WorldWideScience

Sample records for metabolic engineering gordon

  1. 2007 Plant Metabolic Engineering Gordon Conference and Graduate Research Seminar

    Energy Technology Data Exchange (ETDEWEB)

    Erich Grotewold

    2008-09-15

    Plant Metabolic Engineering is an emerging field that integrates a diverse range of disciplines including plant genetics, genomics, biochemistry, chemistry and cell biology. The Gordon-Kenan Graduate Research Seminar (GRS) in Plant Metabolic Engineering was initiated to provide a unique opportunity for future researcher leaders to present their work in this field. It also creates an environment allowing for peer-review and critical assessment of work without the intimidation usually associated with the presence of senior investigators. The GRS immediately precedes the Plant Metabolic Engineering Gordon Research Conference and will be for and by graduate students and post-docs, with the assistance of the organizers listed.

  2. 2005 Plant Metabolic Engineering Gordon Conference - July 10-15, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Eleanore T. Wurtzel

    2006-06-30

    The post-genomic era presents new opportunities for manipulating plant chemistry for improvement of plant traits such as disease and stress resistance and nutritional qualities. This conference will provide a setting for developing multidisciplinary collaborations needed to unravel the dynamic complexity of plant metabolic networks and advance basic and applied research in plant metabolic engineering. The conference will integrate recent advances in genomics, with metabolite and gene expression analyses. Research discussions will explore how biosynthetic pathways interact with regard to substrate competition and channeling, plasticity of biosynthetic enzymes, and investigate the localization, structure, and assembly of biosynthetic metabolons in native and nonnative environments. The meeting will develop new perspectives for plant transgenic research with regard to how transgene expression may influence cellular metabolism. Incorporation of spectroscopic approaches for metabolic profiling and flux analysis combined with mathematical modeling will contribute to the development of rational metabolic engineering strategies and lead to the development of new tools to assess temporal and subcellular changes in metabolite pools. The conference will also highlight new technologies for pathway engineering, including use of heterologous systems, directed enzyme evolution, engineering of transcription factors and application of molecular/genetic techniques for controlling biosynthetic pathways.

  3. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  4. Metabolic Engineering

    Indian Academy of Sciences (India)

    IAS Admin

    and in vitro to be able to alter properties of the encoded enzyme, and (6) assemble an array of genes for their expression inside the host cell. Although bacteria and yeast are the pioneering hosts for metabolic engineering, other organisms such as fungi, animal as well as plant cells are also used nowadays for similar experi ...

  5. Metabolic Engineering

    Indian Academy of Sciences (India)

    IAS Admin

    Metabolic engineering is a process for modulating the me- tabolism of the organisms so as to produce the required amounts of the desired metabolite through genetic manipula- tions. Considering its advantages over the other chemical synthesis routes, this area of biotechnology is likely to revolu- tionize the way in which ...

  6. 2012 Molecular Basis of Microbial One-Carbon Metabolism Gordon Research Conferences and Gordon Research Seminar, August 4-10,2012

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Thomas

    2012-08-10

    The 2012 Gordon Conference will present and discuss cutting-edge research in the field of microbial metabolism of C1 compounds. The conference will feature the roles and application of C1 metabolism in natural and synthetic systems at scales from molecules to ecosystems. The conference will stress molecular aspects of the unique metabolism exhibited by autotrophic bacteria, methanogens, methylotrophs, aerobic and anaerobic methanotrophs, and acetogens.

  7. Metabolic Engineering X Conference

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Evan [American Institute of Chemical Engineers

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  8. 2001 Gordon Research Conference on Archaea: Ecology [sic], Metabolism. Final progress report [agenda and attendee list

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Charles

    2001-08-10

    The Gordon Research Conference on Archaea: Ecology, Metabolism [and Molecular Biology] was held at Proctor Academy, Andover, New Hampshire, August 5-10, 2001. The conference was attended by 135 participants. The attendees represented the spectrum of endeavor in this field, coming from academia, industry, and government laboratories, and included US and foreign scientists, senior researchers, young investigators, and students. Emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate discussion about the key issues in the field today. Session topics included the following: Ecology and genetic elements; Genomics and evolution; Ecology, genomes and gene regulation; Replication and recombination; Chromatin and transcription; Gene regulation; Post-transcription processing; Biochemistry and metabolism; Proteomics and protein structure; Metabolism and physiology. The featured speaker addressed the topic: ''Archaeal viruses, witnesses of prebiotic evolution?''

  9. Engineering of Secondary Metabolism.

    Science.gov (United States)

    O'Connor, Sarah E

    2015-01-01

    Secondary (specialized) metabolites, produced by bacteria, fungi, plants, and other organisms, exhibit enormous structural variation, and consequently display a wide range of biological activities. Secondary metabolism improves and modulates the phenotype of the host producer. Furthermore, these biological activities have resulted in the use of secondary metabolites in a variety of industrial and pharmaceutical applications. Metabolic engineering presents a powerful strategy to improve access to these valuable molecules. A critical overview of engineering approaches in secondary metabolism is presented, both in heterologous and native hosts. The recognition of the increasing role of compartmentalization in metabolic engineering is highlighted. Engineering approaches to modify the structure of key secondary metabolite classes are also critically evaluated.

  10. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  11. Metabolic Engineering VII Conference

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  12. 2004 Molecular Basis of Microbial One-Carbon Metabolism Gordon Conference - August 1-6, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Joseph A. Krzycki

    2005-09-15

    The Gordon Research Conference (GRC) on 2004 Molecular Basis of Microbial One-Carbon Metabolism Gordon Conference - August 1-6, 2004 was held at Mount Holyoke College, South Hadley, MA from August 1-6, 2004. The Conference was well-attended with 117 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, 'free time' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  13. 2009 Plant Lipids: Structure, Metabolism & Function Gordon Research Conference - February 1- 6 ,2009

    Energy Technology Data Exchange (ETDEWEB)

    Kent D. Chapman

    2009-02-06

    The Gordon Research Conference on 'Plant Lipids: Structure, Metabolism and Function' has been instituted to accelerate research productivity in the field of plant lipids. This conference will facilitate wide dissemination of research breakthroughs, support recruitment of young scientists to the field of plant lipid metabolism and encourage broad participation of the plant lipid community in guiding future directions for research in plant lipids. This conference will build upon the strengths of the successful, previous biannual meetings of the National Plant Lipid Cooperative (www.plantlipids.org) that began in 1993, but will reflect a broader scope of topics to include the biochemistry, cell biology, metabolic regulation, and signaling functions of plant acyl lipids. Most importantly, this conference also will serve as a physical focal point for the interaction of the plant lipid research community. Applications to attend this conference will be open to all researchers interested in plant lipids and will provide a venue for the presentation of the latest research results, networking opportunities for young scientists, and a forum for the development and exchange of useful lipid resources and new ideas. By bringing together senior- and junior-level scientists involved in plant lipid metabolism, a broad range of insights will be shared and the community of plant lipid researchers will function more as a network of vested partners. This is important for the vitality of the research community and for the perceived value that will encourage conference attendance into the future.

  14. Genome scale engineering techniques for metabolic engineering.

    Science.gov (United States)

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Complex systems in metabolic engineering.

    Science.gov (United States)

    Winkler, James D; Erickson, Keesha; Choudhury, Alaksh; Halweg-Edwards, Andrea L; Gill, Ryan T

    2015-12-01

    Metabolic engineers manipulate intricate biological networks to build efficient biological machines. The inherent complexity of this task, derived from the extensive and often unknown interconnectivity between and within these networks, often prevents researchers from achieving desired performance. Other fields have developed methods to tackle the issue of complexity for their unique subset of engineering problems, but to date, there has not been extensive and comprehensive examination of how metabolic engineers use existing tools to ameliorate this effect on their own research projects. In this review, we examine how complexity affects engineering at the protein, pathway, and genome levels within an organism, and the tools for handling these issues to achieve high-performing strain designs. Quantitative complexity metrics and their applications to metabolic engineering versus traditional engineering fields are also discussed. We conclude by predicting how metabolic engineering practices may advance in light of an explicit consideration of design complexity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Synthetic biology and metabolic engineering.

    Science.gov (United States)

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  17. Metabolic engineering: past and future.

    Science.gov (United States)

    Woolston, Benjamin M; Edgar, Steven; Stephanopoulos, Gregory

    2013-01-01

    We present here a broad overview of the field of metabolic engineering, describing in the first section the key fundamental principles that define and distinguish it, as well as the technological and intellectual developments over the past approximately 20 years that have led to the current state of the art. Discussion of concepts such as metabolic flux analysis, metabolic control analysis, and rational and combinatorial methods is facilitated by illustrative examples of their application drawn from the extensive metabolic engineering literature. In the second section, we present some of the rapidly emerging technologies that we think will play pivotal roles in the continued growth of the field, from improving production metrics to expanding the range of attainable compounds.

  18. Biofuel metabolic engineering with biosensors

    Science.gov (United States)

    Morgan, Stacy-Anne; Nadler, Dana C.; Yokoo, Rayka; Savage, David F.

    2016-01-01

    Metabolic engineering offers the potential to renewably produce important classes of chemicals, particularly biofuels, at an industrial scale. DNA synthesis and editing techniques can generate large pathway libraries, yet identifying the best variants is slow and cumbersome. Traditionally, analytical methods like chromatography and mass spectrometry have been used to evaluate pathway variants, but such techniques cannot be performed with high throughput. Biosensors - genetically encoded components that actuate a cellular output in response to a change in metabolite concentration - are therefore a promising tool for rapid and high-throughput evaluation of candidate pathway variants. Applying biosensors can also dynamically tune pathways in response to metabolic changes, improving balance and productivity. Here, we describe the major classes of biosensors and briefly highlight recent progress in applying them to biofuel-related metabolic pathway engineering. PMID:27768949

  19. Metabolic engineering in methanotrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnaya, MG; Puri, AW; Lidstrom, ME

    2015-05-01

    Methane, as natural gas or biogas, is the least expensive source of carbon for (bio)chemical synthesis. Scalable biological upgrading of this simple alkane to chemicals and fuels can bring new sustainable solutions to a number of industries with large environmental footprints, such as natural gas/petroleum production, landfills, wastewater treatment, and livestock. Microbial biocatalysis with methane as a feedstock has been pursued off and on for almost a half century, with little enduring success. Today, biological engineering and systems biology provide new opportunities for metabolic system modulation and give new optimism to the concept of a methane-based bio-industry. Here we present an overview of the most recent advances pertaining to metabolic engineering of microbial methane utilization. Some ideas concerning metabolic improvements for production of acetyl-CoA and pyruvate, two main precursors for bioconversion, are presented. We also discuss main gaps in the current knowledge of aerobic methane utilization, which must be solved in order to release the full potential of methane-based biosystems. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Systems Metabolic Engineering of Escherichia coli.

    Science.gov (United States)

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2016-05-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.

  1. Progress in Metabolic Engineering of Saccharomyces cerevisiae

    OpenAIRE

    Nevoigt, Elke

    2008-01-01

    Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic...

  2. Systems metabolic engineering for chemicals and materials.

    Science.gov (United States)

    Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup

    2011-08-01

    Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Metabolic engineering of chloroplasts for artemisinic acid ...

    Indian Academy of Sciences (India)

    Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth ... International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India; School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA ...

  4. Nuclear magnetic resonance and plant metabolic engineering.

    Science.gov (United States)

    Shachar-Hill, Yair

    2002-01-01

    Nuclear magnetic resonance (NMR) can be used to measure metabolite levels and metabolic fluxes, to probe the intracellular environment, and to follow transport and energetics nondestructively. NMR methods are therefore powerful aids to understanding plant metabolism and physiology. Both spectroscopy and imaging can help overcome the unique challenges that plants present to the metabolic engineer by detecting, identifying, quantifying, and localizing novel metabolites in vivo and in extracts; revealing the composition and physical state of cell wall and other polymers; allowing the identification of active pathways; providing quantitative measures of metabolic flux; and testing hypotheses about the effects of engineered traits on plant physiological function. The aim of this review is to highlight recent studies in which NMR has contributed to metabolic engineering of plants and to illustrate the unique characteristics of NMR measurements that give it the potential to make greater contributions in the future.

  5. Engineering of sugar metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Pool, Weia Arianne

    2008-01-01

    Short English Summary Lactococcus lactis is a lactic acid bacterium used in the dairy industry. This thesis decribes the genetic engineering performed on the sugar metabolism of L. lactis. Besides our fundamental interest for sugar metabolism and its regulation in L. lactis, this project had the

  6. Controlling fluxes for microbial metabolic engineering

    OpenAIRE

    Sachdeva, Gairik

    2014-01-01

    This thesis presents novel synthetic biology tools and design principles usable for microbial metabolic engineering. Controlling metabolic fluxes is essential for biological manufacturing of fuels, materials, and high value chemicals. Insulating the flow of metabolites is a successful natural strategy for metabolic flux regulation. Recently, approaches using scaffolds, both in vitro and in vivo, to spatially co-localize enzymes have reported significant gains in product yields. RNA is suitabl...

  7. Pathway analysis and optimization in metabolic engineering

    National Research Council Canada - National Science Library

    Torres, Néstor V; Voit, Eberhard O

    2002-01-01

    ... Engineering introduces researchers and advanced students in biology and engineering to methods of optimizing biochemical systems of biotechnological relevance. It examines the development of strategies for manipulating metabolic pathways, demonstrates the need for effective systems models, and discusses their design and analysis, while placing special emp...

  8. Metabolic engineering of terpenoid biosynthesis in plants

    NARCIS (Netherlands)

    Aharoni, A.; Jongsma, M.A.; Kim, T.Y.; Ri, M.B.; Giri, A.P.; Verstappen, F.W.A.; Schwab, W.; Bouwmeester, H.J.

    2006-01-01

    Metabolic engineering of terpenoids in plants is a fascinating research topic from two main perspectives. On the one hand, the various biological activities of these compounds make their engineering a new tool for improving a considerable number of traits in crops. These include for example enhanced

  9. Computer-aided design for metabolic engineering.

    Science.gov (United States)

    Fernández-Castané, Alfred; Fehér, Tamás; Carbonell, Pablo; Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-12-20

    The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Molecular Basis of Microbial One-Carbon Metabolism 2008 Gordon Research Conference (July 20-25, 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Stephen W. Ragsdale

    2009-08-12

    One-carbon (C-1) compounds play a central role in microbial metabolism. C-1 compounds include methane, carbon monoxide, CO2, and methanol as well as coenzyme-bound one-carbon compounds (methyl-B12, CH3-H4folate, etc). Such compounds are of broad global importance because several C-1 compounds (e.g., CH4) are important energy sources, some (e.g., CO2 and CH4) are potent greenhouse gases, and others (e.g., CH2Cl2) are xenobiotics. They are central in pathways of energy metabolism and carbon fixation by microbes and many are of industrial interest. Research on the pathways of one-carbon metabolism has added greatly to our understanding of evolution, structural biology, enzyme mechanisms, gene regulation, ecology, and applied biology. The 2008 meeting will include recent important findings in the following areas: (a) genomics, metagenomics, and proteomic studies that have expanded our understanding of autotrophy and C-1 metabolism and the evolution of these pathways; (b) redox regulation of carbon cycles and the interrelationship between the carbon cycle and other biogeochemical cycles (sulfur, nitrogen, oxygen); (c) novel pathways for carbon assimilation; (d) biotechnology related to C-1 metabolism; (e) novel enzyme mechanisms including channeling of C-1 intermediates during metabolism; and (f) the relationship between metal homeostasis and the global carbon cycle. The conference has a diverse and gender-balanced slate of speakers and session leaders. The wide variety of disciplines brought to the study of C-1 metabolism make the field an excellent one in which to train young researchers.

  11. Systems metabolic engineering in an industrial setting.

    Science.gov (United States)

    Sagt, Cees M J

    2013-03-01

    Systems metabolic engineering is based on systems biology, synthetic biology, and evolutionary engineering and is now also applied in industry. Industrial use of systems metabolic engineering focuses on strain and process optimization. Since ambitious yields, titers, productivities, and low costs are key in an industrial setting, the use of effective and robust methods in systems metabolic engineering is becoming very important. Major improvements in the field of proteomics and metabolomics have been crucial in the development of genome-wide approaches in strain and process development. This is accompanied by a rapid increase in DNA sequencing and synthesis capacity. These developments enable the use of systems metabolic engineering in an industrial setting. Industrial systems metabolic engineering can be defined as the combined use of genome-wide genomics, transcriptomics, proteomics, and metabolomics to modify strains or processes. This approach has become very common since the technology for generating large data sets of all levels of the cellular processes has developed quite fast into robust, reliable, and affordable methods. The main challenge and scope of this mini review is how to translate these large data sets in relevant biological leads which can be tested for strain or process improvements. Experimental setup, heterogeneity of the culture, and sample pretreatment are important issues which are easily underrated. In addition, the process of structuring, filtering, and visualization of data is important, but also, the availability of a genetic toolbox and equipment for medium/high-throughput fermentation is a key success factor. For an efficient bioprocess, all the different components in this process have to work together. Therefore, mutual tuning of these components is an important strategy.

  12. Genetic and metabolic engineering in diatoms.

    Science.gov (United States)

    Huang, Weichao; Daboussi, Fayza

    2017-09-05

    Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  13. Engineering the spatial organization of metabolic pathways

    DEFF Research Database (Denmark)

    Albertsen, Line; Maury, Jerome; Bach, Lars Stougaard

    One of the goals of metabolic engineering is to optimize the production of valuable metabolites in cell factories. In this context, modulating the gene expression and activity of enzymes are tools that have been extensively used. Another approach that is gaining interest is the engineering...... a heterologous pathway could be optimized by positioning two sequentially acting enzymes in close proximity. More specifically, we fused a sesquiterpene synthase of plant origin to a natural yeast enzyme and expressed it in the well-characterised cell factory Saccharomyces cerevisiae. Successfully......, the sesquiterpene production was increased two-fold when the enzymes were fused compared to when they were expressed from the same promoters as free enzymes. Moreover, the strategy could be used in combination with other traditional metabolic engineering strategies to increase the production of a desired product...

  14. Key applications of plant metabolic engineering.

    Directory of Open Access Journals (Sweden)

    Warren Lau

    2014-06-01

    Full Text Available Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-destructing lignin; and increasing photosynthetic efficiency. We also look to the future at emerging areas of research in this field.

  15. Essences in Metabolic Engineering of Lignan Biosynthesis

    Directory of Open Access Journals (Sweden)

    Honoo Satake

    2015-05-01

    Full Text Available Lignans are structurally and functionally diverse phytochemicals biosynthesized in diverse plant species and have received wide attentions as leading compounds of novel drugs for tumor treatment and healthy diets to reduce of the risks of lifestyle-related non-communicable diseases. However, the lineage-specific distribution and the low-amount of production in natural plants, some of which are endangered species, hinder the efficient and stable production of beneficial lignans. Accordingly, the development of new procedures for lignan production is of keen interest. Recent marked advances in the molecular and functional characterization of lignan biosynthetic enzymes and endogenous and exogenous factors for lignan biosynthesis have suggested new methods for the metabolic engineering of lignan biosynthesis cascades leading to the efficient, sustainable, and stable lignan production in plants, including plant cell/organ cultures. Optimization of light conditions, utilization of a wide range of elicitor treatments, and construction of transiently gene-transfected or transgenic lignan-biosynthesizing plants are mainly being attempted. This review will present the basic and latest knowledge regarding metabolic engineering of lignans based on their biosynthetic pathways and biological activities, and the perspectives in lignan production via metabolic engineering.

  16. Astronaut Gordon Cooper during flight tests

    Science.gov (United States)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, relaxes while waiting for weight and balance tests to begin (03974); Cooper prior to entering the Mercury Spacecraft for a series of simulated flight tests. During these tests NASA doctors, engineers and technicians monitor Cooper's performance (03975); Cooper undergoing suit pressurization tests (03976).

  17. Towards systems metabolic engineering in Pichia pastoris.

    Science.gov (United States)

    Schwarzhans, Jan-Philipp; Luttermann, Tobias; Geier, Martina; Kalinowski, Jörn; Friehs, Karl

    2017-11-01

    The methylotrophic yeast Pichia pastoris is firmly established as a host for the production of recombinant proteins, frequently outperforming other heterologous hosts. Already, a sizeable amount of systems biology knowledge has been acquired for this non-conventional yeast. By applying various omics-technologies, productivity features have been thoroughly analyzed and optimized via genetic engineering. However, challenging clonal variability, limited vector repertoire and insufficient genome annotation have hampered further developments. Yet, in the last few years a reinvigorated effort to establish P. pastoris as a host for both protein and metabolite production is visible. A variety of compounds from terpenoids to polyketides have been synthesized, often exceeding the productivity of other microbial systems. The clonal variability was systematically investigated and strategies formulated to circumvent untargeted events, thereby streamlining the screening procedure. Promoters with novel regulatory properties were discovered or engineered from existing ones. The genetic tractability was increased via the transfer of popular manipulation and assembly techniques, as well as the creation of new ones. A second generation of sequencing projects culminated in the creation of the second best functionally annotated yeast genome. In combination with landmark physiological insights and increased output of omics-data, a good basis for the creation of refined genome-scale metabolic models was created. The first application of model-based metabolic engineering in P. pastoris showcased the potential of this approach. Recent efforts to establish yeast peroxisomes for compartmentalized metabolite synthesis appear to fit ideally with the well-studied high capacity peroxisomal machinery of P. pastoris. Here, these recent developments are collected and reviewed with the aim of supporting the establishment of systems metabolic engineering in P. pastoris. Copyright © 2017. Published

  18. Obituary: Gordon Donaldson Obituary: Gordon Donaldson

    Science.gov (United States)

    Pegrum, Colin; Campbell, Archie; Hampshire, Damian

    2013-07-01

    Gordon Donaldson died in Glasgow on 28 November 2012 at the age of 71. He was born in Edinburgh and brought up and educated in Glasgow, which was his home city for much of his life. He was educated first at Glasgow Academy, and then with a scholarship at Christ's College Cambridge. Here he read Natural Sciences, finishing with first class honors in Physics. He then did a PhD on tunneling in superconductors in the Mond Laboratory, supervised by John Adkins. These were interesting times, since type II superconductors had only recently been identified, and the Mond was a leading player in the physics of vortices and other quantum effects. It was headed by Pippard and Shoenberg, and colleagues around that time were Brian Josephson, John Clarke, Colin Gough and John Waldram. On finishing his PhD in 1966 Gordon went straight to a lectureship at the University of Lancaster. In 1975 during a sabbatical at the University of California, Berkeley, with John Clarke's group, Gordon co-invented thin-film gradiometers with integrated DC SQUIDs. He then moved back to Glasgow, to the Department of Applied Physics at Strathclyde University, where he founded a new research group to make and use superconducting devices, especially SQUIDs and gradiometers. From modest beginnings the group grew steadily, acquiring new facilities and members, until in the 1990s it had over 20 members and a host of collaborators from elsewhere in Glasgow and abroad. With funding from the Wellcome Trust, Gordon and colleagues at Glasgow University and the Southern General Hospital in Glasgow set up a new biomagnetism facility in 1998 on the hospital campus to use SQUID gradiometers made at Strathclyde for measurements on patients and volunteers. Another of his main research interests was the use of SQUIDs for nondestructive evaluation (NDE). This started in the days before high temperature superconductors (HTS) with wire-wound gradiometers and niobium SQUIDs, soon moving on to miniature thin-film niobium

  19. Modularization of genetic elements promotes synthetic metabolic engineering.

    Science.gov (United States)

    Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin

    2015-11-15

    In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Lessons learned from metabolic engineering of cyanogenic glucosides

    DEFF Research Database (Denmark)

    Morant, Anne Vinther; Jørgensen, Kirsten; Jørgensen, Bodil

    2007-01-01

    . The interplay of a multitude of biosynthetic pathways and the possibility of metabolic cross-talk combined with an incomplete understanding of the regulation of these pathways, explain why metabolic engineering of plant secondary metabolism is still in its infancy and subject to much trial and error. Cyanogenic...... cyanogenic glucosides pioneering status in metabolic engineering of plant secondary metabolism. In this review, lessons learned from metabolic engineering of cyanogenic glucosides in Arabidopsis thaliana (thale cress), Nicotiana tabacum cv Xanthi (tobacco), Manihot esculenta Crantz (cassava) and Lotus...

  1. Metabolic Engineering for Substrate Co-utilization

    Science.gov (United States)

    Gawand, Pratish

    Production of biofuels and bio-based chemicals is being increasingly pursued by chemical industry to reduce its dependence on petroleum. Lignocellulosic biomass (LCB) is an abundant source of sugars that can be used for producing biofuels and bio-based chemicals using fermentation. Hydrolysis of LCB results in a mixture of sugars mainly composed of glucose and xylose. Fermentation of such a sugar mixture presents multiple technical challenges at industrial scale. Most industrial microorganisms utilize sugars in a sequential manner due to the regulatory phenomenon of carbon catabolite repression (CCR). Due to sequential utilization of sugars, the LCB-based fermentation processes suffer low productivities and complicated operation. Performance of fermentation processes can be improved by metabolic engineering of microorganisms to obtain superior characteristics such as high product yield. With increased computational power and availability of complete genomes of microorganisms, use of model-based metabolic engineering is now a common practice. The problem of sequential sugar utilization, however, is a regulatory problem, and metabolic models have never been used to solve such regulatory problems. The focus of this thesis is to use model-guided metabolic engineering to construct industrial strains capable of co-utilizing sugars. First, we develop a novel bilevel optimization algorithm SimUp, that uses metabolic models to identify reaction deletion strategies to force co-utilization of two sugars. We then use SimUp to identify reaction deletion strategies to force glucose-xylose co-utilization in Escherichia coli. To validate SimUp predictions, we construct three mutants with multiple gene knockouts and test them for glucose-xylose utilization characteristics. Two mutants, designated as LMSE2 and LMSE5, are shown to co-utilize glucose and xylose in agreement with SimUp predictions. To understand the molecular mechanism involved in glucose-xylose co-utilization of the

  2. Plant Metabolic Modeling: Achieving New Insight into Metabolism and Metabolic Engineering

    Science.gov (United States)

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-01-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. PMID:25344492

  3. Protein design in systems metabolic engineering for industrial strain development.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2013-05-01

    Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Advancing metabolic engineering through systems biology of industrial microorganisms

    DEFF Research Database (Denmark)

    Dai, Zongjie; Nielsen, Jens

    2015-01-01

    resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review...... the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further....

  5. Precision metabolic engineering: The design of responsive, selective, and controllable metabolic systems.

    Science.gov (United States)

    McNerney, Monica P; Watstein, Daniel M; Styczynski, Mark P

    2015-09-01

    Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed "precision metabolic engineering," involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Systems metabolic engineering: genome-scale models and beyond.

    Science.gov (United States)

    Blazeck, John; Alper, Hal

    2010-07-01

    The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches--based on the data collected with high throughput technologies--to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems.

  7. Applied evolutionary theories for engineering of secondary metabolic pathways.

    Science.gov (United States)

    Bachmann, Brian O

    2016-12-01

    An expanded definition of 'secondary metabolism' is emerging. Once the exclusive provenance of naturally occurring organisms, evolved over geological time scales, secondary metabolism increasingly encompasses molecules generated via human engineered biocatalysts and biosynthetic pathways. Many of the tools and strategies for enzyme and pathway engineering can find origins in evolutionary theories. This perspective presents an overview of selected proposed evolutionary strategies in the context of engineering secondary metabolism. In addition to the wealth of biocatalysts provided via secondary metabolic pathways, improving the understanding of biosynthetic pathway evolution will provide rich resources for methods to adapt to applied laboratory evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Engineering yeast metabolism for production of fuels and chemicals

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2016-01-01

    faster development of metabolically engineered strains that can be used for production of fuels and chemicals. The yeast Saccharomyces cerevisiae is widely used for production of fuels, chemicals, pharmaceuticals and materials. Through metabolic engineering of this yeast a number of novel industrial...... as for metabolic design. In this lecture it will be demonstrated how the Design-Build-Test cycle of metabolic engineering has allowed for development of yeast cell factories for production of a range of different fuels and chemicals. Some examples of different technologies will be presented together with examples...

  9. Impact of 'ome' analyses on inverse metabolic engineering

    DEFF Research Database (Denmark)

    Bro, Christoffer; Nielsen, Jens

    2004-01-01

    Genome-wide or large-scale methodologies employed in functional genomics such as DNA sequencing, transcription profiling, proteomics, and metabolite profiling have become important tools in many metabolic engineering strategies. These techniques allow the identification of genetic differences...... and insight into their cellular effects. In the field of inverse metabolic engineering mapping of differences between strains with different degree of a certain desired phenotype and subsequent identification of factors conferring that phenotype are an essential part. Therefore, the tools of functional...... genomics in particular have the potential to promote and expand inverse metabolic engineering. Here, we review the use of functional genomics methods in inverse metabolic engineering, examples are presented, and we discuss the identification of targets for metabolic engineering with low fold changes using...

  10. Impact of 'ome' analyses on inverse metabolic engineering

    DEFF Research Database (Denmark)

    Bro, Christoffer; Nielsen, Jens

    2004-01-01

    genomics in particular have the potential to promote and expand inverse metabolic engineering. Here, we review the use of functional genomics methods in inverse metabolic engineering, examples are presented, and we discuss the identification of targets for metabolic engineering with low fold changes using......Genome-wide or large-scale methodologies employed in functional genomics such as DNA sequencing, transcription profiling, proteomics, and metabolite profiling have become important tools in many metabolic engineering strategies. These techniques allow the identification of genetic differences...... and insight into their cellular effects. In the field of inverse metabolic engineering mapping of differences between strains with different degree of a certain desired phenotype and subsequent identification of factors conferring that phenotype are an essential part. Therefore, the tools of functional...

  11. Engineering central metabolism – a grand challenge for plant biologists

    DEFF Research Database (Denmark)

    Sweetlove, Lee J.; Nielsen, Jens; Fernie, Alisdair R.

    2017-01-01

    . In this review we discuss new approaches for metabolic engineering that have the potential to address these problems and dramatically improve the success with which we can rationally engineer central metabolism in plants. In particular, we advocate the adoption of an iterative ‘design-build-test-learn’ cycle...... using fast-to-transform model plants as test beds. This approach can be realised by coupling new molecular tools to incorporate multiple transgenes in nuclear and plastid genomes with computational modelling to design the engineering strategy and to understand the metabolic phenotype of the engineered...

  12. Metstoich--Teaching Quantitative Metabolism and Energetics in Biochemical Engineering

    Science.gov (United States)

    Wong, Kelvin W. W.; Barford, John P.

    2010-01-01

    Metstoich, a metabolic calculator developed for teaching, can provide a novel way to teach quantitative metabolism to biochemical engineering students. It can also introduce biochemistry/life science students to the quantitative aspects of life science subjects they have studied. Metstoich links traditional biochemistry-based metabolic approaches…

  13. Systems metabolic engineering strategies for the production of amino acids.

    Science.gov (United States)

    Ma, Qian; Zhang, Quanwei; Xu, Qingyang; Zhang, Chenglin; Li, Yanjun; Fan, Xiaoguang; Xie, Xixian; Chen, Ning

    2017-06-01

    Systems metabolic engineering is a multidisciplinary area that integrates systems biology, synthetic biology and evolutionary engineering. It is an efficient approach for strain improvement and process optimization, and has been successfully applied in the microbial production of various chemicals including amino acids. In this review, systems metabolic engineering strategies including pathway-focused approaches, systems biology-based approaches, evolutionary approaches and their applications in two major amino acid producing microorganisms: Corynebacterium glutamicum and Escherichia coli, are summarized.

  14. Metabolic engineering of cyanobacteria for the synthesis of commodity products.

    Science.gov (United States)

    Angermayr, S Andreas; Gorchs Rovira, Aleix; Hellingwerf, Klaas J

    2015-06-01

    Through metabolic engineering cyanobacteria can be employed in biotechnology. Combining the capacity for oxygenic photosynthesis and carbon fixation with an engineered metabolic pathway allows carbon-based product formation from CO(2), light, and water directly. Such cyanobacterial 'cell factories' are constructed to produce biofuels, bioplastics, and commodity chemicals. Efforts of metabolic engineers and synthetic biologists allow the modification of the intermediary metabolism at various branching points, expanding the product range. The new biosynthesis routes 'tap' the metabolism ever more efficiently, particularly through the engineering of driving forces and utilization of cofactors generated during the light reactions of photosynthesis, resulting in higher product titers. High rates of carbon rechanneling ultimately allow an almost-complete allocation of fixed carbon to product above biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Metabolic Engineering: Techniques for analysis of targets for genetic manipulations

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1998-01-01

    enzymes. Despite the prospect of obtaining major improvement through metabolic engineering, this approach is, however, not expected to completely replace the classical approach to strain improvement-random mutagenesis followed by screening. Identification of the optimal genetic changes for improvement......Metabolic engineering has been defined as the purposeful modification of intermediary metabolism using recombinant DNA techniques. With this definition metabolic engineering includes: (1) inserting new pathways in microorganisms with the aim of producing novel metabolites, e.g., production...... of polyketides by Streptomyces; (2) production of heterologous peptides, e.g., production of human insulin, erythropoitin, and tPA; and (3) improvement of both new and existing processes, e.g., production of antibiotics and industrial enzymes. Metabolic engineering is a multidisciplinary approach, which involves...

  16. Metabolic engineering of microorganisms: general strategies and drug production.

    Science.gov (United States)

    Lee, Sang Yup; Kim, Hyun Uk; Park, Jin Hwan; Park, Jong Myung; Kim, Tae Yong

    2009-01-01

    Many drugs and drug precursors found in natural organisms are rather difficult to synthesize chemically and to extract in large amounts. Metabolic engineering is playing an increasingly important role in the production of these drugs and drug precursors. This is typically achieved by establishing new metabolic pathways leading to the product formation, and enforcing or removing the existing metabolic pathways toward enhanced product formation. Recent advances in system biology and synthetic biology are allowing us to perform metabolic engineering at the whole cell level, thus enabling optimal design of a microorganism for the efficient production of drugs and drug precursors. In this review, we describe the general strategies for the metabolic engineering of microorganisms for the production of drugs and drug precursors. As successful examples of metabolic engineering, the approaches taken toward strain development for the production of artemisinin, an antimalarial drug, and benzylisoquinoline alkaloids, a family of antibacterial and anticancer drugs, are described in detail. Also, systems metabolic engineering of Escherichia coli for the production of L-valine, an important drug precursor, is showcased as an important strategy of future metabolic engineering effort.

  17. Recent advances in systems metabolic engineering tools and strategies.

    Science.gov (United States)

    Chae, Tong Un; Choi, So Young; Kim, Je Woong; Ko, Yoo-Sung; Lee, Sang Yup

    2017-10-01

    Metabolic engineering has been playing increasingly important roles in developing microbial cell factories for the production of various chemicals and materials to achieve sustainable chemical industry. Nowadays, many tools and strategies are available for performing systems metabolic engineering that allows systems-level metabolic engineering in more sophisticated and diverse ways by adopting rapidly advancing methodologies and tools of systems biology, synthetic biology and evolutionary engineering. As an outcome, development of more efficient microbial cell factories has become possible. Here, we review recent advances in systems metabolic engineering tools and strategies together with accompanying application examples. In addition, we describe how these tools and strategies work together in simultaneous and synergistic ways to develop novel microbial cell factories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Gordon Munday – 1922-2008

    CERN Multimedia

    2008-01-01

    Gordon Lennox Munday, one of the leading figures in CERN accelerator physics, passed away on 28 July. Gordon Munday first came to CERN in 1955 where he joined the team led by John Adams responsible for building CERN’s Proton Synchrotron, the PS. He was put in charge of the construction of the vacuum system for the future accelerator. Shortly after the start-up of the PS, he created a group with the task of assisting user physicists to prepare and carry out their experiments. His team managed the experimental areas, and designed, set up and operated the beams in which the physicists installed their experiments at the facility. This activity was crucial since it entailed implementing the experimental programme decided by the Management as well as possible while taking account of the technical constraints specified by the accelerator engineers and meeting the physicists’ sometimes contradictory requirements. The third phase of hi...

  19. Reflections on the Gordon Commission

    Science.gov (United States)

    Haertel, Edward

    2014-01-01

    Background:This brief reflection on the work of the Gordon Commission calls out significant themes and implications found in the various papers authored by the commissioners and other scholars, especially those included in this special issue of Teachers College Record. Purpose: The forward-looking vision of the Gordon Commission is contrasted with…

  20. Expanding the concepts and tools of metabolic engineering to elucidate cancer metabolism.

    Science.gov (United States)

    Keibler, Mark A; Fendt, Sarah-Maria; Stephanopoulos, Gregory

    2012-01-01

    The metabolic engineer's toolbox, comprising stable isotope tracers, flux estimation and analysis, pathway identification, and pathway kinetics and regulation, among other techniques, has long been used to elucidate and quantify pathways primarily in the context of engineering microbes for producing small molecules of interest. Recently, these tools are increasingly finding use in cancer biology due to their unparalleled capacity for quantifying intracellular metabolism of mammalian cells. Here, we review basic concepts that are used to derive useful insights about the metabolism of tumor cells, along with a number of illustrative examples highlighting the fundamental contributions of these methods to elucidating cancer cell metabolism. This area presents unique opportunities for metabolic engineering to expand its portfolio of applications into the realm of cancer biology and help develop new cancer therapies based on a new class of metabolically derived targets. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  1. Protein engineering for metabolic engineering: current and next-generation tools

    Science.gov (United States)

    Marcheschi, Ryan J.; Gronenberg, Luisa S.; Liao, James C.

    2014-01-01

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically-produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. This article reviews advances of selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use, produce non-natural amino acids, alcohols, and carboxylic acids, and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. PMID:23589443

  2. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.

    Science.gov (United States)

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar

    2014-02-01

    Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

  3. Advancing metabolic engineering through systems biology of industrial microorganisms.

    Science.gov (United States)

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Applications of computational modeling in metabolic engineering of yeast

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Lahtvee, Petri-Jaan; Nielsen, Jens

    2015-01-01

    Generally, a microorganism's phenotype can be described by its pattern of metabolic fluxes. Although fluxes cannot be measured directly, inference of fluxes is well established. In biotechnology the aim is often to increase the capacity of specific fluxes. For this, metabolic engineering methods...... a preferred flux distribution. These methods point to strategies for altering gene expression; however, fluxes are often controlled by post-transcriptional events. Moreover, GEMs are usually not taking into account metabolic regulation, thermodynamics and enzyme kinetics. To facilitate metabolic engineering......, tools from synthetic biology have emerged, enabling integration and assembly of naturally nonexistent, but well-characterized components into a living organism. To describe these systems kinetic models are often used and to integrate these systems with the standard metabolic engineering approach...

  5. Metabolic engineering for L-lysine production by Corynebacterium glutamicum.

    Science.gov (United States)

    de Graaf, A A; Eggeling, L; Sahm, H

    2001-01-01

    Corynebacterium glutamicum has been used since several decades for the large-scale production of amino acids, esp. L-glutamate and L-lysine. After initial successes of random mutagenesis and screening approaches, further strain improvements now require a much more rational design, i.e. metabolic engineering. Not only recombinant DNA technology but also mathematical modelling of metabolism as well as metabolic flux analysis represent important metabolic engineering tools. This review covers as state-of-the-art examples of these techniques the genetic engineering of the L-lysine biosynthetic pathway resulting in a vectorless strain with significantly increased dihydrodipicolinate synthase activity, and the detailed metabolic flux analysis by 13C isotopomer labelling strategies of the anaplerotic enzyme activities in C. glutamicum resulting in the identification of gluconeogenic phosphoenolpyruvate carboxykinase as a limiting enzyme.

  6. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jewett, Michael Christopher

    2008-01-01

    in the industrial application of this yeast. Developments in genomics and high-throughput systems biology tools are enhancing one's ability to rapidly characterize cellular behaviour, which is valuable in the field of metabolic engineering where strain characterization is often the bottleneck in strain development...... programmes. Here, the impact of systems biology on metabolic engineering is reviewed and perspectives on the role of systems biology in the design of cell factories are given....

  7. SBOLme: a Repository of SBOL Parts for Metabolic Engineering.

    Science.gov (United States)

    Kuwahara, Hiroyuki; Cui, Xuefeng; Umarov, Ramzan; Grünberg, Raik; Myers, Chris J; Gao, Xin

    2017-04-21

    The Synthetic Biology Open Language (SBOL) is a community-driven open language to promote standardization in synthetic biology. To support the use of SBOL in metabolic engineering, we developed SBOLme, the first open-access repository of SBOL 2-compliant biochemical parts for a wide range of metabolic engineering applications. The URL of our repository is http://www.cbrc.kaust.edu.sa/sbolme .

  8. SBOLme: a Repository of SBOL Parts for Metabolic Engineering

    KAUST Repository

    Kuwahara, Hiroyuki

    2017-01-12

    The Synthetic Biology Open Language (SBOL) is a community-driven open language to promote standardization in synthetic biology. To support the use of SBOL in metabolic engineering, we developed SBOLme, the first open-access repository of SBOL 2-compliant biochemical parts for a wide range of metabolic engineering applications. The URL of our repository is http://www.cbrc.kaust.edu.sa/sbolme.

  9. PanDaTox: A tool for accelerated metabolic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Amitai, Gil; Sorek, Rotem

    2012-07-18

    Metabolic engineering is often facilitated by cloning of genes encoding enzymes from various heterologous organisms into E. coli. Such engineering efforts are frequently hampered by foreign genes that are toxic to the E. coli host. We have developed PanDaTox (www.weizmann.ac.il/pandatox), a web-based resource that provides experimental toxicity information for more than 1.5 million genes from hundreds of different microbial genomes. The toxicity predictions, which were extensively experimentally verified, are based on serial cloning of genes into E. coli as part of the Sanger whole genome shotgun sequencing process. PanDaTox can accelerate metabolic engineering projects by allowing researchers to exclude toxic genes from the engineering plan and verify the clonability of selected genes before the actual metabolic engineering experiments are conducted.

  10. Genetic-Metabolic Coupling for Targeted Metabolic Engineering

    DEFF Research Database (Denmark)

    Cardinale, Stefano; Tueros Farfan, Felipe Gonzalo; Sommer, Morten Otto Alexander

    2017-01-01

    Production of chemicals in microbes often employs potent biosynthetic enzymes, which can interact with the microbial native metabolism to affect cell fitness and product yield. However, production optimization largely relies on data collected from wild-type strains in the absence of metabolic per...... for the reliable high-throughput identification of genetic targets of both known and unknown function that are directly relevant to a specific biosynthetic process....

  11. Metabolic engineering for improved fermentation of pentoses by yeasts

    Science.gov (United States)

    T. W. Jeffries; Jin. Y.-S.

    2004-01-01

    The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing...

  12. Pathway elucidation and metabolic engineering of specialized plant metabolites

    DEFF Research Database (Denmark)

    Salomonsen, Bo

    A worldwide need to liberate ourselves from unsustainable petrochemicals has led to numerous metabolic engineering projects, mostly carried out in microbial hosts. Using systems biology for predicting and altering the metabolism of microorganisms towards production of a desired metabolite...... and fluxomics for a considerable number of organisms. Unfortunately, transferring the wealth of data to valuable information for metabolic engineering purposes is a non-obvious task. This PhD thesis describes a palate of tools used in generation of cell factories for production of specialized plant metabolites...

  13. Non-photosynthetic plastids as hosts for metabolic engineering

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Behrendorff, James B Y H; Nielsen, Agnieszka Zygadlo

    2018-01-01

    and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non......Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive......-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering....

  14. Cytochrome P450-mediated metabolic engineering

    DEFF Research Database (Denmark)

    Renault, Hugues; Bassard, Jean-Étienne André; Hamberger, Björn Robert

    2014-01-01

    for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered...

  15. Recent applications of synthetic biology tools for yeast metabolic engineering

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Keasling, Jay

    2015-01-01

    The last 20 years of metabolic engineering has enabled bio-based production of fuels and chemicals from renewable carbon sources using cost-effective bioprocesses. Much of this work has been accomplished using engineered microorganisms that act as chemical factories. Although the time required...... to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together...... with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed...

  16. 2017 Gordon Conference on Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey [Univ. of Minnesota, Twin Cities, MN (United States)

    2017-11-14

    The DOE award was for a 2017 Gordon Research conference on Superconductivity (GRC). The objective of GRC is to interchange the information about the latest theoretical and experimental developments in the area of superconductivity and to select most perspective directions for future research in this area.The goal of the Gordon Conference on Superconductivity is to present and discuss the latest results in the field of modern superconductivity, discuss new ideas and new directions of research in the area. It is a long-standing tradition of the Gordon conference on Superconductivity that the vast majority of participants are junior scientists. Funding for the conference would primarily be used to support junior researchers, particularly from under-represented groups. We had more 10 female speakers, some of them junior researchers, and some funding was used to support these speakers. The conference was held together with Gordon Research Seminar on Superconductivity, where almost all speakers and participants were junior scientists.

  17. Plastid transformation and its application in metabolic engineering.

    Science.gov (United States)

    Fuentes, Paulina; Armarego-Marriott, Tegan; Bock, Ralph

    2018-02-01

    Metabolic pathway engineering by transgene expression from the plastid (chloroplast) genome offers significant attractions, including straightforward multigene engineering by pathway expression from operons, high transgene expression levels, and increased transgene containment due to maternal inheritance of plastids in most crops. In addition, it provides direct access to the large and diverse metabolite pools in chloroplasts and non-green plastid types. Here, we review recent progress with extending the toolbox for plastid engineering and highlight selected applications in the area of metabolic engineering, including the combined engineering of nuclear and plastid genomes for the production of artemisinic acid, the direct harness of chloroplast reducing power for the synthesis of dhurrin and the use of an edible host for the production of astaxanthin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for th...

  19. Advances and prospects in metabolic engineering of Zymomonas mobilis.

    Science.gov (United States)

    Wang, Xia; He, Qiaoning; Yang, Yongfu; Wang, Jingwen; Haning, Katie; Hu, Yun; Wu, Bo; He, Mingxiong; Zhang, Yaoping; Bao, Jie; Contreras, Lydia M; Yang, Shihui

    2018-04-05

    Biorefinery of biomass-based biofuels and biochemicals by microorganisms is a competitive alternative of traditional petroleum refineries. Zymomonas mobilis is a natural ethanologen with many desirable characteristics, which makes it an ideal industrial microbial biocatalyst for commercial production of desirable bioproducts through metabolic engineering. In this review, we summarize the metabolic engineering progress achieved in Z. mobilis to expand its substrate and product ranges as well as to enhance its robustness against stressful conditions such as inhibitory compounds within the lignocellulosic hydrolysates and slurries. We also discuss a few metabolic engineering strategies that can be applied in Z. mobilis to further develop it as a robust workhorse for economic lignocellulosic bioproducts. In addition, we briefly review the progress of metabolic engineering in Z. mobilis related to the classical synthetic biology cycle of "Design-Build-Test-Learn", as well as the progress and potential to develop Z. mobilis as a model chassis for biorefinery practices in the synthetic biology era. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Metabolic Engineering of Corynebacterium glutamicum for Methanol Metabolism

    OpenAIRE

    Witthoff, Sabrina; Schmitz, Katja; Niedenführ, Sebastian; Nöh, Katharina; Noack, Stephan; Bott, Michael; Marienhagen, Jan

    2015-01-01

    Methanol is already an important carbon feedstock in the chemical industry, but it has found only limited application in biotechnological production processes. This can be mostly attributed to the inability of most microbial platform organisms to utilize methanol as a carbon and energy source. With the aim to turn methanol into a suitable feedstock for microbial production processes, we engineered the industrially important but nonmethylotrophic bacterium Corynebacterium glutamicum toward the...

  1. Yeast metabolic engineering for hemicellulosic ethanol production

    Science.gov (United States)

    Jennifer Van Vleet; Thomas W. Jeffries

    2009-01-01

    Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of...

  2. Computational methods in metabolic engineering for strain design.

    Science.gov (United States)

    Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L

    2015-08-01

    Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Evolutionary programming as a platform for in silico metabolic engineering

    Directory of Open Access Journals (Sweden)

    Förster Jochen

    2005-12-01

    Full Text Available Abstract Background Through genetic engineering it is possible to introduce targeted genetic changes and hereby engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, owing to the complexity of metabolic networks, both in terms of structure and regulation, it is often difficult to predict the effects of genetic modifications on the resulting phenotype. Recently genome-scale metabolic models have been compiled for several different microorganisms where structural and stoichiometric complexity is inherently accounted for. New algorithms are being developed by using genome-scale metabolic models that enable identification of gene knockout strategies for obtaining improved phenotypes. However, the problem of finding optimal gene deletion strategy is combinatorial and consequently the computational time increases exponentially with the size of the problem, and it is therefore interesting to develop new faster algorithms. Results In this study we report an evolutionary programming based method to rapidly identify gene deletion strategies for optimization of a desired phenotypic objective function. We illustrate the proposed method for two important design parameters in industrial fermentations, one linear and other non-linear, by using a genome-scale model of the yeast Saccharomyces cerevisiae. Potential metabolic engineering targets for improved production of succinic acid, glycerol and vanillin are identified and underlying flux changes for the predicted mutants are discussed. Conclusion We show that evolutionary programming enables solving large gene knockout problems in relatively short computational time. The proposed algorithm also allows the optimization of non-linear objective functions or incorporation of non-linear constraints and additionally provides a family of close to optimal solutions. The identified metabolic engineering strategies suggest that non-intuitive genetic modifications span

  4. Evolutionary programming as a platform for in silico metabolic engineering

    Science.gov (United States)

    Patil, Kiran Raosaheb; Rocha, Isabel; Förster, Jochen; Nielsen, Jens

    2005-01-01

    Background Through genetic engineering it is possible to introduce targeted genetic changes and hereby engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, owing to the complexity of metabolic networks, both in terms of structure and regulation, it is often difficult to predict the effects of genetic modifications on the resulting phenotype. Recently genome-scale metabolic models have been compiled for several different microorganisms where structural and stoichiometric complexity is inherently accounted for. New algorithms are being developed by using genome-scale metabolic models that enable identification of gene knockout strategies for obtaining improved phenotypes. However, the problem of finding optimal gene deletion strategy is combinatorial and consequently the computational time increases exponentially with the size of the problem, and it is therefore interesting to develop new faster algorithms. Results In this study we report an evolutionary programming based method to rapidly identify gene deletion strategies for optimization of a desired phenotypic objective function. We illustrate the proposed method for two important design parameters in industrial fermentations, one linear and other non-linear, by using a genome-scale model of the yeast Saccharomyces cerevisiae. Potential metabolic engineering targets for improved production of succinic acid, glycerol and vanillin are identified and underlying flux changes for the predicted mutants are discussed. Conclusion We show that evolutionary programming enables solving large gene knockout problems in relatively short computational time. The proposed algorithm also allows the optimization of non-linear objective functions or incorporation of non-linear constraints and additionally provides a family of close to optimal solutions. The identified metabolic engineering strategies suggest that non-intuitive genetic modifications span several different pathways and

  5. Evolutionary programming as a platform for in silico metabolic engineering.

    Science.gov (United States)

    Patil, Kiran Raosaheb; Rocha, Isabel; Förster, Jochen; Nielsen, Jens

    2005-12-23

    Through genetic engineering it is possible to introduce targeted genetic changes and hereby engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, owing to the complexity of metabolic networks, both in terms of structure and regulation, it is often difficult to predict the effects of genetic modifications on the resulting phenotype. Recently genome-scale metabolic models have been compiled for several different microorganisms where structural and stoichiometric complexity is inherently accounted for. New algorithms are being developed by using genome-scale metabolic models that enable identification of gene knockout strategies for obtaining improved phenotypes. However, the problem of finding optimal gene deletion strategy is combinatorial and consequently the computational time increases exponentially with the size of the problem, and it is therefore interesting to develop new faster algorithms. In this study we report an evolutionary programming based method to rapidly identify gene deletion strategies for optimization of a desired phenotypic objective function. We illustrate the proposed method for two important design parameters in industrial fermentations, one linear and other non-linear, by using a genome-scale model of the yeast Saccharomyces cerevisiae. Potential metabolic engineering targets for improved production of succinic acid, glycerol and vanillin are identified and underlying flux changes for the predicted mutants are discussed. We show that evolutionary programming enables solving large gene knockout problems in relatively short computational time. The proposed algorithm also allows the optimization of non-linear objective functions or incorporation of non-linear constraints and additionally provides a family of close to optimal solutions. The identified metabolic engineering strategies suggest that non-intuitive genetic modifications span several different pathways and may be necessary for solving

  6. Metabolic engineering of chloroplasts for artemisinic acid ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Chloroplasts offer high-level transgene expression and transgene containment due to maternal inheritance, and are ideal hosts for biopharmaceutical biosynthesis via multigene engineering. To exploit these advantages, we have expressed 12 enzymes in chloroplasts for the biosynthesis of artemisinic ...

  7. MESSI: metabolic engineering target selection and best strain identification tool.

    Science.gov (United States)

    Kang, Kang; Li, Jun; Lim, Boon Leong; Panagiotou, Gianni

    2015-01-01

    Metabolic engineering and synthetic biology are synergistically related fields for manipulating target pathways and designing microorganisms that can act as chemical factories. Saccharomyces cerevisiae's ideal bioprocessing traits make yeast a very attractive chemical factory for production of fuels, pharmaceuticals, nutraceuticals as well as a wide range of chemicals. However, future attempts of engineering S. cerevisiae's metabolism using synthetic biology need to move towards more integrative models that incorporate the high connectivity of metabolic pathways and regulatory processes and the interactions in genetic elements across those pathways and processes. To contribute in this direction, we have developed Metabolic Engineering target Selection and best Strain Identification tool (MESSI), a web server for predicting efficient chassis and regulatory components for yeast bio-based production. The server provides an integrative platform for users to analyse ready-to-use public high-throughput metabolomic data, which are transformed to metabolic pathway activities for identifying the most efficient S. cerevisiae strain for the production of a compound of interest. As input MESSI accepts metabolite KEGG IDs or pathway names. MESSI outputs a ranked list of S. cerevisiae strains based on aggregation algorithms. Furthermore, through a genome-wide association study of the metabolic pathway activities with the strains' natural variation, MESSI prioritizes genes and small variants as potential regulatory points and promising metabolic engineering targets. Users can choose various parameters in the whole process such as (i) weight and expectation of each metabolic pathway activity in the final ranking of the strains, (ii) Weighted AddScore Fuse or Weighted Borda Fuse aggregation algorithm, (iii) type of variants to be included, (iv) variant sets in different biological levels.Database URL: http://sbb.hku.hk/MESSI/. © The Author(s) 2015. Published by Oxford University

  8. Metabolite damage and repair in metabolic engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.; Bruner, Steven D.; Hanson, Andrew D.

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.

  9. Metabolic Engineering of Chemical Defence Pathways in Plant Disease Control

    DEFF Research Database (Denmark)

    Rook, Frederik

    2016-01-01

    with antimicrobial properties for use in crop protection. It presents an overview of the metabolic engineering efforts made in the area of plant chemical defence. For in-depth information on the characteristics of a specific class of chemical defence compounds, the reader is referred to the specialized reviews......Plants produce a wide variety of specialized (or secondary) metabolites that function as chemical defence compounds and provide protection against microbial pathogens or herbivores. This chapter focuses on the metabolic engineering of biosynthetic pathways for plant chemical defence compounds...

  10. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches.

    Science.gov (United States)

    Jang, Yu-Sin; Park, Jong Myoung; Choi, Sol; Choi, Yong Jun; Seung, Do Young; Cho, Jung Hee; Lee, Sang Yup

    2012-01-01

    The increasing oil price and environmental concerns caused by the use of fossil fuel have renewed our interest in utilizing biomass as a sustainable resource for the production of biofuel. It is however essential to develop high performance microbes that are capable of producing biofuels with very high efficiency in order to compete with the fossil fuel. Recently, the strategies for developing microbial strains by systems metabolic engineering, which can be considered as metabolic engineering integrated with systems biology and synthetic biology, have been developed. Systems metabolic engineering allows successful development of microbes that are capable of producing several different biofuels including bioethanol, biobutanol, alkane, and biodiesel, and even hydrogen. In this review, the approaches employed to develop efficient biofuel producers by metabolic engineering and systems metabolic engineering approaches are reviewed with relevant example cases. It is expected that systems metabolic engineering will be employed as an essential strategy for the development of microbial strains for industrial applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Accessing Nature's diversity through metabolic engineering and synthetic biology.

    Science.gov (United States)

    King, Jason R; Edgar, Steven; Qiao, Kangjian; Stephanopoulos, Gregory

    2016-01-01

    In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through "scaffold diversification", and subsequent "derivatization" of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the "privileged" chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents.

  12. Strategies for metabolic pathway engineering with multiple transgenes.

    Science.gov (United States)

    Bock, Ralph

    2013-09-01

    The engineering of metabolic pathways in plants often requires the concerted expression of more than one gene. While with traditional transgenic approaches, the expression of multiple transgenes has been challenging, recent progress has greatly expanded our repertoire of powerful techniques making this possible. New technological options include large-scale co-transformation of the nuclear genome, also referred to as combinatorial transformation, and transformation of the chloroplast genome with synthetic operon constructs. This review describes the state of the art in multigene genetic engineering of plants. It focuses on the methods currently available for the introduction of multiple transgenes into plants and the molecular mechanisms underlying successful transgene expression. Selected examples of metabolic pathway engineering are used to illustrate the attractions and limitations of each method and to highlight key factors that influence the experimenter's choice of the best strategy for multigene engineering.

  13. Advances in Metabolic Engineering of Cyanobacteria for Photosynthetic Biochemical Production

    OpenAIRE

    Lai, Martin C.; Lan, Ethan I.

    2015-01-01

    Engineering cyanobacteria into photosynthetic microbial cell factories for the production of biochemicals and biofuels is a promising approach toward sustainability. Cyanobacteria naturally grow on light and carbon dioxide, bypassing the need of fermentable plant biomass and arable land. By tapping into the central metabolism and rerouting carbon flux towards desirable compound production, cyanobacteria are engineered to directly convert CO2 into various chemicals. This review discusses the d...

  14. Designing metabolic engineering strategies with genome-scale metabolic flux modeling

    Directory of Open Access Journals (Sweden)

    Yen JY

    2015-01-01

    Full Text Available Jiun Y Yen,1,2 Imen Tanniche,1 Amanda K Fisher,1–3 Glenda E Gillaspy,2 David R Bevan,2,3 Ryan S Senger1 1Department of Biological Systems Engineering, 2Department of Biochemistry, 3Genomics, Bioinformatics, and Computational Biology Interdisciplinary Program, Virginia Tech, Blacksburg, VA, USA Abstract: New in silico tools that make use of genome-scale metabolic flux modeling are improving the design of metabolic engineering strategies. This review highlights the latest developments in this area, explains the interface between these in silico tools and the experimental implementation tools of metabolic engineers, and provides a way forward so that in silico predictions can better mimic reality and more experimental methods can be considered in simulation studies. The several methodologies for solving genome-scale models (eg, flux balance analysis [FBA], parsimonious FBA, flux variability analysis, and minimization of metabolic adjustment all have unique advantages and applications. There are two basic approaches to designing metabolic engineering strategies in silico, and both have demonstrated success in the literature. The first involves: 1 making a genetic manipulation in a model; 2 testing for improved performance through simulation; and 3 iterating the process. The second approach has been used in more recently designed in silico tools and involves: 1 comparing metabolic flux profiles of a wild-type and ideally engineered state and 2 designing engineering strategies based on the differences in these flux profiles. Improvements in genome-scale modeling are anticipated in areas such as the inclusion of all relevant cellular machinery, the ability to understand and anticipate the results of combinatorial enrichment experiments, and constructing dynamic and flexible biomass equations that can respond to environmental and genetic manipulations. Keywords: genome-scale modeling, genome-scale modeling, flux balance analysis, flux variability

  15. Metabolic engineering of Corynebacterium glutamicum for methanol metabolism.

    Science.gov (United States)

    Witthoff, Sabrina; Schmitz, Katja; Niedenführ, Sebastian; Nöh, Katharina; Noack, Stephan; Bott, Michael; Marienhagen, Jan

    2015-03-01

    Methanol is already an important carbon feedstock in the chemical industry, but it has found only limited application in biotechnological production processes. This can be mostly attributed to the inability of most microbial platform organisms to utilize methanol as a carbon and energy source. With the aim to turn methanol into a suitable feedstock for microbial production processes, we engineered the industrially important but nonmethylotrophic bacterium Corynebacterium glutamicum toward the utilization of methanol as an auxiliary carbon source in a sugar-based medium. Initial oxidation of methanol to formaldehyde was achieved by heterologous expression of a methanol dehydrogenase from Bacillus methanolicus, whereas assimilation of formaldehyde was realized by implementing the two key enzymes of the ribulose monophosphate pathway of Bacillus subtilis: 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase. The recombinant C. glutamicum strain showed an average methanol consumption rate of 1.7 ± 0.3 mM/h (mean ± standard deviation) in a glucose-methanol medium, and the culture grew to a higher cell density than in medium without methanol. In addition, [(13)C]methanol-labeling experiments revealed labeling fractions of 3 to 10% in the m + 1 mass isotopomers of various intracellular metabolites. In the background of a C. glutamicum Δald ΔadhE mutant being strongly impaired in its ability to oxidize formaldehyde to CO2, the m + 1 labeling of these intermediates was increased (8 to 25%), pointing toward higher formaldehyde assimilation capabilities of this strain. The engineered C. glutamicum strains represent a promising starting point for the development of sugar-based biotechnological production processes using methanol as an auxiliary substrate. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Metabolic Engineering of Corynebacterium glutamicum for Methanol Metabolism

    Science.gov (United States)

    Witthoff, Sabrina; Schmitz, Katja; Niedenführ, Sebastian; Nöh, Katharina; Noack, Stephan

    2015-01-01

    Methanol is already an important carbon feedstock in the chemical industry, but it has found only limited application in biotechnological production processes. This can be mostly attributed to the inability of most microbial platform organisms to utilize methanol as a carbon and energy source. With the aim to turn methanol into a suitable feedstock for microbial production processes, we engineered the industrially important but nonmethylotrophic bacterium Corynebacterium glutamicum toward the utilization of methanol as an auxiliary carbon source in a sugar-based medium. Initial oxidation of methanol to formaldehyde was achieved by heterologous expression of a methanol dehydrogenase from Bacillus methanolicus, whereas assimilation of formaldehyde was realized by implementing the two key enzymes of the ribulose monophosphate pathway of Bacillus subtilis: 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase. The recombinant C. glutamicum strain showed an average methanol consumption rate of 1.7 ± 0.3 mM/h (mean ± standard deviation) in a glucose-methanol medium, and the culture grew to a higher cell density than in medium without methanol. In addition, [13C]methanol-labeling experiments revealed labeling fractions of 3 to 10% in the m + 1 mass isotopomers of various intracellular metabolites. In the background of a C. glutamicum Δald ΔadhE mutant being strongly impaired in its ability to oxidize formaldehyde to CO2, the m + 1 labeling of these intermediates was increased (8 to 25%), pointing toward higher formaldehyde assimilation capabilities of this strain. The engineered C. glutamicum strains represent a promising starting point for the development of sugar-based biotechnological production processes using methanol as an auxiliary substrate. PMID:25595770

  17. Metabolic engineering of the shikimate pathway

    Energy Technology Data Exchange (ETDEWEB)

    Juminaga, Darmawi; Keasling, Jay D.

    2017-01-10

    The present disclosure relates to engineered microorganisms that produce amino acids and amino acid intermediates. In particular, the disclosure relates to recombinant nucleic acids encoding operons that increase production of aromatic amino acids and the aromatic amino acid intermediate shikimate; microorganisms with increased production of aromatic amino acids and the aromatic amino acid intermediate shikimate; and methods related to the production of aromatic amino acids, the aromatic amino acid intermediate shikimate, and commodity chemicals derived therefrom.

  18. Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

  19. Volatile science? Metabolic engineering of terpenoids in plants

    NARCIS (Netherlands)

    Aharoni, A.; Jongsma, M.A.; Bouwmeester, H.J.

    2005-01-01

    Terpenoids are important for plant survival and also possess biological properties that are beneficial to humans. Here, we describe the state of the art in terpenoid metabolic engineering, showing that significant progress has been made over the past few years. Subcellular targeting of enzymes has

  20. Engineering of aromatic amino acid metabolism in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Vuralhan, Z.

    2006-01-01

    Saccharomyces cerevisiae is a popular industrial microorganism. It has since long been used in bread, beer and wine making. More recently it is also being applied for heterologous protein production and as a target organism for metabolic engineering. The work presented in this thesis describes how

  1. Gordon Fullerton in PCA (MD-11) Simulator

    Science.gov (United States)

    1998-01-01

    NASA research pilot Gordon Fullerton 'flying' in the MD-11 simulator during the Propulsion Controlled Aircraft (PCA) project. This investigation grew out of the crash of a DC-10 airliner on July 19, 1989, following an explosion in the rear engine which caused the loss of all manual flight controls. The flight crew attempted to control the airliner using only the thrust from the two remaining engines. Although the DC-10 crashed during the landing attempt, 184 of the 296 passengers and crew aboard survived. The PCA effort at the Dryden Flight Research Center grew out of the crash, and attempted to develop a means to successfully land an aircraft using only engine thrust. After more than five years of work, on August 29, 1995, Gordon Fullerton made the first PCA touchdown aboard an MD-11 airliner (a later version of the DC-10). The concept was further refined over the years that followed this first landing. Simulators were essential ingredients of the PCA development process. The feasibility of the concept was first tested with an F-15 simulator, then the results of actual flight tests in an F-15 were incorporated back into the simulator. Additional simulations were run on the Boeing 720 airliner simulator used in the Controlled Impact Demonstration project. After the MD-11 test landings, Boeing 747 and 757 simulators tested a wide range of possible situations. Simulations even helped develop a method of landing an airliner if it lost its complete hydraulic system as well as a wing engine, by transferring fuel to shift the center of gravity toward the working engine. The most extreme procedure was undertaken in a 747 simulator. The aircraft simulated the loss of the hydraulic system at 35,000 feet and rolled upside down. Then, the PCA mode was engaged, the airliner righted itself, leveled its wings, and made an approach nearly identical to that of a normal auto landing.

  2. Next-generation genome-scale models for metabolic engineering

    DEFF Research Database (Denmark)

    King, Zachary A.; Lloyd, Colton J.; Feist, Adam M.

    2015-01-01

    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict...... optimal genetic modifications that improve the rate and yield of chemical production. A new generation of COBRA models and methods is now being developed. -. encompassing many biological processes and simulation strategies. -. and next-generation models enable new types of predictions. Here, three key...... examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering....

  3. Efflux systems in bacteria and their metabolic engineering applications.

    Science.gov (United States)

    Jones, Christopher M; Hernández Lozada, Néstor J; Pfleger, Brian F

    2015-11-01

    The production of valuable chemicals from metabolically engineered microbes can be limited by excretion from the cell. Efflux is often overlooked as a bottleneck in metabolic pathways, despite its impact on alleviating feedback inhibition and product toxicity. In the past, it has been assumed that endogenous efflux pumps and membrane porins can accommodate product efflux rates; however, there are an increasing number of examples wherein overexpressing efflux systems is required to improve metabolite production. In this review, we highlight specific examples from the literature where metabolite export has been studied to identify unknown transporters, increase tolerance to metabolites, and improve the production capabilities of engineered bacteria. The review focuses on the export of a broad spectrum of valuable chemicals including amino acids, sugars, flavins, biofuels, and solvents. The combined set of examples supports the hypothesis that efflux systems can be identified and engineered to confer export capabilities on industrially relevant microbes.

  4. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering.

    Science.gov (United States)

    Becker, Judith; Gießelmann, Gideon; Hoffmann, Sarah Lisa; Wittmann, Christoph

    Since its discovery 60 years ago, Corynebacterium glutamicum has evolved into a workhorse for industrial biotechnology. Traditionally well known for its remarkable capacity to produce amino acids, this Gram-positive soil bacterium, has become a flexible, efficient production platform for various bulk and fine chemicals, materials, and biofuels. The central turnstile of all these achievements is our excellent understanding of its metabolism and physiology. This knowledge base, together with innovative systems metabolic engineering concepts, which integrate systems and synthetic biology into strain engineering, has upgraded C. glutamicum into one of the most successful industrial microorganisms in the world.

  5. Recent applications of synthetic biology tools for yeast metabolic engineering.

    Science.gov (United States)

    Jensen, Michael K; Keasling, Jay D

    2015-02-01

    The last 20 years of metabolic engineering has enabled bio-based production of fuels and chemicals from renewable carbon sources using cost-effective bioprocesses. Much of this work has been accomplished using engineered microorganisms that act as chemical factories. Although the time required to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed synthetic biology tools and their application to improve production of chemicals and fuels in yeast. Finally, we provide a perspective for the challenges that lie ahead. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  6. Metabolically engineered cells for the production of polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves...... improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...

  7. The Need for Integrated Approaches in Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Anna; Brunk, Elizabeth; Keasling, Jay D.

    2016-08-15

    This review highlights state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. We emphasize that a combination of different approaches over multiple time and size scales must b e considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the "system" that is being manipulated: transcriptome, translatome, proteome, or reactome. By bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes.

  8. Protein and metabolic engineering for the production of organic acids.

    Science.gov (United States)

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2017-09-01

    Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future. Copyright © 2017. Published by Elsevier Ltd.

  9. Application of a controllable degron strategy for metabolic engineering

    DEFF Research Database (Denmark)

    Knuf, Christoph; Maury, Jerome; Jacobsen, Simo Abdessamad

    2014-01-01

    In numerous cases of metabolic engineering, metabolite pools have to be increased in order to obtain flux into heterologous pathways. A simple tool for this would be the deletion of genes that would practically lead to a block of the natural pathway, so that the carbon can flow into the heterolog......In numerous cases of metabolic engineering, metabolite pools have to be increased in order to obtain flux into heterologous pathways. A simple tool for this would be the deletion of genes that would practically lead to a block of the natural pathway, so that the carbon can flow......, as the existing enzyme will still be active. We present a strategy for down-regulation that acts on the protein level and which can therefore be controlled in a more precise manner than the hitherto reported strategies. As a case study we show the action of the degron strategy for controlling the pools...

  10. Microbial production of antioxidant food ingredients via metabolic engineering.

    Science.gov (United States)

    Lin, Yuheng; Jain, Rachit; Yan, Yajun

    2014-04-01

    Antioxidants are biological molecules with the ability to protect vital metabolites from harmful oxidation. Due to this fascinating role, their beneficial effects on human health are of paramount importance. Traditional approaches using solvent-based extraction from food/non-food sources and chemical synthesis are often expensive, exhaustive, and detrimental to the environment. With the advent of metabolic engineering tools, the successful reconstitution of heterologous pathways in Escherichia coli and other microorganisms provides a more exciting and amenable alternative to meet the increasing demand of natural antioxidants. In this review, we elucidate the recent progress in metabolic engineering efforts for the microbial production of antioxidant food ingredients - polyphenols, carotenoids, and antioxidant vitamins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Improving Metabolic Pathway Efficiency by Statistical Model-Based Multivariate Regulatory Metabolic Engineering.

    Science.gov (United States)

    Xu, Peng; Rizzoni, Elizabeth Anne; Sul, Se-Yeong; Stephanopoulos, Gregory

    2017-01-20

    Metabolic engineering entails target modification of cell metabolism to maximize the production of a specific compound. For empowering combinatorial optimization in strain engineering, tools and algorithms are needed to efficiently sample the multidimensional gene expression space and locate the desirable overproduction phenotype. We addressed this challenge by employing design of experiment (DoE) models to quantitatively correlate gene expression with strain performance. By fractionally sampling the gene expression landscape, we statistically screened the dominant enzyme targets that determine metabolic pathway efficiency. An empirical quadratic regression model was subsequently used to identify the optimal gene expression patterns of the investigated pathway. As a proof of concept, our approach yielded the natural product violacein at 525.4 mg/L in shake flasks, a 3.2-fold increase from the baseline strain. Violacein production was further increased to 1.31 g/L in a controlled benchtop bioreactor. We found that formulating discretized gene expression levels into logarithmic variables (Linlog transformation) was essential for implementing this DoE-based optimization procedure. The reported methodology can aid multivariate combinatorial pathway engineering and may be generalized as a standard procedure for accelerating strain engineering and improving metabolic pathway efficiency.

  12. Modulation of sulfur metabolism enables efficient glucosinolate engineering

    Directory of Open Access Journals (Sweden)

    Geu-Flores Fernando

    2011-01-01

    Full Text Available Abstract Background Metabolic engineering in heterologous organisms is an attractive approach to achieve efficient production of valuable natural products. Glucosinolates represent a good example of such compounds as they are thought to be the cancer-preventive agents in cruciferous plants. We have recently demonstrated that it is feasible to engineer benzylglucosinolate (BGLS in the non-cruciferous plant Nicotiana benthamiana by transient expression of five genes from Arabidopsis thaliana. In the same study, we showed that co-expression of a sixth Arabidopsis gene, γ-glutamyl peptidase 1 (GGP1, resolved a metabolic bottleneck, thereby increasing BGLS accumulation. However, the accumulation did not reach the expected levels, leaving room for further optimization. Results To optimize heterologous glucosinolate production, we have in this study performed a comparative metabolite analysis of BGLS-producing N. benthamiana leaves in the presence or absence of GGP1. The analysis revealed that the increased BGLS levels in the presence of GGP1 were accompanied by a high accumulation of the last intermediate, desulfoBGLS, and a derivative thereof. This evidenced a bottleneck in the last step of the pathway, the transfer of sulfate from 3'-phosphoadenosine-5'-phosphosulfate (PAPS to desulfoBGLS by the sulfotransferase AtSOT16. While substitution of AtSOT16 with alternative sulfotransferases did not alleviate the bottleneck, experiments with the three genes involved in the formation and recycling of PAPS showed that co-expression of adenosine 5'-phosphosulfate kinase 2 (APK2 alone reduced the accumulation of desulfoBGLS and its derivative by more than 98% and increased BGLS accumulation 16-fold. Conclusion Adjusting sulfur metabolism by directing sulfur from primary to secondary metabolism leads to a remarkable improvement in BGLS accumulation and thereby represents an important step towards a clean and efficient production of glucosinolates in

  13. De Novo Metabolic Engineering and the Promise of Synthetic DNA

    Science.gov (United States)

    Klein-Marcuschamer, Daniel; Yadav, Vikramaditya G.; Ghaderi, Adel; Stephanopoulos, Gregory N.

    The uncertain price and tight supply of crude oil and the ever-increasing demand for clean energy have prompted heightened attention to the development of sustainable fuel technologies that ensure continued economic development while maintaining stewardship of the environment. In the face of these enormous challenges, biomass has emerged as a viable alternative to petroleum for the production of energy, chemicals, and materials owing to its abundance, inexpensiveness, and carbon-neutrality. Moreover, the immense ease and efficiency of biological systems at converting biomass-derived feedstocks into fuels, chemicals, and materials has generated renewed interest in biotechnology as a replacement for traditional chemical processes. Aided by the ever-expanding repertoire of microbial genetics and plant biotechnology, improved understanding of gene regulation and cellular metabolism, and incessantly accumulating gene and protein data, scientists are now contemplating engineering microbial cell factories to produce fuels, chemical feedstocks, polymers and pharmaceuticals in an economically and environmentally sustainable way. This goal resonates with that of metabolic engineering - the improvement of cellular properties through the intelligent design, rational modification, or directed evolution of biochemical pathways, and arguably, metabolic engineering seems best positioned to achieve the concomittant goals of environmental stewardship and economic prolificity.

  14. Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production.

    Science.gov (United States)

    Robertsen, Helene Lunde; Weber, Tilmann; Kim, Hyun Uk; Lee, Sang Yup

    2018-01-01

    Streptomycetes are known for their inherent ability to produce pharmaceutically relevant secondary metabolites. Discovery of medically useful, yet novel compounds has become a great challenge due to frequent rediscovery of known compounds and a consequent decline in the number of relevant clinical trials in the last decades. A paradigm shift took place when the first whole genome sequences of streptomycetes became available, from which silent or "cryptic" biosynthetic gene clusters (BGCs) were discovered. Cryptic BGCs reveal a so far untapped potential of the microorganisms for the production of novel compounds, which has spurred new efforts in understanding the complex regulation between primary and secondary metabolism. This new trend has been accompanied with development of new computational resources (genome and compound mining tools), generation of various high-quality omics data, establishment of molecular tools, and other strain engineering strategies. They all come together to enable systems metabolic engineering of streptomycetes, allowing more systematic and efficient strain development. In this review, the authors present recent progresses within systems metabolic engineering of streptomycetes for uncovering their hidden potential to produce novel compounds and for the improved production of secondary metabolites. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Metabolic engineering of microalgal based biofuel production: prospects and challenges

    Directory of Open Access Journals (Sweden)

    Chiranjib eBanerjee

    2016-03-01

    Full Text Available The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs, which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e. Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering.

  16. Metabolic engineering of sugars and simple sugar derivatives in plants.

    Science.gov (United States)

    Patrick, John W; Botha, Frikkie C; Birch, Robert G

    2013-02-01

    Carbon captured through photosynthesis is transported, and sometimes stored in plants, as sugar. All organic compounds in plants trace to carbon from sugars, so sugar metabolism is highly regulated and integrated with development. Sugars stored by plants are important to humans as foods and as renewable feedstocks for industrial conversion to biofuels and biomaterials. For some purposes, sugars have advantages over polymers including starches, cellulose or storage lipids. This review considers progress and prospects in plant metabolic engineering for increased yield of endogenous sugars and for direct production of higher-value sugars and simple sugar derivatives. Opportunities are examined for enhancing export of sugars from leaves. Focus then turns to manipulation of sugar metabolism in sugar-storing sink organs such as fruits, sugarcane culms and sugarbeet tubers. Results from manipulation of suspected 'limiting' enzymes indicate a need for clearer understanding of flux control mechanisms, to achieve enhanced levels of endogenous sugars in crops that are highly selected for this trait. Outcomes from in planta conversion to novel sugars and derivatives range from severe interference with plant development to field demonstration of crops accumulating higher-value sugars at high yields. The differences depend on underlying biological factors including the effects of the novel products on endogenous metabolism, and on biotechnological fine-tuning including developmental expression and compartmentation patterns. Ultimately, osmotic activity may limit the accumulation of sugars to yields below those achievable using polymers; but results indicate the potential for increases above current commercial sugar yields, through metabolic engineering underpinned by improved understanding of plant sugar metabolism. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  17. Systems metabolic engineering: the creation of microbial cell factories by rational metabolic design and evolution.

    Science.gov (United States)

    Furusawa, Chikara; Horinouchi, Takaaki; Hirasawa, Takashi; Shimizu, Hiroshi

    2013-01-01

    It is widely acknowledged that in order to establish sustainable societies, production processes should shift from petrochemical-based processes to bioprocesses. Because bioconversion technologies, in which biomass resources are converted to valuable materials, are preferable to processes dependent on fossil resources, the former should be further developed. The following two approaches can be adopted to improve cellular properties and obtain high productivity and production yield of target products: (1) optimization of cellular metabolic pathways involved in various bioprocesses and (2) creation of stress-tolerant cells that can be active even under severe stress conditions in the bioprocesses. Recent progress in omics analyses has facilitated the analysis of microorganisms based on bioinformatics data for molecular breeding and bioprocess development. Systems metabolic engineering is a new area of study, and it has been defined as a methodology in which metabolic engineering and systems biology are integrated to upgrade the designability of industrially useful microorganisms. This chapter discusses multi-omics analyses and rational design methods for molecular breeding. The first is an example of the rational design of metabolic networks for target production by flux balance analysis using genome-scale metabolic models. Recent progress in the development of genome-scale metabolic models and the application of these models to the design of desirable metabolic networks is also described in this example. The second is an example of evolution engineering with omics analyses for the creation of stress-tolerant microorganisms. Long-term culture experiments to obtain the desired phenotypes and omics analyses to identify the phenotypic changes are described here.

  18. Two-Scale 13C Metabolic Flux Analysis for Metabolic Engineering.

    Science.gov (United States)

    Ando, David; Garcia Martin, Hector

    2018-01-01

    Accelerating the Design-Build-Test-Learn (DBTL) cycle in synthetic biology is critical to achieving rapid and facile bioengineering of organisms for the production of, e.g., biofuels and other chemicals. The Learn phase involves using data obtained from the Test phase to inform the next Design phase. As part of the Learn phase, mathematical models of metabolic fluxes give a mechanistic level of comprehension to cellular metabolism, isolating the principle drivers of metabolic behavior from the peripheral ones, and directing future experimental designs and engineering methodologies. Furthermore, the measurement of intracellular metabolic fluxes is specifically noteworthy as providing a rapid and easy-to-understand picture of how carbon and energy flow throughout the cell. Here, we present a detailed guide to performing metabolic flux analysis in the Learn phase of the DBTL cycle, where we show how one can take the isotope labeling data from a 13 C labeling experiment and immediately turn it into a determination of cellular fluxes that points in the direction of genetic engineering strategies that will advance the metabolic engineering process.For our modeling purposes we use the Joint BioEnergy Institute (JBEI) Quantitative Metabolic Modeling (jQMM) library, which provides an open-source, python-based framework for modeling internal metabolic fluxes and making actionable predictions on how to modify cellular metabolism for specific bioengineering goals. It presents a complete toolbox for performing different types of flux analysis such as Flux Balance Analysis, 13 C Metabolic Flux Analysis, and it introduces the capability to use 13 C labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale 13 C Metabolic Flux Analysis (2S- 13 C MFA) [1]. In addition to several other capabilities, the jQMM is also able to predict the effects of knockouts using the MoMA and ROOM methodologies. The use of the jQMM library is

  19. Metabolic engineering of higher plants and algae for isoprenoid production.

    Science.gov (United States)

    Kempinski, Chase; Jiang, Zuodong; Bell, Stephen; Chappell, Joe

    2015-01-01

    Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering.

  20. Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2013-01-01

    Production of recombinant proteins for use as pharmaceuticals, so-called biopharmaceuticals, is a multi-billion dollar industry. Many different cell factories are used for the production of biopharmaceuticals, but the yeast Saccharomyces cerevisiae is an important cell factory as it is used for p...... production. The involvement of directed metabolic engineering through the integration of tools from genetic engineering, systems biology and mathematical modeling, is also discussed....... by yeast are human serum albumin, hepatitis vaccines and virus like particles used for vaccination against human papillomavirus. Here is given a brief overview of biopharmaceutical production by yeast and it is discussed how the secretory pathway can be engineered to ensure more efficient protein...

  1. Metabolic engineering strategies to bio-adipic acid production.

    Science.gov (United States)

    Kruyer, Nicholas S; Peralta-Yahya, Pamela

    2017-06-01

    Adipic acid is the most industrially important dicarboxylic acid as it is a key monomer in the synthesis of nylon. Today, adipic acid is obtained via a chemical process that relies on petrochemical precursors and releases large quantities of greenhouse gases. In the last two years, significant progress has been made in engineering microbes for the production of adipic acid and its immediate precursors, muconic acid and glucaric acid. Not only have the microbial substrates expanded beyond glucose and glycerol to include lignin monomers and hemicellulose components, but the number of microbial chassis now goes further than Escherichia coli and Saccharomyces cerevisiae to include microbes proficient in aromatic degradation, cellulose secretion and degradation of multiple carbon sources. Here, we review the metabolic engineering and nascent protein engineering strategies undertaken in each of these chassis to convert different feedstocks to adipic, muconic and glucaric acid. We also highlight near term prospects and challenges for each of the metabolic routes discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Production of vanillin by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Yoon, Sang-Hwal; Li, Cui; Kim, Ju-Eun; Lee, Sook-Hee; Yoon, Ji-Young; Choi, Myung-Suk; Seo, Weon-Taek; Yang, Jae-Kyung; Kim, Jae-Yeon; Kim, Seon-Won

    2005-11-01

    E. coli was metabolically engineered to produce vanillin by expression of the fcs and ech genes from Amycolatopsis sp. encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively. Vanillin production was optimized by leaky expression of the genes, under the IPTG-inducible trc promoter, in complex 2YT medium. Supplementation with glucose, fructose, galactose, arabinose or glycerol severely decreased vanillin production. The highest vanillin production of 1.1 g l(-1) was obtained with cultivation for 48 h in 2YT medium with 0.2% (w/v) ferulate, without IPTG and no supplementation of carbon sources.

  3. Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols

    DEFF Research Database (Denmark)

    Ferreira, Raphael; Teixeira, Paulo Goncalves; Gossing, Michael

    2018-01-01

    large amounts of lipids and TAGs comprise only ~1% of its cell dry weight. Here, we engineered S. cerevisiae to reorient its metabolism for overproduction of TAGs, by regulating lipid droplet associated-proteins involved in TAG synthesis and hydrolysis. We implemented a push-and-pull strategy...... and sterol acyltransferase gene ARE1 increased the TAG content to 218 mg∙gCDW−1. Further disruption of the beta-oxidation by deletion of POX1, as well as glycerol-3-phosphate utilization through deletion of GUT2, did not affect TAGs levels. Finally, disruption of the peroxisomal fatty acyl-CoA transporter...

  4. Development of biosensors and their application in metabolic engineering

    DEFF Research Database (Denmark)

    Zhang, Jie; Jensen, Michael Krogh; Keasling, Jay

    2015-01-01

    for the desired phenotypes. However, methods available for microbial genome diversification far exceed our ability to screen and select for those variants with optimal performance. Genetically encoded biosensors have shown the potential to address this gap, given their ability to respond to small molecule binding...... and ease of implementation with high-throughput analysis. Here we describe recent progress in biosensor development and their applications in a metabolic engineering context. We also highlight examples of how biosensors can be integrated with synthetic circuits to exert feedback regulation...

  5. Metabolic engineering with plants for a sustainable biobased economy.

    Science.gov (United States)

    Yoon, Jong Moon; Zhao, Le; Shanks, Jacqueline V

    2013-01-01

    Plants are bona fide sustainable organisms because they accumulate carbon and synthesize beneficial metabolites from photosynthesis. To meet the challenges to food security and health threatened by increasing population growth and depletion of nonrenewable natural resources, recent metabolic engineering efforts have shifted from single pathways to holistic approaches with multiple genes owing to integration of omics technologies. Successful engineering of plants results in the high yield of biomass components for primary food sources and biofuel feedstocks, pharmaceuticals, and platform chemicals through synthetic biology and systems biology strategies. Further discovery of undefined biosynthesis pathways in plants, integrative analysis of discrete omics data, and diversified process developments for production of platform chemicals are essential to overcome the hurdles for sustainable production of value-added biomolecules from plants.

  6. Metabolic engineering for isoprenoid-based biofuel production.

    Science.gov (United States)

    Gupta, P; Phulara, S C

    2015-09-01

    Sustainable economic and industrial growth is the need of the hour and it requires renewable energy resources having better performance and compatibility with existing fuel infrastructure from biological routes. Isoprenoids (C ≥ 5) can be a potential alternative due to their diverse nature and physiochemical properties similar to that of petroleum based fuels. In the past decade, extensive research has been done to utilize metabolic engineering strategies in micro-organisms primarily, (i) to overcome the limitations associated with their natural and non-natural production and (ii) to develop commercially competent microbial strain for isoprenoid-based biofuel production. This review briefly describes the engineered isoprenoid biosynthetic pathways in well-characterized microbial systems for the production of several isoprenoid-based biofuels and fuel precursors. © 2015 The Society for Applied Microbiology.

  7. Genome-scale metabolic model in guiding metabolic engineering of microbial improvement.

    Science.gov (United States)

    Xu, Chuan; Liu, Lili; Zhang, Zhao; Jin, Danfeng; Qiu, Juanping; Chen, Ming

    2013-01-01

    In the past few decades, despite all the significant achievements in industrial microbial improvement, the approaches of traditional random mutation and selection as well as the rational metabolic engineering based on the local knowledge cannot meet today's needs. With rapid reconstructions and accurate in silico simulations, genome-scale metabolic model (GSMM) has become an indispensable tool to study the microbial metabolism and design strain improvements. In this review, we highlight the application of GSMM in guiding microbial improvements focusing on a systematic strategy and its achievements in different industrial fields. This strategy includes a repetitive process with four steps: essential data acquisition, GSMM reconstruction, constraints-based optimizing simulation, and experimental validation, in which the second and third steps are the centerpiece. The achievements presented here belong to different industrial application fields, including food and nutrients, biopharmaceuticals, biopolymers, microbial biofuel, and bioremediation. This strategy and its achievements demonstrate a momentous guidance of GSMM for metabolic engineering breeding of industrial microbes. More efforts are required to extend this kind of study in the meantime.

  8. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions.

    Science.gov (United States)

    Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    By combining advanced omics technology and computational modeling, systems biologists have identified and inferred thousands of regulatory events and system-wide interactions of the bacterium Bacillus subtilis, which is commonly used both in the laboratory and in industry. This dissection of the multiple layers of regulatory networks and their interactions has provided invaluable information for unraveling regulatory mechanisms and guiding metabolic engineering. In this review, we discuss recent advances in the systems biology and metabolic engineering of B. subtilis and highlight current gaps in our understanding of global metabolism and global pathway engineering in this organism. We also propose future perspectives in the systems biology of B. subtilis and suggest ways that this approach can be used to guide metabolic engineering. Specifically, although hundreds of regulatory events have been identified or inferred via systems biology approaches, systematic investigation of the functionality of these events in vivo has lagged, thereby preventing the elucidation of regulatory mechanisms and further rational pathway engineering. In metabolic engineering, ignoring the engineering of multilayer regulation hinders metabolic flux redistribution. Post-translational engineering, allosteric engineering, and dynamic pathway analyses and control will also contribute to the modulation and control of the metabolism of engineered B. subtilis, ultimately producing the desired cellular traits. We hope this review will aid metabolic engineers in making full use of available systems biology datasets and approaches for the design and perfection of microbial cell factories through global metabolism optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. De Novo metabolic engineering and the promise of synthetic DNA.

    Science.gov (United States)

    Klein-Marcuschamer, Daniel; Yadav, Vikramaditya G; Ghaderi, Adel; Stephanopoulos, Gregory N

    2010-01-01

    The uncertain price and tight supply of crude oil and the ever-increasing demand for clean energy have prompted heightened attention to the development of sustainable fuel technologies that ensure continued economic development while maintaining stewardship of the environment. In the face of these enormous challenges, biomass has emerged as a viable alternative to petroleum for the production of energy, chemicals, and materials owing to its abundance, inexpensiveness, and carbon-neutrality. Moreover, the immense ease and efficiency of biological systems at converting biomass-derived feedstocks into fuels, chemicals, and materials has generated renewed interest in biotechnology as a replacement for traditional chemical processes. Aided by the ever-expanding repertoire of microbial genetics and plant biotechnology, improved understanding of gene regulation and cellular metabolism, and incessantly accumulating gene and protein data, scientists are now contemplating engineering microbial cell factories to produce fuels, chemical feedstocks, polymers and pharmaceuticals in an economically and environmentally sustainable way. This goal resonates with that of metabolic engineering - the improvement of cellular properties through the intelligent design, rational modification, or directed evolution of biochemical pathways, and arguably, metabolic engineering seems best positioned to achieve the concomittant goals of environmental stewardship and economic prolificity.Improving a host organism's cellular traits and the potential design of new phenotypes is strongly dependent on the ability to effectively control the organism's genetic machinery. In fact, finely-tuned gene expression is imperative for achieving an optimal balance between pathway expression and cell viability, while avoiding cytotoxicity due to accumulation of certain gene products or metabolites. Early attempts to engineer a cell's metabolism almost exclusively relied on merely deleting or over

  10. Metabolic engineering of Propionibacterium freudenreichii for n-propanol production.

    Science.gov (United States)

    Ammar, Ehab Mohamed; Wang, Zhongqiang; Yang, Shang-Tian

    2013-05-01

    Propionibacteria are widely used in industry for manufacturing of Swiss cheese, vitamin B₁₂, and propionic acid. However, little is known about their genetics and only a few reports are available on the metabolic engineering of propionibacteria aiming at enhancing fermentative production of vitamin B12 and propionic acid. n-Propanol is a common solvent, an intermediate in many industrial applications, and a promising biofuel. To date, no wild-type microorganism is known to produce n-propanol in sufficient quantities for industrial application purposes. In this study, a bifunctional aldehyde/alcohol dehydrogenase (adhE) was cloned from Escherichia coli and expressed in Propionibacterium freudenreichii. The mutants expressing the adhE gene converted propionyl- coenzyme A, which is the precursor for propionic acid biosynthesis, to n-propanol. The production of n-propanol was limited by NADH availability, which was improved significantly by using glycerol as the carbon source. Interestingly, the improved propanol production was accompanied by a significant increase in propionic acid productivity, indicating a positive effect of n-propanol biosynthesis on propionic acid fermentative production. To our best knowledge, this is the first report on producing n-propanol by metabolically engineered propionibacteria, which offers a novel route to produce n-propanol from renewable feedstock, and possibly a new way to boost propionic acid fermentation.

  11. [Improving 3-dehydroshikimate production by metabolically engineered Escherichia coli].

    Science.gov (United States)

    Yuan, Fei; Chen, Wujiu; Jia, Shiru; Wang, Qinhong

    2014-10-01

    In the aromatic amino acid biosynthetic pathway 3-dehydroshikimate (DHS) is a key intermediate. As a potent antioxidant and important feedstock for producing a variety of important industrial chemicals, such as adipate and vanillin, DHS is of great commercial value. Here, in this study, we investigated the effect of the co-expression of aroFFBR (3-deoxy-D-arabino-heptulosonate 7-phosphate synthase mutant with tyrosine feedback-inhibition resistance) and tktA (Transketolase A) at different copy number on the production of DHS. The increased copy number of aroFFBR and tktA would enhance the production of DHS by the fold of 2.93. In order to further improve the production of DHS, we disrupted the key genes in by-product pathways of the parent strain Escherichia coli AB2834. The triple knockout strain of ldhA, ackA-pta and adhE would further increase the production of DHS. The titer of DHS in shake flask reached 1.83 g/L, 5.7-fold higher than that of the parent strain E. coli AB2834. In 5-L fed-batch fermentation, the metabolically engineered strain produced 25.48 g/L DHS after 62 h. Metabolically engineered E. coli has the potential to further improve the production of DHS.

  12. Metabolic engineering of yeast for lignocellulosic biofuel production.

    Science.gov (United States)

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Resveratrol biosynthesis: plant metabolic engineering for nutritional improvement of food.

    Science.gov (United States)

    Giovinazzo, Giovanna; Ingrosso, Ilaria; Paradiso, Annalisa; De Gara, Laura; Santino, Angelo

    2012-09-01

    The plant polyphenol trans-resveratrol (3, 5, 4'-trihydroxystilbene) mainly found in grape, peanut and other few plants, displays a wide range of biological effects. Numerous in vitro studies have described various biological effects of resveratrol. In order to provide more information regarding absorption, metabolism, and bioavailability of resveratrol, various research approaches have been performed, including in vitro, ex vivo, and in vivo models. In recent years, the induction of resveratrol synthesis in plants which normally do not accumulate such polyphenol, has been successfully achieved by molecular engineering. In this context, the ectopic production of resveratrol has been reported to have positive effects both on plant resistance to biotic stress and the enhancement of the nutritional value of several widely consumed fruits and vegetables. The metabolic engineering of plants offers the opportunity to change the content of specific phytonutrients in plant - derived foods. This review focuses on the latest findings regarding on resveratrol bioproduction and its effects on the prevention of the major pathological conditions in man.

  14. Metabolic engineering is key to a sustainable chemical industry.

    Science.gov (United States)

    Murphy, Annabel C

    2011-08-01

    The depletion of fossil fuel stocks will prohibit their use as the main feedstock of future industrial processes. Biocatalysis is being increasingly used to reduce fossil fuel reliance and to improve the sustainability, efficiency and cost of chemical production. Even with their current small market share, biocatalyzed processes already generate approximately US$50 billion and it has been estimated that they could be used to produce up to 20% of fine chemicals by 2020. Until the advent of molecular biological technologies, the compounds that were readily accessible from renewable biomass were restricted to naturally-occurring metabolites. However, metabolic engineering has considerably broadened the range of compounds now accessible, providing access to compounds that cannot be otherwise reliably sourced, as well as replacing established chemical processes. This review presents the case for continued efforts to promote the adoption of biocatalyzed processes, highlighting successful examples of industrial chemical production from biomass and/or via biocatalyzed processes. A selection of emerging technologies that may further extend the potential and sustainability of biocatalysis are also presented. As the field matures, metabolic engineering will be increasingly crucial in maintaining our quality of life into a future where our current resources and feedstocks cannot be relied upon.

  15. Integration of systems biology with bioprocess engineering: L: -threonine production by systems metabolic engineering of Escherichia coli.

    Science.gov (United States)

    Lee, Sang Yup; Park, Jin Hwan

    2010-01-01

    Random mutation and selection or targeted metabolic engineering without consideration of its impact on the entire metabolic and regulatory networks can unintentionally cause genetic alterations in the region, which is not directly related to the target metabolite. This is one of the reasons why strategies for developing industrial strains are now shifted towards targeted metabolic engineering based on systems biology, which is termed systems metabolic engineering. Using systems metabolic engineering strategies, all the metabolic engineering works are conducted in systems biology framework, whereby entire metabolic and regulatory networks are thoroughly considered in an integrated manner. The targets for purposeful engineering are selected after all possible effects on the entire metabolic and regulatory networks are thoroughly considered. Finally, the strain, which is capable of producing the target metabolite to a high level close to the theoretical maximum value, can be constructed. Here we review strategies and applications of systems biology successfully implemented on bioprocess engineering, with particular focus on developing L: -threonine production strains of Escherichia coli.

  16. Metabolic engineering: the ultimate paradigm for continuous pharmaceutical manufacturing.

    Science.gov (United States)

    Yadav, Vikramaditya G; Stephanopoulos, Gregory

    2014-07-01

    Research and development (R&D) expenditures by pharmaceutical companies doubled over the past decade, yet candidate attrition rates and development times rose markedly during this period. Understandably, companies have begun downsizing their pipelines and diverting investments away from R&D in favor of manufacturing. It is estimated that transitioning to continuous manufacturing could enable companies to compete for a share in emerging markets. Accordingly, the model for continuous manufacturing that has emerged commences with the conversion of late-stage intermediates into the active pharmaceutical ingredient (API) in a series of continuous flow reactors, followed by continuous solid processing to form finished tablets. The use of flow reactions for API synthesis will certainly generate purer products at higher yields in shorter times compared to equivalent batch reactions. However, transitioning from batch to flow configuration simply alleviates transport limitations within the reaction milieu. As the catalogue of reactions used in flow syntheses is a subset of batch-based chemistries, molecules such as natural products will continue to evade drug prospectors. Also, it is uncertain whether flow synthesis can deliver improvements in the atom and energy economies of API production at the scales that would achieve the levels of revenue growth targeted by companies. Instead, it is argued that implementing metabolic engineering for the production of oxidized scaffolds as gateway molecules for flow-based addition of electrophiles is a more effective and scalable strategy for accessing natural product chemical space. This new paradigm for manufacturing, with metabolic engineering as its engine, would also permit rapid optimization of production variables and allow facile scale-up from gram to ton scale to meet material requirements for clinical trials, thus recasting manufacturing as a tool for discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Metabolic engineering of Methanosarcina acetivorans for lactate production from methane.

    Science.gov (United States)

    McAnulty, Michael J; Poosarla, Venkata Giridhar; Li, Jine; Soo, Valerie W C; Zhu, Fayin; Wood, Thomas K

    2017-04-01

    We previously demonstrated anaerobic conversion of the greenhouse gas methane into acetate using an engineered archaeon that produces methyl-coenzyme M reductase (Mcr) from unculturable microorganisms from a microbial mat in the Black Sea to create the first culturable prokaryote that reverses methanogenesis and grows anaerobically on methane. In this work, we further engineered the same host with the goal of converting methane into butanol. Instead, we discovered a process for converting methane to a secreted valuable product, L-lactate, with sufficient optical purity for synthesizing the biodegradable plastic poly-lactic acid. We determined that the 3-hydroxybutyryl-CoA dehydrogenase (Hbd) from Clostridium acetobutylicum is responsible for lactate production. This work demonstrates the first metabolic engineering of a methanogen with a synthetic pathway; in effect, we produce a novel product (lactate) from a novel substrate (methane) by cloning the three genes for Mcr and one for Hbd. We further demonstrate the utility of anaerobic methane conversion with an increased lactate yield compared to aerobic methane conversion to lactate. Biotechnol. Bioeng. 2017;114: 852-861. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Gordon Fraser (1943-2013)

    CERN Multimedia

    2013-01-01

    We were deeply saddened to learn that Gordon Fraser had passed away on 3 January. During his 25-year career at CERN, until his retirement in 2002, he made many valuable contributions to the Laboratory, in particular as editor of CERN Courier.   Gordon’s life in science began at Imperial College London, where he obtained a PhD with the theory group of the future Nobel laureate Abdus Salam. He then spent time at Tel Aviv University in Yuval Ne’eman’s group and at Brighton University, before changing career to become a journalist, at first for Computer Weekly in London. He moved into scientific editing at the Rutherford Appleton Laboratory in 1975 and it was from there that he was hired to join the publications team at CERN in 1977. By 1982 Gordon had become the editor of the CERN Courier. During his time at the helm, both particle physics and the Courier changed considerably. Under his careful stewardship aspects of publishing were outsourced, leading to a...

  19. 2010 Tetrapyrroles, Chemistry & Biology of Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Angela Wilks

    2010-07-30

    The objective of the Chemistry & Biology of Tetrapyrroles Gordon Conference is to bring together researchers from diverse disciplines that otherwise would not interact. By bringing biologists, chemists, engineers and clinicians with a common interest in tetrapyrroles the conference provides a forum for cross-disciplinary ideas and collaboration. The perspective provided by biologists, chemists, and clinicians working in fields such as newly discovered defects in human porphyrin metabolism, the myriad of strategies for light harvesting in photosynthetic organisms, novel tetrapyrroles that serve as auxiliary chromophores or enzyme cofactors, synthetic strategies in the design of novel tetrapyrrole scaffolds, and tetrapyrrole based cell signaling and regulatory systems, makes this conference unique in the field. Over the years the growing evidence for the role of tetrapyrroles and their reactive intermediates in cell signaling and regulation has been of increasing importance at this conference. The 2010 conference on Chemistry & Biology of Tetrapyrroles will focus on many of these new frontiers as outlined in the preliminary program listed. Speakers will emphasize unpublished results and new findings in the field. The oral sessions will be followed by the highly interactive afternoon poster sessions. The poster sessions provide all conferees with the opportunity to present their latest research and to exchange ideas in a more informal setting. As in the past, this opportunity will continue during the nightly social gathering that takes place in the poster hall following the evening lectures. All conferees are encouraged to submit and present posters. At the conference the best poster in the areas of biology, chemistry and medicine will be selected by a panel of previous conference chairs.

  20. Metabolic engineering approaches for production of biochemicals in food and medicinal plants.

    Science.gov (United States)

    Wilson, Sarah A; Roberts, Susan C

    2014-04-01

    Historically, plants are a vital source of nutrients and pharmaceuticals. Recent advances in metabolic engineering have made it possible to not only increase the concentration of desired compounds, but also introduce novel biosynthetic pathways to a variety of species, allowing for enhanced nutritional or commercial value. To improve metabolic engineering capabilities, new transformation techniques have been developed to allow for gene specific silencing strategies or stacking of multiple genes within the same region of the chromosome. The 'omics' era has provided a new resource for elucidation of uncharacterized biosynthetic pathways, enabling novel metabolic engineering approaches. These resources are now allowing for advanced metabolic engineering of plant production systems, as well as the synthesis of increasingly complex products in engineered microbial hosts. The status of current metabolic engineering efforts is highlighted for the in vitro production of paclitaxel and the in vivo production of β-carotene in Golden Rice and other food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Engineering crassulacean acid metabolism to improve water-use efficiency.

    Science.gov (United States)

    Borland, Anne M; Hartwell, James; Weston, David J; Schlauch, Karen A; Tschaplinski, Timothy J; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2014-05-01

    Climatic extremes threaten agricultural sustainability worldwide. One approach to increase plant water-use efficiency (WUE) is to introduce crassulacean acid metabolism (CAM) into C3 crops. Such a task requires comprehensive systems-level understanding of the enzymatic and regulatory pathways underpinning this temporal CO2 pump. Here we review the progress that has been made in achieving this goal. Given that CAM arose through multiple independent evolutionary origins, comparative transcriptomics and genomics of taxonomically diverse CAM species are being used to define the genetic 'parts list' required to operate the core CAM functional modules of nocturnal carboxylation, diurnal decarboxylation, and inverse stomatal regulation. Engineered CAM offers the potential to sustain plant productivity for food, feed, fiber, and biofuel production in hotter and drier climates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. [Biosynthesis and metabolic engineering of dithiolopyrrolone - A review].

    Science.gov (United States)

    Huang, Sheng; Yu, Yi

    2016-03-04

    Dithiolopyrrolones are a family of antibiotics that possess the unique pyrrolinonodithiole (4H-[1,2] dithiolo [4, 3-b] pyrrol-5-one) skeleton. This family of natural products can be divided into three subfamilies: N-methyl-N- acylpyrrothine, N-acylpyrrothine and thiomarinols. So far, more than 27 members of this group of natural products have been reported including the well-known antibiotics holomycin, thiolutin, aureothricin and recently isolated thiomarinols. Dithiolopyrrolones exhibit relatively broad-spectrum antibiotic activities against many Gram-positive, Gram-negative bacteria and parasites. Some dithiolopyrrolones even have antitumor activities. In recent years, several dithiolopyrrolone biosynthetic gene clusters have been reported and their biosynthetic mechanisms have also been intensively studied. This review will give an overview about the biosynthesis and metabolic engineering of the dithiolopyrrolone natural products, and provides references to guide the creation of hybrid "unnatural" dithiolopyrrolones with better bioactivity and low toxicity by synthetic biology.

  3. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammad Abdel-Mawgoud

    2018-03-01

    Full Text Available Glycosylated lipids (GLs are added-value lipid derivatives of great potential. Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents, they have diverse biological activities with promising biomedical and cosmeceutical applications. Glycolipids, especially those of microbial origin, have interesting antimicrobial, anticancer, antiparasitic as well as immunomodulatory activities. Nonetheless, GLs are hardly accessing the market because of their high cost of production. We believe that experience of metabolic engineering (ME of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications. This review presents chemical groups of bacterial and fungal GLs, their biological activities, their general biosynthetic pathways and an insight on ME strategies for their production.

  4. Synthetic biology for engineering acetyl coenzyme a metabolism in yeast

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2014-01-01

    The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting...... chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl......-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol....

  5. Biobased organic acids production by metabolically engineered microorganisms

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2016-01-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...... expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high...... performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed...

  6. Metabolic engineering of Propionibacterium freudenreichii subsp. shermanii for xylose fermentation.

    Science.gov (United States)

    Wei, Peilian; Lin, Meng; Wang, Zhongqiang; Fu, Hongxin; Yang, Hopen; Jiang, Wenyan; Yang, Shang-Tian

    2016-11-01

    Propionibacterium freudenreichii cannot use xylose, the second most abundant sugar in lignocellulosic biomass. Although Propionibacterium acidipropionici can use xylose as a carbon source, it is difficult to genetically modify, impeding further improvement through metabolic engineering. This study identified three xylose catabolic pathway genes encoding for xylose isomerase (xylA), xylose transporter (xylT), and xylulokinase (xylB) in P. acidipropionici and overexpressed them in P. freudenreichii subsp. shermanii via an expression plasmid pKHEM01, enabling the mutant to utilize xylose efficiently even in the presence of glucose without glucose-induced carbon catabolite repression. The mutant showed similar fermentation kinetics with glucose, xylose, and the mixture of glucose and xylose, respectively, as carbon source, and with or without the addition of antibiotic for selection pressure. The engineered P. shermanii thus can provide a novel cell factory for industrial production of propionic acid and other value-added products from lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Metabolic engineering of Escherichia coli for the production of riboflavin

    Science.gov (United States)

    2014-01-01

    Background Riboflavin (vitamin B2), the precursor of the flavin cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is used commercially as an animal feed supplement and food colorant. E. coli is a robust host for various genetic manipulations and has been employed for efficient production of biofuels, polymers, amino acids, and bulk chemicals. Thus, the aim of this study was to understand the metabolic capacity of E. coli for the riboflavin production by modification of central metabolism, riboflavin biosynthesis pathway and optimization of the fermentation conditions. Results The basic producer RF01S, in which the riboflavin biosynthesis genes ribABDEC from E. coli were overexpressed under the control of the inducible trc promoter, could accumulate 229.1 mg/L of riboflavin. Further engineering was performed by examining the impact of expression of zwf (encodes glucose 6-phosphate dehydrogenase) and gnd (encodes 6-phosphogluconate dehydrogenase) from Corynebacterium glutamicum and pgl (encodes 6-phosphogluconolactonase) from E. coli on riboflavin production. Deleting pgi (encodes glucose-6-phosphate isomerase) and genes of Entner-Doudoroff (ED) pathway successfully redirected the carbon flux into the oxidative pentose phosphate pathway, and overexpressing the acs (encodes acetyl-CoA synthetase) reduced the acetate accumulation. These modifications increased riboflavin production to 585.2 mg/L. By further modulating the expression of ribF (encodes riboflavin kinase) for reducing the conversion of riboflavin to FMN in RF05S, the final engineering strain RF05S-M40 could produce 1036.1 mg/L riboflavin in LB medium at 37°C. After optimizing the fermentation conditions, strain RF05S-M40 produced 2702.8 mg/L riboflavin in the optimized semi-defined medium, which was a value nearly 12-fold higher than that of RF01S, with a yield of 137.5 mg riboflavin/g glucose. Conclusions The engineered strain RF05S-M40 has the highest yield among all

  8. Metabolic engineering of Escherichia coli for the production of riboflavin.

    Science.gov (United States)

    Lin, Zhenquan; Xu, Zhibo; Li, Yifan; Wang, Zhiwen; Chen, Tao; Zhao, Xueming

    2014-07-16

    Riboflavin (vitamin B2), the precursor of the flavin cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is used commercially as an animal feed supplement and food colorant. E. coli is a robust host for various genetic manipulations and has been employed for efficient production of biofuels, polymers, amino acids, and bulk chemicals. Thus, the aim of this study was to understand the metabolic capacity of E. coli for the riboflavin production by modification of central metabolism, riboflavin biosynthesis pathway and optimization of the fermentation conditions. The basic producer RF01S, in which the riboflavin biosynthesis genes ribABDEC from E. coli were overexpressed under the control of the inducible trc promoter, could accumulate 229.1 mg/L of riboflavin. Further engineering was performed by examining the impact of expression of zwf (encodes glucose 6-phosphate dehydrogenase) and gnd (encodes 6-phosphogluconate dehydrogenase) from Corynebacterium glutamicum and pgl (encodes 6-phosphogluconolactonase) from E. coli on riboflavin production. Deleting pgi (encodes glucose-6-phosphate isomerase) and genes of Entner-Doudoroff (ED) pathway successfully redirected the carbon flux into the oxidative pentose phosphate pathway, and overexpressing the acs (encodes acetyl-CoA synthetase) reduced the acetate accumulation. These modifications increased riboflavin production to 585.2 mg/L. By further modulating the expression of ribF (encodes riboflavin kinase) for reducing the conversion of riboflavin to FMN in RF05S, the final engineering strain RF05S-M40 could produce 1036.1 mg/L riboflavin in LB medium at 37°C. After optimizing the fermentation conditions, strain RF05S-M40 produced 2702.8 mg/L riboflavin in the optimized semi-defined medium, which was a value nearly 12-fold higher than that of RF01S, with a yield of 137.5 mg riboflavin/g glucose. The engineered strain RF05S-M40 has the highest yield among all reported riboflavin production

  9. The future of metabolic engineering and synthetic biology: towards a systematic practice.

    Science.gov (United States)

    Yadav, Vikramaditya G; De Mey, Marjan; Lim, Chin Giaw; Ajikumar, Parayil Kumaran; Stephanopoulos, Gregory

    2012-05-01

    Industrial biotechnology promises to revolutionize conventional chemical manufacturing in the years ahead, largely owing to the excellent progress in our ability to re-engineer cellular metabolism. However, most successes of metabolic engineering have been confined to over-producing natively synthesized metabolites in E. coli and S. cerevisiae. A major reason for this development has been the descent of metabolic engineering, particularly secondary metabolic engineering, to a collection of demonstrations rather than a systematic practice with generalizable tools. Synthetic biology, a more recent development, faces similar criticisms. Herein, we attempt to lay down a framework around which bioreaction engineering can systematize itself just like chemical reaction engineering. Central to this undertaking is a new approach to engineering secondary metabolism known as 'multivariate modular metabolic engineering' (MMME), whose novelty lies in its assessment and elimination of regulatory and pathway bottlenecks by re-defining the metabolic network as a collection of distinct modules. After introducing the core principles of MMME, we shall then present a number of recent developments in secondary metabolic engineering that could potentially serve as its facilitators. It is hoped that the ever-declining costs of de novo gene synthesis; the improved use of bioinformatic tools to mine, sort and analyze biological data; and the increasing sensitivity and sophistication of investigational tools will make the maturation of microbial metabolic engineering an autocatalytic process. Encouraged by these advances, research groups across the world would take up the challenge of secondary metabolite production in simple hosts with renewed vigor, thereby adding to the range of products synthesized using metabolic engineering. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Gordon Research Conference on Genetic Toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Project Director Penelope Jeggo

    2003-02-15

    Genetic toxicology represents a study of the genetic damage that a cell can incur, the agents that induce such damage, the damage response mechanisms available to cells and organisms, and the potential consequences of such damage. Genotoxic agents are abundant in the environment and are also induced endogenously. The consequences of such damage can include carcinogenesis and teratogenesis. An understanding of genetic toxicology is essential to carry out risk evaluations of the impact of genotoxic agents and to assess how individual genetic differences influence the response to genotoxic damage. In recent years, the importance of maintaining genomic stability has become increasingly recognized, in part by the realization that failure of the damage response mechanisms underlies many, if not all, cancer incidence. The importance of these mechanisms is also underscored by their remarkable conservation between species, allowing the study of simple organisms to provide significant input into our understanding of the underlying mechanisms. It has also become clear that the damage response mechanisms interface closely with other aspects of cellular metabolism including replication, transcription and cell cycle regulation. Moreover, defects in many of these mechanisms, as observed for example in ataxia telangiectasia patients, confer disorders with associated developmental abnormalities demonstrating their essential roles during growth and development. In short, while a decade ago, a study of the impact of DNA damage was seen as a compartmentalized area of cellular research, it is now appreciated to lie at the centre of an array of cellular responses of crucial importance to human health. Consequently, this has become a dynamic and rapidly advancing area of research. The Genetic Toxicology Gordon Research Conference is biannual with an evolving change in the emphasis of the meetings. From evaluating the nature of genotoxic chemicals, which lay at the centre of the early

  11. Systems metabolic engineering of microorganisms for natural and non-natural chemicals.

    Science.gov (United States)

    Lee, Jeong Wook; Na, Dokyun; Park, Jong Myoung; Lee, Joungmin; Choi, Sol; Lee, Sang Yup

    2012-05-17

    Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of chemicals, fuels and materials from renewable resources. Metabolic engineering is a key enabling technology for transforming microorganisms into efficient cell factories for these compounds. Systems metabolic engineering, which incorporates the concepts and techniques of systems biology, synthetic biology and evolutionary engineering at the systems level, offers a conceptual and technological framework to speed the creation of new metabolic enzymes and pathways or the modification of existing pathways for the optimal production of desired products. Here we discuss the general strategies of systems metabolic engineering and examples of its application and offer insights as to when and how each of the different strategies should be used. Finally, we highlight the limitations and challenges to be overcome for the systems metabolic engineering of microorganisms at more advanced levels.

  12. Applied and Environmental Microbiology Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D.

    2003-11-19

    The main objective of the Gordon Research Conference on Applied and Environmental Microbiology was to present and discuss new, fundamental research findings on microorganisms, their activities in the environment, their ecosystem-level effects, and their environmental or commercial applications. To accomplish this goal, knowledge of microbial diversity, interactions and population dynamics was required. The genomic basis of microbial processes, the cycling of naturally occurring and hazardous substances, and methodologies to assess the functional relationships of microorganisms in their habitats were essential for understanding the ecological consequences of microbial activities and the formulation of generalizing principles. In the last decade, molecular technology has revealed that microbial diversity is far more extensive than the limited view obtained from culturing procedures. Great advances in environmental microbiology have resulted from the development and application of molecular approaches to ecology and molecular evolution. A further surprise resulting from the application of these new tools is the blurring of the distinction between pathogenic traits versus those considered non-pathogenic. This year's conference addressed the issues of biodiversity, its development, and the impact of stress on gene selection and expression. In addition microbial metabolic versatility with toxins such as heavy metals, antibiotics, and organic pollutants were discussed. The nine session topics were (1) biodiversity and the bacterial species, (2) mechanisms of biodiversification, (3) biofilms in health and environment, (4) a genomic view of microbial response to stress, (5) microbial use of toxic metals, (6) microbial mineral formation and dissolution, (7) power and limitations of antimicrobials, (8) biodegradation of organic pollutants, and (9) astrobiology. The Conference had an international profile: the Conference Vice-Chair, Dr. Gerard Muyzer, was from The Nether

  13. 2010 Membranes: Materials & Processes Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2010-07-30

    The GRC series on Membranes: Materials and Processes have gained significant international recognition, attracting leading experts on membranes and other related areas from around the world. It is now known for being an interdisciplinary and synergistic meeting. The next summer's edition will keep with the past tradition and include new, exciting aspects of material science, chemistry, chemical engineering, computer simulation with participants from academia, industry and national laboratories. This edition will focus on cutting edge topics of membranes for addressing several grand challenges facing our society, in particular, energy, water, health and more generally sustainability. During the technical program, we want to discuss new membrane structure and characterization techniques, the role of advanced membranes and membrane-based processes in sustainability/environment (including carbon dioxide capture), membranes in water processes, and membranes for biological and life support applications. As usual, the informal nature of the meeting, excellent quality of the oral presentations and posters, and ample opportunity to meet many outstanding colleagues make this an excellent conference for established scientists as well as for students. A Gordon Research Seminar (GRS) on the weekend prior to the GRC meeting will provide young researchers an opportunity to present their work and network with outstanding experts. It will also be a right warm-up for the conference participants to join and enjoy the main conference.

  14. Metabolic engineering of Agrobacterium sp. ATCC31749 for curdlan production from cellobiose.

    Science.gov (United States)

    Shin, Hyun-Dong; Liu, Long; Kim, Mi-Kyoung; Park, Yong-Il; Chen, Rachel

    2016-09-01

    Curdlan is a commercial polysaccharide made by fermentation of Agrobacterium sp. Its anticipated expansion to larger volume markets demands improvement in its production efficiency. Metabolic engineering for strain improvement has so far been limited due to the lack of genetic tools. This research aimed to identify strong promoters and to engineer a strain that converts cellobiose efficiently to curdlan. Three strong promoters were identified and were used to install an energy-efficient cellobiose phosphorolysis mechanism in a curdlan-producing strain. The engineered strains were shown with enhanced ability to utilize cellobiose, resulting in a 2.5-fold increase in titer. The availability of metabolically engineered strain capable of producing β-glucan from cellobiose paves the way for its production from cellulose. The identified native promoters from Agrobacterium open up opportunities for further metabolic engineering for improved production of curdlan and other products. The success shown here marks the first such metabolic engineering effort in this microbe.

  15. Gordon F. Kirkbright bursary award, 2018

    Science.gov (United States)

    2017-12-01

    The Gordon F. Kirkbright bursary award is a prestigious annual award that enables a promising student/non-tenured young scientist of any nation to attend a recognised scientific meeting or visit a place of learning.

  16. Obituary: William Gordon (1918-2010)

    Science.gov (United States)

    Terzian, Yervant

    2011-12-01

    Bill Gordon was born in Paterson, New Jersey on January 8, 1918, and died in Ithaca, New York, on February 16, 2010. He is known as the engineer and ionospheric physicist who conceived and built the Arecibo giant radar/radio telescope. Bill graduated from Montclair State College in New Jersey and then in 1953 received his doctorate degree from Cornell University in electrical engineering, working under Henry Booker. During World War II he was in the Army where he studied the atmospheric conditions that affected radar transmissions. In the mid 1950s he began investigating giant antennas capable of studying the earths ionosphere. He succeeded in raising funds from the US Defense Department to construct the 1000 ft in diameter radar/radio telescope near the city of Arecibo on the island of Puerto Rico. The telescope was completed in 1963 under Bill's management, and he was its first Director. The huge fixed spherical antenna surface was made of a thin wire mesh allowing it to operate at frequencies up to about 600 MHz (50 cm wavelength). The spherical surface required complex 'line feeds' to correct for the spherical aberration, but allowed the telescope to track celestial radio sources by moving the line feeds which were supported by a platform suspended 500 ft above the reflector surface. Its sky coverage declination range was from -2 to +38 degrees. The large collecting area of the telescope made possible the detailed study of the physical properties of the earth's ionosphere. Measurements also included the rotation rates of the planets Mercury and Venus, radar imaging of the Moon and terrestrial planets. This new magastructure operated at low frequencies with its prime frequency at 430 MHz. One of Bill's passions was to make controlled experiments with the ionosphere. These so called 'heating experiments,' used a powerful HF radar transmitting from 5 to 10 MHz, to heat the ionosphere near the plasma frequency. The Arecibo radar then would study the heated

  17. Expanding beyond canonical metabolism: Interfacing alternative elements, synthetic biology, and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Kevin B. Reed

    2018-03-01

    Full Text Available Metabolic engineering offers an exquisite capacity to produce new molecules in a renewable manner. However, most industrial applications have focused on only a small subset of elements from the periodic table, centered around carbon biochemistry. This review aims to illustrate the expanse of chemical elements that can currently (and potentially be integrated into useful products using cellular systems. Specifically, we describe recent advances in expanding the cellular scope to include the halogens, selenium and the metalloids, and a variety of metal incorporations. These examples range from small molecules, heteroatom-linked uncommon elements, and natural products to biomining and nanotechnology applications. Collectively, this review covers the promise of an expanded range of elemental incorporations and the future impacts it may have on biotechnology.

  18. Metabolic Engineering of Oleaginous Yeasts for Fatty Alcohol Production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Wei, Hui; Knoshaug, Eric; Van Wychen, Stefanie; Xu, Qi; Himmel, Michael E.; Zhang, Min

    2016-04-25

    To develop pathways for advanced biological upgrading of sugars to hydrocarbons, we are seeking biological approaches to produce high carbon efficiency intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels. In this study, we successfully demonstrated fatty alcohol production by oleaginous yeasts Yarrowia lipolytica and Lipomyces starkeyi by expressing a bacteria-derived fatty acyl-CoA reductase (FAR). Moreover, we find higher extracellular distribution of fatty alcohols produced by FAR-expressing L. starkeyi strain as compared to Y. lipolytica strain, which would benefit the downstream product recovery process. In both oleaginous yeasts, long chain length saturated fatty alcohols were predominant, accounting for more than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Taken together, our work demonstrates that in addition to Y. lipolytica, L. starkeyi can also serve as a platform organism for production of fatty acid-derived biofuels and bioproducts via metabolic engineering. We believe strain and process development both will significantly contribute to our goal of producing scalable and cost-effective fatty alcohols from renewable biomass.

  19. Engineering plant metabolism into microbes: from systems biology to synthetic biology.

    Science.gov (United States)

    Xu, Peng; Bhan, Namita; Koffas, Mattheos A G

    2013-04-01

    Plant metabolism represents an enormous repository of compounds that are of pharmaceutical and biotechnological importance. Engineering plant metabolism into microbes will provide sustainable solutions to produce pharmaceutical and fuel molecules that could one day replace substantial portions of the current fossil-fuel based economy. Metabolic engineering entails targeted manipulation of biosynthetic pathways to maximize yields of desired products. Recent advances in Systems Biology and the emergence of Synthetic Biology have accelerated our ability to design, construct and optimize cell factories for metabolic engineering applications. Progress in predicting and modeling genome-scale metabolic networks, versatile gene assembly platforms and delicate synthetic pathway optimization strategies has provided us exciting opportunities to exploit the full potential of cell metabolism. In this review, we will discuss how systems and synthetic biology tools can be integrated to create tailor-made cell factories for efficient production of natural products and fuel molecules in microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production.

    Science.gov (United States)

    Ma, Wenlong; Liu, Yanfeng; Shin, Hyun-Dong; Li, Jianghua; Chen, Jian; Du, Guocheng; Liu, Long

    2018-02-01

    Bacillus subtilis is widely used as cell factories for the production of important industrial biochemicals. Although many studies have demonstrated the effects of organic acidic byproducts, such as acetate, on microbial fermentation, little is known about the effects of blocking the neutral byproduct overflow, such as acetoin, on bioproduction. In this study, we focused on the influences of modulating overflow metabolism on the production of N-acetyl-d-glucosamine (GlcNAc) in engineered B. subtilis. We found that acetoin overflow competes with GlcNAc production, and blocking acetoin overflow increased GlcNAc titer and yield by 1.38- and 1.39-fold, reaching 48.9 g/L and 0.32 g GlcNAc/g glucose, respectively. Further blocking acetate overflow inhibited cell growth and GlcNAc production may be induced by inhibiting glucose uptake. Taken together, our results show that blocking acetoin overflow is a promising strategy for enhancing GlcNAc production. The strategies developed in this work may be useful for engineering strains of B. subtilis for producing other important biochemicals. Copyright © 2017. Published by Elsevier Ltd.

  1. 2012 Gordon Research Conference on Cellular and Molecular Fungal Biology, Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Judith [Univ. of Minnesota, Minneapolis, MN (United States)

    2012-06-22

    The Gordon Research Conference on Cellular and Molecular Fungal Biology was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genome organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.

  2. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives.

    Science.gov (United States)

    Zha, Jian; Koffas, Mattheos A G

    2017-12-01

    Microbial production of plant-derived natural products by engineered microorganisms has achieved great success thanks to large extend to metabolic engineering and synthetic biology. Anthocyanins, the water-soluble colored pigments found in terrestrial plants that are responsible for the red, blue and purple coloration of many flowers and fruits, are extensively used in food and cosmetics industry; however, their current supply heavily relies on complex extraction from plant-based materials. A promising alternative is their sustainable production in metabolically engineered microbes. Here, we review the recent progress on anthocyanin biosynthesis in engineered bacteria, with a special focus on the systematic engineering modifications such as selection and engineering of biosynthetic enzymes, engineering of transportation, regulation of UDP-glucose supply, as well as process optimization. These promising engineering strategies will facilitate successful microbial production of anthocyanins in industry in the near future.

  3. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives

    Directory of Open Access Journals (Sweden)

    Jian Zha

    2017-12-01

    Full Text Available Microbial production of plant-derived natural products by engineered microorganisms has achieved great success thanks to large extend to metabolic engineering and synthetic biology. Anthocyanins, the water-soluble colored pigments found in terrestrial plants that are responsible for the red, blue and purple coloration of many flowers and fruits, are extensively used in food and cosmetics industry; however, their current supply heavily relies on complex extraction from plant-based materials. A promising alternative is their sustainable production in metabolically engineered microbes. Here, we review the recent progress on anthocyanin biosynthesis in engineered bacteria, with a special focus on the systematic engineering modifications such as selection and engineering of biosynthetic enzymes, engineering of transportation, regulation of UDP-glucose supply, as well as process optimization. These promising engineering strategies will facilitate successful microbial production of anthocyanins in industry in the near future.

  4. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    Science.gov (United States)

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Metabolic engineering of Ustilago trichophora TZ1 for improved malic acid production

    Directory of Open Access Journals (Sweden)

    Thiemo Zambanini

    2017-06-01

    These results open up a wide range of possibilities for further optimization, especially combinatorial metabolic engineering to increase the flux from pyruvate to malic acid and to reduce by-product formation.

  6. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Hubmann, Georg; Thevelein, Johan M; Nevoigt, Elke

    2014-01-01

    The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has

  7. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    NARCIS (Netherlands)

    He, F.; Murabito, E.; Westerhoff, H.V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out throughin silicotheoretical studies with the aim to guide and complement furtherin vitroandin vivoexperimental

  8. Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2013-01-01

    trends in systems biology of Aspergillus and Pichia species, highlighting the relevance of these developments for systems metabolic engineering of these organisms for the production of hydrolytic enzymes, biofuels and chemicals from biomass. Metabolic engineering is moving from traditional methods...... for the production of hydrolytic enzymes, biofuels and chemicals from biomass. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  9. Gravity localization in sine-Gordon braneworlds

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, W.T., E-mail: wilamicruz@gmail.com [Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Campus Juazeiro do Norte, 63040-540 Juazeiro do Norte, Ceará (Brazil); Maluf, R.V., E-mail: r.v.maluf@fisica.ufc.br [Departamento de Física, Universidade Federal do Ceará (UFC), C.P. 6030, 60455-760 Fortaleza, Ceará (Brazil); Sousa, L.J.S., E-mail: luisjose@fisica.ufc.br [Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Campus Canindé, 62700-000 Canindé, Ceará (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Departamento de Física, Universidade Federal do Ceará (UFC), C.P. 6030, 60455-760 Fortaleza, Ceará (Brazil)

    2016-01-15

    In this work we study two types of five-dimensional braneworld models given by sine-Gordon potentials. In both scenarios, the thick brane is generated by a real scalar field coupled to gravity. We focus our investigation on the localization of graviton field and the behaviour of the massive spectrum. In particular, we analyse the localization of massive modes by means of a relative probability method in a Quantum Mechanics context. Initially, considering a scalar field sine-Gordon potential, we find a localized state to the graviton at zero mode. However, when we consider a double sine-Gordon potential, the brane structure is changed allowing the existence of massive resonant states. The new results show how the existence of an internal structure can aid in the emergence of massive resonant modes on the brane.

  10. In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates

    NARCIS (Netherlands)

    Poblete-Castro, I.; Binger, D.; Rodrigues, A.; Becker, J.; Martins Dos Santos, V.A.P.; Wittmann, C.

    2013-01-01

    Here, we present systems metabolic engineering driven by in-silico modeling to tailor Pseudomonas putida for synthesis of medium chain length PHAs on glucose. Using physiological properties of the parent wild type as constraints, elementary flux mode analysis of a large-scale model of the metabolism

  11. Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods

    NARCIS (Netherlands)

    Flahaut, N.A.L.; Vos, de W.M.

    2014-01-01

    Lactic acid bacteria have long been used in industrial dairy and other food fermentations that make use of their metabolic activities leading to products with specific organoleptic properties. Metabolic engineering is a rational approach to steer fermentations toward the production of desired

  12. Metabolic engineering of ethanol production in Thermoanaerobacter mathranii

    Energy Technology Data Exchange (ETDEWEB)

    Shou Yao

    2010-11-15

    Strain BG1 is a xylanolytic, thermophilic, anaerobic, Gram-positive bacterium originally isolated from an Icelandic hot spring. The strain belongs to the species Thermoanaerobacter mathranii. The strain ferments glucose, xylose, arabinose, galactose and mannose simultaneously and produces ethanol, acetate, lactate, CO{sub 2}, and H2 as fermentation end-products. As a potential ethanol producer from lignocellulosic biomass, tailor-made BG1 strain with the metabolism redirected to produce ethanol is needed. Metabolic engineering of T. mathranii BG1 is therefore necessary to improve ethanol production. Strain BG1 contains four alcohol dehydrogenase (ADH) encoding genes. They are adhA, adhB, bdhA and adhE encoding primary alcohol dehydrogenase, secondary alcohol dehydrogenase, butanol dehydrogenase and bifunctional alcohol/acetaldehyde dehydrogenase, respectively. The presence in an organism of multiple alcohol dehydrogenases with overlapping specificities makes the determination of the specific role of each ADH difficult. Deletion of each individual adh gene in the strain revealed that the adhE deficient mutant strain fails to produce ethanol as the fermentation product. The bifunctional alcohol/acetaldehyde dehydrogenase, AdhE, is therefore proposed responsible for ethanol production in T. mathranii BG1, by catalyzing sequential NADH-dependent reductions of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. Moreover, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Over-expression of AdhE in strain BG1E1 with xylose as a substrate facilitates the production of ethanol at an increased yield. With a cofactor-dependent ethanol production pathway in T. mathranii BG1, it may become crucial to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol

  13. Non-Abelian sine-Gordon solitons

    Directory of Open Access Journals (Sweden)

    Muneto Nitta

    2015-06-01

    Full Text Available We point out that non-Abelian sine-Gordon solitons stably exist in the U(N chiral Lagrangian. They also exist in a U(N gauge theory with two N by N complex scalar fields coupled to each other. One non-Abelian sine-Gordon soliton can terminate on one non-Abelian global vortex. They are relevant in chiral Lagrangian of QCD or in color-flavor locked phase of high density QCD, where the anomaly is suppressed at asymptotically high temperature or density, respectively.

  14. Transcriptomic Changes in Response to Putrescine Production in Metabolically Engineered Corynebacterium glutamicum

    OpenAIRE

    Li, Zhen; Liu, Jian-Zhong

    2017-01-01

    Putrescine is widely used in industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Although engineered Corynebacterium glutamicum has been successfully used to produce high levels of putrescine, the overall cellular physiological and metabolic changes caused by overproduction of putrescine remains unclear. To reveal the transcriptional changes that occur in response to putrescine production in an engineered C. glutamicum strain, a comparative transcriptomic an...

  15. Metabolic Engineering for Probiotics and their Genome-Wide Expression Profiling.

    Science.gov (United States)

    Yadav, Ruby; Singh, Puneet K; Shukla, Pratyoosh

    2018-01-01

    Probiotic supplements in food industry have attracted a lot of attention and shown a remarkable growth in this field. Metabolic engineering (ME) approaches enable understanding their mechanism of action and increases possibility of designing probiotic strains with desired functions. Probiotic microorganisms generally referred as industrially important lactic acid bacteria (LAB) which are involved in fermenting dairy products, food, beverages and produces lactic acid as final product. A number of illustrations of metabolic engineering approaches in industrial probiotic bacteria have been described in this review including transcriptomic studies of Lactobacillus reuteri and improvement in exopolysaccharide (EPS) biosynthesis yield in Lactobacillus casei LC2W. This review summaries various metabolic engineering approaches for exploring metabolic pathways. These approaches enable evaluation of cellular metabolic state and effective editing of microbial genome or introduction of novel enzymes to redirect the carbon fluxes. In addition, various system biology tools such as in silico design commonly used for improving strain performance is also discussed. Finally, we discuss the integration of metabolic engineering and genome profiling which offers a new way to explore metabolic interactions, fluxomics and probiogenomics using probiotic bacteria like Bifidobacterium spp and Lactobacillus spp. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. A Status Report on the Global Research in Microbial Metabolic Engineering

    International Nuclear Information System (INIS)

    Joe, Min Ho; Lim, Sang Yong; Kim, Dong Ho

    2008-09-01

    Biotechnology industry is now a global 'Mega-Trend' and metabolic engineering technology has important role is this area. Therefore, many countries has made efforts in this field to produce top value added bio-products efficiently using microorganisms. It has been applied to increase the production of chemicals that are already produced by the host organism, to produce desired chemical substances from less expensive feedstock, and to generate products that are new to the host organism. Recent experimental advances, the so-called '-omics' technologies, mainly functional genomics, proteomics and metabolomics, have enabled wholesale generation of new genomic, transcriptomic, proteomic, and metabolomic data. This report provides the insights of the integrated view of metabolism generated by metabolic engineering for biotechnological applications of microbial metabolic engineering

  17. A Status Report on the Global Research in Microbial Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Min Ho; Lim, Sang Yong; Kim, Dong Ho

    2008-09-15

    Biotechnology industry is now a global 'Mega-Trend' and metabolic engineering technology has important role is this area. Therefore, many countries has made efforts in this field to produce top value added bio-products efficiently using microorganisms. It has been applied to increase the production of chemicals that are already produced by the host organism, to produce desired chemical substances from less expensive feedstock, and to generate products that are new to the host organism. Recent experimental advances, the so-called '-omics' technologies, mainly functional genomics, proteomics and metabolomics, have enabled wholesale generation of new genomic, transcriptomic, proteomic, and metabolomic data. This report provides the insights of the integrated view of metabolism generated by metabolic engineering for biotechnological applications of microbial metabolic engineering.

  18. Review of Microfluidic Photobioreactor Technology for Metabolic Engineering and Synthetic Biology of Cyanobacteria and Microalgae

    Directory of Open Access Journals (Sweden)

    Ya-Tang Yang

    2016-10-01

    Full Text Available One goal of metabolic engineering and synthetic biology for cyanobacteria and microalgae is to engineer strains that can optimally produce biofuels and commodity chemicals. However, the current workflow is slow and labor intensive with respect to assembly of genetic parts and characterization of production yields because of the slow growth rates of these organisms. Here, we review recent progress in the microfluidic photobioreactors and identify opportunities and unmet needs in metabolic engineering and synthetic biology. Because of the unprecedented experimental resolution down to the single cell level, long-term real-time monitoring capability, and high throughput with low cost, microfluidic photobioreactor technology will be an indispensible tool to speed up the development process, advance fundamental knowledge, and realize the full potential of metabolic engineering and synthetic biology for cyanobacteria and microalgae.

  19. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-10-01

    Full Text Available The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF based biosensors.

  20. Oscillating and rotating sine-Gordon system

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1986-01-01

    The interaction between a 2π kink and the background or vacuum is investigated in the pure sine-Gordon system. For an oscillating background (i.e., the k=0 part of the phonon spectrum) the 2π kink oscillates, while for increasing or decreasing vacuum two phenomena have been observed, depending on...... to a Mathieu equation explaining the excitation....

  1. Astronaut Gordon Cooper in centrifuge for tests

    Science.gov (United States)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, is strapped into the gondola while undergoing tests in the centrifuge at the Naval Air Development Center, Johnsville, Pennsylvania. The centrifuge is used to investigate by simulation the pilot's capability to control the vehicle during the actual flight in its booster and reentry profile.

  2. Gordon Tullock and experimental public choice

    NARCIS (Netherlands)

    Schram, A.

    2016-01-01

    In this paper, I discuss Gordon Tullock’s views on Experimentation in Economics, his own research experiment, and his influence on the field of experimental public choice. I argue that Tullock can credibly claim to have been an early supporter of the method and that his work is cited more often than

  3. The sine-Gordon model revisited I

    International Nuclear Information System (INIS)

    Niccoli, G.; Teschner, J.

    2009-10-01

    We study integrable lattice regularizations of the Sine-Gordon model with the help of the Separation of Variables method of Sklyanin and the Baxter Q-operators. This allows us to characterize the spectrum (eigenvalues and eigenstates) completely in terms of polynomial solutions of the Baxter equation with certain properties. This result is analogous to the completeness of the Bethe ansatz. (orig.)

  4. The Religion Journalism of James Gordon Bennett.

    Science.gov (United States)

    Buddenbaum, Judith M.

    A study was conducted to examine the journalism work of James Gordon Bennett, who founded the "New York Herald" in the 1830s, and to determine the nature of his coverage of religion before, during, and after the "Moral War" waged in 1840 against Bennett's popular newspaper. In addition, the study analyzed what Bennett's…

  5. Streptococcus pneumonie in Malawi | Gordon | Malawi Medical ...

    African Journals Online (AJOL)

    S Gordon, M Chaponda, E Machiri, A L Walsh. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and ...

  6. Metabolic engineering of microbial competitive advantage for industrial fermentation processes.

    Science.gov (United States)

    Shaw, A Joe; Lam, Felix H; Hamilton, Maureen; Consiglio, Andrew; MacEwen, Kyle; Brevnova, Elena E; Greenhagen, Emily; LaTouf, W Greg; South, Colin R; van Dijken, Hans; Stephanopoulos, Gregory

    2016-08-05

    Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen. After adaptive laboratory evolution to improve pathway efficiency, the engineered strain rapidly outcompeted a control strain when melamine was supplied as the nitrogen source. We additionally engineered the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica to assimilate nitrogen from cyanamide and phosphorus from potassium phosphite, and they outcompeted contaminating strains in several low-cost feedstocks. Supplying essential growth nutrients through xenobiotic or ecologically rare chemicals provides microbial competitive advantage with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment. Copyright © 2016, American Association for the Advancement of Science.

  7. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  8. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  9. Mini-review: In vitro Metabolic Engineering for Biomanufacturing of High-value Products

    Directory of Open Access Journals (Sweden)

    Weihua Guo

    2017-01-01

    Full Text Available With the breakthroughs in biomolecular engineering and synthetic biology, many valuable biologically active compound and commodity chemicals have been successfully manufactured using cell-based approaches in the past decade. However, because of the high complexity of cell metabolism, the identification and optimization of rate-limiting metabolic pathways for improving the product yield is often difficult, which represents a significant and unavoidable barrier of traditional in vivo metabolic engineering. Recently, some in vitro engineering approaches were proposed as alternative strategies to solve this problem. In brief, by reconstituting a biosynthetic pathway in a cell-free environment with the supplement of cofactors and substrates, the performance of each biosynthetic pathway could be evaluated and optimized systematically. Several value-added products, including chemicals, nutraceuticals, and drug precursors, have been biosynthesized as proof-of-concept demonstrations of in vitro metabolic engineering. This mini-review summarizes the recent progresses on the emerging topic of in vitro metabolic engineering and comments on the potential application of cell-free technology to speed up the “design-build-test” cycles of biomanufacturing.

  10. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-10-11

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  11. Systems metabolic engineering design: fatty acid production as an emerging case study.

    Science.gov (United States)

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-05-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. © 2014 Wiley Periodicals, Inc.

  12. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control

    Science.gov (United States)

    Xu, Peng; Li, Lingyun; Zhang, Fuming; Stephanopoulos, Gregory; Koffas, Mattheos

    2014-01-01

    Global energy demand and environmental concerns have stimulated increasing efforts to produce carbon-neutral fuels directly from renewable resources. Microbially derived aliphatic hydrocarbons, the petroleum-replica fuels, have emerged as promising alternatives to meet this goal. However, engineering metabolic pathways with high productivity and yield requires dynamic redistribution of cellular resources and optimal control of pathway expression. Here we report a genetically encoded metabolic switch that enables dynamic regulation of fatty acids (FA) biosynthesis in Escherichia coli. The engineered strains were able to dynamically compensate the critical enzymes involved in the supply and consumption of malonyl-CoA and efficiently redirect carbon flux toward FA biosynthesis. Implementation of this metabolic control resulted in an oscillatory malonyl-CoA pattern and a balanced metabolism between cell growth and product formation, yielding 15.7- and 2.1-fold improvement in FA titer compared with the wild-type strain and the strain carrying the uncontrolled metabolic pathway. This study provides a new paradigm in metabolic engineering to control and optimize metabolic pathways facilitating the high-yield production of other malonyl-CoA–derived compounds. PMID:25049420

  13. Improved Triacylglycerol Production in Acinetobacter baylyi ADP1 by Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Karp Matti

    2011-05-01

    Full Text Available Abstract Background Triacylglycerols are used in various purposes including food applications, cosmetics, oleochemicals and biofuels. Currently the main sources for triacylglycerol are vegetable oils, and microbial triacylglycerol has been suggested as an alternative for these. Due to the low production rates and yields of microbial processes, the role of metabolic engineering has become more significant. As a robust model organism for genetic and metabolic studies, and for the natural capability to produce triacylglycerol, Acinetobacter baylyi ADP1 serves as an excellent organism for modelling the effects of metabolic engineering for energy molecule biosynthesis. Results Beneficial gene deletions regarding triacylglycerol production were screened by computational means exploiting the metabolic model of ADP1. Four deletions, acr1, poxB, dgkA, and a triacylglycerol lipase were chosen to be studied experimentally both separately and concurrently by constructing a knock-out strain (MT with three of the deletions. Improvements in triacylglycerol production were observed: the strain MT produced 5.6 fold more triacylglycerol (mg/g cell dry weight compared to the wild type strain, and the proportion of triacylglycerol in total lipids was increased by 8-fold. Conclusions In silico predictions of beneficial gene deletions were verified experimentally. The chosen single and multiple gene deletions affected beneficially the natural triacylglycerol metabolism of A. baylyi ADP1. This study demonstrates the importance of single gene deletions in triacylglycerol metabolism, and proposes Acinetobacter sp. ADP1 as a model system for bioenergetic studies regarding metabolic engineering.

  14. Synthetic biology of metabolism: using natural variation to reverse engineer systems.

    Science.gov (United States)

    Kliebenstein, Daniel J

    2014-06-01

    A goal of metabolic engineering is to take a plant and introduce new or modify existing pathways in a directed and predictable fashion. However, existing data does not provide the necessary level of information to allow for predictive models to be generated. One avenue to reverse engineer the necessary information is to study the genetic control of natural variation in plant primary and secondary metabolism. These studies are showing that any engineering model will have to incorporate information about 1000s of genes in both the nuclear and organellar genome to optimize the function of the introduced pathway. Further, these genes may interact in an unpredictable fashion complicating any engineering approach as it moves from the one or two gene manipulation to higher order stacking efforts. Finally, metabolic engineering may be influenced by a previously unrecognized potential for a plant to measure the metabolites within it. In combination, these observations from natural variation provide a beginning to help improve current efforts at metabolic engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Engineering microorganisms to increase ethanol production by metabolic redirection

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yu; Olson, Daniel G.; van Dijken, Johannes Pieter; Shaw, IV, Arthur J.; Argyros, Aaron; Barrett, Trisha; Caiazza, Nicky; Herring, Christopher D.; Rogers, Stephen R.; Agbogbo, Frank

    2017-10-31

    The present invention provides for the manipulation of carbon flux in a recombinant host cell to increase the formation of desirable products. The invention relates to cellulose-digesting organisms that have been genetically modified to allow the production of ethanol at a high yield by redirecting carbon flux at key steps of central metabolism.

  16. Engineering metabolic highways in Lactococci and other lactic acid bacteria

    NARCIS (Netherlands)

    Vos, de W.M.; Hugenholtz, J.

    2004-01-01

    Lactic acid bacteria (LAB) are widely used in industrial food fermentations and are receiving increased attention for use as cell factories for the production of food and pharmaceutical products. Glycolytic conversion of sugars into lactic acid is the main metabolic highway in these Gram-positive

  17. Metabolic engineering toward 1-butanol derivatives in solvent producing clostridia

    NARCIS (Netherlands)

    Siemerink, M.A.J.

    2010-01-01

    Chapter 1 of this thesis gives an overview about the history of the acetone, butanol and ethanol (ABE) fermentation. The responsible solventogenic clostridia with their central metabolism are briefly discussed. Despite the fact that scientific research on the key organisms of the ABE process has

  18. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Navid, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-19

    traits act as the biocatalysts of the process designed to both enhance the system efficiency of CO2 fixation and the net hydrogen production rate. Additionally we applied metabolic engineering approaches guided by computational modeling for the chosen model microorganisms to enable efficient hydrogen production.

  19. Metabolic engineering of resveratrol and other longevity boosting compounds.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Chen, H; Yu, O

    2010-09-16

    Resveratrol, a compound commonly found in red wine, has attracted many attentions recently. It is a diphenolic natural product accumulated in grapes and a few other species under stress conditions. It possesses a special ability to increase the life span of eukaryotic organisms, ranging from yeast, to fruit fly, to obese mouse. The demand for resveratrol as a food and nutrition supplement has increased significantly in recent years. Extensive work has been carried out to increase the production of resveratrol in plants and microbes. In this review, we will discuss the biosynthetic pathway of resveratrol and engineering methods to heterologously express the pathway in various organisms. We will outline the shortcuts and limitations of common engineering efforts. We will also discuss briefly the features and engineering challenges of other longevity boosting compounds.

  20. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum

    Science.gov (United States)

    Tay, Song Buck; Natarajan, Gayathri; Rahim, Muhammad Nadjad bin Abdul; Tan, Hwee Tong; Chung, Maxey Ching Ming; Ting, Yen Peng; Yew, Wen Shan

    2013-01-01

    Conventional leaching (extraction) methods for gold recovery from electronic waste involve the use of strong acids and pose considerable threat to the environment. The alternative use of bioleaching microbes for gold recovery is non-pollutive and relies on the secretion of a lixiviant or (bio)chemical such as cyanide for extraction of gold from electronic waste. However, widespread industrial use of bioleaching microbes has been constrained by the limited cyanogenic capabilities of lixiviant-producing microorganisms such as Chromobacterium violaceum. Here we show the construction of a metabolically-engineered strain of Chromobacterium violaceum that produces more (70%) cyanide lixiviant and recovers more than twice as much gold from electronic waste compared to wild-type bacteria. Comparative proteome analyses suggested the possibility of further enhancement in cyanogenesis through subsequent metabolic engineering. Our results demonstrated the utility of lixiviant metabolic engineering in the construction of enhanced bioleaching microbes for the bioleaching of precious metals from electronic waste. PMID:23868689

  1. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis.

    Science.gov (United States)

    He, Fei; Fromion, Vincent; Westerhoff, Hans V

    2013-11-21

    Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. This study integrates control engineering and classical MCA augmented with supply-demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the 'integral control' (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of 'integral control' should rarely be expected to lead to the 'perfect adaptation': although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems

  2. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response

    Science.gov (United States)

    Yong-Su Jin; Jose M. Laplaza; Thomas W. Jeffries

    2004-01-01

    Native strains of Saccharomyces cerevisiae do not assimilate xylose. S. cerevisiae engineered for D-xylose utilization through the heterologous expression of genes for aldose reductase ( XYL1), xylitol dehydrogenase (XYL2), and D-xylulokinase ( XYL3 or XKS1) produce only limited amounts of ethanol in xylose medium. In recombinant S. cerevisiae expressing XYL1, XYL2,...

  3. Metabolic engineering of biosynthesis and sequestration of artemisinin

    NARCIS (Netherlands)

    Wang, B.

    2016-01-01

    The sesquiterpenoid artemisinin (AN) is the most important medicine for the treatment of malaria in humans. The industrial production of AN still mainly depends on extraction from the plant Artemisia annua. However, the concentration of AN in A. annua is low. Although different engineering

  4. Metabolic engineering of Escherichia coli for the production of riboflavin

    OpenAIRE

    Lin, Zhenquan; Xu, Zhibo; Li, Yifan; Wang, Zhiwen; Chen, Tao; Zhao, Xueming

    2014-01-01

    Background Riboflavin (vitamin B2), the precursor of the flavin cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is used commercially as an animal feed supplement and food colorant. E. coli is a robust host for various genetic manipulations and has been employed for efficient production of biofuels, polymers, amino acids, and bulk chemicals. Thus, the aim of this study was to understand the metabolic capacity of E. coli for the riboflavin production by modification...

  5. Engineering of a Xylose Metabolic Pathway in Rhodococcus Strains

    Science.gov (United States)

    Xiong, Xiaochao; Wang, Xi

    2012-01-01

    The two metabolically versatile actinobacteria Rhodococcus opacus PD630 and R. jostii RHA1 can efficiently convert diverse organic substrates into neutral lipids mainly consisting of triacylglycerol (TAG), the precursor of energy-rich hydrocarbon. Neither, however, is able to utilize xylose, the important component present in lignocellulosic biomass, as the carbon source for growth and lipid accumulation. In order to broaden their substrate utilization range, the metabolic pathway of d-xylose utilization was introduced into these two strains. This was accomplished by heterogenous expression of two well-selected genes, xylA, encoding xylose isomerase, and xylB, encoding xylulokinase from Streptomyces lividans TK23, under the control of the tac promoter with an Escherichia coli-Rhodococcus shuttle vector. The recombinant R. jostii RHA1 bearing xylA could grow on xylose as the sole carbon source, and additional expression of xylB further improved the biomass yield. The recombinant could consume both glucose and xylose in the sugar mixture, although xylose metabolism was still affected by the presence of glucose. The xylose metabolic pathway was also introduced into the high-lipid-producing strain R. opacus PD630 by expression of xylA and xylB. Under nitrogen-limited conditions, the fatty acid composition was determined, and lipid produced from xylose by recombinants of R. jostii RHA1 and R. opacus PD630 carrying xylA and xylB represented up to 52.5% and 68.3% of the cell dry weight (CDW), respectively. This work demonstrates that it is feasible to produce lipid from the sugars, including xylose, derived from renewable feedstock by genetic modification of rhodococcus strains. PMID:22636009

  6. Accessing Nature’s diversity through metabolic engineering and synthetic biology [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jason R. King

    2016-03-01

    Full Text Available In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through “scaffold diversification”, and subsequent “derivatization” of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the “privileged” chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents.

  7. Accessing Nature’s diversity through metabolic engineering and synthetic biology

    Science.gov (United States)

    King, Jason R.; Edgar, Steven; Qiao, Kangjian; Stephanopoulos, Gregory

    2016-01-01

    In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through “scaffold diversification”, and subsequent “derivatization” of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the “privileged” chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents. PMID:27081481

  8. Biofuels and bio-based chemicals from lignocellulose: metabolic engineering strategies in strain development.

    Science.gov (United States)

    Chen, Rachel; Dou, Jennifer

    2016-02-01

    Interest in developing a sustainable technology for fuels and chemicals has unleashed tremendous creativity in metabolic engineering for strain development over the last few years. This is driven by the exceptionally recalcitrant substrate, lignocellulose, and the necessity to keep the costs down for commodity products. Traditional methods of gene expression and evolutionary engineering are more effectively used with the help of synthetic biology and -omics techniques. Compared to the last biomass research peak during the 1980s oil crisis, a more diverse range of microorganisms are being engineered for a greater variety of products, reflecting the broad applicability and effectiveness of today's gene technology. We review here several prominent and successful metabolic engineering strategies with emphasis on the following four areas: xylose catabolism, inhibitor tolerance, synthetic microbial consortium, and cellulosic oligomer assimilation.

  9. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  10. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  11. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives

    OpenAIRE

    Jian Zha; Mattheos A.G. Koffas

    2017-01-01

    Microbial production of plant-derived natural products by engineered microorganisms has achieved great success thanks to large extend to metabolic engineering and synthetic biology. Anthocyanins, the water-soluble colored pigments found in terrestrial plants that are responsible for the red, blue and purple coloration of many flowers and fruits, are extensively used in food and cosmetics industry; however, their current supply heavily relies on complex extraction from plant-based materials. A...

  12. Metabolic engineering of Saccharomyces cerevisiae for linalool production.

    Science.gov (United States)

    Amiri, Pegah; Shahpiri, Azar; Asadollahi, Mohammad Ali; Momenbeik, Fariborz; Partow, Siavash

    2016-03-01

    To engineer the yeast Saccharomyces cerevisiae for the heterologous production of linalool. Expression of linalool synthase gene from Lavandula angustifolia enabled heterologous production of linalool in S. cerevisiae. Downregulation of ERG9 gene, that encodes squalene synthase, by replacing its native promoter with the repressible MET3 promoter in the presence of methionine resulted in accumulation of 78 µg linalool l(-1) in the culture medium. This was more than twice that produced by the control strain. The highest linalool titer was obtained by combined repression of ERG9 and overexpression of tHMG1. The yeast strain harboring both modifications produced 95 μg linalool l(-1). Although overexpression of tHMG1 and downregulation of ERG9 enhanced linalool titers threefold in the engineered yeast strain, alleviating linalool toxicity is necessary for further improvement of linalool biosynthesis in yeast.

  13. A systems-level approach for metabolic engineering of yeast cell factories.

    Science.gov (United States)

    Kim, Il-Kwon; Roldão, António; Siewers, Verena; Nielsen, Jens

    2012-03-01

    The generation of novel yeast cell factories for production of high-value industrial biotechnological products relies on three metabolic engineering principles: design, construction, and analysis. In the last two decades, strong efforts have been put on developing faster and more efficient strategies and/or technologies for each one of these principles. For design and construction, three major strategies are described in this review: (1) rational metabolic engineering; (2) inverse metabolic engineering; and (3) evolutionary strategies. Independent of the selected strategy, the process of designing yeast strains involves five decision points: (1) choice of product, (2) choice of chassis, (3) identification of target genes, (4) regulating the expression level of target genes, and (5) network balancing of the target genes. At the construction level, several molecular biology tools have been developed through the concept of synthetic biology and applied for the generation of novel, engineered yeast strains. For comprehensive and quantitative analysis of constructed strains, systems biology tools are commonly used and using a multi-omics approach. Key information about the biological system can be revealed, for example, identification of genetic regulatory mechanisms and competitive pathways, thereby assisting the in silico design of metabolic engineering strategies for improving strain performance. Examples on how systems and synthetic biology brought yeast metabolic engineering closer to industrial biotechnology are described in this review, and these examples should demonstrate the potential of a systems-level approach for fast and efficient generation of yeast cell factories. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Step changes in leaf oil accumulation via iterative metabolic engineering.

    Science.gov (United States)

    Vanhercke, Thomas; Divi, Uday K; El Tahchy, Anna; Liu, Qing; Mitchell, Madeline; Taylor, Matthew C; Eastmond, Peter J; Bryant, Fiona; Mechanicos, Anna; Blundell, Cheryl; Zhi, Yao; Belide, Srinivas; Shrestha, Pushkar; Zhou, Xue-Rong; Ral, Jean-Philippe; White, Rosemary G; Green, Allan; Singh, Surinder P; Petrie, James R

    2017-01-01

    Synthesis and accumulation of plant oils in the entire vegetative biomass offers the potential to deliver yields surpassing those of oilseed crops. However, current levels still fall well short of those typically found in oilseeds. Here we show how transcriptome and biochemical analyses pointed to a futile cycle in a previously established Nicotiana tabacum line, accumulating up to 15% (dry weight) of the storage lipid triacylglycerol in leaf tissue. To overcome this metabolic bottleneck, we either silenced the SDP1 lipase or overexpressed the Arabidopsis thaliana LEC2 transcription factor in this transgenic background. Both strategies independently resulted in the accumulation of 30-33% triacylglycerol in leaf tissues. Our results demonstrate that the combined optimization of de novo fatty acid biosynthesis, storage lipid assembly and lipid turnover in leaf tissue results in a major overhaul of the plant central carbon allocation and lipid metabolism. The resulting further step changes in oil accumulation in the entire plant biomass offers the possibility of delivering yields that outperform current oilseed crops. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Metabolic engineering of yeast for fermentative production of flavonoids

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica; Strucko, Tomas; Stahlhut, Steen Gustav

    2017-01-01

    Yeast Saccharomyces cerevisiae was engineered for de novo production of six different flavonoids (naringenin, liquiritigenin, kaempferol, resokaempferol, quercetin, and fisetin) directly from glucose, without supplementation of expensive intermediates. This required reconstruction of long...... biosynthetic pathways, comprising up to eight heterologous genes from plants. The obtained titers of kaempferol 26.57±2.66mgL-1 and quercetin 20.38±2.57mgL-1 exceed the previously reported titers in yeast. This is also the first report of de novo biosynthesis of resokaempferol and fisetin in yeast. The work...

  16. 13C Metabolic Flux Analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids.

    Directory of Open Access Journals (Sweden)

    Amit Ghosh

    2016-10-01

    Full Text Available Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here we used flux-based modeling approaches to improve yields of fatty acids in S. cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Y. lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for down-regulation in terms of acetyl-CoA consumption. These genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg L of free fatty acids. With the addition of ATP citrate lyase and down-regulation of malate synthase the engineered strain produced 26 per cent more free fatty acids. Further increases in free fatty acid production of 33 per cent were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by 70 per cent.

  17. Microalgal bioengineering for sustainable energy development: Recent transgenesis and metabolic engineering strategies.

    Science.gov (United States)

    Banerjee, Chiranjib; Singh, Puneet Kumar; Shukla, Pratyoosh

    2016-03-01

    Exploring the efficiency of algae to produce remarkable products can be directly benefitted by studying its mechanism at systems level. Recent advents in biotechnology like flux balance analysis (FBA), genomics and in silico proteomics minimize the wet lab exertion. It is understood that FBA predicts the metabolic products, metabolic pathways and alternative pathway to maximize the desired product, and these are key components for microalgae bio-engineering. This review encompasses recent transgenesis techniques and metabolic engineering strategies applied to different microalgae for improving different traits. Further it also throws light on RNAi and riboswitch engineering based methods which may be advantageous for high throughput microalgal research. A valid and optimally designed microalga can be developed where every engineering strategies meet each other successfully and will definitely fulfill the market needs. It is also to be noted that Omics (viz. genetic and metabolic manipulation with bioinformatics) should be integrated to develop a strain which could prove to be a futuristic solution for sustainable development for energy. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metabolic Engineering of the Moss Physcomitrella patens as a Green Cell Factory to Produce Terpenoids

    DEFF Research Database (Denmark)

    Zhan, Xin

    also achieved with the yields of 1.3 and 0.035 mg/g dry weight respectively, after several metabolic engineering strategies were tried, including HMGR overexpression, CPS/KS gene disruption and plastidic localization of the terpene synthases. In order to synthesize more valuable perfumery ingredient (Z...

  19. Improving production of ?-lactam antibiotics by Penicillium chrysogenum : Metabolic engineering based on transcriptome analysis

    NARCIS (Netherlands)

    Veiga, T.

    2012-01-01

    In Chapters 2-5 of this thesis, the applicability of transcriptome analysis to guide metabolic engineering strategies in P. chrysogenum is explored by investigating four cellular processes that are of potential relevance for industrial production of ?-lactam antibiotics: - Regulation of secondary

  20. Metabolic engineering of free-energy (ATP) conserving reactions in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    De Kok, S.

    2012-01-01

    Metabolic engineering – the improvement of cellular activities by manipulation of enzymatic, transport and regulatory functions of the cell – has enabled the industrial production of a wide variety of biological molecules from renewable resources. Microbial production of fuels and chemicals thereby

  1. Progress in understanding and engineering primary plant metabolism.

    Science.gov (United States)

    Stitt, Mark

    2013-04-01

    The maximum yield of crop plants depends on the efficiency of conversion of sunlight into biomass. This review summarises recent models that estimate energy conversion efficiency for successive steps in photosynthesis and metabolism. Photorespiration was identified as a major reason for energy loss during photosynthesis and strategies to modify or suppress photorespiration are presented. Energy loss during the conversion of photosynthate to biomass is also large but cannot be modelled as precisely due to incomplete knowledge about pathways and turnover and maintenance costs. Recent research on pathways involved in metabolite transport and interconversion in different organs, and recent insights into energy requirements linked to the production, maintenance and turnover of the apparatus for cellular growth and repair processes are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Evolutionary programming as a platform for in silico metabolic engineering

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Rocha, Isabel; Förster, Jochen

    2005-01-01

    , it is often difficult to predict the effects of genetic modifications on the resulting phenotype. Recently genome-scale metabolic models have been compiled for several different microorganisms where structural and stoichiometric complexity is inherently accounted for. New algorithms are being developed......, and it is therefore interesting to develop new faster algorithms. Results In this study we report an evolutionary programming based method to rapidly identify gene deletion strategies for optimization of a desired phenotypic objective function. We illustrate the proposed method for two important design parameters...... are discussed. Conclusion We show that evolutionary programming enables solving large gene knockout problems in relatively short computational time. The proposed algorithm also allows the optimization of non-linear objective functions or incorporation of non-linear constraints and additionally provides a family...

  3. Metabolic engineering of ketocarotenoid biosynthesis in higher plants.

    Science.gov (United States)

    Zhu, Changfu; Naqvi, Shaista; Capell, Teresa; Christou, Paul

    2009-03-15

    Ketocarotenoids such as astaxanthin and canthaxanthin have important applications in the nutraceutical, cosmetic, food and feed industries. Astaxanthin is derived from beta-carotene by 3-hydroxylation and 4-ketolation at both ionone end groups. These reactions are catalyzed by beta-carotene hydroxylase and beta-carotene ketolase, respectively. The hydroxylation reaction is widespread in higher plants, but ketolation is restricted to a few bacteria, fungi, and some unicellular green algae. The recent cloning and characterization of beta-carotene ketolase genes in conjunction with the development of effective co-transformation strategies permitting facile co-integration of multiple transgenes in target plants provided essential resources and tools to produce ketocarotenoids in planta by genetic engineering. In this review, we discuss ketocarotenoid biosynthesis in general, and characteristics and functional properties of beta-carotene ketolases in particular. We also describe examples of ketocarotenoid engineering in plants and we conclude by discussing strategies to efficiently convert beta-carotene to astaxanthin in transgenic plants.

  4. Klein-Gordon oscillators in noncommutative phase space

    International Nuclear Information System (INIS)

    Wang Jianhua

    2008-01-01

    We study the Klein-Gordon oscillators in non-commutative (NC) phase space. We find that the Klein-Gordon oscillators in NC space and NC phase-space have a similar behaviour to the dynamics of a particle in commutative space moving in a uniform magnetic field. By solving the Klein-Gordon equation in NC phase space, we obtain the energy levels of the Klein-Gordon oscillators, where the additional terms related to the space-space and momentum-momentum non-commutativity are given explicitly. (authors)

  5. Metabolic and bioprocess engineering for production of selenized yeast with increased content of seleno-methylselenocysteine

    DEFF Research Database (Denmark)

    Mapelli, Valeria; Hillestrøm, Peter René; Kápolna, Emese

    2011-01-01

    optimized heterologous selenocysteine methyltransferase and endowed with high intracellular levels of S-adenosyl-methionine, was able to accumulate SeMCys at levels higher than commercial selenized yeasts. A fine tuned carbon- and sulfate-limited fed-batch bioprocess was crucial to achieve good yields...... of biomass and SeMCys. Through the coupling of metabolic and bioprocess engineering we achieved a ∼24-fold increase in SeMCys, compared to certified reference material of selenized yeast. In addition, we investigated the interplay between sulfur and selenium metabolism and the possibility that redox...... imbalance occurred along with intracellular accumulation of Se. Collectively, our data show how the combination of metabolic and bioprocess engineering can be used for the production of selenized yeast enriched with beneficial Se-metabolites....

  6. N-Glycosylation optimization of recombinant antibodies in CHO cell through process and metabolic engineering

    DEFF Research Database (Denmark)

    Fan, Yuzhou

    protein with ensured safety, efficacy and cost-effectiveness, holistic understanding of titer and N-glycosylation of the protein in relation to cell culture process as well as genomic, proteomic, metabolic and physiological status of the cells becomes a superior approach. Combining the knowledge of CHO...... CHO cell factory. In the early part of the thesis, the first strategy was displayed by a number of successful case studies, in which process and media engineering approach was successfully used to direct N-glycosylation. Controlling the balance between glucose and amino acid metabolism, using...... and metabolic engineering approach to improve N-glycosylation capability of CHO cells was also presented promising results. Overexpression of either N-acetylglucosaminyltransferase I (GnTI) in CHO cells was confirmed to improve the maturation of glycans in mAb. In conclusion, integrating the concept of systems...

  7. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution.

    Science.gov (United States)

    Rosenberg, Julian N; Oyler, George A; Wilkinson, Loy; Betenbaugh, Michael J

    2008-10-01

    Microalgae have the potential to revolutionize biotechnology in a number of areas including nutrition, aquaculture, pharmaceuticals, and biofuels. Although algae have been commercially cultivated for over 50 years, metabolic engineering now seems necessary in order to achieve their full processing capabilities. Recently, the development of a number of transgenic algal strains boasting recombinant protein expression, engineered photosynthesis, and enhanced metabolism encourage the prospects of designer microalgae. Given the vast contributions that these solar-powered, carbon dioxide-sequestering organisms can provide to current global markets and the environment, an intensified focus on microalgal biotechnology is warranted. Ongoing advances in cultivation techniques coupled with genetic manipulation of crucial metabolic networks will further promote microalgae as an attractive platform for the production of numerous high-value compounds.

  8. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    Science.gov (United States)

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).

  9. The importance of sourcing enzymes from non-conventional fungi for metabolic engineering and biomass breakdown.

    Science.gov (United States)

    Seppälä, Susanna; Wilken, St Elmo; Knop, Doriv; Solomon, Kevin V; O'Malley, Michelle A

    2017-11-01

    A wealth of fungal enzymes has been identified from nature, which continue to drive strain engineering and bioprocessing for a range of industries. However, while a number of clades have been investigated, the vast majority of the fungal kingdom remains unexplored for industrial applications. Here, we discuss selected classes of fungal enzymes that are currently in biotechnological use, and explore more basal, non-conventional fungi and their underexploited biomass-degrading mechanisms as promising agents in the transition towards a bio-based society. Of special interest are anaerobic fungi like the Neocallimastigomycota, which were recently found to harbor the largest diversity of biomass-degrading enzymes among the fungal kingdom. Enzymes sourced from these basal fungi have been used to metabolically engineer substrate utilization in yeast, and may offer new paths to lignin breakdown and tunneled biocatalysis. We also contrast classic enzymology approaches with emerging 'omics'-based tools to decipher function within novel fungal isolates and identify new promising enzymes. Recent developments in genome editing are expected to accelerate discovery and metabolic engineering within these systems, yet are still limited by a lack of high-resolution genomes, gene regulatory regions, and even appropriate culture conditions. Finally, we present new opportunities to harness the biomass-degrading potential of undercharacterized fungi via heterologous expression and engineered microbial consortia. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Comparative multi-goal tradeoffs in systems engineering of microbial metabolism

    Science.gov (United States)

    2012-01-01

    Background Metabolic engineering design methodology has evolved from using pathway-centric, random and empirical-based methods to using systems-wide, rational and integrated computational and experimental approaches. Persistent during these advances has been the desire to develop design strategies that address multiple simultaneous engineering goals, such as maximizing productivity, while minimizing raw material costs. Results Here, we use constraint-based modeling to systematically design multiple combinations of medium compositions and gene-deletion strains for three microorganisms (Escherichia coli, Saccharomyces cerevisiae, and Shewanella oneidensis) and six industrially important byproducts (acetate, D-lactate, hydrogen, ethanol, formate, and succinate). We evaluated over 435 million simulated conditions and 36 engineering metabolic traits, including product rates, costs, yields and purity. Conclusions The resulting metabolic phenotypes can be classified into dominant clusters (meta-phenotypes) for each organism. These meta-phenotypes illustrate global phenotypic variation and sensitivities, trade-offs associated with multiple engineering goals, and fundamental differences in organism-specific capabilities. Given the increasing number of sequenced genomes and corresponding stoichiometric models, we envisage that the proposed strategy could be extended to address a growing range of biological questions and engineering applications. PMID:23009214

  11. Comparative multi-goal tradeoffs in systems engineering of microbial metabolism

    Directory of Open Access Journals (Sweden)

    Byrne David

    2012-09-01

    Full Text Available Abstract Background Metabolic engineering design methodology has evolved from using pathway-centric, random and empirical-based methods to using systems-wide, rational and integrated computational and experimental approaches. Persistent during these advances has been the desire to develop design strategies that address multiple simultaneous engineering goals, such as maximizing productivity, while minimizing raw material costs. Results Here, we use constraint-based modeling to systematically design multiple combinations of medium compositions and gene-deletion strains for three microorganisms (Escherichia coli, Saccharomyces cerevisiae, and Shewanella oneidensis and six industrially important byproducts (acetate, D-lactate, hydrogen, ethanol, formate, and succinate. We evaluated over 435 million simulated conditions and 36 engineering metabolic traits, including product rates, costs, yields and purity. Conclusions The resulting metabolic phenotypes can be classified into dominant clusters (meta-phenotypes for each organism. These meta-phenotypes illustrate global phenotypic variation and sensitivities, trade-offs associated with multiple engineering goals, and fundamental differences in organism-specific capabilities. Given the increasing number of sequenced genomes and corresponding stoichiometric models, we envisage that the proposed strategy could be extended to address a growing range of biological questions and engineering applications.

  12. Enhancement of Thiamin Content in Arabidopsis thaliana by Metabolic Engineering.

    Science.gov (United States)

    Dong, Wei; Stockwell, Virginia O; Goyer, Aymeric

    2015-12-01

    Thiamin is an essential nutrient in the human diet. Severe thiamin deficiency leads to beriberi, a lethal disease which is common in developing countries. Thiamin biofortification of staple food crops is a possible strategy to alleviate thiamin deficiency-related diseases. In plants, thiamin plays a role in the response to abiotic and biotic stresses, and data from the literature suggest that boosting thiamin content could increase resistance to stresses. Here, we tested an engineering strategy to increase thiamin content in Arabidopsis. Thiamin is composed of a thiazole ring linked to a pyrimidine ring by a methylene bridge. THI1 and THIC are the first committed steps in the synthesis of the thiazole and pyrimidine moieties, respectively. Arabidopsis plants were transformed with a vector containing the THI1-coding sequence under the control of a constitutive promoter. Total thiamin leaf content in THI1 plants was up approximately 2-fold compared with the wild type. THI1-overexpressing lines were then crossed with pre-existing THIC-overexpressing lines. Resulting THI1 × THIC plants accumulated up to 3.4- and 2.6-fold more total thiamin than wild-type plants in leaf and seeds, respectively. After inoculation with Pseudomonas syringae, THI1 × THIC plants had lower populations than the wild-type control. However, THI1 × THIC plants subjected to various abiotic stresses did not show any visible or biochemical changes compared with the wild type. We discuss the impact of engineering thiamin biosynthesis on the nutritional value of plants and their resistance to biotic and abiotic stresses. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    DEFF Research Database (Denmark)

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial...... hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ‘drop-in’ biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level...... is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks...

  14. Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli.

    Science.gov (United States)

    Wang, Chonglong; Zada, Bakht; Wei, Gongyuan; Kim, Seon-Won

    2017-10-01

    Isoprenoids comprise the largest family of natural organic compounds with many useful applications in the pharmaceutical, nutraceutical, and industrial fields. Rapid developments in metabolic engineering and synthetic biology have facilitated the engineering of isoprenoid biosynthetic pathways in Escherichia coli to induce high levels of production of many different isoprenoids. In this review, the stem pathways for synthesizing isoprene units as well as the branch pathways deriving diverse isoprenoids from the isoprene units have been summarized. The review also highlights the metabolic engineering efforts made for the biosynthesis of hemiterpenoids, monoterpenoids, sesquiterpenoids, diterpenoids, carotenoids, retinoids, and coenzyme Q 10 in E. coli. Perspectives and future directions for the synthesis of novel isoprenoids, decoration of isoprenoids using cytochrome P450 enzymes, and secretion or storage of isoprenoids in E. coli have also been included. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Recent progress in the metabolic engineering of alkaloids in plant systems.

    Science.gov (United States)

    Glenn, Weslee S; Runguphan, Weerawat; O'Connor, Sarah E

    2013-04-01

    Plant alkaloids have a rich chemical ecology that has been exploited for medicinal purposes for thousands of years. Despite being highly represented within today's pharmacopoeia, relatively little is known about the biosynthesis, regulation and transport of these molecules. Understanding how nature synthesizes plant alkaloids will enhance our ability to overproduce--that is, to metabolically engineer--these medicinally useful compounds as well as new-to-nature compounds (with potentially improved bioactivity) derived from these natural scaffolds. Recent progress in the metabolic engineering of nitrogen-containing plant natural products--specifically the monoterpene indole alkaloids, the benzylisoquinoline alkaloids and the glucosinolates--was made possible through the characterization of various components in both native and engineered enzymatic pathways. The subsequent reconfiguration and tuning of these biological 'parts' has enabled the production of selected products at increasingly higher titers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Engineering phenolics metabolism in the grasses using transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Grotewold, Erich [The Ohio State University

    2013-07-26

    The economical competitiveness of agriculture-derived biofuels can be significantly enhanced by increasing biomass/acre yields and by furnishing the desired carbon balance for facilitating liquid fuel production (e.g., ethanol) or for high-energy solid waste availability to be used as biopower (e.g., for electricity production). Biomass production and carbon balance are tightly linked to the biosynthesis of phenolic compounds, which are found in crops and in agricultural residues either as lignins, as part of the cell wall, or as soluble phenolics which play a variety of functions in the biology of plants. The grasses, in particular maize, provide the single major source of agricultural biomass, offering significant opportunities for increasing renewable fuel production. Our laboratory has pioneered the use of transcription factors for manipulating plant metabolic pathways, an approach that will be applied here towards altering the composition of phenolic compounds in maize. Previously, we identified a small group of ten maize R2R3-MYB transcription factors with all the characteristics of regulators of different aspects of phenolic biosynthesis. Here, we propose to investigate the participation of these R2R3-MYB factors in the regulation of soluble and insoluble maize phenolics, using a combination of over-expression and down-regulation of these transcription factors in transgenic maize cultured cells and in maize plants. Maize cells and plants altered in the activity of these regulatory proteins will be analyzed for phenolic composition by targeted metabolic profiling. Specifically, we will I) Investigate the effect of gain- and loss-of-function of a select group of R2R3-MYB transcription factors on the phenolic composition of maize plants and II) Identify the biosynthetic genes regulated by each of the selected R2R3-MYB factors. While a likely outcome of these studies are transgenic maize plants with altered phenolic composition, this research will significantly

  17. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Suhyung Cho

    2018-04-01

    Full Text Available The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas adaptive immune system has been extensively used for gene editing, including gene deletion, insertion, and replacement in bacterial and eukaryotic cells owing to its simple, rapid, and efficient activities in unprecedented resolution. Furthermore, the CRISPR interference (CRISPRi system including deactivated Cas9 (dCas9 with inactivated endonuclease activity has been further investigated for regulation of the target gene transiently or constitutively, avoiding cell death by disruption of genome. This review discusses the applications of CRISPR/Cas for genome editing in various bacterial systems and their applications. In particular, CRISPR technology has been used for the production of metabolites of high industrial significance, including biochemical, biofuel, and pharmaceutical products/precursors in bacteria. Here, we focus on methods to increase the productivity and yield/titer scan by controlling metabolic flux through individual or combinatorial use of CRISPR/Cas and CRISPRi systems with introduction of synthetic pathway in industrially common bacteria including Escherichia coli. Further, we discuss additional useful applications of the CRISPR/Cas system, including its use in functional genomics.

  18. Role of glycolytic intermediate in regulation: Improving lycopene production in Escherichia coli by engineering metabolic control

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, W.R.; Liao, J.C.

    2001-06-01

    Metabolic engineering in the postgenomic era is expected to benefit from a full understanding of the biosynthetic capability of microorganisms as a result of the progress being made in bioinformatics and functional genomics. The immediate advantage of such information is to allow the rational design of novel pathways and the elimination of native reactions that are detrimental or unnecessary for the desired purpose. However, with the ability to manipulate metabolic pathways becoming more effective, metabolic engineering will need to face a new challenge: the reengineering of the regulatory hierarchy that controls gene expression in those pathways. In addition to constructing the genetic composition of a metabolic pathway, they propose that it will become just as important to consider the dynamics of pathways gene expression. It has been widely observed that high-level induction of a recombinant protein or pathway leads to growth retardation and reduced metabolic activity. These phenotypic characteristics result from the fact that the constant demands of production placed upon the cell interfere with its changing requirements for growth. They believe that this common situation in metabolic engineering can be alleviated by designing a dynamic controller that is able to sense the metabolic state of the cell and regulate the expression of the recombinant pathway accordingly. This approach, which is termed metabolic control engineering, involves redesigning the native regulatory circuits and applying them to the recombinant pathway. The general goal of such an effort will be to control the flux to the recombinant pathway adaptively according to the cell's metabolic state. The dynamically controlled recombinant pathway can potentially lead to enhanced production, minimized growth retardation, and reduced toxic by-product formation. The regulation of gene expression in response to the physiological state is also essential to the success of gene therapy. Here they

  19. 2011 Clusters, Nanocrystals & Nanostructures Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Lai-Sheng Wang

    2011-07-29

    Small particles have been at the heart of nanoscience since the birth of the field and now stand ready to make significant contributions to the big challenges of energy, health and sustainability. Atomic clusters show exquisite size-dependent electronic and magnetic properties and offer a new level of control in catalyses, sensors and biochips; functionalised nanocrystals offer remarkable optical properties and diverse applications in electronic devices, solar energy, and therapy. Both areas are complemented by a raft of recent advances in fabrication, characterization, and performance of a diversity of nanomaterials from the single atom level to nanowires, nanodevices, and biologically-inspired nanosystems. The goal of the 2011 Gordon Conference is thus to continue and enhance the interdisciplinary tradition of this series and discuss the most recent advances, fundamental scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. A single conference covering all aspects of nanoscience from fundamental issues to applications has the potential to create new ideas and stimulate cross fertilization. The meeting will therefore provide a balance among the three sub-components of the conference, true to its title, with a selection of new topics added to reflect rapid advances in the field. The open atmosphere of a Gordon conference, emphasizing the presentation of unpublished results and extensive discussions, is an ideal home for this rapidly developing field and will allow all participants to enjoy a valuable and stimulating experience. Historically, this Gordon conference has been oversubscribed, so we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral presentations. Given the

  20. Some Exact Solutions for a Klein Gordon Equation Algunas soluciones exactas para una ecuación de Klein Gordon

    Directory of Open Access Journals (Sweden)

    H H Ortíz Álvarez

    2012-12-01

    Full Text Available In solving practical problems in science and engineering arises as a direct consequence differential equations that explains the dynamics of the phenomena.Finding exact solutions to this equations provides importan informationabout the behavior of physical systems. The Lie symmetry method allows tofind invariant solutions under certain groups of transformations for differentialequations.This method not very well known and used is of great importance inthe scientific community. By this approach it was possible to find several exactinvariant solutions for the Klein Gordon Equation uxx − utt = k(u. A particularcase, The Kolmogorov equation uxx − utt = k1u + k2un was considered.These equations appear in the study of relativistic and quantum physics. Thegeneral solutions found, could be used for future explorations on the study forother specific K(u functions. En la solución de problemas prácticos de las ciencias y la ingeniería surgen como consecuencia directa ecuaciones diferenciales que dan razón de la dinámica de los fenómenos. El encontrar soluciones exactas a estas ecuaciones proporciona información importante sobre el comportamiento de sistemas físicos. El método de las simetrías de Lie permite encontrar soluciones invariantes bajo ciertos grupos de transformaciones para ecuaciones diferenciales. Mediante este método fue posible encontrar familias de soluciones exactas invariantes para la ecuación de Klein Gordon uxx- utt = k(u: En particular, se consideró la ecuación de Kolmogorov uxx - utt = k1u + k2u n. Estas ecuaciones aparecen en el estudio de la física relativista y cuántica. Las soluciones generales encontradas podrían emplearse en futuros desarrollos en el estudio para otro tipo de funciones k(u.

  1. Global Metabolic Engineering of Glycolytic Pathway via Multicopy Integration in Saccharomyces cerevisiae.

    Science.gov (United States)

    Yamada, Ryosuke; Wakita, Kazuki; Ogino, Hiroyasu

    2017-04-21

    The use of renewable feedstocks for producing biofuels and biobased chemicals by engineering metabolic pathways of yeast Saccharomyces cerevisiae has recently become an attractive option. Many researchers attempted to increase glucose consumption rate by overexpressing some glycolytic enzymes because most target biobased chemicals are derived through glycolysis. However, these attempts have met with little success. In this study, to create a S. cerevisiae strain with high glucose consumption rate, we used multicopy integration to develop a global metabolic engineering strategy. Among approximately 350 metabolically engineered strains, YPH499/dPdA3-34 exhibited the highest glucose consumption rate. This strain showed 1.3-fold higher cell growth rate and glucose consumption rate than the control strain. Real-time PCR analysis revealed that transcription levels of glycolysis-related genes such as HXK2, PFK1, PFK2, PYK2, PGI1, and PGK1 in YPH499/dPdA3-34 were increased. Our strategy is thus a promising approach to optimize global metabolic pathways in S. cerevisiae.

  2. Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels.

    Science.gov (United States)

    Caspeta, Luis; Nielsen, Jens

    2013-05-01

    Recently genome sequence data have become available for Aspergillus and Pichia species of industrial interest. This has stimulated the use of systems biology approaches for large-scale analysis of the molecular and metabolic responses of Aspergillus and Pichia under defined conditions, which has resulted in much new biological information. Case-specific contextualization of this information has been performed using comparative and functional genomic tools. Genomics data are also the basis for constructing genome-scale metabolic models, and these models have helped in the contextualization of knowledge on the fundamental biology of Aspergillus and Pichia species. Furthermore, with the availability of these models, the engineering of Aspergillus and Pichia is moving from traditional approaches, such as random mutagenesis, to a systems metabolic engineering approach. Here we review the recent trends in systems biology of Aspergillus and Pichia species, highlighting the relevance of these developments for systems metabolic engineering of these organisms for the production of hydrolytic enzymes, biofuels and chemicals from biomass. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ketocarotenoid Production in Soybean Seeds through Metabolic Engineering.

    Directory of Open Access Journals (Sweden)

    Emily C Pierce

    Full Text Available The pink or red ketocarotenoids, canthaxanthin and astaxanthin, are used as feed additives in the poultry and aquaculture industries as a source of egg yolk and flesh pigmentation, as farmed animals do not have access to the carotenoid sources of their wild counterparts. Because soybean is already an important component in animal feed, production of these carotenoids in soybean could be a cost-effective means of delivery. In order to characterize the ability of soybean seed to produce carotenoids, soybean cv. Jack was transformed with the crtB gene from Pantoea ananatis, which codes for phytoene synthase, an enzyme which catalyzes the first committed step in the carotenoid pathway. The crtB gene was engineered together in combinations with ketolase genes (crtW from Brevundimonas sp. strain SD212 and bkt1 from Haematococcus pluvialis to produce ketocarotenoids; all genes were placed under the control of seed-specific promoters. HPLC results showed that canthaxanthin is present in the transgenic seeds at levels up to 52 μg/g dry weight. Transgenic seeds also accumulated other compounds in the carotenoid pathway, such as astaxanthin, lutein, β-carotene, phytoene, α-carotene, lycopene, and β-cryptoxanthin, whereas lutein was the only one of these detected in non-transgenic seeds. The accumulation of astaxanthin, which requires a β-carotene hydroxylase in addition to a β-carotene ketolase, in the transgenic seeds suggests that an endogenous soybean enzyme is able to work in combination with the ketolase transgene. Soybean seeds that accumulate ketocarotenoids could potentially be used in animal feed to reduce or eliminate the need for the costly addition of these compounds.

  4. Metabolic engineering of oleaginous yeastYarrowia lipolyticafor limonene overproduction.

    Science.gov (United States)

    Cao, Xuan; Lv, Yu-Bei; Chen, Jun; Imanaka, Tadayuki; Wei, Liu-Jing; Hua, Qiang

    2016-01-01

    Limonene, a monocyclic monoterpene, is known for its using as an important precursor of many flavoring, pharmaceutical, and biodiesel products. Currently, d-limonene has been produced via fractionation from essential oils or as a byproduct of orange juice production, however, considering the increasing need for limonene and a certain amount of pesticides may exist in the limonene obtained from the citrus industry, some other methods should be explored to produce limonene. To construct the limonene synthetic pathway in Yarrowia lipolytica , two genes encoding neryl diphosphate synthase 1 (NDPS1) and limonene synthase (LS) were codon-optimized and heterologously expressed in Y. lipolytica . Furthermore, to maximize limonene production, several genes involved in the MVA pathway were overexpressed, either in different copies of the same gene or in combination. Finally with the optimized pyruvic acid and dodecane concentration in flask culture, a maximum limonene titer and content of 23.56 mg/L and 1.36 mg/g DCW were achieved in the final engineered strain Po1f-LN-051, showing approximately 226-fold increase compared with the initial yield 0.006 mg/g DCW. This is the first report on limonene biosynthesis in oleaginous yeast Y. lipolytica by heterologous expression of codon-optimized tLS and tNDPS1 genes. To our knowledge, the limonene production 23.56 mg/L, is the highest limonene production level reported in yeast. In short, we demonstrate that Y. lipolytica provides a compelling platform for the overproduction of limonene derivatives, and even other monoterpenes.

  5. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    Science.gov (United States)

    Jang, Yu-Sin; Im, Jung Ae; Choi, So Young; Lee, Jung Im; Lee, Sang Yup

    2014-05-01

    A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta(-), buk(-), ctfB(-) and adhE1(-)) at pH 6.0 resulted in the production of 32.5g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3g/g from 83.3g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5g/g) obtained with the HYCBEKW strain (pta(-), buk(-), ctfB(-), adhE1(-) and hydA(-)) was 1.6 times higher than that (18.2g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Current progress of targetron technology: development, improvement and application in metabolic engineering.

    Science.gov (United States)

    Liu, Ya-Jun; Zhang, Jie; Cui, Gu-Zhen; Cui, Qiu

    2015-06-01

    Targetrons are mobile group II introns that can recognize their DNA target sites by base-pairing RNA-DNA interactions with the aid of site-specific binding reverse transcriptases. Targetron technology stands out from recently developed gene targeting methods because of the flexibility, feasibility, and efficiency, and is particularly suitable for the genetic engineering of difficult microorganisms, including cellulolytic bacteria that are considered promising candidates for biomass conversion via consolidated bioprocessing. Along with the development of the thermotargetron method for thermophiles, targetron technology becomes increasingly important for the metabolic engineering of industrial microorganisms aiming at biofuel/chemical production. To summarize the current progress of targetron technology and provide new insights on the use of the technology, this paper reviews the retrohoming mechanisms of both mesophilic and thermophilic targetron methods based on various group II introns, investigates the improvement of targetron tools for high target efficiency and specificity, and discusses the current applications in the metabolic engineering for bacterial producers. Although there are still intellectual property and technical restrictions in targetron applications, we propose that targetron technology will contribute to both biochemistry research and the metabolic engineering for industrial productions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose.

    Science.gov (United States)

    Yang, Xiaorui; Xu, Mengmeng; Yang, Shang-Tian

    2015-11-01

    Production of cellulosic biofuels has drawn increasing attention. However, currently no microorganism can produce biofuels, particularly butanol, directly from cellulosic biomass efficiently. Here we engineered a cellulolytic bacterium, Clostridium cellulovorans, for n-butanol and ethanol production directly from cellulose by introducing an aldehyde/alcohol dehydrogenase (adhE2), which converts butyryl-CoA to n-butanol and acetyl-CoA to ethanol. The engineered strain was able to produce 1.42 g/L n-butanol and 1.60 g/L ethanol directly from cellulose. Moreover, the addition of methyl viologen as an artificial electron carrier shifted the metabolic flux from acid production to alcohol production, resulting in a high biofuel yield of 0.39 g/g from cellulose, comparable to ethanol yield from corn dextrose by yeast fermentation. This study is the first metabolic engineering of C. cellulovorans for n-butanol and ethanol production directly from cellulose with significant titers and yields, providing a promising consolidated bioprocessing (CBP) platform for biofuel production from cellulosic biomass. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae

    Science.gov (United States)

    2012-01-01

    Through metabolic engineering microorganisms can be engineered to produce new products and further produce these with higher yield and productivities. Here, we expressed the bacterial polyhydroxybutyrate (PHB) pathway in the yeast Saccharomyces cerevisiae and we further evaluated the effect of engineering the formation of acetyl coenzyme A (acetyl-CoA), an intermediate of the central carbon metabolism and precursor of the PHB pathway, on heterologous PHB production by yeast. We engineered the acetyl-CoA metabolism by co-transformation of a plasmid containing genes for native S. cerevisiae alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6), acetyl-CoA acetyltransferase (ERG10) and a Salmonella enterica acetyl-CoA synthetase variant (acsL641P), resulting in acetoacetyl-CoA overproduction, together with a plasmid containing the PHB pathway genes coding for acetyl-CoA acetyltransferase (phaA), NADPH-linked acetoacetyl-CoA reductase (phaB) and poly(3-hydroxybutyrate) polymerase (phaC) from Ralstonia eutropha H16. Introduction of the acetyl-CoA plasmid together with the PHB plasmid, improved the productivity of PHB more than 16 times compared to the reference strain used in this study, as well as it reduced the specific product formation of side products. PMID:23009357

  9. Metabolically Active Three-Dimensional Brown Adipose Tissue Engineered from White Adipose-Derived Stem Cells.

    Science.gov (United States)

    Yang, Jessica P; Anderson, Amy E; McCartney, Annemarie; Ory, Xavier; Ma, Garret; Pappalardo, Elisa; Bader, Joel; Elisseeff, Jennifer H

    2017-04-01

    Brown adipose tissue (BAT) has a unique capacity to expend calories by decoupling energy expenditure from ATP production, therefore BAT could realize therapeutic potential to treat metabolic diseases such as obesity and type 2 diabetes. Recent studies have investigated markers and function of native BAT, however, successful therapies will rely on methods that supplement the small existing pool of brown adipocytes in adult humans. In this study, we engineered BAT from both human and rat adipose precursors and determined whether these ex vivo constructs could mimic in vivo tissue form and metabolic function. Adipose-derived stem cells (ASCs) were isolated from several sources, human white adipose tissue (WAT), rat WAT, and rat BAT, then differentiated toward both white and brown adipogenic lineages in two-dimensional and three-dimensional (3D) culture conditions. ASCs derived from WAT were successfully differentiated in 3D poly(ethylene glycol) hydrogels into mature adipocytes with BAT phenotype and function, including high uncoupling protein 1 (UCP1) mRNA and protein expression and increased metabolic activity (basal oxygen consumption, proton leak, and maximum respiration). By utilizing this "browning" process, the abundant and accessible WAT stem cell population can be engineered into 3D tissue constructs with the metabolic capacity of native BAT, ultimately for therapeutic intervention in vivo and as a tool for studying BAT and its metabolic properties.

  10. The symmetries and conservation laws of some Gordon-type ...

    Indian Academy of Sciences (India)

    Abstract. In this letter, the Lie point symmetries of a class of Gordon-type wave equations that arise in the Milne space-time are presented and analysed. Using the Lie point symmetries, it is showed how to reduce Gordon-type wave equations using the method of invariants, and to obtain exact solutions corresponding to ...

  11. Combined Sinh-Cosh-Gordon equation: Symmetry reductions, exact ...

    African Journals Online (AJOL)

    Combined Sinh-Cosh-Gordon equation: Symmetry reductions, exact solutions and conservation laws. ... In this paper we study the combined sinh-cosh-Gordon equation, which arises in mathematical physics and has a wide range of scientific applications that range from chemical reactions to water surface gravity waves.

  12. Bunched soliton states in weakly coupled sine-Gordon systems

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Samuelsen, Mogens Rugholm; Lomdahl, P. S.

    1990-01-01

    The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results.......The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results....

  13. The symmetries and conservation laws of some Gordon-type ...

    Indian Academy of Sciences (India)

    Using the Lie point symmetries, it is showed how to reduce Gordon-type wave equations using the method of invariants, and to obtain exact solutions corresponding to some boundary values. The Noether point symmetries and conservation laws are obtained for the Klein–Gordon equation in one case. Finally, the existence ...

  14. The 40th AAAS Gordon Conference on nuclear chemistry

    International Nuclear Information System (INIS)

    Seaborg, G.T.

    1991-01-01

    I am pleased to speak at the Fortieth Gordon Conference on Nuclear Chemistry. I served as Chairman of the first Gordon Conference on Nuclear Chemistry held June 23--27, 1952, at New Hampton, New Hampshire. In my remarks, during which I shall quote from my journal, I shall describe some of the background leading up to the first Gordon Conference on Nuclear Chemistry and my attendance at the first seven Gordon Conferences during the period 1952 through 1958. I shall also quote my description of my appearance as the featured speaker at the Silver Anniversary of the Gordon Research Conferences on December 27, 1956 held at the Commodore Hotel in New York City. I shall begin with reference to my participation in the predecessor to the Gordon Conferences, the Gibson Island Research Conferences 45 years ago, on Thursday, June 20, 1946, as a speaker. This was 15 years after the start of these conferences in 1931. Neil Gordon played a leading role in these conferences, which were named (in 1948) in his honor -- the Gordon Research Conferences -- soon after they were moved to Colby Junior College, New London, New Hampshire in 1947. W. George Parks became Director in 1947, Alexander Cruickshank became Assistant Director in 1947 and Director in 1968

  15. Thomas Gordon's Communicative Pedagogy in Modern Educational Realities

    Science.gov (United States)

    Leshchenko, Maria; Isaieva, Svitlana

    2014-01-01

    In the article the principles, strategies, methods, techniques of communicative pedagogy of American scientist Thomas Gordon and system components of effective communication training for parents, teachers and administrators are enlightened. It has been determined that the main principle of Thomas Gordon's pedagogy is an interactive way of knowing…

  16. The 40th AAAS Gordon Conference on nuclear chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, G.T.

    1991-06-27

    I am pleased to speak at the Fortieth Gordon Conference on Nuclear Chemistry. I served as Chairman of the first Gordon Conference on Nuclear Chemistry held June 23--27, 1952, at New Hampton, New Hampshire. In my remarks, during which I shall quote from my journal, I shall describe some of the background leading up to the first Gordon Conference on Nuclear Chemistry and my attendance at the first seven Gordon Conferences during the period 1952 through 1958. I shall also quote my description of my appearance as the featured speaker at the Silver Anniversary of the Gordon Research Conferences on December 27, 1956 held at the Commodore Hotel in New York City. I shall begin with reference to my participation in the predecessor to the Gordon Conferences, the Gibson Island Research Conferences 45 years ago, on Thursday, June 20, 1946, as a speaker. This was 15 years after the start of these conferences in 1931. Neil Gordon played a leading role in these conferences, which were named (in 1948) in his honor -- the Gordon Research Conferences -- soon after they were moved to Colby Junior College, New London, New Hampshire in 1947. W. George Parks became Director in 1947, Alexander Cruickshank became Assistant Director in 1947 and Director in 1968.

  17. 2012 BATTERIES GORDON RESEARCH CONFERENCE, MARCH 4-9, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Harris

    2012-03-09

    The Gordon Research Conference on BATTERIES was held at Four Points Sheraton / Holiday Inn Express, Ventura, California, March 4-9, 2012. The Conference was well-attended with 176 participants. Gordon Research Conferences does not permit publication of meeting proceedings.

  18. Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway

    Directory of Open Access Journals (Sweden)

    Ye Xiaoting

    2012-09-01

    Full Text Available Abstract Background The integration of biotechnology into chemical manufacturing has been recognized as a key technology to build a sustainable society. However, the practical applications of biocatalytic chemical conversions are often restricted due to their complexities involving the unpredictability of product yield and the troublesome controls in fermentation processes. One of the possible strategies to overcome these limitations is to eliminate the use of living microorganisms and to use only enzymes involved in the metabolic pathway. Use of recombinant mesophiles producing thermophilic enzymes at high temperature results in denaturation of indigenous proteins and elimination of undesired side reactions; consequently, highly selective and stable biocatalytic modules can be readily prepared. By rationally combining those modules together, artificial synthetic pathways specialized for chemical manufacturing could be designed and constructed. Results A chimeric Embden-Meyerhof (EM pathway with balanced consumption and regeneration of ATP and ADP was constructed by using nine recombinant E. coli strains overproducing either one of the seven glycolytic enzymes of Thermus thermophilus, the cofactor-independent phosphoglycerate mutase of Pyrococcus horikoshii, or the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase of Thermococcus kodakarensis. By coupling this pathway with the Thermus malate/lactate dehydrogenase, a stoichiometric amount of lactate was produced from glucose with an overall ATP turnover number of 31. Conclusions In this study, a novel and simple technology for flexible design of a bespoke metabolic pathway was developed. The concept has been testified via a non-ATP-forming chimeric EM pathway. We designated this technology as “synthetic metabolic engineering”. Our technology is, in principle, applicable to all thermophilic enzymes as long as they can be functionally expressed in the host, and thus would be

  19. METABOLIC ENGINEERING OF LACTIC ACID BACTERIA FOR THE PRODUCTION OF INDUSTRIALLY IMPORTANT COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Maria Papagianni

    2012-10-01

    Full Text Available Lactic acid bacteria (LAB are receiving increased attention for use as cell factories for the production of metabolites with wide use by the food and pharmaceutical industries. The availability of efficient tools for genetic modification of LAB during the past decade permitted the application of metabolic engineering strategies at the levels of both the primary and the more complex secondary metabolism. The recent developments in the area with a focus on the production of industrially important metabolites will be discussed in this review.

  20. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds

    Directory of Open Access Journals (Sweden)

    Maria Papagianni

    2012-10-01

    Full Text Available Lactic acid bacteria (LAB are receiving increased attention for use as cell factories for the production of metabolites with wide use by the food and pharmaceutical industries. The availability of efficient tools for genetic modification of LAB during the past decade permitted the application of metabolic engineering strategies at the levels of both the primary and the more complex secondary metabolism. The recent developments in the area with a focus on the production of industrially important metabolites will be discussed in this review.

  1. Quantifying the metabolic capabilities of engineered Zymomonas mobilis using linear programming analysis

    Directory of Open Access Journals (Sweden)

    Tsantili Ivi C

    2007-03-01

    Full Text Available Abstract Background The need for discovery of alternative, renewable, environmentally friendly energy sources and the development of cost-efficient, "clean" methods for their conversion into higher fuels becomes imperative. Ethanol, whose significance as fuel has dramatically increased in the last decade, can be produced from hexoses and pentoses through microbial fermentation. Importantly, plant biomass, if appropriately and effectively decomposed, is a potential inexpensive and highly renewable source of the hexose and pentose mixture. Recently, the engineered (to also catabolize pentoses anaerobic bacterium Zymomonas mobilis has been widely discussed among the most promising microorganisms for the microbial production of ethanol fuel. However, Z. mobilis genome having been fully sequenced in 2005, there is still a small number of published studies of its in vivo physiology and limited use of the metabolic engineering experimental and computational toolboxes to understand its metabolic pathway interconnectivity and regulation towards the optimization of its hexose and pentose fermentation into ethanol. Results In this paper, we reconstructed the metabolic network of the engineered Z. mobilis to a level that it could be modelled using the metabolic engineering methodologies. We then used linear programming (LP analysis and identified the Z. mobilis metabolic boundaries with respect to various biological objectives, these boundaries being determined only by Z. mobilis network's stoichiometric connectivity. This study revealed the essential for bacterial growth reactions and elucidated the association between the metabolic pathways, especially regarding main product and byproduct formation. More specifically, the study indicated that ethanol and biomass production depend directly on anaerobic respiration stoichiometry and activity. Thus, enhanced understanding and improved means for analyzing anaerobic respiration and redox potential in vivo are

  2. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering

    DEFF Research Database (Denmark)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei

    2015-01-01

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals...... and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals......, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable...

  3. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    Science.gov (United States)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications

    Directory of Open Access Journals (Sweden)

    Ann-Kathrin Löbs

    2017-09-01

    Full Text Available Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisiae is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.

  5. Metabolically Engineered Fungal Cells With Increased Content Of Polyunsaturated Fatty Acids

    DEFF Research Database (Denmark)

    2008-01-01

    This invention relates to the production of fatty acids and particularly to the production of the polyunsaturated fatty acids (PUFAs) arachidonic acid (ARA) and eicosapentaenoic acid (EPA) in genetically engineered fungal cells, in particular, to metabolically engineered Saccharomyces cerevisiae...... cells with increased content of ARA and EPA. The invention especially involves improvement of the PUFA content in the host organism through various over-expression of e.g. cytochrome b5 and cytochrome b5 reductase involved in fatty acid desaturation, and heterologous expression of cytochrome b5...... and cytochrome b5 reductase and expression of heterologous fatty acid synthases....

  6. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications

    DEFF Research Database (Denmark)

    Otero, José Manuel; Vongsangnak, Wanwipa; Asadollahi, Mohammadali

    2010-01-01

    selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering. RESULTS: In this work we...... and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function. CONCLUSIONS...

  7. Genomics:GTL Contractor-Grantee Workshop IV and Metabolic Engineering Working Group Inter-Agency Conference on Metabolic Engineering 2006

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, Betty Kay [ORNL; Martin, Sheryl A [ORNL

    2006-02-01

    Welcome to the 2006 joint meeting of the fourth Genomics:GTL Contractor-Grantee Workshop and the six Metabolic Engineering Working Group Inter-Agency Conference. The vision and scope of the Genomics:GTL program continue to expand and encompass research and technology issues from diverse scientific disciplines, attracting broad interest and support from researchers at universities, DOE national laboratories, and industry. Metabolic engineering's vision is the targeted and purposeful alteration of metabolic pathways to improve the understanding and use of cellular pathways for chemical transformation, energy transduction, and supramolecular assembly. These two programs have much complementarity in both vision and technological approaches, as reflected in this joint workshop. GLT's challenge to the scientific community remains the further development and use of a broad array of innovative technologies and computational tools to systematically leverage the knowledge and capabilities brought to us by DNA sequencing projects. The goal is to seek a broad and predictive understanding of the functioning and control of complex systems--individual microbes, microbial communities, and plants. GTL's prominent position at the interface of the physical, computational, and biological sciences is both a strength and challenge. Microbes remain GTL's principal biological focus. In the complex 'simplicity' of microbes, they find capabilities needed by DOE and the nation for clean and secure energy, cleanup of environmental contamination, and sequestration of atmospheric carbon dioxide that contributes to global warming. An ongoing challenge for the entire GTL community is to demonstrate that the fundamental science conducted in each of your research projects brings us a step closer to biology-based solutions for these important national energy and environmental needs.

  8. 2010 ELECTRODEPOSITION GORDON RESEARCH CONFERENCE, AUGUST 1-6, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Peter Searson

    2010-08-06

    The 2010 Gordon Conference on Electrodeposition will present cutting-edge research on electrodeposition with emphasis on (i) advances in basic science, (ii) developments in next-generation technologies, and (iii) new and emerging areas. The Conference will feature a wide range of topics, from atomic scale processes, nucleation and growth, thin film deposition, and electrocrystallization, to applications of electrodeposition in devices including microelectronics, solar energy, and power sources. The Conference will bring together investigators from a wide range of scientific disciplines, including chemical engineering, materials science and engineering, physics, and chemistry. The Conference will feature invited speakers at the forefront of the field, and a late-breaking news session that will provide the opportunity for graduate students, post-docs, and junior faculty to participate. The collegial atmosphere of this Conference, with scientific talks and poster sessions, as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to discuss current issues and promotes cross-disciplinary collaborations in the various research areas represented. The Conference will be held at Colby-Sawyer College, located in the Mt. Kearsarge-Lake Sunapee Region of New Hampshire. The surrounding mountains, forests, and lakes provide a beautiful setting for this conference. The attendance is limited so early application is strongly advised.

  9. 2008 Co2 Assimilation in Plants: Genome to Biome Gordon Research Conference - August 17-22

    Energy Technology Data Exchange (ETDEWEB)

    James V. Maroney

    2009-08-12

    Formerly entitled 'CO2 Fixation and Metabolism in Green Plants', this long-standing Gordon Research Conference has been held on a triennial basis since 1976. In 1990 the participants decided to alternate between sites in the U.S. and outside the U.S. The 2005 conference was held in Europe at the Centre Paul Langevin in Aussois, France, so the 2008 conference returns to a U.S. site - the University of New England in Biddeford, Maine. The 2008 conference covers basic plant research related to photosynthesis and the subsequent regulation and engineering of carbon assimilation. Approaches that range from post-genomic technologies and systems biology, through to fundamental biochemistry, physiology and molecular biology are integrated within ecological and agronomic contexts. As such, the meeting provides the rare opportunity of a single venue for discussing all aspects of the 'carbon-side' of photosynthesis - from genome to biome. The 2008 conference will include an emphasis on the central role of carbon assimilation by plants for developing new sources of bioenergy and for achieving a carbon-neutral planet. A special characteristic of this conference is its 'intimacy' with approximately 110 conferees, ranging from beginning graduate students and postdoctoral associates to leading senior plant scientists, engaged in open and forward-thinking discussions in an informal, friendly setting. With extended time devoted to discussion, and the encouragement to challenge dogma, it is unlike other meetings in the U.S. or abroad. Another novel feature of the conference is a session devoted to the latest 'hot off the press' findings by both established and early career scientists, picked from the abstracts. Together with an expanded poster discussion in the evening sessions, this session provides an opportunity for early career scientists to present interesting new data and to 'test drive' hypotheses in a collegial atmosphere.

  10. Strategic patent analysis in plant biotechnology: terpenoid indole alkaloid metabolic engineering as a case study.

    Science.gov (United States)

    Miralpeix, Bruna; Sabalza, Maite; Twyman, Richard M; Capell, Teresa; Christou, Paul

    2014-02-01

    The do-it-yourself patent search is a useful alternative to professional patent analysis particularly in the context of publicly funded projects where funds for IP activities may be limited. As a case study, we analysed patents related to the engineering of terpenoid indole alkaloid (TIA) metabolism in plants. We developed a focused search strategy to remove redundancy and reduce the workload without missing important and relevant patents. This resulted in the identification of approximately 50 key patents associated with TIA metabolic engineering in plants, which could form the basis of a more detailed freedom-to-operate analysis. The structural elements of this search strategy could easily be transferred to other contexts, making it a useful generic model for publicly funded research projects. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Metabolic Engineering Strategies for Co-Utilization of Carbon Sources in Microbes

    Directory of Open Access Journals (Sweden)

    Yifei Wu

    2016-02-01

    Full Text Available Co-utilization of carbon sources in microbes is an important topic in metabolic engineering research. It is not only a way to reduce microbial production costs but also an attempt for either improving the yields of target products or decreasing the formation of byproducts. However, there are barriers in co-utilization of carbon sources in microbes, such as carbon catabolite repression. To overcome the barriers, different metabolic engineering strategies have been developed, such as inactivation of the phosphotransferase system and rewiring carbon assimilation pathways. This review summarizes the most recent developments of different strategies that support microbes to utilize two or more carbon sources simultaneously. The main content focuses on the co-utilization of glucose and pentoses, major sugars in lignocellulose.

  12. An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology

    DEFF Research Database (Denmark)

    Nielsen, Jens; Olsson, Lisbeth

    2002-01-01

    . With the progress in molecular biology it has become possible to optimize industrial fermentations through introduction of directed genetic modification - an approach referred to as metabolic engineering. Furthermore, as a consequence of large sequencing programs the complete genomic sequence has become available...... for an increasing number of microorganisms. This has resulted in substantial research efforts in assigning function to all identified open reading frames - referred to as functional genomics. In both metabolic engineering and functional genomics there is a trend towards application of a macroscopic view on cell......Microbial physiology has traditionally played a very important role in both fundamental research and in industrial applications of microorganisms. The classical approach in microbial physiology has been to analyze the role of individual components (genes or proteins) in the overall cell function...

  13. OptFlux: an open-source software platform for in silico metabolic engineering

    DEFF Research Database (Denmark)

    Rocha, I.; Maia, P.; Evangelista, P.

    2010-01-01

    software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed Opt...... to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. Results: OptFlux is an open-source and modular...... algorithms. The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition...

  14. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Medicine is not health care, food is health care: plant metabolic engineering, diet and human health.

    Science.gov (United States)

    Martin, Cathie; Li, Jie

    2017-11-01

    Contents 699 I. 699 II. 700 III. 700 IV. 706 V. 707 VI. 714 714 References 714 SUMMARY: Plants make substantial contributions to our health through our diets, providing macronutrients for energy and growth as well as essential vitamins and phytonutrients that protect us from chronic diseases. Imbalances in our food can lead to deficiency diseases or obesity and associated metabolic disorders, increased risk of cardiovascular diseases and cancer. Nutritional security is now a global challenge which can be addressed, at least in part, through plant metabolic engineering for nutritional improvement of foods that are accessible to and eaten by many. We review the progress that has been made in nutritional enhancement of foods, both improvements through breeding and through biotechnology and the engineering principles on which increased phytonutrient levels are based. We also consider the evidence, where available, that such foods do enhance health and protect against chronic diseases. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. [Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals].

    Science.gov (United States)

    Liu, Weixi; Fu, Jing; Zhang, Bo; Chen, Tao

    2013-08-01

    As the rapid development of economy necessitates a large number of oil, the contradiction between energy supply and demand is further exacerbated by the dwindling reserves of petroleum resource. Therefore, the research of the renewable cellulosic biomass resources is gaining unprecedented momentum. Because xylose is the second most abundant monosaccharide after glucose in lignocellulose hydrolyzes, high-efficiency bioconversion of xylose becomes one of the vital factors that affect the industrial prospects of lignocellulose application. According to the research progresses in recent years, this review summarized the advances in bioconversion of xylose, which included identification and redesign of the xylose metabolic pathway, engineering the xylose transport pathway and bio-based chemicals production. In order to solve the energy crisis and environmental pollution issues, the development of advanced bio-fuel technology, especially engineering the microbe able to metabolize xylose and produce ethanol by synthetic biology, is environmentally benign and sustainable.

  17. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....

  18. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels.

    Science.gov (United States)

    Zhang, Yueping; Nielsen, Jens; Liu, Zihe

    2017-12-01

    Terpenoids represent a large class of natural products with significant commercial applications. These chemicals are currently mainly obtained through extraction from plants and microbes or through chemical synthesis. However, these sources often face challenges of unsustainability and low productivity. In order to address these issues, Escherichia coli and yeast have been metabolic engineered to produce non-native terpenoids. With recent reports of engineering yeast metabolism to produce several terpenoids at high yields, it has become possible to establish commercial yeast production of terpenoids that find applications as perfume ingredients, pharmaceuticals and advanced biofuels. In this review, we describe the strategies to rewire the yeast pathway for terpenoid biosynthesis. Recent advances will be discussed together with challenges and perspectives of yeast as a cell factory to produce different terpenoids. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin

    OpenAIRE

    Fleige, Christian; Meyer, Florian; Steinbüchel, Alexander

    2016-01-01

    The Gram-positive bacterium Amycolatopsis sp. ATCC 39116 is used for the fermentative production of natural vanillin from ferulic acid on an industrial scale. The strain is known for its outstanding tolerance to this toxic product. In order to improve the productivity of the fermentation process, the strain's metabolism was engineered for higher final concentrations and molar yields. Degradation of vanillin could be decreased by more than 90% through deletion of the vdh gene, which codes for ...

  20. Ultradiscrete sine-Gordon Equation over Symmetrized Max-Plus Algebra, and Noncommutative Discrete and Ultradiscrete sine-Gordon Equations

    Directory of Open Access Journals (Sweden)

    Kenichi Kondo

    2013-11-01

    Full Text Available Ultradiscretization with negative values is a long-standing problem and several attempts have been made to solve it. Among others, we focus on the symmetrized max-plus algebra, with which we ultradiscretize the discrete sine-Gordon equation. Another ultradiscretization of the discrete sine-Gordon equation has already been proposed by previous studies, but the equation and the solutions obtained here are considered to directly correspond to the discrete counterpart. We also propose a noncommutative discrete analogue of the sine-Gordon equation, reveal its relations to other integrable systems including the noncommutative discrete KP equation, and construct multisoliton solutions by a repeated application of Darboux transformations. Moreover, we derive a noncommutative ultradiscrete analogue of the sine-Gordon equation and its 1-soliton and 2-soliton solutions, using the symmetrized max-plus algebra. As a result, we have a complete set of commutative and noncommutative versions of continuous, discrete, and ultradiscrete sine-Gordon equations.

  1. Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry.

    Science.gov (United States)

    Wu, Yongmei; Li, Runzhi; Hildebrand, David F

    2012-10-01

    Palmitoleate (cis-Δ9-16:1) shows numerous health benefits such as increased cell membrane fluidity, reduced inflammation, protection of the cardiovascular system, and inhibition of oncogenesis. Plant oils containing this unusual fatty acid can also be sustainable feedstocks for producing industrially important and high-demand 1-octene. Vegetable oils rich in palmitoleate are the ideal candidates for biodiesel production. Several wild plants are known that can synthesize high levels of palmitoleate in seeds. However, low yields and poor agronomic characteristics of these plants limit their commercialization. Metabolic engineering has been developed to create oilseed crops that accumulate high levels of palmitoleate or other unusual fatty acids, and significant advances have been made recently in this field, particularly using the model plant Arabidopsis as the host. The engineered targets for enhancing palmitoleate synthesis include overexpression of Δ9 desaturase from mammals, yeast, fungi, and plants, down-regulating KASII, coexpression of an ACP-Δ9 desaturase in plastids and CoA-Δ9 desaturase in endoplasmic reticulum (ER), and optimizing the metabolic flux into triacylglycerols (TAGs). This review will mainly describe the recent progress towards producing palmitoleate in transgenic plants by metabolic engineering along with our current understanding of palmitoleate biosynthesis and its regulation, as well as highlighting the bottlenecks that require additional investigation by combining lipidomics, transgenics and other "-omics" tools. A brief review of reported health benefits and non-food uses of palmitoleate will also be covered. Copyright © 2012. Published by Elsevier Ltd.

  2. Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering.

    Science.gov (United States)

    Fehér, Tamás; Planson, Anne-Gaëlle; Carbonell, Pablo; Fernández-Castané, Alfred; Grigoras, Ioana; Dariy, Ekaterina; Perret, Alain; Faulon, Jean-Loup

    2014-11-01

    Metabolic engineering has succeeded in biosynthesis of numerous commodity or high value compounds. However, the choice of pathways and enzymes used for production was many times made ad hoc, or required expert knowledge of the specific biochemical reactions. In order to rationalize the process of engineering producer strains, we developed the computer-aided design (CAD) tool RetroPath that explores and enumerates metabolic pathways connecting the endogenous metabolites of a chassis cell to the target compound. To experimentally validate our tool, we constructed 12 top-ranked enzyme combinations producing the flavonoid pinocembrin, four of which displayed significant yields. Namely, our tool queried the enzymes found in metabolic databases based on their annotated and predicted activities. Next, it ranked pathways based on the predicted efficiency of the available enzymes, the toxicity of the intermediate metabolites and the calculated maximum product flux. To implement the top-ranking pathway, our procedure narrowed down a list of nine million possible enzyme combinations to 12, a number easily assembled and tested. One round of metabolic network optimization based on RetroPath output further increased pinocembrin titers 17-fold. In total, 12 out of the 13 enzymes tested in this work displayed a relative performance that was in accordance with its predicted score. These results validate the ranking function of our CAD tool, and open the way to its utilization in the biosynthesis of novel compounds. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems

    Science.gov (United States)

    Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh

    2016-01-01

    We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can

  4. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems.

    Science.gov (United States)

    Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh

    2016-01-01

    We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can

  5. Metabolic network modeling of microbial interactions in natural and engineered environmental systems

    Directory of Open Access Journals (Sweden)

    Octavio ePerez-Garcia

    2016-05-01

    Full Text Available We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA, experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e. i lumped networks, ii compartment per guild networks, iii bi-level optimization simulations and iv dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial

  6. Metabolic engineering of Escherichia coli for the production of indirubin from glucose.

    Science.gov (United States)

    Du, Jikun; Yang, Dongsoo; Luo, Zi Wei; Lee, Sang Yup

    2018-02-10

    Indirubin is an indole alkaloid that can be used to treat various diseases including granulocytic leukemia, cancer, and Alzheimer's disease. Microbial production of indirubin has so far been achieved by supplementation of rather expensive substrates such as indole or tryptophan. Here, we report the development of metabolically engineered Escherichia coli strain capable of producing indirubin directly from glucose. First, the Methylophaga aminisulfidivorans flavin-containing monooxygenase (FMO) and E. coli tryptophanase (TnaA) were introduced into E. coli in order to complete the biosynthetic pathway from tryptophan to indirubin. Further engineering was performed through rational strategies including disruption of the regulatory repressor gene trpR and removal of feedback inhibitions on AroG and TrpE. Then, combinatorial approach was employed by systematically screening eight genes involved in the common aromatic amino acid pathway. Moreover, availability of the aromatic precursor substrates, phosphoenolpyruvate and erythrose-4-phosphate, was enhanced by inactivating the pykF (pyruvate kinase I) and pykA (pyruvate kinase II) genes, and by overexpressing the tktA gene (encoding transketolase), respectively. Fed-batch fermentation of the final engineered strain led to production of 0.056 g/L of indirubin directly from glucose. The metabolic engineering and synthetic biology strategies reported here thus allows microbial fermentative production of indirubin from glucose. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Proteomic analysis of an engineered isolate of Lactobacillus plantarum with enhanced raffinose metabolic capacity.

    Science.gov (United States)

    Wang, Jicheng; Hui, Wenyan; Cao, Chenxia; Jin, Rulin; Ren, Caixia; Zhang, Heping; Zhang, Wenyi

    2016-08-11

    Lactic acid bacteria that can produce alpha-galactosidase are a promising solution for improving the nutritional value of soy-derived products. For their commercial use in the manufacturing process, it is essential to understand the catabolic mechanisms that facilitate their growth and performance. In this study, we used comparative proteomic analysis to compare catabolism in an engineered isolate of Lactobacillus plantarum P-8 with enhanced raffinose metabolic capacity, with the parent (or wild-type) isolate from which it was derived. When growing on semi-defined medium with raffinose, a total of one hundred and twenty-five proteins were significantly up-regulated (>1.5 fold, P isolate, whilst and one hundred and six proteins were significantly down-regulated (isolate was able to utilise alternative carbohydrates such as sorbitol instead of raffinose to sustain cell division. To avoid acid damage the cell layer of the engineered isolate altered through a combination of de novo fatty acid biosynthesis and modification of existing lipid membrane phospholipid acyl chains. Interestingly, aspartate and glutamate metabolism was associated with this acid response. Higher intracellular aspartate and glutamate levels in the engineered isolate compared with the parent isolate were confirmed by further chemical analysis. Our study will underpin the future use of this engineered isolate in the manufacture of soymilk products.

  8. Combination of traditional mutation and metabolic engineering to enhance ansamitocin P-3 production in Actinosynnema pretiosum.

    Science.gov (United States)

    Du, Zhi-Qiang; Zhang, Yuan; Qian, Zhi-Gang; Xiao, Han; Zhong, Jian-Jiang

    2017-12-01

    Ansamitocin P-3 (AP-3) is a maytansinoid with its most compelling antitumor activity, however, the low production titer of AP-3 greatly restricts its wide commercial application. In this work, a combinatorial approach including random mutation and metabolic engineering was conducted to enhance AP-3 biosynthesis in Actinosynnema pretiosum. First, a mutant strain M was isolated by N-methyl-N'-nitro-N-nitrosoguanidine mutation, which could produce AP-3 almost threefold that of wild type (WT) in 48 deep-well plates. Then, by overexpressing key biosynthetic genes asmUdpg and asm13-17 in the M strain, a further 60% increase of AP-3 production in 250-ml shake flasks was achieved in the engineered strain M-asmUdpg:asm13-17 compared to the M strain, and its maximum AP-3 production reached 582.7 mg/L, which is the highest as ever reported. Both the gene transcription levels and intracellular intermediate concentrations in AP-3 biosynthesis pathway were significantly increased in the M and M-asmUdpg:asm13-17 during fermentation compared to the WT. The good fermentation performance of the engineered strain was also confirmed in a lab-scale bioreactor. This work demonstrated that combination of random mutation and metabolic engineering could promote AP-3 biosynthesis and might be helpful for increasing the production of other industrially important secondary metabolites. © 2017 Wiley Periodicals, Inc.

  9. 2012 Electrodeposition Gordon Research Conference and Gordon Research Seminar, July 29 - August 3, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gewirth, Andrew

    2013-08-03

    The 2012 Gordon Conference on Electrodeposition: Electrochemical Materials Synthesis and Applications will present cutting-edge research on electrodeposition with emphasis on (i) advances in basic science, (ii) developments in next-generation technologies, and (iii) new and emerging areas. The Conference will feature a wide range of topics, from atomic scale processes, nucleation and growth, thin film deposition, and electrocrystallization, to applications of electrodeposition in devices including microelectronics, batteries, solar energy, and fuel cells.

  10. The 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference/Gordon Research Seminar

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Todd D. [University of Rochester

    2014-11-25

    The fundamental properties of small particles and their potential for groundbreaking applications are among the most exciting areas of study in modern physics, chemistry, and materials science. The Clusters, Nanocrystals & Nanostructures Gordon ResearchConference and Gordon Research Seminar synthesize contributions from these inter-related fields that reflect the pivotal role of nano-particles at the interface between these disciplines. Size-dependent optical, electronic, magnetic and catalytic properties offer prospects for applications in many fields, and possible solutions for many of the grand challenges facing energy generation, consumption, delivery, and storage in the 21st century. The goal of the 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference and Gordon Research Seminar is to continue the historical interdisciplinary tradition of this series and discuss the most recent advances, basic scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. The Clusters, Nanocrystals & Nanostructures GRC/GRS traditionally brings together the leading scientific groups that have made significant recent advances in one or more fundamental nanoscience or nanotechnology areas. Broad interests of the DOE BES and Solar Photochemistry Program addressed by this meeting include the areas of solar energy to fuels conversion, new photovoltaic systems, fundamental characterization of nanomaterials, magnetism, catalysis, and quantum physics. The vast majority of speakers and attendees will address either directly the topic of nanotechnology for photoinduced charge transfer, charge transport, and catalysis, or will have made significant contributions to related areas that will impact these fields indirectly. These topics have direct relevance to the mission of the DOE BES since it is this cutting-edge basic science that underpins our energy future.

  11. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production.

    Science.gov (United States)

    Alonso-Gutierrez, Jorge; Chan, Rossana; Batth, Tanveer S; Adams, Paul D; Keasling, Jay D; Petzold, Christopher J; Lee, Taek Soon

    2013-09-01

    Limonene is a valuable monoterpene used in the production of several commodity chemicals and medicinal compounds. Among them, perillyl alcohol (POH) is a promising anti-cancer agent that can be produced by hydroxylation of limonene. We engineered E. coli with a heterologous mevalonate pathway and limonene synthase for production of limonene followed by coupling with a cytochrome P450, which specifically hydroxylates limonene to produce POH. A strain containing all mevalonate pathway genes in a single plasmid produced limonene at titers over 400mg/L from glucose, substantially higher than has been achieved in the past. Incorporation of a cytochrome P450 to hydroxylate limonene yielded approximately 100mg/L of POH. Further metabolic engineering of the pathway and in situ product recovery using anion exchange resins would make this engineered E. coli a potential production platform for any valuable limonene derivative. © 2013 Elsevier Inc. All rights reserved.

  12. Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications.

    Science.gov (United States)

    Lin, Jyun-Liang; Wagner, James M; Alper, Hal S

    2017-12-01

    Within the Design-Build-Test Cycle for strain engineering, rapid product detection and selection strategies remain challenging and limit overall throughput. Here we summarize a wide variety of modalities that transduce chemical concentrations into easily measured absorbance, luminescence, and fluorescence signals. Specifically, we cover protein-based biosensors (including transcription factors), nucleic acid-based biosensors, coupled enzyme reactions, bioorthogonal chemistry, and fluorescent and chromogenic dyes and substrates as modalities for detection. We focus on the use of these methods for strain engineering and enzyme discovery and conclude with remarks on the current and future state of biosensor development for application in the metabolic engineering field. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. 2011 GASEOUS IONS GORDON RESEARCH CONFERENCE

    Energy Technology Data Exchange (ETDEWEB)

    Scott Anderson

    2011-03-04

    The Gaseous Ions: Structures, Energetics and Reactions Gordon Research Conference will focus on ions and their interactions with molecules, surfaces, electrons, and light. The conference will cover theory and experiments, and systems ranging from molecular to biological to clusters to materials. The meeting goal continues to be bringing together scientists interested in fundamentals, with those applying fundamental phenomena to a wide range of practical problems. Each of the ten conference sessions will focus on a topic within this spectrum, and there will also be poster sessions for contributed papers, with sufficient space and time to allow all participants to present their latest results. To encourage active participation by young investigators, about ten of the poster abstracts will be selected for 15 minute 'hot topic' talks during the conference sessions. Hot topic selection will be done about a month before the meeting. Funds should be available to offset the participation cost for young investigators.

  14. Gordon Research Conference on Mammary Gland Biology

    International Nuclear Information System (INIS)

    1989-01-01

    The 1989 conference was the tenth in the series of biennial Gordon Research Conferences on Mammary Gland Biology. Traditionally this conference brings together scientists from diverse backgrounds and experience but with a common interest in the biology of the mammary gland. Investigators from agricultural and medical schools, biochemists, cell and molecular biologists, endocrinologists, immunologists, and representatives from the emerging biotechnology industries met to discuss current concepts and results on the function and regulation of the normal and neoplastic mammary gland in a variety of species. Of the participants, approximately three-fourths were engaged in studying the normal mammary gland function, whereas the other quarter were engaged in studying the neoplastic gland. The interactions between scientists, clinicians, veterinarians examining both normal and neoplastic cell function serves to foster the multi-disciplinary goals of the conference and has stimulated many cooperative projects among participants in previous years

  15. Extremely Thermophilic Microorganisms as Metabolic Engineering Platforms for Production of Fuels and Industrial Chemicals

    Directory of Open Access Journals (Sweden)

    Benjamin M Zeldes

    2015-11-01

    Full Text Available Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye towards potential technological

  16. Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement.

    Science.gov (United States)

    Huang, Di; Li, Shanshan; Xia, Menglei; Wen, Jianping; Jia, Xiaoqiang

    2013-05-24

    FK506 is an important immunosuppressant, which can be produced by Streptomyces tsukubaensis. However, the production capacity of the strain is very low. Hereby, a computational guided engineering approach was proposed in order to improve the intracellular precursor and cofactor availability of FK506 in S. tsukubaensis. First, a genome-scale metabolic model of S. tsukubaensis was constructed based on its annotated genome and biochemical information. Subsequently, several potential genetic targets (knockout or overexpression) that guaranteed an improved yield of FK506 were identified by the recently developed methodology. To validate the model predictions, each target gene was manipulated in the parent strain D852, respectively. All the engineered strains showed a higher FK506 production, compared with D852. Furthermore, the combined effect of the genetic modifications was evaluated. Results showed that the strain HT-ΔGDH-DAZ with gdhA-deletion and dahp-, accA2-, zwf2-overexpression enhanced FK506 concentration up to 398.9 mg/L, compared with 143.5 mg/L of the parent strain D852. Finally, fed-batch fermentations of HT-ΔGDH-DAZ were carried out, which led to the FK506 production of 435.9 mg/L, 1.47-fold higher than the parent strain D852 (158.7 mg/L). Results confirmed that the promising targets led to an increase in FK506 titer. The present work is the first attempt to engineer the primary precursor pathways to improve FK506 production in S. tsukubaensis with genome-scale metabolic network guided metabolic engineering. The relationship between model prediction and experimental results demonstrates the rationality and validity of this approach for target identification. This strategy can also be applied to the improvement of other important secondary metabolites.

  17. 2013 plant lipids Gordon Research conference and Gordon Research Seminar (January 27 - February 1, 2013 - Hotel Galvez, Galveston, TX)

    Energy Technology Data Exchange (ETDEWEB)

    Welti, Ruth

    2012-11-01

    Presenters will discuss the latest advances in plant and algal lipid metabolism, oil synthesis, lipid signaling, lipid visualization, lipid biotechnology and its applications, the physiological and developmental roles of lipids, and plant lipids in health. Sessions include: Producing Nutritional Lipids; Metabolic biochemistry in the next decade; Triacylglycerols: Metabolism, function, and as a target for engineering; Lipids in Protection, Reproduction, and Development; Genetic and Lipidomic Approaches to Understanding Lipid Metabolism and Signaling; Lipid Signaling in Stress Responses; New Insights on the Path to Triacylglycerols; Membrane Lipid Signaling; Lipid Visualization; Development of Biofuels and Industrial Lipids.

  18. Recent advances in engineering the central carbon metabolism of industrially important bacteria

    Directory of Open Access Journals (Sweden)

    Papagianni Maria

    2012-04-01

    Full Text Available Abstract This paper gives an overview of the recent advances in engineering the central carbon metabolism of the industrially important bacteria Escherichia coli, Bacillus subtilis, Corynobacterium glutamicum, Streptomyces spp., Lactococcus lactis and other lactic acid bacteria. All of them are established producers of important classes of products, e.g. proteins, amino acids, organic acids, antibiotics, high-value metabolites for the food industry and also, promising producers of a large number of industrially or therapeutically important chemicals. Optimization of existing or introduction of new cellular processes in these microorganisms is often achieved through manipulation of targets that reside at major points of central metabolic pathways, such as glycolysis, gluconeogenesis, the pentose phosphate pathway and the tricarboxylic acid cycle with the glyoxylate shunt. Based on the huge progress made in recent years in biochemical, genetic and regulatory studies, new fascinating engineering approaches aim at ensuring an optimal carbon and energy flow within central metabolism in order to achieve optimized metabolite production.

  19. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.

    Science.gov (United States)

    Baritugo, Kei-Anne; Kim, Hee Taek; David, Yokimiko; Choi, Jong-Il; Hong, Soon Ho; Jeong, Ki Jun; Choi, Jong Hyun; Joo, Jeong Chan; Park, Si Jae

    2018-03-20

    Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.

  20. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose.

    Science.gov (United States)

    Chen, Zhen; Huang, Jinhai; Wu, Yao; Wu, Wenjun; Zhang, Ye; Liu, Dehua

    2017-01-01

    3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapA A1G ΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6g/L, with the yield of 0.48g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6g/L 3-HP at a yield of 0.51g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Metabolic engineering of β-carotene in orange fruit increases its in vivo antioxidant properties.

    Science.gov (United States)

    Pons, Elsa; Alquézar, Berta; Rodríguez, Ana; Martorell, Patricia; Genovés, Salvador; Ramón, Daniel; Rodrigo, María Jesús; Zacarías, Lorenzo; Peña, Leandro

    2014-01-01

    Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit's health benefits. In this work, we have afforded enhancing the β-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous β-carotene hydroxylase gene (Csβ-CHX) that is involved in the conversion of β-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csβ-CHX gene resulted in oranges with a deep yellow ('golden') phenotype and significant increases (up to 36-fold) in β-carotene content in the pulp. The capacity of β-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the β-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Improvement of pristinamycin I (PI) production inStreptomyces pristinaespiralisby metabolic engineering approaches.

    Science.gov (United States)

    Meng, Jiali; Feng, Rongrong; Zheng, Guosong; Ge, Mei; Mast, Yvonne; Wohlleben, Wolfgang; Gao, Jufang; Jiang, Weihong; Lu, Yinhua

    2017-06-01

    Pristinamycin, produced by Streptomyces pristinaespiralis , which is a streptogramin-like antibiotic consisting of two chemically unrelated components: pristinamycin I (PI) and pristinamycin II (PII), shows potent activity against many antibiotic-resistant pathogens. However, so far pristinamycin production titers are still quite low, particularly those of PI. In this study, we constructed a PI single component producing strain by deleting the PII biosynthetic genes ( snaE1 and snaE2 ). Then, two metabolic engineering approaches, including deletion of the repressor gene papR3 and chromosomal integration of an extra copy of the PI biosynthetic gene cluster (BGC), were employed to improve PI production. The final engineered strain ΔPIIΔ papR3 /PI produced a maximum PI level of 132 mg/L, with an approximately 2.4-fold higher than that of the parental strain S. pristinaespiralis HCCB10218. Considering that the PI biosynthetic genes are clustered in two main regions in the 210 kb "supercluster" containing the PI and PII biosynthetic genes as well as a cryptic polyketide BGC, these two regions were cloned separately and then were successfully assembled into the PI BGC by the transformation-associated recombination (TAR) system. Collectively, the metabolic engineering approaches employed is very efficient for strain improvement in order to enhance PI titer.

  3. Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose.

    Science.gov (United States)

    Chen, Zhen; Huang, Jinhai; Wu, Yao; Liu, Dehua

    2016-01-01

    Development of sustainable biological process for the production of bulk chemicals from renewable feedstock is an important goal of white biotechnology. Ethylene glycol (EG) is a large-volume commodity chemical with an annual production of over 20 million tons, and it is currently produced exclusively by petrochemical route. Herein, we report a novel biosynthetic route to produce EG from glucose by the extension of serine synthesis pathway of Corynebacterium glutamicum. The EG synthesis is achieved by the reduction of glycoaldehyde derived from serine. The transformation of serine to glycoaldehyde is catalyzed either by the sequential enzymatic deamination and decarboxylation or by the enzymatic decarboxylation and oxidation. We screened the corresponding enzymes and optimized the production strain by combinatorial optimization and metabolic engineering. The best engineered C. glutamicum strain is able to accumulate 3.5 g/L of EG with the yield of 0.25 mol/mol glucose in batch cultivation. This study lays the basis for developing an efficient biological process for EG production. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Systems metabolic engineering of microorganisms to achieve large-scale production of flavonoid scaffolds.

    Science.gov (United States)

    Wu, Junjun; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2014-10-20

    Flavonoids possess pharmaceutical potential due to their health-promoting activities. The complex structures of these products make extraction from plants difficult, and chemical synthesis is limited because of the use of many toxic solvents. Microbial production offers an alternate way to produce these compounds on an industrial scale in a more economical and environment-friendly manner. However, at present microbial production has been achieved only on a laboratory scale and improvements and scale-up of these processes remain challenging. Naringenin and pinocembrin, which are flavonoid scaffolds and precursors for most of the flavonoids, are the model molecules that are key to solving the current issues restricting industrial production of these chemicals. The emergence of systems metabolic engineering, which combines systems biology with synthetic biology and evolutionary engineering at the systems level, offers new perspectives on strain and process optimization. In this review, current challenges in large-scale fermentation processes involving flavonoid scaffolds and the strategies and tools of systems metabolic engineering used to overcome these challenges are summarized. This will offer insights into overcoming the limitations and challenges of large-scale microbial production of these important pharmaceutical compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. OptFlux: an open-source software platform for in silico metabolic engineering

    Directory of Open Access Journals (Sweden)

    Pinto José P

    2010-04-01

    Full Text Available Abstract Background Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. Results OptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii pathway analysis through the calculation of Elementary Flux Modes. OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms. The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph. Conclusions The OptFlux software is freely available, together with documentation and other resources, thus

  6. OptFlux: an open-source software platform for in silico metabolic engineering.

    Science.gov (United States)

    Rocha, Isabel; Maia, Paulo; Evangelista, Pedro; Vilaça, Paulo; Soares, Simão; Pinto, José P; Nielsen, Jens; Patil, Kiran R; Ferreira, Eugénio C; Rocha, Miguel

    2010-04-19

    Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. OptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes. OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms. The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph. The OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization

  7. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.

    Science.gov (United States)

    Kim, Soo Rin; Skerker, Jeffrey M; Kong, In Iok; Kim, Heejin; Maurer, Matthew J; Zhang, Guo-Chang; Peng, Dairong; Wei, Na; Arkin, Adam P; Jin, Yong-Su

    2017-03-01

    Many desired phenotypes for producing cellulosic biofuels are often observed in industrial Saccharomyces cerevisiae strains. However, many industrial yeast strains are polyploid and have low spore viability, making it difficult to use these strains for metabolic engineering applications. We selected the polyploid industrial strain S. cerevisiae ATCC 4124 exhibiting rapid glucose fermentation capability, high ethanol productivity, strong heat and inhibitor tolerance in order to construct an optimal yeast strain for producing cellulosic ethanol. Here, we focused on developing a general approach and high-throughput screening method to isolate stable haploid segregants derived from a polyploid parent, such as triploid ATCC 4124 with a poor spore viability. Specifically, we deleted the HO genes, performed random sporulation, and screened the resulting segregants based on growth rate, mating type, and ploidy. Only one stable haploid derivative (4124-S60) was isolated, while 14 other segregants with a stable mating type were aneuploid. The 4124-S60 strain inherited only a subset of desirable traits present in the parent strain, same as other aneuploids, suggesting that glucose fermentation and specific ethanol productivity are likely to be genetically complex traits and/or they might depend on ploidy. Nonetheless, the 4124-60 strain did inherit the ability to tolerate fermentation inhibitors. When additional genetic perturbations known to improve xylose fermentation were introduced into the 4124-60 strain, the resulting engineered strain (IIK1) was able to ferment a Miscanthus hydrolysate better than a previously engineered laboratory strain (SR8), built by making the same genetic changes. However, the IIK1 strain showed higher glycerol and xylitol yields than the SR8 strain. In order to decrease glycerol and xylitol production, an NADH-dependent acetate reduction pathway was introduced into the IIK1 strain. By consuming 2.4g/L of acetate, the resulting strain (IIK1A

  8. NOAA Ship Gordon Gunter Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Gordon Gunter Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  9. Research Ship Robert Gordon Sproul Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Robert Gordon Sproul Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and...

  10. NOAA Ship Gordon Gunter Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Gordon Gunter Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  11. Stability on local unconditional structure and the Gordon-Lewis ...

    African Journals Online (AJOL)

    Abstract. Click on the link to view the abstract. Keywords: local unconditional structure; Gordon-Lewis property and tensor products of Banach spaces. Quaestiones Mathematicae 31(2008), 141–150 ...

  12. Pilved Gordon Browni tuleviku kohal aina tumenevad / Hendrik Vosman

    Index Scriptorium Estoniae

    Vosman, Hendrik

    2008-01-01

    Briti peaministri Gordon Brownile on parlamendis opositsioonis olevad toorid suutnud oma edumaad leiboristide ees suurendada juba 28 %-punktini, peaministri maine kiire languse põhjuseks peetakse viimaste kuude maailma finantskriisi

  13. Gordon Browni valitsuslaevuke sõitis karidele / Heiki Suurkask

    Index Scriptorium Estoniae

    Suurkask, Heiki, 1972-

    2008-01-01

    Briti peaministri Gordon Browni partei kaotas Inglismaa ja Walesi kohalikel valimistel. Autori väitel võis kõige rängema hoobi valitsusele anda madalaima, 10-protsendilise tulumaksumäära kaotamine

  14. Metabolic engineering of deinococcus radiodurans based on computational analysis and functional genomics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Jeremy, S.

    2005-02-02

    The objective of our work is to develop novel computational tools to analyze the Deinococcus radiodurans DNA repair pathways and the influence of the metabolic flux distribution on DNA repair. These tools will be applied to provide insights for metabolic engineering of strains capable of growing under nutrient poor conditions similar to those found in mixed contaminant sites of interest to the DOE. Over the entire grant period we accomplished all our specific aims and were also able to pursue new directions of research. Below, I will list the major accomplishments over the previous 3 years. (1) Performed Monte Carlo Simulations of RecA Mediated Pairing of Homologous DNA Molecules. (2) Developed a statistical approach to study the gene expression data from D. radiodurans. We have been studying the data from John Batista's. (3) Developed an expression profiling technology to generate very accurate and precise expression data. We followed up on results from John Batista's group using this approach. (4) Developed and put online a database for metabolic reconstructions. (5) We have developed and applied new Monte Carlo algorithms that are optimized for studying biological systems. (6) We developed a flux balance model for the D. radiodurans metabolic network

  15. Soliton solutions of coupled nonlinear Klein-Gordon equations

    International Nuclear Information System (INIS)

    Alagesan, T.; Chung, Y.; Nakkeeran, K.

    2004-01-01

    The coupled nonlinear Klein-Gordon equations are analyzed for their integrability properties in a systematic manner through Painleve test. From the Painleve test, by truncating the Laurent series at the constant level term, the Hirota bilinear form is identified, from which one-soliton solutions are derived. Then, the results are generalized to the two, three and N-coupled Klein-Gordon equations

  16. Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products

    Directory of Open Access Journals (Sweden)

    Andreas Hartmut Förster

    2014-05-01

    Full Text Available Mixed-acid fermentation end products have numerous applications in biotechnology. This is probably the main driving force for the development of multiple strains that are supposed to produce individual end products with high yields. The process of engineering Escherichia coli strains for applied production of ethanol, lactate, succinate, or acetate was initiated several decades ago and is still ongoing. This review follows the path of strain development from the general characteristics of aerobic versus anaerobic metabolism over the regulatory machinery that enables the different metabolic routes. Thereafter, major improvements for broadening the substrate spectrum of Escherichia coli towards cheap carbon sources like molasses or lignocellulose are highlighted before major routes of strain development for the production of ethanol, acetate, lactate and succinate are presented.

  17. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane.

    Science.gov (United States)

    Kind, Stefanie; Jeong, Weol Kyu; Schröder, Hartwig; Wittmann, Christoph

    2010-07-01

    In the present work the Gram-positive bacterium Corynebacterium glutamicum was engineered into an efficient, tailor-made production strain for diaminopentane (cadaverine), a highly attractive building block for bio-based polyamides. The engineering comprised expression of lysine decarboxylase (ldcC) from Escherichia coli, catalyzing the conversion of lysine into diaminopentane, and systems-wide metabolic engineering of central supporting pathways. Substantially re-designing the metabolism yielded superior strains with desirable properties such as (i) the release from unwanted feedback regulation at the level of aspartokinase and pyruvate carboxylase by introducing the point mutations lysC311 and pycA458, (ii) an optimized supply of the key precursor oxaloacetate by amplifying the anaplerotic enzyme, pyruvate carboxylase, and deleting phosphoenolpyruvate carboxykinase which otherwise removes oxaloacetate, (iii) enhanced biosynthetic flux via combined amplification of aspartokinase, dihydrodipicolinate reductase, diaminopimelate dehydrogenase and diaminopimelate decarboxylase, and (iv) attenuated flux into the threonine pathway competing with production by the leaky mutation hom59 in the homoserine dehydrogenase gene. Lysine decarboxylase proved to be a bottleneck for efficient production, since its in vitro activity and in vivo flux were closely correlated. To achieve an optimal strain having only stable genomic modifications, the combination of the strong constitutive C. glutamicum tuf promoter and optimized codon usage allowed efficient genome-based ldcC expression and resulted in a high diaminopentane yield of 200 mmol mol(-1). By supplementing the medium with 1 mgL(-1) pyridoxal, the cofactor of lysine decarboxylase, the yield was increased to 300 mmol mol(-1). In the production strain obtained, lysine secretion was almost completely abolished. Metabolic analysis, however, revealed substantial formation of an as yet unknown by-product. It was identified as an

  18. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects.

    Science.gov (United States)

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-09-17

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  19. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    Directory of Open Access Journals (Sweden)

    Chonglong Wang

    2014-09-01

    Full Text Available Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  20. Hijacking CRISPR-Cas for high-throughput bacterial metabolic engineering: advances and prospects

    DEFF Research Database (Denmark)

    Mougiakos, Ioannis; Bosma, Elleke F.; Ganguly, Joyshree

    2018-01-01

    Escherichia coli and non-model organisms like Clostridia, Bacilli, Streptomycetes and cyanobacteria, opening new possibilities to use these organisms as improved cell factories. The discovery of novel Cas9-like systems from diverse microbial environments will extend the repertoire of applications and broaden...... the range of organisms in which it can be used to create novel production hosts. This review analyses the current status of prokaryotic metabolic engineering towards the production of biotechnologically relevant products, based on the exploitation of different CRISPR-related DNA/RNA endonuclease variants....

  1. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    Science.gov (United States)

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-01-01

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations. PMID:25233369

  2. Production of L-lactic acid from metabolically engineered strain of Enterobacter aerogenes ATCC 29007.

    Science.gov (United States)

    Thapa, Laxmi Prasad; Lee, Sang Jun; Park, Chulhwan; Kim, Seung Wook

    2017-07-01

    In this study, L-lactic acid production was investigated from metabolically engineered strain of E. aerogenes ATCC 29007. The engineered strain E. aerogenes SUMI01 (Δpta) was generated by the deletion of phosphate acetyltransferase (pta) gene from the chromosome of E. aerogenes ATCC 29007 and deletion was confirmed by colony PCR. Under the optimized fermentation conditions, at 37°C and pH 6 for 84h, the L-lactic acid produced by engineered strain E. aerogenes SUMI01 (Δpta) in flask fermentation using 100g/L mannitol as the carbon source was 40.05g/L as compared to that of the wild type counterpart 20.70g/L. At the end of the batch fermentation in bioreactor the production of L-lactic acid reached to 46.02g/L and yield was 0.41g/g by utilizing 112.32g/L mannitol. This is the first report regarding the production of L-lactic acid from Enterobacter species. We believe that this result may provide valuable guidelines for further engineering Enterobacter strain for the improvement of L-lactic acid production. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Xylan catabolism is improved by blending bioprospecting and metabolic pathway engineering in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2015-04-01

    Complete utilization of all available carbon sources in lignocellulosic biomass still remains a challenge in engineering Saccharomyces cerevisiae. Even with efficient heterologous xylose catabolic pathways, S. cerevisiae is unable to utilize xylose in lignocellulosic biomass unless xylan is depolymerized to xylose. Here we demonstrate that a blended bioprospecting approach along with pathway engineering and evolutionary engineering can be used to improve xylan catabolism in S. cerevisiae. Specifically, we perform whole genome sequencing-based bioprospecting of a strain with remarkable pentose catabolic potential that we isolated and named Ustilago bevomyces. The heterologous expression of xylan catabolic genes enabled S. cerevisiae to grow on xylan as a single carbon source in minimal medium. A combination of bioprospecting and metabolic pathway evolution demonstrated that the xylan catabolic pathway could be further improved. Ultimately, engineering efforts were able to achieve xylan conversion into ethanol of up to 0.22 g/L on minimal medium compositions with xylan. This pathway provides a novel starting point for improving lignocellulosic conversion by yeast. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose.

    Science.gov (United States)

    Zhu, Zhiguang; Zhang, Y-H Percival

    2017-01-01

    The direct generation of electricity from the most abundant renewable sugar, glucose, is an appealing alternative to the production of liquid biofuels and biohydrogen. However, enzyme-catalyzed bioelectricity generation from glucose suffers from low yields due to the incomplete oxidation of the six-carbon compound glucose via one or few enzymes. Here, we demonstrate a synthetic ATP- and CoA-free 12-enzyme pathway to implement the complete oxidation of glucose in vitro. This pathway is comprised of glucose phosphorylation via polyphosphate glucokinase, NADH generation catalyzed by glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), electron transfer from NADH to the anode, and glucose 6-phosphate regeneration via the non-oxidative pentose phosphate pathway and gluconeogenesis. The faraday efficiency from glucose to electrons via this pathway was as high as 98.8%, suggesting the generation of nearly 24 electrons per molecule of glucose. The generated current density was greatly increased from 2.8 to 6.9mAcm -2 by replacing a low-activity G6PDH with a high-activity G6PDH and introducing a new enzyme, 6-phosphogluconolactonase, between G6PDH and 6PGDH. These results suggest the great potential of high-yield bioelectricity generation through in vitro metabolic engineering. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Transcriptomic Changes in Response to Putrescine Production in Metabolically Engineered Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-10-01

    Full Text Available Putrescine is widely used in industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Although engineered Corynebacterium glutamicum has been successfully used to produce high levels of putrescine, the overall cellular physiological and metabolic changes caused by overproduction of putrescine remains unclear. To reveal the transcriptional changes that occur in response to putrescine production in an engineered C. glutamicum strain, a comparative transcriptomic analysis was carried out. Overproduction of putrescine resulted in transcriptional downregulation of genes involved in glycolysis; the TCA cycle, pyruvate degradation, biosynthesis of some amino acids, oxidative phosphorylation; vitamin biosynthesis (thiamine and vitamin 6, metabolism of purine, pyrimidine and sulfur, and ATP-, NAD-, and NADPH-consuming enzymes. The transcriptional levels of genes involved in ornithine biosynthesis and NADPH-forming related enzymes were significantly upregulated in the putrescine producing C. glutamicum strain PUT-ALE. Comparative transcriptomic analysis provided some genetic modification strategies to further improve putrescine production. Repressing ATP- and NADPH-consuming enzyme coding gene expression via CRISPRi enhanced putrescine production.

  6. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Wu, Hui; San, Ka-Yiu

    2014-11-01

    Free fatty acids (FFAs) can be used as precursors for the production of biofuels or chemicals. Different composition of FFAs will be useful for further modification of the biofuel/biochemical quality. Microbial biosynthesis of even chain FFAs can be achieved by introducing an acyl-acyl carrier protein thioesterase gene into E. coli. In this study, odd straight medium chain FFAs production was investigated by using metabolic engineered E. coli carrying acyl-ACP thioesterase (TE, Ricinus communis), propionyl-CoA synthase (Salmonella enterica), and β-ketoacyl-acyl carrier protein synthase III (four different sources) with supplement of extracellular propionate. By using these metabolically engineered E. coli, significant quantity of C13 and C15 odd straight-chain FFAs could be produced from glucose and propionate. The highest concentration of total odd straight chain FFAs attained was 1205 mg/L by the strain HWK201 (pXZ18, pBHE2), and 85% of the odd straight chain FFAs was C15. However, the highest percentage of odd straight chain FFAs was achieved by the strain HWK201 (pXZ18, pBHE3) of 83.2% at 48 h. This strategy was also applied successfully in strains carrying different TE, such as the medium length acyl-ACP thioesterase gene from Umbellularia californica. C11 and C13 became the major odd straight-chain FFAs. © 2014 Wiley Periodicals, Inc.

  7. Compartmentalized Metabolic Engineering for Artemisinin Biosynthesis and Effective Malaria Treatment by Oral Delivery of Plant Cells.

    Science.gov (United States)

    Malhotra, Karan; Subramaniyan, Mayavan; Rawat, Khushboo; Kalamuddin, Md; Qureshi, M Irfan; Malhotra, Pawan; Mohmmed, Asif; Cornish, Katrina; Daniell, Henry; Kumar, Shashi

    2016-11-07

    Artemisinin is highly effective against drug-resistant malarial parasites, which affects nearly half of the global population and kills >500 000 people each year. The primary cost of artemisinin is the very expensive process used to extract and purify the drug from Artemisia annua. Elimination of this apparently unnecessary step will make this potent antimalarial drug affordable to the global population living in endemic regions. Here we reported the oral delivery of a non-protein drug artemisinin biosynthesized (∼0.8 mg/g dry weight) at clinically meaningful levels in tobacco by engineering two metabolic pathways targeted to three different cellular compartments (chloroplast, nucleus, and mitochondria). The doubly transgenic lines showed a three-fold enhancement of isopentenyl pyrophosphate, and targeting AACPR, DBR2, and CYP71AV1 to chloroplasts resulted in higher expression and an efficient photo-oxidation of dihydroartemisinic acid to artemisinin. Partially purified extracts from the leaves of transgenic tobacco plants inhibited in vitro growth progression of Plasmodium falciparum-infected red blood cells. Oral feeding of whole intact plant cells bioencapsulating the artemisinin reduced the parasitemia levels in challenged mice in comparison with commercial drug. Such novel synergistic approaches should facilitate low-cost production and delivery of artemisinin and other drugs through metabolic engineering of edible plants. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  8. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo [Chinese Academy of Sciences, Qingdao (China). Key Lab. of Biofuels

    2011-02-15

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now. (orig.)

  9. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris.

    Science.gov (United States)

    Wriessnegger, Tamara; Augustin, Peter; Engleder, Matthias; Leitner, Erich; Müller, Monika; Kaluzna, Iwona; Schürmann, Martin; Mink, Daniel; Zellnig, Günther; Schwab, Helmut; Pichler, Harald

    2014-07-01

    The sesquiterpenoid (+)-nootkatone is a highly demanded and highly valued aroma compound naturally found in grapefruit, pummelo or Nootka cypress tree. Extraction of (+)-nootkatone from plant material or its production by chemical synthesis suffers from low yields and the use of environmentally harmful methods, respectively. Lately, major attention has been paid to biotechnological approaches, using cell extracts or whole-cell systems for the production of (+)-nootkatone. In our study, the yeast Pichia pastoris initially was applied as whole-cell biocatalyst for the production of (+)-nootkatone from (+)-valencene, the abundant aroma compound of oranges. Therefore, we generated a strain co-expressing the premnaspirodiene oxygenase of Hyoscyamus muticus (HPO) and the Arabidopsis thaliana cytochrome P450 reductase (CPR) that hydroxylated extracellularly added (+)-valencene. Intracellular production of (+)-valencene by co-expression of valencene synthase from Callitropsis nootkatensis resolved the phase-transfer issues of (+)-valencene. Bi-phasic cultivations of P. pastoris resulted in the production of trans-nootkatol, which was oxidized to (+)-nootkatone by an intrinsic P. pastoris activity. Additional overexpression of a P. pastoris alcohol dehydrogenase and truncated hydroxy-methylglutaryl-CoA reductase (tHmg1p) significantly enhanced the (+)-nootkatone yield to 208mg L(-1) cell culture in bioreactor cultivations. Thus, metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-nootkatone from simple carbon sources. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.

    Science.gov (United States)

    Mi, Jia; Becher, Daniela; Lubuta, Patrice; Dany, Sarah; Tusch, Kerstin; Schewe, Hendrik; Buchhaupt, Markus; Schrader, Jens

    2014-12-04

    Production of monoterpenoids as valuable chemicals using recombinant microbes is a growing field of interest. Unfortunately, antimicrobial activity of most monoterpenoids hampers a wide application of microorganisms for their production. Strains of Pseudomonas putida, a fast growing and metabolically versatile bacterium, often show an outstanding high tolerance towards organic solvents and other toxic compounds. Therefore, Pseudomonas putida constitutes an attractive alternative host in comparison to conventionally used microorganisms. Here, metabolic engineering of solvent tolerant Pseudomonas putida as a novel microbial cell factory for de novo production of monoterpenoids is reported for the first time, exemplified by geranic acid production from glycerol as carbon source. The monoterpenoic acid is an attractive compound for application in the flavor, fragrance, cosmetics and agro industries. A comparison between Escherichia coli, Saccharomyces cerevisiae and Pseudomonas putida concerning the ability to grow in the presence of geranic acid revealed that the pseudomonad bears a superior resilience compared to the conventionally used microbes. Moreover, Pseudomonas putida DSM 12264 wildtype strain efficiently oxidized externally added geraniol to geranic acid with no further degradation. Omitting external dosage of geraniol but functionally expressing geraniol synthase (GES) from Ocimum basilicum, a first proof-of-concept for de novo biosynthesis of 1.35 mg/L geranic acid in P. putida DSM 12264 was achieved. Doubling the amount of glycerol resulted in twice the amount of product. Co-expression of the six genes of the mevalonate pathway from Myxococcus xanthus to establish flux from acetyl-CoA to the universal terpenoid precursor isopentenylpyrophosphate yielded 36 mg/L geranic acid in shake flask experiments. In the bioreactor, the recombinant strain produced 193 mg/L of geranic acid under fed-batch conditions within 48 h. Metabolic engineering turned Pseudomonas

  11. Improving fatty acid availability for bio-hydrocarbon production in Escherichia coli by metabolic engineering.

    Directory of Open Access Journals (Sweden)

    Fengming Lin

    Full Text Available Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation.

  12. Improving fatty acid availability for bio-hydrocarbon production in Escherichia coli by metabolic engineering.

    Science.gov (United States)

    Lin, Fengming; Chen, Yu; Levine, Robert; Lee, Kilho; Yuan, Yingjin; Lin, Xiaoxia Nina

    2013-01-01

    Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation.

  13. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation.

    Science.gov (United States)

    Cheng, Fangyu; Luozhong, Sijin; Guo, Zhigang; Yu, Huimin; Stephanopoulos, Gregory

    2017-10-01

    Hyaluronic acid (HA) is a polysaccharide used in many industries such as medicine, surgery, cosmetics, and food. To avoid potential pathogenicity caused by its native producer, Streptococcus, efforts have been made to create a recombinant host for HA production. In this work, a GRAS (generally recognized as safe) strain, Corynebacterium glutamicum, is engineered for enhanced biosynthesis of HA via metabolic pathway regulation. Five enzymes (HasA-HasE) involved in the HA biosynthetic pathway are highlighted, and eight diverse operon combinations, including HasA, HasAB, HasAC, HasAD, HasAE, HasABC, HasABD, and HasABE, are compared. HasAB and HasABC are found to be optimal for HA biosynthesis in C. glutamicum. To meet the energy demand for HA synthesis, the metabolic pathway that produces lactate is blocked by knocking out the lactate dehydrogenase (LDH) gene using single crossover homologous recombination. Engineered C. glutamicum/Δldh-AB is superior and had a significantly higher HA titer than C. glutamicum/Δldh-ABC. Batch and fed-batch cultures of C. glutamicum/Δldh-AB are performed in a 5-L fermenter. Using glucose feeding, the maximum HA titer reached 21.6 g L -1 , more than threefolds of that of the wild-type Streptococcus. This work provides an efficient, safe, and novel recombinant HA producer, C. glutamicum/Δldh-AB, via metabolic pathway regulation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization.

    Science.gov (United States)

    Ledesma-Amaro, Rodrigo; Serrano-Amatriain, Cristina; Jiménez, Alberto; Revuelta, José Luis

    2015-10-14

    The industrial production of riboflavin mostly relies on the microbial fermentation of flavinogenic microorganisms and Ashbya gossypii is the main industrial producer of the vitamin. Accordingly, bioengineering strategies aimed at increasing riboflavin production in A. gossypii are highly valuable for industry. We analyze the contribution of all the RIB genes to the production of riboflavin in A. gossypii. Two important metabolic rate-limiting steps that limit the overproduction of riboflavin have been found: first, low mRNA levels of the RIB genes hindered the overproduction of riboflavin; second, the competition of the AMP branch for purinogenic precursors also represents a limitation for riboflavin overproduction. Thus, overexpression of the RIB genes resulted in a significant increase in riboflavin yield. Moreover, both the inactivation and the underexpression of the ADE12 gene, which controls the first step of the AMP branch, also proved to have a positive effect on riboflavin production. Accordingly, a strain that combines both the overexpression of the RIB genes and the underexpression of the ADE12 gene was engineered. This strain produced 523 mg/L of riboflavin (5.4-fold higher than the wild-type), which is the highest titer of riboflavin obtained by metabolic engineering in A. gossypii so far. Riboflavin production in A. gossypii is limited by a low transcription activity of the RIB genes. Flux limitation towards AMP provides committed substrate GTP for riboflavin overproduction without detrimental effects on biomass formation. A multiple-engineered Ashbya strain that produces up to 523 mg/L of riboflavin was generated.

  15. Dynamic gene expression for metabolic engineering of mammalian cells in culture.

    Science.gov (United States)

    Le, Huong; Vishwanathan, Nandita; Kantardjieff, Anne; Doo, Inseok; Srienc, Michael; Zheng, Xiaolu; Somia, Nikunj; Hu, Wei-Shou

    2013-11-01

    Recombinant mammalian cells are the major hosts for the production of protein therapeutics. In addition to high expression of the product gene, a hyper-producer must also harbor superior phenotypic traits related to metabolism, protein secretion, and growth control. Introduction of genes endowing the relevant hyper-productivity traits is a strategy frequently used to enhance the productivity. Most of such cell engineering efforts have been performed using constitutive expression systems. However, cells respond to various environmental cues and cellular events dynamically according to cellular needs. The use of inducible systems allows for time dependent expression, but requires external manipulation. Ideally, a transgene's expression should be synchronous to the host cell's own rhythm, and at levels appropriate for the objective. To that end, we identified genes with different expression dynamics and intensity ranges using pooled transcriptome data. Their promoters may be used to drive the expression of the transgenes following the desired dynamics. We isolated the promoter of the Thioredoxin-interacting protein (Txnip) gene and demonstrated its capability to drive transgene expression in concert with cell growth. We further employed this Chinese hamster promoter to engineer dynamic expression of the mouse GLUT5 fructose transporter in Chinese hamster ovary (CHO) cells, enabling them to utilize sugar according to cellular needs rather than in excess as typically seen in culture. Thus, less lactate was produced, resulting in a better growth rate, prolonged culture duration, and higher product titer. This approach illustrates a novel concept in metabolic engineering which can potentially be used to achieve dynamic control of cellular behaviors for enhanced process characteristics. © 2013 Published by Elsevier Inc.

  16. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control

    Science.gov (United States)

    Leonard, Effendi; Ajikumar, Parayil Kumaran; Thayer, Kelly; Xiao, Wen-Hai; Mo, Jeffrey D.; Tidor, Bruce; Stephanopoulos, Gregory; Prather, Kristala L. J.

    2010-01-01

    A common strategy of metabolic engineering is to increase the endogenous supply of precursor metabolites to improve pathway productivity. The ability to further enhance heterologous production of a desired compound may be limited by the inherent capacity of the imported pathway to accommodate high precursor supply. Here, we present engineered diterpenoid biosynthesis as a case where insufficient downstream pathway capacity limits high-level levopimaradiene production in Escherichia coli. To increase levopimaradiene synthesis, we amplified the flux toward isopentenyl diphosphate and dimethylallyl diphosphate precursors and reprogrammed the rate-limiting downstream pathway by generating combinatorial mutations in geranylgeranyl diphosphate synthase and levopimaradiene synthase. The mutant library contained pathway variants that not only increased diterpenoid production but also tuned the selectivity toward levopimaradiene. The most productive pathway, combining precursor flux amplification and mutant synthases, conferred approximately 2,600-fold increase in levopimaradiene levels. A maximum titer of approximately 700 mg/L was subsequently obtained by cultivation in a bench-scale bioreactor. The present study highlights the importance of engineering proteins along with pathways as a key strategy in achieving microbial biosynthesis and overproduction of pharmaceutical and chemical products. PMID:20643967

  17. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants

    Directory of Open Access Journals (Sweden)

    Shabir H. Wani

    2016-06-01

    Full Text Available Abiotic stresses including drought, salinity, heat, cold, flooding, and ultraviolet radiation causes crop losses worldwide. In recent times, preventing these crop losses and producing more food and feed to meet the demands of ever-increasing human populations have gained unprecedented importance. However, the proportion of agricultural lands facing multiple abiotic stresses is expected only to rise under a changing global climate fueled by anthropogenic activities. Identifying the mechanisms developed and deployed by plants to counteract abiotic stresses and maintain their growth and survival under harsh conditions thus holds great significance. Recent investigations have shown that phytohormones, including the classical auxins, cytokinins, ethylene, and gibberellins, and newer members including brassinosteroids, jasmonates, and strigolactones may prove to be important metabolic engineering targets for producing abiotic stress-tolerant crop plants. In this review, we summarize and critically assess the roles that phytohormones play in plant growth and development and abiotic stress tolerance, besides their engineering for conferring abiotic stress tolerance in transgenic crops. We also describe recent successes in identifying the roles of phytohormones under stressful conditions. We conclude by describing the recent progress and future prospects including limitations and challenges of phytohormone engineering for inducing abiotic stress tolerance in crop plants.

  18. Direct Conversion of CO2to α-Farnesene Using Metabolically Engineered Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Lee, Hyun Jeong; Lee, Jiwon; Lee, Sun-Mi; Um, Youngsoon; Kim, Yunje; Sim, Sang Jun; Choi, Jong-Il; Woo, Han Min

    2017-12-06

    Direct conversion of carbon dioxide (CO 2 ) to value-added chemicals by engineering of cyanobacteria has received attention as a sustainable strategy in food and chemical industries. Herein, Synechococcus elongatus PCC 7942, a model cyanobacterium, was engineered to produce α-farnesene from CO 2 . As a result of the lack of farnesene synthase (FS) activity in the wild-type cyanobacterium, we metabolically engineered S. elongatus PCC 7942 to express heterologous FS from either Norway spruce or apple fruit, resulting in detectable peaks of α-farnesene. To enhance α-farnesene production, an optimized methylerythritol phosphate (MEP) pathway was introduced in the farnesene-producing strain to supply farnesyl diphosphate. Subsequent cyanobacterial culture with a dodecane overlay resulted in photosynthetic production of α-farnesene (4.6 ± 0.4 mg/L in 7 days) from CO 2 . To the best of our knowledge, this is the first report of the photosynthetic production of α-farnesene from CO 2 in the unicellular cyanobacterium S. elongatus PCC 7942.

  19. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production.

    Science.gov (United States)

    Lin, Lu; Xu, Jian

    2013-11-01

    Interest in thermophilic bacteria as live-cell catalysts in biofuel and biochemical industry has surged in recent years, due to their tolerance of high temperature and wide spectrum of carbon-sources that include cellulose. However their direct employment as microbial cellular factories in the highly demanding industrial conditions has been hindered by uncompetitive biofuel productivity, relatively low tolerance to solvent and osmic stresses, and limitation in genome engineering tools. In this work we review recent advances in dissecting and engineering the metabolic and regulatory networks of thermophilic bacteria for improving the traits of key interest in biofuel industry: cellulose degradation, pentose-hexose co-utilization, and tolerance of thermal, osmotic, and solvent stresses. Moreover, new technologies enabling more efficient genetic engineering of thermophiles were discussed, such as improved electroporation, ultrasound-mediated DNA delivery, as well as thermo-stable plasmids and functional selection systems. Expanded applications of such technological advancements in thermophilic microbes promise to substantiate a synthetic biology perspective, where functional parts, module, chassis, cells and consortia were modularly designed and rationally assembled for the many missions at industry and nature that demand the extraordinary talents of these extremophiles. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Applications of genome editing by programmable nucleases to the metabolic engineering of secondary metabolites.

    Science.gov (United States)

    Leitão, Ana Lúcia; Costa, Marina C; Enguita, Francisco J

    2017-01-10

    Genome engineering is a branch of modern biotechnology composed of a cohort of protocols designed to construct and modify a genotype with the main objective of giving rise to a desired phenotype. Conceptually, genome engineering is based on the so called genome editing technologies, a group of genetic techniques that allow either to delete or to insert genetic information in a particular genomic locus. Ten years ago, genome editing tools were limited to virus-driven integration and homologous DNA recombination. However, nowadays the uprising of programmable nucleases is rapidly changing this paradigm. There are two main families of modern tools for genome editing depending on the molecule that controls the specificity of the system and drives the editor machinery to its place of action. Enzymes such as Zn-finger and TALEN nucleases are protein-driven genome editors; while CRISPR system is a nucleic acid-guided editing system. Genome editing techniques are still not widely applied for the design of new compounds with pharmacological activity, but they are starting to be considered as promising tools for rational genome manipulation in biotechnology applications. In this review we will discuss the potential applications of programmable nucleases for the metabolic engineering of secondary metabolites with biological activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Selection Finder (SelFi: A computational metabolic engineering tool to enable directed evolution of enzymes

    Directory of Open Access Journals (Sweden)

    Neda Hassanpour

    2017-06-01

    Full Text Available Directed evolution of enzymes consists of an iterative process of creating mutant libraries and choosing desired phenotypes through screening or selection until the enzymatic activity reaches a desired goal. The biggest challenge in directed enzyme evolution is identifying high-throughput screens or selections to isolate the variant(s with the desired property. We present in this paper a computational metabolic engineering framework, Selection Finder (SelFi, to construct a selection pathway from a desired enzymatic product to a cellular host and to couple the pathway with cell survival. We applied SelFi to construct selection pathways for four enzymes and their desired enzymatic products xylitol, D-ribulose-1,5-bisphosphate, methanol, and aniline. Two of the selection pathways identified by SelFi were previously experimentally validated for engineering Xylose Reductase and RuBisCO. Importantly, SelFi advances directed evolution of enzymes as there is currently no known generalized strategies or computational techniques for identifying high-throughput selections for engineering enzymes.

  2. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    Science.gov (United States)

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Development of Renewable Biofuels Technology by Transcriptomic Analysis and Metabolic Engineering of Diatoms

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, Mark [Univ. of California, San Diego, CA (United States)

    2013-11-18

    There is enormous interest in developing renewable sources of liquid fuels because of depletion of fossil fuel reserves, dependence on foreign sources, and increasing atmospheric CO2 levels. Algae produce neutral lipids that are readily converted into liquid fuels such as biodiesel or JP-8 equivalent, and are attractive sources because they are far more productive than plants (yielding 10 -100’s of time more lipid per land area), and can be grown on non-cultivatable land with non-potable (brackish or salt) water sources. Unicellular algae known as diatoms were the most thoroughly characterized species in the National Renewable Energy Laboratory’s Aquatic Species Program, whose goal was to develop microalgae as renewable fuel sources. Lipid accumulation in microalgae is generally induced by nutrient limitation, which involves a change in environmental conditions. Intrinsic variability in cellular response to environmental changes prevents a high degree of control over the process. Nutrient limitation also inhibits biomass accumulation; therefore a tradeoff between high biomass and lipid production occurs. The goal of this project was to develop metabolic engineering approaches for diatoms to enable induction of lipid accumulation by controllable manipulation of intracellular processes rather than from external environmental conditions, and to manipulate carbon partitioning within the cell between lipid and carbohydrate synthesis to enable both abundant biomass and lipid accumulation. There were two specific objectives for this project; Objective 1:To perform comparative transcriptomic analysis in T. pseudonana and C. cryptica of lipid accumulation resulting from silicon and nitrogen limitation, to identify common and key regulatory steps involved in controlling lipid accumulation and carbon partitioning; and Objective 2: To metabolically engineer the cell to alter carbon partitioning to either trigger lipid induction without the need for nutrient

  4. 2010 Gordon Research Conference On Radiation Chemistry

    International Nuclear Information System (INIS)

    Orlando, Thomas

    2010-01-01

    The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centers and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.

  5. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Hatami, Mehrnaz, E-mail: m-hatami@araku.ac.ir [Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak (Iran, Islamic Republic of); Kariman, Khalil [School of Earth and Environment M004, The University of Western Australia, Crawley, WA 6009 (Australia); Ghorbanpour, Mansour, E-mail: m-ghorbanpour@araku.ac.ir [Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak (Iran, Islamic Republic of)

    2016-11-15

    Engineered nanomaterials (ENMs) possess remarkable physicochemical characteristics suitable for different applications in medicine, pharmaceuticals, biotechnology, energy, cosmetics and electronics. Because of their ultrafine size and high surface reactivity, ENMs can enter plant cells and interact with intracellular structures and metabolic pathways which may produce toxicity or promote plant growth and development by diverse mechanisms. Depending on their type and concentration, ENMs can have positive or negative effects on photosynthesis, photochemical fluorescence and quantum yield as well as photosynthetic pigments status of the plants. Some studies have shown that ENMs can improve photosynthetic efficiency via increasing chlorophyll content and light absorption and also broadening the spectrum of captured light, suggesting that photosynthesis can be nano-engineered for harnessing more solar energy. Both up- and down-regulation of primary metabolites such as proteins and carbohydrates have been observed following exposure of plants to various ENMs. The potential capacity of ENMs for changing the rate of primary metabolites lies in their close relationship with activation and biosynthesis of the key enzymes. Several classes of secondary metabolites such as phenolics, flavonoids, and alkaloids have been shown to be induced (mostly accompanied by stress-related factors) in plants exposed to different ENMs, highlighting their great potential as elicitors to enhance both quantity and quality of biologically active secondary metabolites. Considering reports on both positive and negative effects of ENMs on plant metabolism, in-depth studies are warranted to figure out the most appropriate ENMs (type, size and optimal concentration) in order to achieve the desirable effect on specific metabolites in a given plant species. In this review, we summarize the studies performed on the impacts of ENMs on biosynthesis of plant primary and secondary metabolites and mention the

  6. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants

    International Nuclear Information System (INIS)

    Hatami, Mehrnaz; Kariman, Khalil; Ghorbanpour, Mansour

    2016-01-01

    Engineered nanomaterials (ENMs) possess remarkable physicochemical characteristics suitable for different applications in medicine, pharmaceuticals, biotechnology, energy, cosmetics and electronics. Because of their ultrafine size and high surface reactivity, ENMs can enter plant cells and interact with intracellular structures and metabolic pathways which may produce toxicity or promote plant growth and development by diverse mechanisms. Depending on their type and concentration, ENMs can have positive or negative effects on photosynthesis, photochemical fluorescence and quantum yield as well as photosynthetic pigments status of the plants. Some studies have shown that ENMs can improve photosynthetic efficiency via increasing chlorophyll content and light absorption and also broadening the spectrum of captured light, suggesting that photosynthesis can be nano-engineered for harnessing more solar energy. Both up- and down-regulation of primary metabolites such as proteins and carbohydrates have been observed following exposure of plants to various ENMs. The potential capacity of ENMs for changing the rate of primary metabolites lies in their close relationship with activation and biosynthesis of the key enzymes. Several classes of secondary metabolites such as phenolics, flavonoids, and alkaloids have been shown to be induced (mostly accompanied by stress-related factors) in plants exposed to different ENMs, highlighting their great potential as elicitors to enhance both quantity and quality of biologically active secondary metabolites. Considering reports on both positive and negative effects of ENMs on plant metabolism, in-depth studies are warranted to figure out the most appropriate ENMs (type, size and optimal concentration) in order to achieve the desirable effect on specific metabolites in a given plant species. In this review, we summarize the studies performed on the impacts of ENMs on biosynthesis of plant primary and secondary metabolites and mention the

  7. Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Gosset Guillermo

    2009-04-01

    Full Text Available Abstract Background Anthranilate is an aromatic amine used industrially as an intermediate for the synthesis of dyes, perfumes, pharmaceuticals and other classes of products. Chemical synthesis of anthranilate is an unsustainable process since it implies the use of nonrenewable benzene and the generation of toxic by-products. In Escherichia coli anthranilate is synthesized from chorismate by anthranilate synthase (TrpED and then converted to phosphoribosyl anthranilate by anthranilate phosphoribosyl transferase to continue the tryptophan biosynthetic pathway. With the purpose of generating a microbial strain for anthranilate production from glucose, E. coli W3110 trpD9923, a mutant in the trpD gene that displays low anthranilate producing capacity, was characterized and modified using metabolic engineering strategies. Results Sequencing of the trpED genes from E. coli W3110 trpD9923 revealed a nonsense mutation in the trpD gene, causing the loss of anthranilate phosphoribosyl transferase activity, but maintaining anthranilate synthase activity, thus causing anthranilate accumulation. The effects of expressing genes encoding a feedback inhibition resistant version of the enzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (aroGfbr, transketolase (tktA, glucokinase (glk and galactose permease (galP, as well as phosphoenolpyruvate:sugar phosphotransferase system (PTS inactivation on anthranilate production capacity, were evaluated. In shake flask experiments with minimal medium, strains W3110 trpD9923 PTS- and W3110 trpD9923/pJLBaroGfbrtktA displayed the best production parameters, accumulating 0.70–0.75 g/L of anthranilate, with glucose-yields corresponding to 28–46% of the theoretical maximum. To study the effects of extending the growth phase on anthranilate production a fed-batch fermentation process was developed using complex medium, where strain W3110 trpD9923/pJLBaroGfbrtktA produced 14 g/L of anthranilate in 34 hours

  8. Lagrangian formulation of symmetric space sine-Gordon models

    CERN Document Server

    Bakas, Ioannis; Shin, H J; Park, Q Han

    1996-01-01

    The symmetric space sine-Gordon models arise by conformal reduction of ordinary 2-dim \\sigma-models, and they are integrable exhibiting a black-hole type metric in target space. We provide a Lagrangian formulation of these systems by considering a triplet of Lie groups F \\supset G \\supset H. We show that for every symmetric space F/G, the generalized sine-Gordon models can be derived from the G/H WZW action, plus a potential term that is algebraically specified. Thus, the symmetric space sine-Gordon models describe certain integrable perturbations of coset conformal field theories at the classical level. We also briefly discuss their vacuum structure, Backlund transformations, and soliton solutions.

  9. Wax esters of different compositions produced via engineering of leaf chloroplast metabolism in Nicotiana benthamiana.

    Science.gov (United States)

    Aslan, Selcuk; Sun, Chuanxin; Leonova, Svetlana; Dutta, Paresh; Dörmann, Peter; Domergue, Frédéric; Stymne, Sten; Hofvander, Per

    2014-09-01

    In a future bio-based economy, renewable sources for lipid compounds at attractive cost are needed for applications where today petrochemical derivatives are dominating. Wax esters and fatty alcohols provide diverse industrial uses, such as in lubricant and surfactant production. In this study, chloroplast metabolism was engineered to divert intermediates from de novo fatty acid biosynthesis to wax ester synthesis. To accomplish this, chloroplast targeted fatty acyl reductases (FAR) and wax ester synthases (WS) were transiently expressed in Nicotiana benthamiana leaves. Wax esters of different qualities and quantities were produced providing insights to the properties and interaction of the individual enzymes used. In particular, a phytyl ester synthase was found to be a premium candidate for medium chain wax ester synthesis. Catalytic activities of FAR and WS were also expressed as a fusion protein and determined functionally equivalent to the expression of individual enzymes for wax ester synthesis in chloroplasts. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Systems metabolic engineering as an enabling technology in accomplishing sustainable development goals.

    Science.gov (United States)

    Yang, Dongsoo; Cho, Jae Sung; Choi, Kyeong Rok; Kim, Hyun Uk; Lee, Sang Yup

    2017-09-01

    With pressing issues arising in recent years, the United Nations proposed 17 Sustainable Development Goals (SDGs) as an agenda urging international cooperations for sustainable development. In this perspective, we examine the roles of systems metabolic engineering (SysME) and its contribution to improving the quality of life and protecting our environment, presenting how this field of study offers resolutions to the SDGs with relevant examples. We conclude with offering our opinion on the current state of SysME and the direction it should move forward in the generations to come, explicitly focusing on addressing the SDGs. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Enhancing Carbon Fixation by Metabolic Engineering: A Model System of Complex Network Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Stephanopoulos

    2008-04-10

    In the first two years of this research we focused on the development of a DNA microarray for transcriptional studies in the photosynthetic organism Synechocystis and the elucidation of the metabolic pathway for biopolymer synthesis in this organism. In addition we also advanced the molecular biological tools for metabolic engineering of biopolymer synthesis in Synechocystis and initiated a series of physiological studies for the elucidation of the carbon fixing pathways and basic central carbon metabolism of these organisms. During the last two-year period we focused our attention on the continuation and completion of the last task, namely, the development of tools for basic investigations of the physiology of these cells through, primarily, the determination of their metabolic fluxes. The reason for this decision lies in the importance of fluxes as key indicators of physiology and the high level of information content they carry in terms of identifying rate limiting steps in a metabolic pathway. While flux determination is a well-advanced subject for heterotrophic organisms, for the case of autotrophic bacteria, like Synechocystis, some special challenges had to be overcome. These challenges stem mostly from the fact that if one uses {sup 13}C labeled CO{sub 2} for flux determination, the {sup 13}C label will mark, at steady state, all carbon atoms of all cellular metabolites, thus eliminating the necessary differentiation required for flux determination. This peculiarity of autotrophic organisms makes it imperative to carry out flux determination under transient conditions, something that had not been accomplished before. We are pleased to report that we have solved this problem and we are now able to determine fluxes in photosynthetic organisms from stable isotope labeling experiments followed by measurements of label enrichment in cellular metabolites using Gas Chromatography-Mass Spectrometry. We have conducted extensive simulations to test the method and

  12. Altered Levels of Aroma and Volatiles by Metabolic Engineering of Shikimate Pathway Genes in Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Vered Tzin

    2015-06-01

    Full Text Available The tomato (Solanum lycopersicum fruit is an excellent source of antioxidants, dietary fibers, minerals and vitamins and therefore has been referred to as a “functional food”. Ripe tomato fruits produce a large number of specialized metabolites including volatile organic compounds. These volatiles serve as key components of the tomato fruit flavor, participate in plant pathogen and herbivore defense, and are used to attract seed dispersers. A major class of specialized metabolites is derived from the shikimate pathway followed by aromatic amino acid biosynthesis of phenylalanine, tyrosine and tryptophan. We attempted to modify tomato fruit flavor by overexpressing key regulatory genes in the shikimate pathway. Bacterial genes encoding feedback-insensitive variants of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase (DAHPS; AroG209-9 and bi-functional Chorismate Mutase/Prephenate Dehydratase (CM/PDT; PheA12 were expressed under the control of a fruit-specific promoter. We crossed these transgenes to generate tomato plants expressing both the AroG209 and PheA12 genes. Overexpression of the AroG209-9 gene had a dramatic effect on the overall metabolic profile of the fruit, including enhanced levels of multiple volatile and non-volatile metabolites. In contrast, the PheA12 overexpression line exhibited minor metabolic effects compared to the wild type fruit. Co-expression of both the AroG209-9 and PheA12 genes in tomato resulted overall in a similar metabolic effect to that of expressing only the AroG209-9 gene. However, the aroma ranking attributes of the tomato fruits from PheA12//AroG209-9 were unique and different from those of the lines expressing a single gene, suggesting a contribution of the PheA12 gene to the overall metabolic profile. We suggest that expression of bacterial genes encoding feedback-insensitive enzymes of the shikimate pathway in tomato fruits provides a useful metabolic engineering tool for the modification of

  13. 2012 PLANT CELL WALLS GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR, AUGUST 4-10, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Jocelyn

    2012-08-10

    The sub-theme of this year’s meeting, ‘Cell Wall Research in a Post-Genome World’, will be a consideration of the dramatic technological changes that have occurred in the three years since the previous cell wall Gordon Conference in the area of DNA sequencing. New technologies are providing additional perspectives of plant cell wall biology across a rapidly growing number of species, highlighting a myriad of architectures, compositions, and functions in both "conventional" and specialized cell walls. This meeting will focus on addressing the knowledge gaps and technical challenges raised by such diversity, as well as our need to understand the underlying processes for critical applications such as crop improvement and bioenergy resource development.

  14. Metabolic and Regulatory Rearrangements Underlying Efficient d-Xylose Utilization in Engineered Pseudomonas putida S12*

    Science.gov (United States)

    Meijnen, Jean-Paul; de Winde, Johannes H.; Ruijssenaars, Harald J.

    2012-01-01

    Previously, an efficient d-xylose utilizing Pseudomonas putida S12 strain was obtained by introducing the d-xylose isomerase pathway from Escherichia coli, followed by evolutionary selection. In the present study, systemic changes associated with the evolved phenotype were identified by transcriptomics, enzyme activity analysis, and inverse engineering. A key element in improving the initially poor d-xylose utilization was the redistribution of 6-phospho-d-gluconate (6-PG) between the Entner-Doudoroff pathway and the oxidative pentose phosphate (PP) pathway. This redistribution increased the availability of 6-PG for oxidative decarboxylation to d-ribose-5-phosphate, which is essential for the utilization of d-xylose via the nonoxidative PP pathway. The metabolic redistribution of 6-PG was procured by modified HexR regulation, which in addition appeared to control periplasmic sugar oxidation. Because the absence of periplasmic d-xylonate formation was previously demonstrated to be essential for achieving a high biomass yield on d-xylose, the aberrant HexR control appeared to underlie both the improved growth rate and biomass yield of the evolved d-xylose utilizing P. putida strain. The increased oxidative PP pathway activity furthermore resulted in an elevated NADH/NAD+ ratio that caused the metabolic flux to be redirected from the TCA cycle to the glyoxylate shunt, which was also activated transcriptionally. Clearly, these findings may serve as an important case in point to engineer and improve the utilization of non-natural carbon sources in a wide range of industrial microorganisms. PMID:22416130

  15. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants.

    Science.gov (United States)

    Hatami, Mehrnaz; Kariman, Khalil; Ghorbanpour, Mansour

    2016-11-15

    Engineered nanomaterials (ENMs) possess remarkable physicochemical characteristics suitable for different applications in medicine, pharmaceuticals, biotechnology, energy, cosmetics and electronics. Because of their ultrafine size and high surface reactivity, ENMs can enter plant cells and interact with intracellular structures and metabolic pathways which may produce toxicity or promote plant growth and development by diverse mechanisms. Depending on their type and concentration, ENMs can have positive or negative effects on photosynthesis, photochemical fluorescence and quantum yield as well as photosynthetic pigments status of the plants. Some studies have shown that ENMs can improve photosynthetic efficiency via increasing chlorophyll content and light absorption and also broadening the spectrum of captured light, suggesting that photosynthesis can be nano-engineered for harnessing more solar energy. Both up- and down-regulation of primary metabolites such as proteins and carbohydrates have been observed following exposure of plants to various ENMs. The potential capacity of ENMs for changing the rate of primary metabolites lies in their close relationship with activation and biosynthesis of the key enzymes. Several classes of secondary metabolites such as phenolics, flavonoids, and alkaloids have been shown to be induced (mostly accompanied by stress-related factors) in plants exposed to different ENMs, highlighting their great potential as elicitors to enhance both quantity and quality of biologically active secondary metabolites. Considering reports on both positive and negative effects of ENMs on plant metabolism, in-depth studies are warranted to figure out the most appropriate ENMs (type, size and optimal concentration) in order to achieve the desirable effect on specific metabolites in a given plant species. In this review, we summarize the studies performed on the impacts of ENMs on biosynthesis of plant primary and secondary metabolites and mention the

  16. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.

    Science.gov (United States)

    Kuyper, Marko; Winkler, Aaron A; van Dijken, Johannes P; Pronk, Jack T

    2004-03-01

    When xylose metabolism in yeasts proceeds exclusively via NADPH-specific xylose reductase and NAD-specific xylitol dehydrogenase, anaerobic conversion of the pentose to ethanol is intrinsically impossible. When xylose reductase has a dual specificity for both NADPH and NADH, anaerobic alcoholic fermentation is feasible but requires the formation of large amounts of polyols (e.g., xylitol) to maintain a closed redox balance. As a result, the ethanol yield on xylose will be sub-optimal. This paper demonstrates that anaerobic conversion of xylose to ethanol, without substantial by-product formation, is possible in Saccharomyces cerevisiae when a heterologous xylose isomerase (EC 5.3.1.5) is functionally expressed. Transformants expressing the XylA gene from the anaerobic fungus Piromyces sp. E2 (ATCC 76762) grew in synthetic medium in shake-flask cultures on xylose with a specific growth rate of 0.005 h(-1). After prolonged cultivation on xylose, a mutant strain was obtained that grew aerobically and anaerobically on xylose, at specific growth rates of 0.18 and 0.03 h(-1), respectively. The anaerobic ethanol yield was 0.42 g ethanol x g xylose(-1) and also by-product formation was comparable to that of glucose-grown anaerobic cultures. These results illustrate that only minimal genetic engineering is required to recruit a functional xylose metabolic pathway in Saccharomyces cerevisiae. Activities and/or regulatory properties of native S. cerevisiae gene products can subsequently be optimised via evolutionary engineering. These results provide a gateway towards commercially viable ethanol production from xylose with S. cerevisiae.

  17. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid.

    Science.gov (United States)

    Di Gioia, Diana; Luziatelli, Francesca; Negroni, Andrea; Ficca, Anna Grazia; Fava, Fabio; Ruzzi, Maurizio

    2011-12-20

    Vanillin is one of the most important flavors in the food industry and there is great interest in its production through biotechnological processes starting from natural substrates such as ferulic acid. Among bacteria, recombinant Escherichia coli strains are the most efficient vanillin producers, whereas Pseudomonas spp. strains, although possessing a broader metabolic versatility, rapidly metabolize various phenolic compounds including vanillin. In order to develop a robust Pseudomonas strain that can produce vanillin in high yields and at high productivity, the vanillin dehydrogenase (vdh)-encoding gene of Pseudomonas fluorescens BF13 strain was inactivated via targeted mutagenesis. The results demonstrated that engineered derivatives of strain BF13 accumulate vanillin if inactivation of vdh is associated with concurrent expression of structural genes for feruloyl-CoA synthetase (fcs) and hydratase/aldolase (ech) from a low-copy plasmid. The conversion of ferulic acid to vanillin was enhanced by optimization of growth conditions, growth phase and parameters of the bioconversion process. The developed strain produced up to 8.41 mM vanillin, which is the highest final titer of vanillin produced by a Pseudomonas strain to date and opens new perspectives in the use of bacterial biocatalysts for biotechnological production of vanillin from agro-industrial wastes which contain ferulic acid. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Metabolic engineering of Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux balance analysis.

    Science.gov (United States)

    Yoshikawa, Katsunori; Toya, Yoshihiro; Shimizu, Hiroshi

    2017-05-01

    Synechocystis sp. PCC 6803 is an attractive host for bio-ethanol production due to its ability to directly convert atmospheric carbon dioxide into ethanol using photosystems. To enhance ethanol production in Synechocystis sp. PCC 6803, metabolic engineering was performed based on in silico simulations, using the genome-scale metabolic model. Comprehensive reaction knockout simulations by flux balance analysis predicted that the knockout of NAD(P)H dehydrogenase enhanced ethanol production under photoautotrophic conditions, where ammonium is the nitrogen source. This deletion inhibits the re-oxidation of NAD(P)H, which is generated by ferredoxin-NADP + reductase and imposes re-oxidation in the ethanol synthesis pathway. The effect of deleting the ndhF1 gene, which encodes NADH dehydrogenase subunit 5, on ethanol production was experimentally evaluated using ethanol-producing strains of Synechocystis sp. PCC 6803. The ethanol titer of the ethanol-producing ∆ndhF1 strain increased by 145%, compared with that of the control strain.

  19. Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories.

    Science.gov (United States)

    Ortiz-Marquez, Juan Cesar Federico; Do Nascimento, Mauro; Curatti, Leonardo

    2014-05-01

    The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. In this study we compared the effect of controlling the maximum activation state of the Azotobacter vinelandii glutamine synthase by a point mutation at the active site (D49S mutation) and impairing the ammonium-dependent homeostatic control of nitrogen-fixation genes expression by the ΔnifL mutation on ammonium release by the cells. Strains bearing the single D49S mutation were more efficient ammonium producers under carbon/energy limiting conditions and sustained microalgae growth at the expense of atmospheric N2 in synthetic microalgae-bacteria consortia. Ammonium delivery by the different strains had implications for the microalga׳s cell-size distribution. It was uncovered an extensive cross regulation between nitrogen fixation and assimilation that extends current knowledge on this key metabolic pathway and might represent valuable hints for further improvements of versatile N2-fixing microbial-cell factories. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata.

    Directory of Open Access Journals (Sweden)

    Jian Qiu

    Full Text Available The rare wild species of snow lotus Saussurea involucrata is a commonly used medicinal herb with great pharmacological value for human health, resulting from its uniquely high level of phenylpropanoid compound production. To gain information on the phenylpropanid biosynthetic pathway genes in this critically important medicinal plant, global transcriptome sequencing was performed. It revealed that the phenylpropanoid pathway genes were well represented in S. involucrata. In addition, we introduced two key phenylpropanoid pathway inducing transcription factors (PAP1 and Lc into this medicinal plant. Transgenic S. involucrata co-expressing PAP1 and Lc exhibited purple pigments due to a massive accumulation of anthocyanins. The over-expression of PAP1 and Lc largely activated most of the phenylpropanoid pathway genes, and increased accumulation of several phenylpropanoid compounds significantly, including chlorogenic acid, syringin, cyanrine and rutin. Both ABTS (2,2'-azinobis-3-ethylbenzotiazo-line-6-sulfonic acid and FRAP (ferric reducing anti-oxidant power assays revealed that the antioxidant capacity of transgenic S. involucrata lines was greatly enhanced over controls. In addition to providing a deeper understanding of the molecular basis of phenylpropanoid metabolism, our results potentially enable an alternation of bioactive compound production in S. involucrata through metabolic engineering.

  1. Plant cell, tissue and organ culture: the most flexible foundations for plant metabolic engineering applications.

    Science.gov (United States)

    Ogita, Shinjiro

    2015-05-01

    Significant advances in plant cell, tissue and organ culture (PCTOC) have been made in the last five decades. PCTOC is now thought to be the underlying technique for understanding general or specific biological functions of the plant kingdom, and it is one of the most flexible foundations for morphological, physiological and molecular biological applications of plants. Furthermore, the recent advances in the field of information technology (IT) have enabled access to a large amount of information regarding all aspects of plant biology. For example, sequencing information is stored in mega repositories such as the National Center for Biotechnology Information (NCBI), which can be easily accessed by researchers worldwide. To date, the PCTOC and IT combination strategy for regulation of target plant metabolism and the utilization of bioactive plant metabolites for commercial purposes is essential. In this review, the advantages and the limitations of these methodologies, especially regarding the production of bioactive plant secondary metabolites and metabolic engineering in target plants are discussed mainly from the phenotypic view point.

  2. Monitoring Bone Tissue Engineered (BTE) Constructs Based on the Shifting Metabolism of Differentiating Stem Cells.

    Science.gov (United States)

    Simmons, Aaron D; Sikavitsas, Vassilios I

    2018-01-01

    Ever-increasing demand for bone grafts necessitates the realization of clinical implementation of bone tissue engineered constructs. The predominant hurdle to implementation remains to be securing FDA approval, based on the lack of viable methods for the rigorous monitoring of said constructs. The study presented herein details a method for such monitoring based on the shifting metabolism of mesenchymal stem cells (MSCs) as they differentiate into osteoblasts. To that end, rat MSCs seeded on 85% porous spunbonded poly(L-lactic acid) scaffolds were cultured in flow perfusion bioreactors with baseline or osteoinductive media, and levels of key physio-metabolic markers (oxygen, glucose, osteoprotegerin, and osteocalcin) were monitored throughout culture. Comparison of these non-destructively obtained values and current standard destructive analyses demonstrated key trends useful for the concurrent real-time monitoring of construct cellularity and maturation. Principle among these is the elucidation of the ratio of the rates of oxygen uptake to glucose consumption as a powerful quality marker. This ratio, supported on a physiological basis, has been shown herein to be reliable in the determination of both construct maturation (defined as osteoblastic differentiation and accompanying mineralization) and construct cellularity. Supplementary monitoring of OPG and OCN are shown to provide further validation of such metrics.

  3. New non-linear modified massless Klein-Gordon equation

    Energy Technology Data Exchange (ETDEWEB)

    Asenjo, Felipe A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Facultad de Ingenieria y Ciencias, Santiago (Chile); Hojman, Sergio A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Santiago (Chile); Universidad de Chile, Departamento de Fisica, Facultad de Ciencias, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)

    2017-11-15

    The massless Klein-Gordon equation on arbitrary curved backgrounds allows for solutions which develop ''tails'' inside the light cone and, therefore, do not strictly follow null geodesics as discovered by DeWitt and Brehme almost 60 years ago. A modification of the massless Klein-Gordon equation is presented, which always exhibits null geodesic propagation of waves on arbitrary curved spacetimes. This new equation is derived from a Lagrangian which exhibits current-current interaction. Its non-linearity is due to a self-coupling term which is related to the quantum mechanical Bohm potential. (orig.)

  4. Abundant Interaction Solutions of Sine-Gordon Equation

    Directory of Open Access Journals (Sweden)

    DaZhao Lü

    2012-01-01

    Full Text Available With the help of computer symbolic computation software (e.g., Maple, abundant interaction solutions of sine-Gordon equation are obtained by means of a constructed Wronskian form expansion method. The method is based upon the forms and structures of Wronskian solutions of sine-Gordon equation, and the functions used in the Wronskian determinants do not satisfy linear partial differential equations. Such interaction solutions are difficultly obtained via other methods. And the method can be automatically carried out in computer.

  5. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus.

    Science.gov (United States)

    Wang, Junhua; Wang, Cheng; Song, Kejing; Wen, Jianping

    2017-10-03

    Ascomycin is a 23-membered polyketide macrolide with high immunosuppressant and antifungal activity. As the lower production in bio-fermentation, global metabolic analysis is required to further explore its biosynthetic network and determine the key limiting steps for rationally engineering. To achieve this goal, an engineering approach guided by a metabolic network model was implemented to better understand ascomycin biosynthesis and improve its production. The metabolic conservation of Streptomyces species was first investigated by comparing the metabolic enzymes of Streptomyces coelicolor A3(2) with those of 31 Streptomyces strains, the results showed that more than 72% of the examined proteins had high sequence similarity with counterparts in every surveyed strain. And it was found that metabolic reactions are more highly conserved than the enzymes themselves because of its lower diversity of metabolic functions than that of genes. The main source of the observed metabolic differences was from the diversity of secondary metabolism. According to the high conservation of primary metabolic reactions in Streptomyces species, the metabolic network model of Streptomyces hygroscopicus var. ascomyceticus was constructed based on the latest reported metabolic model of S. coelicolor A3(2) and validated experimentally. By coupling with flux balance analysis and using minimization of metabolic adjustment algorithm, potential targets for ascomycin overproduction were predicted. Since several of the preferred targets were highly associated with ethylmalonyl-CoA biosynthesis, two target genes hcd (encoding 3-hydroxybutyryl-CoA dehydrogenase) and ccr (encoding crotonyl-CoA carboxylase/reductase) were selected for overexpression in S. hygroscopicus var. ascomyceticus FS35. Both the mutants HA-Hcd and HA-Ccr showed higher ascomycin titer, which was consistent with the model predictions. Furthermore, the combined effects of the two genes were evaluated and the strain HA

  6. Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering.

    Science.gov (United States)

    Wang, Yechun; Halls, Coralie; Zhang, Juan; Matsuno, Michiyo; Zhang, Yansheng; Yu, Oliver

    2011-09-01

    Resveratrol is a unique, natural polyphenolic compound with diverse health benefits. In the present study, we attempted to improve resveratrol biosynthesis in yeast by different methods of metabolic engineering. We first mutated and then re-synthesized tyrosine ammonia lyase (TAL) by replacing the bacteria codons with yeast-preferred codons, which increased translation and improved p-coumaric acid and resveratrol biosynthesis drastically. We then demonstrated that low-affinity, high-capacity bacterial araE transporter could enhance resveratrol accumulation, without transporting resveratrol directly. Yeast cells carrying the araE gene produced up to 2.44-fold higher resveratrol than control cells. For commercial applications, resveratrol biosynthesis was detected in sucrose medium and fresh grape juice using our engineered yeast cells. In collaboration with the Chaumette Winery of Missouri, we were able to produce resveratrol-containing white wines, with levels comparable to the resveratrol levels found in most red wines. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    Science.gov (United States)

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue-Rong; Green, Allan G.; Shockey, Jay; Klasson, K. Thomas; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  8. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    Science.gov (United States)

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  9. Computational design of auxotrophy-dependent microbial biosensors for combinatorial metabolic engineering experiments.

    Science.gov (United States)

    Tepper, Naama; Shlomi, Tomer

    2011-01-21

    Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools).

  10. Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering.

    Science.gov (United States)

    Aikawa, Shimpei; Ho, Shih-Hsin; Nakanishi, Akihito; Chang, Jo-Shu; Hasunuma, Tomohisa; Kondo, Akihiko

    2015-06-01

    Photosynthetic microorganisms, such as cyanobacteria and microalgae, are currently being investigated as alternative biomass resources for bioethanol production, owing to their benefits, including high-photosynthetic activity and whole-year cultivation without utilization of arable land. Polyglucans comprise the major carbohydrate content of these organisms. Polyglucans can be utilized as a carbon source for microbial fermentation. Although polyglucan production has so far been promoted by nutrient limitation, it must be further enhanced to accommodate market demand. This review focuses on the recent progress in the production of α-polyglucans such asglycogen and starch in cyanobacteria and green microalgae via cultivation design, including modifying the nutrient supply and replacing the growth medium. The control and manipulation of polyglucan metabolism necessitates the elucidation of the polyglucan production mechanism. We reviewed gene expression and metabolite accumulation profiles of cyanobacteria and green microalgae during nutrient limitation-stimulated α-polyglucan accumulation. We also focus on the enhancement in cyanobacterial glycogen production via the genetic engineering of glycolysis, CO2 concentration mechanism, and photosynthetic light-harvesting protein based on the polyglucan accumulation mechanism. The combined strategies of cultivation design and genetic engineering should be considered for further enhancement of polyglucan productivity for bioethanol production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Heterologous production of α-farnesene in metabolically engineered strains of Yarrowia lipolytica.

    Science.gov (United States)

    Yang, Xia; Nambou, Komi; Wei, Liujing; Hua, Qiang

    2016-09-01

    Herein, we studied the heterologous production of α-farnesene, a valuable sesquiterpene with various biotechnological applications, by metabolic engineering of Yarrowia lipolytica. Different overexpression vectors harboring combinations of tHMG1, IDI, ERG20 and codon-optimized α-farnesene synthase (OptFS) genes were constructed and integrated into the genome of Y. lipolytica Po1h. The engineered strain produced 57.08±1.43mg/L of α-farnesene corresponding to 20.8-fold increase over the initial production of 2.75±0.29mg/L in the YPD medium in shake flasks. Bioreactor scale-up in PM medium led to α-farnesene concentration of 259.98±2.15mg/L with α-farnesene to biomass ratio of 33.98±1.51mg/g, which was a 94.5-fold increase over the initial production. This first report on α-farnesene synthesis in Y. lipolytica lays a foundation for future research on production of sesquitepenes in Y. lipolytica and other closest yeast species and will potentially contribute in its industrial production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Khaled A. Selim

    2018-03-01

    Full Text Available Scarcity of the non-renewable energy sources, global warming, environmental pollution, and raising the cost of petroleum are the motive for the development of renewable, eco-friendly fuels production with low costs. Bioethanol production is one of the promising materials that can subrogate the petroleum oil, and it is considered recently as a clean liquid fuel or a neutral carbon. Diverse microorganisms such as yeasts and bacteria are able to produce bioethanol on a large scale, which can satisfy our daily needs with cheap and applicable methods. Saccharomyces cerevisiae and Pichia stipitis are two of the pioneer yeasts in ethanol production due to their abilities to produce a high amount of ethanol. The recent focus is directed towards lignocellulosic biomass that contains 30–50% cellulose and 20–40% hemicellulose, and can be transformed into glucose and fundamentally xylose after enzymatic hydrolysis. For this purpose, a number of various approaches have been used to engineer different pathways for improving the bioethanol production with simultaneous fermentation of pentose and hexoses sugars in the yeasts. These approaches include metabolic and flux analysis, modeling and expression analysis, followed by targeted deletions or the overexpression of key genes. In this review, we highlight and discuss the current status of yeasts genetic engineering for enhancing bioethanol production, and the conditions that influence bioethanol production.

  13. 77 FR 51023 - R. Gordon Gooch v. Colonial Pipeline Company; Notice of Complaint

    Science.gov (United States)

    2012-08-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR12-24-000] R. Gordon Gooch...)), and section 343.2 of the Commission's regulations (18 CFR 343.2 (2012)), R. Gordon Gooch (Complainant..., and 100.6.0, as set forth more fully in the complaint. R. Gordon Gooch states that a copy of the...

  14. Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine

    Directory of Open Access Journals (Sweden)

    Gosset Guillermo

    2007-09-01

    Full Text Available Abstract Background The rational design of L-phenylalanine (L-Phe overproducing microorganisms has been successfully achieved by combining different genetic strategies such as inactivation of the phosphoenolpyruvate: phosphotransferase transport system (PTS and overexpression of key genes (DAHP synthase, transketolase and chorismate mutase-prephenate dehydratase, reaching yields of 0.33 (g-Phe/g-Glc, which correspond to 60% of theoretical maximum. Although genetic modifications introduced into the cell for the generation of overproducing organisms are specifically targeted to a particular pathway, these can trigger unexpected transcriptional responses of several genes. In the current work, metabolic transcription analysis (MTA of both L-Phe overproducing and non-engineered strains using Real-Time PCR was performed, allowing the detection of transcriptional responses to PTS deletion and plasmid presence of genes related to central carbon metabolism. This MTA included 86 genes encoding enzymes of glycolysis, gluconeogenesis, pentoses phosphate, tricarboxylic acid cycle, fermentative and aromatic amino acid pathways. In addition, 30 genes encoding regulatory proteins and transporters for aromatic compounds and carbohydrates were also analyzed. Results MTA revealed that a set of genes encoding carbohydrate transporters (galP, mglB, gluconeogenic (ppsA, pckA and fermentative enzymes (ldhA were significantly induced, while some others were down-regulated such as ppc, pflB, pta and ackA, as a consequence of PTS inactivation. One of the most relevant findings was the coordinated up-regulation of several genes that are exclusively gluconeogenic (fbp, ppsA, pckA, maeB, sfcA, and glyoxylate shunt in the best PTS- L-Phe overproducing strain (PB12-ev2. Furthermore, it was noticeable that most of the TCA genes showed a strong up-regulation in the presence of multicopy plasmids by an unknown mechanism. A group of genes exhibited transcriptional responses to

  15. Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid.

    Science.gov (United States)

    Jang, Yu-Sin; Woo, Hee Moon; Im, Jung Ae; Kim, In Ho; Lee, Sang Yup

    2013-11-01

    Clostridium acetobutylicum has been considered as an attractive platform host for biorefinery due to its metabolic diversity. Considering its capability to overproduce butanol through butyrate, it was thought that butyric acid can also be efficiently produced by this bacterium through metabolic engineering. The pta-ctfB-deficient C. acetobutylicum CEKW, in which genes encoding phosphotransacetylase and CoA-transferase were knocked out, was assessed for its potential as a butyric acid producer in fermentations with four controlled pH values at 5.0, 5.5, 6.0, and 6.4. Butyric acid could be best produced by fermentation of the CEKW at pH 6.0, resulting in the highest titer of 26.6 g/l, which is 6.4 times higher than that obtained with the wild type. However, due to the remaining solventogenic ability of the CEKW, 3.6 g/l solvents were also produced. Thus, the CEKW was further engineered by knocking out the adhE1-encoding aldehyde/alcohol dehydrogenase to prevent solvent production. Batch fermentation of the resulting C. acetobutylicum HCEKW at pH 6.0 showed increased butyric acid production to 30.8 g/l with a ratio of butyric-to-acetic acid (BA/AA) of 6.6 g/g and a productivity of 0.72 g/l/h from 86.9 g/l glucose, while negligible solvent (0.8 g/l ethanol only) was produced. The butyric acid titer, BA/AA ratio, and productivity obtained in this study were the highest values reported for C. acetobutylicum, and the BA/AA ratio and productivity were also comparable to those of native butyric acid producer Clostridium tyrobutyricum. These results suggested that the simultaneous deletion of the pta-ctfB-adhE1 in C. acetobutylicum resulted in metabolic switch from biphasic to acidogenic fermentation, which enhanced butyric acid production.

  16. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.

    Science.gov (United States)

    Shin, Jae Ho; Park, Seok Hyun; Oh, Young Hoon; Choi, Jae Woong; Lee, Moon Hee; Cho, Jae Sung; Jeong, Ki Jun; Joo, Jeong Chan; Yu, James; Park, Si Jae; Lee, Sang Yup

    2016-10-07

    5-Aminovaleric acid (5AVA) is an important five-carbon platform chemical that can be used for the synthesis of polymers and other chemicals of industrial interest. Enzymatic conversion of L-lysine to 5AVA has been achieved by employing lysine 2-monooxygenase encoded by the davB gene and 5-aminovaleramidase encoded by the davA gene. Additionally, a recombinant Escherichia coli strain expressing the davB and davA genes has been developed for bioconversion of L-lysine to 5AVA. To use glucose and xylose derived from lignocellulosic biomass as substrates, rather than L-lysine as a substrate, we previously examined direct fermentative production of 5AVA from glucose by metabolically engineered E. coli strains. However, the yield and productivity of 5AVA achieved by recombinant E. coli strains remain very low. Thus, Corynebacterium glutamicum, a highly efficient L-lysine producing microorganism, should be useful in the development of direct fermentative production of 5AVA using L-lysine as a precursor for 5AVA. Here, we report the development of metabolically engineered C. glutamicum strains for enhanced fermentative production of 5AVA from glucose. Various expression vectors containing different promoters and origins of replication were examined for optimal expression of Pseudomonas putida davB and davA genes encoding lysine 2-monooxygenase and delta-aminovaleramidase, respectively. Among them, expression of the C. glutamicum codon-optimized davA gene fused with His 6 -Tag at its N-Terminal and the davB gene as an operon under a strong synthetic H 36 promoter (plasmid p36davAB3) in C. glutamicum enabled the most efficient production of 5AVA. Flask culture and fed-batch culture of this strain produced 6.9 and 19.7 g/L (together with 11.9 g/L glutaric acid as major byproduct) of 5AVA, respectively. Homology modeling suggested that endogenous gamma-aminobutyrate aminotransferase encoded by the gabT gene might be responsible for the conversion of 5AVA to glutaric acid in

  17. (Im) Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis

    NARCIS (Netherlands)

    He, F.; Fromion, V.; Westerhoff, H.V.

    2013-01-01

    Background: Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a

  18. 2012 Gordon Research Conference, Organometallic Chemistry, 8-13 2012

    Energy Technology Data Exchange (ETDEWEB)

    Hillhouse, Gregory [Univ. of Chicago, IL (United States)

    2012-07-13

    The 2012 Organometallic Chemistry Gordon Research Conference will highlight new basic science and fundamental applications of organometallic chemistry in industrial, academic, and national lab settings. Scientific themes of the conference will include chemical synthesis, reactivity, catalysis, polymer chemistry, bonding, and theory that involve transition-metal (and main-group) interactions with organic moieties.

  19. Travelling waves in a singularly perturbed sine-Gordon equation

    NARCIS (Netherlands)

    Derks, Gianne; Doelman, Arjen; van Gils, Stephanus A.; Visser, T.P.P.

    2003-01-01

    We determine the linearised stability of travelling front solutions of a perturbed sine-Gordon equation. This equation models the long Josephson junction using the RCSJ model for currents across the junction and includes surface resistance for currents along the junction. The travelling waves

  20. Travelling waves in a singularly perturbed sine-Gordon equations

    NARCIS (Netherlands)

    Derks, G.L.A.; Derks, Gianne; Doelman, Arjen; van Gils, Stephanus A.; Visser, T.P.P.

    2003-01-01

    We determine the linearised stability of travelling front solutions of a perturbed sine-Gordon equation. This equation models the long Josephson junction using the RCSJ model for currents across the junction and includes surface resistance for currents along the junction. The travelling waves

  1. 2011 Chemical Reactions at Surfaces Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Peter Stair

    2011-02-11

    The Gordon Research Conference on Chemical Reactions at Surfaces is dedicated to promoting and advancing the fundamental science of interfacial chemistry and physics by providing surface scientists with the foremost venue for presentation and discussion of research occurring at the frontiers of their fields.

  2. Experimental Investigation of Trapped Sine-Gordon Solitons

    DEFF Research Database (Denmark)

    Davidson, A.; Dueholm, B.; Kryger, B.

    1985-01-01

    We have observed for the first time a single sine-Gordon soliton trapped in an annular Josephson junction. This system offers a unique possibility to study undisturbed soliton motion. In the context of perturbation theory, the soliton may be viewed as a relativistic particle moving under a uniform...

  3. Moving potential for Dirac and Klein–Gordon equations

    Indian Academy of Sciences (India)

    com. MS received 17 December 2014; revised 11 February 2015; accepted 23 February 2015. DOI: 10.1007/s12043-015-1082-9; ePublication: 13 October 2015. Abstract. Using the Lorentz transformation, the Klein–Gordon and Dirac equations ...

  4. Soliton annihilation in the perturbed sine-Gordon system

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Samuelsen, Mogens Rugholm; Welner, D.

    1984-01-01

    Fluxon-antifluxon annihilation in the perturbed sine-Gordon equation with loss and driving terms is investigated. For the infinite line we find a simple analytic expression for the threshold driving term corresponding to annihilation. With the application of the results to a Josephson junction of...

  5. Classification of integrable discrete Klein-Gordon models

    International Nuclear Information System (INIS)

    Habibullin, Ismagil T; Gudkova, Elena V

    2011-01-01

    The Lie algebraic integrability test is applied to the problem of classification of integrable Klein-Gordon-type equations on quad graphs. The list of equations passing the test is presented, containing several well-known integrable models. A new integrable example is found; its higher symmetry is presented.

  6. Nonlinear dynamics of a parametrically driven sine-Gordon system

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Kivshar, Yuri S.; Samuelsen, Mogens Rugholm

    1993-01-01

    We consider a sine-Gordon system, driven by an ac parametric force in the presence of loss. It is demonstrated that a breather can be maintained in a steady state at half of the external frequency. In the small-amplitude limit the effect is described by an effective nonlinear Schrodinger equation...

  7. On Darboux transformation of the supersymmetric sine-Gordon equation

    International Nuclear Information System (INIS)

    Siddiq, M; Hassan, M; Saleem, U

    2006-01-01

    Darboux transformation is constructed for superfields of the super sine-Gordon equation and the superfields of the associated linear problem. The Darboux transformation is shown to be related to the super Baecklund transformation and is further used to obtain N super soliton solutions

  8. 2015-2016 Travel and Hospitality Expense Reports for Gordon ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ruxandra Staicu

    Purpose: Board meetings. Date(s):. 2015-11-16 to 2015-11-19. Destination(s):. Ottawa. Airfare: $543.40. Other. Transportation: $142.51. Accommodation: $321.90. Meals and. Incidentals: $85.58. Other: $0.00. Total: $1,093.39. Comments: 2015-2016 Travel and Hospitality Expense. Reports for Gordon Houlden - Governor,.

  9. 2015-2016 Travel and Hospitality Expense Reports for Gordon ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ruxandra Staicu

    2015-07-13 to 2015-07-14. Destination(s):. Ottawa. Airfare: $943.15. Other. Transportation: $223.12. Accommodation: $329.59. Meals and. Incidentals: $208.79. Other: Total: $1,704.65. Comments: 2015-2016 Travel and Hospitality Expense. Reports for Gordon Houlden - Governor,. Chairperson of the Human Resources.

  10. Thermodynamic quantities for the Klein–Gordon equation with a ...

    Indian Academy of Sciences (India)

    We study some thermodynamic quantities for the Klein–Gordon equation with a linear plus inverselinear, scalar potential. We obtain the energy eigenvalues with the help of the quantization rule from the biconfluent Heun's equation.We use a method based on the Euler–MacLaurin formula to analytically compute thethermal ...

  11. Thermodynamic quantities for the Klein–Gordon equation

    Indian Academy of Sciences (India)

    We study some thermodynamic quantities for the Klein–Gordon equation with a linear plus inverselinear, scalar potential. We obtain the energy eigenvalues with the help of the quantization rule from the biconfluent Heun's equation.We use a method based on the Euler–MacLaurin formula to analytically compute thethermal ...

  12. Thermodynamic quantities for the Klein–Gordon equation with a ...

    Indian Academy of Sciences (India)

    2017-02-01

    Feb 1, 2017 ... Abstract. We study some thermodynamic quantities for the Klein–Gordon equation with a linear plus inverse- linear, scalar potential. We obtain the energy eigenvalues with the help of the quantization rule from the biconfluent Heun's equation. We use a method based on the Euler–MacLaurin formula to ...

  13. Crypto-hermitian approach to the klein–gordon equation

    Czech Academy of Sciences Publication Activity Database

    Semorádová, Iveta

    2017-01-01

    Roč. 57, č. 6 (2017), s. 462-466 ISSN 1210-2709 Institutional support: RVO:61389005 Keywords : Klein-Gordon equation * probability interpretation * metric operator * crypto-Hermitian operator * quasi-Hermitian operator Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

  14. Exact solutions of nonlinear generalizations of the Klein Gordon and Schrodinger equations

    International Nuclear Information System (INIS)

    Burt, P.B.

    1978-01-01

    Exact solutions of sine Gordon and multiple sine Gordon equations are constructed in terms of solutions of a linear base equation, the Klein Gordon equation and also in terms of nonlinear base equations where the nonlinearity is polynomial in the dependent variable. Further, exact solutions of nonlinear generalizations of the Schrodinger equation and of additional nonlinear generalizations of the Klein Gordon equation are constructed in terms of solutions of linear base equations. Finally, solutions with spherical symmetry, of nonlinear Klein Gordon equations are given. 14 references

  15. Metabolic engineering of Synechococcus elongatus PCC 7942 for improvement of 1,3-propanediol and glycerol production based on in silico simulation of metabolic flux distribution.

    Science.gov (United States)

    Hirokawa, Yasutaka; Matsuo, Shingo; Hamada, Hiroyuki; Matsuda, Fumio; Hanai, Taizo

    2017-11-25

    Production directly from carbon dioxide by engineered cyanobacteria is one of the promising technologies for sustainable future. Previously, we have successfully achieved 1,3-propanediol (1,3-PDO) production using Synechococcus elongatus PCC 7942 with a synthetic metabolic pathway. The strain into which the synthetic metabolic pathway was introduced produced 3.48 mM (0.265 g/L) 1,3-PDO and 14.3 mM (1.32 g/L) glycerol during 20 days of incubation. In this study, the productivities of 1,3-PDO were improved by gene disruption selected by screening with in silico simulation. First, a stoichiometric metabolic model was applied to prediction of cellular metabolic flux distribution in a 1,3-PDO-producing strain of S. elongatus PCC 7942. A genome-scale model of S. elongatus PCC 7942 constructed by Knoop was modified by the addition of a synthetic metabolic pathway for 1,3-PDO production. Next, the metabolic flux distribution predicted by metabolic flux balance analysis (FBA) was used for in silico simulation of gene disruption. As a result of gene disruption simulation, NADPH dehydrogenase 1 (NDH-1) complexes were found by screening to be the most promising candidates for disruption to improve 1,3-PDO production. The effect of disruption of the gene encoding a subunit of the NDH-1 complex was evaluated in the 1,3-PDO-producing strain. During 20 days of incubation, the ndhF1-null 1,3-PDO-producing strain showed the highest titers: 4.44 mM (0.338 g/L) 1,3-PDO and 30.3 mM (2.79 g/L) glycerol. In this study, we successfully improved 1,3-PDO productivity on the basis of in silico simulation of gene disruption.

  16. New transposon tools tailored for metabolic engineering of Gram-negative microbial cell factories

    Directory of Open Access Journals (Sweden)

    Esteban eMartínez-García

    2014-10-01

    Full Text Available Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena, but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5 vectors, termed pBAMDs, for the delivery of gene(s into the chromosome of Gram-negative bacteria and for generating saturated mutagenesis libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic resistance markers (kanamycin, streptomycin, and gentamicin. After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate (PHB synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5 vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the

  17. New Transposon Tools Tailored for Metabolic Engineering of Gram-Negative Microbial Cell Factories

    International Nuclear Information System (INIS)

    Martínez-García, Esteban; Aparicio, Tomás; Lorenzo, Víctor de; Nikel, Pablo I.

    2014-01-01

    Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5-vectors, termed pBAMDs, for the delivery of gene(s) into the chromosome of Gram-negative bacteria and for generating saturated mutagenesis libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic-resistance markers (kanamycin, streptomycin, and gentamicin). After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate) (PHB) synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5-vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the structural genes.

  18. Prospects and progress in the production of valuable carotenoids: Insights from metabolic engineering, synthetic biology, and computational approaches.

    Science.gov (United States)

    Sankari, Mohan; Rao, Priya Rajendra; Hemachandran, Hridya; Pullela, Phani Kumar; Doss C, George Priya; Tayubi, Iftikhar Aslam; Subramanian, Babu; Gothandam, K M; Singh, Pooja; Ramamoorthy, Siva

    2018-01-20

    Carotenoids are isoprenoid pigments synthesized exclusively by plants and microorganisms and play critical roles in light harvesting, photoprotection, attracting pollinators and phytohormone production. In recent years, carotenoids have been used for their health benefits due to their high antioxidant activity and are extensively utilized in food, pharmaceutical, and nutraceutical industries. Regulation of carotenoid biosynthesis occurs throughout the life cycle of plants, with vibrant changes in composition based on developmental needs and responses to external environmental stimuli. With advancements in metabolic engineering techniques, there has been tremendous progress in the production of industrially valuable secondary metabolites such as carotenoids. Application of metabolic engineering and synthetic biology has become essential for the successful and improved production of carotenoids. Synthetic biology is an emerging discipline; metabolic engineering approaches may provide insights into novel ideas for biosynthetic pathways. In this review, we discuss the current knowledge on carotenoid biosynthetic pathways and genetic engineering of carotenoids to improve their nutritional value. In addition, we investigated synthetic biological approaches for the production of carotenoids. Theoretical biology approaches that may aid in understanding the biological sciences are discussed in this review. A combination of theoretical knowledge and experimental strategies may improve the production of industrially relevant secondary metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Advances in metabolic engineering for the microbial production of naturally occurring terpenes-limonene and bisabolene: a mini review].

    Science.gov (United States)

    Pang, Yaru; Hu, Zhihui; Xiao, Dongguang; Yu, Aiqun

    2018-01-25

    Limonene (C₁₀H₁₆) and bisabolene (C₁₅H₂₄) are both naturally occurring terpenes in plants. Depending on the number of C₅ units, limonene and bisabolene are recognized as representative monoterpenes and sesquiterpenes, respectively. Limonene and bisabolene are important pharmaceutical and nutraceutical products used in the prevention and treatment of cancer and many other diseases. In addition, they can be used as starting materials to produce a range of commercially valuable products, such as pharmaceuticals, nutraceuticals, cosmetics, and biofuels. The low abundance or yield of limonene and bisabolene in plants renders their isolation from plant sources non-economically viable. Isolation of limonene and bisabolene from plants also suffers from low efficiency and often requires harsh reaction conditions, prolonged reaction times, and expensive equipment cost. Recently, the rapid developments in metabolic engineering of microbes provide a promising alternative route for producing these plant natural products. Therefore, producing limonene and bisabolene by engineering microbial cells into microbial factories is becoming an attractive alternative approach that can overcome the bottlenecks, making it more sustainable, environmentally friendly and economically competitive. Here, we reviewed the status of metabolic engineering of microbes that produce limonene and bisabolene including microbial hosts, key enzymes, metabolic pathways and engineering of limonene/bisabolene biosynthesis. Furthermore, key challenges and future perspectives were discussed.

  20. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning.

    Science.gov (United States)

    Gao, Cong; Wang, Shihui; Hu, Guipeng; Guo, Liang; Chen, Xiulai; Xu, Peng; Liu, Liming

    2018-03-01

    The application of rational design in reallocating metabolic flux to overproduce desired chemicals is always restricted by the native regulatory network. Here, we demonstrated that in vitro modular pathway optimization combined with in vivo multiplexed combinatorial engineering enables effective characterization of the bottleneck of a complex biosynthetic cascade and improves the output of the engineered pathway. As a proof of concept, we systematically identified the rate-limiting step of a five-gene malate biosynthetic pathway by combinatorially tuning the enzyme loads of a reconstituted biocatalytic reaction in a cell-free system. Using multiplexed CRISPR interference, we subsequently eliminated the metabolic constraints by rationally assigning an optimal gene expression pattern for each pathway module. The present engineered strain Escherichia coli B0013-47 exhibited a 2.3-fold increase in malate titer compared with that of the parental strain, with a yield of 0.85 mol/mol glucose in shake-flask culture and titer of 269 mM (36 g/L) in fed-batch cultivation. The strategy reported herein represents a powerful method for improving the efficiency of multi-gene pathways and advancing the success of metabolic engineering. © 2017 Wiley Periodicals, Inc.

  1. Spatial separation of photosynthesis and ethanol production by cell type-specific metabolic engineering of filamentous cyanobacteria.

    Science.gov (United States)

    Ehira, Shigeki; Takeuchi, Takuto; Higo, Akiyoshi

    2018-02-01

    Cyanobacteria, which perform oxygenic photosynthesis, have drawn attention as hosts for the direct production of biofuels and commodity chemicals from CO 2 and H 2 O using light energy. Although cyanobacteria capable of producing diverse chemicals have been generated by metabolic engineering, anaerobic non-photosynthetic culture conditions are often necessary for their production. In this study, we conducted cell type-specific metabolic engineering of the filamentous cyanobacterium Anabaena sp. PCC 7120, which forms a terminally differentiated cell called a heterocyst with a semi-regular spacing of 10-15 cells. Because heterocysts are specialized cells for nitrogen fixation, the intracellular oxygen level of heterocysts is maintained very low even when adjacent cells perform oxygenic photosynthesis. Pyruvate decarboxylase of Zymomonas mobilis and alcohol dehydrogenase of Synechocystis sp. PCC 6803 were exclusively expressed in heterocysts. Ethanol production was concomitant with nitrogen fixation in genetically engineered Anabaena sp. PCC 7120. Engineering of carbon metabolism in heterocysts improved ethanol production, and strain ET14, with an extra copy of the invB gene expressed from a heterocyst-specific promoter, produced 130.9 mg L -1 of ethanol after 9 days. ET14 produced 1681.9 mg L -1 of ethanol by increasing the CO 2 supply. Ethanol production per heterocyst cell was approximately threefold higher than that per cell of unicellular cyanobacterium. This study demonstrates the potential of heterocysts for anaerobic production of biofuels and commodity chemicals under oxygenic photosynthetic conditions.

  2. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose.

    Science.gov (United States)

    Fu, Hongxin; Yu, Le; Lin, Meng; Wang, Jufang; Xiu, Zhilong; Yang, Shang-Tian

    2017-03-01

    Clostridium tyrobutyricum is a promising microorganism for butyric acid production. However, its ability to utilize xylose, the second most abundant sugar found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, CCR in C. tyrobutyricum was eliminated by overexpressing three heterologous xylose catabolism genes (xylT, xylA and xlyB) cloned from C. acetobutylicum. Compared to the parental strain, the engineered strain Ct-pTBA produced more butyric acid (37.8g/L vs. 19.4g/L) from glucose and xylose simultaneously, at a higher xylose utilization rate (1.28g/L·h vs. 0.16g/L·h) and efficiency (94.3% vs. 13.8%), resulting in a higher butyrate productivity (0.53g/L·h vs. 0.26g/L·h) and yield (0.32g/g vs. 0.28g/g). When the initial total sugar concentration was ~120g/L, both glucose and xylose utilization rates increased with increasing their respective concentration or ratio in the co-substrates but the total sugar utilization rate remained almost unchanged in the fermentation at pH 6.0. Decreasing the pH to 5.0 significantly decreased sugar utilization rates and butyrate productivity, but the effect was more pronounced for xylose than glucose. The addition of benzyl viologen (BV) as an artificial electron carrier facilitated the re-assimilation of acetate and increased butyrate production to a final titer of 46.4g/L, yield of 0.43g/g sugar consumed, productivity of 0.87g/L·h, and acid purity of 98.3% in free-cell batch fermentation, which were the highest ever reported for butyric acid fermentation. The engineered strain with BV addition thus can provide an economical process for butyric acid production from lignocellulosic biomass. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Metabolic Engineering of Yeast to Produce Fatty Acid-derived Biofuels: Bottlenecks and Solutions

    Directory of Open Access Journals (Sweden)

    Jiayuan eSheng

    2015-06-01

    Full Text Available Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles.

  4. Metabolic engineering of Pseudomonas putida KT2440 for the production of para-hydroxy benzoic acid

    Directory of Open Access Journals (Sweden)

    Shiqin Yu

    2016-11-01

    Full Text Available para-hydroxy benzoic acid (PHBA is the key component for preparing parabens, a common preservatives in food, drugs and personal care products, as well as high performance bioplastics such as liquid crystal polymers (LCP. Pseudomonas putida KT2440 was engineered to produce PHBA from glucose via the shikimate pathway intermediate chorismate. To obtain the PHBA production strain, chorismate lyase UbiC from Escherichia coli and a feedback resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase encoded by gene aroGD146N were overexpressed individually and simultaneously. In addition, genes related to product degradation (pobA or competing for the precursor chorismate (pheA and trpE were deleted from the genome. To further improve PHBA production, the glucose metabolism repressor hexR was knocked out in order to increase erythrose-4- phosphate and NAPH supply. The best strain achieved a maximum titre of 1.73 g L-1 and a carbon yield of 18.1 % (C-mol C-mol-1 in a non-optimized fed-batch fermentation. This is to date the highest PHBA concentration produced by P. putida using a chorismate lyase.

  5. Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered Escherichia coli DJT135

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Dipankar; Hallenbeck, Patrick C. [Departement de Microbiologie et Immunologie, Universite de Montreal, CP 6128 succursale Centre-ville, Montreal, Quebec H3C 3J7 (Canada)

    2009-10-15

    Future sustainable production of biofuels will depend upon the ability to use complex substrates present in biomass if the use of simple sugars derived from food crops is to be avoided. Therefore, organisms capable of using a variety of fermentable carbon sources must be found or developed for processes that could produce hydrogen via fermentation. Here we have examined the ability of a metabolically engineered strain of Escherichia coli, DJT135, to produce hydrogen from glucose as well as various other carbon sources, including pentoses. The effects of pH, temperature and carbon source were investigated in batch experiments. Maximal hydrogen production from glucose was obtained at an initial pH of 6.5 and temperature of 35 C. Kinetic growth studies showed that the {mu}max was 0.0495 h{sup -1} with a Ks of 0.0274 g L{sup -1} when glucose was the sole carbon source in M9 (1X) minimal medium. Among the many sugar and sugar derivatives tested, hydrogen yields were highest with fructose, sorbitol and D-glucose; 1.27, 1.46 and 1.51 mol H{sub 2} mol{sup -1} substrate respectively. (author)

  6. Efficient utilization of cassava pulp for succinate production by metabolically engineered Escherichia coli KJ122.

    Science.gov (United States)

    Sawisit, Apichai; Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn; Jantama, Kaemwich

    2015-01-01

    A metabolically engineered Escherichia coli KJ122 was efficiently utilized for succinate production from cassava pulp during batch separate hydrolysis and fermentation (SHF) under simple anaerobic conditions. Succinate concentration of 41.46 ± 0.05 g/L with yield and productivity of 82.33 ± 0.14 g/100 g dry pulp and 0.84 ± 0.02 g/L/h was obtained. In batch simultaneous saccharification and fermentation (SSF), hydrolysis of 12 % (w/v) cassava pulp with an enzyme loading of 2 % AMG + 3 % Cel (v/w) at pH 6.5 was optimized at 39 °C. Succinate concentration of 80.86 ± 0.49 g/L with a yield of 70.34 ± 0.37 g/100 g dry pulp and a productivity of 0.84 ± 0.01 g/L/h was attained using E. coli KJ122. Fed-batch SSF significantly enhanced succinate concentration to 98.63 ± 0.12 g/L at yield and productivity of 71.64 ± 0.97 g/100 g dry pulp and 1.03 ± 0.01 g/L/h. This result indicated an efficient and economical succinate production from cassava pulp using SHF and SSF by the use of E. coli KJ122.

  7. Mechanisms relevant to the enhanced virulence of a dihydroxynaphthalene-melanin metabolically engineered entomopathogen.

    Directory of Open Access Journals (Sweden)

    Min-Nan Tseng

    Full Text Available The entomopathogenic fungus Metarhizium anisopliae MA05-169 is a transformant strain that has been metabolically engineered to express dihydroxynaphthalene-melanin biosynthesis genes. In contrast to the wild type strain, the transformant displays a greater resistance to environmental stress and a higher virulence toward target insect host. However, the underlying mechanisms for these characteristics remain unclear; hence experiments were initiated to explore the possible mechanism(s through physiological and molecular approaches. Although both transformant and wild type strains could infect and share the same insect host range, the former germinated faster and produced more appressoria than the latter, both in vivo and in vitro. The transformant showed a significantly shorter median lethal time (LT50 when infecting the diamondback moth (Plutella xylostella and the striped flea beetle (Phyllotreta striolata, than the wild type. Additionally, the transformant was more tolerant to reactive oxygen species (ROS, produced 40-fold more orthosporin and notably overexpressed the transcripts of the pathogenicity-relevant hydrolytic enzymes (chitinase, protease, and phospholipase genes in vivo. In contrast, appressorium turgor pressure and destruxin A content were slightly decreased compared to the wild type. The transformant's high anti-stress tolerance, its high virulence against five important insect pests (cowpea aphid Aphis craccivora, diamondback moth Pl. xylostella, striped flea beetle Ph. striolata, and silverleaf whitefly Bemisia argentifolii and its capacity to colonize the root system are key properties for its potential bio-control field application.

  8. High-density biosynthetic fuels: the intersection of heterogeneous catalysis and metabolic engineering.

    Science.gov (United States)

    Harvey, Benjamin G; Meylemans, Heather A; Gough, Raina V; Quintana, Roxanne L; Garrison, Michael D; Bruno, Thomas J

    2014-05-28

    Biosynthetic valencene, premnaspirodiene, and natural caryophyllene were hydrogenated and evaluated as high performance fuels. The parent sesquiterpenes were then isomerized to complex mixtures of hydrocarbons with the heterogeneous acid catalyst Nafion SAC-13. High density fuels with net heats of combustion ranging from 133-141 000 Btu gal(-1), or up to 13% higher than commercial jet fuel could be generated by this approach. The products of caryophyllene isomerization were primarily tricyclic hydrocarbons which after hydrogenation increased the fuel density by 6%. The isomerization of valencene and premnaspirodiene also generated a variety of sesquiterpenes, but in both cases the dominant product was δ-selinene. Ab initio calculations were conducted to determine the total electronic energies for the reactants and products. In all cases the results were in excellent agreement with the experimental distribution of isomers. The cetane numbers for the sesquiterpane fuels ranged from 20-32 and were highly dependent on the isomer distribution. Specific distillation cuts may have the potential to act as high density diesel fuels, while use of these hydrocarbons as additives to jet fuel will increase the range and/or time of flight of aircraft. In addition to the ability to generate high performance renewable fuels, the powerful combination of metabolic engineering and heterogeneous catalysis will allow for the preparation of a variety of sesquiterpenes with potential for pharmaceutical, flavor, and fragrance applications.

  9. Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization.

    Science.gov (United States)

    Thompson, R Adam; Trinh, Cong T

    2014-11-01

    Biodiesels in the form of fatty acyl ethyl esters (FAEEs) are a promising next generation biofuel due to their chemical properties and compatibility with existing infrastructure. It has recently been shown that expression of a bacterial acyl-transferase in the established industrial workhorse Saccharomyces cerevisiae can lead to production of FAEEs by condensation of fatty acyl-CoAs and ethanol. In contrast to recent strategies to produce FAEEs in S. cerevisiae through manipulation of de novo fatty acid biosynthesis or a series of arduous genetic manipulations, we introduced a novel genetic background, which is comparable in titer to previous reports with a fraction of the genetic disruption by aiming at increasing the fatty acyl-CoA pools. In addition, we combined metabolic engineering with modification of culture conditions to produce a maximum titer of over 25 mg/L FAEEs, a 40% improvement over previous reports and a 17-fold improvement over our initial characterizations. Biotechnol. Bioeng. 2014;111: 2200-2208. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  10. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway.

    Science.gov (United States)

    Kim, Bosu; Cho, Bo-Ram; Hahn, Ji-Sook

    2014-01-01

    2-Phenylethanol (2-PE), a fragrance compound with a rose-like odor, is widely used in perfumery and cosmetics. Here, we report the first metabolic engineering approach for 2-PE production in Saccharomyces cerevisiae. 2-PE can be produced from the catabolism of L-phenylalanine via Ehrlich pathway, consisting of transamination to phenylpyruvate by Aro9, decarboxylation to phenylacetaldehyde by Aro10, and reduction to 2-PE by alcohol dehydrogenases. We demonstrated that Ald3 is mainly responsible for phenylacetaldehyde oxidation, competing with 2-PE production. ALD3 deletion strain overexpressing ARO9 and ARO10 both by episomal overexpression and by induction of the endogenous genes through overexpression of Aro80 transcription factor, produced 4.8 g/L 2-PE in a medium containing 10 g/L L-phenylalanine as a sole nitrogen source. Considering the cytotoxicity of 2-PE, this production titer is almost the upper limit that can be reached in batch cultures, suggesting the great potential of this yeast strain for 2-PE production. 2-PE production was further increased by applying two-phase fermentation method with polypropylene glycol 1200 as an extractant, reaching 6.1 g/L 2-PE in organic phase with the molar yield of 82.5%, which is about ninefold increase compared with wild type. © 2013 Wiley Periodicals, Inc.

  11. Systems metabolic engineering of Escherichia coli for the heterologous production of high value molecules-a veteran at new shores.

    Science.gov (United States)

    Becker, Judith; Wittmann, Christoph

    2016-12-01

    For more than fifty years, Escherichia coli has represented a remarkable success story in industrial biotechnology. Traditionally known as a producer of l-amino acids, E. coli has also entered the precious market of high-value molecules and is becoming a flexible, efficient production platform for various therapeutics, pre-biotics, nutraceuticals and pigments. This tremendous progress is enabled by systems metabolic engineering concepts that integrate systems biology and synthetic biology into the design and engineering of powerful E. coli cell factories. Copyright © 2016. Published by Elsevier Ltd.

  12. Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production.

    Science.gov (United States)

    Roointan, Amir; Morowvat, Mohammad Hossein

    The rising potential for CRISPR-Cas-mediated genome editing has revolutionized our strategies in basic and practical bioengineering research. It provides a predictable and precise method for genome modification in a robust and reproducible fashion. Emergence of systems biotechnology and synthetic biology approaches coupled with CRISPR-Cas technology could change the future of cell factories to possess some new features which have not been found naturally. We have discussed the possibility and versatile potentials of CRISPR-Cas technology for metabolic engineering of a recombinant host for heterologous protein production. We describe the mechanisms involved in this metabolic engineering approach and present the diverse features of its application in biotechnology and protein production.

  13. The yeast Zygosaccharomyces bailii: a new host for heterologous protein production, secretion and for metabolic engineering applications.

    Science.gov (United States)

    Branduardi, Paola; Valli, Minoska; Brambilla, Luca; Sauer, Michael; Alberghina, Lilia; Porro, Danilo

    2004-01-01

    Molecular tools for the production of heterologous proteins and metabolic engineering applications of the non-conventional yeast Zygosaccharomyces bailii were developed. The combination of Z. bailii's resistance to relatively high temperature, osmotic pressure and low pH values, with a high specific growth rate renders this yeast potentially interesting for exploitation for biotechnological purposes as well as for the understanding of the biological phenomena and mechanisms underlying the respective resistances. Looking forward to these potential applications, here we present the tools required for the production and the secretion of different heterologous proteins, and one example of a metabolic engineering application of this non-conventional yeast, employing the newly developed molecular tools.

  14. Protein-based biorefining: metabolic engineering for production of chemicals and fuel with regeneration of nitrogen fertilizers.

    Science.gov (United States)

    Wernick, David G; Liao, James C

    2013-02-01

    Threats to stable oil supplies and concerns over environmental emissions have pushed for renewable biofuel developments to minimize dependence on fossil resources. Recent biofuel progress has moved towards fossil resource-independent carbon cycles, but environmental issues regarding use of nitrogen fertilizers have not been addressed on a global scale. The recently demonstrated conversion of waste protein biomass into advanced biofuels and renewable chemicals, while recycling nitrogen fertilizers, offers a glimpse of the efforts needed to balance the nitrogen cycle at scale. In general, the catabolism of protein into biofuels is challenging because of physiological regulation and thermodynamic limitations. This conversion became possible with metabolic engineering around ammonia assimilation, intracellular nitrogen flux, and quorum sensing. This review highlights the metabolic engineering solutions in transforming those cellular processes into driving forces for the high yield of chemical products from protein.

  15. Novel technologies combined with traditional metabolic engineering strategies facilitate the construction of shikimate-producing Escherichia coli.

    Science.gov (United States)

    Gu, Pengfei; Fan, Xiangyu; Liang, Quanfeng; Qi, Qingsheng; Li, Qiang

    2017-09-29

    Shikimate is an important intermediate in the aromatic amino acid pathway, which can be used as a promising building block for the synthesis of biological compounds, such as neuraminidase inhibitor Oseltamivir (Tamiflu ® ). Compared with traditional methods, microbial production of shikimate has the advantages of environmental friendliness, low cost, feed stock renewability, and product selectivity and diversity, thus receiving more and more attentions. The development of metabolic engineering allows for high-efficiency production of shikimate of Escherichia coli by improving the intracellular level of precursors, blocking downstream pathway, releasing negative regulation factors, and overexpressing rate-limiting enzymes. In addition, novel technologies derived from systems and synthetic biology have opened a new avenue towards construction of shikimate-producing strains. This review summarized successful and applicable strategies derived from traditional metabolic engineering and novel technologies for increasing accumulation of shikimate in E. coli.

  16. 2012 Gordon Research Conference on Bioinspired Materials - Formal Schedule and Speaker/Poster Program

    Energy Technology Data Exchange (ETDEWEB)

    Chilkoti, Ashutosk [Duke Univ., Durham, NC (United States)

    2012-06-29

    The emerging, interdisciplinary field of Bioinspired Materials focuses on developing a fundamental understanding of the synthesis, directed self-assembly and hierarchical organization of natural occurring materials, and uses this understanding to engineer new bioinspired artificial materials for diverse applications. The inaugural 2012 Gordon Conference on Bioinspired Materials seeks to capture the excitement of this burgeoning field by a cutting-edge scientific program and roster of distinguished invited speakers and discussion leaders who will address the key issues in the field. The Conference will feature a wide range of topics, such as materials and devices from DNA, reprogramming the genetic code for design of new materials, peptide, protein and carbohydrate based materials, biomimetic systems, complexity in self-assembly, and biomedical applications of bioinspired materials.

  17. 2008 Multiphoton Processes Gordon Research Conferences - June 8-13, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Mette B. Gaarde

    2009-08-28

    In 2008 the Gordon Research Conference on Multiphoton Processes is held for the 14th time. The meeting continues to evolve as it embraces both the rapid technological and intellectual growth in the field as well as the multi-disciplinary expertise of the participants. This time the sessions will focus on: (1) Attosecond Science; (2) Free-electron laser experiments and theory; (3) Ultrafast dynamics of molecules; (4) Laser control of molecules; (5) Ultrafast imaging; (6) Super-high intensity and x-rays; (7) Strong field processes in molecules; and (8) Control atoms with light and vice versa. The scientific program will blur traditional disciplinary boundaries as the presenters and discussion leaders involve chemists, physicists, and optical engineers, representing both experiment and theory. The broad range of expertise and different perspectives of attendees should provide a stimulating and unique environment for solving problems and developing new ideas in this rapidly evolving field.

  18. 2010 MULTIPHOTON PROCESSES GORDON RESEARCH CONFERENCE, JUNE 6-11, 2010, TILTON, NH

    Energy Technology Data Exchange (ETDEWEB)

    Mette Gaarde

    2010-06-11

    The Gordon Research Conference on Multiphoton Processes will be held for the 15th time in 2010. The meeting continues to evolve as it embraces both the rapid technological and intellectual growth in the field as well as the multi-disciplinary expertise of the participants. This time the sessions will focus on: (1) Ultrafast coherent control; (2) Free-electron laser experiments and theory; (3) Generation of harmonics and attosecond pulses; (4) Ultrafast imaging; (5) Applications of very high intensity laser fields; (6) Strong-field processes in molecules and solids; (7) Attosecond science; and (8) Controlling light. The scientific program will blur traditional disciplinary boundaries as the presenters and discussion leaders involve chemists, physicists, and optical engineers, representing both experiment and theory. The broad range of expertise and different perspectives of attendees should provide a stimulating and unique environment for solving problems and developing new ideas in this rapidly evolving field.

  19. 2010 Gordon Research Conference on Plasmonics, June 13-19 2010

    Energy Technology Data Exchange (ETDEWEB)

    Halas, Naomi [Rice Univ., Houston, TX (United States)

    2010-06-18

    The field of plasmonics lies at the forefront of current revolutionary developments in optics at nanoscale dimensions, with broad applications in the fields of biology, chemistry, and engineering. Advancing these applications will require an enhanced focus on the fundamental science of plasmonics in new and exotic regimes. This 2010 Gordon Conference on Plasmonics will focus on recent advances in fundamental and applied plasmonics. As with past conferences, this meeting will bring together top researchers and future leaders for substantial interactions between students, young speakers, and senior figures in the field. Participants should expect lively discussion during the sessions, intermingled with unstructured time where ideas move, collaborations form, and connections are made. Invited talks will cover a diverse range of topics, including active devices, coherence effects, metamaterials and cloaking, quantum optical phenomena, and plasmons in exotic media and in new wavelength regimes. At the conclusion of the conference, our final session will look forward and begin defining upcoming challenges and opportunities for plasmonics.

  20. Metabolic Engineering of Plants to Produce Precursors (Phloroglucinol and 1,2,4-butanetriol) of Energetic Materials

    Science.gov (United States)

    2015-01-02

    crop , we have developed an efficient regeneration system for this plant. 15. SUBJECT TERMS Metabolic engineering. Energetic materials. Plants...34. These proof-of-concept experiments were carried out in Arabidopsis. To introduce these pathways into Miscanthus, a non-food crop , we have developed an...To see if there is differential accumulation of phloroglucinol and phlorin in roots and shoots, we grew plants hydroponically for 3 weeks, shoots and

  1. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling.

    Science.gov (United States)

    Pasoreck, Elise K; Su, Jin; Silverman, Ian M; Gosai, Sager J; Gregory, Brian D; Yuan, Joshua S; Daniell, Henry

    2016-09-01

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were ~4300-fold higher in C and CN lines than in N, but all accumulated ~150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level of transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. The mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Enhancement of medium-chain-length polyhydroxyalkanoates biosynthesis from glucose by metabolic engineering in Pseudomonas mendocina.

    Science.gov (United States)

    Wang, Yuanyuan; Zhao, Fengjie; Fan, Xu; Wang, Shufang; Song, Cunjiang

    2016-02-01

    To enhance the biosynthesis of medium-chain-length polyhydroxyalkanoates (PHAMCL) from glucose in Pseudomonas mendocina NK-01, metabolic engineering strategies were used to block or enhance related pathways. Pseudomonas mendocina NK-01 produces PHAMCL from glucose. Besides the alginate oligosaccharide biosynthetic pathway proved by our previous study, UDP-D-glucose and dTDP-L-rhamnose biosynthetic pathways were identified. These might compete for glucose with the PHAMCL biosynthesis. First, the alg operon, galU and rmlC gene were deleted one by one, resulting in NK-U-1(∆alg), NK-U-2 (∆alg∆galU), NK-U-3(alg∆galU∆rmlC). After fermentation for 36 h, the cell dry weight (CDW) and PHAMCL production of these strains were determined. Compared with NK-U: 1) NK-U-1 produced elevated CDW (from 3.19 ± 0.16 to 3.5 ± 0.11 g/l) and equal PHAMCL (from 0.78 ± 0.06 to 0.79 ± 0.07 g/l); 2) NK-U-2 produced more CDW (from 3.19 ± 0.16 to 3.55 ± 0.23 g/l) and PHAMCL (from 0.78 ± 0.06 to 1.05 ± 0.07 g/l); 3) CDW and PHAMCL dramatically decreased in NK-U-3 (1.53 ± 0.21 and 0.41 ± 0.09 g/l, respectively). Additionally, the phaG gene was overexpressed in strain NK-U-2. Although CDW of NK-U-2/phaG decreased to 1.29 ± 0.2 g/l, PHA titer (%CDW) significantly increased from 24.5 % up to 51.2 %. The PHAMCL biosynthetic pathway was enhanced by blocking branched metabolic pathways in combination with overexpressing phaG gene.

  3. Metabolism

    Science.gov (United States)

    ... functions: Anabolism (uh-NAB-uh-liz-um), or constructive metabolism, is all about building and storing. It ... in infants and young children. Hypothyroidism slows body processes and causes fatigue (tiredness), slow heart rate, excessive ...

  4. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  5. Quantum Barro-Gordon game in monetary economics

    Science.gov (United States)

    Samadi, Ali Hussein; Montakhab, Afshin; Marzban, Hussein; Owjimehr, Sakine

    2018-01-01

    Classical game theory addresses decision problems in multi-agent environment where one rational agent's decision affects other agents' payoffs. Game theory has widespread application in economic, social and biological sciences. In recent years quantum versions of classical games have been proposed and studied. In this paper, we consider a quantum version of the classical Barro-Gordon game which captures the problem of time inconsistency in monetary economics. Such time inconsistency refers to the temptation of weak policy maker to implement high inflation when the public expects low inflation. The inconsistency arises when the public punishes the weak policy maker in the next cycle. We first present a quantum version of the Barro-Gordon game. Next, we show that in a particular case of the quantum game, time-consistent Nash equilibrium could be achieved when public expects low inflation, thus resolving the game.

  6. Multiresonance modes in sine–Gordon brane models

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, W.T., E-mail: wilamicruz@gmail.com [Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Campus Juazeiro do Norte, 63040-540 Juazeiro do Norte-Ceará (Brazil); Maluf, R.V., E-mail: r.v.maluf@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza - CE, C.P. 6030, 60455-760 (Brazil); Dantas, D.M., E-mail: davi@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza - CE, C.P. 6030, 60455-760 (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza - CE, C.P. 6030, 60455-760 (Brazil)

    2016-12-15

    In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine–Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine–Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge field is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, which is concluded that the dilaton parameter regulates these corrections.

  7. On the numerical solution of the sine-Gordon equation

    International Nuclear Information System (INIS)

    Ablowitz, M.J.; Schober, C.; Herbst, B.M.

    1996-01-01

    In this, the first of two papers on the numerical solution of the sine-Gordon equation, we investigate the numerical behavior of a double discrete, completely integrable discretization of the sine-Gordon equation. For certain initial values, in the vicinity of homoclinic manifolds, this discretization admits an instability in the form of grid scale oscillations. We clarify the nature of the instability through an analytical investigation supported by numerical experiments. In particular, a perturbation analysis of the associated linear spectral problem shows that the initial values used for the numerical experiments lie exponentially close to a homoclinic manifold. This paves the way for the second paper where we use the non-linear spectrum as a basis for comparing different numerical schemes. 21 refs., 11 figs

  8. Instanton solutions from Abelian sinh-Gordon and Tzitzeica vortices

    Science.gov (United States)

    Contatto, Felipe; Dorigoni, Daniele

    2015-12-01

    We study the Abelian Higgs vortex solutions to the sinh-Gordon equation and the elliptic Tzitzeica equation. Starting from these particular vortices, we construct solutions to the Taubes equation with higher vortex number, on surfaces with conical singularities. We then, analyse more general properties of vortices on such singular surfaces and propose a method to obtain vortices on conifolds from vortices on surfaces of revolution. We apply our method to construct explicit vortex solutions on the Poincaré disk with a conical singularity in the centre, to which we refer as the "hyperbolic cone". We uplift the Abelian sinh-Gordon and Tzitzeica vortex solutions to four dimensions and construct cylindrically symmetric, self-dual Yang-Mills instantons on a non-self-dual (nor anti-self-dual) 4-dimensional Kähler manifold with non-vanishing scalar curvature. The instantons we construct in this way cannot be obtained via a twistorial approach.

  9. Construction of expression vectors for metabolic engineering of the vanillin-producing actinomycete Amycolatopsis sp. ATCC 39116.

    Science.gov (United States)

    Fleige, Christian; Steinbüchel, Alexander

    2014-01-01

    Amycolatopsis sp. ATCC 39116 is able to synthesize the important flavoring agent vanillin from cheap natural substrates. The bacterium is therefore of great interest for the industry and used for the fermentative production of vanillin. In order to improve the production of natural vanillin with Amycolatopsis sp. ATCC 39116, the strain has been genetically engineered to optimize the metabolic flux towards the desired product. Extensive metabolic engineering was hitherto hampered, due to the lack of genetic tools like functional promoters and expression vectors. In this study, we report the establishment of a plasmid-based gene expression system for Amycolatopsis sp. ATCC 39116 that allows a further manipulation of the genotype. Four new Escherichia coli-Amycolatopsis shuttle vectors harboring different promoter elements were constructed, and the functionality of these regulatory elements was proven by the expression of the reporter gene gusA, encoding a β-glucuronidase. Glucuronidase activity was detected in all plasmid-harboring strains, and remarkable differences in the expression strength of the reporter gene depending on the used promoter were observed. The new expression vectors will promote the further genetic engineering of Amycolatopsis sp. ATCC 39116 to get insight into the metabolic network and to improve the strain for a more efficient industrial use.

  10. Vanillin production using metabolically engineered Escherichia coli under non-growing conditions.

    Science.gov (United States)

    Barghini, Paolo; Di Gioia, Diana; Fava, Fabio; Ruzzi, Maurizio

    2007-04-16

    Vanillin is one of the most important aromatic flavour compounds used in the food and cosmetic industries. Natural vanillin is extracted from vanilla beans and is relatively expensive. Moreover, the consumer demand for natural vanillin highly exceeds the amount of vanillin extracted by plant sources. This has led to the investigation of other routes to obtain this flavour such as the biotechnological production from ferulic acid. Studies concerning the use of engineered recombinant Escherichia coli cells as biocatalysts for vanillin production are described in the literature, but yield optimization and biotransformation conditions have not been investigated in details. Effect of plasmid copy number in metabolic engineering of E. coli for the synthesis of vanillin has been evaluated by the use of genes encoding feruloyl-CoA synthetase and feruloyl hydratase/aldolase from Pseudomonas fluorescens BF13. The higher vanillin production yield was obtained using resting cells of E. coli strain JM109 harbouring a low-copy number vector and a promoter exhibiting a low activity to drive the expression of the catabolic genes. Optimization of the bioconversion of ferulic acid to vanillin was accomplished by a response surface methodology. The experimental conditions that allowed us to obtain high values for response functions were 3.3 mM ferulic acid and 4.5 g/L of biomass, with a yield of 70.6% and specific productivity of 5.9 micromoles/g x min after 3 hours of incubation. The final concentration of vanillin in the medium was increased up to 3.5 mM after a 6-hour incubation by sequential spiking of 1.1 mM ferulic acid. The resting cells could be reused up to four times maintaining the production yield levels over 50%, thus increasing three times the vanillin obtained per gram of biomass. Ferulic acid can be efficiently converted to vanillin, without accumulation of undesirable vanillin reduction/oxidation products, using E. coli JM109 cells expressing genes from the ferulic

  11. Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin.

    Science.gov (United States)

    Fleige, Christian; Meyer, Florian; Steinbüchel, Alexander

    2016-06-01

    The Gram-positive bacterium Amycolatopsis sp. ATCC 39116 is used for the fermentative production of natural vanillin from ferulic acid on an industrial scale. The strain is known for its outstanding tolerance to this toxic product. In order to improve the productivity of the fermentation process, the strain's metabolism was engineered for higher final concentrations and molar yields. Degradation of vanillin could be decreased by more than 90% through deletion of the vdh gene, which codes for the central vanillin catabolism enzyme, vanillin dehydrogenase. This mutation resulted in improvement of the final concentration of vanillin by more than 2.2 g/liter, with a molar yield of 80.9%. Further improvement was achieved with constitutive expression of the vanillin anabolism genes ech and fcs, coding for the enzymes feruloyl-coenzyme A (CoA) synthetase (fcs) and enoyl-CoA hydratase/aldolase (ech). The transcription of both genes was shown to be induced by ferulic acid, which explains the unwanted adaptation phase in the fermentation process before vanillin was efficiently produced by the wild-type cells. Through the constitutive and enhanced expression of the two genes, the adaptation phase was eliminated and a final vanillin concentration of 19.3 g/liter, with a molar yield of 94.9%, was obtained. Moreover, an even higher final vanillin concentration of 22.3 g/liter was achieved, at the expense of a lower molar yield, by using an improved feeding strategy. This is the highest reported vanillin concentration reached in microbial fermentation processes without extraction of the product. Furthermore, the vanillin was produced almost without by-products, with a molar yield that nearly approached the theoretical maximum. Much effort has been put into optimization of the biotechnological production of natural vanillin. The demand for this compound is growing due to increased consumer concerns regarding chemically produced food additives. Since this compound is toxic to most

  12. Vanillin production using metabolically engineered Escherichia coli under non-growing conditions

    Directory of Open Access Journals (Sweden)

    Fava Fabio

    2007-04-01

    Full Text Available Abstract Background Vanillin is one of the most important aromatic flavour compounds used in the food and cosmetic industries. Natural vanillin is extracted from vanilla beans and is relatively expensive. Moreover, the consumer demand for natural vanillin highly exceeds the amount of vanillin extracted by plant sources. This has led to the investigation of other routes to obtain this flavour such as the biotechnological production from ferulic acid. Studies concerning the use of engineered recombinant Escherichia coli cells as biocatalysts for vanillin production are described in the literature, but yield optimization and biotransformation conditions have not been investigated in details. Results Effect of plasmid copy number in metabolic engineering of E. coli for the synthesis of vanillin has been evaluated by the use of genes encoding feruloyl-CoA synthetase and feruloyl hydratase/aldolase from Pseudomonas fluorescens BF13. The higher vanillin production yield was obtained using resting cells of E. coli strain JM109 harbouring a low-copy number vector and a promoter exhibiting a low activity to drive the expression of the catabolic genes. Optimization of the bioconversion of ferulic acid to vanillin was accomplished by a response surface methodology. The experimental conditions that allowed us to obtain high values for response functions were 3.3 mM ferulic acid and 4.5 g/L of biomass, with a yield of 70.6% and specific productivity of 5.9 μmoles/g × min after 3 hours of incubation. The final concentration of vanillin in the medium was increased up to 3.5 mM after a 6-hour incubation by sequential spiking of 1.1 mM ferulic acid. The resting cells could be reused up to four times maintaining the production yield levels over 50%, thus increasing three times the vanillin obtained per gram of biomass. Conclusion Ferulic acid can be efficiently converted to vanillin, without accumulation of undesirable vanillin reduction/oxidation products

  13. Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production.

    Science.gov (United States)

    Kuivanen, Joosu; Penttilä, Merja; Richard, Peter

    2015-01-08

    Synthetic L-ascorbic acid (vitamin C) is widely used as a preservative and nutrient in food and pharmaceutical industries. In the current production method, D-glucose is converted to L-ascorbic acid via several biochemical and chemical steps. The main source of L-ascorbic acid in human nutrition is plants. Several alternative metabolic pathways for L-ascorbic acid biosynthesis are known in plants. In one of them, D-galacturonic acid is the precursor. D-Galacturonic acid is also the main monomer in pectin, a plant cell wall polysaccharide. Pectin is abundant in biomass and is readily available from several waste streams from fruit and sugar processing industries. In the present work, we engineered the filamentous fungus Aspergillus niger for the conversion of D-galacturonic acid to L-ascorbic acid. In the generated pathway, the native D-galacturonate reductase activity was utilized while the gene coding for the second enzyme in the fungal D-galacturonic acid pathway, an L-galactonate consuming dehydratase, was deleted. Two heterologous genes coding for enzymes from the plant L-ascorbic acid pathway--L-galactono-1,4-lactone lactonase from Euglena gracilis (EgALase) and L-galactono-1,4-lactone dehydrogenase from Malpighia glabra (MgGALDH)--were introduced into the A. niger strain. Alternatively, an unspecific L-gulono-1,4-lactone lactonase (smp30) from the animal L-ascorbic acid pathway was introduced in the fungal strain instead of the plant L-galactono-1,4-lactone lactonase. In addition, a strain with the production pathway inducible with D-galacturonic acid was generated by using a bidirectional and D-galacturonic acid inducible promoter from the fungus. Even though, the lactonase enzyme activity was not observed in the resulting strains, they were capable of producing L-ascorbic acid from pure D-galacturonic acid or pectin-rich biomass in a consolidated bioprocess. Product titers up to 170 mg/l were achieved. In the current study, an L-ascorbic acid pathway using

  14. 2004 Atomic and Molecular Interactions Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul J. Dagdigian

    2004-10-25

    The 2004 Gordon Research Conference on Atomic and Molecular Interactions was held July 11-16 at Colby-Sawyer College, New London, New Hampshire. This latest edition in a long-standing conference series featured invited talks and contributed poster papers on dynamics and intermolecular interactions in a variety of environments, ranging from the gas phase through surfaces and condensed media. A total of 90 conferees participated in the conference.

  15. The sine Gordon model perturbation theory and cluster Monte Carlo

    CERN Document Server

    Hasenbusch, M; Pinn, K

    1994-01-01

    We study the expansion of the surface thickness in the 2-dimensional lattice Sine Gordon model in powers of the fugacity z. Using the expansion to order z**2, we derive lines of constant physics in the rough phase. We describe and test a VMR cluster algorithm for the Monte Carlo simulation of the model. The algorithm shows nearly no critical slowing down. We apply the algorithm in a comparison of our perturbative results with Monte Carlo data.

  16. 2004 Atomic and Molecular Interactions Gordon Research Conference

    International Nuclear Information System (INIS)

    Dr. Paul J. Dagdigian

    2004-01-01

    The 2004 Gordon Research Conference on Atomic and Molecular Interactions was held July 11-16 at Colby-Sawyer College, New London, New Hampshire. This latest edition in a long-standing conference series featured invited talks and contributed poster papers on dynamics and intermolecular interactions in a variety of environments, ranging from the gas phase through surfaces and condensed media. A total of 90 conferees participated in the conference

  17. The Quantum Sine-Gordon Model in Perturbative AQFT

    Science.gov (United States)

    Bahns, Dorothea; Rejzner, Kasia

    2017-08-01

    We study the Sine-Gordon model with Minkowski signature in the framework of perturbative algebraic quantum field theory. We calculate the vertex operator algebra braiding property. We prove that in the finite regime of the model, the expectation value—with respect to the vacuum or a Hadamard state—of the Epstein Glaser S-matrix and the interacting current or the field respectively converge, both given as formal power series.

  18. Exact traveling wave solutions to the Klein–Gordon equation using the novel (G′/G-expansion method

    Directory of Open Access Journals (Sweden)

    M.G. Hafez

    2014-01-01

    Full Text Available The novel (G′/G-expansion method is one of the powerful methods that appeared in recent times for establishing exact traveling wave solutions of nonlinear partial differential equations. Exact traveling wave solutions in terms of hyperbolic, trigonometric and rational functions to the cubic nonlinear Klein–Gordon equation via this method are obtained in this article. The efficiency of this method for finding exact solutions and traveling wave solutions has been demonstrated. It is shown that the novel (G′/G-expansion method is a simple and valuable mathematical tool for solving nonlinear evolution equations (NLEEs in applied mathematics, mathematical physics and engineering.

  19. Exact traveling wave solutions to the Klein-Gordon equation using the novel (G‧/G)-expansion method

    Science.gov (United States)

    Hafez, M. G.; Alam, Md. Nur; Akbar, M. Ali

    The novel (G‧/G)-expansion method is one of the powerful methods that appeared in recent times for establishing exact traveling wave solutions of nonlinear partial differential equations. Exact traveling wave solutions in terms of hyperbolic, trigonometric and rational functions to the cubic nonlinear Klein-Gordon equation via this method are obtained in this article. The efficiency of this method for finding exact solutions and traveling wave solutions has been demonstrated. It is shown that the novel (G‧/G)-expansion method is a simple and valuable mathematical tool for solving nonlinear evolution equations (NLEEs) in applied mathematics, mathematical physics and engineering.

  20. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass.

    Science.gov (United States)

    Zale, Janice; Jung, Je Hyeong; Kim, Jae Yoon; Pathak, Bhuvan; Karan, Ratna; Liu, Hui; Chen, Xiuhua; Wu, Hao; Candreva, Jason; Zhai, Zhiyang; Shanklin, John; Altpeter, Fredy

    2016-02-01

    Elevating the lipid content in vegetative tissues has emerged as a new strategy for increasing energy density and biofuel yield of crops. Storage lipids in contrast to structural and signaling lipids are mainly composed of glycerol esters of fatty acids, also known as triacylglycerol (TAG). TAGs are one of the most energy-rich and abundant forms of reduced carbon available in nature. Therefore, altering the carbon-partitioning balance in favour of TAG in vegetative tissues of sugarcane, one of the highest yielding biomass crops, is expected to drastically increase energy yields. Here we report metabolic engineering to elevate TAG accumulation in vegetative tissues of sugarcane. Constitutive co-expression of WRINKLED1 (WRI1), diacylglycerol acyltransferase1-2 (DGAT1-2) and oleosin1 (OLE1) and simultaneous cosuppression of ADP-glucose pyrophosphorylase (AGPase) and a subunit of the peroxisomal ABC transporter1 (PXA1) in transgenic sugarcane elevated TAG accumulation in leaves or stems by 95- or 43-fold to 1.9% or 0.9% of dry weight (DW), respectively, while expression or suppression of one to three of the target genes increased TAG levels by 1.5- to 9.5-fold. Accumulation of TAG in vegetative progeny plants was consistent with the results from primary transgenics and contributed to a total fatty acid content of up to 4.7% or 1.7% of DW in mature leaves or stems, respectively. Lipid droplets were visible within mesophyll cells of transgenic leaves by confocal fluorescence microscopy. These results provide the basis for optimizations of TAG accumulation in sugarcane and other high yielding biomass grasses and will open new prospects for biofuel applications. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis.

    Science.gov (United States)

    Jin, Peng; Zhang, Linpei; Yuan, Panhong; Kang, Zhen; Du, Guocheng; Chen, Jian

    2016-04-20

    Chondroitin and heparosan, important polysaccharides and key precursors of chondroitin sulfate and heparin/heparan sulfate, have drawn much attention due to their wide applications in many aspects. In this study, we designed two independent synthetic pathways of chondroitin and heparosan in food-grade Bacillus subtilis, integrating critical synthases genes derived from Escherichia coli into B. subtilis genome. By RT-PCR analysis, we confirmed that synthases genes transcripted an integral mRNA chain, suggesting co-expression. In shaken flask, chondroitin and heparosan were produced at a level of 1.83gL(-1) and 1.71gL(-1), respectively. Since B. subtilis endogenous tuaD gene encodes the limiting factor of biosynthesis, overexpressing tuaD resulted in enhanced chondroitin and heparosan titers, namely 2.54gL(-1) and 2.65gL(-1). Moreover, production reached the highest peaks of 5.22gL(-1) and 5.82gL(-1) in 3-L fed-batch fermentation, respectively, allowed to double the production that in shaken flask. The weight-average molecular weight of chondroitin and heparosan from B. subtilis E168C/pP43-D and E168H/pP43-D were 114.07 and 67.70kDa, respectively. This work provided alternative safer synthetic pathways for metabolic engineering of chondroitin and heparosan in B. subtilis and a useful approach for enhancing production, which can be optimized for further improvement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Recent advances in the metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements.

    Science.gov (United States)

    Satake, Honoo; Ono, Eiichiro; Murata, Jun

    2013-12-04

    Plant physiological, epidemiological, and food science studies have shed light on lignans as healthy diets for the reduction of the risk of lifestyle-related noncommunicable diseases and, thus, the demand for lignans has been rapidly increasing. However, the low efficiency and instability of lignan production via extraction from plant resources remain to be resolved, indicating the requirement for the development of new procedures for lignan production. The metabolic engineering of lignan-biosynthesizing plants is expected to be most promising for efficient, sustainable, and stable lignan production. This is supported by the recent verification of biosynthetic pathways of major dietary lignans and the exploration of lignan production via metabolic engineering using transiently gene-transfected or transgenic plants. The aim of this review is to present an overview of the biosynthetic pathways, biological activities, and metabolic engineering of lignans and also perspectives in metabolic engineering-based lignan production using transgenic plants for practical application.

  3. An extensive case study of hairy-root cultures for enhanced secondary-metabolite production through metabolic-pathway engineering.

    Science.gov (United States)

    Mehrotra, Shakti; Rahman, Laiq Ur; Kukreja, Arun Kumar

    2010-08-23

    An intrinsic improvement is taking place in the methodologies for the development of culture systems with first-rate production of plant-based molecules. The blending of HR (hairy root) cultures with ME (metabolic engineering) approaches offers new insights into, and possibilities for, improving the system productivity for known and/or novel high-value plant-derived active compounds. The introduction and expression of foreign genes in plants results in improvement of cellular activities by manipulating enzymatic, regulatory and transport function of the cell. The rational amendments in the rate-limiting steps of a biosynthetic pathway as well as inactivating the inefficient pathway(s) for by-product formation can be accomplished either through single-step engineering or through the multi-step engineering. The hierarchical control of any metabolic process can lead the engineer to apply the ME ideas and principles to any of the strata, including transcriptional, moving on to translational and enzymatic activity. The HR culture systems offer a remarkable potential for commercial production of a number of low-volume, but high-value, secondary metabolites. Taking HR as a model system, in the present review, we discuss engineering principles and perceptions to exploit secondary-metabolite pathways for the production of important bioactive compounds. We also talk about requisites and possible challenges that occur during ME, with emphasis on examples of various HR systems. Furthermore, it also highlights the utilization of global information obtained from '-omic' platforms in order to explore pathway architecture, structural and functional aspects of important enzymes and genes that can support the design of sets of engineering, resulting in the generation of wide-ranging views of DNA sequence-to-metabolite passageway networking and their control to obtain desired results.

  4. 2012 PLASMONICS GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR, JUNE 10-15, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Engheta, Nader

    2012-06-15

    The focus of this meeting is on recent advances in science and engineering of plasmonic optics and its applications in the design of novel devices and components. The impacts of plasmonic phenomena on other disciplines such as chemistry, biology, medicine and engineering will also be discussed.

  5. Collaborative Research: Metabolic Engineering of E. coli Sugar-Utilization Regulatory Systems for the Consumption of Plant Biomass Sugars.

    Energy Technology Data Exchange (ETDEWEB)

    Ramon Gonzalez (PI); J. V. Shanks (Co-PI); K-Y. San (Co-PI).

    2006-03-31

    The overall objective of this project is to metabolically engineer the E. coli sugar-utilization regulatory systems (SURS) to utilize sugar mixtures obtained from plant biomass. Of particular relevance is the implementation of a metabolic engineering cycle aided by functional genomics and systems biology tools. Our findings will help in the establishment of a platform for the efficient production of fuels and chemicals from lignocellulosic sugars. Our research has improved the understanding of the role of SURS in regulating sugar utilization and several other cellular functions. For example, we discovered that Mlc, a global regulatory protein, regulates the utilization of xylose and demonstrated the existence of an important link between catabolite repression and respiratory/fermentative metabolism. The study of SURS mutants also revealed a connection between flagellar biosynthesis and catabolite repression. Several tools were also developed as part of this project. A novel tool (Elementary Network Decomposition, END) to help elucidate the network topology of regulatory systems was developed and its utility as a discovery tool was demonstrated by applying it to the SURS in E. coli. A novel method (and software) to estimate metabolic fluxes that uses labeling experiments and eliminates reliance on extracellular fluxes was also developed. Although not initially considered in the scope of this project, we have developed a novel and superior method for optimization of HPLC separation and applied it to the simultaneous quantification of different functionalities (sugars, organic acids, ethanol, etc.) present in our fermentation samples. Currently under development is a genetic network driven metabolic flux analysis framework to integrate transcriptional and flux data.

  6. Statistical mechanics of the quantum and classical sine-gordon fields

    International Nuclear Information System (INIS)

    Bullough, R.K.; Pilling, D.J.; Timonen, J.

    1985-01-01

    A number of results obtained by functional integration for the statistical mechanics of the integrable sine-Gordon and sine-Gordon fields is reported. In some respects these two fields relate one to the other as the attractive (c<0) and repulsive (c<0) cases of the nonlinear Schroedinger equation do. An attempt has been made to bring the functional integral method into line with the Bethe ansatz and quantum inverse methods. Measure for using action-angle variables is chosen. Classical and thermodynamic limits for action-angle variables are established. Partition function for sine-Gordon and sine-Gordon fields is derived in terms of action-angle variables

  7. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering

    DEFF Research Database (Denmark)

    Asadollahi, Mohammadali; Maury, Jerome; Patil, Kiran Raosaheb

    2009-01-01

    A genome-scale metabolic model was used to identify new target genes for enhanced biosynthesis of sesquiterpenes in the yeast Saccharomyces cerevisiae. The effect of gene deletions on the flux distributions in the metabolic model of S. cerevisiae was assessed using OptGene as the modeling framewo...

  8. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering.

    Science.gov (United States)

    Cui, Yan-Yan; Ling, Chen; Zhang, Yuan-Yuan; Huang, Jian; Liu, Jian-Zhong

    2014-02-10

    Shikimic acid (SA) produced from the seeds of Chinese star anise (Illicium verum) is a key intermediate for the synthesis of neuraminidase inhibitors such as oseltamivir (Tamiflu®), an anti-influenza drug. However, plants cannot deliver a stable supply of SA. To avoid the resulting shortages and price fluctuations, a stable source of affordable SA is required. Although recent achievements in metabolic engineering of Escherichia coli strains have significantly increased SA productivity, commonly-used plasmid-based expression systems are prone to genetic instability and require constant selective pressure to ensure plasmid maintenance. Cofactors also play an important role in the biosynthesis of different fermentation products. In this study, we first constructed an E. coli SA production strain that carries no plasmid or antibiotic marker. We then investigated the effect of endogenous NADPH availability on SA production. The pps and csrB genes were first overexpressed by replacing their native promoter and integrating an additional copy of the genes in a double gene knockout (aroK and aroL) of E. coli. The aroG(fbr), aroB, aroE and tktA gene cluster was integrated into the above E. coli chromosome by direct transformation. The gene copy number was then evolved to the desired value by triclosan induction. The resulting strain, E. coli SA110, produced 8.9-fold more SA than did the parental strain E. coli (ΔaroKΔaroL). Following qRT-PCR analysis, another copy of the tktA gene under the control of the 5P(tac) promoter was inserted into the chromosome of E. coli SA110 to obtain the more productive strain E. coli SA110. Next, the NADPH availability was increased by overexpressing the pntAB or nadK genes, which further enhanced SA production. The final strain, E. coli SA116, produced 3.12 g/L of SA with a yield on glucose substrate of 0.33 mol/mol. An SA-producing E. coli strain that carries neither a plasmid nor an antibiotic marker was constructed by triclosan

  9. Analysis and metabolic engineering of lipid-linked oligosaccharides in glycosylation-deficient CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Meredith B., E-mail: mbauman7@jhu.edu [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Maryland Hall 221, Baltimore, MD 21218 (United States); Tomiya, Noboru, E-mail: ntomiya1@jhu.edu [Department of Biology, Johns Hopkins University, 3400 North Charles Street, Mudd Hall 104A, Baltimore, MD 21218 (United States); Betenbaugh, Michael J., E-mail: beten@jhu.edu [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Maryland Hall 221, Baltimore, MD 21218 (United States); Krag, Sharon S., E-mail: skrag@jhsph.edu [Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205 (United States)

    2010-04-23

    Glycosylation-deficient Chinese Hamster Ovary (CHO) cell lines can be used to expand our understanding of N-glycosylation pathways and to study Congenital Disorders of Glycosylation, diseases caused by defects in the synthesis of N-glycans. The mammalian N-glycosylation pathway involves the step-wise assembly of sugars onto a dolichol phosphate (P-Dol) carrier, forming a lipid-linked oligosaccharide (LLO), followed by the transfer of the completed oligosaccharide onto the protein of interest. In order to better understand how deficiencies in this pathway affect the availability of the completed LLO donor for use in N-glycosylation, we used a non-radioactive, HPLC-based assay to examine the intermediates in the LLO synthesis pathway for CHO-K1 cells and for three different glycosylation-deficient CHO cell lines. B4-2-1 cells, which have a mutation in the dolichol phosphate-mannose synthase (DPM2) gene, accumulated LLO with the structure Man{sub 5}GlcNAc{sub 2}-P-P-Dol, while MI8-5 cells, which lack glucosyltransferase I (ALG6) activity, accumulated Man{sub 9}GlcNAc{sub 2}-P-P-Dol. CHO-K1 and MI5-4 cells both produced primarily the complete LLO, Glc{sub 3}Man{sub 9}GlcNAc{sub 2}-P-P-Dol, though the relative quantity was lower in MI5-4. MI5-4 cells have reduced hexokinase activity which could affect the availability of many of the substrates required for LLO synthesis and, consequently, impair production of the final LLO donor. Increasing hexokinase activity by overexpressing hexokinase II in MI5-4 caused a decrease in the relative quantities of the incomplete LLO intermediates from Man{sub 5}GlcNAc{sub 2}-PP-Dol through Glc{sub 1}Man{sub 9}GlcNAc{sub 2}-PP-Dol, and an increase in the relative quantity of the final LLO donor, Glc{sub 3}Man{sub 9}GlcNAc{sub 2}-P-P-Dol. This study suggests that metabolic engineering may be a useful strategy for improving LLO availability for use in N-glycosylation.

  10. Flux Balance Analysis Inspired Bioprocess Upgrading for Lycopene Production by a Metabolically Engineered Strain of Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Komi Nambou

    2015-12-01

    Full Text Available Genome-scale metabolic models embody a significant advantage of systems biology since their applications as metabolic flux simulation models enable predictions for the production of industrially-interesting metabolites. The biotechnological production of lycopene from Yarrowia lipolytica is an emerging scope that has not been fully scrutinized, especially for what concerns cultivation conditions of newly generated engineered strains. In this study, by combining flux balance analysis (FBA and Plackett-Burman design, we screened chemicals for lycopene production from a metabolically engineered strain of Y. lipolytica. Lycopene concentrations of 126 and 242 mg/L were achieved correspondingly from the FBA-independent and the FBA-assisted designed media in fed-batch cultivation mode. Transcriptional studies revealed upregulations of heterologous genes in media designed according to FBA, thus implying the efficiency of model predictions. Our study will potentially support upgraded lycopene and other terpenoids production from existing or prospect bioengineered strains of Y. lipolytica and/or closely related yeast species.

  11. Flux Balance Analysis Inspired Bioprocess Upgrading for Lycopene Production by a Metabolically Engineered Strain of Yarrowia lipolytica

    Science.gov (United States)

    Nambou, Komi; Jian, Xingxing; Zhang, Xinkai; Wei, Liujing; Lou, Jiajia; Madzak, Catherine; Hua, Qiang

    2015-01-01

    Genome-scale metabolic models embody a significant advantage of systems biology since their applications as metabolic flux simulation models enable predictions for the production of industrially-interesting metabolites. The biotechnological production of lycopene from Yarrowia lipolytica is an emerging scope that has not been fully scrutinized, especially for what concerns cultivation conditions of newly generated engineered strains. In this study, by combining flux balance analysis (FBA) and Plackett-Burman design, we screened chemicals for lycopene production from a metabolically engineered strain of Y. lipolytica. Lycopene concentrations of 126 and 242 mg/L were achieved correspondingly from the FBA-independent and the FBA-assisted designed media in fed-batch cultivation mode. Transcriptional studies revealed upregulations of heterologous genes in media designed according to FBA, thus implying the efficiency of model predictions. Our study will potentially support upgraded lycopene and other terpenoids production from existing or prospect bioengineered strains of Y. lipolytica and/or closely related yeast species. PMID:26703753

  12. Systems Biocatalysis: Development and engineering of cell-free "artificial metabolisms" for preparative multi-enzymatic synthesis.

    Science.gov (United States)

    Fessner, Wolf-Dieter

    2015-12-25

    Systems Biocatalysis is an emerging concept of organizing enzymes in vitro to construct complex reaction cascades for an efficient, sustainable synthesis of valuable chemical products. The strategy merges the synthetic focus of chemistry with the modular design of biological systems, which is similar to metabolic engineering of cellular production systems but can be realized at a far lower level of complexity from a true reductionist approach. Such operations are free from material erosion by competing metabolic pathways, from kinetic restrictions by physical barriers and regulating circuits, and from toxicity problems with reactive foreign substrates, which are notorious problems in whole-cell systems. A particular advantage of cell-free concepts arises from the inherent opportunity to construct novel biocatalytic reaction systems for the efficient synthesis of non-natural products ("artificial metabolisms") by using enzymes specifically chosen or engineered for non-natural substrate promiscuity. Examples illustrating the technology from our laboratory are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Recent advances in engineering propionyl-CoA metabolism for microbial production of value-added chemicals and biofuels.

    Science.gov (United States)

    Srirangan, Kajan; Bruder, Mark; Akawi, Lamees; Miscevic, Dragan; Kilpatrick, Shane; Moo-Young, Murray; Chou, C Perry

    2017-09-01

    Diminishing fossil fuel reserves and mounting environmental concerns associated with petrochemical manufacturing practices have generated significant interests in developing whole-cell biocatalytic systems for the production of value-added chemicals and biofuels. Although acetyl-CoA is a common natural biogenic precursor for the biosynthesis of numerous metabolites, propionyl-CoA is unpopular and non-native to most organisms. Nevertheless, with its C3-acyl moiety as a discrete building block, propionyl-CoA can serve as another key biogenic precursor to several biological products of industrial importance. As a result, engineering propionyl-CoA metabolism, particularly in genetically tractable hosts with the use of inexpensive feedstocks, has paved an avenue for novel biomanufacturing. Herein, we present a systematic review on manipulation of propionyl-CoA metabolism as well as relevant genetic and metabolic engineering strategies for microbial production of value-added chemicals and biofuels, including odd-chain alcohols and organic acids, bio(co)polymers and polyketides. [Formula: see text].

  14. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit.

    Science.gov (United States)

    Gupta, Apoorv; Reizman, Irene M Brockman; Reisch, Christopher R; Prather, Kristala L J

    2017-03-01

    Metabolic engineering of microorganisms to produce desirable products on an industrial scale can result in unbalanced cellular metabolic networks that reduce productivity and yield. Metabolic fluxes can be rebalanced using dynamic pathway regulation, but few broadly applicable tools are available to achieve this. We present a pathway-independent genetic control module that can be used to dynamically regulate the expression of target genes. We apply our module to identify the optimal point to redirect glycolytic flux into heterologous engineered pathways in Escherichia coli, resulting in titers of myo-inositol increased 5.5-fold and titers of glucaric acid increased from unmeasurable to >0.8 g/L, compared to the parent strains lacking dynamic flux control. Scaled-up production of these strains in benchtop bioreactors resulted in almost ten- and fivefold increases in specific titers of myo-inositol and glucaric acid, respectively. We also used our module to control flux into aromatic amino acid biosynthesis to increase titers of shikimate in E. coli from unmeasurable to >100 mg/L.

  15. 2012 Photosynthesis Gordon Research Conference and Seminar, JUL 7-13, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Richard [Univ. of California, Riverside, CA (United States)

    2012-07-13

    The Gordon Research Conference on PHOTOSYNTHESIS was held at Davidson College, Davidson, North Carolina, July 8-13, 2012. The Conference was well-attended with 150 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. Of the 150 attendees, 65 voluntarily responded to a general inquiry regarding ethnicity which appears on our registration forms. Of the 65 respondents, 20% were Minorities$-$ 5% Hispanic, 15% Asian and 0% African American. Approximately 28% of the participants at the 2012 meeting were women. The Gordon Research Seminar on PHOTOSYNTHESIS held at Davidson College, Davidson, North Carolina, July 7-8, 2012.. The Conference was well-attended with 51 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. Of the 51 attendees, 22 voluntarily responded to a general inquiry regarding ethnicity which appears on our registration forms. Of the 22 respondents, 14% were Minorities $-$0% Hispanic, 14% Asian and 0% African American. Approximately 35% of the participants at the 2012 meeting were women. Focal points for talks and discussions will include: Artificial photosynthesis and solar energy conversion strategies; Engineering organisms for biofuels and hydrogen production; Electron transport, proton transport, and energy coupling; Photoprotection mechanisms; Photosynthetic reaction center structure and function, including rewiring reaction centers for artificial photosynthesis; Energy capture and light harvesting solutions, including quantum coherence; Structure of the oxygen evolving complex and the mechanism of oxygen production.

  16. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds—Present and Future Strain Construction Strategies

    Directory of Open Access Journals (Sweden)

    Nils J. H. Averesch

    2018-03-01

    Full Text Available The aromatic nature of shikimate pathway intermediates gives rise to a wealth of potential bio-replacements for commonly fossil fuel-derived aromatics, as well as naturally produced secondary metabolites. Through metabolic engineering, the abundance of certain intermediates may be increased, while draining flux from other branches off the pathway. Often targets for genetic engineering lie beyond the shikimate pathway, altering flux deep in central metabolism. This has been extensively used to develop microbial production systems for a variety of compounds valuable in chemical industry, including aromatic and non-aromatic acids like muconic acid, para-hydroxybenzoic acid, and para-coumaric acid, as well as aminobenzoic acids and aromatic α-amino acids. Further, many natural products and secondary metabolites that are valuable in food- and pharma-industry are formed outgoing from shikimate pathway intermediates. (Reconstruction of such routes has been shown by de novo production of resveratrol, reticuline, opioids, and vanillin. In this review, strain construction strategies are compared across organisms and put into perspective with requirements by industry for commercial viability. Focus is put on enhancing flux to and through shikimate pathway, and engineering strategies are assessed in order to provide a guideline for future optimizations.

  17. Biosynthesis of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Li, Zheng-Jun; Qiao, Kangjian; Shi, Weichao; Pereira, Brian; Zhang, Haoran; Olsen, Bradley D; Stephanopoulos, Gregory

    2016-05-01

    Metabolically engineered Escherichia coli strains were constructed to effectively produce novel glycolate-containing biopolymers from glucose. First, the glyoxylate bypass pathway and glyoxylate reductase were engineered such as to generate glycolate. Second, glycolate and lactate were activated by the Megasphaera elsdenii propionyl-CoA transferase to synthesize glycolyl-CoA and lactyl-CoA, respectively. Third, β-ketothiolase and acetoacetyl-CoA reductase from Ralstonia eutropha were introduced to synthesize 3-hydroxybutyryl-CoA from acetyl-CoA. At last, the Ser325Thr/Gln481Lys mutant of polyhydroxyalkanoate (PHA) synthase from Pseudomonas sp. 61-3 was over-expressed to polymerize glycolyl-CoA, lactyl-CoA and 3-hydroxybutyryl-CoA to produce poly(glycolate-co-lactate-co-3-hydroxybutyrate). The recombinant E. coli was able to accumulate the novel terpolymer with a titer of 3.90g/l in shake flask cultures. The structure of the resulting polymer was chemically characterized by proton NMR analysis. Assessment of thermal and mechanical properties demonstrated that the produced terpolymer possessed decreased crystallinity and improved toughness, in comparison to poly(3-hydroxybutyrate) homopolymer. This is the first study reporting efficient microbial production of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production.

    Science.gov (United States)

    Xie, Dongming; Jackson, Ethel N; Zhu, Quinn

    2015-02-01

    The omega-3 fatty acids, cis-5, 8, 11, 14, and 17-eicosapentaenoic acid (C20:5; EPA) and cis-4, 7, 10, 13, 16, and 19-docosahexaenoic acid (C22:6; DHA), have wide-ranging benefits in improving heart health, immune function, mental health, and infant cognitive development. Currently, the major source for EPA and DHA is from fish oil, and a minor source of DHA is from microalgae. With the increased demand for EPA and DHA, DuPont has developed a clean and sustainable source of the omega-3 fatty acid EPA through fermentation using metabolically engineered strains of Yarrowia lipolytica. In this mini-review, we will focus on DuPont's technology for EPA production. Specifically, EPA biosynthetic and supporting pathways have been introduced into the oleaginous yeast to synthesize and accumulate EPA under fermentation conditions. This Yarrowia platform can also produce tailored omega-3 (EPA, DHA) and/or omega-6 (ARA, GLA) fatty acid mixtures in the cellular lipid profiles. Fundamental research such as metabolic engineering for strain construction, high-throughput screening for strain selection, fermentation process development, and process scale-up were all needed to achieve the high levels of EPA titer, rate, and yield required for commercial application. Here, we summarize how we have combined the fundamental bioscience and the industrial engineering skills to achieve large-scale production of Yarrowia biomass containing high amounts of EPA, which led to two commercial products, New Harvest™ EPA oil and Verlasso® salmon.

  19. Model-based design of bistable cell factories for metabolic engineering.

    Science.gov (United States)

    Srinivasan, Shyam; Cluett, William R; Mahadevan, Radhakrishnan

    2018-04-15

    Metabolism can exhibit dynamic phenomena like bistability due to the presence of regulatory motifs like the positive feedback loop. As cell factories, microorganisms with bistable metabolism can have a high and a low product flux at the two stable steady states, respectively. The exclusion of metabolic regulation and network dynamics limits the ability of pseudo-steady state stoichiometric models to detect the presence of bistability, and reliably assess the outcomes of design perturbations to metabolic networks. Using kinetic models of metabolism, we assess the change in the bistable characteristics of the network, and suggest designs based on perturbations to the positive feedback loop to enable the network to produce at its theoretical maximum rate. We show that the most optimal production design in parameter space, for a small bistable metabolic network, may exist at the boundary of the bistable region separating it from the monostable region of low product fluxes. The results of our analysis can be broadly applied to other bistable metabolic networks with similar positive feedback network topologies. This can complement existing model-based design strategies by providing a smaller number of feasible designs that need to be tested in vivo. http://lmse.biozone.utoronto.ca/downloads/. krishna.mahadevan@utoronto.ca. Supplementary data are available at Bioinformatics online.

  20. Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures.

    Science.gov (United States)

    Alff-Tuomala, Susanne; Salusjärvi, Laura; Barth, Dorothee; Oja, Merja; Penttilä, Merja; Pitkänen, Juha-Pekka; Ruohonen, Laura; Jouhten, Paula

    2016-01-01

    Xylose is present with glucose in lignocellulosic streams available for valorisation to biochemicals. Saccharomyces cerevisiae has excellent characteristics as a host for the bioconversion, except that it strongly prefers glucose to xylose, and the co-consumption remains a challenge. Further, since xylose is not a natural substrate of S. cerevisiae, the regulatory response it induces in an engineered strain cannot be expected to have evolved for its utilisation. Xylose-induced effects on metabolism and gene expression during anaerobic growth of an engineered strain of S. cerevisiae on medium containing both glucose and xylose medium were quantified. The gene expression of S. cerevisiae with an XR-XDH pathway for xylose utilisation was analysed throughout the cultivation: at early cultivation times when mainly glucose was metabolised, at times when xylose was co-consumed in the presence of low glucose concentrations, and when glucose had been depleted and only xylose was being consumed. Cultivations on glucose as a sole carbon source were used as a control. Genome-scale dynamic flux balance analysis models were simulated to analyse the metabolic dynamics of S. cerevisiae. The simulations quantitatively estimated xylose-dependent flux dynamics and challenged the utilisation of the metabolic network. A relative increase in xylose utilisation was predicted to induce the bi-directionality of glycolytic flux and a redox challenge even at low glucose concentrations. Remarkably, xylose was observed to specifically delay the glucose-dependent repression of particular genes in mixed glucose-xylose cultures compared to glucose cultures. The delay occurred at a cultivation time when the metabolic flux activities were similar in the both cultures.

  1. Quantum vacuum interaction between two sine-Gordon kinks

    Science.gov (United States)

    Bordag, M.; Muñoz-Castañeda, J. M.

    2012-09-01

    We calculate the quantum vacuum interaction energy between two kinks of the sine-Gordon equation. Using the TGTG formula, the problem is reduced to the known formulas for quantum fluctuations in the background of a single kink. This interaction induces an attractive force between the kinks in parallel to the Casimir force between conducting mirrors. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  2. 2009 Epigenetics Gordon Research Conference (August 9 - 14, 2009)

    Energy Technology Data Exchange (ETDEWEB)

    Jeanie Lee

    2009-08-14

    Epigenetics refers to the study of heritable changes in genome function that occur without a change in primary DNA sequence. The 2009 Gordon Conference in Epigenetics will feature discussion of various epigenetic phenomena, emerging understanding of their underlying mechanisms, and the growing appreciation that human, animal, and plant health all depend on proper epigenetic control. Special emphasis will be placed on genome-environment interactions particularly as they relate to human disease. Towards improving knowledge of molecular mechanisms, the conference will feature international leaders studying the roles of higher order chromatin structure, noncoding RNA, repeat elements, nuclear organization, and morphogenic evolution. Traditional and new model organisms are selected from plants, fungi, and metazoans.

  3. Integrating biocompatible chemistry and manipulating cofactor partitioning in metabolically engineeredLactococcus lactisfor fermentative production of (3S)-acetoin

    DEFF Research Database (Denmark)

    Liu, Jianming; Solem, Christian; Jensen, Peter Ruhdal

    2016-01-01

    Biocompatible chemistry (BC), i.e. non-enzymatic chemical reactions compatible with living organisms, is increasingly used in conjunction with metabolically engineered microorganisms for producing compounds that do not usually occur naturally. Here we report production of one such compound, (3S......-tuning the respiratory capacity indirectly via the hemin concentration. We achieve high-level (3S)-acetoin production with a final titer of 66 mM (5.8 g/L) and a high yield (71% of the theoretical maximum). To the best of our knowledge, this is the first report describing production of (3S)-acetoin from sugar...

  4. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2013-01-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective...... production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological...... developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid....

  5. Metabolic Engineering of Seaweeds for the Detoxification of TNT-Contaminated Marine Waters

    National Research Council Canada - National Science Library

    Rorrer, Gregory L

    2005-01-01

    This project provided fundamental information on the ability of native marine macroalgae, commonly known as seaweed, to tolerate, take up, and metabolize the explosive compound 2,4,6- trinitrotoluene (TNT...

  6. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.

    Science.gov (United States)

    Klamt, Steffen; Müller, Stefan; Regensburger, Georg; Zanghellini, Jürgen

    2018-02-07

    example and demonstrate their relevance for metabolic engineering with realistic models of E. coli. We develop a comprehensive mathematical framework for yield optimization in metabolic models. Our theory is particularly useful for the study and rational modification of cell factories designed under given yield and/or rate requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.

    Science.gov (United States)

    Wu, Meng-Ying; Sung, Li-Yu; Li, Hung; Huang, Chun-Hung; Hu, Yu-Chen

    2017-12-15

    Biosynthesis of 1,4-butanediol (1,4-BDO) in E. coli requires an artificial pathway that involves six genes and time-consuming, iterative genome engineering. CRISPR is an effective gene editing tool, while CRISPR interference (CRISPRi) is repurposed for programmable gene suppression. This study aimed to combine both CRISPR and CRISPRi for metabolic engineering of E. coli and 1,4-BDO production. We first exploited CRISPR to perform point mutation of gltA, replacement of native lpdA with heterologous lpdA, knockout of sad and knock-in of two large (6.0 and 6.3 kb in length) gene cassettes encoding the six genes (cat1, sucD, 4hbd, cat2, bld, bdh) in the 1,4-BDO biosynthesis pathway. The successive E. coli engineering enabled production of 1,4-BDO to a titer of 0.9 g/L in 48 h. By combining the CRISPRi system to simultaneously suppress competing genes that divert the flux from the 1,4-BDO biosynthesis pathway (gabD, ybgC and tesB) for >85%, we further enhanced the 1,4-BDO titer for 100% to 1.8 g/L while reducing the titers of byproducts gamma-butyrolactone and succinate for 55% and 83%, respectively. These data demonstrate the potential of combining CRISPR and CRISPRi for genome engineering and metabolic flux regulation in microorganisms such as E. coli and production of chemicals (e.g., 1,4-BDO).

  8. Correct use of the Gordon decomposition in the calculation of nucleon magnetic dipole moments

    International Nuclear Information System (INIS)

    Mekhfi, Mustapha

    2008-01-01

    We perform the calculation of the nucleon dipole magnetic moment in full detail using the Gordon decomposition of the free quark current. This calculation has become necessary because of frequent misuse of the Gordon decomposition by some authors in computing the nucleon dipole magnetic moment

  9. Extended sine-Gordon Equation Method and Its Application to Maccari's System

    International Nuclear Information System (INIS)

    Song Lina; Zhang Hongqing

    2005-01-01

    An extended sine-Gordon equation method is proposed to construct exact travelling wave solutions to Maccari's equation based upon a generalized sine-Gordon equation. It is shown that more new travelling wave solutions can be found by this new method, which include bell-shaped soliton solutions, kink-shaped soliton solutions, periodic wave solution, and new travelling waves.

  10. From Pariah To Patriot: The Posthumous Career Of George William Gordon

    Directory of Open Access Journals (Sweden)

    Howard Johnson

    2008-12-01

    Full Text Available Examines the development of the reputation of George William Gordon in Jamaican collective remembering, in relation to changing social, political, and cultural contexts. Author describes Gordon's mixed-raced/brown background and later parliamentary activities in support of poor black labourers, and how he was sentenced to death by governor Eyre for supposedly inciting the 1865 Morant Bay Rebellion led by Paul Bogle. He relates how Gordon was in British historiography depicted as a traitor, while soon after 1865 Gordon was also defended as martyr and hero, and as unjustly sentenced. He shows how up to the early 20th c. the establishment perspective of Gordon as traitor and agitator persisted, but that competing discourses also developed. These came more to the fore since the introduction of universal adult suffrage in 1944, when Gordon first was publicly recognized as a patriot, and he was increasingly seen as national hero after independence. In addition, Gordon was presented, e.g. by the JLP, as a symbol of brown-black cooperation across race and class. Author notes, however, how this was also contested, and that a reputational decline of Gordon set in since the 1980s, increasing after 1992, due to sharpened brown-black divides, related to economic decline among Jamaica's black majority and black nationalism.

  11. Revisiting Gordon's Teacher Effectiveness Training: An Intervention Study on Teachers' Social and Emotional Learning

    Science.gov (United States)

    Talvio, Markus; Lonka, Kirsti; Komulainen, Erkki; Kuusela, Marjo; Lintunen, Taru

    2013-01-01

    Introduction: This study explored the development of teachers' social and emotional learning (SEL) skills by using "Teacher Effectiveness Training (TET)" (Gordon Training International) as an intervention with two groups of teachers. Further Gordon's model was approached from the perspective of modern educational psychology. The effects…

  12. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.

    Science.gov (United States)

    Lawford, Hugh G; Rousseau, Joyce D

    2002-01-01

    IOGEN Corporation of Ottawa, Canada, has recently built a 40t/d biomass-to-ethanol demonstration plant adjacent to its enzyme production facility. It has partnered with the University of Toronto to test the C6/C5 cofermenta-tion performance characteristics of the National Renewable Energy Labora-tory's metabolically engineered Zymomonas mobilis using various biomass hydrolysates. IOGEN's feedstocks are primarily agricultural wastes such as corn stover and wheat straw. Integrated recombinant Z. mobilis strain AX101 grows on D-xylose and/or L-arabinose as the sole carbon/energy sources and ferments these pentose sugars to ethanol in high yield. Strain AX101 lacks the tetracycline resistance gene that was a common feature of other recombinant Zm constructs. Genomic integration provides reliable cofermentation performance in the absence of antibiotics, another characteristic making strain AX101 attractive for industrial cellulosic ethanol production. In this work, IOGEN's biomass hydrolysate was simulated by a pure sugar medium containing 6% (w/v) glucose, 3% xylose, and 0.35% arabinose. At a level of 3 g/L (dry solids), corn steep liquor with inorganic nitrogen (0.8 g/L of ammonium chloride or 1.2 g/L of diammonium phosphate) was a cost-effective nutritional supplement. In the absence of acetic acid, the maximum volumetric ethanol productivity of a continuous fermentation at pH 5.0 was 3.54 g/L x h. During prolonged continuous fermentation, the efficiency of sugar-to-ethanol conversion (based on total sugar load) was maintained at >85%. At a level of 0.25% (w/v) acetic acid, the productivity decreased to 1.17 g/L x h at pH 5.5. Unlike integrated, xylose-utilizing rec Zm strain C25, strain AX101 produces less lactic acid as byproduct, owing to the fact that the Escherichia coli arabinose genes are inserted into a region of the host chromosome tentatively assigned to the gene for D-lactic acid dehydrogenase. In pH-controlled batch fermentations with sugar mixtures, the

  13. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Bonde, Ida; Herrgard, Markus

    2015-01-01

    CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in baker's yeast Saccharomyces...... cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains...

  14. 2010 Gordon Research Conference, Electrochemistry, January 9-15, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Creager, Stephen [Clemson Univ., SC (United States)

    2010-12-31

    Electrochemical science plays a crucial role in many important technologies and is intimately involved in many natural phenomena. Several new Gordon Research Conferences have appeared recently that are dedicated to electrochemical technologies, however electrochemistry as a discipline continues to thrive and provide the underpinnings of these technologies. The 2010 Electrochemistry GRC will focus on a wide range of fundamental electrochemical phenomena and materials and on their application in areas involving energy storage, information storage, chemical analysis, and motion actuation. The meeting will include sessions dedicated to the following specific topics: electrochemical energy storage (e.g. batteries; at least two sessions); electrochemical motion actuation (e.g. electrokinesis); electrocatalysis; electrochemistry in digital information storage; and bioelectrochemistry (including bioanalysis). An Open Session devoted to highlighting the activities of {approx}10 young investigators and non-North American visitors via brief 10-minute talks, and two open poster sessions highlighting the contributions of approximately 60 conference participants including graduate students, will be held. Altogether the conference is expected to include approximately 90 presentations. As has been the case in the recent past, the meeting will bring together participants from academia, national labs, and the private sector, including senior and junior-level scientists, postdoctoral scientists, and graduate students for informal interactions and exchange of ideas. An affiliated Gordon-Kenan Research Seminar (GRS) will also be held with the conference. Special efforts will be made to invite participation from members of underrepresented groups.

  15. Gordon Tullock and the Virginia School of Law and Economics

    DEFF Research Database (Denmark)

    Parisi, Francesco; Luppi, Barbara; Guerra, Alice

    2017-01-01

    In 1999 Gordon Tullock became Professor at the George Mason University Law School. Tullock’s arrival at George Mason brought the economics department and the law school close together. The work that resulted during those years consolidated the methodological foundations for a different way of thi...... presents some of the results developed by this school and illustrates Tullock’s controversial positions on trials and on the common law system, through anecdotes, Tullock’s own work and related scholarly contributions.......In 1999 Gordon Tullock became Professor at the George Mason University Law School. Tullock’s arrival at George Mason brought the economics department and the law school close together. The work that resulted during those years consolidated the methodological foundations for a different way...... of thinking about the economic analysis of law—the “functional” approach to law and economics. The functional law and economics approach espoused by the Virginia School was not attacking any of the results of the Chicago School or the Yale School, but rather proposing a methodological shift. This paper...

  16. Semiclassical versus exact quantization of the Sinh-Gordon model

    Energy Technology Data Exchange (ETDEWEB)

    Grossehelweg, Juliane

    2009-12-15

    In this work we investigate the semiclassics of the Sinh-Gordon model. The Sinh-Gordon model is integrable, its explicit solutions of the classical and the quantum model are well known. This allows for a comprehensive investigation of the semiclassical quantization of the classical model as well as of the semiclassical limit of the exact quantum solution. Semiclassical means in this case that the key objects of quantum theory are constructed as formal power series. A quantity playing an important role in the quantum theory is the Q-function. The purpose of this work is to investigate to what extend the classical integrability of the model admits of a construction of the semiclassical expansion of the Q-function. Therefore we used two conceptual independent approaches. In the one approach we start from the exact nonperturbative solution of the quantum model and calculate the semiclassical limit up to the next to leading order. Thereby we found the spectral curve, as well as the semiclassical expansion of the Q-function and of the eigenvalue of the monodromy matrix. In the other approach we constructed the first two orders of the semiclassical expansion of the Q-function, starting from the classical solution theory. The results of both approaches coincide. (orig.)

  17. Correlation of scores on the Eysenck Personality Inventory with those on the Gordon Personal Profile and Inventory.

    Science.gov (United States)

    Kentle, R L

    1994-10-01

    Correlations of scores on the Eysenck Personality Inventory with those on the Gordon Personal Profile (for 160 university undergraduates) and with the Gordon Personal Inventory (for 260 undergraduates) showed that Eysenck and Eysenck's Extraversion and Neuroticism bear reasonably close correspondence to Gordon's Sociability and Emotional Stability.

  18. Metabolic engineering of Saccharomyces cerevisiae for C4-dicarboxylic acid production

    NARCIS (Netherlands)

    Zelle, R.M.

    2011-01-01

    Biotechnological production of chemicals from renewable feedstocks offers a sustainable alternative to petrochemistry. Understanding of the biology of microorganisms and plants is increasing at an unprecedented rate and tools with which these organisms can be engineered for industrial application

  19. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine

    Directory of Open Access Journals (Sweden)

    Peifer Susanne

    2012-10-01

    Full Text Available Abstract Background Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry. Therefore, this work aimed towards the accumulation of IMP applying targeted genetic engineering of Corynebacterium glutamicum. Results Blocking of the degrading reactions towards AMP and GMP lead to a 45-fold increased intracellular IMP pool of 22 μmol gCDW-1. Deletion of the pgi gene encoding glucose 6-phosphate isomerase in combination with the deactivated AMP and GMP generating reactions, however, resulted in significantly decreased IMP pools (13 μmol gCDW-1. Targeted metabolite profiling of the purine biosynthetic pathway further revealed a metabolite shift towards the formation of the corresponding nucleobase hypoxanthine (102 μmol gCDW-1 derived from IMP degradation. Conclusions The purine biosynthetic pathway is strongly interconnected with various parts of the central metabolism and therefore tightly controlled. However, deleting degrading reactions from IMP to AMP and GMP significantly increased intracellular IMP levels. Due to the complexity of this pathway further degradation from IMP to the corresponding nucleobase drastically increased suggesting additional targets for future strain optimization.

  20. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine.

    Science.gov (United States)

    Peifer, Susanne; Barduhn, Tobias; Zimmet, Sarah; Volmer, Dietrich A; Heinzle, Elmar; Schneider, Konstantin

    2012-10-24

    Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry. Therefore, this work aimed towards the accumulation of IMP applying targeted genetic engineering of Corynebacterium glutamicum. Blocking of the degrading reactions towards AMP and GMP lead to a 45-fold increased intracellular IMP pool of 22 μmol g(CDW)⁻¹. Deletion of the pgi gene encoding glucose 6-phosphate isomerase in combination with the deactivated AMP and GMP generating reactions, however, resulted in significantly decreased IMP pools (13 μmol g(CDW)⁻¹). Targeted metabolite profiling of the purine biosynthetic pathway further revealed a metabolite shift towards the formation of the corresponding nucleobase hypoxanthine (102 μmol g(CDW)⁻¹) derived from IMP degradation. The purine biosynthetic pathway is strongly interconnected with various parts of the central metabolism and therefore tightly controlled. However, deleting degrading reactions from IMP to AMP and GMP significantly increased intracellular IMP levels. Due to the complexity of this pathway further degradation from IMP to the corresponding nucleobase drastically increased suggesting additional targets for future strain optimization.

  1. Exploring the metabolic stability of engineered hairy roots after 16 years maintenance

    Directory of Open Access Journals (Sweden)

    Suvi Tuulikki Häkkinen

    2016-09-01

    Full Text Available Plants remain a major source of new drugs, leads and fine chemicals. Cell cultures deriving from plants offer a fascinating tool to study plant metabolic pathways and offer large scale production systems for valuable compounds – commercial examples include compounds such as paclitaxel. The major constraint with undifferentiated cell cultures is that they are generally considered to be genetically unstable and cultured cells tend to produce low yields of secondary metabolites especially over time. Hairy roots, a tumour tissue caused by infection of Agrobacterium rhizogenes is a relevant alternative for plant secondary metabolite production for being fast growing, able to grow without phytohormones, and displaying higher stability than undifferentiated cells. Although genetic and metabolic stability has often been connected to transgenic hairy roots, there are only few reports on how a very long-term subculturing effects on the production capacity of hairy roots. In this study, hairy roots producing high tropane alkaloid levels were subjected to 16 -year follow-up in relation to genetic and metabolic stability. Cryopreservation method for hairy roots of H. muticus was developed to replace laborious subculturing, and although the post-thaw recovery rates remained low, the expression of transgene remained unaltered in cryopreserved roots. It was shown that although displaying some fluctuation in the metabolite yields, even an exceedingly long-term subculturing was successfully applied without significant loss of metabolic activity.

  2. NREL Carbon Metabolism Modeling Intends to Make Biofuels Engineering Routine and Reliable (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-01

    National Renewable Energy Laboratory (NREL) scientists, supported by the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) Program, have assembled and simulated a model of key eukaryotic carbon metabolism that intends to move biochemical simulations into new realms of chemical fidelity.

  3. Molecular Cloning Designer Simulator (MCDS): All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects.

    Science.gov (United States)

    Shi, Zhenyu; Vickers, Claudia E

    2016-12-01

    Molecular Cloning Designer Simulator (MCDS) is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1) it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2) it can perform a user-defined workflow of cloning steps in a single execution of the software; (3) it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4) it includes experimental information to conveniently guide wet lab work; and (5) it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com.

  4. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism.

    Science.gov (United States)

    Qiao, Kangjian; Wasylenko, Thomas M; Zhou, Kang; Xu, Peng; Stephanopoulos, Gregory

    2017-02-01

    Microbial factories have been engineered to produce lipids from carbohydrate feedstocks for production of biofuels and oleochemicals. However, even the best yields obtained to date are insufficient for commercial lipid production. To maximize the capture of electrons generated from substrate catabolism and thus increase substrate-to-product yields, we engineered 13 strains of Yarrowia lipolytica with synthetic pathways converting glycolytic NADH into the lipid biosynthetic precursors NADPH or acetyl-CoA. A quantitative model was established and identified the yield of the lipid pathway as a crucial determinant of overall process yield. The best engineered strain achieved a productivity of 1.2 g/L/h and a process yield of 0.27 g-fatty acid methyl esters/g-glucose, which constitutes a 25% improvement over previously engineered yeast strains. Oxygen requirements of our highest producer were reduced owing to decreased NADH oxidization by aerobic respiration. We show that redox engineering could enable commercialization of microbial carbohydrate-based lipid production.

  5. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha

    2015-04-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S.cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S.cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. © 2015 The Society for Biotechnology, Japan.

  6. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops.

    Science.gov (United States)

    Shih, Patrick M; Liang, Yan; Loqué, Dominique

    2016-07-01

    The Green Revolution has fuelled an exponential growth in human population since the mid-20th century. Due to population growth, food and energy demands will soon surpass supply capabilities. To overcome these impending problems, significant improvements in genetic engineering will be needed to complement breeding efforts in order to accelerate the improvement of agronomical traits. The new field of plant synthetic biology has emerged in recent years and is expected to support rapid, precise, and robust engineering of plants. In this review, we present recent advances made in the field of plant synthetic biology, specifically in genome editing, transgene expression regulation, and bioenergy crop engineering, with a focus on traits related to lignocellulose, oil, and soluble sugars. Ultimately, progress and innovation in these fields may facilitate the development of beneficial traits in crop plants to meet society's bioenergy needs. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  7. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network

    DEFF Research Database (Denmark)

    Østergaard, Simon; Olsson, Lisbeth; Johnston, M.

    2000-01-01

    in the pathway, and ultimately, increasing metabolic flux through the pathway of interest, By manipulating the GAL gene regulatory network of Saccharomyces cerevisiae, which is a tightly regulated system, we produced prototroph mutant strains, which increased the flux through the galactose utilization pathway...... by eliminating three known negative regulators of the GAL system: Gale, Gal80, and Mig1. This led to a 41% increase in flux through the galactose utilization pathway compared with the wild-type strain. This is of significant interest within the field of biotechnology since galactose is present in many industrial...... media. The improved galactose consumption of the gal mutants did not favor biomass formation, but rather caused excessive respiro-fermentative metabolism, with the ethanol production rate increasing linearly with glycolytic flux....

  8. Targeted Metabolic Engineering Guided by Computational Analysis of Single-Nucleotide Polymorphisms (SNPs)

    DEFF Research Database (Denmark)

    Udatha, D B R K Gupta; Rasmussen, Simon; Sicheritz-Pontén, Thomas

    2013-01-01

    /enzyme function or stability is useful for altering its properties for a wide variety of engineering studies. Since measuring the effects of amino acid mutations experimentally is a laborious process, a variety of computational methods have been discussed here that aid to extract direct genotype to phenotype...

  9. Crystal ball - 2013 : Recombination-based DNA assembly in metabolic engineering: a goodbye to old workhorses?

    NARCIS (Netherlands)

    Daran, J.M.; Pronk, J.T.

    2012-01-01

    In this feature, leading researchers in the field of environmental microbiology speculate on the technical and conceptual developments that will drive innovative research and open new vistas over the next few years. For the better part of four decades, genetic engineering has relied on a universal

  10. Improved Production of a Heterologous Amylase in Saccharomyces cerevisiae by Inverse Metabolic Engineering

    DEFF Research Database (Denmark)

    Liu, Zihe; Liu, Lifang; Osterlund, Tobias

    2014-01-01

    engineering to identify novel targets for improving protein secretion. Screening that combined UV-random mutagenesis and selection for growth on starch was performed to find mutant strains producing heterologous amylase 5-fold above the level produced by the reference strain. Genomic mutations that could...

  11. Stimulation of acetoin production in metabolically engineered Lactococcus lactis by increasing ATP demand

    DEFF Research Database (Denmark)

    Liu, Jianming; Kandasamy, Vijayalakshmi; Würtz, Anders

    2016-01-01

    into a Lactococcus lactis strain engineered into producing acetoin, we show that production titer and yield both can be increased. At high F1-ATPase expression level, the acetoin production yield could be increased by 10 %; however, because of the negative effect that the F1-ATPase had on biomass yield and growth...

  12. Engineering E. coli for triglyceride accumulation through native and heterologous metabolic reactions.

    Science.gov (United States)

    Rucker, Joanna; Paul, Julie; Pfeifer, Blaine A; Lee, Kyongbum

    2013-03-01

    Triglycerides, traditionally sourced from plant oils, are heavily used in both industrial and healthcare applications. Commercially significant products produced from triglycerides include biodiesel, lubricants, moisturizers, and oils for cooking and dietary supplements. The need to rely upon plant-based production, however, raises concerns of increasing demand and sustainability. The reliance on crop yields and a strong demand for triglycerides provides motivation to engineer production from a robust microbial platform. In this study, Escherichia coli was engineered to synthesize and accumulate triglycerides. Triglycerides were produced from cell wall phospholipid precursors through engineered expression of two enzymes, phosphatidic acid phosphatase (PAP) and diacylglycerol acyltransferase (DGAT). A liquid chromatography-mass spectrometry (LC-MS) method was developed to analyze the production of triglycerides by the engineered E. coli strains. This proof-of-concept study demonstrated a yield of 1.1 mg/L triglycerides (2 g/L dry cell weight) in lysogeny broth medium containing 5 g/L glucose at 8 h following induction of PAP and DGAT expression. LC-MS results also demonstrated that the intracellular triglyceride composition of E. coli was highly conserved. Triglycerides containing the fatty acid distributions 16:0/16:0/16:1, 16:0/16:0/18:1, and 18:1/16:0/16:1 were found in highest concentrations and represent ∼70 % of triglycerides observed.

  13. Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis

    DEFF Research Database (Denmark)

    Liu, Jianming; Wang, Zhihao; Kandasamy, Vijayalakshmi

    2017-01-01

    When modifying the metabolism of living organisms with the aim of achieving biosynthesis of useful compounds, it is essential to ensure that it is possible to achieve overall redox balance. We propose a generalized strategy for this, based on fine-tuning of respiration. The strategy was applied o...... of 81% or 365 mM (33 g/L) with a yield of 82%, respectively. These results demonstrate the great potential in using finely-tuned respiration machineries for bio-production....

  14. Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations

    Science.gov (United States)

    Liu, Changying; Iserles, Arieh; Wu, Xinyuan

    2018-03-01

    The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.

  15. Gordon S. Fulcher: Renaissance Man of Glass Science

    Directory of Open Access Journals (Sweden)

    John C. Mauro

    2014-11-01

    Full Text Available To a glass scientist, the name Fulcher conjures images of viscosity vs. temperature diagrams for glass-forming liquids. Indeed, Gordon Fulcher’s seminal 1925 publication, in which he proposed his three-parameter model of viscosity, is one of the most significant and influential papers ever published in the field of glass science. Fulcher developed this equation during the early part of his 14-year career at Corning Glass Works (1920-1934. However, Fulcher’s work in viscosity represents a small fraction of his highly diverse and accomplished career, which included pioneering the field of electrocast ceramics and developing the modern system of scientific abstracting that it still in use today. Fulcher also had a keen interest in social and economic problems, and his latter research focused heavily on the field of metacognition, i.e., the process of thinking.

  16. Gordon Craig's Scene Project: a history open to revision

    Directory of Open Access Journals (Sweden)

    Luiz Fernando

    2014-09-01

    Full Text Available The article proposes a review of Gordon Craig’s Scene project, an invention patented in 1910 and developed until 1922. Craig himself kept an ambiguous position whether it was an unfulfilled project or not. His son and biographer Edward Craig sustained that Craig’s original aims were never achieved because of technical limitation, and most of the scholars who examined the matter followed this position. Departing from the actual screen models saved in the Bibliothèque Nationale de France, Craig’s original notebooks, and a short film from 1963, I defend that the patented project and the essay published in 1923 mean, indeed, the materialisation of the dreamed device of the thousand scenes in one scene

  17. Gordon Rohlehr and the Culture Industry in Trinidad

    Directory of Open Access Journals (Sweden)

    Raymond Ramcharitar

    2011-12-01

    Full Text Available The terms "culture" and "cultural studies" in Trinidad and Tobago have been narrowly defined to mean Carnival and various other phenomena connected to the nationalist project. There has been little acknowledgement of cyber culture, alternative sexualities, consumerism, media, and in general the "Culture Industry", as theorised by Theodor Adorno and Max Horkheimer. One critic, Gordon Rohlehr, has over decades presented a body of work ostensibly focused on Carnival, but which also contains a cogent critique and outline of the Trinidad and Tobago Culture Industry (as contemplated by Adorno. A close reading of Rohlehr's work, and his intellectual antecedents, reveal a compelling critique of the Trinidadian/West Indian notion and practice of culture and cultural studies, and suggests areas for the discipline's expansion to better serve the needs of the region.

  18. Zero temperature landscape of the random sine-Gordon model

    International Nuclear Information System (INIS)

    Sanchez, A.; Bishop, A.R.; Cai, D.

    1997-01-01

    We present a preliminary summary of the zero temperature properties of the two-dimensional random sine-Gordon model of surface growth on disordered substrates. We found that the properties of this model can be accurately computed by using lattices of moderate size as the behavior of the model turns out to be independent of the size above certain length (∼ 128 x 128 lattices). Subsequently, we show that the behavior of the height difference correlation function is of (log r) 2 type up to a certain correlation length (ξ ∼ 20), which rules out predictions of log r behavior for all temperatures obtained by replica-variational techniques. Our results open the way to a better understanding of the complex landscape presented by this system, which has been the subject of very many (contradictory) analysis

  19. Sine-Gordon mean field theory of a Coulomb gas

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Alexandre; Barbosa, Marcia C.; Levin, Yan

    1997-12-31

    Full text. The Coulomb gas provides a paradigm for the study of various models of critical phenomena. In particular, it is well known that the two dimensional (2 D). Coulomb gas can be directly used to study the superfluidity transition in {sup 4} He films, arrays of Josephson junctions, roughening transition, etc. Not withstanding its versatility, our full understanding of the most basic model of Coulomb gas, namely an ensemble of hard spheres carrying either positive or negative charges at their center, is still lacking. It is now well accepted that at low density the two dimensional plasma of equal number of positive and negative particles undergoes a Kosterlitz-Thouless (KT) metal insulator transition. This transition is of an infinite order and is characterized by a diverging Debye screening length. As the density of particles increases, the validity of the KT theory becomes questionable and the possibility of the KT transition being replaced by some kind of first order discontinuity has been speculated for a long time. In this work sine-Gordon field theory is used to investigate the phase diagram of a neutral Coulomb gas. A variational mean-field free energy is constructed and the corresponding phase diagrams in two and three dimensions are obtained. When analyzed in terms of chemical potential, the sine-Gordon theory predicts the phase diagram topologically identical to the Monte Carlo simulations and a recently developed Debye-Huckel-Bjerrum theory. In 2D, we find that the infinite-order Kosterlitz-Thouless line terminates in a tricritical point, after which the metal-insulator transition becomes first order. However, when the transformation from chemical potential to the density is made the whole insulating phase is mapped onto zero density. (author)

  20. 2012 Gordon Research Conference On Molecular And Ionic Clusters

    International Nuclear Information System (INIS)

    McCoy, Anne

    2012-01-01

    The Gordon Research Conference on 'Molecular and Ionic Clusters' focuses on clusters, which are the initial molecular species found in gases when condensation begins to occur. Condensation can take place solely from molecules interacting with each other, mostly at low temperatures, or when molecules condense around charged particles (electrons, protons, metal cations, molecular ions), producing ion molecule clusters. These clusters provide models for solvation, allow a pristine look at geometric as well as electronic structures of molecular complexes or matter in general, their interaction with radiation, their reactivity, their thermodynamic properties and, in particular, the related dynamics. This conference focuses on new ways to make clusters composed of different kinds of molecules, new experimental techniques to investigate the properties of the clusters and new theoretical methods with which to calculate the structures, dynamical motions and energetics of the clusters. Some of the main experimental methods employed include molecular beams, mass spectrometry, laser spectroscopy (from infrared to XUV; in the frequency as well as the time domain) and photoelectron spectroscopy. Techniques include laser absorption spectroscopy, laser induced fluorescence, resonance enhanced photoionization, mass-selected photodissociation, photofragment imaging, ZEKE photoelectron spectroscopy, etc. From the theoretical side, this conference highlights work on potential surfaces and measurable properties of the clusters. The close ties between experiment, theory and computation have been a hallmark of the Gordon Research Conference on Molecular and Ionic Clusters. In the 2012 meeting, we plan to have sessions that will focus on topics including: (1) The use of cluster studies to probe fundamental phenomena; (2) Finite size effects on structure and thermodynamics; (3) Intermolecular forces and cooperative effects; (4) Molecular clusters as models for solvation; and (5) Studies of