes, and transcripts reported to be differentially expressed were confirmed by qRT-PCR. Single transcript and Ontology analysis showed first trimester heart expression of myosin-related genes to be up-regulated >5-fold compared with second trimester heart. In contrast the second trimester hearts showed further gestation-related increases in many genes involved in energy production and cardiac remodeling. In conclusion, fetal heart development during the first trimester was dominated by heart-specific genes coding for myocardial development and differentiation. During the second trimester, transcripts related to energy generation and cardiomyocyte communication for contractile coordination/proliferation were more dominant. Transcripts related to fatty acid metabolism can be seen as early as 10 weeks and clearly increase as the heart matures. Retinol

  16. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte

    2006-01-01

    The metabolic profile of rodent muscle is generally reflected in the myosin heavy chain (MHC) fiber-type composition. The present study was conducted to test the hypothesis that metabolic gene expression is not tightly coupled with MHC fiber-type composition for all genes in human skeletal muscle...... was more than twofold higher in soleus and vastus than in triceps. Contrary, phosphofructokinase and total lactate dehydrogenase (LDH) activity was approximately three- and twofold higher in triceps than in both soleus and vastus. Expression of metabolic genes was assessed by determining the mRNA content...... of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly...

  17. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  18. Altered circadian rhythm and metabolic gene profile in rats subjected to advanced light phase shifts.

    Directory of Open Access Journals (Sweden)

    Laura Herrero

    Full Text Available The circadian clock regulates metabolic homeostasis and its disruption predisposes to obesity and other metabolic diseases. However, the effect of phase shifts on metabolism is not completely understood. We examined whether alterations in the circadian rhythm caused by phase shifts induce metabolic changes in crucial genes that would predispose to obesity. Three-month-old rats were maintained on a standard diet under lighting conditions with chronic phase shifts consisting of advances, delays or advances plus delays. Serum leptin, insulin and glucose levels decreased only in rats subjected to advances. The expression of the clock gene Bmal 1 increased in the hypothalamus, white adipose tissue (WAT, brown adipose tissue (BAT and liver of the advanced group compared to control rats. The advanced group showed an increase in hypothalamic AgRP and NPY mRNA, and their lipid metabolism gene profile was altered in liver, WAT and BAT. WAT showed an increase in inflammation and ER stress and brown adipocytes suffered a brown-to-white transformation and decreased UCP-1 expression. Our results indicate that chronic phase advances lead to significant changes in neuropeptides, lipid metabolism, inflammation and ER stress gene profile in metabolically relevant tissues such as the hypothalamus, liver, WAT and BAT. This highlights a link between alteration of the circadian rhythm and metabolism at the transcriptional level.

  19. Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.).

    Science.gov (United States)

    Katahira, Riko; Ashihara, Hiroshi

    2009-12-01

    As part of a research program on nucleotide metabolism in potato tubers (Solanum tuberosum L.), profiles of pyridine (nicotinamide) metabolism were examined based on the in situ metabolic fate of radio-labelled precursors and the in vitro activities of enzymes. In potato tubers, [(3)H]quinolinic acid, which is an intermediate of de novo pyridine nucleotide synthesis, and [(14)C]nicotinamide, a catabolite of NAD, were utilised for pyridine nucleotide synthesis. The in situ tracer experiments and in vitro enzyme assays suggest the operation of multiple pyridine nucleotide cycles. In addition to the previously proposed cycle consisting of seven metabolites, we found a new cycle that includes newly discovered nicotinamide riboside deaminase which is also functional in potato tubers. This cycle bypasses nicotinamide and nicotinic acid; it is NAD --> nicotinamide mononucleotide --> nicotinamide riboside --> nicotinic acid riboside --> nicotinic acid mononucleotide --> nicotinic acid adenine dinucleotide --> NAD. Degradation of the pyridine ring was extremely low in potato tubers. Nicotinic acid glucoside is formed from nicotinic acid in potato tubers. Comparative studies of [carboxyl-(14)C]nicotinic acid metabolism indicate that nicotinic acid is converted to nicotinic acid glucoside in all organs of potato plants. Trigonelline synthesis from [carboxyl-(14)C]nicotinic acid was also found. Conversion was greater in green parts of plants, such as leaves and stem, than in underground parts of potato plants. Nicotinic acid utilised for the biosynthesis of these conjugates seems to be derived not only from the pyridine nucleotide cycle, but also from the de novo synthesis of nicotinic acid mononucleotide.

  20. Metabolic Profiling Reveals Effects of Age, Sexual Development and Neutering in Plasma of Young Male Cats.

    Directory of Open Access Journals (Sweden)

    David Allaway

    Full Text Available Neutering is a significant risk factor for obesity in cats. The mechanisms that promote neuter-associated weight gain are not well understood but following neutering, acute changes in energy expenditure and energy consumption have been observed. Metabolic profiling (GC-MS and UHPLC-MS-MS was used in a longitudinal study to identify changes associated with age, sexual development and neutering in male cats fed a nutritionally-complete dry diet to maintain an ideal body condition score. At eight time points, between 19 and 52 weeks of age, fasted blood samples were taken from kittens neutered at either 19 weeks of age (Early Neuter (EN, n = 8 or at 31 weeks of age (Conventional Neuter (CN, n = 7. Univariate and multivariate analyses were used to compare plasma metabolites (n = 370 from EN and CN cats. Age was the primary driver of variance in the plasma metabolome, including a developmental change independent of neuter group between 19 and 21 weeks in lysolipids and fatty acid amides. Changes associated with sexual development and its subsequent loss were also observed, with differences at some time points observed between EN and CN cats for 45 metabolites (FDR p<0.05. Pathway Enrichment Analysis also identified significant effects in 20 pathways, dominated by amino acid, sterol and fatty acid metabolism. Most changes were interpretable within the context of male sexual development, and changed following neutering in the CN group. Felinine metabolism in CN cats was the most significantly altered pathway, increasing during sexual development and decreasing acutely following neutering. Felinine is a testosterone-regulated, felid-specific glutathione derivative secreted in urine. Alterations in tryptophan, histidine and tocopherol metabolism observed in peripubertal cats may be to support physiological functions of glutathione following diversion of S-amino acids for urinary felinine secretion.

  1. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress

    Science.gov (United States)

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-01-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing. PMID:25618145

  2. Metabolic Profile of Oral Squamous Carcinoma Cell Lines Relies on a Higher Demand of Lipid Metabolism in Metastatic Cells

    Directory of Open Access Journals (Sweden)

    Ana Carolina B. Sant’Anna-Silva

    2018-02-01

    Full Text Available Tumor cells are subjected to a broad range of selective pressures. As a result of the imposed stress, subpopulations of surviving cells exhibit individual biochemical phenotypes that reflect metabolic reprograming. The present work aimed at investigating metabolic parameters of cells displaying increasing degrees of metastatic potential. The metabolites present in cell extracts fraction of tongue fibroblasts and of cell lines derived from human tongue squamous cell carcinoma lineages displaying increasing metastatic potential (SCC9 ZsG, LN1 and LN2 were analyzed by 1H NMR (nuclear magnetic resonance spectroscopy. Living, intact cells were also examined by the non-invasive method of fluorescence lifetime imaging microscopy (FLIM based on the auto fluorescence of endogenous NADH. The cell lines reproducibly exhibited distinct metabolic profiles confirmed by Partial Least-Square Discriminant Analysis (PLS-DA of the spectra. Measurement of endogenous free and bound NAD(PH relative concentrations in the intact cell lines showed that ZsG and LN1 cells displayed high heterogeneity in the energy metabolism, indicating that the cells would oscillate between glycolysis and oxidative metabolism depending on the microenvironment’s composition. However, LN2 cells appeared to have more contributions to the oxidative status, displaying a lower NAD(PH free/bound ratio. Functional experiments of energy metabolism, mitochondrial physiology, and proliferation assays revealed that all lineages exhibited similar energy features, although resorting to different bioenergetics strategies to face metabolic demands. These differentiated functions may also promote metastasis. We propose that lipid metabolism is related to the increased invasiveness as a result of the accumulation of malonate, methyl malonic acid, n-acetyl and unsaturated fatty acids (CH2n in parallel with the metastatic potential progression, thus suggesting that the NAD(PH reflected the lipid catabolic

  3. Liver Adiposity and Metabolic Profile in Individuals with Chronic Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Kathleen C. Rankin

    2017-01-01

    Full Text Available Purpose. To quantify liver adiposity using magnetic resonance imaging (MRI and to determine its association with metabolic profile in men with spinal cord injury (SCI. Materials and Methods. MRI analysis of liver adiposity by fat signal fraction (FSF and visceral adipose tissue (VAT was completed on twenty participants. Intravenous glucose tolerance test was conducted to measure glucose effectiveness (Sg and insulin sensitivity (Si. Lipid panel, fasting glucose, glycated hemoglobin (HbA1c, and inflammatory cytokines were also analyzed. Results. Average hepatic FSF was 3.7%±2.1. FSF was positively related to TG, non-HDL-C, fasting glucose, HbA1c, VAT, and tumor necrosis factor alpha (TNF-α. FSF was negatively related to Si and testosterone. FSF was positively related to VAT (r=0.48, p=0.032 and TNF-α (r=0.51, p=0.016 independent of age, level of injury (LOI, and time since injury (TSI. The associations between FSF and metabolic profile were independent of VAT. Conclusions. MRI noninvasively estimated hepatic adiposity in men with chronic SCI. FSF was associated with dysfunction in metabolic profile, central adiposity, and inflammation. Importantly, liver adiposity influenced metabolic profile independently of VAT. These findings highlight the significance of quantifying liver adiposity after SCI to attenuate the development of metabolic disorders.

  4. Characterisation of metabolic profile of banana genotypes, aiming at biofortified Musa spp. cultivars.

    Science.gov (United States)

    Borges, Cristine Vanz; Amorim, Vanusia Batista de Oliveira; Ramlov, Fernanda; Ledo, Carlos Alberto da Silva; Donato, Marcela; Maraschin, Marcelo; Amorim, Edson Perito

    2014-02-15

    The banana is an important, widely consumed fruit, especially in areas of rampant undernutrition. Twenty-nine samples were analysed, including 9 diploids, 13 triploids and 7 tetraploids, in the Active Germplasm Bank, at Embrapa Cassava & Fruits, to evaluate the bioactive compounds. The results of this study reveal the presence of a diversity of bioactive compounds, e.g., catechins; they are phenolic compounds with high antioxidant potential and antitumour activity. In addition, accessions with appreciable amounts of pVACs were identified, especially compared with the main cultivars that are currently marketed. The ATR-FTIR, combined with principal components analysis, identified accessions with distinct metabolic profiles in the fingerprint regions of compounds important for human health. Likewise, starch fraction characterisation allowed discrimination of accessions according to their physical, chemical, and functional properties. The results of this study demonstrate that the banana has functional characteristics endowing it with the potential to promote human health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Biochemical association of metabolic profile and microbiome in chronic pressure ulcer wounds.

    Directory of Open Access Journals (Sweden)

    Mary Cloud B Ammons

    Full Text Available Chronic, non-healing wounds contribute significantly to the suffering of patients with co-morbidities in the clinical population with mild to severely compromised immune systems. Normal wound healing proceeds through a well-described process. However, in chronic wounds this process seems to become dysregulated at the transition between resolution of inflammation and re-epithelialization. Bioburden in the form of colonizing bacteria is a major contributor to the delayed headlining in chronic wounds such as pressure ulcers. However how the microbiome influences the wound metabolic landscape is unknown. Here, we have used a Systems Biology approach to determine the biochemical associations between the taxonomic and metabolomic profiles of wounds colonized by bacteria. Pressure ulcer biopsies were harvested from primary chronic wounds and bisected into top and bottom sections prior to analysis of microbiome by pyrosequencing and analysis of metabolome using 1H nuclear magnetic resonance (NMR spectroscopy. Bacterial taxonomy revealed that wounds were colonized predominantly by three main phyla, but differed significantly at the genus level. While taxonomic profiles demonstrated significant variability between wounds, metabolic profiles shared significant similarity based on the depth of the wound biopsy. Biochemical association between taxonomy and metabolic landscape indicated significant wound-to-wound similarity in metabolite enrichment sets and metabolic pathway impacts, especially with regard to amino acid metabolism. To our knowledge, this is the first demonstration of a statistically robust correlation between bacterial colonization and metabolic landscape within the chronic wound environment.

  6. Effects of Regular Physical Exercises in the Water on the Metabolic Profile of Women with Abdominal Obesity

    Directory of Open Access Journals (Sweden)

    Kasprzak Zbigniew

    2014-07-01

    Full Text Available Recreational physical exercise in the water is predominantly based on aerobic metabolism. Since it involves both carbohydrate and lipid sources of energy, aqua aerobics has a beneficial effect on metabolism of these substrates. The aim of the study was to assess the impact of a 3 month aqua aerobics training program on the metabolic profile of women with abdominal obesity. The study sample comprised 32 women aged 41-72 years. Somatic characteristics and variables characterizing carbohydrate and lipid metabolism were measured before the commencement and after the completion of the training program. During the 2nd measurement all mean anthropometric variables were found to be significantly lower (p<0.01. In the blood lipid profile, the concentrations of total cholesterol, LDL-cholesterol and HOMAIR were significantly lower (p<0.01. Furthermore, the levels of fasting triglycerides, glucose and insulin were reduced significantly (p<0.05 after the training program. The aqua aerobics program contributed to positive changes in lipid metabolism, anthropometric variables, as well as the fasting insulin, glucose levels and insulin resistance index in women with abdominal obesity.

  7. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism.

    Science.gov (United States)

    Oehler, Nicola; Volz, Tassilo; Bhadra, Oliver D; Kah, Janine; Allweiss, Lena; Giersch, Katja; Bierwolf, Jeanette; Riecken, Kristoffer; Pollok, Jörg M; Lohse, Ansgar W; Fehse, Boris; Petersen, Joerg; Urban, Stephan; Lütgehetmann, Marc; Heeren, Joerg; Dandri, Maura

    2014-11-01

    Chronic hepatitis B virus (HBV) infection has been associated with alterations in lipid metabolism. Moreover, the Na+-taurocholate cotransporting polypeptide (NTCP), responsible for bile acid (BA) uptake into hepatocytes, was identified as the functional cellular receptor mediating HBV entry. The aim of the study was to determine whether HBV alters the liver metabolic profile by employing HBV-infected and uninfected human liver chimeric mice. Humanized urokinase plasminogen activator/severe combined immunodeficiency mice were used to establish chronic HBV infection. Gene expression profiles were determined by real-time polymerase chain reaction using primers specifically recognizing transcripts of either human or murine origin. Liver biopsy samples obtained from HBV-chronic individuals were used to validate changes determined in mice. Besides modest changes in lipid metabolism, HBV-infected mice displayed a significant enhancement of human cholesterol 7α-hydroxylase (human [h]CYP7A1; median 12-fold induction; Pmetabolic alterations. Binding of HBV to NTCP limits its function, thus promoting compensatory BA synthesis and cholesterol provision. The intimate link determined between HBV and liver metabolism underlines the importance to exploit further metabolic pathways, as well as possible NTCP-related viral-drug interactions. © 2014 by the American Association for the Study of Liver Diseases.

  8. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions.

    Directory of Open Access Journals (Sweden)

    Olga Østrup

    Full Text Available Fertilization is followed by complex changes in cytoplasmic composition and extensive chromatin reprogramming which results in the abundant activation of totipotent embryonic genome at embryonic genome activation (EGA. While chromatin reprogramming has been widely studied in several species, only a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv and in vitro produced (ivt porcine embryos before (2-cell stage and after (late 4-cell stage EGA and determine major metabolic changes that regulate totipotency. The period before EGA was dominated by transcripts responsible for cell cycle regulation, mitosis, RNA translation and processing (including ribosomal machinery, protein catabolism, and chromatin remodelling. Following EGA an increase in the abundance of transcripts involved in transcription, translation, DNA metabolism, histone and chromatin modification, as well as protein catabolism was detected. The further analysis of members of overlapping GO terms revealed that despite that comparable cellular processes are taking place before and after EGA (RNA splicing, protein catabolism, different metabolic pathways are involved. This strongly suggests that a complex metabolic switch accompanies EGA. In vitro conditions significantly altered RNA profiles before EGA, and the character of these changes indicates that they originate from oocyte and are imposed either before oocyte aspiration or during in vitro maturation. IVT embryos have altered content of apoptotic factors, cell cycle regulation factors and spindle components, and transcription factors, which all may contribute to reduced developmental competence of embryos produced in vitro. Overall, our data are in good accordance with previously published, genome-wide profiling data in other species. Moreover, comparison with mouse and

  9. Fagus sylvatica L. provenances maintain different leaf metabolic profiles and functional response

    Science.gov (United States)

    Aranda, Ismael; Sánchez-Gómez, David; de Miguel, Marina; Mancha, Jose Antonio; Guevara, María Angeles; Cadahía, Estrella; Fernández de Simón, María Brígida

    2017-07-01

    Most temperate forest tree species will suffer important environmental changes as result of the climate change. Adaptiveness to local conditions could change at different sites in the future. In this context, the study of intra-specific variability is important to clarify the singularity of different local populations. Phenotypic differentiation between three beech provenances covering a wide latitudinal range (Spain/ES, Germany/DE and Sweden/SE), was studied in a greenhouse experiment. Non-target leaf metabolite profiles and ecophysiological response was analyzed in well-watered and water stressed seedlings. There was a provenance-specific pattern in the relative concentrations of some leaf metabolites regardless watering treatment. The DE and SE from the center and north of the distribution area of the species showed a clear differentiation from the ES provenance in the relative concentration of some metabolites. Thus the ES provenance from the south maintained larger relative concentration of some organic and amino acids (e.g. fumaric and succinic acids or valine and isoleucine), and in some secondary metabolites (e.g. kaempferol, caffeic and ferulic acids). The ecophysiological response to mild water stress was similar among the three provenances as a consequence of the moderate water stress applied to seedlings, although leaf N isotope composition (δ15N) and leaf C:N ratio were higher and lower respectively in DE than in the other two provenances. This would suggest potential differences in the capacity to uptake and post-process nitrogen according to provenance. An important focus of the study was to address for the first time inter-provenance leaf metabolic diversity in beech from a non-targeted metabolic profiling approach that allowed differentiation of the three studied provenances.

  10. Serum Metabolic Profiling of Oocyst-Induced Toxoplasma gondii Acute and Chronic Infections in Mice Using Mass-Spectrometry

    Directory of Open Access Journals (Sweden)

    Chun-Xue Zhou

    2018-01-01

    Full Text Available Toxoplasma gondii is an obligate intracellular parasite causing severe diseases in immunocompromised individuals and congenitally infected neonates, such as encephalitis and chorioretinitis. This study aimed to determine whether serum metabolic profiling can (i identify metabolites associated with oocyst-induced T. gondii infection and (ii detect systemic metabolic differences between T. gondii-infected mice and controls. We performed the first global metabolomics analysis of mice serum challenged with 100 sporulated T. gondii Pru oocysts (Genotype II. Sera from acutely infected mice (11 days post-infection, dpi, chronically infected mice (33 dpi and control mice were collected and analyzed using LC-MS/MS platform. Following False Discovery Rate filtering, we identified 3871 and 2825 ions in ESI+ or ESI− mode, respectively. Principal Component Analysis (PCA and Partial Least Squares Discriminant Analysis (PLS-DA identified metabolomic profiles that clearly differentiated T. gondii-infected and -uninfected serum samples. Acute infection significantly influenced the serum metabolome. Our results identified common and uniquely perturbed metabolites and pathways. Acutely infected mice showed perturbations in metabolites associated with glycerophospholipid metabolism, biosynthesis of amino acid, and tyrosine metabolism. These findings demonstrated that acute T. gondii infection induces a global perturbation of mice serum metabolome, providing new insights into the mechanisms underlying systemic metabolic changes during early stage of T. gondii infection.

  11. Dietary glycemic index is associated with less favorable anthropometric and metabolic profiles in polycystic ovary syndrome women with different phenotypes.

    Science.gov (United States)

    Graff, Scheila Karen; Mário, Fernanda Missio; Alves, Bruna Cherubini; Spritzer, Poli Mara

    2013-10-01

    To compare glycemic index (GI) in the usual diet of polycystic ovary syndrome (PCOS) and control women and to investigate whether dietary GI is associated with body composition and anthropometric and metabolic variables across PCOS phenotypes. Cross-sectional study. University hospital outpatient clinic. Sixty-one women with PCOS and 44 nonhirsute women with ovulatory cycles. Metabolic work-up, biochemical and hormonal assays, assessment of body composition and rest metabolic rate, physical activity (pedometer), and food consumption (food frequency questionnaire). GI, glycemic load, dietary intake, and hormone and metabolic profile in PCOS versus control and in PCOS women stratified by tertiles of GI and PCOS phenotype. Mean age was 23.7 ± 6.3 years. Participants with PCOS had higher body fat percentage, fasting insulin, insulin resistance, lipid accumulation product, and androgen levels compared with control women. PCOS and control women in the highest tertile of GI had higher body mass index and waist circumference than those in the lowest tertile. Dietary GI was higher in the classic PCOS group. Obesity and this more severe PCOS phenotype explained 28.3% of variance in dietary GI. Dietary GI is increased in the classic PCOS phenotype and associated with a less favorable anthropometric and metabolic profile. Obesity and classic PCOS phenotype are age-independent predictors of higher dietary GI. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Changes in body composition and metabolic profile during interleukin 6 inhibition in rheumatoid arthritis.

    Science.gov (United States)

    Tournadre, Anne; Pereira, Bruno; Dutheil, Fréderic; Giraud, Charlotte; Courteix, Daniel; Sapin, Vincent; Frayssac, Thomas; Mathieu, Sylvain; Malochet-Guinamand, Sandrine; Soubrier, Martin

    2017-08-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by increased mortality associated with cardiometabolic disorders including dyslipidaemia, insulin resistance, and cachectic obesity. Tumour necrosis factor inhibitors and interleukin 6 receptor blocker licensed for the treatment of RA decrease inflammation and could thus improve cardiovascular risk, but their effects on body composition and metabolic profile need to be clarified. We investigated the effects of tocilizumab (TCZ), a humanized anti-interleukin 6 receptor antibody, on body composition and metabolic profile in patients treated for RA. Twenty-one active RA patients treated with TCZ were included in a 1 year open follow-up study. Waist circumference, body mass index, blood pressure, lipid profile, fasting glucose, insulin, serum levels of adipokines and pancreatic/gastrointestinal hormones, and body composition (dual-energy X-ray absorptiometry) were measured at baseline and 6 and 12 months of treatment. At baseline, RA patients were compared with 21 non-RA controls matched for age, sex, body mass index, and metabolic syndrome. Compared with controls, body composition was altered in RA with a decrease in total and appendicular lean mass, whereas fat composition was not modified. Among RA patients, 28.6% had a skeletal muscle mass index below the cut-off point for sarcopaenia (4.8% of controls). After 1 year of treatment with TCZ, there was a significant weight gain without changes for fat mass. In contrast, an increase in lean mass was observed with a significant gain in appendicular lean mass and skeletal muscle mass index between 6 and 12 months. Distribution of the fat was modified with a decrease in trunk/peripheral fat ratio and an increase in subcutaneous adipose tissue. No changes for waist circumference, blood pressure, fasting glucose, and atherogenic index were observed. Despite weight gain during treatment with TCZ, no increase in fat but a modification in fat

  13. Metabolic profiling of a myalgic encephalomyelitis/chronic fatigue syndrome discovery cohort reveals disturbances in fatty acid and lipid metabolism.

    Science.gov (United States)

    Germain, Arnaud; Ruppert, David; Levine, Susan M; Hanson, Maureen R

    2017-01-31

    Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) remains a continuum spectrum disease without biomarkers or simple objective tests, and therefore relies on a diagnosis from a set of symptoms to link the assortment of brain and body disorders to ME/CFS. Although recent studies show various affected pathways, the underlying basis of ME/CFS has yet to be established. In this pilot study, we compare plasma metabolic signatures in a discovery cohort, 17 patients and 15 matched controls, and explore potential metabolic perturbations as the aftermath of the complex interactions between genes, transcripts and proteins. This approach to examine the complex array of symptoms and underlying foundation of ME/CFS revealed 74 differentially accumulating metabolites, out of 361 (P metabolism and glycerophospholipid metabolism, combined with primary bile acid metabolism, as well as glyoxylate and dicarboxylate metabolism and a few other pathways, all involved broadly in fatty acid metabolism. Purines, including ADP and ATP, pyrimidines and several amino acid metabolic pathways were found to be significantly disturbed. Finally, glucose and oxaloacetate were two main metabolites affected that have a major effect on sugar and energy levels. Our work provides a prospective path for diagnosis and understanding of the underlying mechanisms of ME/CFS.

  14. Intracellular CHO Cell Metabolite Profiling Reveals Steady-State Dependent Metabolic Fingerprints in Perfusion Culture.

    Science.gov (United States)

    Karst, Daniel J; Steinhoff, Robert F; Kopp, Marie R G; Serra, Elisa; Soos, Miroslav; Zenobi, Renato; Morbidelli, Massimo

    2017-07-01

    Perfusion cell culture processes allow the steady-state culture of mammalian cells at high viable cell density, which is beneficial for overall product yields and homogeneity of product quality in the manufacturing of therapeutic proteins. In this study, the extent of metabolic steady state and the change of the metabolite profile between different steady states of an industrial Chinese hamster ovary (CHO) cell line producing a monoclonal antibody (mAb) was investigated in stirred tank perfusion bioreactors. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) of daily cell extracts revealed more than a hundred peaks, among which 76 metabolites were identified by tandem MS (MS/MS) and high resolution Fourier transform ion cyclotron resonance (FT-ICR) MS. Nucleotide ratios (Uridine (U)-ratio, nucleotide triphosphate (NTP)-ratio and energy charge (EC)) and multivariate analysis of all features indicated a consistent metabolite profile for a stable culture performed at 40 × 10 6 cells/mL over 26 days of culture. Conversely, the reactor was operated continuously so as to reach three distinct steady states one after the other at 20, 60, and 40 × 10 6 cells/mL. In each case, a stable metabolite profile was achieved after an initial transient phase of approximately three days at constant cell density when varying between these set points. Clear clustering according to cell density was observed by principal component analysis, indicating steady-state dependent metabolite profiles. In particular, varying levels of nucleotides, nucleotide sugar, and lipid precursors explained most of the variance between the different cell density set points. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:879-890, 2017. © 2016 American Institute of Chemical Engineers.

  15. Metabolic profiles in serum of mouse after chronic exposure to drinking water.

    Science.gov (United States)

    Zhang, Yan; Wu, Bing; Zhang, Xuxiang; Li, Aimin; Cheng, Shupei

    2011-08-01

    The toxicity of Nanjing drinking water on mouse (Mus musculus) was detected by (1)H nuclear magnetic resonance (NMR)-based metabonomic method. Three groups of mice were fed with drinking water (produced by Nanjing BHK Water Plant), 3.8 μg/L benzo(a)pyrene as contrast, and clean water as control, respectively, for 90 days. It was observed that the levels of lactate, alanine, and creatinine in the mice fed with drinking water were increased and that of valine was decreased. The mice of drinking water group were successfully separated from control. The total concentrations of polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and other organic pollutants in the drinking water were 0.23 μg/L, 4.57 μg/L, and 0.34 μg/L, respectively. In this study, Nanjing drinking water was found to induce distinct perturbations of metabolic profiles on mouse including disorders of glucose-alanine cycle, branched-chain amino acid and energy metabolism, and dysfunction of kidney. This study suggests that metabonomic method is feasible and sensitive to evaluate potential toxic effects of drinking water.

  16. Novel adipokines WISP1 and betatrophin in PCOS: relationship to AMH levels, atherogenic and metabolic profile.

    Science.gov (United States)

    Sahin Ersoy, Gulcin; Altun Ensari, Tugba; Vatansever, Dogan; Emirdar, Volkan; Cevik, Ozge

    2017-02-01

    To determine the levels of WISP1 and betatrophin in normal weight and obese women with polycystic ovary syndrome (PCOS) and to assess their relationship with anti-Müllerian hormone (AMH) levels, atherogenic profile and metabolic parameters Methods: In this prospective cross-sectional study, the study group was composed of 49 normal weighed and 34 obese women with PCOS diagnosed based on the Rotterdam criteria; 36 normal weight and 26 obese age matched non-hyperandrogenemic women with regular menstrual cycle. Serum WISP1, betatrophin, homeostasis model assessment of insulin resistance (HOMA-IR) and AMH levels were evaluated. Univariate and multivariate analyses were performed between betatrophin, WISP1 levels and AMH levels, metabolic and atherogenic parameters. Serum WISP1 and betatrophin values were elevated in the PCOS group than in the control group. Moreover, serum WISP1 and betatrophin levels were higher in the obese PCOS subgroup than in normal weight and obese control subgroups. Multivariate analyses revealed that Body mass index, HOMA-IR, AMH independently and positively predicted WISP1 levels. Serum betatrophin level variability was explained by homocysteine, HOMA-IR and androstenedione levels. WISP1 and betatrophin may play a key role on the pathogenesis of PCOS.

  17. ADMINISTRATION OF EARLY POST-PARTUM ORAL DRENCH IN DAIRY COWS: EFFECTON METABOLIC PROFILE

    Directory of Open Access Journals (Sweden)

    R. Schallenberger Gonçalves

    2015-01-01

    Full Text Available Some prophylactic treatments have been proposed in high-yielding dairy cattle in order to minimize the effects of negative energy balance and some disturbances such as hypocalcaemia and ketosis. The objective of this study was to evaluate the effects of two doses of d rench within 24 h after calving on the metabolic profile and prevention of ketosis. a total of 48 cows from a herd in r io Grande do s ul state (southern Brazil was used in the study. The animals were randomly selected and treated orally with d rench ( n = 32, propylene glycol, electrolytes and choline in 40 L of water and water ( n = 16 used as control. Blood samples were collected by blood coccygeal venipuncture through a vacutainer plain system tubes. Biochemical determinations were performed in serum (albumin, urea, cholesterol, triglycerides, non-esterified fatty acids - ne F a -, calcium, phosphorus, magnesium, aspartate transaminase - as T- and gammaglutamyl- transferase -GGT- and a cow-side determination of beta-hydroxybutyrate (BHB was performed using the a bbot blood Precision Xtra system. a ll cows in the experiment had their milk production controlled. The d rench treatment produces a tendency to a better milk yield (32.5 vs 29.6 L/cow/day and helps to prevent subclinical ketosis, as indicated by a lesser prevalence of subclinical ketosis (29.7% vs 37.2% and mean values of BHB (1.19 vs 1.27 mmol/L as well as a lesser lipolysis as indicated by ne F a values (509 vs 1.560 μmol/L. The other components of the metabolic profile did not have substantial effects between treatments. i n short, on the conditions of the present work, the d rench treatment is an effective management tool for prevention of subclinical ketosis and severe lipolysis.

  18. Estimation of dynamic flux profiles from metabolic time series data

    Directory of Open Access Journals (Sweden)

    Chou I-Chun

    2012-07-01

    Full Text Available Abstract Background Advances in modern high-throughput techniques of molecular biology have enabled top-down approaches for the estimation of parameter values in metabolic systems, based on time series data. Special among them is the recent method of dynamic flux estimation (DFE, which uses such data not only for parameter estimation but also for the identification of functional forms of the processes governing a metabolic system. DFE furthermore provides diagnostic tools for the evaluation of model validity and of the quality of a model fit beyond residual errors. Unfortunately, DFE works only when the data are more or less complete and the system contains as many independent fluxes as metabolites. These drawbacks may be ameliorated with other types of estimation and information. However, such supplementations incur their own limitations. In particular, assumptions must be made regarding the functional forms of some processes and detailed kinetic information must be available, in addition to the time series data. Results The authors propose here a systematic approach that supplements DFE and overcomes some of its shortcomings. Like DFE, the approach is model-free and requires only minimal assumptions. If sufficient time series data are available, the approach allows the determination of a subset of fluxes that enables the subsequent applicability of DFE to the rest of the flux system. The authors demonstrate the procedure with three artificial pathway systems exhibiting distinct characteristics and with actual data of the trehalose pathway in Saccharomyces cerevisiae. Conclusions The results demonstrate that the proposed method successfully complements DFE under various situations and without a priori assumptions regarding the model representation. The proposed method also permits an examination of whether at all, to what degree, or within what range the available time series data can be validly represented in a particular functional format of

  19. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats

    OpenAIRE

    Iagher Fabiola; Aikawa Julia; Rocha Ricelli ER; Machado Juliano; Kryczyk Marcelo; Schiessel Dalton; Borghetti Gina; Yamaguchi Adriana A; Pequitto Danielle CT; Coelho Isabela; Brito Gleisson AP; Yamazaki Ricardo K; Naliwaiko Katya; Tanhoffer Ricardo A; Nunes Everson A

    2011-01-01

    Abstract Background Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Methods Monosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish...

  20. Metabolic profiling of strawberry (Fragaria x ananassa Duch.) during fruit development and maturation.

    Science.gov (United States)

    Zhang, Juanjuan; Wang, Xin; Yu, Oliver; Tang, Juanjuan; Gu, Xungang; Wan, Xiaochun; Fang, Congbing

    2011-01-01

    Strawberry (Fragaria × ananassa Duch), a fruit of economic and nutritional importance, is also a model species for fleshy fruits and genomics in Rosaceae. Strawberry fruit quality at different harvest stages is a function of the fruit's metabolite content, which results from physiological changes during fruit growth and ripening. In order to investigate strawberry fruit development, untargeted (GC-MS) and targeted (HPLC) metabolic profiling analyses were conducted. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were employed to explore the non-polar and polar metabolite profiles from fruit samples at seven developmental stages. Different cluster patterns and a broad range of metabolites that exerted influence on cluster formation of metabolite profiles were observed. Significant changes in metabolite levels were found in both fruits turning red and fruits over-ripening in comparison with red-ripening fruits. The levels of free amino acids decreased gradually before the red-ripening stage, but increased significantly in the over-ripening stage. Metabolite correlation and network analysis revealed the interdependencies of individual metabolites and metabolic pathways. Activities of several metabolic pathways, including ester biosynthesis, the tricarboxylic acid cycle, the shikimate pathway, and amino acid metabolism, shifted during fruit growth and ripening. These results not only confirmed published metabolic data but also revealed new insights into strawberry fruit composition and metabolite changes, thus demonstrating the value of metabolomics as a functional genomics tool in characterizing the mechanism of fruit quality formation, a key developmental stage in most economically important fruit crops.

  1. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile

    DEFF Research Database (Denmark)

    Oskari Kilpeläinen, Tuomas; Zillikens, M Carola; Stančákova, Alena

    2011-01-01

    genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes...

  2. Metabolomic profiles of lipid metabolism, arterial stiffness and hemodynamics in male coronary artery disease patients

    Directory of Open Access Journals (Sweden)

    Kaido Paapstel

    2016-06-01

    Conclusions: We demonstrated an independent association between the serum medium- and long-chain acylcarnitine profile and aortic stiffness for the CAD patients. In addition to the lipid-related classical CVD risk markers, the intermediates of lipid metabolism may serve as novel indicators for altered vascular function.

  3. Effect of age and blood collection site on the metabolic profile of ...

    African Journals Online (AJOL)

    Different collection site did not affect the examined parameters, but some statistically significant differences were observed between the age groups. However, all the parameters agreed with the data reported in the literature and contribute to our knowledge of the metabolic profile of ostriches. South African Journal of Animal ...

  4. Multi-omic profiles of hepatic metabolism in TPN-fed preterm pigs

    Science.gov (United States)

    New generation lipid emulsions comprised of fish oil or blends of soybean/fish/medium chain triglyceride/olive oil are emerging that result in favorable clinical metabolic outcomes in pediatric populations. Our aim was to characterize the lipidodomic, metabolomic, and transcriptomic profiles these ...

  5. Yogurt consumption is associated with better diet quality and metabolic profile in American men and women.

    Science.gov (United States)

    Wang, Huifen; Livingston, Kara A; Fox, Caroline S; Meigs, James B; Jacques, Paul F

    2013-01-01

    The evidence-based Dietary Guidelines for Americans recommends increasing the intake of fat-free or low-fat milk and milk products. However, yogurt, a nutrient-dense milk product, has been understudied. This cross-sectional study examined whether yogurt consumption was associated with better diet quality and metabolic profile among adults (n = 6526) participating in the Framingham Heart Study Offspring (1998-2001) and Third Generation (2002-2005) cohorts. A validated food frequency questionnaire was used to assess dietary intake, and the Dietary Guidelines Adherence Index (DGAI) was used to measure overall diet quality. Standardized clinical examinations and laboratory tests were conducted. Generalized estimating equations examined the associations of yogurt consumption with diet quality and levels of metabolic factors. Approximately 64% of women (vs 41% of men) were yogurt consumers (ie, consumed >0 servings/week). Yogurt consumers had a higher DGAI score (ie, better diet quality) than nonconsumers. Adjusted for demographic and lifestyle factors and DGAI, yogurt consumers, compared with nonconsumers, had higher potassium intakes (difference, 0.12 g/d) and were 47%, 55%, 48%, 38%, and 34% less likely to have inadequate intakes (based on Dietary Reference Intake) of vitamins B2 and B12, calcium, magnesium, and zinc, respectively (all P ≤ .001). In addition, yogurt consumption was associated with lower levels of circulating triglycerides, glucose, and lower systolic blood pressure and insulin resistance (all P < .05). Yogurt is a good source of several micronutrients and may help to improve diet quality and maintain metabolic well-being as part of a healthy, energy-balanced dietary pattern. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Yogurt consumption is associated with better diet quality and metabolic profile in American men and women

    Science.gov (United States)

    Wang, Huifen; Livingston, Kara A.; Fox, Caroline S.; Meigs, James B.; Jacques, Paul F.

    2013-01-01

    The evidence-based Dietary Guidelines for Americans recommends increasing the intake of fat-free or low-fat milk and milk products. However, yogurt, a nutrient-dense milk product, has been understudied. This cross-sectional study examined whether yogurt consumption was associated with better diet quality and metabolic profile among adults (n = 6526) participating in the Framingham Heart Study Offspring (1998-2001) and Third Generation (2002-2005) cohorts. A validated food frequency questionnaire was used to assess dietary intake, and the Dietary Guidelines Adherence Index (DGAI) was used to measure overall diet quality. Standardized clinical examinations and laboratory tests were conducted. Generalized estimating equations examined the associations of yogurt consumption with diet quality and levels of metabolic factors. Approximately 64% of women (vs 41% of men) were yogurt consumers (ie, consumed >0 servings/week). Yogurt consumers had a higher DGAI score (ie, better diet quality) than nonconsumers. Adjusted for demographic and lifestyle factors and DGAI, yogurt consumers, compared with nonconsumers, had higher potassium intakes (difference, 0.12 g/d) and were 47%, 55%, 48%, 38%, and 34% less likely to have inadequate intakes (based on Dietary Reference Intake) of vitamins B2 and B12, calcium, magnesium, and zinc, respectively (all P ≤ .001). In addition, yogurt consumption was associated with lower levels of circulating triglycerides, glucose, and lower systolic blood pressure and insulin resistance (all P Yogurt is a good source of several micronutrients and may help to improve diet quality and maintain metabolic well-being as part of a healthy, energy-balanced dietary pattern. PMID:23351406

  7. Deciphering the Differential Effective and Toxic Responses of Bupleuri Radix following the Induction of Chronic Unpredictable Mild Stress and in Healthy Rats Based on Serum Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    Xiaoxia Gao

    2018-01-01

    Full Text Available The petroleum ether fraction of Bupleuri Radix which is contained in the traditional Chinese medicine prescription of Xiaoyaosan (XYS may have a therapeutic effect in depressed subjects based on the results of our previous study. It has been reported that Bupleuri Radix can cause liver toxicity following overdosing or long-term use. Therefore, this study aimed to decipher the differential effective and toxic responses of Bupleuri Radix in chronic unpredictable mild stress (CUMS (with depression and healthy rats based on serum metabolic profiles. Serum metabolic profiles were obtained using the UHPLC- Q Exactive Orbitrap-MS technique. Our results demonstrated that the petroleum ether fraction of Bupleuri Radix (PBR produces an antidepressant effect through regulating glycometabolism, amino acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, and fatty acid metabolism. It also induces more severe toxic reactions in the liver or kidney in healthy rats than in CUMS rats, which exhibited a comparatively mild drug-induced toxic reaction. The altered lysine degradation, sphingolipid metabolism, glycerophospholipid metabolism, fatty acid metabolism, and bile acid metabolism could be at least partly responsible for the PBR toxic responses in healthy rats. The differential effective and toxic response of PBR in CUMS rats and healthy rats provide a new standard for the more rational and safer application of clinical drugs in the future.

  8. Deciphering the Differential Effective and Toxic Responses of Bupleuri Radix following the Induction of Chronic Unpredictable Mild Stress and in Healthy Rats Based on Serum Metabolic Profiles.

    Science.gov (United States)

    Gao, Xiaoxia; Liang, Meili; Fang, Yuan; Zhao, Fang; Tian, Junsheng; Zhang, Xiang; Qin, Xuemei

    2017-01-01

    The petroleum ether fraction of Bupleuri Radix which is contained in the traditional Chinese medicine prescription of Xiaoyaosan (XYS) may have a therapeutic effect in depressed subjects based on the results of our previous study. It has been reported that Bupleuri Radix can cause liver toxicity following overdosing or long-term use. Therefore, this study aimed to decipher the differential effective and toxic responses of Bupleuri Radix in chronic unpredictable mild stress (CUMS) (with depression) and healthy rats based on serum metabolic profiles. Serum metabolic profiles were obtained using the UHPLC- Q Exactive Orbitrap-MS technique. Our results demonstrated that the petroleum ether fraction of Bupleuri Radix (PBR) produces an antidepressant effect through regulating glycometabolism, amino acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, and fatty acid metabolism. It also induces more severe toxic reactions in the liver or kidney in healthy rats than in CUMS rats, which exhibited a comparatively mild drug-induced toxic reaction. The altered lysine degradation, sphingolipid metabolism, glycerophospholipid metabolism, fatty acid metabolism, and bile acid metabolism could be at least partly responsible for the PBR toxic responses in healthy rats. The differential effective and toxic response of PBR in CUMS rats and healthy rats provide a new standard for the more rational and safer application of clinical drugs in the future.

  9. Metabolic Profiling of IDH Mutation and Malignant Progression in Infiltrating Glioma

    Science.gov (United States)

    Jalbert, Llewellyn E.; Elkhaled, Adam; Phillips, Joanna J.; Neill, Evan; Williams, Aurelia; Crane, Jason C.; Olson, Marram P.; Molinaro, Annette M.; Berger, Mitchel S.; Kurhanewicz, John; Ronen, Sabrina M.; Chang, Susan M.; Nelson, Sarah J.

    2017-03-01

    Infiltrating low grade gliomas (LGGs) are heterogeneous in their behavior and the strategies used for clinical management are highly variable. A key factor in clinical decision-making is that patients with mutations in the isocitrate dehydrogenase 1 and 2 (IDH1/2) oncogenes are more likely to have a favorable outcome and be sensitive to treatment. Because of their relatively long overall median survival, more aggressive treatments are typically reserved for patients that have undergone malignant progression (MP) to an anaplastic glioma or secondary glioblastoma (GBM). In the current study, ex vivo metabolic profiles of image-guided tissue samples obtained from patients with newly diagnosed and recurrent LGG were investigated using proton high-resolution magic angle spinning spectroscopy (1H HR-MAS). Distinct spectral profiles were observed for lesions with IDH-mutated genotypes, between astrocytoma and oligodendroglioma histologies, as well as for tumors that had undergone MP. Levels of 2-hydroxyglutarate (2HG) were correlated with increased mitotic activity, axonal disruption, vascular neoplasia, and with several brain metabolites including the choline species, glutamate, glutathione, and GABA. The information obtained in this study may be used to develop strategies for in vivo characterization of infiltrative glioma, in order to improve disease stratification and to assist in monitoring response to therapy.

  10. Glucose Metabolic Profile by Visual Assessment Combined with Statistical Parametric Mapping Analysis in Pediatric Patients with Epilepsy.

    Science.gov (United States)

    Zhu, Yuankai; Feng, Jianhua; Wu, Shuang; Hou, Haifeng; Ji, Jianfeng; Zhang, Kai; Chen, Qing; Chen, Lin; Cheng, Haiying; Gao, Liuyan; Chen, Zexin; Zhang, Hong; Tian, Mei

    2017-08-01

    PET with 18 F-FDG has been used for presurgical localization of epileptogenic foci; however, in nonsurgical patients, the correlation between cerebral glucose metabolism and clinical severity has not been fully understood. The aim of this study was to evaluate the glucose metabolic profile using 18 F-FDG PET/CT imaging in patients with epilepsy. Methods: One hundred pediatric epilepsy patients who underwent 18 F-FDG PET/CT, MRI, and electroencephalography examinations were included. Fifteen age-matched controls were also included. 18 F-FDG PET images were analyzed by visual assessment combined with statistical parametric mapping (SPM) analysis. The absolute asymmetry index (|AI|) was calculated in patients with regional abnormal glucose metabolism. Results: Visual assessment combined with SPM analysis of 18 F-FDG PET images detected more patients with abnormal glucose metabolism than visual assessment only. The |AI| significantly positively correlated with seizure frequency ( P glucose metabolism. The only significant contributing variable to the |AI| was the time since last seizure, in patients both with hypometabolism ( P = 0.001) and with hypermetabolism ( P = 0.005). For patients with either hypometabolism ( P glucose metabolic profiles in nonsurgical epilepsy patients. |AI| might be used for evaluation of clinical severity and progress in these patients. Patients with a prolonged period of seizure freedom may have more subtle (or no) metabolic abnormalities on PET. The clinical value of PET might be enhanced by timing the scan closer to clinical seizures. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  11. Effects of meal frequency on metabolic profiles and substrate partitioning in lean healthy males.

    Directory of Open Access Journals (Sweden)

    Marjet J M Munsters

    Full Text Available The daily number of meals has an effect on postprandial glucose and insulin responses, which may affect substrate partitioning and thus weight control. This study investigated the effects of meal frequency on 24 h profiles of metabolic markers and substrate partitioning.Twelve (BMI:21.6 ± 0.6 kg/m(2 healthy male subjects stayed after 3 days of food intake and physical activity standardization 2 × 36 hours in a respiration chamber to measure substrate partitioning. All subjects randomly received two isoenergetic diets with a Low meal Frequency (3 ×; LFr or a High meal Frequency (14 ×; HFr consisting of 15 En% protein, 30 En% fat, and 55 En% carbohydrates. Blood was sampled at fixed time points during the day to measure metabolic markers and satiety hormones.Glucose and insulin profiles showed greater fluctuations, but a lower AUC of glucose in the LFr diet compared with the HFr diet. No differences between the frequency diets were observed on fat and carbohydrate oxidation. Though, protein oxidation and RMR (in this case SMR + DIT were significantly increased in the LFr diet compared with the HFr diet. The LFr diet increased satiety and reduced hunger ratings compared with the HFr diet during the day.The higher rise and subsequently fall of insulin in the LFr diet did not lead to a higher fat oxidation as hypothesized. The LFr diet decreased glucose levels throughout the day (AUC indicating glycemic improvements. RMR and appetite control increased in the LFr diet, which can be relevant for body weight control on the long term.ClinicalTrials.gov NCT01034293.

  12. Metagenomic insights into anaerobic metabolism along an Arctic peat soil profile.

    Directory of Open Access Journals (Sweden)

    David A Lipson

    Full Text Available A metagenomic analysis was performed on a soil profile from a wet tundra site in northern Alaska. The goal was to link existing biogeochemical knowledge of the system with the organisms and genes responsible for the relevant metabolic pathways. We specifically investigated how the importance of iron (Fe oxides and humic substances (HS as terminal electron acceptors in this ecosystem is expressed genetically, and how respiratory and fermentative processes varied with soil depth into the active layer and into the upper permafrost. Overall, the metagenomes reflected a microbial community enriched in a diverse range of anaerobic pathways, with a preponderance of known Fe reducing species at all depths in the profile. The abundance of sequences associated with anaerobic metabolic processes generally increased with depth, while aerobic cytochrome c oxidases decreased. Methanogenesis genes and methanogen genomes followed the pattern of CH4 fluxes: they increased steeply with depth into the active layer, but declined somewhat over the transition zone between the lower active layer and the upper permafrost. The latter was relatively enriched in fermentative and anaerobic respiratory pathways. A survey of decaheme cytochromes (MtrA, MtrC and their homologs revealed that this is a promising approach to identifying potential reducers of Fe(III or HS, and indicated a possible role for Acidobacteria as Fe reducers in these soils. Methanogens appear to coexist in the same layers, though in lower abundance, with Fe reducing bacteria and other potential competitors, including acetogens. These observations provide a rich set of hypotheses for further targeted study.

  13. Hierarchical Status Predicts Behavioral Vulnerability and Nucleus Accumbens Metabolic Profile Following Chronic Social Defeat Stress.

    Science.gov (United States)

    Larrieu, Thomas; Cherix, Antoine; Duque, Aranzazu; Rodrigues, João; Lei, Hongxia; Gruetter, Rolf; Sandi, Carmen

    2017-07-24

    Extensive data highlight the existence of major differences in individuals' susceptibility to stress [1-4]. While genetic factors [5, 6] and exposure to early life stress [7, 8] are key components for such neurobehavioral diversity, intriguing observations revealed individual differences in response to stress in inbred mice [9-12]. This raised the possibility that other factors might be critical in stress vulnerability. A key challenge in the field is to identify non-invasively risk factors for vulnerability to stress. Here, we investigated whether behavioral factors, emerging from preexisting dominance hierarchies, could predict vulnerability to chronic stress [9, 13-16]. We applied a chronic social defeat stress (CSDS) model of depression in C57BL/6J mice to investigate the predictive power of hierarchical status to pinpoint which individuals will exhibit susceptibility to CSDS. Given that the high social status of dominant mice would be the one particularly challenged by CSDS, we predicted and found that dominant individuals were the ones showing a strong susceptibility profile as indicated by strong social avoidance following CSDS, while subordinate mice were not affected. Data from 1 H-NMR spectroscopy revealed that the metabolic profile in the nucleus accumbens (NAc) relates to social status and vulnerability to stress. Under basal conditions, subordinates show lower levels of energy-related metabolites compared to dominants. In subordinates, but not dominants, levels of these metabolites were increased after exposure to CSDS. To the best of our knowledge, this is the first study that identifies non-invasively the origin of behavioral risk factors predictive of stress-induced depression-like behaviors associated with metabolic changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [LEVELS OF OBESITY, METABOLIC PROFILE, CONSUMPTION OF TABACO AND BLOOD PRESSURE IN SEDENTARY YOUTHS].

    Science.gov (United States)

    Caamaño Navarrete, Felipe; Alarcón Hormazábal, Manuel; Delgado Floody, Pedro

    2015-11-01

    in Chile, the National Health Survey (ENS) conducted in 2009-2010 reported high prevalence of overweight, sedentary lifestyle, high cholesterol and metabolic syndrome in the population. to determine the prevalence in young sedentary obesity and consumption of tabaco and analyze their association with the metabolic profile, body fat percentage and blood pressure. 125 young sedentary, 26 men and 99 women, aged between 17 and 29 years old were evaluated. Body mass index (BMI), percent body fat (% fat), waist contour (CC), systolic and diastolic blood pressure, total cholesterol, HDL cholesterol (HDL-C), LDL cholesterol (LDL-C), triglycerides: measurements were performed, glycemia and consumption of snuff. HDL-C (p = 0.000) and% MG (p = 0.043) were higher in women. 37.6% of young people turned smoker. 35, 2% of the sample showed excessive malnutrition. Obese subjects had higher levels: waist contour (p = 0.000) and% FM (p = 0.000). When analyzing obesity DC, this showed significant differences in BMI,% fat, systolic and diastolic blood pressure. BMI presented positive association with CC,% fat, total cholesterol, triglycerides, LDL, systolic and diastolic blood pressure (p consumption of tabaco in the study sample, while other variables are not high-risk categories, it is an opportune time to intervene and reverse these negative health trends now. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  15. Metabolic Profiling Reveals Effects of Age, Sexual Development and Neutering in Plasma of Young Male Cats.

    Science.gov (United States)

    Allaway, David; Gilham, Matthew S; Colyer, Alison; Jönsson, Thomas J; Swanson, Kelly S; Morris, Penelope J

    2016-01-01

    Neutering is a significant risk factor for obesity in cats. The mechanisms that promote neuter-associated weight gain are not well understood but following neutering, acute changes in energy expenditure and energy consumption have been observed. Metabolic profiling (GC-MS and UHPLC-MS-MS) was used in a longitudinal study to identify changes associated with age, sexual development and neutering in male cats fed a nutritionally-complete dry diet to maintain an ideal body condition score. At eight time points, between 19 and 52 weeks of age, fasted blood samples were taken from kittens neutered at either 19 weeks of age (Early Neuter (EN), n = 8) or at 31 weeks of age (Conventional Neuter (CN), n = 7). Univariate and multivariate analyses were used to compare plasma metabolites (n = 370) from EN and CN cats. Age was the primary driver of variance in the plasma metabolome, including a developmental change independent of neuter group between 19 and 21 weeks in lysolipids and fatty acid amides. Changes associated with sexual development and its subsequent loss were also observed, with differences at some time points observed between EN and CN cats for 45 metabolites (FDR pcats was the most significantly altered pathway, increasing during sexual development and decreasing acutely following neutering. Felinine is a testosterone-regulated, felid-specific glutathione derivative secreted in urine. Alterations in tryptophan, histidine and tocopherol metabolism observed in peripubertal cats may be to support physiological functions of glutathione following diversion of S-amino acids for urinary felinine secretion.

  16. Change in Metabolic Profile after 1-Year Nutritional-Behavioral Intervention in Obese Children.

    Science.gov (United States)

    Verduci, Elvira; Lassandro, Carlotta; Giacchero, Roberta; Miniello, Vito Leonardo; Banderali, Giuseppe; Radaelli, Giovanni

    2015-12-03

    Research findings are inconsistent about improvement of specific cardio-metabolic variables after lifestyle intervention in obese children. The aim of this trial was to evaluate the effect of a 1-year intervention, based on normocaloric diet and physical activity, on body mass index (BMI), blood lipid profile, glucose metabolism and metabolic syndrome. Eighty-five obese children aged ≥6 years were analyzed. The BMI z-score was calculated. Fasting blood samples were analyzed for lipids, insulin and glucose. The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated and insulin resistance was defined as HOMA-IR >3.16. HOMA-β%, quantitative insulin sensitivity check index and triglyceride glucose index were calculated. The metabolic syndrome was defined in accordance with the International Diabetes Federation criteria. At the end of intervention children showed a reduction (mean (95% CI)) in BMI z-score (-0.58 (-0.66; -0.50)), triglycerides (-0.35 (-0.45; -0.25) mmol/L) and triglyceride glucose index (-0.29 (-0.37; -0.21)), and an increase in HDL cholesterol (0.06 (0.01; 0.11) mmol/L). Prevalence of insulin resistance declined from 51.8% to 36.5% and prevalence of metabolic syndrome from 17.1% to 4.9%. Nutritional-behavioral interventions can improve the blood lipid profile and insulin sensitivity in obese children, and possibly provide benefits in terms of metabolic syndrome.

  17. Metabolic Profiles in Ovine Carotid Arteries with Developmental Maturation and Long-Term Hypoxia.

    Directory of Open Access Journals (Sweden)

    Ravi Goyal

    Full Text Available Long-term hypoxia (LTH is an important stressor related to health and disease during development. At different time points from fetus to adult, we are exposed to hypoxic stress because of placental insufficiency, high-altitude residence, smoking, chronic anemia, pulmonary, and heart disorders, as well as cancers. Intrauterine hypoxia can lead to fetal growth restriction and long-term sequelae such as cognitive impairments, hypertension, cardiovascular disorders, diabetes, and schizophrenia. Similarly, prolonged hypoxic exposure during adult life can lead to acute mountain sickness, chronic fatigue, chronic headache, cognitive impairment, acute cerebral and/or pulmonary edema, and death.LTH also can lead to alteration in metabolites such as fumarate, 2-oxoglutarate, malate, and lactate, which are linked to epigenetic regulation of gene expression. Importantly, during the intrauterine life, a fetus is under a relative hypoxic environment, as compared to newborn or adult. Thus, the changes in gene expression with development from fetus to newborn to adult may be as a consequence of underlying changes in the metabolic profile because of the hypoxic environment along with developmental maturation. To examine this possibility, we examined the metabolic profile in carotid arteries from near-term fetus, newborn, and adult sheep in both normoxic and long-term hypoxic acclimatized groups.Our results demonstrate that LTH differentially regulated glucose metabolism, mitochondrial metabolism, nicotinamide cofactor metabolism, oxidative stress and antioxidants, membrane lipid hydrolysis, and free fatty acid metabolism, each of which may play a role in genetic-epigenetic regulation.

  18. Profiling the Metabolism of Astragaloside IV by Ultra Performance Liquid Chromatography Coupled with Quadrupole/Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xu-Dong Cheng

    2014-11-01

    Full Text Available Astragaloside IV is a compound isolated from the Traditional Chinese Medicine Astragalus membranaceus, that has been reported to have bioactivities against cardiovascular disease and kidney disease. There is limited information on the metabolism of astragaloside IV, which impedes comprehension of its biological actions and pharmacology. In the present study, an ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS-based approach was developed to profile the metabolites of astragaloside IV in rat plasma, bile, urine and feces samples. Twenty-two major metabolites were detected. The major components found in plasma, bile, urine and feces included the parent chemical and phases I and II metabolites. The major metabolic reactions of astragaloside IV were hydrolysis, glucuronidation, sulfation and dehydrogenation. These results will help to improve understanding the metabolism and reveal the biotransformation profiling of astragaloside IV in vivo. The metabolic information obtained from our study will guide studies into the pharmacological activity and clinical safety of astragaloside IV.

  19. Metabolomics analysis reveals large effect of roughage types on rumen microbial metabolic profile in dairy cows.

    Science.gov (United States)

    Zhao, S; Zhao, J; Bu, D; Sun, P; Wang, J; Dong, Z

    2014-07-01

    The aim of our study was to determine the effect of diets with different types of roughage on the ruminal microbial metabolite profile in dairy cows. Holstein dairy cows were fed a diet containing either corn stover (CS group) or a mixture of alfalfa hay, Leymus chinensis hay and corn silage (MF group) at 0700 and 1900 h daily. Rumen fluid was sampled from each cow through a ruminal cannula at 0630 and 1030 h, and the mixed ruminal fluid from 3 day in each cow was analysed using nuclear magnetic resonance (NMR) spectroscopy. A multivariate analysis revealed a significant difference between the ruminal metabolome of the CS and MF groups at both time points. The MF group had higher levels of acetate, valerate, hydrocinnamate and methylamine and lower levels of glucose, glycine, propionate and isovalerate than those in the CS group. Our results showed that different types of roughages can significantly influence the ruminal microbial metabolome, especially with regard to organic acids, amines and amino acids. The microbial metabolites in the rumen provide nutritional precursors that are critical for general health and milk production in dairy cows. However, studies of the effect of diet on ruminal microbial metabolism are scant. In our current study, we analysed the ruminal microbial metabolite profile of cows fed different types of roughage. We found that the ruminal microbial metabolite profile of cows fed a mixed-roughage diet differed significantly from that of cows fed a single type of roughage. Certain metabolites, such as acetate, hydrocinnamate and methylamine, were closely correlated with specific types of roughage. Our findings provide insight into the effects of different roughages on ruminal microbial fermentation in dairy cows. © 2014 The Society for Applied Microbiology.

  20. Kinetic and metabolic profiles of synthetic cannabinoids NNEI and MN-18.

    Science.gov (United States)

    Kevin, Richard C; Lefever, Timothy W; Snyder, Rodney W; Patel, Purvi R; Gamage, Thomas F; Fennell, Timothy R; Wiley, Jenny L; McGregor, Iain S; Thomas, Brian F

    2018-01-01

    In 2014 and 2015, synthetic cannabinoid receptor agonists NNEI (N-1-naphthalenyl-1-pentyl-1H-indole-3-carboxamide) and MN-18 (N-1-naphthalenyl-1-pentyl-1H-indazole-3-carboxamide) were detected in recreationally used and abused products in multiple countries, and were implicated in episodes of poisoning and toxicity. Despite this, the pharmacokinetic profiles of NNEI and MN-18 have not been characterized. In the present study NNEI and MN-18 were incubated in rat and human liver microsomes and hepatocytes, to estimate kinetic parameters and to identify potential metabolic pathways, respectively. These parameters and pathways were then examined in vivo, via analysis of blood and urine samples from catheterized male rats following intraperitoneal (3 mg/kg) administration of NNEI and MN-18. Both NNEI and MN-18 were rapidly cleared by rat and human liver microsomes, and underwent a range of oxidative transformations during incubation with rat and human hepatocytes. Several unique metabolites were identified for the forensic identification of NNEI and MN-18 intake. Interestingly, NNEI underwent a greater number of biotransformations (20 NNEI metabolites versus 10 MN-18 metabolites), yet parent MN-18 was eliminated at a faster rate than NNEI in vivo. Additionally, in vivo elimination was more rapid than in vitro estimates. These data highlight that even closely related synthetic cannabinoids can possess markedly distinct pharmacokinetic profiles, which can vary substantially between in vitro and in vivo models. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Teachers' Entrepreneurial Profile: Case Study

    Science.gov (United States)

    Stettiner, Caio Flavio; Formigoni, Alexandre; Filho, Mário Pereira Roque; de Camargo, Mauricio Ortiz; Moia, Roberto Padilha

    2015-01-01

    This article was prepared in order to investigate whether the teachers working in a Business Administration BA degree have an entrepreneurial profile, with the aim of finding whether such teachers are able to support the Pedagogical Proposal of the Institution to which they belong to in what concerns the requirement of the course and also the…

  2. Metabolic profiles in five high-producing Swedish dairy herds with a history of abomasal displacement and ketosis

    Directory of Open Access Journals (Sweden)

    Stengärde Lena

    2008-08-01

    Full Text Available Abstract Background Body condition score and blood profiles have been used to monitor management and herd health in dairy cows. The aim of this study was to examine BCS and extended metabolic profiles, reflecting both energy metabolism and liver status around calving in high-producing herds with a high incidence of abomasal displacement and ketosis and to evaluate if such profiles can be used at herd level to pinpoint specific herd problems. Methods Body condition score and metabolic profiles around calving in five high-producing herds with high incidences of abomasal displacement and ketosis were assessed using linear mixed models (94 cows, 326 examinations. Cows were examined and blood sampled every three weeks from four weeks ante partum (ap to nine weeks postpartum (pp. Blood parameters studied were glucose, fructosamine, non-esterified fatty acids (NEFA, insulin, β-hydroxybutyrate, aspartate aminotransferase, glutamate dehydrogenase, haptoglobin and cholesterol. Results All herds had overconditioned dry cows that lost body condition substantially the first 4–6 weeks pp. Two herds had elevated levels of NEFA ap and three herds had elevated levels pp. One herd had low levels of insulin ap and low levels of cholesterol pp. Haptoglobin was detected pp in all herds and its usefulness is discussed. Conclusion NEFA was the parameter that most closely reflected the body condition losses while these losses were not seen in glucose and fructosamine levels. Insulin and cholesterol were potentially useful in herd profiles but need further investigation. Increased glutamate dehydrogenase suggested liver cell damage in all herds.

  3. Metabolic profiles in five high-producing Swedish dairy herds with a history of abomasal displacement and ketosis

    Science.gov (United States)

    Stengärde, Lena; Tråvén, Madeleine; Emanuelson, Ulf; Holtenius, Kjell; Hultgren, Jan; Niskanen, Rauni

    2008-01-01

    Background Body condition score and blood profiles have been used to monitor management and herd health in dairy cows. The aim of this study was to examine BCS and extended metabolic profiles, reflecting both energy metabolism and liver status around calving in high-producing herds with a high incidence of abomasal displacement and ketosis and to evaluate if such profiles can be used at herd level to pinpoint specific herd problems. Methods Body condition score and metabolic profiles around calving in five high-producing herds with high incidences of abomasal displacement and ketosis were assessed using linear mixed models (94 cows, 326 examinations). Cows were examined and blood sampled every three weeks from four weeks ante partum (ap) to nine weeks postpartum (pp). Blood parameters studied were glucose, fructosamine, non-esterified fatty acids (NEFA), insulin, β-hydroxybutyrate, aspartate aminotransferase, glutamate dehydrogenase, haptoglobin and cholesterol. Results All herds had overconditioned dry cows that lost body condition substantially the first 4–6 weeks pp. Two herds had elevated levels of NEFA ap and three herds had elevated levels pp. One herd had low levels of insulin ap and low levels of cholesterol pp. Haptoglobin was detected pp in all herds and its usefulness is discussed. Conclusion NEFA was the parameter that most closely reflected the body condition losses while these losses were not seen in glucose and fructosamine levels. Insulin and cholesterol were potentially useful in herd profiles but need further investigation. Increased glutamate dehydrogenase suggested liver cell damage in all herds. PMID:18687108

  4. Concurrent and aerobic exercise training promote similar benefits in body composition and metabolic profiles in obese adolescents.

    Science.gov (United States)

    Monteiro, Paula Alves; Chen, Kong Y; Lira, Fabio Santos; Saraiva, Bruna Thamyres Cicotti; Antunes, Barbara Moura Mello; Campos, Eduardo Zapaterra; Freitas, Ismael Forte

    2015-11-26

    The prevalence of obesity in pediatric population is increasing at an accelerated rate in many countries, and has become a major public health concern. Physical activity, particularly exercise training, remains to be a cornerstone of pediatric obesity interventions. The purpose of our current randomized intervention trial was to compare the effects of two types of training matched for training volume, aerobic and concurrent, on body composition and metabolic profile in obese adolescents. Thus the aim of the study was compare the effects of two types of training matched for training volume, aerobic and concurrent, on body composition and metabolic profile in obese adolescents. 32 obese adolescents participated in two randomized training groups, concurrent or aerobic, for 20 weeks (50 mins x 3 per week, supervised), and were compared to a 16-subject control group. We measured the percentage body fat (%BF, primary outcome), fat-free mass, percentage of android fat by dual energy x-ray absorptiometry, and others metabolic profiles at baseline and after interventions, and compared them between groups using the Intent-to-treat design. In 20 weeks, both exercise training groups significantly reduced %BF by 2.9-3.6% as compare to no change in the control group (p = 0.042). There were also positive changes in lipid levels in exercise groups. No noticeable changes were found between aerobic and concurrent training groups. The benefits of exercise in reducing body fat and metabolic risk profiles can be achieved by performing either type of training in obese adolescents. RBR-4HN597.

  5. Characterization of the salt stress vulnerability of three invasive freshwater plant species using a metabolic profiling approach.

    Science.gov (United States)

    Thouvenot, Lise; Deleu, Carole; Berardocco, Solenne; Haury, Jacques; Thiébaut, Gabrielle

    2015-03-01

    The effects of salt stress on freshwater plants has been little studied up to now, despite the fact that they are expected to present different levels of salt sensitivity or salt resistance depending on the species. The aim of this work was to assess the effect of NaCl at two concentrations on three invasive freshwater species, Elodea canadensis, Myriophyllum aquaticum and Ludwigia grandiflora, by examining morphological and physiological parameters and using metabolic profiling. The growth rate (biomass and stem length) was reduced for all species, whatever the salt treatment, but the response to salt differed between the three species, depending on the NaCl concentration. For E. canadensis, the physiological traits and metabolic profiles were only slightly modified in response to salt, whereas M. aquaticum and L. grandiflora showed great changes. In both of these species, root number, photosynthetic pigment content, amino acids and carbohydrate metabolism were affected by the salt treatments. Moreover, we are the first to report the salt-induced accumulation of compatible solutes in both species. Indeed, in response to NaCl, L. grandiflora mainly accumulated sucrose. The response of M. aquaticum was more complex, because it accumulated not only sucrose and myo-inositol whatever the level of salt stress, but also amino acids such as proline and GABA, but only at high NaCl concentrations. These responses are the metabolic responses typically found in terrestrial plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Feeding fat from distillers dried grains with solubles to dairy heifers: II. Effects on metabolic profile.

    Science.gov (United States)

    Anderson, J L; Kalscheur, K F; Clapper, J A; Perry, G A; Keisler, D H; Garcia, A D; Schingoethe, D J

    2015-08-01

    The objective of this study was to determine if increased dietary fat from dried distillers grains with solubles (DDGS) in diets of growing heifers affected metabolic profile, plasma fatty acid profile, and reproductive maturation. Thirty-three Holstein heifers (133±18 d of age) were used in a 24-wk randomized complete block design with 3 treatment diets. Treatment diets were (1) control (CON) containing ground corn (15.9% of DM) and soybean products (17.9%), (2) low-fat (LFDG) containing low-fat DDGS (21.9%) and ground corn (11.9%), or (3) high-fat (HFDG) with traditional DDGS (33.8%). Diets were isonitrogenous and isocaloric, but the HFDG diet was formulated to contain 4.8% fat compared with 2.8% in the CON and LFDG diets. All 3 diets were limit-fed to 2.45% of body weight on a dry matter basis, and resulted in a mean average daily gain of 0.96kg/d across treatments. Every 4wk, jugular blood was collected for analysis of metabolites and metabolic hormones. During wk20 of the feeding period, blood samples were collected for analysis of plasma fatty acid profiles. When heifers weighed between 200 and 300kg of body weight, coccygeal blood samples were taken twice weekly for analysis of progesterone to determine if puberty had been reached. Plasma concentrations of nonesterified fatty acids were similar among treatments and consistent over the duration of the study. Plasma concentrations of β-hydroxybutyrate, insulin, insulin-like growth factor-1, and leptin were similar among heifers fed each treatment diet, but increased over the duration of the feeding period. Serum concentrations of glucose tended to be less in heifers fed HFDG compared with heifers fed the CON diet. Glucose concentrations fluctuated throughout the feeding period, but no treatment by time interactions were noted. Plasma urea N concentrations were less in heifers fed LFDG compared with heifers fed HFDG and CON diets. The concentrations of plasma urea N increased over the duration of the feeding

  7. Tandem mass spectrometry newborn screening for inborn errors of intermediary metabolism: abnormal profile interpretation.

    Science.gov (United States)

    Fernández-Lainez, C; Aguilar-Lemus, J J; Vela-Amieva, M; Ibarra-González, I

    2012-01-01

    Expanded newborn screening for inherited metabolic disorders using tandem mass spectrometry was introduced in 1990's and is widely used around the world. In contrast to conventional screening methods, tandem mass spectrometry does not measure single analytes but identifies and quantifies metabolite profiles; one single blood spot analyzed provides information of about 60 metabolites including amino acids, acylcarnitines and related ratios that enable the diagnosis of approximately 50 different diseases. However, the interpretation of these profiles can become quite complex. The aim of this work is to present in an easy and practical manner a comprehensive compilation of information needed for tandem mass neonatal screening profile interpretation, and basic actions for immediate follow up of abnormal results, including the tests that are required for confirmatory purposes. Other conditions not attributable to metabolic disorders which can lead to an abnormal profile of these markers are also described as well as a series of general recommendations which would be useful for health professionals who are beginning newborn screening for inborn errors of intermediary metabolism using tandem mass spectrometry.

  8. Association of glucocorticoid receptor polymorphisms with clinical and metabolic profiles in polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Gustavo A.Rosa Maciel

    2014-03-01

    Full Text Available OBJECTIVES: We aimed to investigate whether glucocorticoid receptor gene polymorphisms are associated with clinical and metabolic profiles in patients with polycystic ovary syndrome. Polycystic ovary syndrome is a complex endocrine disease that affects 5-8% of women and may be associated with metabolic syndrome, which is a risk factor for cardiovascular disease. Cortisol action and dysregulation account for metabolic syndrome development in the general population. As glucocorticoid receptor gene (NR3C1 polymorphisms regulate cortisol sensitivity, we hypothesized that variants of this gene may be involved in the adverse metabolic profiles of patients with polycystic ovary syndrome. METHOD: Clinical, metabolic and hormonal profiles were evaluated in 97 patients with polycystic ovary syndrome who were diagnosed according to the Rotterdam criteria. The alleles of the glucocorticoid gene were genotyped. Association analyses were performed using the appropriate statistical tests. RESULTS: Obesity and metabolic syndrome were observed in 42.3% and 26.8% of patients, respectively. Body mass index was positively correlated with blood pressure, triglyceride, LDL-c, total cholesterol, glucose and insulin levels as well as HOMA-IR values and inversely correlated with HDL-c and SHBG levels. The BclI and A3669G variants were found in 24.7% and 13.4% of alleles, respectively. BclI carriers presented a lower frequency of insulin resistance compared with wild-type subjects. CONCLUSION: The BclI variant is associated with a lower frequency of insulin resistance in women with polycystic ovary syndrome. Glucocorticoid gene polymorphism screening during treatment of the syndrome may be useful for identifying subgroups of at-risk patients who would benefit the most from personalized treatment.

  9. Profile of Cardiovascular Risk Factors in Patients with Coronary Heart Disease, Normal and Impaired Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    І.V. Cherniavska

    2015-11-01

    Full Text Available The aim of research was to conduct the comparative analysis of the profile of cardiovascular risk factors in patients with coronary heart disease (CHD and normal either impaired carbohydrate metabolism. Materials and methods. One hundred and forty two patients were observed. In order to estimate the rate of different forms of CHD depending on the state of carbohydrate metabolism such groups were formed: the first group consisted of 83 patients with type 2 diabetes mellitus (DM, the second group involved 34 patients with impaired glucose tolerance (IGT, the third group consisted of 25 patients with normal carbohydrate metabolism. The ischemic changes of myocardium were detected by ambulatory ECG monitoring with the obligatory achievement of submaximal heart rate during the research. Results. Silent myocardial ischemia was educed in 19 (22.9 % patients with type 2 DM, in 3 (8.8 % persons with IGT and in 2 (8.0 % patients with normal carbohydrate metabolism. Smoking, burdened heredity, violation in the haemostatic system more often occurred in the group of patients with type 2 DM and silent myocardial ischemia in comparison with the patients with type 2 DM without CHD. The profile of general population cardiovascular risk factors in patients with CHD and type 2 DM belongs to the most unfavorable. At the same time for patients with early violations of carbohydrate metabolism and normal carbohydrate metabolism such profile statistically does not differentiate meaningfully. Conclusions. Patients with type 2 DM and silent myocardial ischemia as compared to patients with type 2 DM without CHD have more expressed violations of indexes of general population cardiovascular risk factors for certain.

  10. Effects of whole grain, fish and bilberries on serum metabolic profile and lipid transfer protein activities: a randomized trial (Sysdimet.

    Directory of Open Access Journals (Sweden)

    Maria Lankinen

    Full Text Available We studied the combined effects of wholegrain, fish and bilberries on serum metabolic profile and lipid transfer protein activities in subjects with the metabolic syndrome.Altogether 131 subjects (40-70 y, BMI 26-39 kg/m(2 with impaired glucose metabolism and features of the metabolic syndrome were randomized into three groups with 12-week periods according to a parallel study design. They consumed either: a wholegrain and low postprandial insulin response grain products, fatty fish 3 times a week, and bilberries 3 portions per day (HealthyDiet, b wholegrain and low postprandial insulin response grain products (WGED, or c refined wheat breads as cereal products (Control. Altogether 106 subjects completed the study. Serum metabolic profile was studied using an NMR-based platform providing information on lipoprotein subclasses and lipids as well as low-molecular-weight metabolites.There were no significant differences in clinical characteristics between the groups at baseline or at the end of the intervention. Mixed model analyses revealed significant changes in lipid metabolites in the HealthyDiet group during the intervention compared to the Control group. All changes reflected increased polyunsaturation in plasma fatty acids, especially in n-3 PUFAs, while n-6 and n-7 fatty acids decreased. According to tertiles of changes in fish intake, a greater increase of fish intake was associated with increased concentration of large HDL particles, larger average diameter of HDL particles, and increased concentrations of large HDL lipid components, even though total levels of HDL cholesterol remained stable.The results suggest that consumption of diet rich in whole grain, bilberries and especially fatty fish causes changes in HDL particles shifting their subclass distribution toward larger particles. These changes may be related to known protective functions of HDL such as reverse cholesterol transport and could partly explain the known protective

  11. Daily consumption of white tea (Camellia sinensis (L.)) improves the cerebral cortex metabolic and oxidative profile in prediabetic Wistar rats.

    Science.gov (United States)

    Nunes, Ana R; Alves, Marco G; Tomás, Gonçalo D; Conde, Vanessa R; Cristóvão, Ana C; Moreira, Paula I; Oliveira, Pedro F; Silva, Branca M

    2015-03-14

    Diabetes mellitus (DM) is a major public health problem and its incidence is rising dramatically. The brain, particularly the cerebral cortex, is very susceptible to glucose fluctuations and hyperglycaemia-induced oxidative stress. Tea (Camellia sinensis (L.)) is widely consumed; however, the antidiabetic properties of white tea remain largely unexplored. In the present study, we investigated the effects of daily consumption of white tea on the cerebral cortex of prediabetic rats. The cerebral cortex metabolic profile was evaluated, and the expression levels of GLUT, phosphofructokinase-1, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 were assessed. LDH activity was also determined. The cerebral cortex oxidative profile was determined by evaluating its antioxidant power, lipid peroxidation and protein oxidation levels. Catalase, glutathione, glutamate, N-acetylaspartate, aspartate, choline, γ-aminobutyric acid, taurine and valine contents were determined. Daily consumption of white tea ameliorated glucose tolerance and insulin sensitivity. Moreover, white tea altered the cortex glycolytic profile, modulating GLUT expression and lactate and alanine contents. Finally, white tea consumption restored protein oxidation and lipid peroxidation levels and catalase expression, and improved antioxidant capacity. In conclusion, daily consumption of white tea improved the cerebral cortex metabolic and oxidative profile in prediabetic rats, suggesting it as a good, safe and inexpensive strategy to prevent DM-related effects in the cerebral cortex.

  12. Metabolic Profiling and Antioxidant Assay of Metabolites from Three Radish Cultivars (Raphanus sativus

    Directory of Open Access Journals (Sweden)

    Chang Ha Park

    2016-01-01

    Full Text Available A total of 13 anthocyanins and 33 metabolites; including organic acids, phenolic acids, amino acids, organic compounds, sugar acids, sugar alcohols, and sugars, were profiled in three radish cultivars by using high-performance liquid chromatography (HPLC and gas chromatography time-of-flight mass spectrometry (GC-TOFMS-based metabolite profiling. Total phenolics and flavonoids and their in vitro antioxidant activities were assessed. Pelargonidins were found to be the major anthocyanin in the cultivars studied. The cultivar Man Tang Hong showed the highest level of anthocyanins (1.89 ± 0.07 mg/g, phenolics (0.0664 ± 0.0033 mg/g and flavonoids (0.0096 ± 0.0004 mg/g. Here; the variation of secondary metabolites in the radishes is described, as well as their association with primary metabolites. The low-molecular-weight hydrophilic metabolite profiles were subjected to principal component analysis (PCA, hierarchical clustering analysis (HCA, Pearson’s correlation analysis. PCA fully distinguished the three radish cultivars tested. The polar metabolites were strongly correlated between metabolites that participate in the TCA cycle. The chemometrics results revealed that TCA cycle intermediates and free phenolic acids as well as anthocyanins were higher in the cultivar Man Tang Hong than in the others. Furthermore; superoxide radical scavenging activities and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging were investigated to elucidate the antioxidant activity of secondary metabolites in the cultivars. Man Tang Hong showed the highest superoxide radical scavenging activity (68.87% at 1000 μg/mL, and DPPH activity (20.78%, followed by Seo Ho and then Hong Feng No. 1. The results demonstrate that GC-TOFMS-based metabolite profiling, integrated with chemometrics, is an applicable method for distinguishing phenotypic variation and determining biochemical reactions connecting primary and secondary metabolism. Therefore; this study might

  13. Characterization of the inflammatory and metabolic profile of adipose tissue in a mouse model of chronic hypoxia.

    Science.gov (United States)

    van den Borst, Bram; Schols, Annemie M W J; de Theije, Chiel; Boots, Agnes W; Köhler, S Eleonore; Goossens, Gijs H; Gosker, Harry R

    2013-06-01

    In both obesity and chronic obstructive pulmonary disease (COPD), altered oxygen tension in adipose tissue (AT) has been suggested to evoke AT dysfunction, subsequently contributing to metabolic complications. Studying the effects of chronic hypoxia on AT function will add to our understanding of the complex pathophysiology of alterations in AT inflammation, metabolism, and mass observed in both obesity and COPD. This study investigated the inflammatory and metabolic profile of AT after chronic hypoxia. Fifty-two-week-old C57Bl/6J mice were exposed to chronic hypoxia (8% O2) or normoxia for 21 days, after which AT and plasma were collected. Adipocyte size, AT gene expression of inflammatory and metabolic genes, AT macrophage density, and circulating adipokine concentrations were measured. Food intake and body weight decreased upon initiation of hypoxia. However, whereas food intake normalized after 10 days, lower body weight persisted. Chronic hypoxia markedly reduced AT mass and adipocyte size. AT macrophage density and expression of Emr1, Ccl2, Lep, and Tnf were decreased, whereas Serpine1 and Adipoq expression levels were increased after chronic hypoxia. Concomitantly, chronic hypoxia increased AT expression of regulators of oxidative metabolism and markers of mitochondrial function and lipolysis. Circulating IL-6 and PAI-1 concentrations were increased, and leptin concentration was decreased after chronic hypoxia. Chronic hypoxia is associated with decreased rather than increased AT inflammation, and markedly decreased fat mass and adipocyte size. Furthermore, our data indicate that chronic hypoxia is accompanied by significant alterations in AT metabolic gene expression, pointing toward an enhanced AT metabolic rate.

  14. Metabolic profiling of vitamin C deficiency in Gulo-/- mice using proton NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, Gavin E. [University of Calgary, Biochemistry Research Group, Department of Biological Sciences (Canada); Joan Miller, B.; Jirik, Frank R. [University of Calgary, Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health (Canada); Vogel, Hans J., E-mail: vogel@ucalgary.ca [University of Calgary, Biochemistry Research Group, Department of Biological Sciences (Canada)

    2011-04-15

    Nutrient deficiencies are an ongoing problem in many populations and ascorbic acid is a key vitamin whose mild or acute absence leads to a number of conditions including the famously debilitating scurvy. As such, the biochemical effects of ascorbate deficiency merit ongoing scrutiny, and the Gulo knockout mouse provides a useful model for the metabolomic examination of vitamin C deficiency. Like humans, these animals are incapable of synthesizing ascorbic acid but with dietary supplements are otherwise healthy and grow normally. In this study, all vitamin C sources were removed after weaning from the diet of Gulo-/- mice (n = 7) and wild type controls (n = 7) for 12 weeks before collection of serum. A replicate study was performed with similar parameters but animals were harvested pre-symptomatically after 2-3 weeks. The serum concentration of 50 metabolites was determined by quantitative profiling of 1D proton NMR spectra. Multivariate statistical models were used to describe metabolic changes as compared to control animals; replicate study animals were used for external validation of the resulting models. The results of the study highlight the metabolites and pathways known to require ascorbate for proper flux.

  15. Metabolic profiles of exudates from chronic leg ulcerations.

    Science.gov (United States)

    Junka, Adam; Wojtowicz, Wojciech; Ząbek, Adam; Krasowski, Grzegorz; Smutnicka, Danuta; Bakalorz, Barbara; Boruta, Agnieszka; Dziadas, Mariusz; Młynarz, Piotr; Sedghizadeh, Parish Paymon; Bartoszewicz, Marzenna

    2017-04-15

    Chronic leg ulceration is a disease usually associated with other comorbidities, and significantly reduces patient quality of life. Infected leg ulcers can lead to limb-threatening sequelae or mortality. Leg ulcerations are colonized by a number of microbes that are able to cause life-threating infections in susceptible patients. Wound exudate is a body fluid that collects metabolites from patient eukaryotic cells and from prokaryotic bacterial communities inhabiting the wound. This study aimed at identification of metabolites in exudates collected from chronic leg ulcers, and correlation of this metabolome with patient comorbidities and microbiological status of the wound. By means of NMR spectroscopy we detected 42 metabolites of microbial or patient origin. The metabolites that were in abundance in exudates analyzed were lactate, lysine, and leucine. Metabolites were associated with the presence of neutrophils in wounds and destruction of high quantities of microbes, but also with hypoxia typical for venous insufficiency. The combination of nuclear magnetic resonance spectroscopy technique and partial least squares discriminant analysis allowed us to further discriminate groups of metabolites with regards to potential clinical meaning. For example, to discriminate between S.aureus versus all other isolated microbial species, or between patients suffering from type I or II diabetes versus patients without diabetes. Therefore, wound exudate seems to be highly applicable material for discriminant analysis performed with the use of NMR technique to provide for rapid metabolomics of chronic wound status. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver

    Directory of Open Access Journals (Sweden)

    Chuang Xu

    2016-02-01

    Full Text Available Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control cows were investigated to identify new biomarkers using 1H nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in β-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, γ-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows.

  17. Metabolic profile and cardiovascular risk factors in adult patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Mouna Feki Mnif

    2012-01-01

    Full Text Available Background: In congenital adrenal hyperplasia (CAH, long-term glucocorticoid treatment coupled with increased androgens may lead to undesirable metabolic effects. The aim of our report was to determine the prevalence of metabolic abnormalities and cardiovascular risk factors in a population of adult patients with CAH due to 21 hydroxylase deficiency. Materials and Methods: Twenty-six patients (11 males and 15 females, mean age ± SD=27.4±8.2 years were recruited. Anthropometry, body composition, metabolic parameters and cardiovascular risk factors were studied. Results: Obesity (overweight included was noted in 16 patients (61.5%, with android distribution in all cases. Bioelectrical impedance showed increased body fat mass in 12 patients (46.1%. Lipid profile alterations and carbohydrate metabolism disorders were detected in seven (26.9% and five (19.2% patients respectively. Moderate hepatic cytolysis, associated with hepatic steatosis, was found in one patient. Seven patients (27% had insulin resistance. Ambulatory blood pressure monitoring showed abnormalities in six patients (23%. Increased carotid intima media thickness was found in 14 patients (53.8%. Conclusion: Adult CAH patients tend to have altered metabolic parameters and a higher prevalence of cardiovascular risk factors. Lifelong follow-up, lifestyle modifications, and attempts to adjust and reduce the glucocorticoid doses seem important.

  18. Pathway analysis of kidney cancer using proteomics and metabolic profiling

    Directory of Open Access Journals (Sweden)

    Fiehn Oliver

    2006-11-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of patients present with disease which is already metastatic and for which there is currently no adequate treatment, and no biofluid screening tests exist for RCC. In this study, we have undertaken a comprehensive proteomic analysis and subsequently a pathway and network approach to identify biological processes involved in clear cell RCC (ccRCC. We have used these data to investigate urinary markers of RCC which could be applied to high-risk patients, or to those being followed for recurrence, for early diagnosis and treatment, thereby substantially reducing mortality of this disease. Results Using 2-dimensional electrophoresis and mass spectrometric analysis, we identified 31 proteins which were differentially expressed with a high degree of significance in ccRCC as compared to adjacent non-malignant tissue, and we confirmed some of these by immunoblotting, immunohistochemistry, and comparison to published transcriptomic data. When evaluated by several pathway and biological process analysis programs, these proteins are demonstrated to be involved with a high degree of confidence (p values Conclusion Extensive pathway and network analysis allowed for the discovery of highly significant pathways from a set of clear cell RCC samples. Knowledge of activation of these processes will lead to novel assays identifying their proteomic and/or metabolomic signatures in biofluids of patient at high risk for this disease; we provide pilot data for such a urinary bioassay. Furthermore, we demonstrate how the knowledge of networks, processes, and pathways altered in kidney cancer may be used to influence the choice of optimal therapy.

  19. Effects of short- and long-term Mediterranean-based dietary treatment on plasma LC-QTOF/MS metabolic profiling of subjects with metabolic syndrome features: The Metabolic Syndrome Reduction in Navarra (RESMENA) randomized controlled trial.

    Science.gov (United States)

    Bondia-Pons, Isabel; Martinez, José Alfredo; de la Iglesia, Rocio; Lopez-Legarrea, Patricia; Poutanen, Kaisa; Hanhineva, Kati; Zulet, Maria de los Ángeles

    2015-04-01

    Adherence to the Mediterranean diet has been associated with a reduced risk of metabolic syndrome (MetS). Metabolomics approach may contribute to identify beneficial associations of metabolic changes affected by Mediterranean diet-based interventions with inflammatory and oxidative-stress markers related to the etiology and development of the MetS. Liquid chromatography coupled to quadrupole-time of flight-MS metabolic profiling was applied to plasma from a 6-month randomized intervention with two sequential periods, a 2-month nutritional-learning intervention period, and a 4-month self-control period, with two energy-restricted diets; the RESMENA diet (based on the Mediterranean dietary pattern) and the Control diet (based on the American Heart Association guidelines), in 72 subjects with a high BMI and at least two features of MetS. The major contributing biomarkers of each sequential period were lipids, mainly phospholipids and lysophospholipids. Dependency network analysis showed a different pattern of associations between metabolic changes and clinical variables after 2 and 6 month of intervention, with a highly interconnected network during the nutritional-learning intervention period of the study. The 2-month RESMENA diet produced significant changes in the plasma metabolic profile of subjects with MetS features. However, at the end of the 6-month study, most of the associations between metabolic and clinical variables disappeared; suggesting that adherence to healthy dietary habits had declined during the self-control period. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Profiles in drug metabolism and toxicology: Richard Tecwyn Williams (1909-1979).

    Science.gov (United States)

    Jones, Alan Wayne

    2015-01-01

    This article pays homage to the life and work of a veritable pioneer in toxicology and drug metabolism, namely a Welshman, Richard Tecwyn Williams, FRS. Professor Williams, or RT as he was known, made major contributions to knowledge about the metabolism and toxicology of drugs and xenobiotics during a scientific career spanning nearly 50 years. Author or coauthor of close to 400 research articles and reviews, including a classic book, entitled Detoxication Mechanisms, Williams and his research school investigated virtually all aspects of drug metabolism, especially conjugations. In particular, the concepts of phase 1 and phase II metabolic pathways were introduced by Williams; the biliary excretion of drugs was extensively studied as were species differences in drug metabolism and detoxication. Besides investigating the metabolism of many pharmaceutical drugs, such as sulfonamides and thalidomide, Williams and his group investigated the disposition and fate in the body of organic pesticides and recreational drugs of abuse, such as amphetamine, methamphetamine and lysergic acid diethylamide (LSD).

  1. Profile of metabolic abnormalities seen in patients with type 2 diabetes mellitus and their first degree relatives with metabolic syndrome seen in Benin City, Edo state Nigeria.

    Science.gov (United States)

    Ogedengbe, Stephen O; Ezeani, Ignatius U

    2014-01-01

    To determine the profile of metabolic abnormalities in T2DM persons with metabolic syndrome and their non-diabetic first-degree relatives who also had metabolic syndrome in Benin City. This was a cross sectional case controlled study in which convenience sampling technique was used to recruit 106 persons with T2DM, 96 people who are first degree relatives of type 2 diabetic persons and 96 controls using a interviewer administered questionnaire technique. The following were assessed: anthropometric indices, blood pressure, serum lipid profile, fasting blood sugar, proteinuria, and microalbuminuria. The data obtained were analyzed using the statistical software-Statistical package for social sciences [SPSS] version 16. A p-value of less than 0.05 was taken as statistically significant. THE MEAN AGE (SD) OF THE STUDY GROUPS WERE: persons living with T2DM: 58.6 ± 11.2 years, control: 57.69 ± 60.8 years and FDR: 57.4 ± 10.6 years. No significant age and sex differences were observed in these groups. There were more females (59.7%) than males (40.3%) with T2DM. The prevalence of MS was 13.5%, 16.7%, and 87.1% in the control, FDR and T2DM patients respectively. For the T2DM group of subjects, impaired fasting glycaemia was the commonest metabolic abnormality followed by microalbuminuria, low HDL cholesterol, high LDL cholesterol, hypercholesterolaemia and hypertriglyceridaemia in decreasing frequency. For the FDR group, low HDL cholesterol was the commonest metabolic abnormality followed by hypertriglyceridaemia, impaired fasting glucose, high LDL cholesterol, hypertriglyceridaemia and microalbuminuria in decreasing frequency. Hypercholesterolemia and low HDL cholesterol were the commonest metabolic abnormalities in the control group. The prevalence of the MS in persons with T2DM in Nigeria appears to be high. Secondly, there is a high prevalence of lipid abnormalities in all the study groups.

  2. Metabolic profiling of human lung cancer blood plasma using 1H NMR spectroscopy

    Science.gov (United States)

    Kokova, Daria; Dementeva, Natalia; Kotelnikov, Oleg; Ponomaryova, Anastasia; Cherdyntseva, Nadezhda; Kzhyshkowska, Juliya

    2017-11-01

    Lung cancer (both small cell and non-small cell) is the second most common cancer in both men and women. The article represents results of evaluating of the plasma metabolic profiles of 100 lung cancer patients and 100 controls to investigate significant metabolites using 400 MHz 1H NMR spectrometer. The results of multivariate statistical analysis show that a medium-field NMR spectrometer can obtain the data which are already sufficient for clinical metabolomics.

  3. Hypoadiponectinemia in overweight children contributes to a negative metabolic risk profile 6 years later

    DEFF Research Database (Denmark)

    Kynde, Iben; Heitmann, Berit L; Bygbjerg, Ib C

    2009-01-01

    -density lipoprotein cholesterol ratio, serum triglycerides, systolic blood pressure, and the reciprocal value of fitness (maximum watts per kilogram). Overweight was defined using international classification of body mass index cutoff points for children. Plasma adiponectin, leptin, interleukin-8, and hepatocyte...... growth factor were assessed using immunochemical assays. Linear relationships were found between metabolic risk score and both plasma adiponectin (inverse, P = .02) and plasma leptin (P overweight but not normal-weight children, plasma...... adiponectin at baseline was inversely associated with metabolic risk score 6 years later (P = .04). In childhood, both hypoadiponectinemia and hyperleptinemia accompany a negative metabolic risk profile. In addition, circulating plasma adiponectin may be a useful biomarker to identify overweight children...

  4. EFFECTS OF PLYOMETRIC EXERCISE ON CONCOMITANTS OF FITNESS AND METABOLIC PROFILE IN TYPE 2 DIABETES PATIENTS

    Directory of Open Access Journals (Sweden)

    Mukadas Akindele

    2016-04-01

    Full Text Available Background: The prevalence of type 2 diabetes mellitus has been on the increase both in high and medium/low income countries. This increase is associated with health and economic consequences, especially in low sub-Saharan Africa that is resource stricken. Availability of affordable and easy to implement treatment intervention will surely reduce these health and economic sequealae of type 2 diabetes mellitus. This study was carried out to investigate the effects of plyometric exercise on concomitants of fitness and metabolic profile in type 2 diabetes patients. Methods: Simple random sampling technique was employed to recruit participants (n=27 for this study after meeting the inclusion criteria. Physical and physiological measurements were taken from the participants before and after six weeks of plyometric exercise for the experimental group and the control who did not participate in plyometric exercise. Results: A total number of twenty seven (control= 13 participated in the study and there are not significant differences in the physical and physiological parameters of the two groups. There are significant differences in the physiological parameter after six (6 weeks of plyometric exercise among the experimental groups while there are no significant differences among the control group. The eta squared statistics of few parameters show that the effect sizes range between medium and large association. Conclusion: It is concluded that among the concomitants of fitness, plyometric exercise is effective only in improving muscle fitness and body composition.

  5. NMR Metabolic profiling of green tea (Camellia sinensis L.) leaves grown at Kemuning, Indonesia

    Science.gov (United States)

    Wahyuni, D. S. C.; Kristanti, M. W.; Putri, R. K.; Rinanto, Y.

    2017-01-01

    Green tea (Camellia sinensis L.) has been famous as a beverage and natural medicine. It contains a broad range of primary and secondary metabolites i.e. polyphenols. Nuclear Magnetic Resonance (NMR) has been widely used for metabolic profiling in medicinal plants. It provides a very fast and detailed analysis of the biomolecular composition of crude extracts. Moreover, an NMR spectrum is a physical characteristic of a compound and thus highly reproducible. Therefore, this study aims to profile metabolites of three different varieties of green tea C. Sinensis grown in Kemuning, Middle Java. Three varieties of green tea collected on Kemuning (TR1 2025, Gambung 4/5, and Chiaruan 143) were used in this study. 1H-NMR spectra were recorded at 230C on a 400 MHz Agilent WB (Widebore). The analysis was performed on dried green tea leaves and analyzed by 1H-NMR, 2D-J-resolved and 1H-1H correlated spectroscopy (COSY). MestRenova version 11.0.0 applied to identify metabolites in samples. A 1H-NMR spectrum of tea showed amino acids and organic acids signal at the area δ 0.8-4.0. These were theanine, alanine, threonine, succinic acid, aspartic acid, lactic acid. Anomeric protons of carbohydrate were shown by the region of β-glucose, α-glucose, fructose and sucrose. The phenolic region was depicted at area δ 5.5-8.5. Epigallocatechin derivates and caffeine were detected in the tea leaves. The detail compound identification was observed and discussed in the text.

  6. NMR Metabolic profiling of green tea (Camellia sinensis L.) leaves grown at Kemuning, Indonesia

    International Nuclear Information System (INIS)

    Wahyuni, D. S. C.; Kristanti, M. W.; Putri, R. K.; Rinanto, Y.

    2017-01-01

    Green tea (Camellia sinensis L.) has been famous as a beverage and natural medicine. It contains a broad range of primary and secondary metabolites i.e. polyphenols. Nuclear Magnetic Resonance (NMR) has been widely used for metabolic profiling in medicinal plants. It provides a very fast and detailed analysis of the biomolecular composition of crude extracts. Moreover, an NMR spectrum is a physical characteristic of a compound and thus highly reproducible. Therefore, this study aims to profile metabolites of three different varieties of green tea C. Sinensis grown in Kemuning, Middle Java. Three varieties of green tea collected on Kemuning (TR1 2025, Gambung 4/5, and Chiaruan 143) were used in this study. 1H-NMR spectra were recorded at 230C on a 400 MHz Agilent WB (Widebore). The analysis was performed on dried green tea leaves and analyzed by 1H-NMR, 2D-J-resolved and 1H-1H correlated spectroscopy (COSY). MestRenova version 11.0.0 applied to identify metabolites in samples. A 1 H-NMR spectrum of tea showed amino acids and organic acids signal at the area δ 0.8–4.0. These were theanine, alanine, threonine, succinic acid, aspartic acid, lactic acid. Anomeric protons of carbohydrate were shown by the region of β-glucose, α-glucose, fructose and sucrose. The phenolic region was depicted at area δ 5.5-8.5. Epigallocatechin derivates and caffeine were detected in the tea leaves. The detail compound identification was observed and discussed in the text. (paper)

  7. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis

    Science.gov (United States)

    2012-01-01

    Background Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder accompanied with an increased risk of developing type 2 diabetes mellitus and cardiovascular disease; despite being a common condition, the pathogenesis of PCOS remains unclear. Our aim was to investigate the potential metabolic profiles for different phenotypes of PCOS, as well as for the early prognosis of complications. Methods A total of 217 women with PCOS and 48 healthy women as normal controls were studied. Plasma samples of subjects were tested using two different analytical platforms of metabolomics: 1H nuclear magnetic resonance (NMR) and gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS). Results Our results showed that carbohydrate, lipid and amino acid metabolisms were influenced in PCOS. The levels of lactate, long-chain fatty acids, triglyceride and very low-density lipoprotein were elevated, while glucose, phosphatidylcholine and high-density lipoprotein (HDL) concentrations were reduced in PCOS patients as compared with controls. Additionally, the levels of alanine, valine, serine, threonine, ornithine, phenylalanine, tyrosine and tryptophan were generally increased, whereas the levels of glycine and proline were significantly reduced in PCOS samples compared to controls. Furthermore, the ratio of branched-chain amino acid to aromatic amino acid concentrations (BCAA/AAA) in PCOS plasma was significantly reduced in PCOS patients and was insusceptible to obesity and insulin sensitivity. Conclusions Our results suggested that the enhanced glycolysis and inhibited tricarboxylic acid cycle (TAC) in women with PCOS. Decrease of BCAA/AAA ratio was directly correlated with the development of PCOS. Ovulatory dysfunction of PCOS patients was associated with raised production of serine, threonine, phenylalanine, tyrosine and ornithine. Elevated levels of valine and leucine, and decreased concentrations of glycine in PCOS plasma could contribute to insulin

  8. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver

    International Nuclear Information System (INIS)

    Lee, Min-Ho; Kim, Mingoo; Lee, Byung-Hoon; Kim, Ju-Han; Kang, Kyung-Sun; Kim, Hyung-Lae; Yoon, Byung-Il; Chung, Heekyoung; Kong, Gu; Lee, Mi-Ock

    2008-01-01

    Valproic acid (VPA) is used clinically to treat epilepsy, however it induces hepatotoxicity such as microvesicular steatosis. Acute hepatotoxicity of VPA has been well documented by biochemical studies and microarray analysis, but little is known about the chronic effects of VPA in the liver. In the present investigation, we profiled gene expression patterns in the mouse liver after subchronic treatment with VPA. VPA was administered orally at a dose of 100 mg/kg/day or 500 mg/kg/day to ICR mice, and the livers were obtained after 1, 2, or 4 weeks. The activities of serum liver enzymes did not change, whereas triglyceride concentration increased significantly. Microarray analysis revealed that 1325 genes of a set of 32,996 individual genes were VPA responsive when examined by two-way ANOVA (P 1.5). Consistent with our previous results obtained using an acute VPA exposure model (Lee et al., Toxicol Appl Pharmacol. 220:45-59, 2007), the most significantly over-represented biological terms for these genes included lipid, fatty acid, and steroid metabolism. Biological pathway analysis suggests that the genes responsible for increased biosynthesis of cholesterol and triglyceride, and for decreased fatty acid β-oxidation contribute to the abnormalities in lipid metabolism induced by subchronic VPA treatment. A comparison of the VPA-responsive genes in the acute and subchronic models extracted 15 commonly altered genes, such as Cyp4a14 and Adpn, which may have predictive power to distinguish the mode of action of hepatotoxicants. Our data provide a better understanding of the molecular mechanisms of VPA-induced hepatotoxicity and useful information to predict steatogenic hepatotoxicity

  9. Change in Metabolic Profile after 1-Year Nutritional-Behavioral Intervention in Obese Children

    Directory of Open Access Journals (Sweden)

    Elvira Verduci

    2015-12-01

    Full Text Available Research findings are inconsistent about improvement of specific cardio-metabolic variables after lifestyle intervention in obese children. The aim of this trial was to evaluate the effect of a 1-year intervention, based on normocaloric diet and physical activity, on body mass index (BMI, blood lipid profile, glucose metabolism and metabolic syndrome. Eighty-five obese children aged ≥6 years were analyzed. The BMI z-score was calculated. Fasting blood samples were analyzed for lipids, insulin and glucose. The homeostatic model assessment of insulin resistance (HOMA-IR was calculated and insulin resistance was defined as HOMA-IR >3.16. HOMA-β%, quantitative insulin sensitivity check index and triglyceride glucose index were calculated. The metabolic syndrome was defined in accordance with the International Diabetes Federation criteria. At the end of intervention children showed a reduction (mean (95% CI in BMI z-score (−0.58 (−0.66; −0.50, triglycerides (−0.35 (−0.45; −0.25 mmol/L and triglyceride glucose index (−0.29 (−0.37; −0.21, and an increase in HDL cholesterol (0.06 (0.01; 0.11 mmol/L. Prevalence of insulin resistance declined from 51.8% to 36.5% and prevalence of metabolic syndrome from 17.1% to 4.9%. Nutritional-behavioral interventions can improve the blood lipid profile and insulin sensitivity in obese children, and possibly provide benefits in terms of metabolic syndrome.

  10. Targeted and Untargeted Metabolic Profiling of Wild Grassland Plants identifies Antibiotic and Anthelmintic Compounds Targeting Pathogen Physiology, Metabolism and Reproduction

    OpenAIRE

    French, Katherine E.; Harvey, Joe; McCullagh, James S. O.

    2018-01-01

    Plants traditionally used by farmers to manage livestock ailments could reduce reliance on synthetic antibiotics and anthelmintics but in many cases their chemical composition is unknown. As a case study, we analyzed the metabolite profiles of 17 plant species and 45 biomass samples from agricultural grasslands in England using targeted and untargeted metabolite profiling by liquid-chromatography mass spectrometry. We identified a range of plant secondary metabolites, including 32 compounds w...

  11. Targeted and untargeted metabolic profiling of wild grassland plants identifies antibiotic and anthelmintic compounds targeting pathogen physiology, metabolism and reproduction

    OpenAIRE

    French, KE; Harvey, J; Mccullagh, J

    2018-01-01

    Plants traditionally used by farmers to manage livestock ailments could reduce reliance on synthetic antibiotics and anthelmintics but in many cases their chemical composition is unknown. As a case study, we analyzed the metabolite profiles of 17 plant species and 45 biomass samples from agricultural grasslands in England using targeted and untargeted metabolite profiling by liquid‐chromatography mass‐spectrometry. We identified a range of plant secondary metabolites, including 32 compounds w...

  12. Metabolic screening and metabolomics analysis in the Intellectual Developmental Disorders Mexico Study

    Directory of Open Access Journals (Sweden)

    Isabel Ibarra-González

    2017-07-01

    Full Text Available Objective. Inborn errors of metabolism (IEM are genetic conditions that are sometimes associated with intellectual  developmental disorders (IDD. The aim of this study is to contribute to the metabolic characterization of IDD of unknown etiology in Mexico. Materials and methods. Metabolic screening using tandem mass spectrometry and fluorometry will be performed to rule out IEM. In addition,target metabolomic analysis will be done to characterize the metabolomic profile of patients with IDD. Conclusion. Identification of new metabolomic profiles associated withIDD of unknown etiology and comorbidities will contribute to the development of novel diagnostic and therapeutic schemes for the prevention and treatment of IDD in Mexico.

  13. Metabolic Pathway Assignment of Plant Genes based on Phylogenetic Profiling–A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Sandra Weißenborn

    2017-10-01

    study highlights the potential and challenges associated with phylogenetic profiling methods for the detection of functional relationships between genes as well as the need to enlarge the set of plant genes with proven secondary metabolism involvement as well as the limitations of distinct pathways as abstractions of relationships between genes.

  14. Distribution of Metabolically Active Prokaryotes (Archaea and Bacteria) throughout the Profiles of Chernozem and Brown Semidesert Soil

    Science.gov (United States)

    Semenov, M. V.; Manucharova, N. A.; Stepanov, A. L.

    2016-02-01

    The distribution of metabolically active cells of archaea and bacteria in the profiles of typical chernozems (Voronezh oblast) and brown semidesert soils (Astrakhan oblast) of natural and agricultural ecosystems was studied using the method of fluorescent in situ hybridization (FISH). The studied soils differed sharply in the microbial biomass and in the numbers of metabolically active cells of archaea and bacteria. The number of active bacterial cells was 3.5-7.0 times greater than that of archaea. In the arable chernozem, the numbers of active cells of archaea and bacteria were 2.6 and 1.5 times, respectively, lower than those in the chernozem under the shelterbelt. The agricultural use of the brown semidesert soil had little effect on the abundances of bacteria and archaea. The soil organic carbon content was the major factor controlling the numbers of metabolically active cells of both domains. However, the dependence of the abundance of bacteria on the organic matter content was more pronounced. The decrease in the organic carbon and total nitrogen contents down the soil profiles was accompanied by the decrease in the bacteria: archaea ratio attesting to a better adaptation of archaea to the permanent deficiency of carbon and nitrogen. The bacteria: archaea ratio can serve as an ecotrophic indicator of the state of soil microbial communities.

  15. Association of metabolically healthy obesity with depressive symptoms: pooled analysis of eight studies.

    Science.gov (United States)

    Jokela, M; Hamer, M; Singh-Manoux, A; Batty, G D; Kivimäki, M

    2014-08-01

    The hypothesis of metabolically healthy obesity posits that adverse health effects of obesity are largely avoided when obesity is accompanied by a favorable metabolic profile. We tested this hypothesis with depressive symptoms as the outcome using cross-sectional data on obesity, metabolic health and depressive symptoms. Data were extracted from eight studies and pooled for individual-participant meta-analysis with 30,337 men and women aged 15-105 years (mean age=46.1). Clinic measures included height, weight and metabolic risk factors (high blood pressure, high triglycerides, low high-density lipoprotein cholesterol, high C-reactive protein and high glycated hemoglobin). Depressive symptoms were assessed using clinical interview or standardized rating scales. The pooled sample comprised 7673 (25%) obese participants (body mass index ⩾30 kg m(-2)). Compared to all non-obese individuals, the OR for depressive symptoms was higher in metabolically unhealthy obese individuals with two or more metabolic risk factors (1.45; 95% confidence interval (CI)=1.30, 1.61) and for metabolically healthy obese with ⩽1 metabolic risk factor (1.19; 95% CI=1.03, 1.37), adjusted for sex, age and race/ethnicity. Metabolically unhealthy obesity was associated with higher depression risk (OR=1.23; 95% CI=1.05, 1.45) compared with metabolically healthy obesity. These associations were consistent across studies with no evidence for heterogeneity in estimates (all I(2)-valuesobese persons with a favorable metabolic profile have a slightly increased risk of depressive symptoms compared with non-obese, but the risk is greater when obesity is combined with an adverse metabolic profile. These findings suggest that metabolically healthy obesity is not a completely benign condition in relation to depression risk.

  16. Metabolic profiling uncovers a phenotypic signature of small for gestational age in early pregnancy.

    LENUS (Irish Health Repository)

    Horgan, Richard P

    2012-01-31

    Being born small for gestational age (SGA) confers increased risks of perinatal morbidity and mortality and increases the risk of cardiovascular complications and diabetes in later life. Accumulating evidence suggests that the etiology of SGA is usually associated with poor placental vascular development in early pregnancy. We examined metabolomic profiles using ultra performance liquid chromatography-mass spectrometry (UPLC-MS) in three independent studies: (a) venous cord plasma from normal and SGA babies, (b) plasma from a rat model of placental insufficiency and controls, and (c) early pregnancy peripheral plasma samples from women who subsequently delivered a SGA baby and controls. Multivariate analysis by cross-validated Partial Least Squares Discriminant Analysis (PLS-DA) of all 3 studies showed a comprehensive and similar disruption of plasma metabolism. A multivariate predictive model combining 19 metabolites produced by a Genetic Algorithm-based search program gave an Odds Ratio for developing SGA of 44, with an area under the Receiver Operator Characteristic curve of 0.9. Sphingolipids, phospholipids, carnitines, and fatty acids were among this panel of metabolites. The finding of a consistent discriminatory metabolite signature in early pregnancy plasma preceding the onset of SGA offers insight into disease pathogenesis and offers the promise of a robust presymptomatic screening test.

  17. Transcriptome and Metabolic Profiling Provides Insights into Betalain Biosynthesis and Evolution in Mirabilis jalapa.

    Science.gov (United States)

    Polturak, Guy; Heinig, Uwe; Grossman, Noam; Battat, Maor; Leshkowitz, Dena; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph

    2018-01-08

    Betalains are tyrosine-derived pigments that occur solely in one plant order, the Caryophyllales, where they largely replace the anthocyanins in a mutually exclusive manner. In this study, we conducted multi-species transcriptome and metabolic profiling in Mirabilis jalapa and additional betalain-producing species to identify candidate genes possibly involved in betalain biosynthesis. Among the candidates identified, betalain-related cytochrome P450 and glucosyltransferase-type genes, which catalyze tyrosine hydroxylation or (hydroxy)cinnamoyl-glucose formation, respectively, were further functionally characterized. We detected the expression of genes in the flavonoid/anthocyanin biosynthetic pathways as well as their metabolite intermediates in betalain-accumulating M. jalapa flowers, and found that the anthocyanin-related gene ANTHOCYANIDIN SYNTHASE (MjANS) is highly expressed in the betalain-accumulating petals. However, it appears that MjANS contains a significant deletion in a region spanning the corresponding enzyme active site. These findings provide novel insights into betalain biosynthesis and a possible explanation for how anthocyanins have been lost in this plant species. Our study also implies a complex, non-uniform history for the loss of anthocyanin production across betalain producers, previously assumed to be strictly due to diminished expression of anthocyanin-related genes. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  18. Use of metabolic profiles in dairy cattle in tropical and subtropical countries on smallholder dairy farms

    International Nuclear Information System (INIS)

    Whitaker, D.A.; Goodger, W.J.; Garcia, M.; Perera, B.M.A.O.; Wittwer, F.

    1999-01-01

    Metabolic profile testing has generally been used as part of a multi-disciplinary approach for dairy herds in temperate climates. Our goal was to evaluate the effectiveness of the technique for identifying constraints on productivity in small herds in environments less favourable for milk production. Metabolites tested were chosen for stability in the sample after collection of blood, ease of analysis and practical knowledge of the meaning of the results. Blood levels of five different metabolites in low producing dairy cows belonging to smallholders in tropical and subtropical environments were measured. The study involved 13 projects with 80 cows in each, carried out in six Latin American, six Asian and one southern European country. Data was also collected on feeding, body condition (BCS) and weight change, parasitism and reproduction. In Chile, Mexico, Paraguay, Philippines, Uruguay and Venezuela globulin levels were high in more than 17% of cows sampled on each occasion. Globulin levels were also high in Turkey and Viet Nam on one or more occasions. In Paraguay 49% of cows had high globulin levels at 2-3 months after calving. These results suggest that inflammatory disease was present to a potentially important degree, although this was not always investigated and not always taken into account. In all countries except Mexico and Venezuela high β-hydroxybutyrate (BHB) levels before calving in many cows highlighted the presence of condition loss in late pregnancy, an important potential constraint on productivity and fertility. Fewer cows showed high BHB levels in lactation where change in BCS and weight was more sensitive for measuring negative energy balance. Urea concentrations were only found to be low in small numbers of cows suggesting that dietary protein shortages were not common. Albumin values were low mainly in cows where globulin values were high and so did not generally provide additional information. The exception was in China where pregnant yaks

  19. Gender effect on the metabolic profile of ostriches (Struthio camelus domesticus

    Directory of Open Access Journals (Sweden)

    Carmelo Di Meo

    2010-01-01

    Full Text Available In order to better define the effect of the sex on the metabolic profile of young ostriches (Struthio camelus domesticus, forty birds were divided into two groups by sex (20 males vs20 females. The animals were fed ad libitumnatural pasture and corn silage. The daily ration was completed by administering 1200 g/head of a commercial concentrate with the following chemical composition expressed as a percentage of dry mat- ter: crude protein 18.8, crude fibre 8.4, ether extract 3.6, ash 7.5. After about 12 h of fasting, in the mor- ning the blood was collected from the wing vein. The following biochemical parameters were determined: glu- cose, cholesterol, triglycerides, lactate (LAC, total protein (TP, uric acid, total bilirubin (Tbil, creatinine (CREA, calcium (Ca, magnesium (Mg, phosphorus (P, natrium (Na, potassium (K, chloride (Cl, iron (Fe, aspartate aminotransferase (AST, alanine aminotransferase (ALT, alkaline phosphatase (AP, choline- sterase (ChE; α-amylase (Amyl, lipase (LIPA; γ-glutamyltransferase (GGT. Sex significantly affected only some haematic parameters: in the females total protein and calcium were higher than in the males (TP, 43.3 vs38.9 g/l, respectively for females and males, P< 0.05; Ca, 2.99 vs2.59 mmol/l, respectively for females and males, P< 0.01. The other haematic parameters did not show signifi- cant differences by sex, and the average values were: glucose (9.87 mmol/l, cholesterol (1.96 mmol/l, triglycerides (1.56 mmol/l, LAC (6.60 mmol/l, uric acid (361 mmol/l, CREA (31.95 µmol/l, Na (144.8 mmol/l, K (3.27 mmol/l, Cl (109.7 mmol/l, P (1.47 mmol/l, Mg (1.10 mmol/l, Fe (9.22 µmol/l, Tbil (9.28 µmol/l, AST (341.3 U/l, ALT (11.42 U/l, AP (75.8 U/l, GGT (10.07 U/l, Amyl (6.97 U/l, LIPA (241.2 U/l, ChE (385.1 U/l. The results of our study, in agreement with previous findings, contribute to enhance the knowledge on the metabolic profile of ostriches in function of the sex.

  20. Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine.

    Science.gov (United States)

    Selen Alpergin, Ebru S; Bolandnazar, Zeinab; Sabatini, Martina; Rogowski, Michael; Chiellini, Grazia; Zucchi, Riccardo; Assadi-Porter, Fariba M

    2017-01-01

    Complex diseases such as polycystic ovary syndrome (PCOS) are associated with intricate pathophysiological, hormonal, and metabolic feedbacks that make their early diagnosis challenging, thus increasing the prevalence risks for obesity, cardiovascular, and fatty liver diseases. To explore the crosstalk between endocrine and lipid metabolic pathways, we administered 3-iodothyronamine (T1AM), a natural analog of thyroid hormone, in a mouse model of PCOS and analyzed plasma and tissue extracts using multidisciplinary omics and biochemical approaches. T1AM administration induces a profound tissue-specific antilipogenic effect in liver and muscle by lowering gene expression of key regulators of lipid metabolism, PTP1B and PLIN2, significantly increasing metabolites (glucogenic, amino acids, carnitine, and citrate) levels, while enhancing protection against oxidative stress. In contrast, T1AM has an opposing effect on the regulation of estrogenic pathways in the ovary by upregulating STAR, CYP11A1, and CYP17A1. Biochemical measurements provide further evidence of significant reduction in liver cholesterol and triglycerides in post-T1AM treatment. Our results shed light onto tissue-specific metabolic vs. hormonal pathway interactions, thus illuminating the intricacies within the pathophysiology of PCOS This study opens up new avenues to design drugs for targeted therapeutics to improve quality of life in complex metabolic diseases. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Changes in cyclooxygenase activity and prostaglandin profiles during monoamine metabolism in rat brain homogenates.

    Science.gov (United States)

    Seregi, A; Hertting, G

    1984-04-01

    The effect of different monoamine oxidase (MAO) substrates on the endogenous prostaglandin(PG) and thromboxane (TX) biosynthesis in rat brain homogenates was studied. In the absence of MAO substrates the following pattern of arachidonic acid metabolites was found: PGD2 greater than PGF2 alpha greater than TXB2 greater than PGE2 greater than or equal to 6ketoPGF1 alpha. Phenylethylamine(PEA) stimulated the cyclooxygenase activity 1.5-fold (expressed as the sum of the products formed), without altering the product profile. Tyrosine(Tyr) caused a twofold increase in cyclooxygenase activity and slightly modified the product composition (PGD2=PGF2 alpha greater than PGE2 greater than TXB2 greater than 6ketoPGF1 alpha). In the presence of noradrenaline(NA) there was a threefold stimulation of cyclooxygenase activity. The increase of PGF2 alpha was more pronounced than that of the other metabolites (PGF2 alpha greater than PGD2 greater than TXB2 greater than PGE2 greater than 6ketoPGF1 alpha). alpha-Methylnoradrenaline(alpha metNA ) (not a substrate for MAO but bearing the catechol group) altered the PG pattern in the same way as NA, but without enhancing the cyclooxygenase activity. PEA or Tyr when administered together with alpha metNA produced a NA-like effect both on the cyclooxygenase activity and on the product profile. The increase in cyclooxygenase activity was abolished by pargyline or by catalase, independently of the activator system used. The results support the hypothesis that NA-stimulation of brain PG (and TX) formation is mediated by H2O2 formed during the degradation of the amine via MAO. The role of the catechol group in protection of the cyclooxygenase against inactivation and in the changes of product composition, as well as the possible significance of the coupling between arachidonate and monoamine metabolism is discussed.

  2. The Relationships of Obesity-Related Genetic Variants With Metabolic Profiles and Response to Metformin in Clozapine-Treated Patients With Schizophrenia.

    Science.gov (United States)

    Chen, Po-Yu; Lu, Mong-Liang; Huang, Ming-Chyi; Kao, Chung-Feng; Kuo, Po-Hsiu; Chiu, Chih-Chiang; Lin, Shih-Ku; Chen, Chun-Hsin

    2015-10-01

    Obesity-related genetic variants, including TMEM18 (rs6548238), SH2B1 (rs7498665), and GNPDA2 (rs10938397), have been shown to be associated with obesity in the general population. Our study aimed to test whether these genetic variants are associated with metabolic profiles and metformin treatment response in clozapine-treated schizophrenic patients. We recruited 107 clozapine-treated patients who were genotyped and measured their metabolic profiles. Fifty-five subjects, who had at least 1 metabolic abnormality in a range of measures, were subsequently randomized to a 24-week trial of metformin (n = 28) or placebo (n = 27). We examined the associations between TMEM18, SH2B1, GNPDA2 genetic variants and metabolic profiles at baseline in all patients and metabolic changes in the trial groups. We found a significant association between SH2B1 and blood pressure at baseline in all patients. In the metformin group, TMEM18 minor allele carriers had a greater reduction in insulin levels (P = 0.04). A significantly higher proportion of TMEM18 and GNPDA2 minor allele carriers (60% and 40%) lost more than 7% of their body weight after metformin treatment as compared with their homozygous counterparts (21.7% and 15.4%, P = 0.02 and 0.004, respectively).There were trends toward favorable metabolic changes in minor allele carrier groups. In the placebo group, no association between genetic variants and changes in metabolic profiles was found. In conclusion, the study results suggest that these genes might be associated with metabolic abnormalities and response to metformin in clozapine-treated patients with schizophrenia.

  3. Impact of probiotics during weaning on the metabolic and inflammatory profile: follow-up at school age.

    Science.gov (United States)

    Karlsson Videhult, Frida; Andersson, Yvonne; Öhlund, Inger; Stenlund, Hans; Hernell, Olle; West, Christina E

    2015-01-01

    We hypothesised that feeding the probiotic Lactobacillus paracasei ssp. paracasei F19 (LF19) (dep. nr LMG P-17806) during weaning would program the metabolic and inflammatory profile and studied its association with previously assessed body composition. In a double-blind, placebo-controlled trial, 179 infants were randomised to daily feeding of cereals with or without LF19 10(8) CFU from 4 to 13 months of age. At age 8-9 years, 120 children were re-assessed. Using high-sensitivity multiplex immunoassay technology and ELISA, we found that overweight/obese children had increased plasma C-peptide, plasminogen activator inhibitor-1, leptin and serum high-sensitivity C-reactive protein (hsCRP) after overnight fasting compared with normal weight children, independently of LF19. After excluding the obese, leptin and hsCRP were still increased, revealing an aberrant metabolic and inflammatory state already in overweight, pre-pubertal children. Higher body mass index z-score, sagittal abdominal diameter, truncal and total body fat % were associated with an aberrant metabolic and inflammatory profile, emphasising the need for early prevention strategies although no programming effect of LF19 was observed.

  4. Influence of the RelA Activity on E. coli Metabolism by Metabolite Profiling of Glucose-Limited Chemostat Cultures

    Directory of Open Access Journals (Sweden)

    Sónia Carneiro

    2012-10-01

    Full Text Available Metabolite profiling of E. coli W3110 and the isogenic DrelA mutant cells was used to characterize the RelA-dependent stringent control of metabolism under different growth conditions. Metabolic profiles were obtained by gas chromatography–mass spectrometry (GC-MS analysis and revealed significant differences between E. coli strains grown at different conditions. Major differences between the two strains were assessed in the levels of amino acids and fatty acids and their precursor metabolites, especially when growing at the lower dilution rates, demonstrating differences in their metabolic behavior. Despite the fatty acid biosynthesis being the most affected due to the lack of the RelA activity, other metabolic pathways involving succinate, lactate and threonine were also affected. Overall, metabolite profiles indicate that under nutrient-limiting conditions the RelA-dependent stringent response may be elicited and promotes key changes in the E. coli metabolism.

  5. Metabolic profile in growing buffalo heifers fed diet with different energy content

    Directory of Open Access Journals (Sweden)

    B. Gasparrini

    2010-02-01

    Full Text Available Aim of this study was to verify the relation among the mediators and indicators of nutritional status like insulin, glucagon, urea, cholesterol, triglycerides and total proteins in growing buffalo heifers, fed diets with different energy density. 12 Murrah heifers were randomly allocated into two dietary treatments (High, Group H; Low, Group L that differed in energetic levels (Group H: 5.8 UFL/d; Group L: 3.6 UFL/d. Every 30 days, for a total of five times, blood samples were collected at 08.00 h, before feeding, from the jugular vein in vacutainer tubes and analysed to determine metabolic profile. Data on haematic constants were analysed by ANOVA for repeated measures with treatment as the main factor. Low energy availability and low NSC reduced the glucose and insulin and increased glucagone and urea blood levels. The increase of NSC in the diet of group H during the experiment may caused a reduction of the fibre digestibility after the period of adaptation of the rumen microflora and, as a paradox effect, suffered for an energetic lack with a subsequent activation of lipolysis and mobilization of their body reserves. Liver and muscular synthesis increase in group with a high energy availability.

  6. Effects of Supplemental Exogenous Emulsifier on Performance, Nutrient Metabolism, and Serum Lipid Profile in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Amitava Roy

    2010-01-01

    Full Text Available The effects of an exogenous emulsifier, glyceryl polyethylene glycol ricinoleate, on performance and carcass traits of broiler chickens were assessed. The emulsifier was added to the diet at dose rates of 0 (control, 1 (E1 and 2 (E2 % of added fat (saturated palm oil. Live weight gain (<.07 and feed conversion ratio (<.05 in 39 days were higher in the E1 dietary group. Gain: ME intake and gain: protein intake during the grower phase improved quadratically (<.05. Gross carcass traits were not affected. Body fat content and fat accretion increased (<.05 and liver fat content decreased (<.05 linearly with the level of emulsifier in diet. Fat excretion decreased (<.001 leading to increased ileal fat digestibility (<.06 in the E1 group (quadratic response. Metabolizable intake of N (<.1 and fat (<.05 increased quadratically due to supplementation of emulsifier in diet. Metabolism of trace elements and serum lipid profiles were not affected. The study revealed that supplementation of exogenous emulsifiers in diets containing moderate quantities of added vegetable fats may substantially improve broiler performance.

  7. Creatine Metabolism and Safety Profiles after Six-Week Oral Guanidinoacetic Acid Administration in Healthy Humans

    Science.gov (United States)

    Ostojic, Sergej M.; Niess, Barbara; Stojanovic, Marko; Obrenovic, Milos

    2013-01-01

    Objectives; Guanidinoacetic acid (GAA) is a natural precursor of creatine, yet the potential use of GAA as a nutritional additive for restoring creatine availability in humans has been limited by unclear efficacy and safety after exogenous GAA administration. The present study evaluated the effects of orally administered GAA on serum and urinary GAA, creatine and creatinine concentration, and on the occurrence of adverse events in healthy humans. Methods and Results; Twenty-four healthy volunteers were randomized in a double-blind design to receive either GAA (2.4 grams daily) or placebo (PLA) by oral administration for 6 weeks. Clinical trial registration: www.clinicaltrials.gov, identification number NCT01133899. Serum creatine and creatinine increased significantly from before to after administration in GAA-supplemented participants (P creatine levels above 70 µmol/L. Conclusion; Exogenous GAA is metabolized to creatine, resulting in a significant increase of fasting serum creatine after intervention. GAA had an acceptable side-effects profile with a low incidence of biochemical abnormalities. PMID:23329885

  8. Proton NMR metabolic profiling of CSF reveals distinct differentiation of meningitis from negative controls.

    Science.gov (United States)

    Chatterji, Tanushri; Singh, Suruchi; Sen, Manodeep; Singh, Ajai Kumar; Agarwal, Gaurav Raj; Singh, Deepak Kumar; Srivastava, Janmejai Kumar; Singh, Alka; Srivastava, Rajeshwar Nath; Roy, Raja

    2017-06-01

    Cerebrospinal fluid (CSF) is an essential bio-fluid of the central nervous system (CNS), playing a vital role in the protection of CNS and performing neuronal function regulation. The chemical composition of CSF varies during onset of meningitis, neurodegenerative disorders (positive controls) and in traumatic cases (negative controls). The study design was broadly categorized into meningitis cases, negative controls and positive controls. Further differentiation among the three groups was carried out using Principal Component Analysis (PCA) followed by supervised Partial Least Square Discriminant Analysis (PLS-DA). The statistical analysis of meningitis vs. negative controls using PLS-DA model resulted in R 2 of 0.97 and Q 2 of 0.85. There was elevation in the levels of ketone bodies, total free amino acids, glutamine, creatine, citrate and choline containing compounds (choline and GPC) in meningitis cases. Similarly, meningitis vs. positive controls resulted in R 2 of 0.80 and Q 2 of 0.60 and showed elevation in the levels of total free amino acids, glutamine, creatine/creatinine and citrate in the meningitis group. Four cases of HIV were identified by PLS-DA model as well as by clinical investigations. On the basis of metabolic profile it was found that negative control CSF samples are more appropriate for differentiation of meningitis than positive control CSF samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The impact of body condition after calving on metabolism and milk progesterone profiles in two breeds of dairy cows.

    Science.gov (United States)

    O'Hara, Lisa A; Båge, Renée; Holtenius, Kjell

    2016-10-20

    Optimal body condition in early lactation is generally accepted as a prerequisite for good reproductive performance. Examination of milk progesterone profiles offers an objective method for characterization of postpartum ovarian activity in dairy cows. The present study investigated the relationship between body condition after calving, some metabolic parameters in blood plasma, and fertility, as reflected by milk progesterone profiles in the two dairy breeds Swedish Red (SR) and Swedish Holstein (SH). Multiparous dairy cows (n = 73) of SR and SH breeds were selected and divided into three groups based on their body condition score (BCS) after parturition. Selected plasma metabolites were determined, milk progesterone profiles were identified and body condition was scored. Over-conditioned cows and atypical progesterone profiles were more common among SR cows. Insulin sensitivity was lower and IGF 1 higher among SR cows. Insulin was positively related to body condition, but not related to breed. Atypical progesterone profiles were more common and insulin sensitivity lower in SR than in SH cows, but the SR breed had a higher proportion of over-conditioned SR cows. It is reasonable to assume that breed differences in body condition contributed to these results.

  10. Gene expression profiling reveals a regulatory role for ROR alpha and ROR gamma in phase I and phase II metabolism.

    Science.gov (United States)

    Kang, Hong Soon; Angers, Martin; Beak, Ju Youn; Wu, Xiying; Gimble, Jeffrey M; Wada, Taira; Xie, Wen; Collins, Jennifer B; Grissom, Sherry F; Jetten, Anton M

    2007-10-22

    Retinoid-related orphan receptors alpha (ROR alpha) and gamma (ROR gamma) are both expressed in liver; however, their physiological functions in this tissue have not yet been clearly defined. The ROR alpha1 and ROR gamma 1 isoforms, but not ROR alpha 4, show an oscillatory pattern of expression during circadian rhythm. To obtain insight into the physiological functions of ROR receptors in liver, we analyzed the gene expression profiles of livers from WT, ROR alpha-deficient staggerer (sg) mice (ROR alpha(sg/sg)), ROR gamma(-/-), and ROR alpha(sg/sg)ROR gamma(-/-) double knockout (DKO) mice by microarray analysis. DKO mice were generated to study functional redundancy between ROR alpha and ROR gamma. These analyses demonstrated that ROR alpha and ROR gamma affect the expression of a number of genes. ROR alpha and ROR gamma are particularly important in the regulation of genes encoding several phase I and phase II metabolic enzymes, including several 3beta-hydroxysteroid dehydrogenases, cytochrome P450 enzymes, and sulfotransferases. In addition, our results indicate that ROR alpha and ROR gamma each affect the expression of a specific set of genes but also exhibit functional redundancy. Our study shows that ROR alpha and ROR gamma receptors influence the regulation of several metabolic pathways, including those involved in the metabolism of steroids, bile acids, and xenobiotics, suggesting that RORs are important in the control of metabolic homeostasis.

  11. Microbial Metabolism and Inhibition Studies of Phenobarbital ...

    African Journals Online (AJOL)

    Purpose: Screening scale studies were performed with eight cultures for their ability to metabolize phenobarbital, an antiepileptic, sedative, hypnotic and substrate for CYP 2C9 and 2C19. Methods: The transformation of phenobarbital was confirmed and characterized by fermentation techniques, high performance liquid ...

  12. Effect of probiotics on metabolic profiles in type 2 diabetes mellitus: A meta-analysis of randomized, controlled trials.

    Science.gov (United States)

    Li, Caifeng; Li, Xin; Han, Hongqiu; Cui, Hailong; Peng, Min; Wang, Guolin; Wang, Zhiqiang

    2016-06-01

    Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease which is imposing heavy burden on global health and economy. Recent studies indicate gut microbiota play important role on the pathogenesis and metabolic disturbance of T2DM. As an effective mean of regulating gut microbiota, probiotics are live micro-organisms that are believed to provide a specific health benefit on the host. Whether probiotic supplementation could improve metabolic profiles by modifying gut microbiota in T2DM or not is still in controversy.The aim of the study is to assess the effect of probiotic supplementation on metabolic profiles in T2DM.We searched PubMed, EMBASE, and Cochrane Library up to 12 April 2016. Two review authors independently assessed study eligibility, extracted data, and evaluated risk of bias of included studies. Data were pooled by using the random-effect model and expressed as standardized mean difference (SMD) with 95% confidence interval (CI). Heterogeneity was assessed and quantified (I).A total of 12 randomized controlled trials (RCTs) were included. Lipid profiles (n = 508) and fasting blood glucose (FBG) (n = 520) were reported in 9 trials; the homeostasis model of assessment for insulin resistance index (HOMA-IR) (n = 368) and glycosylated hemoglobin (HbA1c) (n = 380) were reported in 6 trials. Probiotics could alleviate FBG (SMD -0.61 mmol/L, 95% CI [-0.92, -0.30], P = 0.0001). Probiotics could increase high-density lipoprotein-cholesterol (HDL-C) (SMD 0.42 mmol/L, 95% CI [0.08, 0.76], P = 0.01). There were no significant differences in low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), HbA1c and HOMA-IR between the treatment group and the control group.Probiotics may improve glycemic control and lipid metabolism in T2DM. Application of probiotic agents might become a new method for glucose management in T2DM.

  13. Study of Drug Metabolism by Xanthine Oxidase

    Directory of Open Access Journals (Sweden)

    Lizhou Sun

    2012-04-01

    Full Text Available In this work, we report the studies of drug metabolism by xanthine oxidase (XOD with electrochemical techniques. Firstly, a pair of stable, well-defined and quasi-reversible oxidation/reduction peaks is obtained with the formal potential at −413.1 mV (vs. SCE after embedding XOD in salmon sperm DNA membrane on the surface of pyrolytic graphite electrode. Then, a new steady peak can be observed at −730 mV (vs. SCE upon the addition of 6-mercaptopurine (6-MP to the electrochemical system, indicating the metabolism of 6-MP by XOD. Furthermore, the chronoamperometric response shows that the current of the catalytic peak located at −730 mV increases with addition of 6-MP in a concentration-dependent manner, and the increase of the chronoamperometric current can be inhibited by an XOD inhibitor, quercetin. Therefore, our results prove that XOD/DNA modified electrode can be efficiently used to study the metabolism of 6-MP, which may provide a convenient approach for in vitro studies on enzyme-catalyzed drug metabolism.

  14. A Metabolic Study of Huntington's Disease.

    Directory of Open Access Journals (Sweden)

    Rajasree Nambron

    Full Text Available Huntington's disease patients have a number of peripheral manifestations suggestive of metabolic and endocrine abnormalities. We, therefore, investigated a number of metabolic factors in a 24-hour study of Huntington's disease gene carriers (premanifest and moderate stage II/III and controls.Control (n = 15, premanifest (n = 14 and stage II/III (n = 13 participants were studied with blood sampling over a 24-hour period. A battery of clinical tests including neurological rating and function scales were performed. Visceral and subcutaneous adipose distribution was measured using magnetic resonance imaging. We quantified fasting baseline concentrations of glucose, insulin, cholesterol, triglycerides, lipoprotein (a, fatty acids, amino acids, lactate and osteokines. Leptin and ghrelin were quantified in fasting samples and after a standardised meal. We assessed glucose, insulin, growth hormone and cortisol concentrations during a prolonged oral glucose tolerance test.We found no highly significant differences in carbohydrate, protein or lipid metabolism markers between healthy controls, premanifest and stage II/III Huntington's disease subjects. For some markers (osteoprotegerin, tyrosine, lysine, phenylalanine and arginine there is a suggestion (p values between 0.02 and 0.05 that levels are higher in patients with premanifest HD, but not moderate HD. However, given the large number of statistical tests performed interpretation of these findings must be cautious.Contrary to previous studies that showed altered levels of metabolic markers in patients with Huntington's disease, our study did not demonstrate convincing evidence of abnormalities in any of the markers examined. Our analyses were restricted to Huntington's disease patients not taking neuroleptics, anti-depressants or other medication affecting metabolic pathways. Even with the modest sample sizes studied, the lack of highly significant results, despite many being tested, suggests that

  15. A Metabolic Study of Huntington's Disease.

    Science.gov (United States)

    Nambron, Rajasree; Silajdžić, Edina; Kalliolia, Eirini; Ottolenghi, Chris; Hindmarsh, Peter; Hill, Nathan R; Costelloe, Seán J; Martin, Nicholas G; Positano, Vincenzo; Watt, Hilary C; Frost, Chris; Björkqvist, Maria; Warner, Thomas T

    2016-01-01

    Huntington's disease patients have a number of peripheral manifestations suggestive of metabolic and endocrine abnormalities. We, therefore, investigated a number of metabolic factors in a 24-hour study of Huntington's disease gene carriers (premanifest and moderate stage II/III) and controls. Control (n = 15), premanifest (n = 14) and stage II/III (n = 13) participants were studied with blood sampling over a 24-hour period. A battery of clinical tests including neurological rating and function scales were performed. Visceral and subcutaneous adipose distribution was measured using magnetic resonance imaging. We quantified fasting baseline concentrations of glucose, insulin, cholesterol, triglycerides, lipoprotein (a), fatty acids, amino acids, lactate and osteokines. Leptin and ghrelin were quantified in fasting samples and after a standardised meal. We assessed glucose, insulin, growth hormone and cortisol concentrations during a prolonged oral glucose tolerance test. We found no highly significant differences in carbohydrate, protein or lipid metabolism markers between healthy controls, premanifest and stage II/III Huntington's disease subjects. For some markers (osteoprotegerin, tyrosine, lysine, phenylalanine and arginine) there is a suggestion (p values between 0.02 and 0.05) that levels are higher in patients with premanifest HD, but not moderate HD. However, given the large number of statistical tests performed interpretation of these findings must be cautious. Contrary to previous studies that showed altered levels of metabolic markers in patients with Huntington's disease, our study did not demonstrate convincing evidence of abnormalities in any of the markers examined. Our analyses were restricted to Huntington's disease patients not taking neuroleptics, anti-depressants or other medication affecting metabolic pathways. Even with the modest sample sizes studied, the lack of highly significant results, despite many being tested, suggests that the majority

  16. Changes in pyridine metabolism profile during growth of trigonelline-forming Lotus japonicus cell cultures.

    Science.gov (United States)

    Yin, Yuling; Matsui, Ayu; Sakuta, Masaaki; Ashihara, Hiroshi

    2008-12-01

    Changes in the profile of pyridine metabolism during growth of cells were investigated using trigonelline-forming suspension-cultured cells of Lotus japonicus. Activity of the de novo and salvage pathways of NAD biosynthesis was estimated from the in situ metabolism of [(3)H] quinolinic acid and [(14)C] nicotinamide. Maximum activity of the de novo pathway for NAD synthesis was found in the exponential growth phase, whereas activity of the salvage pathway was increased in the lag phase of cell growth. Expression profiles of some genes related to pyridine metabolism were examined using the expression sequence tags obtained from the L. japonicus database. Transcript levels of NaPRT and NIC, encoding salvage enzymes, were enhanced in the lag phase of cell growth, whereas the maximum expression of NADS was found in the exponential growth phase. Correspondingly, the activities of the salvage enzymes, nicotinate phosphoribosyltransferase (EC 2.4.2.11) and nicotinamidase (EC 3.5.1.19), increased one day after transfer of the stationary phase cells to the fresh medium. The greatest in situ trigonelline synthesis, both from [(3)H] quinolinic acid and [(14)C] nicotinamide, was found in the stationary phase of cell growth. The role of trigonelline in leguminous plants is discussed.

  17. Dietary Fatty Acids Alter Lipid Profiles and Induce Myocardial Dysfunction without Causing Metabolic Disorders in Mice.

    Science.gov (United States)

    Chen, Bainian; Huang, Yifan; Zheng, Dong; Ni, Rui; Bernards, Mark A

    2018-01-19

    Oversupply of bulk saturated fatty acids (SFA) induces metabolic disorders and myocardial dysfunction. We investigated whether, without causing metabolic disorders, the uptake of individual dietary SFA species alters lipid profiles and induces myocardial dysfunction. C57BL/6 mice were fed various customized long-chain SFA diets (40% caloric intake from SFA), including a beef tallow (HBD), cocoa butter (HCD), milk fat (HMD) and palm oil diet (HPD), for 6 months. An isocaloric fat diet, containing medium-chain triglycerides, served as a control (CHD). Long-term intake of dietary long-chain SFA differentially affected the fatty acid composition in cardiac phospholipids. All long-chain SFA diets increased the levels of arachidonic acid and total SFA in cardiac phospholipids. The preferential incorporation of individual SFA into the cardiac phospholipid fraction was dependent on the dietary SFA species. Cardiac ceramide content was elevated in all mice fed long-chain SFA diets, while cardiac hypertrophy was only presented in mice fed HMD or HPD. We have demonstrated that the intake of long-chain SFA species differentially alters cardiac lipid profiles and induces cardiac dysfunction, without causing remarkable metabolic disorders.

  18. Metabolic profiles and free radical scavenging activity of Cordyceps bassiana fruiting bodies according to developmental stage.

    Directory of Open Access Journals (Sweden)

    Sun-Hee Hyun

    Full Text Available The metabolic profiles of Cordyceps bassiana according to fruiting body developmental stage were investigated using gas chromatography-mass spectrometry. We were able to detect 62 metabolites, including 48 metabolites from 70% methanol extracts and 14 metabolites from 100% n-hexane extracts. These metabolites were classified as alcohols, amino acids, organic acids, phosphoric acids, purine nucleosides and bases, sugars, saturated fatty acids, unsaturated fatty acids, or fatty amides. Significant changes in metabolite levels were found according to developmental stage. Relative levels of amino acids, purine nucleosides, and sugars were higher in development stage 3 than in the other stages. Among the amino acids, valine, isoleucine, lysine, histidine, glutamine, and aspartic acid, which are associated with ABC transporters and aminoacyl-tRNA biosynthesis, also showed higher levels in stage 3 samples. The free radical scavenging activities, which were significantly higher in stage 3 than in the other stages, showed a positive correlation with purine nucleoside metabolites such as adenosine, guanosine, and inosine. These results not only show metabolic profiles, but also suggest the metabolic pathways associated with fruiting body development stages in cultivated C. bassiana.

  19. Importance of acylcarnitine profile analysis for disorders of lipid metabolism in adolescent patients with recurrent rhabdomyolysis: Report of two cases

    Directory of Open Access Journals (Sweden)

    Yasemin Topçu

    2014-01-01

    Full Text Available Metabolic myopathies due to disorders of lipid metabolism are a heterogeneous group of diseases. Newborns may present with hypotonia and convulsions, while progressive proximal muscle weakness or recurrent episodes of muscle weakness accompanied by rhabdomyolysis/myoglobinuria may be seen in older ages. There is little knowledge on detection of disorders of lipid metabolism by acylcarnitine profile (ACP analysis by tandem mass spectrometry outside the neonatal period particularly in cases with recurrent rhabdomyolysis first presenting in adolescence and adulthood. Two adolescent female cases presented with episodes of rhabdomyolysis and muscle weakness. A 13-year-old patient had five episodes of rhabdomyolysis triggered by infections. Tandem mass spectrometry was normal. A 16-year-old female patient was hospitalized eight times due to recurrent rhabdomyolysis. Increased levels of C14:2, C14:1, and C14 were determined in tandem mass spectrometry. Final diagnoses were carnitine palmitoyltransferase II (CPT II deficiency and very long-chain acyl-CoA dehydrogenase (VLCAD deficiency. Increased serum levels of long-chain acylcarnitine can guide to the diagnosis of lipid metabolism disorders. Serum ACP should be performed before enzyme assay and genetic studies.

  20. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hauwaert, Cynthia; Savary, Grégoire [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Buob, David [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Leroy, Xavier; Aubert, Sébastien [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); Flamand, Vincent [Service d' Urologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Hennino, Marie-Flore [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Service de Néphrologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Perrais, Michaël [Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); and others

    2014-09-15

    Numerous xenobiotics have been shown to be harmful for the kidney. Thus, to improve our knowledge of the cellular processing of these nephrotoxic compounds, we evaluated, by real-time PCR, the mRNA expression level of 377 genes encoding xenobiotic-metabolizing enzymes (XMEs), transporters, as well as nuclear receptors and transcription factors that coordinate their expression in eight normal human renal cortical tissues. Additionally, since several renal in vitro models are commonly used in pharmacological and toxicological studies, we investigated their metabolic capacities and compared them with those of renal tissues. The same set of genes was thus investigated in HEK293 and HK2 immortalized cell lines in commercial primary cultures of epithelial renal cells and in proximal tubular cell primary cultures. Altogether, our data offers a comprehensive description of kidney ability to process xenobiotics. Moreover, by hierarchical clustering, we observed large variations in gene expression profiles between renal cell lines and renal tissues. Primary cultures of proximal tubular epithelial cells exhibited the highest similarities with renal tissue in terms of transcript profiling. Moreover, compared to other renal cell models, Tacrolimus dose dependent toxic effects were lower in proximal tubular cell primary cultures that display the highest metabolism and disposition capacity. Therefore, primary cultures appear to be the most relevant in vitro model for investigating the metabolism and bioactivation of nephrotoxic compounds and for toxicological and pharmacological studies. - Highlights: • Renal proximal tubular (PT) cells are highly sensitive to xenobiotics. • Expression of genes involved in xenobiotic disposition was measured. • PT cells exhibited the highest similarities with renal tissue.

  1. Exercise training improves sleep pattern and metabolic profile in elderly people in a time-dependent manner

    OpenAIRE

    Lira, Fábio S; Pimentel, Gustavo D; Santos, Ronaldo VT; Oyama, Lila M; Damaso, Ana R; Oller do Nascimento, Cláudia M; Viana, Valter AR; Boscolo, Rita A; Grassmann, Viviane; Santana, Marcos G; Esteves, Andrea M; Tufik, Sergio; de Mello, Marco T

    2011-01-01

    Abstract Aging and physical inactivity are two factors that favors the development of cardiovascular disease, metabolic syndrome, obesity, diabetes, and sleep dysfunction. In contrast, the adoption a habitual of moderate exercise may present a non-pharmacological treatment alternative for sleep and metabolic disorders. We aimed to assess the effects of moderate exercise training on sleep quality and on the metabolic profile of elderly people with a sedentary lifestyle. Fourteen male sedentary...

  2. METABOLIC PROFILE OF THE NEOPLASTIC CELLS TREATED IN VITRO WITH ANTITUMORAL FUROSTANOLIC-GLYCOSIDE BIOPREPARATIONS

    Directory of Open Access Journals (Sweden)

    Hellen Rotinberg

    2007-08-01

    Full Text Available The in vitro short-lasting cytostatic treatment of the HeLa and HEp-2p tumoral cell cultures with some original furostanolic-glycoside biopreparations has conditioned the perturbation of the glucidic, lipidic and proteic intermediary metabolism processes and of the nucleic acids biochemistry. The metabolic profile of the treated cells seems to be of catabolic type, being outlined by enhancement of the glicogenolysis, glycolysis, lipolysis and proteolysis, of intensification of intracellular consumption of the glucose, lactic acid, free fatty acids and aminoacids, of inhibitory effect upon nucleic acids biosynthesis. These metabolic events were appreciated on the basis of the reduced contents of glycogen, glucose, lactic acid, total lipids, free fatty acids, soluble and unsoluble proteins, DNA and RNA biomolecules. The new tumoral cell metabolic behaviour induced by furostanolicglycoside cytostatics – analyzed in comparison with that of the control untreated tumoral cells – can be consequence of an interaction between the bioactive agents either with the membrane receptors or with intracellular receptors.

  3. Low Physical Activity Level and Short Sleep Duration Are Associated with an Increased Cardio-Metabolic Risk Profile: A Longitudinal Study in 8-11 Year Old Danish Children

    DEFF Research Database (Denmark)

    Hjorth, Mads F.; Chaput, Jean-Philippe; Damsgaard, Camilla T.

    2014-01-01

    Background: As cardio-metabolic risk tracks from childhood to adulthood, a better understanding of the relationship between movement behaviors (physical activity, sedentary behavior and sleep) and cardio-metabolic risk in childhood may aid in preventing metabolic syndrome (MetS) in adulthood....... Objective: To examine independent and combined cross-sectional and longitudinal associations between movement behaviors and the MetS score in 8-11 year old Danish children. Design: Physical activity, sedentary time and sleep duration (seven days and eight nights) were assessed by accelerometer and fat mass......, physical activity was negatively associated with the MetS-score (P...

  4. Metabolic profile in two physically active Inuit groups consuming either a western or a traditional Inuit diet

    DEFF Research Database (Denmark)

    Munch-Andersen, Thor; Olsen, David B.; Søndergaard, Hans

    2012-01-01

    Objectives: To evaluate the effect of regular physical activity on metabolic risk factors and blood pressure in Inuit with high BMI consuming a western diet (high amount of saturated fatty acids and carbohydrates with a high glycemic index). Study design: Cross sectional study, comparing Inuit ea...... activity. However, when considering the total cardio vascular risk profile the Inuit consuming a western diet had a less healthy profile than the Inuit consuming a traditional diet.......Objectives: To evaluate the effect of regular physical activity on metabolic risk factors and blood pressure in Inuit with high BMI consuming a western diet (high amount of saturated fatty acids and carbohydrates with a high glycemic index). Study design: Cross sectional study, comparing Inuit...... eating a western diet with Inuit eating a traditional diet. Methods: Two physically active Greenland Inuit groups consuming different diet, 20 eating a traditional diet (Qaanaaq) and 15 eating a western diet (TAB), age (mean (range)); 38, (22–58) yrs, BMI; 28 (20–40) were subjected to an oral glucose...

  5. Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies

    Energy Technology Data Exchange (ETDEWEB)

    O' Grady J.; Schwender J.; Shachar-Hill, Y.; Morgan, J. A.

    2012-03-01

    For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on {sup 13}CO{sub 2} dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other systems biology measurements are necessary to guide plant metabolic engineering in the future.

  6. Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies

    Energy Technology Data Exchange (ETDEWEB)

    O' Grady, J; Schwender, J; Shachar-Hill, Y; Morgan, JA

    2012-03-26

    For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on (CO2)-C-13 dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other systems biology measurements are necessary to guide plant metabolic engineering in the future.

  7. Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies.

    Science.gov (United States)

    O'Grady, John; Schwender, Jörg; Shachar-Hill, Yair; Morgan, John A

    2012-03-01

    For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on (13)CO(2) dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other systems biology measurements are necessary to guide plant metabolic engineering in the future.

  8. Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism

    DEFF Research Database (Denmark)

    Hao, Qin; Yadav, Rachita; Basse, Astrid L.

    2015-01-01

    We applied digital gene expression profiling to determine the transcriptome of brown and white adipose tissues (BAT and WAT, respectively) during cold exposure. Male C57BL/6J mice were exposed to cold for 2 or 4 days. A notable induction of genes related to glucose uptake, glycolysis, glycogen...... exposure, we propose a model for the intermediary glucose metabolism in activated BAT: 1) fluxes through glycolysis and the pentose phosphate pathway are induced, the latter providing reducing equivalents for de novo fatty acid synthesis; 2) glycerol synthesis from glucose is increased, facilitating...

  9. 1H NMR-Based Metabolic Profiling Reveals the Effects of Fluoxetine on Lipid and Amino Acid Metabolism in Astrocytes

    Directory of Open Access Journals (Sweden)

    Shunjie Bai

    2015-04-01

    Full Text Available Fluoxetine, a selective serotonin reuptake inhibitor (SSRI, is a prescribed and effective antidepressant and generally used for the treatment of depression. Previous studies have revealed that the antidepressant mechanism of fluoxetine was related to astrocytes. However, the therapeutic mechanism underlying its mode of action in astrocytes remains largely unclear. In this study, primary astrocytes were exposed to 10 µM fluoxetine; 24 h post-treatment, a high-resolution proton nuclear magnetic resonance (1H NMR-based metabolomic approach coupled with multivariate statistical analysis was used to characterize the metabolic variations of intracellular metabolites. The orthogonal partial least-squares discriminant analysis (OPLS-DA score plots of the spectra demonstrated that the fluoxetine-treated astrocytes were significantly distinguished from the untreated controls. In total, 17 differential metabolites were identified to discriminate the two groups. These key metabolites were mainly involved in lipids, lipid metabolism-related molecules and amino acids. This is the first study to indicate that fluoxetine may exert antidepressant action by regulating the astrocyte’s lipid and amino acid metabolism. These findings should aid our understanding of the biological mechanisms underlying fluoxetine therapy.

  10. Tumour xenograft detection through quantitative analysis of the metabolic profile of urine in mice

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, Jennifer [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Turner, Joan [Department of Experimental Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Slupsky, Carolyn [Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616-8598 (United States); Fallone, Gino; Syme, Alasdair, E-mail: alasdair.syme@albertahealthservices.ca [Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2011-02-07

    The metabolic content of urine from NIH III nude mice (n = 22) was analysed before and after inoculation with human glioblastoma multiforme (GBM) cancer cells. An age- and gender-matched control population (n = 14) was also studied to identify non-tumour-related changes. Urine samples were collected daily for 6 weeks, beginning 1 week before cell injection. Metabolite concentrations were obtained via targeted profiling with Chenomx Suite 5.1, based on nuclear magnetic resonance (NMR) spectra acquired on an Oxford 800 MHz cold probe NMR spectrometer. The Wilcoxon rank sum test was used to evaluate the significance of the change in metabolite concentration between the two time points. Both the metabolite concentrations and the ratios of pairs of metabolites were studied. The complicated inter-relationships between metabolites were assessed through partial least-squares discriminant analysis (PLS-DA). Receiver operating characteristic (ROC) curves were generated for all variables and the area under the curve (AUC) calculated. The data indicate that the number of statistically significant changes in metabolite concentrations was more pronounced in the tumour-bearing population than in the control animals. This was also true of the ratios of pairs of metabolites. ROC analysis suggests that the ratios were better able to differentiate between the pre- and post-injection samples compared to the metabolite concentrations. PLS-DA models produced good separation between the populations and had the best AUC results (all models exceeded 0.937). These results demonstrate that metabolomics may be used as a screening tool for GBM cells grown in xenograft models in mice.

  11. Tumour xenograft detection through quantitative analysis of the metabolic profile of urine in mice

    International Nuclear Information System (INIS)

    Moroz, Jennifer; Turner, Joan; Slupsky, Carolyn; Fallone, Gino; Syme, Alasdair

    2011-01-01

    The metabolic content of urine from NIH III nude mice (n = 22) was analysed before and after inoculation with human glioblastoma multiforme (GBM) cancer cells. An age- and gender-matched control population (n = 14) was also studied to identify non-tumour-related changes. Urine samples were collected daily for 6 weeks, beginning 1 week before cell injection. Metabolite concentrations were obtained via targeted profiling with Chenomx Suite 5.1, based on nuclear magnetic resonance (NMR) spectra acquired on an Oxford 800 MHz cold probe NMR spectrometer. The Wilcoxon rank sum test was used to evaluate the significance of the change in metabolite concentration between the two time points. Both the metabolite concentrations and the ratios of pairs of metabolites were studied. The complicated inter-relationships between metabolites were assessed through partial least-squares discriminant analysis (PLS-DA). Receiver operating characteristic (ROC) curves were generated for all variables and the area under the curve (AUC) calculated. The data indicate that the number of statistically significant changes in metabolite concentrations was more pronounced in the tumour-bearing population than in the control animals. This was also true of the ratios of pairs of metabolites. ROC analysis suggests that the ratios were better able to differentiate between the pre- and post-injection samples compared to the metabolite concentrations. PLS-DA models produced good separation between the populations and had the best AUC results (all models exceeded 0.937). These results demonstrate that metabolomics may be used as a screening tool for GBM cells grown in xenograft models in mice.

  12. New analytical strategies in studying drug metabolism.

    Science.gov (United States)

    Staack, Roland F; Hopfgartner, Gérard

    2007-08-01

    Identification and elucidation of the structures of metabolites play major roles in drug discovery and in the development of pharmaceutical compounds. These studies are also important in toxicology or doping control with either pharmaceuticals or illicit drugs. This review focuses on: new analytical strategies used to identify potential metabolites in biological matrices with and without radiolabeled drugs; use of software for metabolite profiling; interpretation of product spectra; profiling of reactive metabolites; development of new approaches for generation of metabolites; and detection of metabolites with increased sensitivity and simplicity. Most of the new strategies involve mass spectrometry (MS) combined with liquid chromatography (LC).

  13. EXTREME METEOROLOGICAL CONDITIONS AND METABOLIC PROFILE IN HIGH YIELDING HOLSTEINFRIESIAN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Z. GERGÁCZ

    2008-10-01

    Full Text Available The impact of two years (2002 and 2003 with different summer temperature extremes on variation in metabolic profile was analyzed in blood and urine samples taken from healthy, primiparous (n = 371 and multiparous (n = 795 high yielding Holstein-Friesian dairy cows. In this study main focus was lead on three most critical physiological phases, thus cows were assigned into three groups as follows: (1 dry cows for 10 days prior to calving; (2 cows 1-30 days after delivery, and (3 cows with more than 31 days post partum. Findings reveal clear response of the cows to heat in selected blood (hemoglobin, plasma aceto-acetic-acid, FFA, AST, glucose, urea and urine (pH, NABE and urea parameters. In the majority of cows, glucose and hemoglobin level, one of the most significant blood parameters, indicated symptoms of insufficient energy supply. Further metabolic indicators differed more or less from reference values depending on actual condition. Due to heat load dry matter intake has been decreased even by 10-15 per cent in primiparous cows. They were expected to increase body weight and size and simultaneously produce attain at large milk yields. In doing so that cows would have require large amount of nutrients. Out of parameters such as hemoglobin, glucose, FFA, AST and blood-urea differed from the reference values in most cases; however, this phenomenon seemed to be present in almost every case for hemoglobin and glucose. The lack of energy caused by heat stress can be contributed to the decrease of dry matter intake which has been indicated by the urea levels and pH both in blood and urine prevailing unfavorable and insufficient feeding practice. The results reconfirm the need to reconsider both the actual feeding practice (e.g. to increase of nutrient content in rations, reduce the intake of soluble proteins in rumen, pay attention of crude fiber in Total Mixed Rations (TMR, NDF and ADF, avoid overfeeding of inorganic buffers, to control moisture

  14. Effects of sodium benzoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans.

    Science.gov (United States)

    Lennerz, Belinda S; Vafai, Scott B; Delaney, Nigel F; Clish, Clary B; Deik, Amy A; Pierce, Kerry A; Ludwig, David S; Mootha, Vamsi K

    2015-01-01

    Sodium benzoate is a widely used preservative found in many foods and soft drinks. It is metabolized within mitochondria to produce hippurate, which is then cleared by the kidneys. We previously reported that ingestion of sodium benzoate at the generally regarded as safe (GRAS) dose leads to a robust excursion in the plasma hippurate level [1]. Since previous reports demonstrated adverse effects of benzoate and hippurate on glucose homeostasis in cells and in animal models, we hypothesized that benzoate might represent a widespread and underappreciated diabetogenic dietary exposure in humans. Here, we evaluated whether acute exposure to GRAS levels of sodium benzoate alters insulin and glucose homeostasis through a randomized, controlled, cross-over study of 14 overweight subjects. Serial blood samples were collected following an oral glucose challenge, in the presence or absence of sodium benzoate. Outcome measurements included glucose, insulin, glucagon, as well as temporal mass spectrometry-based metabolic profiles. We did not find a statistically significant effect of an acute oral exposure to sodium benzoate on glucose homeostasis. Of the 146 metabolites targeted, four changed significantly in response to benzoate, including the expected rise in benzoate and hippurate. In addition, anthranilic acid, a tryptophan metabolite, exhibited a robust rise, while acetylglycine dropped. Although our study shows that GRAS doses of benzoate do not have an acute, adverse effect on glucose homeostasis, future studies will be necessary to explore the metabolic impact of chronic benzoate exposure. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. In vivo metabolic flux profiling with stable isotopes discriminates sites and quantifies effects of mitochondrial dysfunction in C. elegans

    Science.gov (United States)

    Ostrovsky, Julian; Clarke, Colleen; Preston, Judith; Bennett, Michael J.; Yudkoff, Marc; Xiao, Rui; Falk, Marni J.

    2014-01-01

    Mitochondrial respiratory chain (RC) disease diagnosis is complicated both by an absence of biomarkers that sufficiently divulge all cases and limited capacity to quantify adverse effects across intermediary metabolism. We applied high performance liquid chromatography (HPLC) and mass spectrometry (MS) studies of stable-isotope based precursor–product relationships in the nematode, C. elegans, to interrogate in vivo differences in metabolic flux among distinct genetic models of primary RC defects and closely related metabolic disorders. Methods C. elegans strains studied harbor single nuclear gene defects in complex I, II, or III RC subunits (gas-1, mev-1, isp-1); enzymes involved in coenzyme Q biosynthesis (clk-1), the tricarboxylic acid cycle (TCA, idh-1), or pyruvate metabolism (pdha-1); and central nodes of the nutrient-sensing signaling network that involve insulin response (daf-2) or the sirtuin homologue (sir-2.1). Synchronous populations of 2000 early larval stage worms were fed standard Escherichia coli on nematode growth media plates containing 1,6-13C2-glucose throughout their developmental period, with samples extracted on the first day of adult life in 4% perchloric acid with an internal standard. Quantitation of whole animal free amino acid concentrations and isotopic incorporation into amino and organic acids throughout development was performed in all strains by HPLC and isotope ratio MS, respectively. GC/MS analysis was also performed to quantify absolute isotopic incorporation in all molecular species of key TCA cycle intermediates in gas-1 and N2 adult worms. Results Genetic mutations within different metabolic pathways displayed distinct metabolic profiles. RC complex I (gas-1) and III (isp-1) subunit mutants, together with the coenzyme Q biosynthetic mutant (clk-1), shared a similar amino acid profile of elevated alanine and decreased glutamate. The metabolic signature of the complex II mutant (mev-1) was distinct from that of the other RC

  16. Bacillus licheniformis affects the microbial community and metabolic profile in the spontaneous fermentation of Daqu starter for Chinese liquor making.

    Science.gov (United States)

    Wang, Peng; Wu, Qun; Jiang, Xuejian; Wang, Zhiqiang; Tang, Jingli; Xu, Yan

    2017-06-05

    Chinese liquor is produced from spontaneous fermentation starter (Daqu) that provides the microbes, enzymes and flavors for liquor fermentation. To improve the flavor character of Daqu, we inoculated Bacillus licheniformis and studied the effect of this strain on the community structure and metabolic profile in Daqu fermentation. The microbial relative abundance changed after the inoculation, including the increase in Bacillus, Clavispora and Aspergillus, and the decrease in Pichia, Saccharomycopsis and some other genera. This variation was also confirmed by pure culture and coculture experiments. Seventy-three metabolites were identified during Daqu fermentation process. After inoculation, the average content of aromatic compounds were significantly enriched from 0.37mg/kg to 0.90mg/kg, and the average content of pyrazines significantly increased from 0.35mg/kg to 5.71mg/kg. The increase in pyrazines was positively associated with the metabolism of the inoculated Bacillus and the native genus Clavispora, because they produced much more pyrazines in their cocultures. Whereas the increase in aromatic compounds might be related to the change of in situ metabolic activity of several native genera, in particular, Aspergillus produced more aromatic compounds in cocultures with B. licheniformis. It indicated that the inoculation of B. licheniformis altered the flavor character of Daqu by both its own metabolic activity and the variation of in situ metabolic activity. Moreover, B. licheniformis inoculation influenced the enzyme activity of Daqu, including the significant increase in amylase activity (from 1.3gstarch/g/h to 1.7gstarch/g/h), and the significant decrease in glucoamylase activity (from 627.6mgglucose/g/h to 445.6mgglucose/g/h) and esterase activity (from 28.1mgethylcaproate/g/100h to 17.2mgethylcaproate/g/100h). These effects of inoculation were important factors for regulating the metabolism of microbial communities, hence for improving the flavor profile

  17. Metabolic profiling using HPLC allows classification of drugs according to their mechanisms of action in HL-1 cardiomyocytes

    International Nuclear Information System (INIS)

    Strigun, Alexander; Wahrheit, Judith; Beckers, Simone; Heinzle, Elmar; Noor, Fozia

    2011-01-01

    Along with hepatotoxicity, cardiotoxic side effects remain one of the major reasons for drug withdrawals and boxed warnings. Prediction methods for cardiotoxicity are insufficient. High content screening comprising of not only electrophysiological characterization but also cellular molecular alterations are expected to improve the cardiotoxicity prediction potential. Metabolomic approaches recently have become an important focus of research in pharmacological testing and prediction. In this study, the culture medium supernatants from HL-1 cardiomyocytes after exposure to drugs from different classes (analgesics, antimetabolites, anthracyclines, antihistamines, channel blockers) were analyzed to determine specific metabolic footprints in response to the tested drugs. Since most drugs influence energy metabolism in cardiac cells, the metabolite 'sub-profile' consisting of glucose, lactate, pyruvate and amino acids was considered. These metabolites were quantified using HPLC in samples after exposure of cells to test compounds of the respective drug groups. The studied drug concentrations were selected from concentration response curves for each drug. The metabolite profiles were randomly split into training/validation and test set; and then analysed using multivariate statistics (principal component analysis and discriminant analysis). Discriminant analysis resulted in clustering of drugs according to their modes of action. After cross validation and cross model validation, the underlying training data were able to predict 50%-80% of conditions to the correct classification group. We show that HPLC based characterisation of known cell culture medium components is sufficient to predict a drug's potential classification according to its mode of action.

  18. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    Science.gov (United States)

    2012-01-01

    Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA) using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol) in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w) mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic yeasts when growing on mixed

  19. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    Directory of Open Access Journals (Sweden)

    Jordà Joel

    2012-05-01

    Full Text Available Abstract Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic

  20. A rapid, simple method for the genetic discrimination of intact Arabidopsis thaliana mutant seeds using metabolic profiling by direct analysis in real-time mass spectrometry

    Directory of Open Access Journals (Sweden)

    Jang Young

    2011-06-01

    Full Text Available Abstract Background Efficient high throughput screening systems of useful mutants are prerequisite for study of plant functional genomics and lots of application fields. Advance in such screening tools, thanks to the development of analytic instruments. Direct analysis in real-time (DART-mass spectrometry (MS by ionization of complex materials at atmospheric pressure is a rapid, simple, high-resolution analytical technique. Here we describe a rapid, simple method for the genetic discrimination of intact Arabidopsis thaliana mutant seeds using metabolic profiling by DART-MS. Results To determine whether this DART-MS combined by multivariate analysis can perform genetic discrimination based on global metabolic profiling, intact Arabidopsis thaliana mutant seeds were subjected to DART-MS without any sample preparation. Partial least squares-discriminant analysis (PLS-DA of DART-MS spectral data from intact seeds classified 14 different lines of seeds into two distinct groups: Columbia (Col-0 and Landsberg erecta (Ler ecotype backgrounds. A hierarchical dendrogram based on partial least squares-discriminant analysis (PLS-DA subdivided the Col-0 ecotype into two groups: mutant lines harboring defects in the phenylpropanoid biosynthetic pathway and mutants without these defects. These results indicated that metabolic profiling with DART-MS could discriminate intact Arabidopsis seeds at least ecotype level and metabolic pathway level within same ecotype. Conclusion The described DART-MS combined by multivariate analysis allows for rapid screening and metabolic characterization of lots of Arabidopsis mutant seeds without complex metabolic preparation steps. Moreover, potential novel metabolic markers can be detected and used to clarify the genetic relationship between Arabidopsis cultivars. Furthermore this technique can be applied to predict the novel gene function of metabolic mutants regardless of morphological phenotypes.

  1. A rapid, simple method for the genetic discrimination of intact Arabidopsis thaliana mutant seeds using metabolic profiling by direct analysis in real-time mass spectrometry.

    Science.gov (United States)

    Kim, Suk Weon; Kim, Hye Jin; Kim, Jong Hyun; Kwon, Yong Kook; Ahn, Myung Suk; Jang, Young Pyo; Liu, Jang R

    2011-06-10

    Efficient high throughput screening systems of useful mutants are prerequisite for study of plant functional genomics and lots of application fields. Advance in such screening tools, thanks to the development of analytic instruments. Direct analysis in real-time (DART)-mass spectrometry (MS) by ionization of complex materials at atmospheric pressure is a rapid, simple, high-resolution analytical technique. Here we describe a rapid, simple method for the genetic discrimination of intact Arabidopsis thaliana mutant seeds using metabolic profiling by DART-MS. To determine whether this DART-MS combined by multivariate analysis can perform genetic discrimination based on global metabolic profiling, intact Arabidopsis thaliana mutant seeds were subjected to DART-MS without any sample preparation. Partial least squares-discriminant analysis (PLS-DA) of DART-MS spectral data from intact seeds classified 14 different lines of seeds into two distinct groups: Columbia (Col-0) and Landsberg erecta (Ler) ecotype backgrounds. A hierarchical dendrogram based on partial least squares-discriminant analysis (PLS-DA) subdivided the Col-0 ecotype into two groups: mutant lines harboring defects in the phenylpropanoid biosynthetic pathway and mutants without these defects. These results indicated that metabolic profiling with DART-MS could discriminate intact Arabidopsis seeds at least ecotype level and metabolic pathway level within same ecotype. The described DART-MS combined by multivariate analysis allows for rapid screening and metabolic characterization of lots of Arabidopsis mutant seeds without complex metabolic preparation steps. Moreover, potential novel metabolic markers can be detected and used to clarify the genetic relationship between Arabidopsis cultivars. Furthermore this technique can be applied to predict the novel gene function of metabolic mutants regardless of morphological phenotypes.

  2. Metabolic profiling of apples from different production systems before and after controlled atmosphere (CA) storage studied by 1H high resolution-magic angle spinning (HR-MAS) NMR.

    Science.gov (United States)

    Vermathen, Martina; Marzorati, Mattia; Diserens, Gaëlle; Baumgartner, Daniel; Good, Claudia; Gasser, Franz; Vermathen, Peter

    2017-10-15

    Determination of metabolic alterations in apples induced by such processes as different crop protection strategies or storage, are of interest to assess correlations with fruit quality or fruit disorders. Preliminary results proposed the metabolic discrimination of apples from organic (BIO), integrated (IP) and low-input (LI) production. To determine contributions of temporal metabolic developments and to define the type of metabolic changes during storage, 1 H high resolution-magic angle spinning (HR-MAS) NMR spectroscopy of apple pulp was performed before and after two time points of controlled atmosphere storage. Statistical analysis revealed similar metabolic changes over time for IP-, LI- and BIO-samples, mainly decreasing lipid and sucrose, and increasing fructose, glucose and acetaldehyde levels, which are potential contributors to fruit aroma. Across the production systems, BIO apples had consistently higher levels of fructose and monomeric phenolic compounds but lower levels of condensed polyphenols than LI and IP apples, while the remaining metabolites assimilated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Metabolic profile and hepatoprotective activity of the anthocyanin-rich extract of Hibiscus sabdariffa calyces.

    Science.gov (United States)

    Ezzat, Shahira M; Salama, Maha M; Seif El-Din, Sayed H; Saleh, Samira; El-Lakkany, Naglaa M; Hammam, Olfat A; Salem, Maha B; Botros, Sanaa S

    2016-12-01

    Hibiscus sabdariffa L. (Malvaceae) is a common traditional tea that has many biological activities. To evaluate the hepatoprotective effect and study the metabolic profile of the anthocyanin-rich extract of H. sabdariffa calyces (HSARE). The hepatoprotective activity of HSARE was assessed (100 mg/kg/d for 4 weeks) by examining the hepatic, inflammatory, oxidative stress markers and performing a histopathological examination in rats with thioacetamide (TAA)-induced hepatotoxicity. HSARE was analyzed using ultra-performance liquid chromatography-quadrupole-time-of-flight-photodiode array-mass spectrometry (UPLC-qTOF-PDA-MS). The UPLC-qTOF-PDA-MS analysis of HSARE enabled the identification of 25 compounds represented by delphinidin and its derivatives, cyanidin, kaempferol, quercetin, myricetin aglycones and glycosides, together with hibiscus lactone, hibiscus acid and caffeoylquinic acids. Compared to the TAA-intoxicated group, HSARE significantly reduced the serum levels of alanine aminotransferase, aspartate aminotransferase and hepatic malondialdehyde by 37.96, 42.74 and 45.31%, respectively. It also decreased hepatic inflammatory markers, including tumour necrosis factor alpha, interleukin-6 and interferon gamma (INF-γ), by 85.39, 14.96 and 70.87%, respectively. Moreover, it decreased the immunopositivity of nuclear factor kappa-B and CYP2E1 in liver tissue, with an increase in the effector apoptotic marker (caspase-3 positive cells), restoration of the altered hepatic architecture and increases in the activities of superoxide dismutase (SOD) and glutathione by 150.08 and 89.23%, respectively. HSARE revealed pronounced antioxidant and anti-inflammatory potential where SOD and INF-γ were significantly improved. HSARE possesses the added value of being more water-soluble and of natural origin with fewer side effects expected compared to silymarin.

  4. Cardiac, Metabolic and Molecular Profiles of Sedentary Rats in the Initial Moment of Obesity

    Directory of Open Access Journals (Sweden)

    Bruno Barcellos Jacobsen

    2017-10-01

    Full Text Available Abstract Background: Different types of high-fat and/or high-energy diets have been used to induce obesity in rodents. However, few studies have reported on the effects observed at the initial stage of obesity induced by high-fat feeding on cardiac functional and structural remodelling. Objective: To characterize the initial moment of obesity and investigate both metabolic and cardiac parameters. In addition, the role of Ca2+ handling in short-term exposure to obesity was verified. Methods: Thirty-day-old male Wistar rats were randomized into two groups (n = 19 each: control (C; standard diet and high-fat diet (HF, unsaturated high-fat diet. The initial moment of obesity was defined by weekly measurement of body weight (BW complemented by adiposity index (AI. Cardiac remodelling was assessed by morphological, histological, echocardiographic and papillary muscle analysis. Ca2+ handling proteins were determined by Western Blot. Results: The initial moment of obesity occurred at the 3rd week. Compared with C rats, the HF rats had higher final BW (4%, body fat (20%, AI (14.5%, insulin levels (39.7%, leptin (62.4% and low-density lipoprotein cholesterol (15.5% but did not exhibit alterations in systolic blood pressure. Echocardiographic evaluation did not show alterations in cardiac parameters. In the HF group, muscles were observed to increase their +dT/dt (C: 52.6 ± 9.0 g/mm2/s and HF: 68.0 ± 17.0 g/mm2/s; p < 0.05. In addition, there was no changes in the cardiac expression of Ca2+ handling proteins. Conclusion: The initial moment of obesity promotes alterations to hormonal and lipid profiles without cardiac damage or changes in Ca2+ handling.

  5. (1H-NMR spectroscopy revealed Mycobacterium tuberculosis caused abnormal serum metabolic profile of cattle.

    Directory of Open Access Journals (Sweden)

    Yingyu Chen

    Full Text Available To re-evaluate virulence of Mycobacterium tuberculosis (M. tb in cattle, we experimentally infected calves with M. tb andMycobacterium bovisvia intratracheal injection at a dose of 2.0×10(7 CFU and observed the animals for 33 weeks. The intradermal tuberculin test and IFN-γin vitro release assay showed that both M. tb and M. bovis induced similar responses. Immunohistochemical staining of pulmonary lymph nodes indicated that the antigen MPB83 of both M. tb and M. bovis were similarly distributed in the tissue samples. Histological examinations showed all of the infected groups exhibited neutrophil infiltration to similar extents. Although the infected cattle did not develop granulomatous inflammation, the metabolic profiles changed significantly, which were characterized by a change in energy production pathways and increased concentrations of N-acetyl glycoproteins. Glycolysis was induced in the infected cattle by decreased glucose and increased lactate content, and enhanced fatty acid β-oxidation was induced by decreased TG content, and decreased gluconeogenesis indicated by the decreased concentration of glucogenic and ketogenic amino acids promoted utilization of substances other than glucose as energy sources. In addition, an increase in acute phase reactive serum glycoproteins, together with neutrophil infiltration and increased of IL-1β production indicated an early inflammatory response before granuloma formation. In conclusion, this study indicated that both M. tb and M.bovis were virulent to cattle. Therefore, it is likely that cattle with M. tb infections would be critical to tuberculosis transmission from cattle to humans. Nuclear magnetic resonance was demonstrated to be an efficient method to systematically evaluate M. tb and M. bovi sinfection in cattle.

  6. Lycium barbarum Reduces Abdominal Fat and Improves Lipid Profile and Antioxidant Status in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Mayara Zagonel de Souza Zanchet

    2017-01-01

    Full Text Available Natural antioxidants present in fruits have attracted considerable interest due to their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals of goji berry (GB in patients with metabolic syndrome have not been investigated. In this study, we examined anthropometric and biochemical parameters in patients with metabolic syndrome after the consumption of GB. The patients were divided into two groups, control (C and supplemented (S, and followed up for 45 days. Participants were individually instructed to carry out a healthy diet, but additionally, an inclusion of 14 g of the natural form of goji berry in the diet during 45 days for the S group was proposed. After 45 days of study, a significant reduction in transaminases as well as an improvement in lipid profile in the S group was observed. Likewise, a significant reduction in the waist circumference of the S group was observed when compared with that of the C group, and increased glutathione and catalase levels associated with a reduction of lipid peroxidation. These results suggest that this is an effective dietary supplement for the prevention of cardiovascular diseases in individuals with metabolic syndrome.

  7. Lycium barbarum Reduces Abdominal Fat and Improves Lipid Profile and Antioxidant Status in Patients with Metabolic Syndrome.

    Science.gov (United States)

    de Souza Zanchet, Mayara Zagonel; Nardi, Geisson Marcos; de Oliveira Souza Bratti, Letícia; Filippin-Monteiro, Fabíola Branco; Locatelli, Claudriana

    2017-01-01

    Natural antioxidants present in fruits have attracted considerable interest due to their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals of goji berry (GB) in patients with metabolic syndrome have not been investigated. In this study, we examined anthropometric and biochemical parameters in patients with metabolic syndrome after the consumption of GB. The patients were divided into two groups, control (C) and supplemented (S), and followed up for 45 days. Participants were individually instructed to carry out a healthy diet, but additionally, an inclusion of 14 g of the natural form of goji berry in the diet during 45 days for the S group was proposed. After 45 days of study, a significant reduction in transaminases as well as an improvement in lipid profile in the S group was observed. Likewise, a significant reduction in the waist circumference of the S group was observed when compared with that of the C group, and increased glutathione and catalase levels associated with a reduction of lipid peroxidation. These results suggest that this is an effective dietary supplement for the prevention of cardiovascular diseases in individuals with metabolic syndrome.

  8. Serum adipocytokine profile and metabolic syndrome in young adult female dermatomyositis patients.

    Science.gov (United States)

    Silva, Marilda Guimarães; Borba, Eduardo Ferreira; Mello, Suzana Beatriz Veríssimo de; Shinjo, Samuel Katsuyuki

    2016-12-01

    To analyse the frequency of metabolic syndrome in young adult female dermatomyositis patients and its possible association with clinical and laboratory dermatomyositis-related features and serum adipocytokines. This cross-sectional study included 35 dermatomyositis patients and 48 healthy controls. Metabolic syndrome was defined according to the 2009 Joint Interim Statement. Patient age was comparable in the dermatomyositis and control groups, and the median disease duration was 1.0 year. An increased prevalence of metabolic syndrome was detected in the dermatomyositis group (34.3% vs. 6.3%; p=0.001). In addition, increased serum adiponectin and resistin levels were noted in contrast to lower leptin levels. In dermatomyositis patients, adipocytokine levels were correlated with the levels of total cholesterol, low-density cholesterol, triglycerides and muscle enzymes. A comparison of dermatomyositis patients with (n=12) and without (n=23) syndrome metabolic revealed that adipocytokine levels were also correlated with age, and that dermatomyositis patients with metabolic syndrome tended to have more disease activity despite similar adipocytokine levels. Metabolic syndrome is highly prevalent in young adult female dermatomyositis patients and is related to age and disease activity. Moreover, increased serum adiponectin and resistin levels were detected in dermatomyositis patients, but lower serum leptin levels were observed.

  9. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach.

    Directory of Open Access Journals (Sweden)

    Luz A Betancur

    Full Text Available Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities.

  10. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach

    Science.gov (United States)

    Betancur, Luz A.; Naranjo-Gaybor, Sandra J.; Vinchira-Villarraga, Diana M.; Moreno-Sarmiento, Nubia C.; Maldonado, Luis A.; Suarez-Moreno, Zulma R.; Acosta-González, Alejandro; Padilla-Gonzalez, Gillermo F.; Puyana, Mónica; Castellanos, Leonardo; Ramos, Freddy A.

    2017-01-01

    Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities. PMID:28225766

  11. Inactivation and changes in metabolic profile of selected foodborne bacteria by 460 nm LED illumination.

    Science.gov (United States)

    Kumar, Amit; Ghate, Vinayak; Kim, Min-Jeong; Zhou, Weibiao; Khoo, Gek Hoon; Yuk, Hyun-Gyun

    2017-05-01

    The objective of this study was to investigate the effect of 460 nm light-emitting diode (LED) on the inactivation of foodborne bacteria. Additionally, the change in the endogenous metabolic profile of LED illuminated cells was analyzed to understand the bacterial response to the LED illumination. Six different species of bacteria (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Pseudomonas aeruginosa and Salmonella Typhimurium) were illuminated with 460 nm LED to a maximum dose of 4080 J/cm 2 at 4, 10 and 25 °C. Inactivation curves were modeled using Hom model. Metabolic profiling of the non-illuminated and illuminated cells was performed using a Liquid chromatography-mass spectrometry system. Results indicate that the 460 nm LED significantly (p LED illumination. These results elucidate the effectiveness of 460 nm LED against foodborne bacteria and hence, its suitability as a novel antimicrobial control method to ensure food safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Metabolic profiles show specific mitochondrial toxicities in vitro in myotube cells

    International Nuclear Information System (INIS)

    Xu Qiuwei; Vu, Heather; Liu Liping; Wang, Ting-Chuan; Schaefer, William H.

    2011-01-01

    Mitochondrial toxicity has been a serious concern, not only in preclinical drug development but also in clinical trials. In mitochondria, there are several distinct metabolic processes including fatty acid β-oxidation, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS), and each process contains discrete but often intimately linked steps. Interruption in any one of those steps can cause mitochondrial dysfunction. Detection of inhibition to OXPHOS can be complicated in vivo because intermediate endogenous metabolites can be recycled in situ or circulated systemically for metabolism in other organs or tissues. Commonly used assays for evaluating mitochondrial function are often applied to ex vivo or in vitro samples; they include various enzymatic or protein assays, as well as functional assays such as measurement of oxygen consumption rate, membrane potential, or acidification rates. Metabolomics provides quantitative profiles of overall metabolic changes that can aid in the unraveling of explicit biochemical details of mitochondrial inhibition while providing a holistic view and heuristic understanding of cellular bioenergetics. In this paper, we showed the application of quantitative NMR metabolomics to in vitro myotube cells treated with mitochondrial toxicants, rotenone and antimycin A. The close coupling of the TCA cycle to the electron transfer chain (ETC) in OXPHOS enables specific diagnoses of inhibition to ETC complexes by discrete biochemical changes in the TCA cycle.

  13. Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains.

    Science.gov (United States)

    Queiroz, Adriano; Medina-Cleghorn, Daniel; Marjanovic, Olivera; Nomura, Daniel K; Riley, Lee W

    2015-11-01

    Mycobacterium tuberculosis disrupted in a 13-gene operon (mce1) accumulates free mycolic acids (FM) in its cell wall and causes accelerated death in mice. Here, to more comprehensively analyze differences in their cell wall lipid composition, we used an untargeted metabolomics approach to compare the lipid profiles of wild-type and mce1 operon mutant strains. By liquid chromatography-mass spectrometry, we identified >400 distinct lipids significantly altered in the mce1 mutant compared to wild type. These lipids included decreased levels of saccharolipids and glycerophospholipids, and increased levels of alpha-, methoxy- and keto mycolic acids (MA), and hydroxyphthioceranic acid. The mutant showed reduced expression of mmpL8, mmpL10, stf0, pks2 and papA2 genes involved in transport and metabolism of lipids recognized to induce proinflammatory response; these lipids were found to be decreased in the mutant. In contrast, the transcripts of mmpL3, fasI, kasA, kasB, acpM and RV3451 involved in MA transport and metabolism increased; MA inhibits inflammatory response in macrophages. Since the mce1 operon is known to be regulated in intracellular M. tuberculosis, we speculate that the differences we observed in cell wall lipid metabolism and composition may affect host response to M. tuberculosis infection and determine the clinical outcome of such an infection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Urine metabolic profiling for the pathogenesis research of erosive oral lichen planus.

    Science.gov (United States)

    Li, Xu-Zhao; Yang, Xu-Yan; Wang, Yu; Zhang, Shuai-Nan; Zou, Wei; Wang, Yan; Li, Xiao-Nan; Wang, Ling-Shu; Zhang, Zhi-Gang; Xie, Liang-Zhen

    2017-01-01

    Oral lichen planus (OLP) is a relatively common chronic immune-pathological and inflammatory disease and potentially oral precancerous lesion. Erosive OLP patients show the higher rate of malignant transformation than patients with non-erosive OLP. Identifying the potential biomarkers related to erosive OLP may help to understand the pathogenesis of the diseases. Metabolic profiles were compared in control and patient subjects with erosive OLP by using ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-QTOF-MS) coupled with pattern recognition methods An integrative analysis was used to identify the perturbed metabolic pathways and pathological processes that may be associated with the disease. In total, 12 modulated metabolites were identified and considered as the potential biomarkers of erosive OLP. Multiple metabolic pathways and pathological processes were involved in erosive OLP. The dysregulations of these metabolites could be used to explain the pathogenesis of the disease, which could also be the potential therapeutic targets for the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    Directory of Open Access Journals (Sweden)

    Horia Todor

    Full Text Available Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  16. Effects of black raspberry on lipid profiles and vascular endothelial function in patients with metabolic syndrome.

    Science.gov (United States)

    Jeong, Han Saem; Hong, Soon Jun; Lee, Tae-Bum; Kwon, Ji-Wung; Jeong, Jong Tae; Joo, Hyung Joon; Park, Jae Hyoung; Ahn, Chul-Min; Yu, Cheol Woong; Lim, Do-Sun

    2014-10-01

    Black raspberry (Rubus occidentalis) has been known for its anti-inflammatory and anti-oxidant effects. However, short-term effects of black raspberry on lipid profiles and vascular endothelial function have not been investigated in patients with metabolic syndrome. Patients with metabolic syndrome (n = 77) were prospectively randomized into a group with black raspberry (n = 39, 750 mg/day) and a placebo group (n = 38) during a 12-week follow-up. Lipid profiles, brachial artery flow-mediated dilatation (baFMD), and inflammatory cytokines such as IL-6, TNF-α, C-reactive protein, adiponectin, sICAM-1, and sVCAM-1 were measured at the baseline and at the 12-week follow-up. Decreases from the baseline in the total cholesterol level (-22.8 ± 30.4 mg/dL vs. -1.9 ± 31.8 mg/dL, p raspberry than in the placebo group. Increases in baFMD at the 12-week follow-up were significantly greater in the group with black raspberry than in the placebo group (0.33 ± 0.44 mm vs. 0.10 ± 0.35 mm, p raspberry. The use of black raspberry significantly decreased serum total cholesterol level and inflammatory cytokines, thereby improving vascular endothelial function in patients with metabolic syndrome during the 12-week follow-up. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Nuclear magnetic resonance studies of metabolic regulation

    International Nuclear Information System (INIS)

    Sillerud, L.O.; Han, C.H.; Whaley, T.W.

    1983-01-01

    Nuclear magnetic resonance (NMR) techniques for the detection of the metabolic transformations of biological compounds labeled with stable isotopes, particularly carbon-13 have been explored. We have studied adipose tissue in the intact rat, the exteriorized epididymal fat pad, and the isolated adipocyte. Triacylglycerol metabolism in adipose tissue is regulated by lipogenic factors (insulin, corticosterone, thyroxine, and growth hormone) and lipolytic factors (glucagon and catecholamines). The synthesis of triglyceride from 5.5 mM glucose was stimulated by about 4-fold by 10 nM insulin. Triglyceride synthesis from glucose in the presence of insulin occurred at a rate of 330 nmol/hr/10 6 cells. Since the NMR signals from free and esterified fatty acids and glycerol are distinct, we could directly measure the rate of hormone-stimulated lipolysis. Epinephrine (10 μM) gave a lipolytic rate of 0.30 μmol/hr/10 6 cells as monitored by free-glycerol appearance in the medium. 13 C NMR provides a superior method for the measurement of triglyceride metabolism since it directly measures the changes in the substrates and products in situ

  18. Studies on metabolism of Prazepam, 1

    International Nuclear Information System (INIS)

    Ishihama, Hiroshi; Kabuto, Shigeo; Kimata, Hideki; Tamaki, Taro; Yonemitsu, Masahiro

    1978-01-01

    The metabolic fate of Prazepam (PZ), (7-chloro-1-cyclopropylmethyl-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepin-2-one) was studied in rats. After oral or intravenous administration of 5- 14 C-PZ, the radioactivity was detected in various tissues, indicating extensive uptake of this compound. A higher level of the radioactivity was seen in the liver, small intestine, stomach, adrenal, and kidneys. After oral administration, the radioactivity level in the brain was nearly comparable to that in the blood. In the case of intravenous administration, however, the level in the brain was several times higher than that in the blood. In each route of administration, fecal excretion mostly resulting from biliary excretion was the major elimination route of this drug. A major metabolite in the urine was 4'-hydroxydesalkylprazepam (4'-HDPZ) sulfate which was also found in the bile. Other major metabolites in the bile were 3-hydroxy-prazepam (HPZ) glucuronide and metabolite A which was present as free and conjugated forms. Most of the biliary metabolites were found in the feces as a free form with the unchanged drug. Metabolite A was isolated from the bile and identified as 3'-hydroxydesalkylprazepam (3'-HDPZ). Major metabolites in the plasma, liver, and kidneys were desalkylprazepam (DPZ), oxazepam (OX), 4'-HDPZ, and its sulfate. In the brain, DPZ and OX were the major metabolites, but a small amount of the unchanged drug and HPZ was also detected. These results suggest that the main reactions in the PZ metabolism are C 3 -hydroxylation to HPZ and N-dealkylation to DPZ followed by aromatic hydroxylation to 3'- and 4'-HDPZ or C 3 -hydroxylation to OX. These metabolic patterns were not altered after a repeated administration. The relationship between the pharmacological activity and metabolism of this drug is also discussed. (auth.)

  19. Blood-Based Bioenergetic Profiling Reflects Differences in Brain Bioenergetics and Metabolism

    OpenAIRE

    Tyrrell, Daniel J.; Bharadwaj, Manish S.; Jorgensen, Matthew J.; Register, Thomas C.; Shively, Carol; Andrews, Rachel N.; Neth, Bryan; Dirk Keene, C.; Mintz, Akiva; Craft, Suzanne; Molina, Anthony J. A.

    2017-01-01

    Blood-based bioenergetic profiling provides a minimally invasive assessment of mitochondrial health shown to be related to key features of aging. Previous studies show that blood cells recapitulate mitochondrial alterations in the central nervous system under pathological conditions, including the development of Alzheimer's disease. In this study of nonhuman primates, we focus on mitochondrial function and bioenergetic capacity assessed by the respirometric profiling of monocytes, platelets, ...

  20. Metabolic Desynchronization in Critical Conditions: Experimental Study

    Directory of Open Access Journals (Sweden)

    G. V. Livanov

    2006-01-01

    Full Text Available Objective. To conduct an experimental study of the impact of the time of administration of succinic acid preparations on central nervous system (CNS function and gas exchange while simulating metabolic therapy for severe poisoning by ethyl alcohol. The study was performed on 74 male albino rats weighing 140—180 g. Acute severe and very severe intoxication was simulated, by intraabdominally administering 30% ethanol to the rats. Cytoflavin was used to simulate experimental therapy. The rate of gas exchange was estimated by the oxygen uptake determined by the closed chamber method in a Regnault apparatus (Germany. Spontaneous bioelectrical activity was recorded in the frontooccipital lead by the routine procedure. External pain stimulation and rhythmical photostimulation were employed to evaluate cerebral responsiveness. Heterodirectional EEG changes in the «early» and «late» administration of succinate were not followed by the similar alterations of gas exchange: oxygen consumption in both the «early» and «late» administration of succinate remained significantly lower than in the control animals. With the late administration of succinate to the animals with mixed (toxic and hypoxic coma, the so-called discrepancy between the noticeably increased energy production and brutally diminished metabolism occurred. It may be just the pathological mechanism that was the basis for higher mortality in the late succinate administration group. The findings and their analysis make it possible to advance a hypothesis that succinate may cause metabolic desynchronization if activation of metabolic processes takes place under severe tissue respiratory tissue depression. In these cases, there is a severe damage to tissue and chiefly the brain. This manifests itself as EEG epileptiform activity splashes preceding the animals’ death. Therefore, resuscitation aimed at restoring the transport of oxygen and its involvement in tissue energy processes should

  1. ¹H NMR-based metabolic profiling of human rectal cancer tissue

    Science.gov (United States)

    2013-01-01

    Background Rectal cancer is one of the most prevalent tumor types. Understanding the metabolic profile of rectal cancer is important for developing therapeutic approaches and molecular diagnosis. Methods Here, we report a metabonomics profiling of tissue samples on a large cohort of human rectal cancer subjects (n = 127) and normal controls (n = 43) using 1H nuclear magnetic resonance (1H NMR) based metabonomics assay, which is a highly sensitive and non-destructive method for the biomarker identification in biological systems. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal projection to latent structure with discriminant analysis (OPLS-DA) were applied to analyze the 1H-NMR profiling data to identify the distinguishing metabolites of rectal cancer. Results Excellent separation was obtained and distinguishing metabolites were observed among the different stages of rectal cancer tissues (stage I = 35; stage II = 37; stage III = 37 and stage IV = 18) and normal controls. A total of 38 differential metabolites were identified, 16 of which were closely correlated with the stage of rectal cancer. The up-regulation of 10 metabolites, including lactate, threonine, acetate, glutathione, uracil, succinate, serine, formate, lysine and tyrosine, were detected in the cancer tissues. On the other hand, 6 metabolites, including myo-inositol, taurine, phosphocreatine, creatine, betaine and dimethylglycine were decreased in cancer tissues. These modified metabolites revealed disturbance of energy, amino acids, ketone body and choline metabolism, which may be correlated with the progression of human rectal cancer. Conclusion Our findings firstly identify the distinguishing metabolites in different stages of rectal cancer tissues, indicating possibility of the attribution of metabolites disturbance to the progression of rectal cancer. The altered metabolites may be as potential biomarkers, which would

  2. Antimicrobial peptide FF/CAP18 induces apoptotic cell death in HCT116 colon cancer cells via changes in the metabolic profile.

    Science.gov (United States)

    Kuroda, Kengo; Fukuda, Tomokazu; Isogai, Hiroshi; Okumura, Kazuhiko; Krstic-Demonacos, Marija; Isogai, Emiko

    2015-04-01

    Metabolic reprogramming is one of the hallmarks of cancer and can be targeted by therapeutic agents. We previously reported that cathelicidin-related or modified antimicrobial peptides, such as FF/CAP18, have antiproliferative effects on the squamous cell carcinoma cell line SAS-H1, and the colon carcinoma cell line HCT116. Although antimicrobial peptides have potential use in the development of new therapeutic strategies, their effects on the metabolism of cancer cells are poorly understood. Here, we investigated changes in the levels of metabolites in HCT116 cells caused by FF/CAP18, via capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Analysis of the 177 intracellular metabolites and 113 metabolites in conditioned medium that were detected by CE-TOFMS, revealed dramatic changes in the metabolic profile of HCT116 cells after treatment with FF/CAP18. The metabolic profile showed that the levels of most metabolites in the major metabolic pathways supported the rapid proliferation of cancer cells. Purine metabolism, glycolysis, and the TCA cycle, were altered in FF/CAP18-treated cells in a dose-dependent manner. Our present study provides mechanistic insights into the anticancer effects of antimicrobial peptides that show great potential as new therapies for colon cancer.

  3. Methylation, Glucuronidation, and Sulfonation of Daphnetin in Human Hepatic Preparations In Vitro: Metabolic Profiling, Pathway Comparison, and Bioactivity Analysis.

    Science.gov (United States)

    Liang, Si-Cheng; Xia, Yang-Liu; Hou, Jie; Ge, Guang-Bo; Zhang, Jiang-Wei; He, Yu-Qi; Wang, Jia-Yue; Qi, Xiao-Yi; Yang, Ling

    2016-02-01

    Our previous study demonstrated that daphnetin is subject to glucuronidation in vitro. However, daphnetin metabolism is still poorly documented. This study aimed to investigate daphnetin metabolism and its consequent effect on the bioactivity. Metabolic profiles obtained by human liver S9 fractions and human hepatocytes showed that daphnetin was metabolized by glucuronidation, sulfonation, and methylation to form 6 conjugates which were synthesized and identified as 7-O-glucuronide, 8-O-glucuronide, 7-O-sulfate and 8-O-sulfate, 8-O-methylate, and 7-O-suflo-8-O-methylate. Regioselective 8-O-methylation of daphnetin was investigated using in silico docking calculations, and the results suggested that a close proximity (2.03 Å) of 8-OH to the critical residue Lysine 144 might be the responsible mechanism. Compared with glucuronidation and sulfonation pathways, the methylation of daphnetin had a high clearance rate (470 μL/min/mg) in human liver S9 fractions and contributed to a large amount (37.3%) of the methyl-derived metabolites in human hepatocyte. Reaction phenotyping studies showed the major role of SULT1A1, -1A2, and -1A3 in daphnetin sulfonation, and soluble COMT in daphnetin 8-O-methylation. Of the metabolites, only 8-O-methyldaphnetin exhibited an inhibitory activity on lymphocyte proliferation comparable to that of daphnetin. In conclusion, methylation is a crucial pathway for daphnetin clearance and might be involved in pharmacologic actions of daphnetin in humans. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Metabolic profiling of serum samples by 1H nuclear magnetic resonance spectroscopy as a potential diagnostic approach for septic shock.

    Science.gov (United States)

    Mickiewicz, Beata; Duggan, Gavin E; Winston, Brent W; Doig, Christopher; Kubes, Paul; Vogel, Hans J

    2014-05-01

    To determine whether a nuclear magnetic resonance-based metabolomics approach can be useful for the early diagnosis and prognosis of septic shock in ICUs. Laboratory-based study. University research laboratory. Serum samples from septic shock patients and ICU controls (ICU patients with systemic inflammatory response syndrome but not suspected of having an infection) were collected within 24 hours of admittance to the ICU. None. H nuclear magnetic resonance spectra of septic shock and ICU control samples were analyzed and quantified using a targeted profiling approach. By applying multivariate statistical analysis (e.g., orthogonal partial least squares discriminant analysis), we were able to distinguish the patient groups and detect specific metabolic patterns. Some of the metabolites were found to have a significant impact on the separation between septic shock and control samples. These metabolites could be interpreted in terms of a biological human response to septic shock and they might serve as a biomarker pattern for septic shock in ICUs. Additionally, nuclear magnetic resonance-based metabolomics was evaluated in order to detect metabolic variation between septic shock survivors and nonsurvivors and to predict patient outcome. The area under the receiver operating characteristic curve indicated an excellent predictive ability for the constructed orthogonal partial least squares discriminant analysis models (septic shock vs ICU controls: area under the receiver operating characteristic curve = 0.98; nonsurvivors vs survivors: area under the receiver operating characteristic curve = 1). Our results indicate that nuclear magnetic resonance-based metabolic profiling could be used for diagnosis and mortality prediction of septic shock in the ICU.

  5. Effects of Arctium lappa aqueous extract on lipid profile and hepatic enzyme levels of sucrose-induced metabolic syndrome in female rats

    Directory of Open Access Journals (Sweden)

    Akram Ahangarpour

    Full Text Available ABSTRACT Arctium lappa is known to have antioxidant and antidiabetic effects in traditional medicine. Objectives: The aim of this paper was to study the effects of A. lappa root extract (AE on lipid profile and hepatic enzyme levels in sucrose-induced metabolic syndrome (MS in female rats. The study used 40 adult female Wistar rats weighing 150 g-250 g randomly divided into five groups: control, metabolic syndrome (MS, metabolic syndrome+AE at 50,100, 200 mg/kg. MS was induced by administering 50% sucrose in drinking water for 6 weeks. AE was intra-peritoneally administered daily at doses of 50,100, and 200 mg/kg for two sequential weeks at the end of the fourth week in metabolic syndrome rats. Twenty-four hours after the last administration of AE, blood was collected and centrifuged, and then the serum was used for the measurement of lipid profile and hepatic enzyme. Serum glucose, insulin, fasting insulin resistance index, body weight, water intake, lipid profile, and hepatic enzymes were significantly increased although food intake was decreased in MS rats compared to the control rats. The lipids and liver enzymes were reduced by AE extracts in the MS group. This study showed that the A. lappa root aqueous extract exhibits a hypolipidemic activity of hyperlipidemic rats. This activity is practically that of a triple-impact antioxidant, hypolipidemic, and hepatoprotective.

  6. Metabolism and fatty acid profile in fat and lean rainbow trout lines fed with vegetable oil: effect of carbohydrates.

    Directory of Open Access Journals (Sweden)

    Biju Sam Kamalam

    Full Text Available The present study investigated the effect of dietary carbohydrates on metabolism, with special focus on fatty acid bioconversion and flesh lipid composition in two rainbow trout lines divergently selected for muscle lipid content and fed with vegetable oils. These lines were chosen based on previously demonstrated potential differences in LC-PUFA synthesis and carbohydrate utilization. Applying a factorial study design, juvenile trout from the lean (L and the fat (F line were fed vegetable oil based diets with or without gelatinised starch (17.1% for 12 weeks. Blood, liver, muscle, intestine and adipose tissue were sampled after the last meal. Feed intake and growth was higher in the L line than the F line, irrespective of the diet. Moderate postprandial hyperglycemia, strong induction of hepatic glucokinase and repressed glucose-6-phosphatase transcripts confirmed the metabolic response of both lines to carbohydrate intake. Further at the transcriptional level, dietary carbohydrate in the presence of n-3 LC-PUFA deficient vegetable oils enhanced intestinal chylomicron assembly, disturbed hepatic lipid metabolism and importantly elicited a higher response of key desaturase and elongase enzymes in the liver and intestine that endorsed our hypothesis. PPARγ was identified as the factor mediating this dietary regulation of fatty acid bioconversion enzymes in the liver. However, these molecular changes were not sufficient to modify the fatty acid composition of muscle or liver. Concerning the genotype effect, there was no evidence of substantial genotypic difference in lipid metabolism, LC-PUFA synthesis and flesh fatty acid profile when fed with vegetable oils. The minor reduction in plasma glucose and triglyceride levels in the F line was linked to potentially higher glucose and lipid uptake in the muscle. Overall, these data emphasize the importance of dietary macro-nutrient interface in evolving fish nutrition strategies.

  7. iTRAQ-based protein profiling provides insights into the central metabolism changes driving grape berry development and ripening.

    Science.gov (United States)

    Martínez-Esteso, María José; Vilella-Antón, María Teresa; Pedreño, María Ángeles; Valero, María Luz; Bru-Martínez, Roque

    2013-10-24

    Grapevine (Vitis vinifera L.) is an economically important fruit crop. Quality-determining grape components such as sugars, acids, flavors, anthocyanins, tannins, etc., accumulate in the different grape berry development stages. Thus, correlating the proteomic profiles with the biochemical and physiological changes occurring in grape is of paramount importance to advance in our understanding of berry development and ripening processes. We report the developmental analysis of Vitis vinifera cv. Muscat Hamburg berries at the protein level from fruit set to full ripening. An iTRAQ-based bottom-up proteomic approach followed by tandem mass spectrometry led to the identification and quantitation of 411 and 630 proteins in the green and ripening phases, respectively. Two key points in development relating to changes in protein level were detected: end of the first growth period (7 mm-to-15 mm) and onset of ripening (15 mm-to-V100, V100-to-110). A functional analysis was performed using the Blast2GO software based on the enrichment of GO terms during berry growth. The study of the proteome contributes to decipher the biological processes and metabolic pathways involved in the development and quality traits of fruit and its derived products. These findings lie mainly in metabolism and storage of sugars and malate, energy-related pathways such as respiration, photosynthesis and fermentation, and the synthesis of polyphenolics as major secondary metabolites in grape berry. In addition, some key steps in carbohydrate and malate metabolism have been identified in this study, i.e., PFP-PFK or SuSy-INV switches among others, which may influence the final sugar and acid balance in ripe fruit. In conclusion, some proteins not reported to date have been detected to be deregulated in specific tissues and developmental stages, leading to formulate new hypotheses on the metabolic processes underlying grape berry development. These results open up new lines to decipher the

  8. In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin.

    Science.gov (United States)

    Ntie-Kang, Fidele; Lifongo, Lydia L; Mbah, James A; Owono Owono, Luc C; Megnassan, Eugene; Mbaze, Luc Meva'a; Judson, Philip N; Sippl, Wolfgang; Efange, Simon M N

    2013-01-01

    Drug metabolism and pharmacokinetics (DMPK) assessment has come to occupy a place of interest during the early stages of drug discovery today. The use of computer modelling to predict the DMPK and toxicity properties of a natural product library derived from medicinal plants from Central Africa (named ConMedNP). Material from some of the plant sources are currently employed in African Traditional Medicine. Computer-based methods are slowly gaining ground in this area and are often used as preliminary criteria for the elimination of compounds likely to present uninteresting pharmacokinetic profiles and unacceptable levels of toxicity from the list of potential drug candidates, hence cutting down the cost of discovery of a drug. In the present study, we present an in silico assessment of the DMPK and toxicity profile of a natural product library containing ~3,200 compounds, derived from 379 species of medicinal plants from 10 countries in the Congo Basin forests and savannas, which have been published in the literature. In this analysis, we have used 46 computed physico-chemical properties or molecular descriptors to predict the absorption, distribution, metabolism and elimination and toxicity (ADMET) of the compounds. This survey demonstrated that about 45% of the compounds within the ConMedNP compound library are compliant, having properties which fall within the range of ADME properties of 95% of currently known drugs, while about 69% of the compounds have ≤ 2 violations. Moreover, about 73% of the compounds within the corresponding "drug-like" subset showed compliance. In addition to the verified levels of "drug-likeness", diversity and the wide range of measured biological activities, the compounds from medicinal plants in Central Africa show interesting DMPK profiles and hence could represent an important starting point for hit/lead discovery.

  9. Low physical activity level and short sleep duration are associated with an increased cardio-metabolic risk profile: a longitudinal study in 8-11 year old Danish children.

    Science.gov (United States)

    Hjorth, Mads F; Chaput, Jean-Philippe; Damsgaard, Camilla T; Dalskov, Stine-Mathilde; Andersen, Rikke; Astrup, Arne; Michaelsen, Kim F; Tetens, Inge; Ritz, Christian; Sjödin, Anders

    2014-01-01

    As cardio-metabolic risk tracks from childhood to adulthood, a better understanding of the relationship between movement behaviors (physical activity, sedentary behavior and sleep) and cardio-metabolic risk in childhood may aid in preventing metabolic syndrome (MetS) in adulthood. To examine independent and combined cross-sectional and longitudinal associations between movement behaviors and the MetS score in 8-11 year old Danish children. Physical activity, sedentary time and sleep duration (seven days and eight nights) were assessed by accelerometer and fat mass index (fat mass/height2) was assessed using Dual-energy X-ray absorptiometry. The MetS-score was based on z-scores of waist circumference, mean arterial blood pressure, homeostatic model assessment of insulin resistance, triglycerides and high density lipoprotein cholesterol. All measurements were taken at three time points separated by 100 days. Average of the three measurements was used as habitual behavior in the cross-sectional analysis and changes from first to third measurement was used in the longitudinal analysis. 723 children were included. In the cross-sectional analysis, physical activity was negatively associated with the MetS-score (Pphysical activity and high sedentary time were associated with an increased MetS-score (all Pphysical activity and sleep duration, but not sedentary time, were associated with the MetS-score (all P0.17). Children in the most favorable tertiles of changes in moderate-to-vigorous physical activity, sleep duration and sedentary time during the 200-day follow-up period had an improved MetS-score relative to children in the opposite tertiles (P = 0.005). The present findings indicate that physical activity, sedentary time and sleep duration should all be targeted to improve cardio-metabolic risk markers in childhood; this is possibly mediated by adiposity.

  10. A STUDY OF LIPID PROFILE IN PREDIABETES

    Directory of Open Access Journals (Sweden)

    Manoj

    2016-06-01

    Full Text Available BACKGROUND Lipid abnormalities are common in diabetes mellitus and play an important role in acceleration of atherosclerosis leading to increased cardiovascular diseases. Due to increasing burden of diabetes, it is becoming important to identify dyslipidaemia in high-risk state for diabetes especially prediabetes so that early intervention can reduce cardiovascular risk. AIM To study lipid profile in prediabetes individuals. METHODS This study was a cross-sectional case control study which included 107 prediabetes and 101 healthy controls. Lipid profile of prediabetes and controls were measured and statistically analysed. RESULT Total cholesterol, LDL, triglycerides, VLDL, TG/HDL ratio, and LDL/HDL ratio were significantly high whereas HDL was significantly low in prediabetes subjects as compared to controls. CONCLUSION This study showed significant lipid abnormalities in prediabetes subjects. Because of these they are at high risk of developing atherosclerotic cardiovascular diseases. Therefore, proper screening and appropriate therapy of these conditions becomes important.

  11. Noninvasive analysis of metabolic changes following nutrient input into diverse fish species, as investigated by metabolic and microbial profiling approaches

    Directory of Open Access Journals (Sweden)

    Taiga Asakura

    2014-10-01

    Full Text Available An NMR-based metabolomic approach in aquatic ecosystems is valuable for studying the environmental effects of pharmaceuticals and other chemicals on fish. This technique has also contributed to new information in numerous research areas, such as basic physiology and development, disease, and water pollution. We evaluated the microbial diversity in various fish species collected from Japan’s coastal waters using next-generation sequencing, followed by evaluation of the effects of feed type on co-metabolic modulations in fish-microbial symbiotic ecosystems in laboratory-scale experiments. Intestinal bacteria of fish in their natural environment were characterized (using 16S rRNA genes for trophic level using pyrosequencing and noninvasive sampling procedures developed to study the metabolism of intestinal symbiotic ecosystems in fish reared in their environment. Metabolites in feces were compared, and intestinal contents and feed were annotated based on HSQC and TOCSY using SpinAssign and network analysis. Feces were characterized by species and varied greatly depending on the feeding types. In addition, feces samples demonstrated a response to changes in the time series of feeding. The potential of this approach as a non-invasive inspection technique in aquaculture is suggested.

  12. Plasma free amino acid profiles evaluate risk of metabolic syndrome, diabetes, dyslipidemia, and hypertension in a large Asian population.

    Science.gov (United States)

    Yamaguchi, Natsu; Mahbub, M H; Takahashi, Hidekazu; Hase, Ryosuke; Ishimaru, Yasutaka; Sunagawa, Hiroshi; Amano, Hiroki; Kobayashi-Miura, Mikiko; Kanda, Hideyuki; Fujita, Yasuyuki; Yamamoto, Hiroshi; Yamamoto, Mai; Kikuchi, Shinya; Ikeda, Atsuko; Takasu, Mariko; Kageyama, Naoko; Nakamura, Mina; Tanabe, Tsuyoshi

    2017-04-07

    Recently, the association of plasma free amino acid (PFAA) profile and lifestyle-related diseases has been reported. However, few studies have been reported in large Asian populations, about the usefulness of PFAAs for evaluating disease risks. We examined the ability of PFAA profiles to evaluate lifestyle-related diseases in so far the largest Asian population. We examined plasma concentrations of 19 amino acids in 8589 Japanese subjects, and determined the association with variables associated with obesity, blood glucose, lipid, and blood pressure. We also evaluated the PFAA indexes that reflect visceral fat obesity and insulin resistance. The contribution of single PFAA level and relevant PFAA indexes was also examined in the risk assessment of lifestyle-related diseases. Of the 19 amino acids, branched-chain amino acids and aromatic amino acids showed association with obesity and lipid variables. The PFAA index related to visceral fat obesity showed relatively higher correlation with variables than that of any PFAA. In the evaluation of lifestyle-related disease risks, the odds ratios of the PFAA index related to visceral fat obesity or insulin resistance with the diseases were higher than most of those of individual amino acid levels even after adjusting for potential confounding factors. The association pattern of the indexes and PFAA with each lifestyle-related disease was distinct. We confirmed the usefulness of PFAA profiles and indexes as markers for evaluating the risks of lifestyle-related diseases, including diabetes mellitus, metabolic syndrome, dyslipidemia, and hypertension in a large Asian population.

  13. Absolute quantitative profiling of the key metabolic pathways in slow and fast skeletal muscle

    DEFF Research Database (Denmark)

    Rakus, Dariusz; Gizak, Agnieszka; Deshmukh, Atul

    2015-01-01

    . Proteomic analysis of mouse slow and fast muscles allowed estimation of the titers of enzymes involved in the carbohydrate, lipid, and energy metabolism. Notably, we observed that differences observed between the two muscle types occur simultaneously for all proteins involved in a specific process......Slow and fast skeletal muscles are composed of, respectively, mainly oxidative and glycolytic muscle fibers, which are the basic cellular motor units of the motility apparatus. They largely differ in excitability, contraction mechanism, and metabolism. Because of their pivotal role in body motion...... and homeostasis, the skeletal muscles have been extensively studied using biochemical and molecular biology approaches. Here we describe a simple analytical and computational approach to estimate titers of enzymes of basic metabolic pathways and proteins of the contractile machinery in the skeletal muscles...

  14. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Directory of Open Access Journals (Sweden)

    Carlos Pozo

    Full Text Available Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study

  15. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Science.gov (United States)

    Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Sorribas, Albert; Jiménez, Laureano

    2012-01-01

    Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the

  16. Dietary glycemic index, glycemic load and metabolic profile in children with phenylketonuria.

    Science.gov (United States)

    Moretti, F; Pellegrini, N; Salvatici, E; Rovelli, V; Banderali, G; Radaelli, G; Scazzina, F; Giovannini, M; Verduci, E

    2017-02-01

    No data exist in the current literature on the glycemic index (GI) and glycemic load (GL) of the diet of phenylketonuric (PKU) children. The aims of this study were to examine the dietary GI and GL in PKU children on a low-phenylalanine (Phe)-diet and to evaluate whether an association may exist between the carbohydrate quality and the metabolic profile. Twenty-one PKU children (age 5-11 years) and 21 healthy children, gender and age matched, were enrolled. Dietary (including GI and GL) and blood biochemical assessments were performed. No difference was observed for daily energy intake between PKU and healthy children. Compared to healthy controls, PKU children consumed less protein (p = 0.001) and fat (p = 0.028), and more carbohydrate (% of total energy, p = 0.004) and fiber (p = 0.009). PKU children had higher daily GI than healthy children (mean difference (95% confidence interval), 13.7 (9.3-18.3)) and higher GL (31.7 (10.1-53.2)). PKU children exhibited lower blood total and low density lipoprotein cholesterol (LDL) levels (p < 0.01) and higher triglyceride level (p = 0.014) than healthy children, while glucose and insulin concentrations did not differ. In PKU children the dietary GL was associated with triglyceride glucose index (Spearman's correlation coefficient = 0.515, p = 0.034). In PKU children a relationship of the dietary treatment with GI and GL, blood triglycerides and triglyceride glucose index may exist. Improvement towards an optimal diet for PKU children could include additional attention to the management of dietary carbohydrate quality. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  17. Rationales and Approaches for Studying Metabolism in Eukaryotic Microalgae

    Directory of Open Access Journals (Sweden)

    Daniel Veyel

    2014-04-01

    Full Text Available The generation of efficient production strains is essential for the use of eukaryotic microalgae for biofuel production. Systems biology approaches including metabolite profiling on promising microalgal strains, will provide a better understanding of their metabolic networks, which is crucial for metabolic engineering efforts. Chlamydomonas reinhardtii represents a suited model system for this purpose. We give an overview to genetically amenable microalgal strains with the potential for biofuel production and provide a critical review of currently used protocols for metabolite profiling on Chlamydomonas. We provide our own experimental data to underpin the validity of the conclusions drawn.

  18. Metabolic and proteomic profiling of diapause in the aphid parasitoid Praon volucre.

    Directory of Open Access Journals (Sweden)

    Hervé Colinet

    Full Text Available BACKGROUND: Diapause, a condition of developmental arrest and metabolic depression exhibited by a wide range of animals is accompanied by complex physiological and biochemical changes that generally enhance environmental stress tolerance and synchronize reproduction. Even though some aspects of diapause have been well characterized, very little is known about the full range of molecular and biochemical modifications underlying diapause in non-model organisms. METHODOLOGY/PRINCIPAL FINDINGS: In this study we focused on the parasitic wasp, Praon volucre that exhibits a pupal diapause in response to environmental signals. System-wide metabolic changes occurring during diapause were investigated using GC-MS metabolic fingerprinting. Moreover, proteomic changes were studied in diapausing versus non-diapausing phenotypes using a combination of two-dimensional differential gel electrophoresis (2D-DIGE and mass spectrometry. We found a reduction of Krebs cycle intermediates which most likely resulted from the metabolic depression. Glycolysis was galvanized, probably to favor polyols biosynthesis. Diapausing parasitoids accumulated high levels of cryoprotective polyols, especially sorbitol. A large set of proteins were modulated during diapause and these were involved in various functions such as remodeling of cytoskeleton and cuticle, stress tolerance, protein turnover, lipid metabolism and various metabolic enzymes. CONCLUSIONS/SIGNIFICANCE: The results presented here provide some first clues about the molecular and biochemical events that characterize the diapause syndrome in aphid parasitoids. These data are useful for probing potential commonality of parasitoids diapause with other taxa and they will help creating a general understanding of diapause underpinnings and a background for future interpretations.

  19. Physical activity, heart rate, metabolic profile, and estradiol in premenopausal women

    DEFF Research Database (Denmark)

    Emaus, Aina; Veierød, Marit B; Furberg, Anne-Sofie

    2008-01-01

    PURPOSE: To study whether physical inactive women with a tendency to develop metabolic syndrome have high levels of 17beta-estradiol (E2) of importance for breast cancer risk. METHODS: Two hundred and four healthy women of reproductive age were assessed for self-reported leisure-time physical...

  20. Metabolic profile of long-distance migratory flight and stopover in a shorebird

    NARCIS (Netherlands)

    Landys, MM; Piersma, T; Guglielmo, CG; Jukema, J; Ramenofsky, M; Wingfield, JC; Guglielmo, Christopher G.; Wingfield, John C.

    2005-01-01

    Migrating birds often complete long non-stop flights during which body energy stores exclusively support energetic demands. The metabolic correlates of such long-distance travel in free-living migrants are as yet poorly studied. Bar-tailed godwits, Limosa lapponica taymyrensis, undertake a 4500 km

  1. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves.

    Science.gov (United States)

    Ferracane, Rosalia; Graziani, Giulia; Gallo, Monica; Fogliano, Vincenzo; Ritieni, Alberto

    2010-01-20

    In this work the bioactive metabolic profile, the antioxidant activity and total phenolic content of burdock (Arctium lappa) seeds, leaves and roots were obtained. TEAC values and total phenolic content for hydro-alcoholic extracts of burdock ranged from 67.39 to 1.63 micromol Trolox equivalent/100g dry weight (DW), and from 2.87 to 45 g of gallic acid equivalent/100g DW, respectively. Phytochemical compounds were analyzed by liquid chromatography coupled to electrospray tandem mass spectrometry (LC/MS/MS) in negative mode. The main compounds of burdock extracts were caffeoylquinic acid derivatives, lignans (mainly arctiin) and various flavonoids. The occurrence of some phenolic acids (caffeic acid, chlorogenic acid and cynarin) in burdock seeds; arctiin, luteolin and quercetin rhamnoside in burdock roots; phenolic acids, quercetin, quercitrin and luteolin in burdock leaves was reported for the first time.

  2. Metabolic studies of oxyguno in horses

    International Nuclear Information System (INIS)

    Wong, April S.Y.; Ho, Emmie N.M.; Wan, Terence S.M.; Lam, Kenneth K.H.; Stewart, Brian D.

    2015-01-01

    Oxyguno (4-chloro-17α-methyl-17β-hydroxy-androst-4-ene-3,11-dione) is a synthetic oral anabolic androgenic steroid commercially available without a prescription. Manufacturers of oxyguno claim that its anabolic effect in metabolic enhancement exceeds that of the classic anabolic steroid testosterone by seven times, but its androgenic side-effects are only twelve percent of testosterone. Like other anabolic androgenic steroids, oxyguno is prohibited in equine sports. The metabolism of oxyguno in either human or horse has not been reported and therefore little is known about its metabolic fate. This paper describes the in vitro and in vivo metabolic studies of oxyguno in racehorses with an objective to identify the most appropriate target metabolites for detecting oxyguno administration. In vitro studies of oxyguno were performed using horse liver microsomes. Metabolites in the incubation mixtures were isolated by liquid–liquid extraction and analysed by gas chromatography-mass spectrometry in the EI mode after trimethylsilylation. In vitro metabolites identified include the stereoisomers of 4-chloro-17α-methyl-androst-4-ene-3-keto-11,17β-diol (M1a & M1b); 20-hydroxy-oxyguno (M2); and 4-chloro-17α-methyl-androst-4-ene-3-keto-11,17β,20-triol (M3). These novel metabolites were resulted from hydroxylation at C20, and/or reduction of the keto group at C11. For the in vivo studies, two geldings were each administered orally with a total dose of 210 mg oxyguno (52.5 mg twice daily for 2 days). Pre- and post-administration urine and blood samples were collected for analysis. The parent drug oxyguno was detected in both urine and blood, while numerous novel metabolites were detected in urine. The stereoisomers (M1a & M1b) observed in the in vitro studies were also detected in post-administration urine samples. Three other metabolites (M4 - M6) were detected. M4, 4-chloro-17α-methyl-androstane-11-keto-3,17β-diol, was resulted from reductions of the olefin

  3. Metabolic studies of oxyguno in horses

    Energy Technology Data Exchange (ETDEWEB)

    Wong, April S.Y., E-mail: april.sy.wong-rl@hkjc.org.hk [Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong (China); Ho, Emmie N.M. [Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong (China); Wan, Terence S.M., E-mail: terence.sm.wan@hkjc.org.hk [Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong (China); Lam, Kenneth K.H.; Stewart, Brian D. [Veterinary Regulation & International Liaison, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong (China)

    2015-09-03

    Oxyguno (4-chloro-17α-methyl-17β-hydroxy-androst-4-ene-3,11-dione) is a synthetic oral anabolic androgenic steroid commercially available without a prescription. Manufacturers of oxyguno claim that its anabolic effect in metabolic enhancement exceeds that of the classic anabolic steroid testosterone by seven times, but its androgenic side-effects are only twelve percent of testosterone. Like other anabolic androgenic steroids, oxyguno is prohibited in equine sports. The metabolism of oxyguno in either human or horse has not been reported and therefore little is known about its metabolic fate. This paper describes the in vitro and in vivo metabolic studies of oxyguno in racehorses with an objective to identify the most appropriate target metabolites for detecting oxyguno administration. In vitro studies of oxyguno were performed using horse liver microsomes. Metabolites in the incubation mixtures were isolated by liquid–liquid extraction and analysed by gas chromatography-mass spectrometry in the EI mode after trimethylsilylation. In vitro metabolites identified include the stereoisomers of 4-chloro-17α-methyl-androst-4-ene-3-keto-11,17β-diol (M1a & M1b); 20-hydroxy-oxyguno (M2); and 4-chloro-17α-methyl-androst-4-ene-3-keto-11,17β,20-triol (M3). These novel metabolites were resulted from hydroxylation at C20, and/or reduction of the keto group at C11. For the in vivo studies, two geldings were each administered orally with a total dose of 210 mg oxyguno (52.5 mg twice daily for 2 days). Pre- and post-administration urine and blood samples were collected for analysis. The parent drug oxyguno was detected in both urine and blood, while numerous novel metabolites were detected in urine. The stereoisomers (M1a & M1b) observed in the in vitro studies were also detected in post-administration urine samples. Three other metabolites (M4 - M6) were detected. M4, 4-chloro-17α-methyl-androstane-11-keto-3,17β-diol, was resulted from reductions of the olefin

  4. Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit.

    Science.gov (United States)

    Dai, Zhan Wu; Léon, Céline; Feil, Regina; Lunn, John E; Delrot, Serge; Gomès, Eric

    2013-03-01

    Changes in carbohydrate metabolism during grape berry development play a central role in shaping the final composition of the fruit. The present work aimed to identify metabolic switches during grape development and to provide insights into the timing of developmental regulation of carbohydrate metabolism. Metabolites from central carbon metabolism were measured using high-pressure anion-exchange chromatography coupled to tandem mass spectrometry and enzymatic assays during the development of grape berries from either field-grown vines or fruiting cuttings grown in the greenhouse. Principal component analysis readily discriminated the various stages of berry development, with similar trajectories for field-grown and greenhouse samples. This showed that each stage of fruit development had a characteristic metabolic profile and provided compelling evidence that the fruit-bearing cuttings are a useful model system to investigate regulation of central carbon metabolism in grape berry. The metabolites measured showed tight coordination within their respective pathways, clustering into sugars and sugar-phosphate metabolism, glycolysis, and the tricarboxylic acid cycle. In addition, there was a pronounced shift in metabolism around veraison, characterized by rapidly increasing sugar levels and decreasing organic acids. In contrast, glycolytic intermediates and sugar phosphates declined before veraison but remained fairly stable post-veraison. In summary, these detailed and comprehensive metabolite analyses revealed the timing of important switches in primary carbohydrate metabolism, which could be related to transcriptional and developmental changes within the berry to achieve an integrated understanding of grape berry development. The results are discussed in a meta-analysis comparing metabolic changes in climacteric versus non-climacteric fleshy fruits.

  5. Deducing hybrid performance from parental metabolic profiles of young primary roots of maize by using a multivariate diallel approach.

    Science.gov (United States)

    Feher, Kristen; Lisec, Jan; Römisch-Margl, Lilla; Selbig, Joachim; Gierl, Alfons; Piepho, Hans-Peter; Nikoloski, Zoran; Willmitzer, Lothar

    2014-01-01

    Heterosis, the greater vigor of hybrids compared to their parents, has been exploited in maize breeding for more than 100 years to produce ever better performing elite hybrids of increased yield. Despite extensive research, the underlying mechanisms shaping the extent of heterosis are not well understood, rendering the process of selecting an optimal set of parental lines tedious. This study is based on a dataset consisting of 112 metabolite levels in young roots of four parental maize inbred lines and their corresponding twelve hybrids, along with the roots' biomass as a heterotic trait. Because the parental biomass is a poor predictor for hybrid biomass, we established a model framework to deduce the biomass of the hybrid from metabolite profiles of its parental lines. In the proposed framework, the hybrid metabolite levels are expressed relative to the parental levels by incorporating the standard concept of additivity/dominance, which we name the Combined Relative Level (CRL). Our modeling strategy includes a feature selection step on the parental levels which are demonstrated to be predictive of CRL across many hybrid metabolites. We demonstrate that these selected parental metabolites are further predictive of hybrid biomass. Our approach directly employs the diallel structure in a multivariate fashion, whereby we attempt to not only predict macroscopic phenotype (biomass), but also molecular phenotype (metabolite profiles). Therefore, our study provides the first steps for further investigations of the genetic determinants to metabolism and, ultimately, growth. Finally, our success on the small-scale experiments implies a valid strategy for large-scale experiments, where parental metabolite profiles may be used together with profiles of selected hybrids as a training set to predict biomass of all possible hybrids.

  6. Deducing hybrid performance from parental metabolic profiles of young primary roots of maize by using a multivariate diallel approach.

    Directory of Open Access Journals (Sweden)

    Kristen Feher

    Full Text Available Heterosis, the greater vigor of hybrids compared to their parents, has been exploited in maize breeding for more than 100 years to produce ever better performing elite hybrids of increased yield. Despite extensive research, the underlying mechanisms shaping the extent of heterosis are not well understood, rendering the process of selecting an optimal set of parental lines tedious. This study is based on a dataset consisting of 112 metabolite levels in young roots of four parental maize inbred lines and their corresponding twelve hybrids, along with the roots' biomass as a heterotic trait. Because the parental biomass is a poor predictor for hybrid biomass, we established a model framework to deduce the biomass of the hybrid from metabolite profiles of its parental lines. In the proposed framework, the hybrid metabolite levels are expressed relative to the parental levels by incorporating the standard concept of additivity/dominance, which we name the Combined Relative Level (CRL. Our modeling strategy includes a feature selection step on the parental levels which are demonstrated to be predictive of CRL across many hybrid metabolites. We demonstrate that these selected parental metabolites are further predictive of hybrid biomass. Our approach directly employs the diallel structure in a multivariate fashion, whereby we attempt to not only predict macroscopic phenotype (biomass, but also molecular phenotype (metabolite profiles. Therefore, our study provides the first steps for further investigations of the genetic determinants to metabolism and, ultimately, growth. Finally, our success on the small-scale experiments implies a valid strategy for large-scale experiments, where parental metabolite profiles may be used together with profiles of selected hybrids as a training set to predict biomass of all possible hybrids.

  7. Metabolic profiling provides a system understanding of hypothyroidism in rats and its application.

    Directory of Open Access Journals (Sweden)

    Si Wu

    Full Text Available BACKGROUND: Hypothyroidism is a chronic condition of endocrine disorder and its precise molecular mechanism remains obscure. In spite of certain efficacy of thyroid hormone replacement therapy in treating hypothyroidism, it often results in other side effects because of its over-replacement, so it is still urgent to discover new modes of treatment for hypothyroidism. Sini decoction (SND is a well-known formula of traditional Chinese medicine (TCM and is considered as efficient agents against hypothyroidism. However, its holistic effect assessment and mechanistic understanding are still lacking due to its complex components. METHODOLOGY/PRINCIPAL FINDINGS: A urinary metabonomic method based on ultra performance liquid chromatography coupled to mass spectrometry was employed to explore global metabolic characters of hypothyroidism. Three typical hypothyroidism models (methimazole-, propylthiouracil- and thyroidectomy-induced hypothyroidism were applied to elucidate the molecular mechanism of hypothyroidism. 17, 21, 19 potential biomarkers were identified with these three hypothyroidism models respectively, primarily involved in energy metabolism, amino acid metabolism, sphingolipid metabolism and purine metabolism. In order to avert the interference of drug interaction between the antithyroid drugs and SND, the thyroidectomy-induced hypothyroidism model was further used to systematically assess the therapeutic efficacy of SND on hypothyroidism. A time-dependent recovery tendency was observed in SND-treated group from the beginning of model to the end of treatment, suggesting that SND exerted a recovery effect on hypothyroidism in a time-dependent manner through partially regulating the perturbed metabolic pathways. CONCLUSIONS/SIGNIFICANCE: Our results showed that the metabonomic approach is instrumental to understand the pathophysiology of hypothyroidism and offers a valuable tool for systematically studying the therapeutic effects of SND on

  8. Metabolic profiling provides a system understanding of hypothyroidism in rats and its application.

    Science.gov (United States)

    Wu, Si; Tan, Guangguo; Dong, Xin; Zhu, Zhenyu; Li, Wuhong; Lou, Ziyang; Chai, Yifeng

    2013-01-01

    Hypothyroidism is a chronic condition of endocrine disorder and its precise molecular mechanism remains obscure. In spite of certain efficacy of thyroid hormone replacement therapy in treating hypothyroidism, it often results in other side effects because of its over-replacement, so it is still urgent to discover new modes of treatment for hypothyroidism. Sini decoction (SND) is a well-known formula of traditional Chinese medicine (TCM) and is considered as efficient agents against hypothyroidism. However, its holistic effect assessment and mechanistic understanding are still lacking due to its complex components. A urinary metabonomic method based on ultra performance liquid chromatography coupled to mass spectrometry was employed to explore global metabolic characters of hypothyroidism. Three typical hypothyroidism models (methimazole-, propylthiouracil- and thyroidectomy-induced hypothyroidism) were applied to elucidate the molecular mechanism of hypothyroidism. 17, 21, 19 potential biomarkers were identified with these three hypothyroidism models respectively, primarily involved in energy metabolism, amino acid metabolism, sphingolipid metabolism and purine metabolism. In order to avert the interference of drug interaction between the antithyroid drugs and SND, the thyroidectomy-induced hypothyroidism model was further used to systematically assess the therapeutic efficacy of SND on hypothyroidism. A time-dependent recovery tendency was observed in SND-treated group from the beginning of model to the end of treatment, suggesting that SND exerted a recovery effect on hypothyroidism in a time-dependent manner through partially regulating the perturbed metabolic pathways. Our results showed that the metabonomic approach is instrumental to understand the pathophysiology of hypothyroidism and offers a valuable tool for systematically studying the therapeutic effects of SND on hypothyroidism.

  9. Metabolic Profiling Provides a System Understanding of Hypothyroidism in Rats and Its Application

    Science.gov (United States)

    Dong, Xin; Zhu, Zhenyu; Li, Wuhong; Lou, Ziyang; Chai, Yifeng

    2013-01-01

    Background Hypothyroidism is a chronic condition of endocrine disorder and its precise molecular mechanism remains obscure. In spite of certain efficacy of thyroid hormone replacement therapy in treating hypothyroidism, it often results in other side effects because of its over-replacement, so it is still urgent to discover new modes of treatment for hypothyroidism. Sini decoction (SND) is a well-known formula of Traditional Chinese Medicine (TCM) and is considered as efficient agents against hypothyroidism. However, its holistic effect assessment and mechanistic understanding are still lacking due to its complex components. Methodology/Principal Findings A urinary metabonomic method based on ultra performance liquid chromatography coupled to mass spectrometry was employed to explore global metabolic characters of hypothyroidism. Three typical hypothyroidism models (methimazole-, propylthiouracil- and thyroidectomy-induced hypothyroidism) were applied to elucidate the molecular mechanism of hypothyroidism. 17, 21, 19 potential biomarkers were identified with these three hypothyroidism models respectively, primarily involved in energy metabolism, amino acid metabolism, sphingolipid metabolism and purine metabolism. In order to avert the interference of drug interaction between the antithyroid drugs and SND, the thyroidectomy-induced hypothyroidism model was further used to systematically assess the therapeutic efficacy of SND on hypothyroidism. A time-dependent recovery tendency was observed in SND-treated group from the beginning of model to the end of treatment, suggesting that SND exerted a recovery effect on hypothyroidism in a time-dependent manner through partially regulating the perturbed metabolic pathways. Conclusions/Significance Our results showed that the metabonomic approach is instrumental to understand the pathophysiology of hypothyroidism and offers a valuable tool for systematically studying the therapeutic effects of SND on hypothyroidism. PMID

  10. Metabolic profiles of exercise in patients with McArdle disease or mitochondrial myopathy.

    Science.gov (United States)

    Delaney, Nigel F; Sharma, Rohit; Tadvalkar, Laura; Clish, Clary B; Haller, Ronald G; Mootha, Vamsi K

    2017-08-01

    McArdle disease and mitochondrial myopathy impair muscle oxidative phosphorylation (OXPHOS) by distinct mechanisms: the former by restricting oxidative substrate availability caused by blocked glycogen breakdown, the latter because of intrinsic respiratory chain defects. We applied metabolic profiling to systematically interrogate these disorders at rest, when muscle symptoms are typically minimal, and with exercise, when symptoms of premature fatigue and potential muscle injury are unmasked. At rest, patients with mitochondrial disease exhibit elevated lactate and reduced uridine; in McArdle disease purine nucleotide metabolites, including xanthine, hypoxanthine, and inosine are elevated. During exercise, glycolytic intermediates, TCA cycle intermediates, and pantothenate expand dramatically in both mitochondrial disease and control subjects. In contrast, in McArdle disease, these metabolites remain unchanged from rest; but urea cycle intermediates are increased, likely attributable to increased ammonia production as a result of exaggerated purine degradation. Our results establish skeletal muscle glycogen as the source of TCA cycle expansion that normally accompanies exercise and imply that impaired TCA cycle flux is a central mechanism of restricted oxidative capacity in this disorder. Finally, we report that resting levels of long-chain triacylglycerols in mitochondrial myopathy correlate with the severity of OXPHOS dysfunction, as indicated by the level of impaired O 2 extraction from arterial blood during peak exercise. Our integrated analysis of exercise and metabolism provides unique insights into the biochemical basis of these muscle oxidative defects, with potential implications for their clinical management.

  11. Metabolic profiles of flooding-tolerant mechanism in early-stage soybean responding to initial stress.

    Science.gov (United States)

    Wang, Xin; Zhu, Wei; Hashiguchi, Akiko; Nishimura, Minoru; Tian, Jingkui; Komatsu, Setsuko

    2017-08-01

    Metabolomic analysis of flooding-tolerant mutant and abscisic acid-treated soybeans suggests that accumulated fructose might play a role in initial flooding tolerance through regulation of hexokinase and phosphofructokinase. Soybean is sensitive to flooding stress, which markedly reduces plant growth. To explore the mechanism underlying initial-flooding tolerance in soybean, mass spectrometry-based metabolomic analysis was performed using flooding-tolerant mutant and abscisic-acid treated soybeans. Among the commonly-identified metabolites in both flooding-tolerant materials, metabolites involved in carbohydrate and organic acid displayed same profile at initial-flooding stress. Sugar metabolism was highlighted in both flooding-tolerant materials with the decreased and increased accumulation of sucrose and fructose, respectively, compared to flooded soybeans. Gene expression of hexokinase 1 was upregulated in flooded soybean; however, it was downregulated in both flooding-tolerant materials. Metabolites involved in carbohydrate/organic acid and proteins related to glycolysis/tricarboxylic acid cycle were integrated. Increased protein abundance of phosphofructokinase was identified in both flooding-tolerant materials, which was in agreement with its enzyme activity. Furthermore, sugar metabolism was pointed out as the tolerant-responsive process at initial-flooding stress with the integration of metabolomics, proteomics, and transcriptomics. Moreover, application of fructose declined the increased fresh weight of plant induced by flooding stress. These results suggest that fructose might be the critical metabolite through regulation of hexokinase and phosphofructokinase to confer initial-flooding stress in soybean.

  12. EnzDP: improved enzyme annotation for metabolic network reconstruction based on domain composition profiles.

    Science.gov (United States)

    Nguyen, Nam-Ninh; Srihari, Sriganesh; Leong, Hon Wai; Chong, Ket-Fah

    2015-10-01

    Determining the entire complement of enzymes and their enzymatic functions is a fundamental step for reconstructing the metabolic network of cells. High quality enzyme annotation helps in enhancing metabolic networks reconstructed from the genome, especially by reducing gaps and increasing the enzyme coverage. Currently, structure-based and network-based approaches can only cover a limited number of enzyme families, and the accuracy of homology-based approaches can be further improved. Bottom-up homology-based approach improves the coverage by rebuilding Hidden Markov Model (HMM) profiles for all known enzymes. However, its clustering procedure relies firmly on BLAST similarity score, ignoring protein domains/patterns, and is sensitive to changes in cut-off thresholds. Here, we use functional domain architecture to score the association between domain families and enzyme families (Domain-Enzyme Association Scoring, DEAS). The DEAS score is used to calculate the similarity between proteins, which is then used in clustering procedure, instead of using sequence similarity score. We improve the enzyme annotation protocol using a stringent classification procedure, and by choosing optimal threshold settings and checking for active sites. Our analysis shows that our stringent protocol EnzDP can cover up to 90% of enzyme families available in Swiss-Prot. It achieves a high accuracy of 94.5% based on five-fold cross-validation. EnzDP outperforms existing methods across several testing scenarios. Thus, EnzDP serves as a reliable automated tool for enzyme annotation and metabolic network reconstruction. Available at: www.comp.nus.edu.sg/~nguyennn/EnzDP .

  13. Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity

    Science.gov (United States)

    Shaham, Oded; Wei, Ru; Wang, Thomas J; Ricciardi, Catherine; Lewis, Gregory D; Vasan, Ramachandran S; Carr, Steven A; Thadhani, Ravi; Gerszten, Robert E; Mootha, Vamsi K

    2008-01-01

    Glucose ingestion after an overnight fast triggers an insulin-dependent, homeostatic program that is altered in diabetes. The full spectrum of biochemical changes associated with this transition is currently unknown. We have developed a mass spectrometry-based strategy to simultaneously measure 191 metabolites following glucose ingestion. In two groups of healthy individuals (n=22 and 25), 18 plasma metabolites changed reproducibly, including bile acids, urea cycle intermediates, and purine degradation products, none of which were previously linked to glucose homeostasis. The metabolite dynamics also revealed insulin's known actions along four key axes—proteolysis, lipolysis, ketogenesis, and glycolysis—reflecting a switch from catabolism to anabolism. In pre-diabetics (n=25), we observed a blunted response in all four axes that correlated with insulin resistance. Multivariate analysis revealed that declines in glycerol and leucine/isoleucine (markers of lipolysis and proteolysis, respectively) jointly provide the strongest predictor of insulin sensitivity. This observation indicates that some humans are selectively resistant to insulin's suppression of proteolysis, whereas others, to insulin's suppression of lipolysis. Our findings lay the groundwork for using metabolic profiling to define an individual's 'insulin response profile', which could have value in predicting diabetes, its complications, and in guiding therapy. PMID:18682704

  14. Soy Germ Protein With or Without-Zn Improve Plasma Lipid Profile in Metabolic Syndrome Women

    Directory of Open Access Journals (Sweden)

    HERY WINARSI

    2012-03-01

    Full Text Available The aim of this research was to determine the effect of soy germ protein on lipid profile of metabolic syndrome (MetS patients. Respondents were 30 women with criteria, i.e. blood glucose level > normal, body mass index > 25 kg/m2, hypertriglyceridemia, low cholesterol-HDL level, 40-65 years old, living in Purwokerto, and signed the informed consent. The project was approved by the ethics committee of the Medical Faculty from Gadjah Mada University-Yogyakarta. Respondents were divided into three randomly chosen groups consisting of ten women each. The first, second, and third groups were treated, respectively, with milk enriched soy germ protein plus Zn, milk enriched soy germ protein (without Zn, and placebo for two months. Blood samples were taken at baseline, one and two months after observation. Two months after observation the groups consuming milk enriched with soy germ protein, both with or without Zn, had their level of cholesterol-total decrease from 215.8 to 180.2 mg/dl (P = 0.03, triglyceride from 240.2 to 162.5 mg/dl (P = 0.02, and LDL from 154.01 to 93.85 mg/dl (P = 0.03. In contrast, HDL increased from 38.91 to 49.49 mg/dl (P = 0.0008. In conclusion, soy germ protein can improve lipid profile, thus it can inhibit atherosclerosis incident.

  15. Isoflavones profiling of soybean [Glycine max (L.) Merrill] germplasms and their correlations with metabolic pathways.

    Science.gov (United States)

    Kim, Jae Kwang; Kim, Eun-Hye; Park, Inmyoung; Yu, Bo-Ra; Lim, Jung Dae; Lee, Young-Sang; Lee, Joo-Hyun; Kim, Seung-Hyun; Chung, Ill-Min

    2014-06-15

    The isoflavone diversity (44 varieties) of the soybean, Glycine max (L.) Merrill, from China, Japan, and Korea was examined by high-performance liquid chromatography. The profiles of 12 isoflavones identified from the grains were subjected to data-mining processes, including partial least-squares discriminant analysis (PLS-DA), Pearson's correlation analysis, and hierarchical clustering analysis (HCA). Although PLS-DA did not reveal significant differences among extracts of soybean from 3 countries, the results clearly show that the variation between varieties was low. The CS02554 variety was separate from the others in the first 2 principal components of PLS-DA. HCA of these phytochemicals resulted in clusters derived from closely related biochemical pathways. Daidzin, genistin, and glycitin contents were significantly correlated with their respective malonyl glycoside contents. Daidzein content correlated positively with genistein content (r=0.8189, P<0.0001). The CS02554 variety appears to be a good candidate for future breeding programs, as it contains high levels of isoflavone compounds. These results demonstrate the use of metabolite profiling combined with chemometrics as a tool for assessing the quality of food and identifying metabolic links in biological systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles

    Directory of Open Access Journals (Sweden)

    Cassandra Collins

    2017-09-01

    Full Text Available Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H2O2 and menadione/FeCl3 exposure, respectively. Several proteins were detected with altered abundance in response to H2O2, but not menadione/FeCl3 (i.e., valosin-containing protein, indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.

  17. Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles.

    Science.gov (United States)

    Collins, Cassandra; Hurley, Rachel; Almutlaqah, Nada; O'Keeffe, Grainne; Keane, Thomas M; Fitzpatrick, David A; Owens, Rebecca A

    2017-09-17

    Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H₂O₂ and menadione/FeCl₃ exposure, respectively. Several proteins were detected with altered abundance in response to H₂O₂, but not menadione/FeCl₃ (i.e., valosin-containing protein), indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM) enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.

  18. Veterans' fall risk profile: a prevalence study.

    Science.gov (United States)

    Quigley, Patricia A; Palacios, Polly; Spehar, Andrea M

    2006-01-01

    The Veterans Health Administration (VHA) serves the health care needs of an adult, predominantly male, and aging population. The aging profile of VHA patients is 25% greater than the civilian sector (DVA 2001). Aged patients are at higher risk for falls. In February 2002, 6 VHA medical centers profiled their inpatients' fall risk profile as one aspect of program initiatives targeted at reducing veterans' fall risk and fall-related injuries, participating in a one-day collection of fall risk measurement using the Morse Fall Scale (MFS) for all inpatients (n = 1819), acute and long-term care units. Data results are reported for age, MFS score, and the relationship between age and score, and by type of ward/unit, ie, predominately acute and critical care or long-term care. The results of this prevalence study documented that the veteran inpatient population are at high-risk for anticipated physiological falls. This Veteran Integrated Services Network-wide Deployment of an Evidence-based Program to Prevent Patient Falls study was completed as part of a nationally funded clinical initiative, National Program Initiative 20-006-1.

  19. In vitro methods to study intestinal drug metabolism

    NARCIS (Netherlands)

    van de Kerkhof, Esther G.; de Graaf, Inge A. M.; Groothuis, Geny M. M.

    2007-01-01

    Although the liver has long been thought to play the major role in drug metabolism, also the metabolic capacity of the intestine is more and more recognized. In vivo studies eventually pointed out not only the significance of first-pass metabolism by the intestinal wall for the bioavailability of

  20. Expression profiling of skeletal muscle following acute and chronic β2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm

    Directory of Open Access Journals (Sweden)

    Lynch Gordon S

    2009-09-01

    Full Text Available Abstract Background Systemic administration of β-adrenoceptor (β-AR agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes. In the context of energy homeostasis, the importance of β-AR signaling has been highlighted by the inability of β1-3-AR-deficient mice to regulate energy expenditure and susceptibility to diet induced obesity. However, the molecular pathways and gene expression changes that initiate and maintain these phenotypic modulations are poorly understood. Therefore, the aim of this study was to identify differential changes in gene expression in murine skeletal muscle associated with systemic (acute and chronic administration of the β2-AR agonist formoterol. Results Skeletal muscle gene expression (from murine tibialis anterior was profiled at both 1 and 4 hours following systemic administration of the β2-AR agonist formoterol, using Illumina 46K mouse BeadArrays. Illumina expression profiling revealed significant expression changes in genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism, circadian rhythm, transcription, histones, and oxidative stress. Differentially expressed genes relevant to the regulation of muscle mass and metabolism (in the context of the hypertrophic phenotype were further validated by quantitative RT-PCR to examine gene expression in response to both acute (1-24 h and chronic administration (1-28 days of formoterol at multiple timepoints. In terms of skeletal muscle hypertrophy, attenuation of myostatin signaling (including differential expression of myostatin, activin receptor IIB, phospho-Smad3 etc was observed following acute and chronic administration of formoterol. Acute (but not chronic administration of formoterol also significantly induced the expression of genes involved in oxidative metabolism, including hexokinase 2, sorbin and SH3 domain containing 1, and uncoupling protein 3. Interestingly, formoterol

  1. Comparison of the Effects of Goat Dairy and Cow Dairy Based Breakfasts on Satiety, Appetite Hormones, and Metabolic Profile.

    Science.gov (United States)

    Rubio-Martín, Elehazara; García-Escobar, Eva; Ruiz de Adana, Maria-Soledad; Lima-Rubio, Fuensanta; Peláez, Laura; Caracuel, Angel-María; Bermúdez-Silva, Francisco-Javier; Soriguer, Federico; Rojo-Martínez, Gemma; Olveira, Gabriel

    2017-08-15

    The satiating effects of cow dairy have been thoroughly investigated; however, the effects of goat dairy on appetite have not been reported so far. Our study investigates the satiating effect of two breakfasts based on goat or cow dairy and their association with appetite related hormones and metabolic profile. Healthy adults consumed two breakfasts based on goat (G-Breakfast) or cow (C-Breakfast) dairy products. Blood samples were taken and VAS tests were performed at different time points. Blood metabolites were measured and Combined Satiety Index (CSI) and areas under the curves (AUC) were calculated. Desire to eat rating was significantly lower (breakfast & time interaction p dairy when compared to cow dairy products, and pointed to a potential association of GLP-1 and triglyceride levels with the mechanisms by which dairy products might affect satiety after the G-Breakfast and C-Breakfast, respectively.

  2. A multivariate statistical analysis coming from the NMR metabolic profile of cherry tomatoes (The Sicilian Pachino case)

    Science.gov (United States)

    Mallamace, Domenico; Corsaro, Carmelo; Salvo, Andrea; Cicero, Nicola; Macaluso, Andrea; Giangrosso, Giuseppe; Ferrantelli, Vincenzo; Dugo, Giacomo

    2014-05-01

    We have studied by means of High Resolution Magic Angle Spinning Nuclear Magnetic Resonance the metabolic profile of the famous Sicilian cherry tomato of Pachino. Thanks to its organoleptic and healthy properties, this particular foodstuff was the first tomato accredited by the European PGI (Protected Geographical Indication) certification of quality. Due to the relatively high price of the final product commercial frauds originated in the Italian and international markets. Hence, there is a growing interest to develop analytical techniques able to predict the origin of a tomato sample, indicating whether or not it originates from the area of Pachino, Sicily (Italy). In this paper we have determined the molar concentration of the metabolites constituent the PGI cherry tomato of Pachino. Furthermore, by means of a multivariate statistical analysis we have identified which metabolites are relevant for sample differentiation.

  3. Serum Antioxidant Associations with Metabolic Characteristics in Metabolically Healthy and Unhealthy Adolescents with Severe Obesity: An Observational Study

    Directory of Open Access Journals (Sweden)

    Ana Paula Stenzel

    2018-01-01

    Full Text Available Considering the inadequacy of some antioxidant nutrients in severely obese adolescents, this study aimed to assess the relationship between antioxidant micronutrients status and metabolic syndrome components in metabolically healthy obesity (MHO and unhealthy obesity (MUO. We performed an observational study in severely obese adolescents (body mass index > 99th percentile and they were classified into MHO or MUO, according to the criteria adapted for adolescents. Anthropometric, biochemical, and clinical variables were analyzed to characterize the sample of adolescents. The serum antioxidant nutrients assessed were retinol, β-carotene, Vitamin E, Vitamin C, zinc and selenium. A total of 60 adolescents aged 17.31 ± 1.34 years were enrolled. MHO was identified in 23.3% of adolescents. The MHO group showed lower frequency of non-alcoholic fatty liver disease (14.3% vs. 78.3%, p < 0.001 when compared to MUO. A correlation was found between retinol and β-carotene concentrations with glycemia (r = −0.372; p = 0.011 and r = −0.314; p = 0.034, respectively and between Vitamin E with waist circumference (r = −0.306; p = 0.038 in the MUO group. The current study shows that some antioxidant nutrients status, specifically retinol, β-carotene, and Vitamin E, are negatively associated with metabolic alterations in MUO. Further studies are necessary to determine the existing differences in the serum antioxidant profile of metabolically healthy and unhealthy obese adolescents.

  4. Energy Metabolism Profile in Individuals with Prader-Willi Syndrome and Implications for Clinical Management: A Systematic Review.

    Science.gov (United States)

    Alsaif, Maha; Elliot, Sarah A; MacKenzie, Michelle L; Prado, Carla M; Field, Catherine J; Haqq, Andrea M

    2017-11-01

    Prader-Willi syndrome (PWS) is a rare genetic disorder associated with excessive weight gain. Hyperphagia associated with PWS may result in higher energy intake, but alterations in energy expenditure may also contribute to energy imbalance. The purpose of this critical literature review is to determine the presence of alterations in energy expenditure in individuals with PWS. Ten studies that measured total energy expenditure (TEE), resting energy expenditure (REE), sleep energy expenditure (SEE), activity energy expenditure (AEE), and diet induced thermogenesis (DIT) were included in this review. The studies provided evidence that absolute TEE, REE, SEE, and AEE are lower in individuals with PWS than in age-, sex-, and body mass index-matched individuals without the syndrome. Alterations in lean body mass and lower physical activity amounts appear to be responsible for the lower energy expenditure in PWS rather than metabolic differences. Regardless of the underlying mechanism for lower TEE, the estimation of energy requirements with the use of equations derived for the general population would result in weight gain in individuals with PWS. The determination of energy requirements for weight management in individuals with PWS requires a more comprehensive understanding of energy metabolism. Future studies should aim to comprehensively profile all specific components of energy expenditure in individuals with PWS with the use of appropriately matched controls and gold standard methods to measure energy metabolism and body composition. One component of energy expenditure that is yet to be explored in detail in PWS is DIT. A reduced DIT (despite differences in fat free mass), secondary to hormonal dysregulation, may be present in PWS individuals, leading to a reduced overall energy expenditure. Further research exploring DIT in PWS needs to be conducted. Dietary energy recommendations for weight management in PWS have not yet been clearly established. © 2017 American

  5. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis.

    Directory of Open Access Journals (Sweden)

    Haishan Qi

    Full Text Available To rationally guide the improvement of isobutanol production, metabolic network and metabolic profiling analysis were performed to provide global and profound insights into cell metabolism of isobutanol-producing Bacillus subtilis. The metabolic flux distribution of strains with different isobutanol production capacity (BSUL03, BSUL04 and BSUL05 drops a hint of the importance of NADPH on isobutanol biosynthesis. Therefore, the redox pathways were redesigned in this study. To increase NADPH concentration, glucose-6-phosphate isomerase was inactivated (BSUL06 and glucose-6-phosphate dehydrogenase was overexpressed (BSUL07 successively. As expected, NADPH pool size in BSUL07 was 4.4-fold higher than that in parental strain BSUL05. However, cell growth, isobutanol yield and production were decreased by 46%, 22%, and 80%, respectively. Metabolic profiling analysis suggested that the severely imbalanced redox status might be the primary reason. To solve this problem, gene udhA of Escherichia coli encoding transhydrogenase was further overexpressed (BSUL08, which not only well balanced the cellular ratio of NAD(PH/NAD(P+, but also increased NADH and ATP concentration. In addition, a straightforward engineering approach for improving NADPH concentrations was employed in BSUL05 by overexpressing exogenous gene pntAB and obtained BSUL09. The performance for isobutanol production by BSUL09 was poorer than BSUL08 but better than other engineered strains. Furthermore, in fed-batch fermentation the isobutanol production and yield of BSUL08 increased by 11% and 19%, up to the value of 6.12 g/L and 0.37 C-mol isobutanol/C-mol glucose (63% of the theoretical value, respectively, compared with parental strain BSUL05. These results demonstrated that model-driven complemented with metabolic profiling analysis could serve as a useful approach in the strain improvement for higher bio-productivity in further application.

  6. Metabolic profile of Kudiezi injection in rats by UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Zhang, Jingdan; Zhang, Xiaoxue; Zhao, Yangyang; Song, Aihua; Sun, Wei; Yin, Ran

    2018-02-01

    In this study, a reliable and sensitive ultra-high performance liquid chromatography coupled with fourier transform ion cyclotron resonance mass spectrometry method was developed for the systematic study of the metabolic profile of Kudiezi injection in rat plasma, bile, urine, and feces after intravenous administration of a single dose. The chromatographic separation was performed on an Agilent Eclipse Plus C 18 column (4.6 mm × 50 mm, 1.8 μm) and the identification of prototype components and metabolites was achieved on a Bruker Solarix 7.0 T ultra-high resolution spectrometer in negative ion mode. Results indicated that a total of 76 constituents including 29 prototype compounds and 47 metabolites (10 phase I metabolites and 37 phase II metabolites) were tentatively identified. And the metabolic pathways of these prototype compounds including hydroxylation, dehydrogenation, glucuronidation, and sulfate conjugation. In conclusion, the developed method with high resolution and sensitivity was effective for screening and identification of prototypes and metabolites of Kudiezi injection in vivo. Moreover, these results would provide significant information for further pharmacokinetic and pharmacological research of Kudiezi injection in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Serum Leptin Levels in Polycystic Ovary Syndrome and Its Relationship with Metabolic and Hormonal Profile in Pakistani Females

    Directory of Open Access Journals (Sweden)

    Mukhtiar Baig

    2014-01-01

    Full Text Available The study aimed to investigate the levels of serum leptin in PCOS females and to correlate it with metabolic and hormonal parameters. Sixty-two PCOS and ninety normal cycling (NC females with matched age and body mass index (BMI were recruited for this cross-sectional study. Serum leptin, FSH, LH, E2, free testosterone, progesterone, thyroid profile, and FBG levels were measured. The mean leptin levels in PCOS and NC were not significantly different (45.56 ng/mL ± 1.49 vs 41.78 ± 1.31 ng/mL, P>0.05; however, leptin levels showed a strong correlation with BMI in PCOS and NC group (r=0.77, P<0.0001; r=0.82, P<0.0001, resp.. High E2 levels in NC had a significant correlation with leptin whereas FBG correlated with leptin in PCOS (r=0.51, P=0.005. TSH had a substantial correlation (r=0.49, P<0.005; r=0.69, P<0.005 in PCOS and NC, respectively. There was no significant difference found in circulating leptin concentration between PCOS and NC subjects. Leptin levels in PCOS were related with metabolic impairments manifested by disturbance in FBG levels and impairment of reproductive functions in terms of reduced E2 secretion.

  8. Carotenoid metabolic profiling and transcriptome-genome mining reveal functional equivalence among blue-pigmented copepods and appendicularia

    KAUST Repository

    Mojib, Nazia

    2014-06-01

    The tropical oligotrophic oceanic areas are characterized by high water transparency and annual solar radiation. Under these conditions, a large number of phylogenetically diverse mesozooplankton species living in the surface waters (neuston) are found to be blue pigmented. In the present study, we focused on understanding the metabolic and genetic basis of the observed blue phenotype functional equivalence between the blue-pigmented organisms from the phylum Arthropoda, subclass Copepoda (Acartia fossae) and the phylum Chordata, class Appendicularia (Oikopleura dioica) in the Red Sea. Previous studies have shown that carotenoid–protein complexes are responsible for blue coloration in crustaceans. Therefore, we performed carotenoid metabolic profiling using both targeted and nontargeted (high-resolution mass spectrometry) approaches in four different blue-pigmented genera of copepods and one blue-pigmented species of appendicularia. Astaxanthin was found to be the principal carotenoid in all the species. The pathway analysis showed that all the species can synthesize astaxanthin from β-carotene, ingested from dietary sources, via 3-hydroxyechinenone, canthaxanthin, zeaxanthin, adonirubin or adonixanthin. Further, using de novo assembled transcriptome of blue A. fossae (subclass Copepoda), we identified highly expressed homologous β-carotene hydroxylase enzymes and putative carotenoid-binding proteins responsible for astaxanthin formation and the blue phenotype. In blue O. dioica (class Appendicularia), corresponding putative genes were identified from the reference genome. Collectively, our data provide molecular evidences for the bioconversion and accumulation of blue astaxanthin–protein complexes underpinning the observed ecological functional equivalence and adaptive convergence among neustonic mesozooplankton.

  9. [An analysis of the diabetic population in a Spanish rural are: morbidity profile, use of resources, complications and metabolic control].

    Science.gov (United States)

    Inoriza, José M; Pérez, Marc; Cols, Montse; Sánchez, Inma; Carreras, Marc; Coderch, Jordi

    2013-11-01

    To describe the characteristics of a diabetic population, morbidity profile, resource consumption, complications and degree of metabolic control. Cross-sectional study during 2010. Four Health Areas (91.301 people) where the integrated management organization Serveis de Salut integrated Baix Empordà completely provide healthcare assistance. 4.985 diabetic individuals, identified through clinical codes using the ICD-9-MC classification and the 3M? Clinical Risk Groups software. Morbidity profile, related complications and degree of metabolic control were obtained for the target diabetic population. We analyzed the consumption of healthcare resources, pharmaceutical and blood glucose reagent strips. All measurements obtained at individual level. 99.3% of the diabetic population were attended at least once at a primary care center (14.9% of visits). 39.5% of primary care visits and less than 10% of the other scanned resources were related to the management of diabetes. The pharmaceutical expenditure was 25.4% of the population consumption (average cost ?1.014,57). 36.5% of diabetics consumed reagents strips (average cost ?120,65). The more frequent CRG are 5424-Diabetes (27%); 6144-Diabetes and Hypertension (25,5%) and 6143-Diabetes and Other Moderate Chronic Disease (17,2%). The degree of disease control is better in patients not consumers of antidiabetic drugs or treated with oral antidiabetic agents not secretagogues. Comorbidity is decisive in the consumption of resources. Just a few part of this consumption is specifically related to the management of diabetes. Results obtained provide a whole population approach to the main existing studies in our national and regional context. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  10. Crude glycerol as glycogenic precursor in feed; effects on milk coagulation properties and metabolic profiles of dairy cows.

    Science.gov (United States)

    Harzia, Hedi; Kilk, Kalle; Ariko, Tiia; Kass, Marko; Soomets, Ursel; Jõudu, Ivi; Kaart, Tanel; Arney, David; Kärt, Olav; Ots, Meelis

    2013-05-01

    As grain prices rise, the search for alternative glycogenic precursors in animal feed becomes increasingly important, and this study was conducted to determine if the replacement of starch with glycerol, as an alternative glycogenic precursor, affects the milk metabolic profile and milk coagulation ability, and therefore the quality of the milk. Eight primiparous mid-lactation Holstein cows were fed during a replicated 4 × 4 Latin square trial with four different isoenergetic rations: (1) control (T0) fed a total mixed ration (TMR) with barley meal; (2) group T1, decreased barley content, replaced isoenergetically with 1 kg crude glycerol; (3) group T2, the barley meal was replaced with 2 kg of crude glycerol; and (4) group T3 the barley meal was replaced with 3 kg of crude glycerol. Rumen, blood and milk samples were collected at the end of every 21-d treatment period. Rumen samples were analysed for proportion of total volatile fatty acid (VFA), blood samples for insulin and glucose, and milk for metabolites (e.g. citric-acid cycle compounds). The change in glycogenic precursors had a positive effect on rumen VFA proportions; the proportion of propionic acid increased (P Milk protein (P milk protein concentration may have been due to an increase in microbial protein. Regarding the milk metabolic profiles, different signals were positively associated with coagulation ability and change in the diet. Based on this study, changing the glycogenic precursor in animal diet in this way is possible, and may have no immediate deleterious consequences on milk quality or cow health. Indeed, there is evidence for benefits from this substitution.

  11. Characterization of differential cocaine metabolism in mouse and rat through metabolomics-guided metabolite profiling.

    Science.gov (United States)

    Yao, Dan; Shi, Xiaolei; Wang, Lei; Gosnell, Blake A; Chen, Chi

    2013-01-01

    Rodent animal models have been widely used for studying neurologic and toxicological events associated with cocaine abuse. It is known that the mouse is more susceptible to cocaine-induced hepatotoxicity (CIH) than the rat. However, the causes behind this species-dependent sensitivity to cocaine have not been elucidated. In this study, cocaine metabolism in the mouse and rat was characterized through LC-MS-based metabolomic analysis of urine samples and were further compared through calculating the relative abundance of individual cocaine metabolites. The results showed that the levels of benzoylecgonine, a major cocaine metabolite from ester hydrolysis, were comparable in the urine from the mice and rats treated with the same dose of cocaine. However, the levels of the cocaine metabolites from oxidative metabolism, such as N-hydroxybenzoylnorecgonine and hydroxybenzoylecgonine, differed dramatically between the two species, indicating species-dependent cocaine metabolism. Subsequent structural analysis through accurate mass analysis and LC-MS/MS fragmentation revealed that N-oxidation reactions, including N-demethylation and N-hydroxylation, are preferred metabolic routes in the mouse, while extensive aryl hydroxylation reactions occur in the rat. Through stable isotope tracing and in vitro enzyme reactions, a mouse-specific α-glucoside of N-hydroxybenzoylnorecgonine and a group of aryl hydroxy glucuronides high in the rat were identified and structurally elucidated. The differences in the in vivo oxidative metabolism of cocaine between the two rodent species were confirmed by the in vitro microsomal incubations. Chemical inhibition of P450 enzymes further revealed that different P450-mediated oxidative reactions in the ecgonine and benzoic acid moieties of cocaine contribute to the species-dependent biotransformation of cocaine.

  12. A PROSPECTIVE STUDY OF EFFECT OF TELMISARTAN (ANGIOTENSIN II RECEPTOR BLOCKER ON METABOLIC PARAMETERS IN HYPERTENSIVE PATIENTS WITH METABOLIC SYNDROME

    Directory of Open Access Journals (Sweden)

    Somesekhar

    2016-04-01

    Full Text Available BACKGROUND The metabolic syndrome is currently a major worldwide epidemic. It strongly associates with obesity, insulin resistance, type 2 diabetes, and cardiovascular diseases, which are major pathologies contributing to mortality and morbidity worldwide. The effect of PPAR-y on metabolic syndrome is significant it is critical regulator of adipogenesis the gain in PPAR-y is resulted in obesity but loss of PPAR–y by mutation is associated with loss of weight and insulin resistance. Telmisartan is an orally active, long-acting, non-peptide angiotensin type 1 (ATI receptor blocker. In addition to this, it has been identified as partial agonist/selective modulator of the nuclear hormone receptor PPAR-y. MATERIAL AND METHOD This is a prospective, randomised and open labelled 16 weeks study conducted in the Dept. of General Medicine, Konaseema Institute of Medical Science, Amalapuram. Present study is designed to study the effect of telmisartan on various metabolic parameters in hypertensive patients who fulfilled the criteria of metabolic syndrome. RESULT There was statistically significant change in all parameters most important was lipid profile; LDL concentration was decreased from 139.2 mg/dL to 120.2 mg/dL. Baseline triglyceride concentration was 161.0 mg/dL which was changed 152.8 mg/dL Total cholesterol was decreased from 203.2 to 193.8 mg/dL. CONCLUSION In our study, we have also found that use of telmisartan is associated with decrease in lipid concentration in addition to its effect on blood pressure regulation. But a long term study with high dose required of this drug is required because safety profile of this drug is better than thiazolidinedione. Financial part of this study is our limitation.

  13. Offspring body size and metabolic profile - effects of lifestyle intervention in obese pregnant women

    DEFF Research Database (Denmark)

    Tanvig, Mette; Jensen, Dorte Møller

    2014-01-01

    outcomes, with special emphasis on the effects of lifestyle intervention during pregnancy. The thesis is based on a literature review, description of own studies and three original papers/manuscripts (I, II and III). In paper I, we used data from the Danish Medical Birth Registry. The aim of this paper...... disturbances in the offspring. Pregnancy offers the opportunity to modify the intrauterine environment, and maternal lifestyle changes during gestation may confer health benefits to the child. The overall aim with this PhD thesis was to study the effects of maternal obesity on offspring body size and metabolic...... of metabolic outcomes. In paper II the effect of the maternal intervention on offspring body composition and anthropometric outcomes was studied. The primary outcome was BMI Z-score and secondary outcomes were: body composition values by DEXA (fat mass, lean mass and fat percentage), BMI, percentage...

  14. Biomarker Profiles in Women with PCOS and PCOS Offspring; A Pilot Study

    NARCIS (Netherlands)

    Daan, Nadine M P; Koster, Maria P H; de Wilde, Marlieke A|info:eu-repo/dai/nl/413993809; Dalmeijer, Gerdien W|info:eu-repo/dai/nl/343075881; Evelein, Annemieke M V; Fauser, Bart C J M|info:eu-repo/dai/nl/071281932; de Jager, Wilco|info:eu-repo/dai/nl/304816906

    2016-01-01

    OBJECTIVE: To study metabolic/inflammatory biomarker risk profiles in women with PCOS and PCOS offspring. DESIGN: Cross-sectional comparison of serum biomarkers. SETTING: University Medical Center Utrecht. PATIENTS: Hyperandrogenic PCOS women (HA-PCOS, n = 34), normoandrogenic PCOS women (NA-PCOS, n

  15. Investigation of urine metabolic profiles in newborns with prenatally diagnosedunilateral urinary tract dilatation using 1H NMR spectroscopy and metabolomic analysis

    OpenAIRE

    Scalabre , Aurélien

    2017-01-01

    The prenatal finding of unilateral Urinary Tract Dilatation (UTD) can be transient or represent a significant urinary flow impairment that would lead to progressive deterioration of renal function. Identifying urinary biomarkers could help to differentiate uropathy requiring surgical management from transient dilatation at an early stage.Metabolic phenotyping studies provide untargeted quantification of all detectable low molecular-weight molecules by profiling without any a priori the metabo...

  16. Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomized trial. Effects of probiotics on metabolic syndrome.

    Science.gov (United States)

    Bernini, Luciana Jesus; Simão, Andrea Name Colado; Alfieri, Daniela Frizon; Lozovoy, Marcell Alysson Batisti; Mari, Naiara Lourenço; de Souza, Cínthia Hoch Batista; Dichi, Isaías; Costa, Giselle Nobre

    2016-06-01

    Human studies have shown the beneficial effects of probiotic microorganisms on the parameters of metabolic syndrome (MetS) and other cardiovascular risks, but to our knowledge the effect of Bifidobacterium lactis has not yet been reported. The aim of this study was to evaluate the effect of consumption of milk containing the probiotic B. lactis HN019 on the classical parameters of MetS and other related cardiovascular risk factors. Fifty-one patients with MetS were selected and divided into a control group (n = 25) and a probiotic group (n = 26). The probiotic group consumed fermented milk with probiotics over the course of 45 d. The effects of B. lactis on lipid profile, glucose metabolism, and proinflammatory cytokines (tumor necrosis factor-α and interleukin-6) were assessed in blood samples of the individuals at the baseline and after 45 d. Daily ingestion of 80 mL fermented milk with 2.72 × 10(10) colony-forming units of B. lactis HN019 showed significant reduction in body mass index (P = 0.017), total cholesterol (P = 0.009), and low-density lipoprotein (P = 0.008) compared with baseline and control group values. Furthermore, a significant decrease in tumor necrosis factor-α (P = 0.033) and interleukin-6 (P = 0.044) proinflammatory cytokines was observed. These data showed potential effects of B. lactis HN019 in reducing obesity, blood lipids, and some inflammatory markers, which may reduce cardiovascular risk in patients with MetS. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Differential metabolic profiles associated to movement behaviour of stream-resident brown trout (Salmo trutta.

    Directory of Open Access Journals (Sweden)

    Neus Oromi

    Full Text Available The mechanisms that can contribute in the fish movement strategies and the associated behaviour can be complex and related to the physiology, genetic and ecology of each species. In the case of the brown trout (Salmo trutta, in recent research works, individual differences in mobility have been observed in a population living in a high mountain river reach (Pyrenees, NE Spain. The population is mostly sedentary but a small percentage of individuals exhibit a mobile behavior, mainly upstream movements. Metabolomics can reflect changes in the physiological process and can determine different profiles depending on behaviour. Here, a non-targeted metabolomics approach was used to find possible changes in the blood metabolomic profile of S. trutta related to its movement behaviour, using a minimally invasive sampling. Results showed a differentiation in the metabolomic profiles of the trouts and different level concentrations of some metabolites (e.g. cortisol according to the home range classification (pattern of movements: sedentary or mobile. The change in metabolomic profiles can generally occur during the upstream movement and probably reflects the changes in metabolite profile from the non-mobile season to mobile season. This study reveals the contribution of the metabolomic analyses to better understand the behaviour of organisms.

  18. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    International Nuclear Information System (INIS)

    Saether, Oddbjoern

    2005-01-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  19. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Oddbjoern

    2005-07-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  20. Metabolomic profiles delineate signature metabolic shifts during estrogen deficiency-induced bone loss in rat by GC-TOF/MS.

    Directory of Open Access Journals (Sweden)

    Bo Ma

    Full Text Available Postmenopausal osteoporosis is a complicated and multi-factorial disease. To study the metabolic profiles and pathways activated in osteoporosis, Eight rats were oophorectomized (OVX group to represent postmenopausal osteoporosis and the other eight rats were sham operated (Sham group to be the control. The biochemical changes were assessed with metabolomics using a gas chromatography/time-of-flight mass spectrometry. Metabolomic profile using serial blood samples obtained prior to and at different time intervals after OVX were analyzed by principal component analysis (PCA and Partial least squares-discriminant analysis (PLS-DA. The conventional indicators (bone mineral density, serum Bone alkaline phosphatase (B-ALP and N-telopeptide of type I collagen (NTx of osteoporosis in rats were also determined simultaneously. In OVX group, the metabolomics method could describe the endogenous changes of the disease more sensitively and systematically than the conventional criteria during the progression of osteoporosis. Significant metabolomic difference was also observed between the OVX and Sham groups. The metabolomic analyses of rat plasma showed that levels of arachidonic acid, octadecadienoic acid, branched-chain amino acids (valine, leucine and isoleucine, homocysteine, hydroxyproline and ketone bodies (3-Hydroxybutyric Acid significantly elevated, while levels of docosahexaenoic acid, dodecanoic acid and lysine significantly decreased in OVX group compared with those in the homeochronous Sham group. Considering such metabolites are closely related to the pathology of the postmenopausal osteoporosis, the results suggest that potential biomarkers for the early diagnosis or the pathogenesis of osteoporosis might be identified via metabolomic study.

  1. Integration of metabolic and inflammatory mediator profiles as a potential prognostic approach for septic shock in the intensive care unit.

    Science.gov (United States)

    Mickiewicz, Beata; Tam, Patrick; Jenne, Craig N; Leger, Caroline; Wong, Josee; Winston, Brent W; Doig, Christopher; Kubes, Paul; Vogel, Hans J

    2015-01-15

    Septic shock is a major life-threatening condition in critically ill patients and it is well known that early recognition of septic shock and expedient initiation of appropriate treatment improves patient outcome. Unfortunately, to date no single compound has shown sufficient sensitivity and specificity to be used as a routine biomarker for early diagnosis and prognosis of septic shock in the intensive care unit (ICU). Therefore, the identification of new diagnostic tools remains a priority for increasing the survival rate of ICU patients. In this study, we have evaluated whether a combined nuclear magnetic resonance spectroscopy-based metabolomics and a multiplex cytokine/chemokine profiling approach could be used for diagnosis and prognostic evaluation of septic shock patients in the ICU. Serum and plasma samples were collected from septic shock patients and ICU controls (ICU patients with the systemic inflammatory response syndrome but not suspected of having an infection). (1)H Nuclear magnetic resonance spectra were analyzed and quantified using the targeted profiling methodology. The analysis of the inflammatory mediators was performed using human cytokine and chemokine assay kits. By using multivariate statistical analysis we were able to distinguish patient groups and detect specific metabolic and cytokine/chemokine patterns associated with septic shock and its mortality. These metabolites and cytokines/chemokines represent candidate biomarkers of the human response to septic shock and have the potential to improve early diagnosis and prognosis of septic shock. Our findings show that integration of quantitative metabolic and inflammatory mediator data can be utilized for the diagnosis and prognosis of septic shock in the ICU.

  2. Prevalence of Metabolic Syndrome and Associations with Lipid Profiles in Iranian Men: A Population-Based Screening Program

    Directory of Open Access Journals (Sweden)

    Abolfazl Mohammadbeigi

    2018-01-01

    Full Text Available Purpose: Metabolic syndrome (MS is characterized by a collection of interdependent disorders, including abdominal obesity, dyslipidemia, hyperglycemia, hypertension, and diabetes. The current study aimed to estimate the prevalence of MS in Qom, Iran. Materials and Methods: A population-based screening program was conducted in the city of Qom, in 845 urban adult men over 25 years old in 2014. Abdominal obesity, fasting blood glucose (FBG, blood pressure, and the serum lipid profile were measured in subjects after fasting for at least 8 hours. MS was defined according to the Adult Treatment Panel III criteria. Data were analyzed using the chi-square test, t-test, and multiple logistic regression. Results: The overall prevalence of MS was 23.0%, and the most common prevalent metabolic abnormalities associated with MS were low high-density lipoprotein cholesterol (<40 mg/dL in 34.3% of subjects, a waist circumference >102 cm in 33.9%, blood pressure ≥130/85 mmHg in 27.6%, fasting triglycerides (TG ≥150 mg/dL in 25%, and FBG ≥110 mg/dL in 20.6%. A FBG level ≥110 mg/dL (odds ratio [OR]=4.85; 95% confidence interval [CI], 2.14∼8.24, dyslipidemia (OR=3.51; 95% CI, 2.10∼5.89, and a fasting TG ≥150 mg/dL were the most important factors contributing to MS. Conclusions: The prevalence of MS in men in Qom was higher than has been reported in other countries, but it was lower than the mean values that have been reported elsewhere in Iran. FBG was the most important factor contributing to MS, and all elements of the lipid profile showed important associations with MS.

  3. Combining Metabolic Profiling and Gene Expression Analysis to Reveal the Biosynthesis Site and Transport of Ginkgolides in Ginkgo biloba L.

    Science.gov (United States)

    Lu, Xu; Yang, Hua; Liu, Xinguang; Shen, Qian; Wang, Ning; Qi, Lian-wen; Li, Ping

    2017-01-01

    The most unique components of Ginkgo biloba extracts are terpene trilactones (TTLs) including ginkgolides and bilobalide. Study of TTLs biosynthesis has been stagnant in recent years. Metabolic profiling of 40 compounds, including TTLs, flavonoids, and phenolic acids, were globally analyzed in leaf, fibrous root, main root, old stem and young stem extracts of G. biloba. Most of the flavonoids were mainly distributed in the leaf and old stem. Most of phenolic acids were generally distributed among various tissues. The total content of TTLs decreased in the order of the leaf, fibrous root, main root, old stem and young stem. The TTLs were further analyzed in different parts of the main root and old stem. The content of TTLs decreases in the order of the main root periderm, the main root cortex and phloem and the main root xylem. In old stems, the content of TTLs in the cortex and phloem was much higher than both the old stem periderm and xylem. The expression patterns of five key genes in the ginkgolide biosynthetic pathway were measured by real-time quantitative polymerase chain reaction (RT-Q-PCR). Combining metabolic profiling and RT-Q-PCR, the results showed that the fibrous root and main root periderm tissues were the important biosynthesis sites of ginkgolides. Based on the above results, a model of the ginkgolide biosynthesis site and transport pathway in G. biloba was proposed. In this putative model, ginkgolides are synthesized in the fibrous root and main root periderm, and these compounds are then transported through the old stem cortex and phloem to the leaves. PMID:28603534

  4. (1)H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis.

    Science.gov (United States)

    Sun, L W; Zhang, H Y; Wu, L; Shu, S; Xia, C; Xu, C; Zheng, J S

    2014-03-01

    The purpose of this study was to assess the metabolic profile of plasma samples from cows with clinical and subclinical ketosis. According to clinical signs and 3-hydroxybutyrate plasma levels, 81 multiparous Holstein cows were selected from a dairy farm 7 to 21 d after calving. The cows were divided into 3 groups: cows with clinical ketosis, cows with subclinical ketosis, and healthy control cows. (1)H-Nuclear magnetic resonance-based metabolomics was used to assess the plasma metabolic profiles of the 3 groups. The data were analyzed by principal component analysis, partial least squares discriminant analysis, and orthogonal partial least-squares discriminant analysis. The differences in metabolites among the 3 groups were assessed. The orthogonal partial least-squares discriminant analysis model differentiated the 3 groups of plasma samples. The model predicted clinical ketosis with a sensitivity of 100% and a specificity of 100%. In the case of subclinical ketosis, the model had a sensitivity of 97.0% and specificity of 95.7%. Twenty-five metabolites, including acetoacetate, acetone, lactate, glucose, choline, glutamic acid, and glutamine, were different among the 3 groups. Among the 25 metabolites, 4 were upregulated, 7 were downregulated, and 14 were both upregulated and downregulated. The results indicated that plasma (1)H-nuclear magnetic resonance-based metabolomics, coupled with pattern recognition analytical methods, not only has the sensitivity and specificity to distinguish cows with clinical and subclinical ketosis from healthy controls, but also has the potential to be developed into a clinically useful diagnostic tool that could contribute to a further understanding of the disease mechanisms. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Metabolic Profiling of a Corynebacterium Glutamicum DeltaprpD2 by GC-APCI High Resolution Q-TOF Analysis

    Science.gov (United States)

    Zurek, G.; Persike, M.; Plassmeier, J.; Niehaus, K.; Barsch, A.

    2011-01-01

    Metabolomics studies based on Gas chromatography–Mass spectrometry (GC-MS) are well established and typically employ electron impact (EI) ionisation. Target compounds of interest can be identified by comparison to commercial or public databases. Unfortunately, many possible biomarkers detected in metabolic profiling experiments cannot be identified due to the lack of reference spectra for a majority of biologically relevant compounds. Therefore, many possible biomarkers remain “unknowns” up till now. Hyphenating gas chromatography with high resolution TOF-MS technology with soft atmospheric pressure ionisation (APCI) can preserve the molecular ion information and delivers accurate mass and isotopic pattern information. This data enables a sum formula generation for known and unknown target compounds. Additionally, optionally acquired MS/ MS data can extend the capabilities for structural elucidation. Mass accuracy, resolution and isotopic fidelity are independent of the TOFMS acquisition rate. Therefore, these instruments can be coupled to gas chromatography, which typically delivers narrow peak width requiring fast MS scan speeds. Corynebactrium glutamicum, a gram positive, nontoxic bacterium, is used in the industrial production of amino acids like lysine and glutamate. C. glutamicum can be grown on different carbon sources. Glucose is metabolised via glycolysis and the tricarboxylic acid (TCA) cycle, whereas propionate is catabolised through the methylcitric acid pathway. The prpD2 gene encodes a 2-methylcitrate dehydratase which is involved in the degradation of propionate. Metabolic profiling of Corynebacterium glutamicum delta-prpD2 extracts of cells grown on glucose or glucose and propionate analyzed by GC-APCI-TOF-MS revealed several compounds elevated in cells grown on propionate. Identification of 2-methylcitric acid and alanine using accurate mass and isotopic pattern information in MS and MS/MS spectra provided a proof of concept for the

  6. Dynamics of bacterial metabolic profile and community structure during the mineralization of organic carbon in intensive swine farm wastewater

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ma

    2015-06-01

    Full Text Available Land application of intensive swine farm wastewater has raised serious environmental concerns due to the accumulation and microbially mediated transformation of large amounts of swine wastewater organic C (SWOC. Therefore, the study of SWOC mineralization and dynamics of wastewater microorganisms is essential to understand the environmental impacts of swine wastewater application. We measured the C mineralization of incubated swine wastewaters with high (wastewater H and low (wastewater L organic C concentrations. The dynamics of bacteria metabolic profile and community structure were also investigated. The results showed that SWOC mineralization was properly fitted by the two-simultaneous reactions model. The initial potential rate of labile C mineralization of wastewater H was 46% higher than that of wastewater L, whereas the initial potential rates of recalcitrant C mineralization of wastewaters H and L were both around 23 mg L-1 d-1. The bacterial functional and structural diversities significantly decreased for both the wastewaters during SWOC mineralization, and were all negatively correlated to specific UV absorbance (SUVA254; P < 0.01. The bacteria in the raw wastewaters exhibited functional similarity, and both metabolic profile and community structure changed with the mineralization of SWOC, mainly under the influence of SUVA254 (P < 0.001. These results suggested that SWOC mineralization was characterized by rapid mineralization of labile C and subsequent slow decomposition of recalcitrant C pool, and the quality of SWOC varied between the wastewaters with different amounts of organic C. The decreased bio-availability of dissolved organic matter affected the dynamics of wastewater bacteria during SWOC mineralization.

  7. Relationships among personality traits, metabolic syndrome, and metabolic syndrome scores: The Kakegawa cohort study.

    Science.gov (United States)

    Ohseto, Hisashi; Ishikuro, Mami; Kikuya, Masahiro; Obara, Taku; Igarashi, Yuko; Takahashi, Satomi; Kikuchi, Daisuke; Shigihara, Michiko; Yamanaka, Chizuru; Miyashita, Masako; Mizuno, Satoshi; Nagai, Masato; Matsubara, Hiroko; Sato, Yuki; Metoki, Hirohito; Tachibana, Hirofumi; Maeda-Yamamoto, Mari; Kuriyama, Shinichi

    2018-04-01

    Metabolic syndrome and the presence of metabolic syndrome components are risk factors for cardiovascular disease (CVD). However, the association between personality traits and metabolic syndrome remains controversial, and few studies have been conducted in East Asian populations. We measured personality traits using the Japanese version of the Eysenck Personality Questionnaire (Revised Short Form) and five metabolic syndrome components-elevated waist circumference, elevated triglycerides, reduced high-density lipoprotein cholesterol, elevated blood pressure, and elevated fasting glucose-in 1322 participants aged 51.1±12.7years old from Kakegawa city, Japan. Metabolic syndrome score (MS score) was defined as the number of metabolic syndrome components present, and metabolic syndrome as having the MS score of 3 or higher. We performed multiple logistic regression analyses to examine the relationship between personality traits and metabolic syndrome components and multiple regression analyses to examine the relationship between personality traits and MS scores adjusted for age, sex, education, income, smoking status, alcohol use, and family history of CVD and diabetes mellitus. We also examine the relationship between personality traits and metabolic syndrome presence by multiple logistic regression analyses. "Extraversion" scores were higher in those with metabolic syndrome components (elevated waist circumference: P=0.001; elevated triglycerides: P=0.01; elevated blood pressure: P=0.004; elevated fasting glucose: P=0.002). "Extraversion" was associated with the MS score (coefficient=0.12, P=0.0003). No personality trait was significantly associated with the presence of metabolic syndrome. Higher "extraversion" scores were related to higher MS scores, but no personality trait was significantly associated with the presence of metabolic syndrome. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Metabolic profiles and cDNA-AFLP analysis of Salvia miltiorrhiza and Salvia castanea Diel f. tomentosa Stib.

    Directory of Open Access Journals (Sweden)

    Dongfeng Yang

    Full Text Available Plants of the genus Salvia produce various types of phenolic compounds and tanshinones which are effective for treatment of coronary heart disease. Salvia miltiorrhiza and S. castanea Diels f. tomentosa Stib are two important members of the genus. In this study, metabolic profiles and cDNA-AFLP analysis of four samples were employed to identify novel genes potentially involved in phenolic compounds and tanshinones biosynthesis, including the red roots from the two species and two tanshinone-free roots from S. miltiorrhiza. The results showed that the red roots of S. castanea Diels f. tomentosa Stib produced high contents of rosmarinic acid (21.77 mg/g and tanshinone IIA (12.60 mg/g, but low content of salvianolic acid B (1.45 mg/g. The red roots of S. miltiorrhiza produced high content of salvianolic acid B (18.69 mg/g, while tanshinones accumulation in this sample was much less than that in S. castanea Diels f. tomentosa Stib. Tanshinones were not detected in the two tanshinone-free samples, which produced high contents of phenolic compounds. A cDNA-AFLP analysis with 128 primer pairs revealed that 2300 transcript derived fragments (TDFs were differentially expressed among the four samples. About 323 TDFs were sequenced, of which 78 TDFs were annotated with known functions through BLASTX searching the Genbank database and 14 annotated TDFs were assigned into secondary metabolic pathways through searching the KEGGPATHWAY database. The quantitative real-time PCR analysis indicated that the expression of 9 TDFs was positively correlated with accumulation of phenolic compounds and tanshinones. These TDFs additionally showed coordinated transcriptional response with 6 previously-identified genes involved in biosynthesis of tanshinones and phenolic compounds in S. miltiorrhiza hairy roots treated with yeast extract. The sequence data in the present work not only provided us candidate genes involved in phenolic compounds and tanshinones biosynthesis

  9. Relation between plasma antioxidant vitamin levels, adiposity and cardio-metabolic profile in adolescents: Effects of a multidisciplinary obesity programme.

    Science.gov (United States)

    Guerendiain, Marcela; Mayneris-Perxachs, Jordi; Montes, Rosa; López-Belmonte, Gemma; Martín-Matillas, Miguel; Castellote, Ana I; Martín-Bautista, Elena; Martí, Amelia; Martínez, J Alfredo; Moreno, Luis; Garagorri, Jesús Mª; Wärnberg, Julia; Caballero, Javier; Marcos, Ascensión; López-Sabater, M Carmen; Campoy, Cristina

    2017-02-01

    In vivo and in vitro evidence suggests that antioxidant vitamins and carotenoids may be key factors in the treatment and prevention of obesity and obesity-associated disorders. Hence, the objective of the present study was to determine the relationship between plasma lipid-soluble antioxidant vitamin and carotenoid levels and adiposity and cardio-metabolic risk markers in overweight and obese adolescents participating in a multidisciplinary weight loss programme. A therapeutic programme was conducted with 103 adolescents aged 12-17 years old and diagnosed with overweight or obesity. Plasma concentrations of α-tocopherol, retinol, β-carotene and lycopene, anthropometric indicators of general and central adiposity, blood pressure and biochemical parameters were analysed at baseline and at 2 and 6 months of treatment. Lipid-corrected retinol (P vitamin and carotenoid levels. The adolescents who experienced the greatest weight loss also showed the largest decrease in anthropometric indicators of adiposity and biochemical parameters and the highest increase in fat free mass. Weight loss in these adolescents was related to an increase in plasma levels of lipid-corrected α-tocopherol (P = 0.001), β-carotene (P = 0.034) and lycopene (P = 0.019). Plasma lipid-soluble antioxidant vitamin and carotenoid levels are associated with reduced adiposity, greater weight loss and an improved cardio-metabolic profile in overweight and obese adolescents. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  10. Effect of different dietary levels of mangrove (Laguncularia racemosa) leaves and spice supplementation on productive performance, egg quality, lipid metabolism and metabolic profiles in laying hens.

    Science.gov (United States)

    Al-Harthi, M A; El-Deek, A A; Attia, Y A; Bovera, F; Qota, E M

    2009-11-01

    In order to study the influence of white mangrove (Laguncularia racemosa) leaves on productive performance, egg quality, lipids metabolism and metabolic profiles, 180 Hy-line laying hens were randomly distributed to 6 dietary treatments each contained 6 replicates of 5 individually caged hens during the period from 50 to 60 weeks of age. 2. Three isoenergetic and isonitrogenous diets were formulated to contain 0, 50 and 100 g/kg of sun-dried mangrove leaves. Each diet was fed with or without supplementation of 2 g of cardamom, cumin, hot and black pepper mixture (1:1:1:1)/kg diet. 3. Mangrove leaves at either 50 or 100 g/kg adversely affect laying rate, egg mass and FCR, whilst increasing water intake and water to feed ratio. Mangrove leaves had no significant effect on dry matter, protein, lipid, cholesterol and ash content of liver, or on dry matter, protein and ash of yolk. 4. Plasma total protein, total lipids; liver enzymes AST and ALT and mortality rate were not significantly affected by mangrove leaves. On the other hand, yolk lipid, yolk cholesterol and plasma cholesterol significantly decreased, while yolk colour significantly increased with inclusion of 50 or 100 g/kg mangrove leaves, and Haugh unit score significantly increased with 100 g/kg mangrove leaves. 5. Spice mixture significantly increased egg weight by 2.2%. Yolk lipid content significantly decreased by 2.6%, while yolk colour and Haugh unit significantly increased with inclusion of spice mixtures. 6. In conclusion, mangrove leaves at 50 g/kg may be included in the laying hen diets as a means of decreasing lipid and cholesterol in yolk and plasma cholesterol and increasing yolk colour. Spice mixture at 2 g of cardamom, cumin, hot and black pepper mixture (1:1:1:1)/kg diet increased laying rate, egg mass, Haugh unit score and yolk colour while decreasing yolk lipids.

  11. Metabolic studies in man using stable isotopes

    International Nuclear Information System (INIS)

    Faust, H.; Jung, K.; Krumbiegel, P.

    1993-01-01

    In this project, stable isotope compounds and stable isotope pharmaceuticals were used (with emphasis on the application of 15 N) to study several aspects of nitrogen metabolism in man. Of the many methods available, the 15 N stable isotope tracer technique holds a special position because the methodology for application and nitrogen isotope analysis is proven and reliable. Valid routine methods using 15 N analysis by emission spectrometry have been demonstrated. Several methods for the preparation of biological material were developed during our participation in the Coordinated Research Programme. In these studies, direct procedures (i.e. use of diluted urine as a samples without chemical preparation) or rapid isolation methods were favoured. Within the scope of the Analytical Quality Control Service (AQCS) enriched stable isotope reference materials for medical and biological studies were prepared and are now available through the International Atomic Energy Agency. The materials are of special importance as the increasing application of stable isotopes as tracers in medical, biological and agricultural studies has focused interest on reliable measurements of biological material of different origin. 24 refs

  12. 1H NMR-based urinary metabolic profiling reveals changes in nicotinamide pathway intermediates due to postnatal stress model in rat.

    Science.gov (United States)

    Tomassini, Alberta; Vitalone, Annabella; Marini, Federico; Praticò, Giulia; Sciubba, Fabio; Bevilacqua, Marta; Delfini, Maurizio; Di Sotto, Antonella; Di Giacomo, Silvia; Mariani, Paola; Mammola, Caterina L; Gaudio, Eugenio; Miccheli, Alfredo; Mazzanti, Gabriela

    2014-12-05

    The maternal separation protocol in rodents is a widely recognized model of early life stress allowing acute and chronic physiological consequences to be studied. An (1)H NMR-based metabolomic approach was applied to urines to evaluate the systemic metabolic consequences of maternal separation stress in female rats after the beginning of weaning and 4 weeks later when the rats were reaching adulthood. Furthermore, because maternal separation is considered as a model mimicking the inflammatory bowel syndrome, the lactulose/mannitol test was used to evaluate the influence of postnatal maternal separation on gut permeability and mucosal barrier function by (1)H NMR spectroscopy analysis of urine. The results showed no statistical differences in gut permeability due to maternal separation. The application of ANOVA simultaneous component analysis allowed the contributions of physiological adaptations to the animal's development to be separated from the metabolic consequences due to postnatal stress. Systemic metabolic differences in the maternally separated pups were mainly due to the tryptophan/NAD pathway intermediate levels and to the methyladenosine level. Urinary NMR-based metabolic profiling allowed us to disentangle the metabolic adaptive response of the rats to postnatal stress during the animal's growth, highlighting the metabolic changes induced by weaning, gut closure, and maturity.

  13. Metabolic profiling and flux analysis of MEL-2 human embryonic stem cells during exponential growth at physiological and atmospheric oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Jennifer Turner

    Full Text Available As human embryonic stem cells (hESCs steadily progress towards regenerative medicine applications there is an increasing emphasis on the development of bioreactor platforms that enable expansion of these cells to clinically relevant numbers. Surprisingly little is known about the metabolic requirements of hESCs, precluding the rational design and optimisation of such platforms. In this study, we undertook an in-depth characterisation of MEL-2 hESC metabolic behaviour during the exponential growth phase, combining metabolic profiling and flux analysis tools at physiological (hypoxic and atmospheric (normoxic oxygen concentrations. To overcome variability in growth profiles and the problem of closing mass balances in a complex environment, we developed protocols to accurately measure uptake and production rates of metabolites, cell density, growth rate and biomass composition, and designed a metabolic flux analysis model for estimating internal rates. hESCs are commonly considered to be highly glycolytic with inactive or immature mitochondria, however, whilst the results of this study confirmed that glycolysis is indeed highly active, we show that at least in MEL-2 hESC, it is supported by the use of oxidative phosphorylation within the mitochondria utilising carbon sources, such as glutamine to maximise ATP production. Under both conditions, glycolysis was disconnected from the mitochondria with all of the glucose being converted to lactate. No difference in the growth rates of cells cultured under physiological or atmospheric oxygen concentrations was observed nor did this cause differences in fluxes through the majority of the internal metabolic pathways associated with biogenesis. These results suggest that hESCs display the conventional Warburg effect, with high aerobic activity despite high lactate production, challenging the idea of an anaerobic metabolism with low mitochondrial activity. The results of this study provide new insight that

  14. Role of Training and Detraining on Inflammatory and Metabolic Profile in Infarcted Rats: Influences of Cardiovascular Autonomic Nervous System

    Directory of Open Access Journals (Sweden)

    Bruno Rodrigues

    2014-01-01

    Full Text Available The aim of this study was to evaluate the effects of exercise training (ET, 50–70% of VO2 max, 5 days/week and detraining (DT on inflammatory and metabolic profile after myocardial infarction (MI in rats. Male Wistar rats were divided into control (C, n=8, sedentary infarcted (SI, n=9, trained infarcted (TI,  n=10; 3 months of ET, and detrained infarcted (DI, n=11; 2 months of ET + 1 month of DT. After ET and DT protocols, ventricular function and inflammation, cardiovascular autonomic modulation (spectral analysis, and adipose tissue inflammation and lipolytic pathway were evaluated. ET after MI improved cardiac and vascular autonomic modulation, and these benefits were correlated with reduced inflammatory cytokines on the heart and adipose tissue. These positive changes were sustained even after 1 month of detraining. No expressive changes were observed in oxidative stress and lipolytic pathway in experimental groups. In conclusion, our results strongly suggest that the autonomic improvement promoted by ET, and maintained even after the detraining period, was associated with reduced inflammatory profile in the left ventricle and adipose tissue of rats subjected to MI. These data encourage enhancing cardiovascular autonomic function as a therapeutic strategy for the treatment of inflammatory process triggered by MI.

  15. Role of Training and Detraining on Inflammatory and Metabolic Profile in Infarcted Rats: Influences of Cardiovascular Autonomic Nervous System

    Science.gov (United States)

    Santana, Aline Alves; Santamarina, Aline Boveto; Oyama, Lila Missae; Caperuto, Érico Chagas; de Souza, Cláudio Teodoro; Barboza, Catarina de Andrade; Rocha, Leandro Yanase; Figueroa, Diego; Mostarda, Cristiano; Irigoyen, Maria Cláudia; Lira, Fábio Santos

    2014-01-01

    The aim of this study was to evaluate the effects of exercise training (ET, 50–70% of VO2 max, 5 days/week) and detraining (DT) on inflammatory and metabolic profile after myocardial infarction (MI) in rats. Male Wistar rats were divided into control (C, n = 8), sedentary infarcted (SI, n = 9), trained infarcted (TI, n = 10; 3 months of ET), and detrained infarcted (DI, n = 11; 2 months of ET + 1 month of DT). After ET and DT protocols, ventricular function and inflammation, cardiovascular autonomic modulation (spectral analysis), and adipose tissue inflammation and lipolytic pathway were evaluated. ET after MI improved cardiac and vascular autonomic modulation, and these benefits were correlated with reduced inflammatory cytokines on the heart and adipose tissue. These positive changes were sustained even after 1 month of detraining. No expressive changes were observed in oxidative stress and lipolytic pathway in experimental groups. In conclusion, our results strongly suggest that the autonomic improvement promoted by ET, and maintained even after the detraining period, was associated with reduced inflammatory profile in the left ventricle and adipose tissue of rats subjected to MI. These data encourage enhancing cardiovascular autonomic function as a therapeutic strategy for the treatment of inflammatory process triggered by MI. PMID:25045207

  16. Microbial metabolic profiles in Australian soils with varying crop management strategies

    Science.gov (United States)

    Aldorri, Sind; McMillan, Mary; Pereg, Lily

    2015-04-01

    Cotton production belt in Australia is covering vast areas from subtropical to temperate and grassland. Soil types are mostly different variations of clay with mainly black, grey and red clay soil containing variable proportions of sand in it. Growers often grow cotton in rotation with other crops, such as wheat, beans and corn, and soil fertilization vary with a number of growers using organic amendments as a main or supplementary source of nutrients. We have collected soil samples from farms in different regions and with different crop management strategies and studied the metabolic signature of microbial communities using the Biolog Ecoplate system. The metabolic patterns, supplemented with molecular analysis of the community will further the understanding of the influence of crop and soil management on soil functions carried out by microbes.

  17. Strategies for the Assessment of Metabolic Profiles of Steroid Hormones in View of Diagnostics and Drug Monitoring: Analytical Problems and Challenges.

    Science.gov (United States)

    Plenis, Alina; Oledzka, Ilona; Kowalski, Piotr; Baczek, Tomasz

    2016-01-01

    During the last few years there has been a growing interest in research focused on the metabolism of steroid hormones despite that the study of metabolic hormone pathways is still a difficult and demanding task because of low steroid concentrations and a complexity of the analysed matrices. Thus, there has been an increasing interest in the development of new, more selective and sensitive methods for monitoring these compounds in biological samples. A lot of bibliographic databases for world research literature were structurally searched using selected review question and inclusion/exclusion criteria. Next, the reports of the highest quality were selected using standard tools (181) and they were described to evaluate the advantages and limitations of different approaches in the measurements of the steroids and their metabolites. The overview of the analytical challenges, development of methods used in the assessment of the metabolic pathways of steroid hormones, and the priorities for future research with a special consideration for liquid chromatography (LC) and capillary electrophoresis (CE) techniques have been presented. Moreover, many LC and CE applications in pharmacological and psychological studies as well as endocrinology and sports medicine, taking into account the recent progress in the area of the metabolic profiling of steroids, have been critically discussed. The latest reports show that LC systems coupled with mass spectrometry have the predominant position in the research of steroid profiles. Moreover, CE techniques are going to gain a prominent position in the diagnosis of hormone levels in the near future.

  18. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression

    Directory of Open Access Journals (Sweden)

    Rydzak Thomas

    2012-09-01

    Full Text Available Abstract Background Clostridium thermocellum produces H2 and ethanol, as well as CO2, acetate, formate, and lactate, directly from cellulosic biomass. It is therefore an attractive model for biofuel production via consolidated bioprocessing. Optimization of end-product yields and titres is crucial for making biofuel production economically feasible. Relative protein expression profiles may provide targets for metabolic engineering, while understanding changes in protein expression and metabolism in response to carbon limitation, pH, and growth phase may aid in reactor optimization. We performed shotgun 2D-HPLC-MS/MS on closed-batch cellobiose-grown exponential phase C. thermocellum cell-free extracts to determine relative protein expression profiles of core metabolic proteins involved carbohydrate utilization, energy conservation, and end-product synthesis. iTRAQ (isobaric tag for relative and absolute quantitation based protein quantitation was used to determine changes in core metabolic proteins in response to growth phase. Results Relative abundance profiles revealed differential levels of putative enzymes capable of catalyzing parallel pathways. The majority of proteins involved in pyruvate catabolism and end-product synthesis were detected with high abundance, with the exception of aldehyde dehydrogenase, ferredoxin-dependent Ech-type [NiFe]-hydrogenase, and RNF-type NADH:ferredoxin oxidoreductase. Using 4-plex 2D-HPLC-MS/MS, 24% of the 144 core metabolism proteins detected demonstrated moderate changes in expression during transition from exponential to stationary phase. Notably, proteins involved in pyruvate synthesis decreased in stationary phase, whereas proteins involved in glycogen metabolism, pyruvate catabolism, and end-product synthesis increased in stationary phase. Several proteins that may directly dictate end-product synthesis patterns, including pyruvate:ferredoxin oxidoreductases, alcohol dehydrogenases, and a putative

  19. Regenerative potential, metabolic profile, and genetic stability of Brachypodium distachyon embryogenic calli as affected by successive subcultures.

    Science.gov (United States)

    Mamedes-Rodrigues, T C; Batista, D S; Vieira, N M; Matos, E M; Fernandes, D; Nunes-Nesi, A; Cruz, C D; Viccini, L F; Nogueira, F T S; Otoni, W C

    2018-03-01

    Brachypodium distachyon, a model species for forage grasses and cereal crops, has been used in studies seeking improved biomass production and increased crop yield for biofuel production purposes. Somatic embryogenesis (SE) is the morphogenetic pathway that supports in vitro regeneration of such species. However, there are gaps in terms of studies on the metabolic profile and genetic stability along successive subcultures. The physiological variables and the metabolic profile of embryogenic callus (EC) and embryogenic structures (ES) from successive subcultures (30, 60, 90, 120, 150, 180, 210, 240, and 360-day-old subcultures) were analyzed. Canonical discriminant analysis separated EC into three groups: 60, 90, and 120 to 240 days. EC with 60 and 90 days showed the highest regenerative potential. EC grown for 90 days and submitted to SE induction in 2 mg L -1 of kinetin-supplemented medium was the highest ES producer. The metabolite profiles of non-embryogenic callus (NEC), EC, and ES submitted to principal component analysis (PCA) separated into two groups: 30 to 240- and 360-day-old calli. The most abundant metabolites for these groups were malonic acid, tryptophan, asparagine, and erythrose. PCA of ES also separated ages into groups and ranked 60- and 90-day-old calli as the best for use due to their high levels of various metabolites. The key metabolites that distinguished the ES groups were galactinol, oxaloacetate, tryptophan, and valine. In addition, significant secondary metabolites (e.g., caffeoylquinic, cinnamic, and ferulic acids) were important in the EC phase. Ferulic, cinnamic, and phenylacetic acids marked the decreases in the regenerative capacity of ES in B. distachyon. Decreased accumulations of the amino acids aspartic acid, asparagine, tryptophan, and glycine characterized NEC, suggesting that these metabolites are indispensable for the embryogenic competence in B. distachyon. The genetic stability of the regenerated plants was evaluated

  20. Chimeric mice with humanized liver: Application in drug metabolism and pharmacokinetics studies for drug discovery.

    Science.gov (United States)

    Naritomi, Yoichi; Sanoh, Seigo; Ohta, Shigeru

    2018-02-01

    Predicting human drug metabolism and pharmacokinetics (PK) is key to drug discovery. In particular, it is important to predict human PK, metabolite profiles and drug-drug interactions (DDIs). Various methods have been used for such predictions, including in vitro metabolic studies using human biological samples, such as hepatic microsomes and hepatocytes, and in vivo studies using experimental animals. However, prediction studies using these methods are often inconclusive due to discrepancies between in vitro and in vivo results, and interspecies differences in drug metabolism. Further, the prediction methods have changed from qualitative to quantitative to solve these issues. Chimeric mice with humanized liver have been developed, in which mouse liver cells are mostly replaced with human hepatocytes. Since human drug metabolizing enzymes are expressed in the liver of these mice, they are regarded as suitable models for mimicking the drug metabolism and PK observed in humans; therefore, these mice are useful for predicting human drug metabolism and PK. In this review, we discuss the current state, issues, and future directions of predicting human drug metabolism and PK using chimeric mice with humanized liver in drug discovery. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  1. Influence of the hypothalamic-pituitary-adrenal axis dysregulation on the metabolic profile of patients affected by diabetes mellitus-associated late onset hypogonadism.

    Science.gov (United States)

    Tirabassi, G; Chelli, F M; Ciommi, M; Lenzi, A; Balercia, G

    2016-01-01

    Functional hypercortisolism (FH) is generated by clinical states able to chronically activate the hypothalamic-pituitary-adrenal (HPA) axis [e.g. diabetes mellitus (DM)]. No study has evaluated FH influence in worsening the metabolic profile of male patients affected by DM-associated hypogonadism. In this retrospective work, we assess the possible association between HPA axis-dysregulation and cardiovascular risk factors in men simultaneously affected by DM and late-onset hypogonadism (LOH). Fourteen DM and LOH subjects affected by FH (Hypercort-DM-LOH) and fourteen DM and LOH subjects who were not suffering from FH (Normocort-DM-LOH) were retrospectively considered. Clinical, hormonal and metabolic parameters were retrieved. All metabolic parameters, except for systolic blood pressure, were significantly worse in Hypercort-DM-LOH than in Normocort-DM-LOH. After adjustment for body mass index, waist and total testosterone, Hypercort-DM-LOH subjects showed significantly worse metabolic parameters than Normocort-DM-LOH ones. In Normocort-DM-LOH, no significant correlation between general/hormonal parameters and metabolic variables was present. In Hypercort-DM-LOH, positive and significant correlations of cortisol area under the curve (AUC) after corticotropin releasing hormone with glycemia, triglycerides and blood pressure were evident; on the other hand, negative and significant correlation was present between cortisol AUC and high density lipoprotein (HDL) cholesterol. The associations of AUC cortisol with glycemia, HDL cholesterol and diastolic blood pressure (DBP) were further confirmed at quantile regression after adjustment for therapy. FH may determine a worsening of the metabolic profile in DM-associated hypogonadism. Copyright © 2015 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by

  2. Clinical trial of the effects of vitamin D supplementation on psychological symptoms and metabolic profiles in maintenance methadone treatment patients.

    Science.gov (United States)

    Ghaderi, Amir; Banafshe, Hamid Reza; Motmaen, Maryam; Rasouli-Azad, Morad; Bahmani, Fereshteh; Asemi, Zatollah

    2017-10-03

    Vitamin D deficiency may be associated with some complications including nonspecific musculoskeletal pain and periodontal disease in maintenance methadone treatment (MMT) patients. This study was designed to determine the effect of vitamin D supplementation on psychological symptoms and metabolic profiles in MMT patients. This randomized, double-blind, placebo-controlled, clinical trial was carried out among 68 MMT patients. Participants were randomly allocated to receive either 50,000IU vitamin D supplements (n=34) or placebo (n=34) every 2weeks for 12weeks. Fasting blood samples were taken at baseline and post-intervention to evaluate relevant variables. After the 12-week intervention, serum 25(OH) vitamin D levels significantly increased in the intervention group compared with the placebo group (+8.1±4.9 vs. -0.4±3.0, PD supplementation significantly improved Pittsburgh Sleep Quality Index (-1.5±2.2 vs. -0.2±2.3, P=0.02) and Beck Depression Inventory (-4.8±7.3 vs. -1.5±6.1, P=0.04) compared with the placebo. Patients who received vitamin D supplements had significantly decreased fasting plasma glucose (-7.5±10.6 vs. +0.3±10.7mg/dL, P=0.004), serum insulin levels (-3.6±5.3 vs. -0.9±3.5 μIU/mL, P=0.01), homeostasis model of assessment-insulin resistance (-1.0±1.3 vs. -0.2±0.7, P=0.003), serum triglycerides (-9.6±30.8 vs. +15.6±30.2mg/dL, P=0.001), total- (-8.7±20.9 vs. +11.0±27.4mg/dL, P=0.001) and LDL-cholesterol (-11.1±17.9 vs. +5.9±27.5mg/dL, P=0.004) compared with the placebo. Additionally, vitamin D intake resulted in a significant decrease in serum high sensitivity C-reactive protein (-2.2±4.2 vs. +2.0±3.7mg/L, PPPD supplementation on serum HDL-cholesterol, and other markers of insulin metabolism, inflammation and oxidative stress. Totally, taking 50,000IU vitamin D supplement every 2weeks for 12weeks in MMT patients had beneficial effects on psychological symptoms and few metabolic profiles. Copyright © 2017 Elsevier Inc. All rights