WorldWideScience

Sample records for metabolic activation

  1. Prokaryote metabolism activity

    OpenAIRE

    Biederman, Lori

    2017-01-01

    I wrote this activity to emphasize that prokaryotic organisms can carry out 6 different types of metabolisms (as presented in Freeman’s Biological Science textbook) and this contrasts to eukaryotes, which can only use 2 metabolism pathways (photoautotroph and heterotroph).    For in class materials I remove the  red box (upper right corner) and print slides 3-10, place them back-to-back and laminate them.  The students get a key (slide 2) and a two-sided organism sheet...

  2. Pulmonary metabolism of foreign compounds: Its role in metabolic activation

    International Nuclear Information System (INIS)

    Cohen, G.M.

    1990-01-01

    The lung has the potential of metabolizing many foreign chemicals to a vast array of metabolites with different pharmacological and toxicological properties. Because many chemicals require metabolic activation in order to exert their toxicity, the cellular distribution of the drug-metabolizing enzymes in a heterogeneous tissue, such as the lung, and the balance of metabolic activation and deactivation pathways in any particular cell are key factors in determining the cellular specificity of many pulmonary toxins. Environmental factors such as air pollution, cigarette smoking, and diet markedly affect the pulmonary metabolism of some chemicals and, thereby, possibly affect their toxicity

  3. Sedentary activity associated with metabolic syndrome independent of physical activity

    DEFF Research Database (Denmark)

    Bankoski, Andrea; Harris, Tamara B; McClain, James J

    2011-01-01

    This study examined the association between objectively measured sedentary activity and metabolic syndrome among older adults.......This study examined the association between objectively measured sedentary activity and metabolic syndrome among older adults....

  4. VISCOSITY DICTATES METABOLIC ACTIVITY of Vibrio ruber

    Directory of Open Access Journals (Sweden)

    Maja eBoric

    2012-07-01

    Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.

  5. Industry as a metabolic activity.

    Science.gov (United States)

    Smart, B

    1992-02-01

    The concept of "industrial economic metabolism" can provide a bridge to better understanding between environmentalists and industry. In nature each individual or species reacts to natural stimuli, competing with others for resources, extending its domain until it loses comparative advantage and comes to equilibrium with an adjacent competitor. Those species that succeed over time flourish; those that do not, diminish or disappear. Nature's rule book has no moral or ethical ingredient beyond self-interest. Corporate metabolisms are remarkably similar to those of nature. They too react to stimuli, collect and use resources, and grow or perish based on how effectively they compete. Corporate management recognizes and responds naturally and efficiently to cost and price signals. Through them it selects resources and converts them into useful products. The efficiency with which this is done is measured by profit, the lifeblood of the corporation and its means of growth. Profit thus provides a discipline on corporate behavior, encouraging efficient performers, and, by its absence, weeding out others. Unfettered by influences other than economics, the path to corporate success is unlikely to be a compassionate one. The dilemma of the manager is that to do what is socially "right" often conflicts with what must be done to survive and prosper. Fortunately, corporations' behavior can be altered by society when their purely economic role comes into conflict with other human values. The environment and the economy are not separate systems but intertwined to form a complex natural and social setting. The human-designed economic system depends on natural resource inputs, and in turn its metabolic wastes can overload the ecological system, threatening the long-term survivability of both. Increasing concern for the environment now gives the farsighted manager new latitude. There are competitive benefits in some pollution prevention. But there are not sufficiently strong forces to

  6. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  7. Regulation of Metabolic Activity by p53

    Directory of Open Access Journals (Sweden)

    Jessica Flöter

    2017-05-01

    Full Text Available Metabolic reprogramming in cancer cells is controlled by the activation of multiple oncogenic signalling pathways in order to promote macromolecule biosynthesis during rapid proliferation. Cancer cells also need to adapt their metabolism to survive and multiply under the metabolically compromised conditions provided by the tumour microenvironment. The tumour suppressor p53 interacts with the metabolic network at multiple nodes, mostly to reduce anabolic metabolism and promote preservation of cellular energy under conditions of nutrient restriction. Inactivation of this tumour suppressor by deletion or mutation is a frequent event in human cancer. While loss of p53 function lifts an important barrier to cancer development by deleting cell cycle and apoptosis checkpoints, it also removes a crucial regulatory mechanism and can render cancer cells highly sensitive to metabolic perturbation. In this review, we will summarise the major concepts of metabolic regulation by p53 and explore how this knowledge can be used to selectively target p53 deficient cancer cells in the context of the tumour microenvironment.

  8. Metabolic benefits of physical activity

    Directory of Open Access Journals (Sweden)

    Špela Volčanšek

    2014-10-01

    Full Text Available Physical activity is the most beneficial intervention in prevention and treatment of chronic diseases. Life style, which has become mostly sedentary, leads to growing incidence in obesity, what could cause the first so far reduction in life expectancy in developed countries.Physical activity reduces the chronic low-grade inflammation, which plays an important role in the pathogenesis of type 2 diabetes, cardiovascular disease and certain types of cancer. Regular physical activity exerts two anti-inflammatory effects: reduction of visceral fat, which produces the majority of pro-inflammatory cytokines, and production of myokines. It has been proposed that cytokines and other peptides that are produced by muscle fibers should be classified as myokines that exert autocrine, paracrine and endocrine effects. Myokines induce muscle hypertrophy and myogenesis, stimulate fat oxidation, improve insulin sensitivity and have an anti-inflammatory effect.  Therefore, skeletal muscle has been identified as a secretory organ and this provides the basis for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, gut, bones and brain. Physical inactivity leads to an altered myokine profile, associating sedentary life style with some chronic diseases.Physical activity is recommended as a tool for weight management and prevention of weight gain, for weight loss and for prevention of weight regain. High quality studies have confirmed the important impact of exercise on improving blood glucose control in diabetic patients, and on preventing or delaying the onset of type 2 diabetes in predisposed populations. Prescribing specific exercise tailored to individual's needs is an intervention strategy for health improvement. Physical fitness counteracts the detrimental effects of obesity reducing morbidity and mortality.

  9. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  10. Metabolic assessments during extra-vehicular activity

    Science.gov (United States)

    Osipov, Yu. Yu.; Spichkov, A. N.; Filipenkov, S. N.

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha'(ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO 2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  11. Nucleons II: cryopreservation and metabolic activity.

    Science.gov (United States)

    Reyes, R; Flores-Alonso, J C; Rodríguez-Hernández, H M; Merchant-Larios, H M; Delgado, N M

    2001-01-01

    The establishment of intracytoplasmatic sperm injection (ICSI) as a routine procedure in assisted fertilization has been used in the treatment of male infertility. The major technical problem that has arisen with the use of immotile sperm for ICSI has been differentiating between live and dead cells. Nucleons from human, pig, hamster, mouse, rat, and bull have been able to induce their chromatin decondensation by the action of heparin/GSH. Cryopreservation is deleterious to sperm function, killing more than 50% of the spermatozoa during the process. Nucleon cryostorage was performed at 5 and -5 degrees C and analyzed for total area (mu2), perimeter (mu), width (mu), and length (mu), using Metamorph Imaging System software. On the other hand, fluorescein diacetate (FDA) is hydrolyzed by intracellular estereases to produce fluorescein, which exhibits green fluorescence when excited by blue light. This fact is a striking result since the presence of this metabolic activity opens the possibility to select the nucleons for ICSI. In the present study, the authors decided to search for a suitable metabolic test, which might reflect the metabolism and viability of these chromatin structures. This is a simple cryostorage technique that after months of cryopreservation, allow the use of nucleons for ICSI with suitable fertilization and pregnancies rates.

  12. Physical activity as a metabolic stressor.

    Science.gov (United States)

    Coyle, E F

    2000-08-01

    Both physical activity and diet stimulate processes that, over time, alter the morphologic composition and biochemical function of the body. Physical activity provides stimuli that promote very specific and varied adaptations according to the type, intensity, and duration of exercise performed. There is further interest in the extent to which diet or supplementation can enhance the positive stimuli. Prolonged walking at low intensity presents little metabolic, hormonal, or cardiovascular stress, and the greatest perturbation from rest appears to be from increased fat oxidation and plasma free fatty acid mobilization resulting from a combination of increased lipolysis and decreased reesterification. More intense jogging or running largely stimulates increased oxidation of glycogen and triacylglycerol, both of which are stored directly within the muscle fibers. Furthermore, these intramuscular stores of carbohydrate and fat appear to be the primary substrates for the enhanced oxidative and performance ability derived from endurance training-induced increases in muscle mitochondrial density. Weightlifting that produces fatigue in brief periods (ie, in 15-90 s and after 15 repetitive contractions) elicits a high degree of motor unit recruitment and muscle fiber stimulation. This is a remarkably potent stimulus for altering protein synthesis in muscle and increasing neuromuscular function. The metabolic stress of physical activity can be measured by substrate turnover and depletion, cardiovascular response, hormonal perturbation, accumulation of metabolites, or even the extent to which the synthesis and degradation of specific proteins are altered, either acutely or by chronic exercise training.

  13. Mutagenicity of vinyl chloride after metabolic activation

    Energy Technology Data Exchange (ETDEWEB)

    Rannug, U; Johansson, A; Ramel, C; Wachtmeister, C A

    1974-01-01

    Vinyl chloride has recently been shown to cause a malignant liver tumor disease in man after occupational exposure in PVC plants. This actualizes the problem of whether such hazards could be avoided or at least diminished in the future by a screening for mutagenicity of chemicals used in industries. The basis for such a screening procedure is the close correlation between carcinogenic and mutagenic effects of chemicals. Experiments with Salmonella bacteria showed that the carcinogenic hazard of vinyl chloride could have been traced by means of mutagenicity tests. The data indicate that vinyl chloride is not mutagenic per se but becomes mutagenic after a metabolic activation in the liver. 24 references, 1 figure, 4 tables.

  14. Metabolism

    Science.gov (United States)

    ... lin), which signals cells to increase their anabolic activities. Metabolism is a complicated chemical process, so it's not ... how those enzymes or hormones work. When the metabolism of body chemicals is ... Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism ...

  15. Linking neuronal brain activity to the glucose metabolism

    OpenAIRE

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-01-01

    Background Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regul...

  16. Metabolism features in the active rheumatoid disease

    Energy Technology Data Exchange (ETDEWEB)

    Cossermelli, W; Carvalho, N; Papaleo Netto, M [Sao Paulo Univ. (Brazil). Centro de Medicina Nuclear

    1974-02-01

    The /sup 131/I-labelled albumin metabolism was studied in fourteen female patients with rheumatoid arthritis. The half-life of distribution was increased while the turnover half-life and turnover rate was within normal limits. These results led to assume that synthesis and catabolism may not change this disease, not being the responsible mechanism of hypoalbuminemia. Hypoalbuminemia would appear as compensatory mechanism in view of other protein alterations, as hypergammaglobulinemia, without changes of stabilizing and metabolic properties of albumin, perhaps due to albumin molecular alterations.

  17. Metabolism features in the active rheumatoid disease

    International Nuclear Information System (INIS)

    Cossermelli, W.; Carvalho, N.; Papaleo Netto, M.

    1974-01-01

    It was studied the 131 I-labelled albumin metabolism in fourteen female patients with rheumatoid arthritis. The half-life of distribution was increased while the turnover half-life and turnover rate was within normal limits. These results led to assume that synthesis and catabolism may not change this disease, not being the responsible mechanism of hypoalbuminemia. Hypoalbuminemia would appear as compensatory mechanism in view of other protein alterations, as hypergammaglobulinemia, without changes of stabilizing and metabolic properties of albumin, perhaps due to albumin molecular alterations [pt

  18. Peroxisome Proliferator Activated Receptors and Lipoprotein Metabolism

    NARCIS (Netherlands)

    Kersten, A.H.

    2008-01-01

    Plasma lipoproteins are responsible for carrying triglycerides and cholesterol in the blood and ensuring their delivery to target organs. Regulation of lipoprotein metabolism takes place at numerous levels including via changes in gene transcription. An important group of transcription factors that

  19. Adhesive ability and biofilm metabolic activity of Listeria ...

    African Journals Online (AJOL)

    SWEET

    2012-07-31

    Jul 31, 2012 ... monocytogenes strains were able to adhere to abiotic materials with different degrees. In fact, cold stressed strains ... packaging. Biofilms allow .... reduction of a tetrazolium salt by metabolically active cells to a colored water ...

  20. the prevalence of metabolic syndrome among active sportsmen

    African Journals Online (AJOL)

    User

    ABSTRACT. This study sought to establish the prevalence of the metabolic syndrome (MetS) among active .... Table 1: General characteristic of the studied population stratified by exercise. Parameters ..... Prolonged adaptation to fat- rich diet ...

  1. Activating transcription factor 3 regulates immune and metabolic homeostasis.

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek; Uhlirova, Mirka

    2012-10-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.

  2. Peroxisome Proliferators-Activated Receptor (PPAR Modulators and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Min-Chul Cho

    2008-01-01

    Full Text Available Overweight and obesity lead to an increased risk for metabolic disorders such as impaired glucose regulation/insulin resistance, dyslipidemia, and hypertension. Several molecular drug targets with potential to prevent or treat metabolic disorders have been revealed. Interestingly, the activation of peroxisome proliferator-activated receptor (PPAR, which belongs to the nuclear receptor superfamily, has many beneficial clinical effects. PPAR directly modulates gene expression by binding to a specific ligand. All PPAR subtypes (α,γ, and σ are involved in glucose metabolism, lipid metabolism, and energy balance. PPAR agonists play an important role in therapeutic aspects of metabolic disorders. However, undesired effects of the existing PPAR agonists have been reported. A great deal of recent research has focused on the discovery of new PPAR modulators with more beneficial effects and more safety without producing undesired side effects. Herein, we briefly review the roles of PPAR in metabolic disorders, the effects of PPAR modulators in metabolic disorders, and the technologies with which to discover new PPAR modulators.

  3. Linking neuronal brain activity to the glucose metabolism.

    Science.gov (United States)

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-08-29

    Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported.

  4. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    Energy Technology Data Exchange (ETDEWEB)

    Camporeale, Annalisa, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Demaria, Marco [Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945 (United States); Monteleone, Emanuele [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Giorgi, Carlotta [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Wieckowski, Mariusz R. [Nencki Institute of Experimental Biology, Department of Biochemistry, Pasteur Str. 3, Warsaw 02-093 (Poland); Pinton, Paolo [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Poli, Valeria, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy)

    2014-07-31

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3{sup C/C}) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3{sup C/C} MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3{sup C/C} MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms.

  5. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    International Nuclear Information System (INIS)

    Camporeale, Annalisa; Demaria, Marco; Monteleone, Emanuele; Giorgi, Carlotta; Wieckowski, Mariusz R.; Pinton, Paolo; Poli, Valeria

    2014-01-01

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3 C/C ) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3 C/C MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3 C/C MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms

  6. Physical activity effects on bone metabolism.

    Science.gov (United States)

    Smith, E L; Gilligan, C

    1991-01-01

    The incidence of osteoporotic fractures rises exponentially with age and is increasing faster than the demographic increase in the aging population. Physical activity has great potential to reduce the risk for osteoporotic fractures. Three independent but interactive factors contribute to the risk of fractures: bone strength, the risk of falling, and the effectiveness of neuromuscular response that protects the skeleton from injury. Exercise can reduce fracture risk not only by preventing bone loss, but by decreasing the risk of falling and the force of impact by improving strength, flexibility, balance, and reaction time. Extreme inactivity causes rapid bone loss of up to 40%, while athletic activity results in bone hypertrophy of up to 40%. Exercise intervention programs have reduced bone loss or increased bone mass in both men and women of various ages and initial bone status. These benefits have been shown for arm bone mineral content, total body calcium, spine, calcium bone index, tibia, and calcaneus. In both middle-aged and elderly women, physical activity intervention reduced bone loss or increased bone mass. The mechanisms for maintenance of skeletal integrity rely on a cellular response to hormonal and mechanical load stimuli. Studies in animal models show that training affects cellular activity. In osteoporotics, cellular erosion is increased and mineral apposition rate (MAR) decreased compared with normal age-matched controls. In contrast to this, sows trained on a treadmill 20 min per day for 20 weeks had greater active periosteal surface, periosteal MAR, and osteonal MAR than untrained sows.

  7. Natural Killer Cell Activity and Interleukin-12 in Metabolically Healthy versus Metabolically Unhealthy Overweight Individuals

    Science.gov (United States)

    Kim, Minjoo; Kim, Minkyung; Yoo, Hye Jin; Lee, Jong Ho

    2017-01-01

    The purpose of this study was to determine whether the immune system is involved in the different metabolic circumstances in healthy and unhealthy overweight individuals. We examined the metabolic and immune characteristics of 117 overweight individuals. Subjects were classified as metabolically healthy overweight (MHO, n = 72) or metabolically unhealthy overweight (MUO, n = 45). The immune response was measured by circulating levels of natural killer (NK) cell activity and cytokines. Both groups were comparable with regards to age, sex distribution, smoking and drinking status, and body mass index. When compared to the MHO group, the MUO group showed higher systolic and diastolic blood pressure, serum levels of triglyceride, glucose, glucose-related markers, and lower levels of HDL cholesterol. Compared to the MHO group, the MUO group showed 39% lower interferon-γ levels (not significant) and 41% lower interleukin (IL)-12 levels (significant). The MUO group also showed lower NK cell activity at E:T ratios of 10:1, 5:1, 2.5:1, and 1.25:1 (all Ps < 0.05) than the MHO group. This study indicates that individuals displaying the MUO phenotype present an unfavorable immune system with lower NK cell activities under all assay conditions and lower serum levels of IL-12 than the activities and levels in similarly overweight MHO individuals. This result suggests that the immune system may be altered in overweight individuals who are at risk for overweight/obesity-related comorbidities. PMID:29238351

  8. Natural Killer Cell Activity and Interleukin-12 in Metabolically Healthy versus Metabolically Unhealthy Overweight Individuals

    Directory of Open Access Journals (Sweden)

    Minjoo Kim

    2017-11-01

    Full Text Available The purpose of this study was to determine whether the immune system is involved in the different metabolic circumstances in healthy and unhealthy overweight individuals. We examined the metabolic and immune characteristics of 117 overweight individuals. Subjects were classified as metabolically healthy overweight (MHO, n = 72 or metabolically unhealthy overweight (MUO, n = 45. The immune response was measured by circulating levels of natural killer (NK cell activity and cytokines. Both groups were comparable with regards to age, sex distribution, smoking and drinking status, and body mass index. When compared to the MHO group, the MUO group showed higher systolic and diastolic blood pressure, serum levels of triglyceride, glucose, glucose-related markers, and lower levels of HDL cholesterol. Compared to the MHO group, the MUO group showed 39% lower interferon-γ levels (not significant and 41% lower interleukin (IL-12 levels (significant. The MUO group also showed lower NK cell activity at E:T ratios of 10:1, 5:1, 2.5:1, and 1.25:1 (all Ps < 0.05 than the MHO group. This study indicates that individuals displaying the MUO phenotype present an unfavorable immune system with lower NK cell activities under all assay conditions and lower serum levels of IL-12 than the activities and levels in similarly overweight MHO individuals. This result suggests that the immune system may be altered in overweight individuals who are at risk for overweight/obesity-related comorbidities.

  9. Metabolic-epigenetic crosstalk in macrophage activation

    NARCIS (Netherlands)

    Baardman, Jeroen; Licht, Iris; de Winther, Menno P. J.; van den Bossche, Jan

    2015-01-01

    Epigenetic enzymes are emerging as crucial controllers of macrophages, innate immune cells that determine the outcome of many inflammatory diseases. Recent studies demonstrate that the activity of particular chromatin-modifying enzymes is regulated by the availability of specific metabolites like

  10. Effects of activation of endocannabinoid system on myocardial metabolism

    Directory of Open Access Journals (Sweden)

    Agnieszka Polak

    2016-05-01

    Full Text Available Endocannabinoids exert their effect on the regulation of energy homeostasis via activation of specific receptors. They control food intake, secretion of insulin, lipids and glucose metabolism, lipid storage. Long chain fatty acids are the main myocardial energy substrate. However, the heart exerts enormous metabolic flexibility emphasized by its ability to utilzation not only fatty acids, but also glucose, lactate and ketone bodies. Endocannabinoids can directly act on the cardiomyocytes through the CB1 and CB2 receptors present in cardiomyocytes. It appears that direct activation of CB1 receptors promotes increased lipogenesis, pericardial steatosis and bioelectrical dysfunction of the heart. In contrast, stimulation of CB2 receptors exhibits cardioprotective properties, helping to maintain appropriate amount of ATP in cardiomyocytes. Furthermore, the effects of endocannabinoids at both the central nervous system and peripheral tissues, such as liver, pancreas, or adipose tissue, resulting indirectly in plasma availability of energy substrates and affects myocardial metabolism. To date, there is little evidence that describes effects of activation of the endocannabinoid system in the cardiovascular system under physiological conditions. In the present paper the impact of metabolic diseases, i. e. obesity and diabetes, as well as the cardiovascular diseases - hypertension, myocardial ischemia and myocardial infarction on the deregulation of the endocannabinoid system and its effect on the metabolism are described.

  11. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  12. Metabolic activation of the bladder carcinogen 4-nitrobiphenyl (NBP)

    International Nuclear Information System (INIS)

    Swaminathan, S.

    1986-01-01

    The metabolism of NBP, a dog bladder carcinogen, was examined in vitro using rat liver tissues. NBP was metabolized by enzymes localized both in the microsomes and cytosol. The microsomal enzyme activity was inducible by Aroclor 1254 and phenobarbital. High pressure liquid chromatography analysis of the ethyl acetate extract of the reaction mixture, following incubation of [ 3 H]NBP with NADPH and microsomes, revealed four radioactive and UV absorbing peaks with retention times of 5, 8, 14 and 28 min. The peaks at 8, 14 and 28 min corresponded with 4-aminobiphenyl (ABP), NBP and azoxy biphenyl, respectively. The early eluting component with a retention time of 5 min has been tentatively identified as a ring hydroxylated derivative. In contrast to microsomal metabolism, cytosol-mediated metabolism yielded only one major metabolite identified as ABP. Cytosol-mediate reduction was inhibited by the xanthine oxidase inhibitor allopurinol. In vitro incubation of NBP with NADH and commercial preparations of xanthine oxidase also yielded ABP and the formation of the latter was blocked by allopurinol. Xanthine oxidase catalyzed also the binding of [ 3 H]NBP to DNA and proteins; the binding was inhibited by allopurinol. These data support the hypothesis that the nitro reduction step is involved in the activation of the bladder carcinogen NBP, and that the nitroreductases occur in both the microsomes and cytosol. The cytosolic activity is primarily due to xanthine oxidase

  13. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  14. Metabolic activation of 2-methylfuran by rat microsomal systems

    International Nuclear Information System (INIS)

    Ravindranath, V.; Boyd, M.R.

    1985-01-01

    2-Methylfuran (2-MF), a constituent of cigarette smoke and coffee, causes necrosis of liver, lungs, and kidneys in rodents. 2-MF is metabolically activated by mixed-function oxidases to acetylacrolein, a reactive metabolite that binds covalently to microsomal protein. The hepatic microsomal metabolism of 2-MF to reactive metabolite required the presence of NADPH and oxygen and was dependent on incubation time and substrate concentration. The microsomal metabolism of 2-MF was inducible by pretreatment of rats with phenobarbital and was inhibited by piperonyl butoxide and N-octyl imidazole, which indicates that the metabolism of 2-MF may be mediated by cytochrome P-450. Acetylacrolein was a potent inhibitor of mixed-function oxidase and completely inhibited the microsomal metabolism of 2-MF, indicating that 2-MF is a suicide substrate for the enzyme. The sulfhydryl nucleophile cysteine was a better trapping agent of the reactive metabolite of 2-MF than N-acetylcysteine or glutathione. Lysine decreased the covalent binding of 2-MF metabolites, presumably by reacting with the aldehyde group of acetylacrolein. In addition, in the presence of NADPH, 2-MF was bioactivated by both pulmonary and renal cortical microsomes to reactive metabolites that were covalently bound to microsomal proteins

  15. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    Science.gov (United States)

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  16. Alteration In Bones Metabolism In Active Rheumatoid Arthritis

    International Nuclear Information System (INIS)

    Salem, E.S.

    2013-01-01

    The strength and integrity of the human skeleton depends on a delicate equilibrium between bone resorption and bone formation. Osteocalcin (OC) is synthesized by osteoblasts and is considered to be a marker of bone formation and helps in corporating calcium into bone tissue. Rheumatoid arthritis (RA) is an autoimmune inflammatory joint disease characterized by bone complication including bone pain, erosion and osteoporosis. The aim of the present study is to evaluate some factors responsible in bone metabolism termed OC, vitamin D (vit. D), oncostatin M (OSM), ionized calcium and alkaline phosphatase. Fifty pre-menopausal female patients with active RA and twenty healthy controls of the same age were included in the present study. Radioimmunoassay (RIA) was used to estimate serum OC and active vitamin D. The quantitative determination of ionized calcium and alkaline phosphatase were carried out colorimetrically. OSM was measured by ELISA and serum levels of OC and active vitamin D were significantly decreased in RA patients as compared to those of the control group. On the other hand, the levels of serum OSM, ionized calcium and alkaline phosphatase were significantly increased in the RA patients as compared to their healthy control subjects. The results of this study indicated that early investigation and therapy of disturbances of bone metabolism in active RA are necessary for better prognosis and exhibited the importance of OC as a diagnostic tool of alterations of bone metabolism in RA patients.

  17. Physical activity, BMI and metabolic risk in Portuguese adolescents

    Directory of Open Access Journals (Sweden)

    Fernanda Karina dos Santos

    2016-03-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2016v18n1p103   It has been reported, in the last decades, a significant decrease in physical activity (PA levels, with a consequent increase in obesity and metabolic risk factors among youth. The aims of this study were to describe PA levels, the prevalence of overweight/obesity and metabolic risk factors, and to examine the association between PA and body mass index (BMI with metabolic risk among Portuguese youth. The sample comprises 212 Portuguese adolescents (12-16 years old. Height and weight were measured. PA was estimated with the Bouchard questionnaire (3 days recall, as well as with the use of a pedometer (used for 5 consecutive days. Metabolic risk factors comprised fasting glucose, triglycerides, HDL-cholesterol, systolic blood pressure and waist circumference. Subjects were classified as normal weight, overweight or obese according to BMI; the maturational status was indirectly estimated with the maturity offset procedure. A continuous metabolic risk score was computed (zMR and PA values were divided into tertiles. Qui-square test, t-test and ANOVA were used in statistical analyses. SPSS 18.0 and WinPepi softwares were used and p<0.05. A moderate to high prevalence of overweight/obesity and HDL-cholesterol was found, as well as a high prevalence of high blood pressure and low to moderate PA levels among Portuguese youth. The relationship between BMI and zMR showed that obese adolescents have higher zMR when compared to normal weight or overweight adolescents. This finding suggests that increased levels of PA and reduction in the prevalence of overweight/obesity may have a positive role against the development of metabolic risk factors.

  18. Metabolic syndrome and cognitive decline: the role of physical activity

    Directory of Open Access Journals (Sweden)

    M. Rinaldi

    2013-01-01

    Full Text Available Metabolic Syndrome (MetS is a cluster of conditions, each of which represents a risk factor for cardiovascular disease: central obesity, hyperglycemia, dyslipidemia and hypertension. Any of these conditions and MetS itself have been associated to Alzheimer's Disease and Vascular Dementia. In recent years there is a growing evidence for the role of physical activity in preventing metabolic diseases and cognitive decline. In our research we assessed the prevalence of MetS in a sample of 154 elderly people. Furthermore, we evaluated cognition (with Mini Mental State Examination, MMSE  and the physical activity level in every patient. We found a significant association between MetS, borderline cognitive impairment and sedentary lifestyle.

  19. Prediction of residual metabolic activity after treatment in NSCLC patients

    International Nuclear Information System (INIS)

    Rios Velazquez, Emmanuel; Aerts, Hugo J.W.L.; Oberije, Cary; Ruysscher, Dirk De; Lambin, Philippe

    2010-01-01

    Purpose. Metabolic response assessment is often used as a surrogate of local failure and survival. Early identification of patients with residual metabolic activity is essential as this enables selection of patients who could potentially benefit from additional therapy. We report on the development of a pre-treatment prediction model for metabolic response using patient, tumor and treatment factors. Methods. One hundred and one patients with inoperable NSCLC (stage I-IV), treated with 3D conformal radical (chemo)-radiotherapy were retrospectively included in this study. All patients received a pre and post-radiotherapy fluorodeoxyglucose positron emission tomography-computed tomography FDG-PET-CT scan. The electronic medical record system and the medical patient charts were reviewed to obtain demographic, clinical, tumor and treatment data. Primary outcome measure was examined using a metabolic response assessment on a post-radiotherapy FDG-PET-CT scan. Radiotherapy was delivered in fractions of 1.8 Gy, twice a day, with a median prescribed dose of 60 Gy. Results. Overall survival was worse in patients with residual metabolic active areas compared with the patients with a complete metabolic response (p=0.0001). In univariate analysis, three variables were significantly associated with residual disease: larger primary gross tumor volume (GTVprimary, p=0.002), higher pre-treatment maximum standardized uptake value (SUV max , p=0.0005) in the primary tumor and shorter overall treatment time (OTT, p=0.046). A multivariate model including GTVprimary, SUV max , equivalent radiation dose at 2 Gy corrected for time (EQD2, T) and OTT yielded an area under the curve assessed by the leave-one-out cross validation of 0.71 (95% CI, 0.65-0.76). Conclusion. Our results confirmed the validity of metabolic response assessment as a surrogate of survival. We developed a multivariate model that is able to identify patients at risk of residual disease. These patients may benefit from

  20. Effects of vasoactive and metabolic active substances (measurement of RCBF)

    Energy Technology Data Exchange (ETDEWEB)

    Herrschaft, H.

    1986-09-29

    Methods, principles, normal values, reproducibility and clinical indications of rCBF-measurements, using the intraartrial 133-Xenon-clearance-technique, are presented. The effect of vaso- and metabolically active drugs on cerebral blood flow was examined in 215 patients, suffering from cerebral ischemia. Significant increase of rCBF was ascertained after intravenous injection of centrophenoxine, pyrithioxine, extractum sanguis deproteinatus, piracetam and solutions of low molecular dextran. All the other drugs tested proved to be either without any effect or caused decrease of rCBF. In 130 patients with obstructive disease of internal carotid artery after surgery at an interval of 6 - 8 weeks and 1 year a significant increase of CBF could be stated. The rank of psychological tests and quantitative EEF-investigations relating to evidence of efficacy of metabolically active drugs is discussed critically. Therapeutic efficacy and clinical relevance of vaso- and metabolically active drugs in cerebral ischemia of man are to be substantiated only by double-blind controlled studies.

  1. Effects of vasoactive and metabolic active substances (measurement of RCBF)

    International Nuclear Information System (INIS)

    Herrschaft, H.

    1986-01-01

    Methods, principles, normal values, reproducibility and clinical indications of rCBF-measurements, using the intraartrial 133-Xenon-clearance-technique, are presented. The effect of vaso- and metabolically active drugs on cerebral blood flow was examined in 215 patients, suffering from cerebral ischemia. Significant increase of rCBF was ascertained after intravenous injection of centrophenoxine, pyrithioxine, extractum sanguis deproteinatus, piracetam and solutions of low molecular dextran. All the other drugs tested proved to be either without any effect or caused decrease of rCBF. In 130 patients with obstructive disease of internal carotid artery after surgery at an interval of 6 - 8 weeks and 1 year a significant increase of CBF could be stated. The rank of psychological tests and quantitative EEF-investigations relating to evidence of efficacy of metabolically active drugs is discussed critically. Therapeutic efficacy and clinical relevance of vaso- and metabolically active drugs in cerebral ischemia of man are to be substantiated only by double-blind controlled studies. (orig.) [de

  2. Physical activity, body composition and metabolic syndrome in young adults.

    Directory of Open Access Journals (Sweden)

    Minna K Salonen

    Full Text Available Low physical activity (PA is a major risk factor for cardiovascular and metabolic disorders in all age groups. We measured intensity and volume of PA and examined the associations between PA and the metabolic syndrome (MS, its components and body composition among young Finnish adults.The study comprises 991 men and women born 1985-86, who participated in a clinical study during the years 2009-11 which included assessments of metabolism, body composition and PA. Objectively measured (SenseWear Armband five-day PA data was available from 737 participants and was expressed in metabolic equivalents of task (MET.The prevalence of MS ranged between 8-10%. Higher total mean volume (MET-hours or intensity (MET were negatively associated with the risk of MS and separate components of MS, while the time spent at sedentary level of PA was positively associated with MS.MS was prevalent in approximately every tenth of the young adults at the age of 24 years. Higher total mean intensity and volume rates as well as longer duration spent at moderate and vigorous PA level had a beneficial impact on the risk of MS. Longer time spent at the sedentary level of PA increased the risk of MS.

  3. Activity syndromes and metabolism in giant deep-sea isopods

    Science.gov (United States)

    Wilson, Alexander D. M.; Szekeres, Petra; Violich, Mackellar; Gutowsky, Lee F. G.; Eliason, Erika J.; Cooke, Steven J.

    2017-03-01

    Despite growing interest, the behavioural ecology of deep-sea organisms is largely unknown. Much of this scarcity in knowledge can be attributed to deepwater animals being secretive or comparatively 'rare', as well as technical difficulties associated with accessing such remote habitats. Here we tested whether two species of giant marine isopod (Bathynomus giganteus, Booralana tricarinata) captured from 653 to 875 m in the Caribbean Sea near Eleuthera, The Bahamas, exhibited an activity behavioural syndrome across two environmental contexts (presence/absence of food stimulus) and further whether this syndrome carried over consistently between sexes. We also measured routine metabolic rate and oxygen consumption in response to a food stimulus in B. giganteus to assess whether these variables are related to individual differences in personality. We found that both species show an activity syndrome across environmental contexts, but the underlying mechanistic basis of this syndrome, particularly in B. giganteus, is unclear. Contrary to our initial predictions, neither B. giganteus nor B. tricarinata showed any differences between mean expression of behavioural traits between sexes. Both sexes of B. tricarinata showed strong evidence of an activity syndrome underlying movement and foraging ecology, whereas only male B. giganteus showed evidence of an activity syndrome. Generally, individuals that were more active and bolder, in a standard open arena test were also more active when a food stimulus was present. Interestingly, individual differences in metabolism were not related to individual differences in behaviour based on present data. Our study provides the first measurements of behavioural syndromes and metabolism in giant deep-sea isopods.

  4. Influence of metabolism on endocrine activities of bisphenol S.

    Science.gov (United States)

    Skledar, Darja Gramec; Schmidt, Jan; Fic, Anja; Klopčič, Ivana; Trontelj, Jurij; Dolenc, Marija Sollner; Finel, Moshe; Mašič, Lucija Peterlin

    2016-08-01

    Bisphenol S (BPS; bis[4-hydroxyphenyl]sulfone) is commonly used as a replacement for bisphenol A in numerous consumer products. The main goal of this study was to examine the influence of different metabolic reactions that BPS undergoes on the endocrine activity. We demonstrate that hydroxylation of the aromatic ring of BPS, catalyzed mainly by the cytochrome P450 enzymes CYP3A4 and CYP2C9, is its major in-vitro phase I biotransformation. Nevertheless, coupled oxidative-conjugative reactions analyses revealed that glucuronidation and formation of BPS glucuronide is the predominant BPS metabolic pathway. BPS reactive metabolites that can be tracked as glutathione conjugates were not detected in the present study. Two in-vitro systems were used to evaluate the endocrine activity of BPS and its two main metabolites, BPS glucuronide and hydroxylated BPS 4-(4-hydroxy-benzenesulfonyl)-benzene-1,2-diol (BPSM1). In addition, we have tested two structural analogs of BPS, bis[4-(2-hydroxyetoxy)phenyl]sulfone (BHEPS) and 4,4-sulfonylbis(2-methylphenol) (dBPS). The test systems were yeast cells, for evaluating estrogenic and androgenic activities, and the GH3.TRE-Luc reporter cell line for measuring thyroid hormone activity. BPS and BPSM1 were weak agonists of the estrogen receptor, EC50 values of 8.4 × 10(-5) M and 6.7 × 10(-4) M, respectively. Additionally, BPSM1 exhibited weak antagonistic activity toward the thyroid hormone receptor, with an IC50 of 4.3 × 10(-5) M. In contrast to BPSM1, BPS glucuronide was inactive in these assays, inhibiting neither the estrogen nor the thyroid hormone receptors. Hence, glucuronidation appears to be the most important pathway for both BPS metabolism and detoxification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fibroblast activation protein (FAP) as a novel metabolic target

    DEFF Research Database (Denmark)

    Sánchez-Garrido, Miguel Angel; Habegger, Kirk M; Clemmensen, Christoffer

    2016-01-01

    to block FAP enzymatic activity. RESULTS: TB administration to diet-induced obese (DIO) animals led to profound decreases in body weight, reduced food consumption and adiposity, increased energy expenditure, improved glucose tolerance and insulin sensitivity, and lowered cholesterol levels. Total...... (TB), we explored the impact of FAP inhibition on metabolic regulation in mice. METHODS: To address this question we evaluated the pharmacology of TB in various mouse models including those deficient in FGF21, GLP1 and GIP signaling. We also studied the ability of FAP to process FGF21 in vitro and TB...... and intact plasma FGF21 were observed to be elevated in TB-treated DIO mice but not lean animals where the metabolic impact of TB was significantly attenuated. Furthermore, and in stark contrast to naïve DIO mice, the administration of TB to obese FGF21 knockout animals demonstrated no appreciable effect...

  6. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammad Abdel-Mawgoud

    2018-03-01

    Full Text Available Glycosylated lipids (GLs are added-value lipid derivatives of great potential. Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents, they have diverse biological activities with promising biomedical and cosmeceutical applications. Glycolipids, especially those of microbial origin, have interesting antimicrobial, anticancer, antiparasitic as well as immunomodulatory activities. Nonetheless, GLs are hardly accessing the market because of their high cost of production. We believe that experience of metabolic engineering (ME of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications. This review presents chemical groups of bacterial and fungal GLs, their biological activities, their general biosynthetic pathways and an insight on ME strategies for their production.

  7. Adjuvant activity of peptidoglycan monomer and its metabolic products.

    Science.gov (United States)

    Halassy, Beata; Krstanović, Marina; Frkanec, Ruza; Tomasić, Jelka

    2003-02-14

    Peptidoglycan monomer (PGM) is a natural compound of bacterial origin. It is a non-toxic, non-pyrogenic, water-soluble immunostimulator potentiating humoral immune response to ovalbumin (OVA) in mice. It is fast degraded and its metabolic products-the pentapeptide (PP) and the disaccharide (DS)-are excreted from the mammalian organism upon parenteral administration. The present study investigates: (a). whether PGM could influence the long-living memory generation; (b). whether metabolic products retain adjuvant properties of the parent compound and contribute to its adjuvanticity. We report now that mice immunised twice with OVA+PGM had significantly higher anti-OVA IgG levels upon challenge with antigen alone 6 months later in comparison to control group immunised with OVA only. PP and DS were prepared enzymatically in vitro as apyrogenic and chemically pure compounds. When mice were immunised with OVA plus PP and DS, respectively, the level of anti-OVA IgGs in sera was not higher than in mice immunised with OVA alone, while PGM raised the level of specific antibodies. Results implicate that the adjuvant active molecule, capable of enhancing long-living memory generation, is PGM itself, and none of its metabolic products.

  8. In vivo enzyme activity in inborn errors of metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D. (Clinical Research Centre, Harrow (England))

    1990-08-01

    Low-dose continuous infusions of (2H5)phenylalanine, (1-13C)propionate, and (1-13C)leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD.

  9. In vivo enzyme activity in inborn errors of metabolism

    International Nuclear Information System (INIS)

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D.

    1990-01-01

    Low-dose continuous infusions of [2H5]phenylalanine, [1-13C]propionate, and [1-13C]leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD

  10. Metabolic Syndrome and Physical Activity in Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    derya atik

    2014-06-01

    Full Text Available Purpose: This descriptive study was carried out to reveal the level of physical activity in patients who receive hemodialysis due to chronic kidney failure and to identify its relationship with the prevalence of metabolic syndrome (MetS. Material and method: The study was conducted with 55 patients at the hemodialysis units of Alanya State Hospital and Private Alanya Anadolu Hospital between 10 and 30 June 2013. The study data were collected using the National Cholesterol Education Program, the Adult Treatment Panel III (NCEP-ATP III, a data collection form containing Metabolic Syndrome Diagnosis Criteria, and the International Physical Activity Questionnaire (IPAQ. The data were analyzed using arithmetic mean +/- standard deviation (SD, number and percentage distributions, independent sample t test, crosstabs, One Way Anova, and Pearson and #8217;s Correlation Analysis. Conclusion and suggestions: It was found that 41.8% of the patients were between 50 and 65 years of age, the majority of them were male (58.2%, hemodialysis had been administered to 69.1% of them for at least 36 months, and 50.9% of them met three and more of the MetS criteria. There was no statistically significant relationship between MetS and physical activity levels, but the length of physical activity was longer in those who did not meet the MetS diagnosis criteria (p>0.05. An increase in sedentary time raised the MetS criteria (p<0.05. Conclusion: Nearly 1/2 of the patients were at risk of MetS. Physical activity level being statistically ineffective on MetS can be associated with low physical activity level and longer sedentary time. It can be said that being completely sedentary increases BMI and therefore MetS. The study can be repeated on different samples and the results can be compared. [J Contemp Med 2014; 4(2.000: 69-75

  11. Effects of bagging on sugar metabolism and the activity of sugar ...

    African Journals Online (AJOL)

    To investigate the effects of bagging on sugar metabolism and the activity of sugar metabolism related enzymes in Qingzhong loquat fruit development, the contents of sucrose, glucose and soluble solids as well as the activities of sugar metabolism related enzymes were evaluated. The content of sucrose, glucose and ...

  12. Cytosolic Calcium Coordinates Mitochondrial Energy Metabolism with Presynaptic Activity

    Science.gov (United States)

    Chouhan, Amit K.; Ivannikov, Maxim V.; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R.; Macleod, Gregory T.

    2012-01-01

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations which blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+, and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13nM). In summary, we show that when MNs fire at endogenous rates [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs. PMID:22279208

  13. Metabolic Equivalent in Adolescents, Active Adults and Pregnant Women

    Directory of Open Access Journals (Sweden)

    Katarina Melzer

    2016-07-01

    Full Text Available “Metabolic Equivalent” (MET represents a standard amount of oxygen consumed by the body under resting conditions, and is defined as 3.5 mL O2/kg × min or ~1 kcal/kg × h. It is used to express the energy cost of physical activity in multiples of MET. However, universal application of the 1-MET standard was questioned in previous studies, because it does not apply well to all individuals. Height, weight and resting metabolic rate (RMR, measured by indirect calorimetry were measured in adolescent males (n = 50 and females (n = 50, women during pregnancy (gestation week 35–41, n = 46, women 24–53 weeks postpartum (n = 27, and active men (n = 30, and were compared to values predicted by the 1-MET standard. The RMR of adolescent males (1.28 kcal/kg × h was significantly higher than that of adolescent females (1.11 kcal/kg × h, with or without the effects of puberty stage and physical activity levels. The RMR of the pregnant and post-pregnant subjects were not significantly different. The RMR of the active normal weight (0.92 kcal/kg × h and overweight (0.89 kcal/kg × h adult males were significantly lower than the 1-MET value. It follows that the 1-MET standard is inadequate for use not only in adult men and women, but also in adolescents and physically active men. It is therefore recommended that practitioners estimate RMR with equations taking into account individual characteristics, such as sex, age and Body Mass Index, and not rely on the 1-MET standard.

  14. Physical Activity Dimensions Associated with Impaired Glucose Metabolism

    DEFF Research Database (Denmark)

    Amadid, Hanan; Johansen, Nanna B.; Bjerregaard, Anne-Louise

    2017-01-01

    Purpose Physical activity (PA) is important in the prevention of Type 2 diabetes, yet little is known about the role of specific dimensions of PA, including sedentary time in subgroups at risk for impaired glucose metabolism (IGM). We applied a data-driven decision tool to identify dimensions of PA...... identified subgroups in which different activity dimensions were associated with IGM. Methodology and results from this study may suggest a preliminary step toward the goal of tailoring and targeting PA interventions aimed at Type 2 diabetes prevention....... associated with IGM across age, sex, and body mass index (BMI) groups. Methods This cross-sectional study included 1501 individuals (mean (SD) age, 65.6 (6.8) yr) at high risk for Type 2 diabetes from the ADDITION-PRO study. PA was measured by an individually calibrated combined accelerometer and heart rate...

  15. Metabolic Activity Interferometer: A Powerful Tool for Testing Antibiotics

    Directory of Open Access Journals (Sweden)

    Rachel R. P. Machado

    2012-01-01

    Full Text Available It is demonstrated that the efficiency of antibiotics can be tested using an interferometric method. Two antibiotics were used as models to show that an interferometric method to monitor the metabolic activity of slowly growing bacteria can be a safer method to judge antimicrobial properties of substances than conventional methods. The susceptibility of Mycobacterium bovis to hexane extract of Pterodon emarginatus and to the well-known antibiotic rifampicin was tested with the interferometric method and with the conventional microplate method. The microplate method revealed a potential activity of hexane extract against M. bovis. However, the interferometric method showed that the action of this substance is rather limited. Also in the case of rifampicin, the interferometric method was able to detect resistant bacteria.

  16. Does physical activity during pregnancy adversely influence markers of the metabolic syndrome in adult offspring?

    DEFF Research Database (Denmark)

    Danielsen, Inge; Granström, Charlotta; Rytter, Dorte

    2013-01-01

    It is unknown whether physical activity during pregnancy (PA) has long-term impact on the metabolic profile of the offspring. We investigated associations of PA with markers of the metabolic syndrome (MS) in 20y old offspring.......It is unknown whether physical activity during pregnancy (PA) has long-term impact on the metabolic profile of the offspring. We investigated associations of PA with markers of the metabolic syndrome (MS) in 20y old offspring....

  17. Fisetin disposition and metabolism in mice: Identification of geraldol as an active metabolite. : Fisetin disposition and metabolism in mice

    OpenAIRE

    Touil, Yasmine,; Auzeil, Nicolas; Boulinguez, François; Saighi, Hanane; Regazzetti, Anne; Scherman, Daniel; Chabot, Guy,

    2011-01-01

    International audience; Although the natural flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) has been recently identified as an anticancer agent with antiangiogenic properties in mice, its in vivo pharmacokinetics and metabolism are presently not characterized. Our purpose was to determine the pharmacokinetics and metabolism of fisetin in mice and determine the biological activity of a detected fisetin metabolite. After fisetin administration of an efficacious dose of 223 mg/kg i.p. in mice...

  18. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    International Nuclear Information System (INIS)

    Shlomai, Amir; Shaul, Yosef

    2009-01-01

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1α coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1α coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4α and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1α coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1α, implying that FOXO1 is a target for PGC-1α coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  19. Metabolic signals and innate immune activation in obesity and exercise.

    Science.gov (United States)

    Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten

    2015-01-01

    The combination of a sedentary lifestyle and excess energy intake has led to an increased prevalence of obesity which constitutes a major risk factor for several co-morbidities including type 2 diabetes and cardiovascular diseases. Intensive research during the last two decades has revealed that a characteristic feature of obesity linking it to insulin resistance is the presence of chronic low-grade inflammation being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs), being elevated in many obese subjects, through activation of pattern recognition receptors thereby leading to stimulation of critical inflammatory signaling cascades, like IκBα kinase/nuclear factor-κB (IKK/NF- κB), endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and NOD-like receptor P3 (NLRP3) inflammasome pathway, that interfere with insulin signaling. Exercise is one of the main prescribed interventions in obesity management improving insulin sensitivity and reducing obesity- induced chronic inflammation. This review summarizes current knowledge of the cellular recognition mechanisms for FFAs, the inflammatory signaling pathways triggered by excess FFAs in obesity and the counteractive effects of both acute and chronic exercise on obesity-induced activation of inflammatory signaling pathways. A deeper understanding of the effects of exercise on inflammatory signaling pathways in obesity is useful to optimize preventive and therapeutic strategies to combat the increasing incidence of obesity and its comorbidities. Copyright © 2015 International Society of Exercise and Immunology. All rights reserved.

  20. Pyrrolizidine Alkaloids: Metabolic Activation Pathways Leading to Liver Tumor Initiation.

    Science.gov (United States)

    Fu, Peter P

    2017-01-17

    Pyrrolizidine alkaloids (PAs) and PA N-oxides are a class of phytochemical carcinogens contained in over 6000 plant species spread around the world. It has been estimated that approximately half of the 660 PAs and PA N-oxides that have been characterized are cytotoxic, genotoxic, and tumorigenic. It was recently determined that a genotoxic mechanism of liver tumor initiation mediated by PA-derived DNA adducts is a common metabolic activation pathway of a number of PAs. We proposed this set of PA-derived DNA adducts could be a common biological biomarker of PA exposure and a potential biomarker of PA-induced liver tumor formation. We have also found that several reactive secondary pyrrolic metabolites can dissociate and interconvert to other secondary pyrrolic metabolites, resulting in the formation of the same exogenous DNA adducts. This present perspective reports the current progress on these new findings and proposes future research needed for obtaining a greater understanding of the role of this activation pathway and validating the use of this set of PA-derived DNA adducts as a biological biomarker of PA-induced liver tumor initiation.

  1. Basal metabolic regulatory responses and rhythmic activity of ...

    African Journals Online (AJOL)

    ... Rattus sp. Low concentrations of kola nut extract stimulated the heart by increasing rate and force of contraction as well as metabolic rate. Higher concentrations reduced rate and amplitude of beat resulting, at still higher concentrations in heart failure. Keywords: Kolanut, extract, basal metabolic rate, mammalian heart ...

  2. Abnormal metabolic network activity in REM sleep behavior disorder.

    Science.gov (United States)

    Holtbernd, Florian; Gagnon, Jean-François; Postuma, Ron B; Ma, Yilong; Tang, Chris C; Feigin, Andrew; Dhawan, Vijay; Vendette, Mélanie; Soucy, Jean-Paul; Eidelberg, David; Montplaisir, Jacques

    2014-02-18

    To determine whether the Parkinson disease-related covariance pattern (PDRP) expression is abnormally increased in idiopathic REM sleep behavior disorder (RBD) and whether increased baseline activity is associated with greater individual risk of subsequent phenoconversion. For this cohort study, we recruited 2 groups of RBD and control subjects. Cohort 1 comprised 10 subjects with RBD (63.5 ± 9.4 years old) and 10 healthy volunteers (62.7 ± 8.6 years old) who underwent resting-state metabolic brain imaging with (18)F-fluorodeoxyglucose PET. Cohort 2 comprised 17 subjects with RBD (68.9 ± 4.8 years old) and 17 healthy volunteers (66.6 ± 6.0 years old) who underwent resting brain perfusion imaging with ethylcysteinate dimer SPECT. The latter group was followed clinically for 4.6 ± 2.5 years by investigators blinded to the imaging results. PDRP expression was measured in both RBD groups and compared with corresponding control values. PDRP expression was elevated in both groups of subjects with RBD (cohort 1: p abnormalities in subjects with idiopathic RBD are associated with a greater likelihood of subsequent phenoconversion to a progressive neurodegenerative syndrome.

  3. Metabolic activity of Glomus intraradices in Arum- and Paris-type arbuscular mycorrhizal colonization

    NARCIS (Netherlands)

    van Aarle, IM; Cavagnaro, TR; Smith, SE; Dickson, S

    Colonization of two plant species by Glomus intraradices was studied to investigate the two morphological types (Arum and Paris), their symbiotic interfaces and metabolic activities. Root pieces and sections were stained to observe the colonization and metabolic activity of all mycorrhizal

  4. Postprandial Monocyte Activation in Individuals With Metabolic Syndrome

    Science.gov (United States)

    Khan, Ilvira M.; Pokharel, Yashashwi; Dadu, Razvan T.; Lewis, Dorothy E.; Hoogeveen, Ron C.; Wu, Huaizhu

    2016-01-01

    Context: Postprandial hyperlipidemia has been suggested to contribute to atherogenesis by inducing proinflammatory changes in monocytes. Individuals with metabolic syndrome (MS), shown to have higher blood triglyceride concentration and delayed triglyceride clearance, may thus have increased risk for development of atherosclerosis. Objective: Our objective was to examine fasting levels and effects of a high-fat meal on phenotypes of monocyte subsets in individuals with obesity and MS and in healthy controls. Design, Setting, Participants, Intervention: Individuals with obesity and MS and gender- and age-matched healthy controls were recruited. Blood was collected from participants after an overnight fast (baseline) and at 3 and 5 hours after ingestion of a high-fat meal. At each time point, monocyte phenotypes were examined by multiparameter flow cytometry. Main Outcome Measures: Baseline levels of activation markers and postprandial inflammatory response in each of the three monocyte subsets were measured. Results: At baseline, individuals with obesity and MS had higher proportions of circulating lipid-laden foamy monocytes than controls, which were positively correlated with fasting triglyceride levels. Additionally, the MS group had increased counts of nonclassical monocytes, higher CD11c, CX3CR1, and human leukocyte antigen-DR levels on intermediate monocytes, and higher CCR5 and tumor necrosis factor-α levels on classical monocytes in the circulation. Postprandial triglyceride increases in both groups were paralleled by upregulation of lipid-laden foamy monocytes. MS, but not control, subjects had significant postprandial increases of CD11c and percentages of IL-1β+ and tumor necrosis factor-α+ cells in nonclassical monocytes. Conclusions: Compared to controls, individuals with obesity and MS had increased fasting and postprandial monocyte lipid accumulation and activation. PMID:27575945

  5. Ruptured human Achilles tendon has elevated metabolic activity up to 1 year after repair

    DEFF Research Database (Denmark)

    Eliasson, Pernilla; Couppé, Christian; Lonsdale, Markus

    2016-01-01

    PURPOSE: Following Achilles tendon rupture, running is often allowed after 6 months. However, tendon healing is slow and the metabolic status of the tendon at this point is unknown. The purpose of this study was to investigate tendon metabolism (glucose uptake) and vascularization at 3, 6 and 12...... demonstrate that the healing process as determined by metabolic activity and vascularization continues for 6 months after injury when large loads are typically allowed on the tendon. Indeed, metabolic activity remained elevated for more than 1 year after injury despite normalized vascularization. The robust...... negative correlation between tendon metabolism and patient-reported outcome suggests that a high metabolic activity 6 months after the injury may be related to a poor clinical healing outcome....

  6. Physical Activity and Sedentary Behavior Associated with Components of Metabolic Syndrome among People in Rural China.

    Directory of Open Access Journals (Sweden)

    Jing Xiao

    Full Text Available Metabolic syndrome is prevalent worldwide and its prevalence is related to physical activity, race, and lifestyle. Little data is available for people living in rural areas of China. In this study we examined associations of physical activity and sedentary behaviors with metabolic syndrome components among people in rural China.The Nantong Metabolic Syndrome Study recruited 13,505 female and 6,997 male participants between 2007 and 2008. Data of socio-demographic characteristics and lifestyle were collected. The associations of physical activity and sedentary behaviors with metabolic syndrome components were analyzed.Prevalence of metabolic syndrome was 21.6%. It was significantly lower in men than in women. Low risks of metabolic syndrome were observed in those who did less sitting and engaged in more vigorous physical activity. The highest tertile of vigorous physical activity was associated with 15-40% decreased odds of metabolic syndrome and all of its components, except for low high-density lipoprotein cholesterol in men. Women with the highest tertile of moderate physical activity had 15-30% lower odds of central obesity, high glucose, and high triglycerides compared with those in the lowest tertile. Sitting time >42 hours per week had a 4%-12% attributable risk of metabolic syndrome, central obesity, and high triglycerides in both genders, and abnormal glucose and diastolic blood pressure in women. Sleeping for more than 8 hours per day was associated with risk of high serum glucose and lipids.Our data suggested that physical activity has a preventive effect against metabolic syndrome and all its abnormal components, and that longer sitting time and sleep duration are associated with an increased risk of metabolic syndrome components, including central obesity and high triglycerides, glucose, and diastolic blood pressure. This study could provide information for future investigation into these associations. Also, recommendations are

  7. Physical Activity and Sedentary Behavior Associated with Components of Metabolic Syndrome among People in Rural China.

    Science.gov (United States)

    Xiao, Jing; Shen, Chong; Chu, Min J; Gao, Yue X; Xu, Guang F; Huang, Jian P; Xu, Qiong Q; Cai, Hui

    2016-01-01

    Metabolic syndrome is prevalent worldwide and its prevalence is related to physical activity, race, and lifestyle. Little data is available for people living in rural areas of China. In this study we examined associations of physical activity and sedentary behaviors with metabolic syndrome components among people in rural China. The Nantong Metabolic Syndrome Study recruited 13,505 female and 6,997 male participants between 2007 and 2008. Data of socio-demographic characteristics and lifestyle were collected. The associations of physical activity and sedentary behaviors with metabolic syndrome components were analyzed. Prevalence of metabolic syndrome was 21.6%. It was significantly lower in men than in women. Low risks of metabolic syndrome were observed in those who did less sitting and engaged in more vigorous physical activity. The highest tertile of vigorous physical activity was associated with 15-40% decreased odds of metabolic syndrome and all of its components, except for low high-density lipoprotein cholesterol in men. Women with the highest tertile of moderate physical activity had 15-30% lower odds of central obesity, high glucose, and high triglycerides compared with those in the lowest tertile. Sitting time >42 hours per week had a 4%-12% attributable risk of metabolic syndrome, central obesity, and high triglycerides in both genders, and abnormal glucose and diastolic blood pressure in women. Sleeping for more than 8 hours per day was associated with risk of high serum glucose and lipids. Our data suggested that physical activity has a preventive effect against metabolic syndrome and all its abnormal components, and that longer sitting time and sleep duration are associated with an increased risk of metabolic syndrome components, including central obesity and high triglycerides, glucose, and diastolic blood pressure. This study could provide information for future investigation into these associations. Also, recommendations are developed to reduce

  8. Leisure-time exercise, physical activity during work and commuting, and risk of metabolic syndrome.

    Science.gov (United States)

    Kuwahara, Keisuke; Honda, Toru; Nakagawa, Tohru; Yamamoto, Shuichiro; Akter, Shamima; Hayashi, Takeshi; Mizoue, Tetsuya

    2016-09-01

    Data are limited regarding effect of intensity of leisure-time physical activity on metabolic syndrome. Furthermore, no prospective data are available regarding effect of occupational and commuting physical activity on metabolic syndrome. We compared metabolic syndrome risk by intensity level of leisure-time exercise and by occupational and commuting physical activity in Japanese workers. We followed 22,383 participants, aged 30-64 years, without metabolic syndrome until 2014 March (maximum, 5 years of follow-up). Physical activity was self-reported. Metabolic syndrome was defined by the Joint Statement criteria. We used Cox regression models to estimate the hazard ratios (HRs) and 95 % confidence intervals (CIs) of metabolic syndrome. During a mean follow-up of 4.1 years, 5361 workers developed metabolic syndrome. After adjustment for covariates, compared with engaging in no exercise, the HRs (95 % CIs) for metabolic equivalent hours of exercise per week were 0.99 (0.90, 1.08), 0.99 (0.90, 1.10), and 0.95 (0.83, 1.08), respectively, among individuals engaging in moderate-intensity exercise alone; 0.93 (0.75, 1.14), 0.81 (0.64, 1.02), and 0.84 (0.66, 1.06), among individuals engaging in vigorous-intensity exercise alone; and 0.90 (0.70, 1.17), 0.74 (0.62, 0.89), and 0.81 (0.69, 0.96) among individuals engaging in the two intensities. Higher occupational physical activity was weakly but significantly associated with lower risk of metabolic syndrome. Walking to and from work was not associated with metabolic syndrome. Vigorous-intensity exercise alone or vigorous-intensity combined with moderate-intensity exercise and worksite intervention for physical activity may help prevent metabolic syndrome for Japanese workers.

  9. An in vitro model for screening estrogen activity of environmental samples after metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Chahbane, N.; Schramm, K.W. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Oekologische Chemie; Kettrup, A. [Technische Univ. Muenchen, Freising (Germany). Lehrstuhl fuer Oekologische Chemie

    2004-09-15

    For a few years, yeast estrogen assay (YES) was accepted as a reliable and economic model for screening of environmental estrogens. Though the chemicals directly act with estrogen receptor (ER) can be filtered out by this model, there are still chemicals act with ER only after metabolism and some chemicals eliminate their estrogen activities after metabolism. That is to say, their metabolites exert or have stronger estrogen activities than themselves, which can be called bio-activation. In this case, for the lack of the metabolism enzyme system as human and other animals, only the assay with recombinant yeast cells is insufficient. So, it is necessary to combine the YES with metabolism procedure to evaluate the estrogen activities of these chemicals. The most common method used currently for in vitro metabolic activation in mutagenicity testing and also be applied to the estrogen screening field is S-9 mixture. Also, there is an attempt to develop a chemical model for cytochrome P450 as a bio-mimetic metabolic activation system. All these methods can be used as in vitro models for metabolism. Compare with these models, using whole H4II E cells for metabolism is an alternative and with superiorities. It has the excellence of short experiment period as all other in vitro models, but is much more close to the real surroundings as in vivo. Furthermore, the activity of 7-ethoxyresorufin-O-deethylase (EROD) can be easily measured during the whole incubation period for us to discuss the metabolic activities in a quantitative foundation, not only in qualitative. Methoxychlor is one of the chemicals with bio-activation ability. When directly used in the YES, it shows weak estrogen activity. But a main metabolite of methoxychlor, 2,2-bis (p-hydroxyphenyl) - 1,1,1-trichloroethane (HPTE) is a known estrogen mimic. For the long time using methoxychlor as a pesticide and its clear background, it is an ideal chemical to establish this in vitro system.

  10. Dietary patterns as compared with physical activity in relation to metabolic syndrome among Chinese adults

    NARCIS (Netherlands)

    He, Y.; Li, Y.; Lai, J.; Wang, D.; Zhang, J.; Fu, P.; Yang, X.; Qi, L.

    2013-01-01

    Aims: To examine the nationally-representative dietary patterns and their joint effects with physical activity on the likelihood of metabolic syndrome (MS) among 20,827 Chinese adults. Methods and results: CNNHS was a nationally representative cross-sectional observational study. Metabolic syndrome

  11. Effects of Cola-Flavored Beverages and Caffeine on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    Science.gov (United States)

    Dotsey, Roger P; Moser, Elizabeth A S; Eckert, George J; Gregory, Richard L

    To examine the effects of cola-flavored beverages and caffeine on growth and metabolism of Streptococcus mutans biofilm. This study was designed to determine if carbonated beverages or caffeine can increase S. mutans growth and biofilm formation and metabolic activity in vitro, potentially leading to increased S. mutans-associated cariogenicity in children that consume them. Six different cola-flavored products, plus pure caffeine, and pure high fructose corn syrup (HFCS), at different concentrations similar to those in the beverages were tested. A 16-hour culture of S. mutans was treated with different dilutions in bacteriological media. To test for the effect on biofilm formation, the biofilm was stained with crystal violet. The absorbance was determined to evaluate biofilm growth. Biofilm metabolic activity was measured based on biofilm having the ability to reduce XTT to a water-soluble orange compound. The inclusion of HFCS in the beverages, as well as pure HFCS, significantly enhanced bacterial biofilm formation and metabolic activity. Pure caffeine and the presence of caffeine in beverages did not significantly increase biofilm formation, but pure caffeine significantly increased metabolism, and Diet Coke had significantly greater metabolic activity than Caffeine-Free Diet Coke. HFCS increases both the biofilm formation and metabolism of S. mutans, and caffeine in some cases increases metabolism of S. mutans.

  12. Physical activity and sedentary behavior in metabolically healthy obese young women

    Science.gov (United States)

    Studies of physical activity (PA) and sedentary behavior (SB) in metabolically healthy obese (MHO) have been limited to postmenopausal white women. We sought to determine whether PA and SB differ between MHO and metabolically abnormal obese (MAO), in young black and white women....

  13. Natural AMPK Activators: An Alternative Approach for the Treatment and Management of Metabolic Syndrome.

    Science.gov (United States)

    Sharma, Hitender; Kumar, Sunil

    2017-01-01

    This review covers recent discoveries of phytoconstituents, herbal extracts and some semi-synthetic compounds for treating metabolic syndrome with AMPK activation as one of their mechanisms of action. Recent researches have demonstrated AMPK activation to ameliorate multiple components of metabolic syndrome by regulating a balance between anabolic and catabolic cellular reactions. The review attempts to delineate the AMPK activation by natural agents from the perspective of its functional consequences on enzymes, transcription factors and signaling molecules and also on other potential factors contributing in the amelioration of metabolic syndrome. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Association between physical activity and metabolic syndrome among Malay adults in a developing country, Malaysia.

    Science.gov (United States)

    Chu, Anne H Y; Moy, F M

    2014-03-01

    Metabolic syndrome is a highly prevalent health problem within the adult population in developing countries. We aimed to study the association of physical activity levels and metabolic risk factors among Malay adults in Malaysia. Cross-sectional. Body mass index, waist circumference, and systolic/diastolic blood pressure, fasting blood glucose, fasting triglyceride and high-density lipoprotein cholesterol levels were measured in 686 Malay participants (aged 35-74 years). Self-reported physical activity was obtained with the validated International Physical Activity Questionnaire (Malay version) and categorized into low, moderate or high activity levels. Individuals who were classified as overweight and obese predominated (65.6%). On the basis of the modified NCEP ATP III criteria, metabolic syndrome was diagnosed in 31.9% of all participants, of whom 46.1% were men and 53.9% were women. The prevalence of metabolic syndrome among participants with low, moderate or high activity levels was 13.3%, 11.7% and 7.0%, respectively (p<0.001). Statistically significant negative associations were found between a number of metabolic risk factors and activity categories (p<0.05). The odds ratios for metabolic syndrome in the moderate and high activity categories were 0.42 (95% CI: 0.27-0.65) and 0.52 (95% CI: 0.35-0.76), respectively, adjusted for gender. Moderate and high activity levels were each associated with reduced odds for metabolic syndrome independent of gender. Although a slightly lower prevalence of metabolic syndrome was associated with high activity than with moderate activity, potential health benefits were observed when moderate activity was performed. Copyright © 2013 Sports Medicine Australia. All rights reserved.

  15. Fibroblast activation protein (FAP as a novel metabolic target

    Directory of Open Access Journals (Sweden)

    Miguel Angel Sánchez-Garrido

    2016-10-01

    Conclusions: We conclude that pharmacological inhibition of FAP enhances levels of FGF21 in obese mice to provide robust metabolic benefits not observed in lean animals, thus validating this enzyme as a novel drug target for the treatment of obesity and diabetes.

  16. Activating transcription factor 3 regulates immune and metabolic homeostasis

    Czech Academy of Sciences Publication Activity Database

    Ryneš, J.; Donohoe, C. D.; Frommolt, P.; Brodesser, S.; Jindra, Marek; Uhlířová, M.

    2012-01-01

    Roč. 32, č. 19 (2012), s. 3949-3962 ISSN 0270-7306 R&D Projects: GA ČR(CZ) GD204/09/H058 Institutional support: RVO:60077344 Keywords : metabolic homeostasis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.372, year: 2012

  17. Quantifying interictal metabolic activity in human temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Henry, T.R.; Mazziotta, J.C.; Engel, J. Jr.; Christenson, P.D.; Zhang, J.X.; Phelps, M.E.; Kuhl, D.E.

    1990-01-01

    The majority of patients with complex partial seizures of unilateral temporal lobe origin have interictal temporal hypometabolism on [18F]fluorodeoxyglucose positron emission tomography (FDG PET) studies. Often, this hypometabolism extends to ipsilateral extratemporal sites. The use of accurately quantified metabolic data has been limited by the absence of an equally reliable method of anatomical analysis of PET images. We developed a standardized method for visual placement of anatomically configured regions of interest on FDG PET studies, which is particularly adapted to the widespread, asymmetric, and often severe interictal metabolic alterations of temporal lobe epilepsy. This method was applied by a single investigator, who was blind to the identity of subjects, to 10 normal control and 25 interictal temporal lobe epilepsy studies. All subjects had normal brain anatomical volumes on structural neuroimaging studies. The results demonstrate ipsilateral thalamic and temporal lobe involvement in the interictal hypometabolism of unilateral temporal lobe epilepsy. Ipsilateral frontal, parietal, and basal ganglial metabolism is also reduced, although not as markedly as is temporal and thalamic metabolism

  18. Diminished neuronal metabolic activity in Alzheimer's disease. Review article

    NARCIS (Netherlands)

    Salehi, A.; Swaab, D. F.

    1999-01-01

    An increasing number of studies have appeared in the literature suggesting that Alzheimer's disease (AD) is a hypometabolic brain disorder. Decreased metabolism in AD has been revealed by a variety of in vivo and postmortem methods and techniques including positron emission tomography and glucose

  19. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    Science.gov (United States)

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  20. Quantification of metabolically active transient storage (MATS) in two reaches with contrasting transient storage and ecosystem respiration

    Science.gov (United States)

    Alba Argerich; Roy Haggerty; Eugènia Martí; Francesc Sabater; Jay. Zarnetske

    2011-01-01

    Water transient storage zones are hotspots for metabolic activity in streams although the contribution of different types of transient storage zones to the whole�]reach metabolic activity is difficult to quantify. In this study we present a method to measure the fraction of the transient storage that is metabolically active (MATS) in two consecutive reaches...

  1. Association of Objectively Measured Physical Activity and Metabolic Syndrome Among US Adults With Osteoarthritis.

    Science.gov (United States)

    Liu, Shao-Hsien; Waring, Molly E; Eaton, Charles B; Lapane, Kate L

    2015-10-01

    To investigate the association between objectively measured physical activity and metabolic syndrome among adults with osteoarthritis (OA). Using cross-sectional data from the 2003-2006 National Health and Nutrition Examination Survey, we identified 566 adults with OA with available accelerometer data assessed using Actigraph AM-7164 and measurements necessary to determine metabolic syndrome by the Adult Treatment Panel III. Analysis of variance was conducted to examine the association between continuous variables in each activity level and metabolic syndrome components. Logistic models estimated the relationship of quartile of daily minutes of different physical activity levels to odds of metabolic syndrome adjusted for socioeconomic and health factors. Among persons with OA, most were women average age of 62.1 years and average disease duration of 12.9 years. Half of adults with OA had metabolic syndrome (51.0%; 95% confidence interval [95% CI] 44.2%-57.8%), and only 9.6% engaged in the recommended 150 minutes per week of moderate/vigorous physical activity. Total sedentary time was associated with higher rates of metabolic syndrome and its components, while light and objectively measured moderate/vigorous physical activity was inversely associated with metabolic syndrome and its components. Higher levels of light activity were associated with lower prevalence of metabolic syndrome (quartile 4 versus quartile 1: adjusted odds ratio 0.45, 95% CI 0.24-0.84, P for linear trend physical activity, especially in light intensity, is more likely to be associated with decreasing prevalence of metabolic syndrome among persons with OA. © 2015, American College of Rheumatology.

  2. Diet composition and activity level of at risk and metabolically healthy obese American adults.

    Science.gov (United States)

    Hankinson, Arlene L; Daviglus, Martha L; Van Horn, Linda; Chan, Queenie; Brown, Ian; Holmes, Elaine; Elliott, Paul; Stamler, Jeremiah

    2013-03-01

    Obesity often clusters with other major cardiovascular disease risk factors, yet a subset of the obese appears to be protected from these risks. Two obesity phenotypes are described, (i) "metabolically healthy" obese, broadly defined as body mass index (BMI) ≥ 30 kg/m(2) and favorable levels of blood pressure, lipids, and glucose; and (ii) "at risk" obese, BMI ≥ 30 with unfavorable levels of these risk factors. More than 30% of obese American adults are metabolically healthy. Diet and activity determinants of obesity phenotypes are unclear. We hypothesized that metabolically healthy obese have more favorable behavioral factors, including less adverse diet composition and higher activity levels than at risk obese in the multi-ethnic group of 775 obese American adults ages 40-59 years from the International Population Study on Macro/Micronutrients and Blood Pressure (INTERMAP) cohort. In gender-stratified analyses, mean values for diet composition and activity behavior variables, adjusted for age, race, and education, were compared between metabolically healthy and at risk obese. Nearly one in five (149/775 or 19%) of obese American INTERMAP participants were classified as metabolically healthy obese. Diet composition and most activity behaviors were similar between obesity phenotypes, although metabolically healthy obese women reported higher sleep duration than at risk obese women. These results do not support hypotheses that diet composition and/or physical activity account for the absence of cardiometabolic abnormalities in metabolically healthy obese. Copyright © 2012 The Obesity Society.

  3. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effects of total solar eclipse on the behavioural and metabolic activities of tropical intertidal animals

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.; Ansari, Z.A.; Verlecar, X.N.; Harkantra, S.N.

    To study the effects of total solar eclipse of 16th Feb. 1980, on the behaviour and metabolic activities of intertidal invertebrates - nematodes, gastropods and bivalves - having different habitat preference a set of relevant observations, covering...

  5. A specific metabolic pattern related to the hallucinatory activity in schizophrenia

    International Nuclear Information System (INIS)

    Huret, J.D.; Martinot, J.L.; Lesur, A.; Mazoyer, B.; Pappata, S.; Syrota, A.; Baron, J.C.; Lemperiere, T.

    1988-01-01

    A clinical and PEI study using 18 F - fluorodesoxyglucose for measuring local cerebral glucose metabolism with the aim of showing a specific pattern related to the hallucinatory activity, is presented in schizophrenic patients all experiencing hallucinations or pseudo-halluccinations

  6. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children : The ABCD Study

    NARCIS (Netherlands)

    Vrijkotte, Tanja G M; van den Born, Bert-Jan H; Hoekstra, Christine M C A; Gademan, Maaike G J; van Eijsden, Manon; de Rooij, Susanne R; Twickler, Marcel T B

    2015-01-01

    BACKGROUND: In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system

  7. Mutagenicity of silver nanoparticles in CHO cells dependent on particle surface functionalization and metabolic activation

    Science.gov (United States)

    Guigas, Claudia; Walz, Elke; Gräf, Volker; Heller, Knut J.; Greiner, Ralf

    2017-06-01

    The potential of engineered nanomaterials to induce genotoxic effects is an important aspect of hazard identification. In this study, cytotoxicity and mutagenicity as a function of metabolic activation of three silver nanoparticle (AgNP) preparations differing in surface coating were determined in Chinese hamster ovary (CHO) subclone K1 cells. Three silver nanoparticle preparations ( x 90,0 culture medium containing 10% fetal calf serum (FCS) than in medium without FCS. The HPRT test without metabolic activation system S9 revealed that compared to the other AgNP formulations, citrate-coated Ag showed a lower genotoxic effect. However, addition of S9 increased the mutation frequency of all AgNPs and especially influenced the genotoxicity of Citrate-Ag. The results showed that exogenous metabolic activation of nanosilver is crucial even if interactions of the metabolic activation system, nanosilver, and cells are not really understood up to now.

  8. Effectiveness of physical activity intervention among government employees with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Chee Huei Phing

    2017-12-01

    Conclusion: The findings of this study suggest that physical activity intervention via aerobics classes is an effective strategy for improving step counts and reducing the prevalence of metabolic syndrome.

  9. Metabolic activity of boar semen stored in different extenders supplemented with ostrich egg yolk lipoproteins

    OpenAIRE

    Dziekońska Anna; Kinder Marek; Fraser Leyland; Strzeżek Jerzy; Kordan Władysław

    2017-01-01

    Introduction: The aim of this study was to evaluate the effect of lipoprotein fraction isolated from ostrich egg yolk (LPFo) on the metabolic activity of boar spermatozoa following liquid semen storage in different extenders and temperatures.

  10. Metabolic activity of boar semen stored in different extenders supplemented with ostrich egg yolk lipoproteins

    Directory of Open Access Journals (Sweden)

    Dziekońska Anna

    2017-03-01

    Full Text Available Introduction: The aim of this study was to evaluate the effect of lipoprotein fraction isolated from ostrich egg yolk (LPFo on the metabolic activity of boar spermatozoa following liquid semen storage in different extenders and temperatures.

  11. In vivo metabolic activity of hamster suprachiasmatic nuclei: use of anesthesia

    International Nuclear Information System (INIS)

    Schwartz, W.J.

    1987-01-01

    In vivo glucose utilization was measured in the suprachiasmatic nuclei (SCN) of Golden hamsters using the 14 C-labeled deoxyglucose technique. A circadian rhythm of SCN metabolic activity could be measured in this species, but only during pentobarbital sodium anesthesia when the surrounding background activity of adjacent hypothalamus was suppressed. Both the SCN's metabolic oscillation and its time-keeping ability are resistant to general anesthesia

  12. Effectiveness of physical activity intervention among government employees with metabolic syndrome

    OpenAIRE

    Chee Huei Phing; Hazizi Abu Saad; M.Y. Barakatun Nisak; M.T. Mohd Nasir

    2017-01-01

    Background/Objective: Our study aimed to assess the effects of physical activity interventions via standing banners (point-of-decision prompt) and aerobics classes to promote physical activity among individuals with metabolic syndrome. Methods: We conducted a cluster randomized controlled intervention trial (16-week intervention and 8-week follow-up). Malaysian government employees in Putrajaya, Malaysia, with metabolic syndrome were randomly assigned by cluster to a point-of-decision prom...

  13. Activity of carbohydrate metabolism enzymes of bone marrow cells of rats affected by radiation

    International Nuclear Information System (INIS)

    Sukhomlinov, B.F.; Grinyuk, Yu.S.; Sibirnaya, N.A.; Starikovich, L.S.; Khmil', M.V.

    1990-01-01

    The influence of ionizing radiation (154.8 mC/kg on activity of some carbohydrate metabolism dehydrogenases in cells of the whole and fractionated rat bone marrow has been investigated. Different glucose metabolism units differently responded to radiation, the highest radiation response being exhibited by pentosophosphate cycle processes. The pattern of changes in the enzyme activity of different myelocaryocyte populations was shown to depend directly on the functional specilization of cells and the energy exchange types predominated in them

  14. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Nieves Baenas

    2016-02-01

    Full Text Available We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo, a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus.

  15. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    Science.gov (United States)

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A.; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E.

    2016-01-01

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. PMID:26901196

  16. Prevalence of metabolic syndrome and its relationship with physical activity in suburban Beijing, China.

    Science.gov (United States)

    Zhang, Wei-Hong; Xue, Peng; Yao, Meng-Ying; Chang, Hai-Min; Wu, Yan; Zhang, Lei

    2013-01-01

    The present study aimed to estimate the up-to-date prevalence of metabolic syndrome and its relationship with physical activity among suburban adults in Beijing, China. A cross-sectional survey in a representative sample of 19,003 suburban adults aged 18-76 years was carried out in 2007-2008. Data was collected via questionnaires and blood pressure, anthropometric, and laboratory measurements. Of the residents aged 18-76 years in suburban Beijing, 25.9% (27.3% in men and 25.1% in women), 21.3% (19.4% in men and 22.9% in women), and 25.3% (24.2% in men and 26.1% in women) had 1 component, 2 components, and 3 or more components of metabolic syndrome, respectively. The age-standardized prevalence of metabolic syndrome and its components, including abdominal obesity, elevated triglycerides, reduced high-density lipoprotein cholesterol, elevated blood pressure, and elevated fasting plasma glucose, decreased across categories with increasing physical activity. After adjusting for age, sex, education level, smoking, and alcohol consumption, residents were more likely to have metabolic syndrome across categories with decreasing physical activity; a similar relationship also applied to components of metabolic syndrome. A high prevalence of metabolic syndrome and its components is commonly present in suburban Beijing. Increasing physical activity can reduce the relative risk of metabolic syndrome and it components.

  17. In Vitro Effects of Sports and Energy Drinks on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    Science.gov (United States)

    Vinson, LaQuia A; Goodlett, Amy K; Huang, Ruijie; Eckert, George J; Gregory, Richard L

    2017-09-15

    Sports and energy drinks are being increasingly consumed and contain large amounts of sugars, which are known to increase Streptococcus mutans biofilm formation and metabolic activity. The purpose of this in vitro study was to investigate the effects of sports and energy drinks on S. mutans biofilm formation and metabolic activity. S. mutans UA159 was cultured with and without a dilution (1:3 ratio) of a variety of sports and energy drinks in bacterial media for 24 hours. The biofilm was washed, fixed, and stained. Biofilm growth was evaluated by reading absorbance of the crystal violet. Biofilm metabolic activity was measured by the biofilm-reducing XTT to a water-soluble orange compound. Gatorade Protein Recovery Shake and Starbucks Doubleshot Espresso Energy were found to significantly increase biofilm (30-fold and 22-fold, respectively) and metabolic activity (2-fold and 3-fold, respectively). However, most of the remaining drinks significantly inhibited biofilm growth and metabolic activity. Several sports and energy drinks, with sugars or sugar substitutes as their main ingredients inhibited S. mutans biofilm formation. Among the drinks evaluated, Gatorade Protein Recovery Chocolate Shake and Starbucks Doubleshot Energy appear to have cariogenic potential since they increased the biofilm formation and metabolic activity of S. mutans.

  18. Metabolic activity is necessary for activation of T suppressor cells by B cells

    International Nuclear Information System (INIS)

    Elkins, K.L.; Stashak, P.W.; Baker, P.J.

    1990-01-01

    Ag-primed B cells must express cell-surface IgM, but not IgD or Ia Ag, and must remain metabolically active, in order to activate suppressor T cells (Ts) specific for type III pneumococcal polysaccharide. Ag-primed B cells that were gamma-irradiated with 1000r, or less, retained the ability to activate Ts; however, Ag-primed B cells exposed to UV light were not able to do so. gamma-Irradiated and UV-treated Ag-primed B cells both expressed comparable levels of cell-surface IgM, and both localized to the spleen after in vivo transfer; neither could proliferate in vitro in response to mitogens. By contrast, gamma-irradiated primed B cells were still able to synthesize proteins, whereas UV-treated primed B cells could not. These findings suggest that in order for Ag-primed B cells to activate Ts, they must (a) express cell-associated IgM (sIgM) antibody bearing the idiotypic determinants of antibody specific for type III pneumococcal polysaccharide, and (b) be able to synthesize protein for either the continued expression of sIgM after cell transfer, or for the elaboration of another protein molecule that is also required for the activation of Ts; this molecule does not appear to be Ia Ag

  19. Association of physical activity with metabolic syndrome in a predominantly rural Nigerian population

    DEFF Research Database (Denmark)

    Oguoma, Victor M.; Nwose, Ezekiel U.; Nwose, Ezekiel U.

    2016-01-01

    Aims Physical activity is an essential determinant of health. However, there is dearth of evidence regarding prevalence of physical activity in developing countries, especially its association with metabolic syndrome risk factors. This study assessed the association of physical activity with meta...

  20. Metabolic and environmental aspects of fusion reactor activation products: niobium

    International Nuclear Information System (INIS)

    Easterly, C.E.; Shank, K.E.

    1977-11-01

    A summary of the metabolic and environmental aspects of niobium is presented. The toxicological symptoms from exposure to niobium are given, along with lethal concentration values for acute and chronic exposures. Existing human data are presented; animal uptake and retention data are analyzed for various routes of administration. Recommended metabolic values are also presented along with comments concerning their use and appropriateness. The natural distribution of niobium is given for freshwater, seawater, and the biosphere. Concentration factors and retention of 95 Nb in the environment are discussed with reference to: plant retention via leaf absorption; plant retention via root uptake; uptake in terrestrial animals from plants; uptake in freshwater organisms; uptake in marine organisms; and movement in soil. Conclusions are drawn regarding needs for future work in these areas. This review was undertaken because niobium is expected to be a key metal in the development of commercial fusion reactors. It is recognized that niobium will likely not be used in the first generation reactors as a structural material but will appear as an alloy in such materials as superconducting wire

  1. Metabolic and environmental aspects of fusion reactor activation products: niobium

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, C.E.; Shank, K.E.

    1977-11-01

    A summary of the metabolic and environmental aspects of niobium is presented. The toxicological symptoms from exposure to niobium are given, along with lethal concentration values for acute and chronic exposures. Existing human data are presented; animal uptake and retention data are analyzed for various routes of administration. Recommended metabolic values are also presented along with comments concerning their use and appropriateness. The natural distribution of niobium is given for freshwater, seawater, and the biosphere. Concentration factors and retention of /sup 95/Nb in the environment are discussed with reference to: plant retention via leaf absorption; plant retention via root uptake; uptake in terrestrial animals from plants; uptake in freshwater organisms; uptake in marine organisms; and movement in soil. Conclusions are drawn regarding needs for future work in these areas. This review was undertaken because niobium is expected to be a key metal in the development of commercial fusion reactors. It is recognized that niobium will likely not be used in the first generation reactors as a structural material but will appear as an alloy in such materials as superconducting wire.

  2. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes.

    Directory of Open Access Journals (Sweden)

    Beth S Zha

    Full Text Available HIV protease inhibitors (PI are core components of Highly Active Antiretroviral Therapy (HAART, the most effective treatment for HIV infection currently available. However, HIV PIs have now been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease and metabolic syndrome. Our previous studies have shown that HIV PIs activate endoplasmic reticulum (ER stress and disrupt lipid metabolism in hepatocytes and macrophages. Yet, little is known on how HIV PIs disrupt lipid metabolism in adipocytes, a major cell type involved in the pathogenesis of metabolic syndrome.Cultured and primary mouse adipocytes and human adipocytes were used to examine the effect of frequently used HIV PIs in the clinic, lopinavir/ritonavir, on adipocyte differentiation and further identify the underlying molecular mechanism of HIV PI-induced dysregulation of lipid metabolism in adipocytes. The results indicated that lopinavir alone or in combination with ritonavir, significantly activated the ER stress response, inhibited cell differentiation, and induced cell apoptosis in adipocytes. In addition, HIV PI-induced ER stress was closely linked to inhibition of autophagy activity. We also identified through the use of primary adipocytes of CHOP(-/- mice that CHOP, the major transcriptional factor of the ER stress signaling pathway, is involved in lopinavir/ritonavir-induced inhibition of cell differentiation in adipocytes. In addition, lopinavir/ritonavir-induced ER stress appears to be associated with inhibition of autophagy activity in adipocytes.Activation of ER stress and impairment of autophagy activity are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV patients.

  3. Nonlinear Dielectric Spectroscopy as an Indirect Probe of Metabolic Activity in Thylakoid Membrane

    Directory of Open Access Journals (Sweden)

    John H. Miller

    2011-01-01

    Full Text Available Nonlinear dielectric spectroscopy (NDS is a non-invasive probe of cellular metabolic activity with potential application in the development of whole-cell biosensors. However, the mechanism of NDS interaction with metabolic membrane proteins is poorly understood, partly due to the inherent complexity of single cell organisms. Here we use the light-activated electron transport chain of spinach thylakoid membrane as a model system to study how NDS interacts with metabolic activity. We find protein modification, as opposed to membrane pump activity, to be the dominant source of NDS signal change in this system. Potential mechanisms for such protein modifications include reactive oxygen species generation and light-activated phosphorylation.

  4. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate

    DEFF Research Database (Denmark)

    Green, C J; Bunprajun, T; Pedersen, B K

    2013-01-01

    in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle maintenance......  The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture...... and correlated positively to JNK phosphorylation. In conclusion, muscle satellite cells retain metabolic differences associated with physical activity. Physical activity partially protects myocytes from fatty acid-induced insulin resistance and inactivity is associated with dysregulation of metabolism...

  5. Effect of CAR activation on selected metabolic pathways in normal and hyperlipidemic mouse livers.

    Science.gov (United States)

    Rezen, Tadeja; Tamasi, Viola; Lövgren-Sandblom, Anita; Björkhem, Ingemar; Meyer, Urs A; Rozman, Damjana

    2009-08-19

    Detoxification in the liver involves activation of nuclear receptors, such as the constitutive androstane receptor (CAR), which regulate downstream genes of xenobiotic metabolism. Frequently, the metabolism of endobiotics is also modulated, resulting in potentially harmful effects. We therefore used 1,4-Bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) to study the effect of CAR activation on mouse hepatic transcriptome and lipid metabolome under conditions of diet-induced hyperlipidemia. Using gene expression profiling with a dedicated microarray, we show that xenobiotic metabolism, PPARalpha and adipocytokine signaling, and steroid synthesis are the pathways most affected by TCPOBOP in normal and hyperlipidemic mice. TCPOBOP-induced CAR activation prevented the increased hepatic and serum cholesterol caused by feeding mice a diet containing 1% cholesterol. We show that this is due to increased bile acid metabolism and up-regulated removal of LDL, even though TCPOBOP increased cholesterol synthesis under conditions of hyperlipidemia. Up-regulation of cholesterol synthesis was not accompanied by an increase in mature SREBP2 protein. As determined by studies in CAR -/- mice, up-regulation of cholesterol synthesis is however CAR-dependent; and no obvious CAR binding sites were detected in promoters of cholesterogenic genes. TCPOBOP also affected serum glucose and triglyceride levels and other metabolic processes in the liver, irrespective of the diet. Our data show that CAR activation modulates hepatic metabolism by lowering cholesterol and glucose levels, through effects on PPARalpha and adiponectin signaling pathways, and by compromising liver adaptations to hyperlipidemia.

  6. The influence of physical activity on components of metabolic ...

    African Journals Online (AJOL)

    African Journal for Physical Activity and Health Sciences ... Inactivity causes obesity which is related to insulin resistance, hypertension, diabetes mellitus, ... of physical activity (PA) on the MS components and vascular function in children and ...

  7. Blocking hexose entry into glycolysis activates alternative metabolic conversion of these sugars and upregulates pentose metabolism in Aspergillus nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Khosravi, Claire; Battaglia, Evy; Kun, Roland S.; Dalhuijsen, Sacha; Visser, Jaap; Aguilar-Pontes, Maria V.; Zhou, Miamiao; Heyman, Heino M.; Kim, Young-Mo; Baker, Scott E.; de Vries, Ronald P.

    2018-03-22

    Background: Plant biomass is the most abundant carbon source for many fungal species. In the biobased industry fungi are used to produce lignocellulolytic enzymes to degrade agricultural waste biomass. Here we evaluated if it would be possible to create an Aspergillus nidulans strain that releases but does not metabolize hexoses from plant biomass. For this purpose, metabolic mutants were generated that were impaired in glycolysis, by using hexokinase (hxkA) and glucokinase (glkA) negative strains. To prevent repression of enzyme production due to the hexose accumulation, strains were generated that combined these mutations with a deletion in creA, the repressor involved in regulating preferential use of different carbon catabolic pathways. Results: Phenotypic analysis revealed reduced growth for the hxkA1 glkA4 mutant on wheat bran. However, hexoses did not accumulate during growth of the mutants on wheat bran, suggesting that glucose metabolism is re-routed towards alternative carbon catabolic pathways. The creAΔ4 mutation in combination with preventing initial phosphorylation in glycolysis resulted in better growth than the hxkA/glkA mutant and an increased expression of pentose catabolic and pentose phosphate pathway genes. This indicates that the reduced ability to use hexoses as carbon sources created a shift towards the pentose fraction of wheat bran as a major carbon source to support growth. Conclusion: Blocking the direct entry of hexoses to glycolysis activates alternative metabolic conversion of these sugars in A. nidulans during growth on plant biomass, but also upregulates conversion of other sugars, such as pentoses.

  8. Metabolic Syndrome Remodels Electrical Activity of the Sinoatrial Node and Produces Arrhythmias in Rats

    Science.gov (United States)

    Albarado-Ibañez, Alondra; Avelino-Cruz, José Everardo; Velasco, Myrian; Torres-Jácome, Julián; Hiriart, Marcia

    2013-01-01

    In the last ten years, the incidences of metabolic syndrome and supraventricular arrhythmias have greatly increased. The metabolic syndrome is a cluster of alterations, which include obesity, hypertension, hypertriglyceridemia, glucose intolerance and insulin resistance, that increase the risk of developing, among others, atrial and nodal arrhythmias. The aim of this study is to demonstrate that metabolic syndrome induces electrical remodeling of the sinus node and produces arrhythmias. We induced metabolic syndrome in 2-month-old male Wistar rats by administering 20% sucrose in the drinking water. Eight weeks later, the rats were anesthetized and the electrocardiogram was recorded, revealing the presence of arrhythmias only in treated rats. Using conventional microelectrode and voltage clamp techniques, we analyzed the electrical activity of the sinoatrial node. We observed that in the sinoatrial node of “metabolic syndrome rats”, compared to controls, the spontaneous firing of all cells decreased, while the slope of the diastolic depolarization increased only in latent pacemaker cells. Accordingly, the pacemaker currents If and Ist increased. Furthermore, histological analysis showed a large amount of fat surrounding nodal cardiomyocytes and a rise in the sympathetic innervation. Finally, Poincaré plot denoted irregularity in the R-R and P-P ECG intervals, in agreement with the variability of nodal firing potential recorded in metabolic syndrome rats. We conclude that metabolic syndrome produces a dysfunction SA node by disrupting normal architecture and the electrical activity, which could explain the onset of arrhythmias in rats. PMID:24250786

  9. Total physical activity volume, physical activity intensity, and metabolic syndrome: 1999-2004 National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Churilla, James R; Fitzhugh, Eugene C

    2012-02-01

    This study examined the association of total physical activity volume (TPAV) and physical activity (PA) from three domains [leisure-time physical activity (LTPA), domestic, transportation] with metabolic syndrome. We also investigated the relationship between LTPA intensity and metabolic syndrome risk. Sample included adults who participated in the 1999-2004 National Health and Nutrition Examination Survey. Physical activity measures were created for TPAV, LTPA, domestic PA, and transportational PA. For each, a six-level measure based upon no PA (level 1) and quintiles (levels 2-6) of metabolic equivalents (MET)·min·wk(-1) was created. A three-level variable associated with the current Department of Health and Human Services (DHHS) PA recommendation was also created. SAS and SUDAAN were used for the statistical analysis. Adults reporting the greatest volume of TPAV and LTPA were found to be 36% [odds ratio (OR) 0.64; 95% confidence interval (CI) 0.49-0.83] and 42% (OR 0.58; 95% CI 0.43-0.77), respectively, less likely to have metabolic syndrome. Domestic and transportational PA provided no specific level of protection from metabolic syndrome. Those reporting a TPAV that met the DHHS PA recommendation were found to be 33% (OR 0.67; 95%; CI 0.55-0.83) less likely to have metabolic syndrome compared to their sedentary counterparts. Adults reporting engaging in only vigorous-intensity LTPA were found to be 37% (OR 0.63; 95 CI 0.42-0.96) to 56% (OR 0.44; 95% CI 0.29-0.67) less likely to have metabolic syndrome. Volume, intensity, and domain of PA may all play important roles in reducing the prevalence and risk of metabolic syndrome.

  10. A Metabolic Biofuel Cell: Conversion of Human Leukocyte Metabolic Activity to Electrical Currents

    Directory of Open Access Journals (Sweden)

    Cui X Tracy

    2011-05-01

    Full Text Available Abstract An investigation of the electrochemical activity of human white blood cells (WBC for biofuel cell (BFC applications is described. WBCs isolated from whole human blood were suspended in PBS and introduced into the anode compartment of a proton exchange membrane (PEM fuel cell. The cathode compartment contained a 50 mM potassium ferricyanide solution. Average current densities between 0.9 and 1.6 μA cm-2 and open circuit potentials (Voc between 83 and 102 mV were obtained, which were both higher than control values. Cyclic voltammetry was used to investigate the electrochemical activity of the activated WBCs in an attempt to elucidate the mechanism of electron transfer between the cells and electrode. Voltammograms were obtained for the WBCs, including peripheral blood mononuclear cells (PBMCs - a lymphocyte-monocyte mixture isolated on a Ficoll gradient, a B lymphoblastoid cell line (BLCL, and two leukemia cell lines, namely K562 and Jurkat. An oxidation peak at about 363 mV vs. SCE for the PMA (phorbol ester activated primary cells, with a notable absence of a reduction peak was observed. Oxidation peaks were not observed for the BLCL, K562 or Jurkat cell lines. HPLC confirmed the release of serotonin (5-HT from the PMA activated primary cells. It is believed that serotonin, among other biochemical species released by the activated cells, contributes to the observed BFC currents.

  11. Metaproteomics: extracting and mining proteome information to characterize metabolic activities in microbial communities.

    Science.gov (United States)

    Abraham, Paul E; Giannone, Richard J; Xiong, Weili; Hettich, Robert L

    2014-06-17

    Contemporary microbial ecology studies usually employ one or more "omics" approaches to investigate the structure and function of microbial communities. Among these, metaproteomics aims to characterize the metabolic activities of the microbial membership, providing a direct link between the genetic potential and functional metabolism. The successful deployment of metaproteomics research depends on the integration of high-quality experimental and bioinformatic techniques for uncovering the metabolic activities of a microbial community in a way that is complementary to other "meta-omic" approaches. The essential, quality-defining informatics steps in metaproteomics investigations are: (1) construction of the metagenome, (2) functional annotation of predicted protein-coding genes, (3) protein database searching, (4) protein inference, and (5) extraction of metabolic information. In this article, we provide an overview of current bioinformatic approaches and software implementations in metaproteome studies in order to highlight the key considerations needed for successful implementation of this powerful community-biology tool. Copyright © 2014 John Wiley & Sons, Inc.

  12. Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth

    OpenAIRE

    Novodvorska, Michaela; Stratford, Malcolm; Blythe, Martin J.; Wilson, Raymond; Beniston, Richard G.; Archer, David B.

    2016-01-01

    The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germ...

  13. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children: The ABCD Study.

    Directory of Open Access Journals (Sweden)

    Tanja G M Vrijkotte

    Full Text Available In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system activation and metabolic profile and its components in children at age of 5-6 years.Cross-sectional data from an apparently healthy population (within the ABCD study were collected at age 5-6 years in 1540 children. Heart rate (HR, respiratory sinus arrhythmia (RSA; parasympathetic activity and pre-ejection period (PEP; sympathetic activity were assessed during rest. Metabolic components were waist-height ratio (WHtR, systolic blood pressure (SBP, fasting triglycerides, glucose and HDL-cholesterol. Individual components, as well as a cumulative metabolic score, were analyzed.In analysis adjusted for child's physical activity, sleep, anxiety score and other potential confounders, increased HR and decreased RSA were associated with higher WHtR (P< 0.01, higher SBP (p<0.001 and a higher cumulative metabolic score (HR: p < 0.001; RSA: p < 0.01. Lower PEP was only associated with higher SBP (p <0.05. Of all children, 5.6% had 3 or more (out of 5 adverse metabolic components; only higher HR was associated with this risk (per 10 bpm increase: OR = 1.56; p < 0.001.This study shows that decreased parasympathetic activity is associated with central adiposity and higher SBP, indicative of increased metabolic risk, already at age 5-6 years.

  14. METABOLIC SYNDROME AND PHYSICAL ACTIVITY IN CHILEAN IMMIGRANTS LIVING IN RIO GALLEGOS, SANTA CRUZ, ARGENTINA.

    Directory of Open Access Journals (Sweden)

    Inger Sally Padilla

    2012-12-01

    Full Text Available To study the frequency of metabolic syndrome, its components and its relationship with physical activity in Chilean immigrants living in Río Gallegos, Santa Cruz, Argentina.314 Chilean immigrants (165 women and 149 men were interviewed in Rio Gallegos in 2010, with healthy status in medical records (2000. Anthropometry, blood pressure control, blood test to measure glucose, triglycerides and HDL cholesterol were determined. Metabolic syndrome was established by criteria of the NCEPATPIII.The metabolic syndrome had an overall prevalence of 28.9% (95%CI: 23.9 to 34. Metabolic syndrome prevalence was larger in women (32.1% than in men (25.5%. The prevalence of its components were: abdominal obesity 56%, low levels of HDL cholesterol 48.3%, high levels of triglycerides 68.1%, hypertension 46.1% and high levels of glucose 72.5%. Inadequate physical activity was 66.2% (95%CI: 60.1 to 71.5. Immigrants had more likelihood of metabolic syndrome living in Río Gallegos for 15 years or more(β: 5.74,95%CI:2,81-11,73, p=0.000 and with inadequate physical activity (β: 3.36, 95%CI: 1.57to7.21,p=0.002. The prevalence of metabolic syndrome in Chilean immigrants living in Río Gallegos is higher than that reported in Argentina and Chile

  15. Effect of Carbon Monoxide on Active Oxygen Metabolism of Postharvest Jujube

    OpenAIRE

    Shaoying Zhang; Qin Li; Yulan Mao

    2014-01-01

    To prolong the shelf life postharvest jujube, the effect of carbon monoxide (CO) on senescence of postharvest jujube in relation to active oxygen metabolism was investigated. Jujubes were fumigated with CO gas at 5, 10, 20 or 40μmol/L for 1 h, and then stored for 30 days at room temperature. Changes in membrane permeability, malonaldehyde (MDA), H2O2, O2•− content, and activities of active oxygen metabolism associated enzymes including superoxide dismutase (SOD), catalase (CAT) and peroxidase...

  16. Differential CT Attenuation of Metabolically Active and Inactive Adipose Tissues — Preliminary Findings

    Science.gov (United States)

    Hu, Houchun H.; Chung, Sandra A.; Nayak, Krishna S.; Jackson, Hollie A.; Gilsanz, Vicente

    2010-01-01

    This study investigates differences in CT Hounsfield units (HUs) between metabolically active (brown fat) and inactive adipose tissues (white fat) due to variations in their densities. PET/CT data from 101 pediatric and adolescent patients were analyzed. Regions of metabolically active and inactive adipose tissues were identified and standard uptake values (SUVs) and HUs were measured. HUs of active brown fat were more positive (p<0.001) than inactive fat (−62.4±5.3 versus −86.7±7.0) and the difference was observed in both males and females. PMID:21245691

  17. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR

    Directory of Open Access Journals (Sweden)

    Kavita Jadhav

    2018-03-01

    Full Text Available Objectives: Activation of the bile acid (BA receptors farnesoid X receptor (FXR or G protein-coupled bile acid receptor (GPBAR1; TGR5 improves metabolic homeostasis. In this study, we aim to determine the impact of pharmacological activation of bile acid receptors by INT-767 on reversal of diet-induced metabolic disorders, and the relative contribution of FXR vs. TGR5 to INT-767's effects on metabolic parameters. Methods: Wild-type (WT, Tgr5−/−, Fxr−/−, Apoe−/− and Shp−/− mice were used to investigate whether and how BA receptor activation by INT-767, a semisynthetic agonist for both FXR and TGR5, could reverse diet-induced metabolic disorders. Results: INT-767 reversed HFD-induced obesity dependent on activation of both TGR5 and FXR and also reversed the development of atherosclerosis and non-alcoholic fatty liver disease (NAFLD. Mechanistically, INT-767 improved hypercholesterolemia by activation of FXR and induced thermogenic genes via activation of TGR5 and/or FXR. Furthermore, INT-767 inhibited several lipogenic genes and de novo lipogenesis in the liver via activation of FXR. We identified peroxisome proliferation-activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (CEBPα as novel FXR-regulated genes. FXR inhibited PPARγ expression by inducing small heterodimer partner (SHP whereas the inhibition of CEBPα by FXR was SHP-independent. Conclusions: BA receptor activation can reverse obesity, NAFLD, and atherosclerosis by specific activation of FXR or TGR5. Our data suggest that, compared to activation of FXR or TGR5 only, dual activation of both FXR and TGR5 is a more attractive strategy for treatment of common metabolic disorders. Keywords: Farnesoid X receptor, TGR5, Atherosclerosis, Obesity, NAFLD

  18. Metabolic in Vivo Labeling Highlights Differences of Metabolically Active Microbes from the Mucosal Gastrointestinal Microbiome between High-Fat and Normal Chow Diet

    NARCIS (Netherlands)

    Oberbach, Andreas; Haange, Sven Bastiaan; Schlichting, Nadine; Heinrich, Marco; Lehmann, Stefanie; Till, Holger; Hugenholtz, Floor; Kullnick, Yvonne; Smidt, Hauke; Frank, Karin; Seifert, Jana; Jehmlich, Nico; Bergen, Von Martin

    2017-01-01

    The gastrointestinal microbiota in the gut interacts metabolically and immunologically with the host tissue in the contact zone of the mucus layer. For understanding the details of these interactions and especially their dynamics it is crucial to identify the metabolically active subset of the

  19. Relationship between metabolism and ovarian activity in dairy cows with different dry period lengths

    NARCIS (Netherlands)

    Chen, J.C.; Soede, N.M.; Dorland, van H.A.; Remmelink, G.J.; Bruckmaier, R.M.; Kemp, B.; Knegsel, van A.T.M.

    2015-01-01

    The objectives of the present study were to evaluate the effects of dry period length on ovarian activity in cows fed a lipogenic or a glucogenic diet within 100 days in milk (DIM) and to determine relationships between ovarian activity and energy balance and metabolic status in early lactation.

  20. Effectiveness of physical activity intervention among government employees with metabolic syndrome.

    Science.gov (United States)

    Huei Phing, Chee; Abu Saad, Hazizi; Barakatun Nisak, M Y; Mohd Nasir, M T

    2017-12-01

    Our study aimed to assess the effects of physical activity interventions via standing banners (point-of-decision prompt) and aerobics classes to promote physical activity among individuals with metabolic syndrome. We conducted a cluster randomized controlled intervention trial (16-week intervention and 8-week follow-up). Malaysian government employees in Putrajaya, Malaysia, with metabolic syndrome were randomly assigned by cluster to a point-of-decision prompt group (n = 44), an aerobics group (n = 42) or a control group (n = 103) based on sample size calculation formula. Step counts were evaluated by Lifecorder e-STEP accelerometers for all participants. Metabolic syndrome was defined according to the 'harmonizing' definition, in which individuals who have at least three of the five metabolic risk factors (waist circumference, high-density lipoprotein cholesterol, triglycerides, fasting glucose levels, systolic and diastolic blood pressure) will be classified as having metabolic syndrome. A total of 80% of the enrolled government employees with metabolic syndrome completed the programme. Data were analyzed using SPSS for Windows (version 20, SPSS, Chicago, IL). There were significantly higher step counts on average in the aerobics group compared to the control group over assessments. Assessments at baseline, post-intervention and follow-up showed a significant difference in step counts between the intervention and control groups. The greatest reductions in the proportions of individuals with metabolic syndrome were observed in the aerobics group with a reduction of 79.4% in the post-intervention assessment compared to the assessment at baseline. The findings of this study suggest that physical activity intervention via aerobics classes is an effective strategy for improving step counts and reducing the prevalence of metabolic syndrome.

  1. Association of physical activity with metabolic syndrome in a predominantly rural Nigerian population.

    Science.gov (United States)

    Oguoma, Victor M; Nwose, Ezekiel U; Skinner, Timothy C; Richards, Ross S; Digban, Kester A; Onyia, Innocent C

    2016-01-01

    Physical activity is an essential determinant of health. However, there is dearth of evidence regarding prevalence of physical activity in developing countries, especially its association with metabolic syndrome risk factors. This study assessed the association of physical activity with metabolic syndrome in a Nigerian population. A cross-sectional study was carried out on apparently healthy persons who are ≥ 18 years old. The World Health Organisation (WHO) Global Physical Activity Questionnaire (GPAQ) was used to collect five domains of physical activity. Participants were classified as physically active or inactive based on meeting the cut-off value of 600 MET-min/week. Metabolic syndrome was diagnosed using the Joint Scientific Statement on Harmonizing the Metabolic Syndrome criteria. Overall prevalence of physically active individuals was 50.1% (CI: 45.6-54.7%). Physical inactivity is significantly more in females (p40 years old (pmetabolic syndrome appeared more likely to be physically active (OR=1.48, CI: 0.71-3.09); physical inactivity showed to exist more among participants who were living in urban area (OR=6.61, CI: 3.40-12.85, pmetabolic syndrome risk factors. The high prevalence of physical inactivity in this study population is a clear indication that concerted efforts to improve physical activity may be required. However, it seems that metabolic syndrome is not improved by being physically active. This suggests that interventions directed at physical activity alone may not produce optimal efficacy in this study population. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  2. Pedometer assessed physical activity of people with metabolic syndrome in Poland.

    Directory of Open Access Journals (Sweden)

    Anna Owlasiuk

    2014-06-01

    Full Text Available introduction. Metabolic syndrome is a contemporary disease of civilization, an effect of lack of healthy behaviour, a consequence of lifestyle devoid of physical activity, eating poor quality food rich in calories and excessive stress. Apart from a proper diet, physical activity remains an important part of metabolic syndrome management. objective. The main objective of the work was to evaluate the physical activity of an adult population of patients with metabolic syndrome. materials and method. Adults aged 35–70 fulfilling the criteria of metabolic syndrome according to International Diabetes Federation (IDF were included. New Lifestyles NL-2000 pedometers were used to assess locomotive physical activity during an entire week. results. In the group of 100 subjects, as many as 61 people (61% represented low or sedentary activity, while nearly one fourth of the respondents – 23 (32% represented the negligible activity type. Average weekly physical activity of those in the study was 6,743 steps/day (in 100 individuals and ranged from 1,781–15,169. A great diversity was found in the study group, since the highest number of steps per day was 23,347 and the lowest – 409. No significant differences in the number of steps on weekdays and at weekends were observed (mean: 6,676/day and 6,913/day, espectively. A statistically significant negative correlation (r = -0.29 was observed between age and physical activity, between the average daily number of steps in the week and Waist Hip Ratio (WHR (r = 0.201, as well as between the average daily number of steps in the week and Body Mass Index (BMI (r = 0.226. conclusions. The majority of people with metabolic syndrome represent a low or sedentary activity type and decrease of physical activity corresponds to increasing age, BMI and WHR. No significant differences in physical activity are observed between working days and free days (weekends.

  3. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage.

    Science.gov (United States)

    Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer Mi; Doh, Kyung-Oh; Hui, Chi-Chung; Sung, Hoon-Ki

    2017-11-01

    Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders.

  4. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage

    Science.gov (United States)

    Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer MI; Doh, Kyung-Oh; Hui, Chi-chung; Sung, Hoon-Ki

    2017-01-01

    Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders. PMID:29039412

  5. Physical Activity Enhances Metabolic Fitness Independently of Cardiorespiratory Fitness in Marathon Runners

    Directory of Open Access Journals (Sweden)

    M. J. Laye

    2015-01-01

    Full Text Available High levels of cardiovascular fitness (CRF and physical activity (PA are associated with decreased mortality and risk to develop metabolic diseases. The independent contributions of CRF and PA to metabolic disease risk factors are unknown. We tested the hypothesis that runners who run consistently >50 km/wk and/or >2 marathons/yr for the last 5 years have superior metabolic fitness compared to matched sedentary subjects (CRF, age, gender, and BMI. Case-control recruitment of 31 pairs of runner-sedentary subjects identified 10 matched pairs with similar VO2max (mL/min/kg (similar-VO2max. The similar-VO2max group was compared with a group of age, gender, and BMI matched pairs who had the largest difference in VO2max (different-VO2max. Primary outcomes that defined metabolic fitness including insulin response to an oral glucose tolerance test, fasting lipids, and fasting insulin were superior in runners versus sedentary controls despite similar VO2max. Furthermore, performance (velocity at VO2max, running economy, improved exercise metabolism (lactate threshold, and skeletal muscle levels of mitochondrial proteins were superior in runners versus sedentary controls with similar VO2max. In conclusion subjects with a high amount of PA have more positive metabolic health parameters independent of CRF. PA is thus a good marker against metabolic diseases.

  6. Characterization of Carbohydrate Active Enzymes Involved in Arabinogalactan Protein Metabolism

    DEFF Research Database (Denmark)

    Knoch, Eva

    and tissues, their functions and synthesis are still poorly understood. The aim of the research presented in the thesis was to characterize carbohydrate active enzymes involved in AGP biosynthesis and modification to gain insights into the biosynthesis of the glycoproteins in plants. Candidate...... glycosyltransferases and glycoside hydrolases were selected based on co-expression profiles from a transcriptomics analysis. Reverse genetics approach on a novel glucuronosyltransferase involved in AGP biosynthesis has revealed that the enzyme activity is required for normal cell elongation in etiolated seedlings....... The enzymatic activity of a hydrolase from GH family 17 was investigated, without successful determination of the activity. Members of hydrolase family 43 appeared to be localized in the Golgi-apparatus, which is also the compartment for glycan biosynthesis. The localization of these glycoside hydrolases...

  7. Metabolic activity and mRNA levels of human cardiac CYP450s involved in drug metabolism.

    Directory of Open Access Journals (Sweden)

    Veronique Michaud

    2010-12-01

    Full Text Available Tissue-specific expression of CYP450s can regulate the intracellular concentration of drugs and explain inter-subject variability in drug action. The overall objective of our study was to determine in a large cohort of samples, mRNA levels and CYP450 activity expressed in the human heart.CYP450 mRNA levels were determined by RTPCR in left ventricular samples (n = 68 of explanted hearts from patients with end-stage heart failure. Samples were obtained from ischemic and non-ischemic hearts. In some instances (n = 7, samples were available from both the left and right ventricles. A technique for the preparation of microsomes from human heart tissue was developed and CYP450-dependent activity was determined using verapamil enantiomers as probe-drug substrates.Our results show that CYP2J2 mRNA was the most abundant isoform in all human heart left ventricular samples tested. Other CYP450 mRNAs of importance were CYP4A11, CYP2E1, CYP1A1 and CYP2C8 mRNAs while CYP2B6 and CYP2C9 mRNAs were present at low levels in only some of the hearts analyzed. CYP450 mRNAs did not differ between ischemic and non-ischemic hearts and appeared to be present at similar levels in the left and right ventricles. Incubation of verapamil with heart microsomes led to the formation of nine CYP450-dependent metabolites: a major finding was the observation that stereoselectivity was reversed compared to human liver microsomes, in which the R-enantiomer is metabolized to a greater extent.This study determined cardiac mRNA levels of various CYP450 isozymes involved in drug metabolism and demonstrated the prevalent expression of CYP2J2 mRNA. It revealed that cardiomyocytes can efficiently metabolize drugs and that cardiac CYP450s are highly relevant with regard to clearance of drugs in the heart. Our results support the claim that drug metabolism in the vicinity of a drug effector site can modulate drug effects.

  8. Inactivation of adipose angiotensinogen reduces adipose tissue macrophages and increases metabolic activity.

    Science.gov (United States)

    LeMieux, Monique J; Ramalingam, Latha; Mynatt, Randall L; Kalupahana, Nishan S; Kim, Jung Han; Moustaïd-Moussa, Naïma

    2016-02-01

    The adipose renin-angiotensin system (RAS) has been linked to obesity-induced inflammation, though mechanisms are not completely understood. In this study, adipose-specific angiotensinogen knockout mice (Agt-KO) were generated to determine whether Agt inactivation reduces inflammation and alters the metabolic profile of the Agt-KO mice compared to wild-type (WT) littermates. Adipose tissue-specific Agt-KO mice were created using the Cre-LoxP system with both Agt-KO and WT littermates fed either a low-fat or high-fat diet to assess metabolic changes. White adipose tissue was used for gene/protein expression analyses and WAT stromal vascular cells for metabolic extracellular flux assays. No significant differences were observed in body weight or fat mass between both genotypes on either diet. However, improved glucose clearance was observed in Agt-KO compared to WT littermates, consistent with higher expression of genes involved in insulin signaling, glucose transport, and fatty acid metabolism. Furthermore, Agt inactivation reduced total macrophage infiltration in Agt-KO mice fed both diets. Lastly, stroma vascular cells from Agt-KO mice revealed higher metabolic activity compared to WT mice. These findings indicate that adipose-specific Agt inactivation leads to reduced adipose inflammation and increased glucose tolerance mediated in part via increased metabolic activity of adipose cells. © 2015 The Obesity Society.

  9. Physical activity enhances metabolic fitness independently of cardiorespiratory fitness in marathon runners

    DEFF Research Database (Denmark)

    Laye, M J; Nielsen, M B; Hansen, L S

    2015-01-01

    High levels of cardiovascular fitness (CRF) and physical activity (PA) are associated with decreased mortality and risk to develop metabolic diseases. The independent contributions of CRF and PA to metabolic disease risk factors are unknown. We tested the hypothesis that runners who run consisten......High levels of cardiovascular fitness (CRF) and physical activity (PA) are associated with decreased mortality and risk to develop metabolic diseases. The independent contributions of CRF and PA to metabolic disease risk factors are unknown. We tested the hypothesis that runners who run...... consistently >50 km/wk and/or >2 marathons/yr for the last 5 years have superior metabolic fitness compared to matched sedentary subjects (CRF, age, gender, and BMI). Case-control recruitment of 31 pairs of runner-sedentary subjects identified 10 matched pairs with similar VO2max (mL/min/kg) (similar-VO2max......). The similar-VO2max group was compared with a group of age, gender, and BMI matched pairs who had the largest difference in VO2max (different-VO2max). Primary outcomes that defined metabolic fitness including insulin response to an oral glucose tolerance test, fasting lipids, and fasting insulin were superior...

  10. Physical Activity and Sedentary Time Associations with Metabolic Health Across Weight Statuses in Children and Adolescents

    DEFF Research Database (Denmark)

    Kuzik, Nicholas; Carson, Valerie; Andersen, Lars Bo

    2017-01-01

    classification compared with metabolically healthy (MH) classification for the NW group. More MVPA was associated with lower odds of MU classification than MH classification for NW and overweight groups. For multinomial logistic regressions, more MVPA was associated with lower odds of MH-obesity classification......, as well as MU-NW, -overweight, and -obesity classifications, compared with the MH-NW group. Furthermore, more sedentary time was associated with higher odds of MU-NW classification compared with the MH-NW group. CONCLUSIONS: More MVPA was beneficial for metabolic health and weight status, whereas lower......OBJECTIVE: The aim of this study was to examine the prevalence of metabolic health across weight statuses and the associations of physical activity and sedentary time within and across metabolic health-weight status groups. METHODS: Six studies (n = 4,581) from the International Children...

  11. Metabolic activation of amygdala, lateral septum and accumbens circuits during food anticipatory behavior.

    Science.gov (United States)

    Olivo, Diana; Caba, Mario; Gonzalez-Lima, Francisco; Rodríguez-Landa, Juan F; Corona-Morales, Aleph A

    2017-01-01

    When food is restricted to a brief fixed period every day, animals show an increase in temperature, corticosterone concentration and locomotor activity for 2-3h before feeding time, termed food anticipatory activity. Mechanisms and neuroanatomical circuits responsible for food anticipatory activity remain unclear, and may involve both oscillators and networks related to temporal conditioning. Rabbit pups are nursed once-a-day so they represent a natural model of circadian food anticipatory activity. Food anticipatory behavior in pups may be associated with neural circuits that temporally anticipate feeding, while the nursing event may produce consummatory effects. Therefore, we used New Zealand white rabbit pups entrained to circadian feeding to investigate the hypothesis that structures related to reward expectation and conditioned emotional responses would show a metabolic rhythm anticipatory of the nursing event, different from that shown by structures related to reward delivery. Quantitative cytochrome oxidase histochemistry was used to measure regional brain metabolic activity at eight different times during the day. We found that neural metabolism peaked before nursing, during food anticipatory behavior, in nuclei of the extended amygdala (basolateral, medial and central nuclei, bed nucleus of the stria terminalis), lateral septum and accumbens core. After pups were fed, however, maximal metabolic activity was expressed in the accumbens shell, caudate, putamen and cortical amygdala. Neural and behavioral activation persisted when animals were fasted by two cycles, at the time of expected nursing. These findings suggest that metabolic activation of amygdala-septal-accumbens circuits involved in temporal conditioning may contribute to food anticipatory activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Physical activity, stress, and metabolic risk score in 8- to 18-year-old boys.

    Science.gov (United States)

    Holmes, Megan E; Eisenmann, Joey C; Ekkekakis, Panteleimon; Gentile, Douglas

    2008-03-01

    We examined whether physical activity modifies the relationship between stress and the metabolic risk score in 8- to 18-year-old males (n = 37). Physical activity (PA) and television (TV)/videogame (VG) use were assessed via accelerometer and questionnaire, respectively. Stress was determined from self-report measures. A metabolic risk score (MRS) was created by summing age-standardized residuals for waist circumference, mean arterial pressure, glycosylated hemoglobin, and high-density lipoprotein cholesterol. Correlations between PA and MRS were low (r adolescents.

  13. [Coactivators in energy metabolism: peroxisome proliferator-activated receptor-gamma coactivator 1 family].

    Science.gov (United States)

    Wang, Rui; Chang, Yong-sheng; Fang, Fu-de

    2009-12-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) family is highly expressed in tissues with high energy metabolism. They coactivate transcription factors in regulating genes engaged in processes such as gluconeogenesis, adipose beta-oxydation, lipoprotein synthesis and secretion, mitochondrial biogenesis, and oxidative metabolism. Protein conformation studies demonstrated that they lack DNA binding domains and act as coactivators through physical interaction with transcription factors. PGC1 activity is regulated at transcription level or by multiple covalent chemical modifications such as phosphorylation, methylation and acetylation/deacetylation. Abnormal expression of PGC1 coactivators usually is closely correlated with diseases such as diabetes, obesity, hyperglycemia, hyperlipemia, and arterial and brain neuron necrosis diseases.

  14. Compensation in resting metabolism for experimentally increased activity

    NARCIS (Netherlands)

    Deerenberg, C; Overkamp, GJF; Visser, GH; Daan, S; Heldmaier, G.

    1998-01-01

    To study zebra finch allocation of energy to day and night at two different workloads, we assessed the daily energy turnover from: (1) metabolizable energy of the food, and (2) doubly-labeled water. In both experiments we imposed two levels of activity on captive zebra finches (Taeniopygia guttata),

  15. Understanding Fatty Acid Metabolism through an Active Learning Approach

    Science.gov (United States)

    Fardilha, M.; Schrader, M.; da Cruz e Silva, O. A. B.; da Cruz e Silva, E. F.

    2010-01-01

    A multi-method active learning approach (MALA) was implemented in the Medical Biochemistry teaching unit of the Biomedical Sciences degree at the University of Aveiro, using problem-based learning as the main learning approach. In this type of learning strategy, students are involved beyond the mere exercise of being taught by listening. Less…

  16. Metabolic Control of Dendritic Cell Activation and Function: Recent Advances and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Bart eEverts

    2014-05-01

    Full Text Available Dendritic cells (DCs are key regulators of both immunity and tolerance by controlling activation and polarization of effector T helper cell and regulatory T cell responses. Therefore, there is a major focus on developing approaches to manipulate DC function for immunotherapy. It is well known that changes in cellular activation are coupled to profound changes in cellular metabolism. Over the past decade there is a growing appreciation that these metabolic changes also underlie the capacity of immune cells to perform particular functions. This has led to the concept that the manipulation of cellular metabolism can be used to shape innate and adaptive immune responses. While most of our understanding in this area has been gained from studies with T cells and macrophages, evidence is emerging that the activation and function of DCs are also dictated by the type of metabolism these cells commit to. We here discuss these new insights and explore whether targeting of metabolic pathways in DCs could hold promise as a novel approach to manipulate the functional properties of DCs for clinical purposes.

  17. Metabolic Features of Protochlamydia amoebophila Elementary Bodies – A Link between Activity and Infectivity in Chlamydiae

    Science.gov (United States)

    Watzka, Margarete; Wultsch, Anna; Tziotis, Dimitrios; Montanaro, Jacqueline; Richter, Andreas; Schmitt-Kopplin, Philippe; Horn, Matthias

    2013-01-01

    The Chlamydiae are a highly successful group of obligate intracellular bacteria, whose members are remarkably diverse, ranging from major pathogens of humans and animals to symbionts of ubiquitous protozoa. While their infective developmental stage, the elementary body (EB), has long been accepted to be completely metabolically inert, it has recently been shown to sustain some activities, including uptake of amino acids and protein biosynthesis. In the current study, we performed an in-depth characterization of the metabolic capabilities of EBs of the amoeba symbiont Protochlamydia amoebophila. A combined metabolomics approach, including fluorescence microscopy-based assays, isotope-ratio mass spectrometry (IRMS), ion cyclotron resonance Fourier transform mass spectrometry (ICR/FT-MS), and ultra-performance liquid chromatography mass spectrometry (UPLC-MS) was conducted, with a particular focus on the central carbon metabolism. In addition, the effect of nutrient deprivation on chlamydial infectivity was analyzed. Our investigations revealed that host-free P. amoebophila EBs maintain respiratory activity and metabolize D-glucose, including substrate uptake as well as host-free synthesis of labeled metabolites and release of labeled CO2 from 13C-labeled D-glucose. The pentose phosphate pathway was identified as major route of D-glucose catabolism and host-independent activity of the tricarboxylic acid (TCA) cycle was observed. Our data strongly suggest anabolic reactions in P. amoebophila EBs and demonstrate that under the applied conditions D-glucose availability is essential to sustain metabolic activity. Replacement of this substrate by L-glucose, a non-metabolizable sugar, led to a rapid decline in the number of infectious particles. Likewise, infectivity of Chlamydia trachomatis, a major human pathogen, also declined more rapidly in the absence of nutrients. Collectively, these findings demonstrate that D-glucose is utilized by P. amoebophila EBs and provide

  18. Metabolic features of Protochlamydia amoebophila elementary bodies--a link between activity and infectivity in Chlamydiae.

    Directory of Open Access Journals (Sweden)

    Barbara S Sixt

    Full Text Available The Chlamydiae are a highly successful group of obligate intracellular bacteria, whose members are remarkably diverse, ranging from major pathogens of humans and animals to symbionts of ubiquitous protozoa. While their infective developmental stage, the elementary body (EB, has long been accepted to be completely metabolically inert, it has recently been shown to sustain some activities, including uptake of amino acids and protein biosynthesis. In the current study, we performed an in-depth characterization of the metabolic capabilities of EBs of the amoeba symbiont Protochlamydia amoebophila. A combined metabolomics approach, including fluorescence microscopy-based assays, isotope-ratio mass spectrometry (IRMS, ion cyclotron resonance Fourier transform mass spectrometry (ICR/FT-MS, and ultra-performance liquid chromatography mass spectrometry (UPLC-MS was conducted, with a particular focus on the central carbon metabolism. In addition, the effect of nutrient deprivation on chlamydial infectivity was analyzed. Our investigations revealed that host-free P. amoebophila EBs maintain respiratory activity and metabolize D-glucose, including substrate uptake as well as host-free synthesis of labeled metabolites and release of labeled CO2 from (13C-labeled D-glucose. The pentose phosphate pathway was identified as major route of D-glucose catabolism and host-independent activity of the tricarboxylic acid (TCA cycle was observed. Our data strongly suggest anabolic reactions in P. amoebophila EBs and demonstrate that under the applied conditions D-glucose availability is essential to sustain metabolic activity. Replacement of this substrate by L-glucose, a non-metabolizable sugar, led to a rapid decline in the number of infectious particles. Likewise, infectivity of Chlamydia trachomatis, a major human pathogen, also declined more rapidly in the absence of nutrients. Collectively, these findings demonstrate that D-glucose is utilized by P. amoebophila

  19. Metabolic activity in striate and extrastriate cortex in the hooded rat: contralateral and ipsilateral eye input

    International Nuclear Information System (INIS)

    Thurlow, G.A.; Cooper, R.M.

    1988-01-01

    The extent of changes in glucose metabolism resulting from ipsilateral and contralateral eye activity in the posterior cortex of the hooded rat was demonstrated by means of the C-14 2-deoxyglucose autoradiographic technique. By stimulating one eye with square wave gratings and eliminating efferent activation from the other by means of enucleation or intraocular TTX injection, differences between ipsilaterally and contralaterally based visual activity in the two hemispheres were maximized. Carbon-14 levels in layer IV of autoradiographs of coronal sections were measured and combined across sections to form right and left matrices of posterior cortex metabolic activity. A difference matrix, formed by subtracting the metabolic activity matrix of cortex contralateral to the stimulated eye from the ipsilateral depressed matrix, emphasized those parts of the visual cortex that received monocular visual input. The demarcation of striate cortex by means of cholinesterase stain and the examination of autoradiographs from sections cut tangential to the cortical surface aided in the interpretation of the difference matrices. In striate cortex, differences were maximal in the medial monocular portion, and the lateral or binocular portion was shown to be divided metabolically into a far lateral contralaterally dominant strip along the cortical representation of the vertical meridian, and a more medial region of patches of more or less contralaterally dominant binocular input. Lateral peristriate differences were less than those of striate cortex, and regions of greater and lesser monocular input could be distinguished. We did not detect differences between the two hemispheres in either anterior or medial peristriate areas

  20. Genome Sequencing of Streptomyces atratus SCSIOZH16 and Activation Production of Nocardamine via Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-06-01

    Full Text Available The Actinomycetes are metabolically flexible microorganisms capable of producing a wide range of interesting compounds, including but by no means limited to, siderophores which have high affinity for ferric iron. In this study, we report the complete genome sequence of marine-derived Streptomyces atratus ZH16 and the activation of an embedded siderophore gene cluster via the application of metabolic engineering methods. The S. atratus ZH16 genome reveals that this strain has the potential to produce 26 categories of natural products (NPs barring the ilamycins. Our activation studies revealed S. atratus SCSIO ZH16 to be a promising source of the production of nocardamine-type (desferrioxamine compounds which are important in treating acute iron intoxication and performing ecological remediation. We conclude that metabolic engineering provides a highly effective strategy by which to discover drug-like compounds and new NPs in the genomic era.

  1. Metabolic and Co-Metabolic Transformation of Diclofenac by Enterobacter hormaechei D15 Isolated from Activated Sludge.

    Science.gov (United States)

    Aissaoui, Salima; Ouled-Haddar, Houria; Sifour, Mohamed; Harrouche, Kamel; Sghaier, Haitham

    2017-03-01

    The presence of non-steroidal anti-inflammatory drugs, such as diclofenac (DCF), in the environment, is an emerging problem due to their harmful effects on non-target organisms, even at low concentrations. We studied the biodegradation of DCF by the strain D15 of Enterobacter hormaechei. The strain was isolated from an activated sludge, and identified as E. hormaechei based on its physiological characteristics and its 16 S RNA sequence. Using HPTLC and GC-MS methods, we demonstrated that this strain metabolized DCF at an elimination rate of 52.8%. In the presence of an external carbon source (glucose), the elimination rate increased to approximately 82%. GC-MS analysis detected and identified one metabolite as 1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indol-2-one; it was produced as a consequence of dehydration and lactam formation reactions.

  2. Alterations in calcium metabolism during human monocyte activation

    International Nuclear Information System (INIS)

    Scully, S.P.

    1984-01-01

    Human peripheral blood monocytes have been prepared from plateletpheresis residues by counterflow centrifugal elutriation in sufficient quantities to enable quantitative studies of cell calcium. Kinetic analysis of 45 Ca exchange data in resting monocytes was compatible with a model of cellular calcium containing three exchangeable calcium pools. These pools are thought to represent a putative ectocellular pool, a putative cytoplasmic chelated pool, and a putative organelle sequestered pool. Exposure of monocytes to the plant lectin Con A at a concentration that maximally simulated superoxide production caused an increase in the size and a doubling in the exchange rate of the putative cytoplasmic pool without a change in the other cellular pools. The cytoplasmic ionized calcium, [Ca]/sub i/, measured with the fluorescent probe, Quin 2 rose from a resting level of 83 nM to 165 mN within 30 sec of exposure to Con A. This increase in cytoplasmic calcium preceded the release of superoxide radicals. Calcium transport and calcium ATPase activities were identified and characterized in plasma membrane vesicles prepared from monocytes. Both activities were strictly dependent on ATP and Mg, had a Km/sub Ca/ in the submicromolar range and were stimulated by calmodulin. Thus, it seems that monocyte calcium is in a dynamic steady state that is a balance between efflux and influx rates, and that the activation of these cells results in the transition to a new steady state. The alteration in [Ca]/sub i/ that accompany the new steady state are essential for superoxide production by human monocytes

  3. Bone metabolic activity in hyperostosis cranialis interna measured with {sup 18}F-fluoride PET

    Energy Technology Data Exchange (ETDEWEB)

    Waterval, Jerome J.; Dongen, Thijs M.A. van; Stokroos, Robert J.; Manni, Johannes J. [Maastricht University Medical Center, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht (Netherlands); Teule, Jaap G.J.; Kemerink, Gerrit J.; Brans, Boudewijn [Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Nieman, Fred H.M. [Maastricht University Medical Center, Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht (Netherlands)

    2011-05-15

    {sup 18}F-Fluoride PET/CT is a relatively undervalued diagnostic test to measure bone metabolism in bone diseases. Hyperostosis cranialis interna (HCI) is a (hereditary) bone disease characterised by endosteal hyperostosis and osteosclerosis of the skull and the skull base. Bone overgrowth causes entrapment and dysfunction of several cranial nerves. The aim of this study is to compare standardised uptake values (SUVs) at different sites in order to quantify bone metabolism in the affected anatomical regions in HCI patients. Nine affected family members, seven non-affected family members and nine non-HCI non-family members underwent {sup 18}F-fluoride PET/CT scans. SUVs were systematically measured in the different regions of interest: frontal bone, sphenoid bone, petrous bone and clivus. Moreover, the average {sup 18}F-fluoride uptake in the entire skull was measured by assessing the uptake in axial slides. Visual assessment of the PET scans of affected individuals was performed to discover the process of disturbed bone metabolism in HCI. {sup 18}F-Fluoride uptake is statistically significantly higher in the sphenoid bone and clivus regions of affected family members. Visual assessment of the scans of HCI patients is relevant in detecting disease severity and the pattern of disturbed bone metabolism throughout life. {sup 18}F-Fluoride PET/CT is useful in quantifying the metabolic activity in HCI and provides information about the process of disturbed bone metabolism in this specific disorder. Limitations are a narrow window between normal and pathological activity and the influence of age. This study emphasises that {sup 18}F-fluoride PET/CT may also be a promising diagnostic tool for other metabolic bone disorders, even those with an indolent course. (orig.)

  4. Bone metabolic activity in hyperostosis cranialis interna measured with 18F-fluoride PET

    International Nuclear Information System (INIS)

    Waterval, Jerome J.; Dongen, Thijs M.A. van; Stokroos, Robert J.; Manni, Johannes J.; Teule, Jaap G.J.; Kemerink, Gerrit J.; Brans, Boudewijn; Nieman, Fred H.M.

    2011-01-01

    18 F-Fluoride PET/CT is a relatively undervalued diagnostic test to measure bone metabolism in bone diseases. Hyperostosis cranialis interna (HCI) is a (hereditary) bone disease characterised by endosteal hyperostosis and osteosclerosis of the skull and the skull base. Bone overgrowth causes entrapment and dysfunction of several cranial nerves. The aim of this study is to compare standardised uptake values (SUVs) at different sites in order to quantify bone metabolism in the affected anatomical regions in HCI patients. Nine affected family members, seven non-affected family members and nine non-HCI non-family members underwent 18 F-fluoride PET/CT scans. SUVs were systematically measured in the different regions of interest: frontal bone, sphenoid bone, petrous bone and clivus. Moreover, the average 18 F-fluoride uptake in the entire skull was measured by assessing the uptake in axial slides. Visual assessment of the PET scans of affected individuals was performed to discover the process of disturbed bone metabolism in HCI. 18 F-Fluoride uptake is statistically significantly higher in the sphenoid bone and clivus regions of affected family members. Visual assessment of the scans of HCI patients is relevant in detecting disease severity and the pattern of disturbed bone metabolism throughout life. 18 F-Fluoride PET/CT is useful in quantifying the metabolic activity in HCI and provides information about the process of disturbed bone metabolism in this specific disorder. Limitations are a narrow window between normal and pathological activity and the influence of age. This study emphasises that 18 F-fluoride PET/CT may also be a promising diagnostic tool for other metabolic bone disorders, even those with an indolent course. (orig.)

  5. The role of active brown adipose tissue in human metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ozguven, Salih; Turoglu, H.T. [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Ones, Tunc [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Kozyatagi/Kadikoy, Istanbul (Turkey); Yilmaz, Yusuf; Imeryuz, Nese [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Internal Medicine, Division of Gastroenterology, Istanbul (Turkey)

    2016-02-15

    The presence of activated brown adipose tissue (ABAT) has been associated with a reduced risk of obesity in adults. We aimed to investigate whether the presence of ABAT in patients undergoing {sup 18}F-FDG PET/CT examinations was related to blood lipid profiles, liver function, and the prevalence of non-alcoholic fatty liver disease (NAFLD). We retrospectively and prospectively analysed the {sup 18}F-FDG PET/CT scans from 5,907 consecutive patients who were referred to the Nuclear Medicine Department of the Marmara University School of Medicine from outpatient oncology clinics between July 2008 and June 2014 for a variety of diagnostic reasons. Attenuation coefficients for the liver and spleen were determined for at least five different areas. Blood samples were obtained before PET/CT to assess the blood lipid profiles and liver function. A total of 25 of the 5,907 screened individuals fulfilling the inclusion criteria for the study demonstrated brown fat tissue uptake [ABAT(+) subjects]. After adjustment for potential confounders, 75 individuals without evidence of ABAT on PET [ABAT(-) subjects] were enrolled for comparison purposes. The ABAT(+) group had lower total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels (p < 0.01), whereas we found no significant differences in the serum triglyceride and high-density lipoprotein cholesterol levels between the two groups. The prevalence of NAFLD was significantly lower in ABAT(+) than in ABAT(-) subjects (p < 0.01). Our study showed that the presence of ABAT in adults had a positive effect on their blood lipid profiles and liver function and was associated with reduced prevalence of NAFLD. Thus, our data suggest that activating brown adipose tissue may be a potential target for preventing and treating dyslipidaemia and NAFLD. (orig.)

  6. Polyphenols from Bee Pollen: Structure, Absorption, Metabolism and Biological Activity

    Directory of Open Access Journals (Sweden)

    Anna Rzepecka-Stojko

    2015-12-01

    Full Text Available Bee pollen constitutes a natural source of antioxidants such as phenolic acids and flavonoids, which are responsible for its biological activity. Research has indicated the correlation between dietary polyphenols and cardioprotective, hepatoprotective, anti-inflammatory, antibacterial, anticancerogenic, immunostimulating, antianaemic effects, as well as their beneficial influence on osseous tissue. The beneficial effects of bee pollen on health result from the presence of phenolic acids and flavonoids which possess anti-inflammatory properties, phytosterol and linolenic acid which play an anticancerogenic role, and polysaccharides which stimulate immunological activity. Polyphenols are absorbed in the alimentary tract, metabolised by CYP450 enzymes, and excreted with urine and faeces. Flavonoids and phenolic acids are characterised by high antioxidative potential, which is closely related to their chemical structure. The high antioxidant potential of phenolic acids is due to the presence and location of hydroxyl groups, a carboxyl group in the immediate vicinity of ortho-diphenolic substituents, and the ethylene group between the phenyl ring and the carboxyl group. As regards flavonoids, essential structural elements are hydroxyl groups at the C5 and C7 positions in the A ring, and at the C3′ and C4′ positions in the B ring, and a hydroxyl group at the C3 position in the C ring. Furthermore, both, the double bond between C2 and C3, and a ketone group at the C4 position in the C ring enhance the antioxidative potential of these compounds. Polyphenols have an ideal chemical structure for scavenging free radicals and for creating chelates with metal ions, which makes them effective antioxidants in vivo.

  7. Plateau hypoxia attenuates the metabolic activity of intestinal flora to enhance the bioavailability of nifedipine.

    Science.gov (United States)

    Zhang, Juanhong; Chen, Yuyan; Sun, Yuemei; Wang, Rong; Zhang, Junmin; Jia, Zhengping

    2018-11-01

    Nifedipine is completely absorbed by the gastrointestinal tract and its pharmacokinetics and metabolism may be influenced by microorganisms. If gut microbes are involved in the metabolism of nifedipine, plateau hypoxia may regulate the bioavailability and the therapeutic effect of nifedipine by altering the metabolic activity of the gut microbiota. We herein demonstrated for the first time that gut flora is involved in the metabolism of nifedipine by in vitro experiments. In addition, based on the results of 16S rRNA analysis of feces in rats after acute plateau, we first confirmed that the plateau environment could cause changes in the number and composition of intestinal microbes. More importantly, these changes in flora could lead to a slower metabolic activity of nifedipine in the body after an acute plateau, resulting in increased bioavailability and therapeutic efficacy of nifedipine. Our research will provide basis and new ideas for changes in the fecal flora of human acutely entering the plateau, and contribute to rational drug use of nifedipine.

  8. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    Full Text Available The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid and BML-275 (an AMPKα inhibitor. Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.

  9. Metabolic disruptions induced by reduced ambulatory activity in free-living humans

    DEFF Research Database (Denmark)

    Thyfault, John P; Krogh-Madsen, Rikke

    2011-01-01

    Physical inactivity likely plays a role in the development of insulin resistance and obesity; however, direct evidence is minimal and mechanisms of action remain unknown. Studying metabolic outcomes that occur after transitioning from higher to lower levels of physical activity is the best tool t...

  10. Effect of tributyltin (TBT) in the metabolic activity of TBT-resistant and sensitive estuarine bacteria.

    Science.gov (United States)

    Cruz, Andreia; Oliveira, Vanessa; Baptista, Inês; Almeida, Adelaide; Cunha, Angela; Suzuki, Satoru; Mendo, Sónia

    2012-01-01

    The effect of tributyltin (TBT) on growth and metabolic activity of three estuarine bacteria with different TBT resistance profiles was investigated in an organic-rich culture medium (TSB) and in phosphate buffered saline (PBS) buffer. Exposure to TBT was assessed by determining its effect on growth (OD(600 nm) measurement), bacterial productivity (leucine incorporation), viability (CFU counts), aggregation and cell size (from Live/Dead analysis), ATP and NADH concentrations. TBT exposure resulted in decrease of bacterial density, cell size, and metabolic activity. In addition, cell aggregates were observed in the TBT-treated cultures. TBT strongly affected bacterial cell metabolism and seemed to exert an effect on its equilibrium, interfering with cell activity. Also, TBT toxicity was lower when cells were grown in TSB than in PBS, suggesting that a nutrient-rich growth medium can protect cells from TBT toxicity. This study contributes to our understanding of the TBT-resistant cell behavior reflected in its physiology and metabolic activity. This information is of utmost importance for further studies of TBT bioremediation. Copyright © 2010 Wiley Periodicals, Inc.

  11. Physical activity, metabolic syndrome, and coronary risk: the EPIC-Norfolk prospective population study

    NARCIS (Netherlands)

    Broekhuizen, Lysette N.; Boekholdt, S. Matthijs; Arsenault, Benoit J.; Despres, Jean-Pierre; Stroes, Erik S. G.; Kastelein, John J. P.; Khaw, Kay-Tee; Wareham, Nicholas J.

    2011-01-01

    Objective: We investigated the association between physical activity, metabolic syndrome (MS), and the risk of future coronary heart disease (CHD) and mortality due to CHD in middle-aged men and women. Design: Prospective cohort study. Subjects: A total of 10,134 men and women aged 45-79 years at

  12. Complete Sucrose Metabolism Requires Fructose Phosphotransferase Activity in Corynebacterium glutamicum To Ensure Phosphorylation of Liberated Fructose

    OpenAIRE

    Dominguez, H.; Lindley, N. D.

    1996-01-01

    Sucrose uptake by Corynebacterium glutamicum involves a phosphoenolpyruvate-dependent sucrose phosphotransferase (PTS), but in the absence of fructokinase, further metabolism of the liberated fructose requires efflux of the fructose and reassimilation via the fructose PTS. Mutant strains lacking detectable fructose-transporting PTS activity accumulated fructose extracellularly but consumed sucrose at rates comparable to those of the wild-type strain.

  13. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription

    Czech Academy of Sciences Publication Activity Database

    Wasternack, Claus; Song, S.

    2017-01-01

    Roč. 68, č. 6 (2017), s. 1303-1321 ISSN 0022-0957 Institutional support: RVO:61389030 Keywords : Activators * Amino acid conjugates * Biosynthesis * Jasmonic acid * Metabolism * Perception * Repressors * SCFJAZ co-receptor complex COI1 * Signaling Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Plant sciences, botany Impact factor: 5.830, year: 2016

  14. Activities of xenobiotic metabolizing enzymes in rat placenta and liver in vitro

    NARCIS (Netherlands)

    Fabian, Eric; Wang, Xinyi; Engel, Franziska; Li, Hequn; Landsiedel, Robert; Ravenzwaay, van Bennard

    2016-01-01

    In order to assess whether the placental metabolism of xenobiotic compounds should be taken into consideration for physiologically-based toxicokinetic (PBTK) modelling, the activities of seven phase I and phase II enzymes have been quantified in the 18-day placenta of untreated Wistar rats. To

  15. Metabolic factors affecting enhanced phosphorus uptake by activated sludge.

    Science.gov (United States)

    Boughton, W H; Gottfried, R J; Sinclair, N A; Yall, I

    1971-10-01

    Activated sludges obtained from the Rilling Road plant located at San Antonio, Tex., and from the Hyperion treatment plant located at Los Angeles, Calif., have the ability to remove all of the orthophosphate normally present in Tucson sewage within 3 hr after being added to the waste water. Phosphorus removal was independent of externally supplied sources of energy and ions, since orthophosphate and (32)P radioactivity were readily removed from tap water, glass-distilled water, and deionized water. Phosphorus uptake by Rilling sludge in the laboratory appears to be wholly biological, as it has an optimum pH range (7.7 to 9.7) and an optimum temperature range (24 to 37 C). It was inhibited by HgCl(2), iodoacetic acid, p-chloromercuribenzoic acid, NaN(3), and 2, 4-dinitrophenol (compounds that affect bacterial membrane permeability, sulfhydryl enzymes, and adenosine triphosphate synthesis). Uptake was inhibited by 1% NaCl but was not affected by 10(-3)m ethylenediaminetetraacetic acid disodium salt (a chelating agent for many metallic ions).

  16. Metabolic activation and carcinogenicity of polycyclic hydrocarbons: A new quantum mechanical theory

    International Nuclear Information System (INIS)

    Mohammad, S.N.

    1986-01-01

    This investigation aims to describe a quantum mechanical theory of cancer, which, on the basis of certain electronic indices calculated for the parent compound, would give prediction of its P-450 mediated metabolic activation and would provide better representation of its relative carcinogenic potency when activated to its PUM. The author's theory is based on the assumption that electronic charge distribution of activated species resembles at least qualitatively the charge distribution of the parent compound, and a careful analysis of electronic characteristics of the parent compound would suffice to give reasonable estimation of the carcinogenic activities of the metabolic products. The details of the theoretical method is given and the results for some alternant and non-alternant PAHs are presented

  17. Alternate radiolabeled markers for detecting metabolic activity of Mycobacterium leprae residing in murine macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, H.K.; Hastings, R.C.

    1985-05-01

    This study demonstrated the utility of using 4% NaOH as a murine macrophage cell-solubilizing agent to discriminate between host macrophage metabolism and that of intracellular Mycobacterium leprae. A 4% concentration of NaOH had no deleterious effect on labeled mycobacteria. Thereby, alternate radiolabeled indicators of the metabolic activity of intracellular M. leprae could be experimented with. Significant incorporation of /sup 14/C-amino acid mixture, (/sup 14/C)leucine, (/sup 14/C)uridine, and carrier-free /sup 32/P was observed in cultures containing freshly extracted (''live'') strains of M. leprae as compared with control cultures containing autoclaved bacilli.

  18. Alternate radiolabeled markers for detecting metabolic activity of Mycobacterium leprae residing in murine macrophages

    International Nuclear Information System (INIS)

    Prasad, H.K.; Hastings, R.C.

    1985-01-01

    This study demonstrated the utility of using 4% NaOH as a murine macrophage cell-solubilizing agent to discriminate between host macrophage metabolism and that of intracellular Mycobacterium leprae. A 4% concentration of NaOH had no deleterious effect on labeled mycobacteria. Thereby, alternate radiolabeled indicators of the metabolic activity of intracellular M. leprae could be experimented with. Significant incorporation of 14 C-amino acid mixture, [ 14 C]leucine, [ 14 C]uridine, and carrier-free 32 P was observed in cultures containing freshly extracted (''live'') strains of M. leprae as compared with control cultures containing autoclaved bacilli

  19. A high-throughput method for quantifying metabolically active yeast cells

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Knudsen, Peter Boldsen; Rosenkjær, Alexander

    2015-01-01

    By redesigning the established methylene blue reduction test for bacteria and yeast, we present a cheap and efficient methodology for quantitative physiology of eukaryotic cells applicable for high-throughput systems. Validation of themethod in fermenters and highthroughput systems proved....... The drop in metabolic activity associated with the diauxic shift in yeast proved more pronounced for the MBRT-derived curve compared with OD curves, consistent with a dramatic shift in the ratio between live and dead cells at this metabolic event. This method provides a tool with numerous applications, e.......g. characterizing the death phase of stationary phase cultures, or in drug screens with pathogenic yeasts....

  20. Electronic Nose Technology to Measure Soil Microbial Activity and Classify Soil Metabolic Status

    OpenAIRE

    Fabrizio De Cesare; Elena Di Mattia; Simone Pantalei; Emiliano Zampetti; Vittorio Vinciguerra; Antonella Macagnano

    2011-01-01

    The electronic nose (E-nose) is a sensing technology that has been widely used to monitor environments in the last decade. In the present study, the capability of an E-nose, in combination with biochemical and microbiological techniques, of both detecting the microbial activity and estimating the metabolic status of soil ecosystems, was tested by measuring on one side respiration, enzyme activities and growth of bacteria in natural but simplified soil ecosystems over 23 days of incubation thr...

  1. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues

    DEFF Research Database (Denmark)

    Covington, Elizabeth Dunn; Roitsch, Thomas Georg; Dermastia, Marina

    2016-01-01

    Physiological studies in plants often require enzyme extraction from tissues containing high concentrations of phenols and polyphenols. Unless removed or neutralized, such compounds may hinder extraction, inactivate enzymes, and interfere with enzyme detection. The following protocol for activity...... assays for enzymes of primary carbohydrate metabolism, while based on our recently published one for quantitative measurement of activities using coupled spectrophotometric assays in a 96-well format, is tailored to the complexities of phenolic- and anthocyanin-rich extracts from grapevine leaf...

  2. Do obese but metabolically normal women differ in intra-abdominal fat and physical activity levels from those with the expected metabolic abnormalities? A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Walker Mark

    2010-11-01

    Full Text Available Abstract Background Obesity remains a major public health problem, associated with a cluster of metabolic abnormalities. However, individuals exist who are very obese but have normal metabolic parameters. The aim of this study was to determine to what extent differences in metabolic health in very obese women are explained by differences in body fat distribution, insulin resistance and level of physical activity. Methods This was a cross-sectional pilot study of 39 obese women (age: 28-64 yrs, BMI: 31-67 kg/m2 recruited from community settings. Women were defined as 'metabolically normal' on the basis of blood glucose, lipids and blood pressure. Magnetic Resonance Imaging was used to determine body fat distribution. Detailed lifestyle and metabolic profiles of participants were obtained. Results Women with a healthy metabolic profile had lower intra-abdominal fat volume (geometric mean 4.78 l [95% CIs 3.99-5.73] vs 6.96 l [5.82-8.32] and less insulin resistance (HOMA 3.41 [2.62-4.44] vs 6.67 [5.02-8.86] than those with an abnormality. The groups did not differ in abdominal subcutaneous fat volume (19.6 l [16.9-22.7] vs 20.6 [17.6-23.9]. A higher proportion of those with a healthy compared to a less healthy metabolic profile met current physical activity guidelines (70% [95% CIs 55.8-84.2] vs 25% [11.6-38.4]. Intra-abdominal fat, insulin resistance and physical activity make independent contributions to metabolic status in very obese women, but explain only around a third of the variance. Conclusion A sub-group of women exists who are metabolically normal despite being very obese. Differences in fat distribution, insulin resistance, and physical activity level are associated with metabolic differences in these women, but account only partially for these differences. Future work should focus on strategies to identify those obese individuals most at risk of the negative metabolic consequences of obesity and on identifying other factors that

  3. Adiponectin activates the AMPK signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Science.gov (United States)

    Chen, Hui; Zhang, Liang; Li, Xinwei; Li, Xiaobing; Sun, Guoquan; Yuan, Xue; Lei, Liancheng; Liu, Juxiong; Yin, Liheng; Deng, Qinghua; Wang, Jianguo; Liu, Zhaoxi; Yang, Wentao; Wang, Zhe; Zhang, Hui; Liu, Guowen

    2013-11-01

    Adiponectin (Ad) plays a crucial role in hepatic lipid metabolism. However, the regulating mechanism of hepatic lipid metabolism by Ad in dairy cows is unclear. Hepatocytes from a newborn female calf were cultured in vitro and treated with different concentrations of Ad and BML-275 (an AMPKα inhibitor). The results showed that Ad significantly increased the expression of two Ad receptors. Furthermore, the phosphorylation and activity of AMPKα, as well as the expression levels and transcriptional activity of peroxisome proliferator activated receptor-α (PPARα) and its target genes involved in lipid oxidation, showed a corresponding trend of upregulation. However, the expression levels and transcriptional activity of sterol regulatory element binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP) decreased in a similar manner. When BML-275 was added, the p-AMPKα level as well as the expression and activity of PPARα and its target genes were significantly decreased. However, the expression levels of SREBP-1c, ChREBP and their target genes showed a trend of upregulation. Furthermore, the triglyceride (TG) content was significantly decreased in the Ad-treated groups. These results indicate that Ad activates the AMPK signaling pathway and mediates lipid metabolism in bovine hepatocytes cultured in vitro by promoting lipid oxidation, suppressing lipid synthesis and reducing hepatic lipid accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria.

    Science.gov (United States)

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-12-14

    Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli's metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell's metabolic network.

  5. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia

    Science.gov (United States)

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-01-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress. PMID:24569689

  6. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia.

    Science.gov (United States)

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-06-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that-against general belief-neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress.

  7. Relationship between metabolic syndrome and moderate-to-vigorous physical activity in youth.

    Science.gov (United States)

    Machado-Rodrigues, Aristides M; Leite, Neiva; Coelho e Silva, Manuel J; Valente-dos-Santos, João; Martins, Raul A; Mascarenhas, Luis P G; Boguszewski, Margaret C S; Padez, Cristina; Malina, Robert M

    2015-01-01

    Associations of metabolic syndrome (MetS) with lifestyle behaviors in youth is potentially important for identifying subgroups at risk and encourage interventions. This study evaluates the associations among the clustering of metabolic risk factors and moderate-to-vigorous physical activity (MVPA) in youth. The sample comprised 522 girls and 402 boys (N = 924) aged 11 to 17 years. Height, weight, waist circumference (WC), fasting glucose, high-density lipoprotein cholesterol, triglycerides, and blood pressures were measured. Cardiorespiratory fitness (CRF) was assessed using the 20-m shuttle run test. MVPA was estimated with a 3-day diary. Outcome variables were statistically normalized and expressed as z scores. A clustered metabolic risk score was computed as the mean of z scores. Multiple linear regression was used to test associations between metabolic risk and MVPA by sex, adjusted for age, WC, and CRF. After adjustment for potential confounders, MVPA was inversely associated with the clustering of metabolic risk factors in girls, but not in boys; in addition, after adjusting for WC, the statistical model of that relationship was substantially improved in girls. MVPA was independently associated with increased risk of MetS in girls. Additional efforts are needed to encourage research with different analytical approach and standardization of criteria for MetS in youth.

  8. Metabolic equivalents of task are confounded by adiposity, which disturbs objective measurement of physical activity

    Directory of Open Access Journals (Sweden)

    Tuomo T Tompuri

    2015-08-01

    Full Text Available Physical activity refers any bodily movements produced by skeletal muscles that expends energy. Hence the amount and the intensity of physical activity can be assessed by energy expenditure. Metabolic equivalents of task (MET are multiplies of the resting metabolism reflecting metabolic rate during exercise. The standard MET is defined as 3.5 ml/min/kg. However, the expression of energy expenditure by body weight to normalize the size differences between subjects causes analytical hazards: scaling by body weight does not have a physiological, mathematical, or physical rationale. This review demonstrates by examples that false methodology may cause paradoxical observations if physical activity would be assessed by body weight scaled values such as standard METs. While standard METs are confounded by adiposity, lean mass proportional measures of energy expenditure would enable a more truthful choice to assess physical activity. While physical activity as a behavior and cardiorespiratory fitness or adiposity as a state represents major determinants of public health, specific measurements of health determinants must be understood to enable a truthful evaluation of the interactions and their independent role as a health predictor.

  9. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    Science.gov (United States)

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  10. Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha.

    Science.gov (United States)

    Li, Guolin; Brocker, Chad N; Yan, Tingting; Xie, Cen; Krausz, Kristopher W; Xiang, Rong; Gonzalez, Frank J

    2018-01-01

    Peroxisome proliferator-activated receptor alpha (PPARA) is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF) has not been investigated. Mice were pre-conditioned using either a diet containing the potent PPARA agonist Wy-14643 or an EODF regimen prior to acute fasting. Ppara-null mice were used to assess the contribution of PPARA activation during the metabolic response to EODF. Livers were collected for histological, biochemical, qRT-PCR, and Western blot analysis. Acute fasting activated PPARA and led to steatosis, whereas EODF protected against fasting-induced hepatic steatosis without affecting PPARA signaling. In contrast, pretreatment with Wy-14,643 did activate PPARA signaling but did not ameliorate acute fasting-induced steatosis and unexpectedly promoted liver injury. Ppara ablation exacerbated acute fasting-induced hypoglycemia, hepatic steatosis, and liver injury in mice, whereas these detrimental effects were absent in response to EODF, which promoted PPARA-independent fatty acid metabolism and normalized serum lipids. These findings indicate that PPARA activation prior to acute fasting cannot ameliorate fasting-induced hepatic steatosis, whereas EODF induced metabolic adaptations to protect against fasting-induced steatosis without altering PPARA signaling. Therefore, PPARA activation does not mediate the metabolic adaptation to fasting, at least in preventing acute fasting-induced steatosis. Published by Elsevier GmbH.

  11. Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha

    Directory of Open Access Journals (Sweden)

    Guolin Li

    2018-01-01

    Full Text Available Background: Peroxisome proliferator-activated receptor alpha (PPARA is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF has not been investigated. Methods: Mice were pre-conditioned using either a diet containing the potent PPARA agonist Wy-14643 or an EODF regimen prior to acute fasting. Ppara-null mice were used to assess the contribution of PPARA activation during the metabolic response to EODF. Livers were collected for histological, biochemical, qRT-PCR, and Western blot analysis. Results: Acute fasting activated PPARA and led to steatosis, whereas EODF protected against fasting-induced hepatic steatosis without affecting PPARA signaling. In contrast, pretreatment with Wy-14,643 did activate PPARA signaling but did not ameliorate acute fasting-induced steatosis and unexpectedly promoted liver injury. Ppara ablation exacerbated acute fasting-induced hypoglycemia, hepatic steatosis, and liver injury in mice, whereas these detrimental effects were absent in response to EODF, which promoted PPARA-independent fatty acid metabolism and normalized serum lipids. Conclusions: These findings indicate that PPARA activation prior to acute fasting cannot ameliorate fasting-induced hepatic steatosis, whereas EODF induced metabolic adaptations to protect against fasting-induced steatosis without altering PPARA signaling. Therefore, PPARA activation does not mediate the metabolic adaptation to fasting, at least in preventing acute fasting-induced steatosis. Keywords: PPARA, PPARalpha, Intermittent fasting, Every-other-day fasting, Steatosis, Adaptive fasting response

  12. Physiological community ecology: variation in metabolic activity of ecologically important rocky intertidal invertebrates along environmental gradients.

    Science.gov (United States)

    Dahlhoff, Elizabeth P; Stillman, Jonathon H; Menge, Bruce A

    2002-08-01

    Rocky intertidal invertebrates live in heterogeneous habitats characterized by steep gradients in wave activity, tidal flux, temperature, food quality and food availability. These environmental factors impact metabolic activity via changes in energy input and stress-induced alteration of energetic demands. For keystone species, small environmentally induced shifts in metabolic activity may lead to disproportionately large impacts on community structure via changes in growth or survival of these key species. Here we use biochemical indicators to assess how natural differences in wave exposure, temperature and food availability may affect metabolic activity of mussels, barnacles, whelks and sea stars living at rocky intertidal sites with different physical and oceanographic characteristics. We show that oxygen consumption rate is correlated with the activity of key metabolic enzymes (e.g., citrate synthase and malate dehydrogenase) for some intertidal species, and concentrations of these enzymes in certain tissues are lower for starved individuals than for those that are well fed. We also show that the ratio of RNA to DNA (an index of protein synthetic capacity) is highly variable in nature and correlates with short-term changes in food availability. We also observed striking patterns in enzyme activity and RNA/DNA in nature, which are related to differences in rocky intertidal community structure. Differences among species and habitats are most pronounced in summer and are linked to high nearshore productivity at sites favored by suspension feeders and to exposure to stressful low-tide air temperatures in areas of low wave splash. These studies illustrate the great promise of using biochemical indicators to test ecological models, which predict changes in community structure along environmental gradients. Our results also suggest that biochemical indices must be carefully validated with laboratory studies, so that the indicator selected is likely to respond to the

  13. Metabolic activation of pyrrolizidine alkaloids: insights into the structural and enzymatic basis.

    Science.gov (United States)

    Ruan, Jianqing; Yang, Mengbi; Fu, Peter; Ye, Yang; Lin, Ge

    2014-06-16

    Pyrrolizidine alkaloids (PAs) are natural toxins widely distributed in plants. The toxic potencies of different PAs vary significantly. PAs are mono- or diesters of necine acids with a necine base. On the basis of the necine bases, PAs are classified into three types: retronecine-type, otonecine-type, and platynecine-type. Hepatotoxic PAs contain an unsaturated necine base. PAs exert hepatotoxicity through metabolic activation by hepatic cytochromes P450s (CYPs) to generate reactive intermediates which form pyrrole-protein adducts. These adducts provide a mechanism-based biomarker to assess PA toxicity. In the present study, metabolic activation of 12 PAs from three structural types was investigated first in mice to demonstrate significant variations in hepatic metabolic activation of different PAs. Subsequently, the structural and enzymatic factors affecting metabolic activation of these PAs were further investigated by using human liver microsomes and recombinant human CYPs. Pyrrole-protein adducts were detected in the liver and blood of mice and the in vitro systems treated with toxic retronecine-type and otonecine-type PAs having unsaturated necine bases but not with a platynecine-type PA containing a saturated necine base. Retronecine-type PAs produced more pyrrole-protein adducts than otonecine-type PAs with similar necine acids, demonstrating that the structure of necine base affected PA toxic potency. Among retronecine-type PAs, open-ring diesters generated the highest amount of pyrrole-protein adducts, followed by macrocyclic diesters, while monoesters produced the least. Only CYP3A4 and CYP3A5 activated otonecine-type PAs, while all 10 CYPs studied showed the ability to activate retronecine-type PAs. Moreover, the contribution of major CYPs involved also varied significantly among retronecine-type PAs. In conclusion, our findings provide a scientific basis for predicting the toxicities of individual PAs in biological systems based on PA structural

  14. Low resting metabolic rate in exercise-associated amenorrhea is not due to a reduced proportion of highly active metabolic tissue compartments.

    Science.gov (United States)

    Koehler, Karsten; Williams, Nancy I; Mallinson, Rebecca J; Southmayd, Emily A; Allaway, Heather C M; De Souza, Mary Jane

    2016-08-01

    Exercising women with menstrual disturbances frequently display a low resting metabolic rate (RMR) when RMR is expressed relative to body size or lean mass. However, normalizing RMR for body size or lean mass does not account for potential differences in the size of tissue compartments with varying metabolic activities. To explore whether the apparent RMR suppression in women with exercise-associated amenorrhea is a consequence of a lower proportion of highly active metabolic tissue compartments or the result of metabolic adaptations related to energy conservation at the tissue level, RMR and metabolic tissue compartments were compared among exercising women with amenorrhea (AMEN; n = 42) and exercising women with eumenorrheic, ovulatory menstrual cycles (OV; n = 37). RMR was measured using indirect calorimetry and predicted from the size of metabolic tissue compartments as measured by dual-energy X-ray absorptiometry (DEXA). Measured RMR was lower than DEXA-predicted RMR in AMEN (1,215 ± 31 vs. 1,327 ± 18 kcal/day, P < 0.001) but not in OV (1,284 ± 24 vs. 1,252 ± 17, P = 0.16), resulting in a lower ratio of measured to DEXA-predicted RMR in AMEN (91 ± 2%) vs. OV (103 ± 2%, P < 0.001). AMEN displayed proportionally more residual mass (P < 0.001) and less adipose tissue (P = 0.003) compared with OV. A lower ratio of measured to DXA-predicted RMR was associated with lower serum total triiodothyronine (ρ = 0.38, P < 0.001) and leptin (ρ = 0.32, P = 0.004). Our findings suggest that RMR suppression in this population is not the result of a reduced size of highly active metabolic tissue compartments but is due to metabolic and endocrine adaptations at the tissue level that are indicative of energy conservation.

  15. Long-term follow-up of metabolic activity in human alveolar echinococcosis using FDG-PET

    International Nuclear Information System (INIS)

    Reuter, S.; Gruener, B.; Kern, P.; Buck, A.K.; Blumstein, N.; Reske, S.N.

    2008-01-01

    Aim: [ 18 F]fluoro-deoxyglucose positron-emission-tomography (FDG-PET) detects metabolic activity in alveolar echinococcosis (AE). The slow changes in metabolic and morphological characteristics require long-term follow-up of patients. This is the first study to evaluate metabolic activity over may years, hereby assessing the utility of FDG-PET for the evaluation of disease progression and response to treatment. Patients, methods: 15 patients received a follow-up FDG-PET combined with computed tomography (integrated PET/CT) with a median of 6.5 years after the first PET in 1999. Number and location of enhanced metabolic activity in the area of AE lesions was determined. Quantification of intensity of metabolic activity was assessed by calculation of mean standardized uptake values. Results: AE lesions in 11/15 patients had been metabolically inactive initially, but only two showed permanent inactivity over the course of 81 months. Interestingly, in two patients metabolic activity was newly detected after 80 and 82 months. Benzimidazole treatment was intermittently discontinued in seven cases. Persisting activity at FDG-PET demanded continued benzimidazole treatment in four patients. Neither treatment duration, lesional size, calcifications nor regressive changes correlated with metabolic activity. Conclusion: treatment responses are heterogeneous and vary from progressive disease despite treatment to long-term inactive disease with discontinued treatment. Lack of metabolic activity indicates suppressed parasite activity and is not equivalent to parasite death. However, metabolic activity may remain suppressed for years, allowing for temporary treatment discontinuation. Relapses are reliably detected with PET and restarting benzimidazole treatment prevents parasite expansion. (orig.)

  16. N-3 fatty acids, neuronal activity and energy metabolism in the brain

    Directory of Open Access Journals (Sweden)

    Harbeby Emilie

    2012-07-01

    Full Text Available The content of docosahexaenoic acid (DHA in brain membranes is of crucial importance for the optimum development of brain functions. A lack of DHA accretion in the brain is accompanied by deficits in learning behavior linked to impairments in neurotransmission processes, which might result from alteration of brain fuel supply and hence energy metabolism. Experimental data we published support the hypothesis that n-3 fatty acids may modulate brain glucose utilization and metabolism. Indeed rats made deficient in DHA by severe depletion of total n-3 fatty acid intake have 1 a lower brain glucose utilization, 2 a decrease of the glucose transporter protein content GLUT1 both in endothelial cells and in astrocytes, 3 a repression of GLUT1 gene expression in basal state as well as upon neuronal activation. This could be due to the specific action of DHA on the regulation of GLUT1 expression since rat brain endothelial cells cultured with physiological doses of DHA had an increased GLUT1 protein content and glucose transport when compared to non-supplemented cells. These experimental data highlight the impact of n-3 fatty acids on the use of brain glucose, thereby constituting a key factor in the control of synaptic activity. This emerging role suggests that dietary intake of n-3 fatty acids can help to reduce the cognitive deficits in the elderly and possibly symptomatic cerebral metabolic alterations in Alzheimer disease by promoting brain glucose metabolism.

  17. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses.

    Science.gov (United States)

    Ou, Yang; Wang, Shang-Jui; Li, Dawei; Chu, Bo; Gu, Wei

    2016-11-01

    Although p53-mediated cell-cycle arrest, senescence, and apoptosis remain critical barriers to cancer development, the emerging role of p53 in cell metabolism, oxidative responses, and ferroptotic cell death has been a topic of great interest. Nevertheless, it is unclear how p53 orchestrates its activities in multiple metabolic pathways into tumor suppressive effects. Here, we identified the SAT1 (spermidine/spermine N 1 -acetyltransferase 1) gene as a transcription target of p53. SAT1 is a rate-limiting enzyme in polyamine catabolism critically involved in the conversion of spermidine and spermine back to putrescine. Surprisingly, we found that activation of SAT1 expression induces lipid peroxidation and sensitizes cells to undergo ferroptosis upon reactive oxygen species (ROS)-induced stress, which also leads to suppression of tumor growth in xenograft tumor models. Notably, SAT1 expression is down-regulated in human tumors, and CRISPR-cas9-mediated knockout of SAT1 expression partially abrogates p53-mediated ferroptosis. Moreover, SAT1 induction is correlated with the expression levels of arachidonate 15-lipoxygenase (ALOX15), and SAT1-induced ferroptosis is significantly abrogated in the presence of PD146176, a specific inhibitor of ALOX15. Thus, our findings uncover a metabolic target of p53 involved in ferroptotic cell death and provide insight into the regulation of polyamine metabolism and ferroptosis-mediated tumor suppression.

  18. Regulation of the yeast metabolic cycle by transcription factors with periodic activities

    Directory of Open Access Journals (Sweden)

    Pellegrini Matteo

    2011-10-01

    Full Text Available Abstract Background When growing budding yeast under continuous, nutrient-limited conditions, over half of yeast genes exhibit periodic expression patterns. Periodicity can also be observed in respiration, in the timing of cell division, as well as in various metabolite levels. Knowing the transcription factors involved in the yeast metabolic cycle is helpful for determining the cascade of regulatory events that cause these patterns. Results Transcription factor activities were estimated by linear regression using time series and genome-wide transcription factor binding data. Time-translation matrices were estimated using least squares and were used to model the interactions between the most significant transcription factors. The top transcription factors have functions involving respiration, cell cycle events, amino acid metabolism and glycolysis. Key regulators of transitions between phases of the yeast metabolic cycle appear to be Hap1, Hap4, Gcn4, Msn4, Swi6 and Adr1. Conclusions Analysis of the phases at which transcription factor activities peak supports previous findings suggesting that the various cellular functions occur during specific phases of the yeast metabolic cycle.

  19. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet.

    Science.gov (United States)

    Pu, Peng; Gao, Dong-Mei; Mohamed, Salim; Chen, Jing; Zhang, Jing; Zhou, Xiao-Ya; Zhou, Nai-Jing; Xie, Jing; Jiang, Hong

    2012-02-01

    Metabolic syndrome is a low-grade inflammatory state in which oxidative stress is involved. Naringin, isolated from the Citrussinensis, is a phenolic compound with anti-oxidative and anti-inflammatory activities. The aim of this study was to explore the effects of naringin on metabolic syndrome in mice. The animal models, induced by high-fat diet in C57BL/6 mice, developed obesity, dyslipidemia, fatty liver, liver dysfunction and insulin resistance. These changes were attenuated by naringin. Further investigations revealed that the inhibitory effect on inflammation and insulin resistance was mediated by blocking activation of the MAPKs pathways and by activating IRS1; the lipid-lowering effect was attributed to inhibiting the synthesis way and increasing fatty acid oxidation; the hypoglycemic effect was due to the regulation of PEPCK and G6pase. The anti-oxidative stress of naringin also participated in the improvement of insulin resistance and lipogenesis. All of these depended on the AMPK activation. To confirm the results of the animal experiment, we tested primary hepatocytes exposed to high glucose system. Naringin was protective by phosphorylating AMPKα and IRS1. Taken together, these results suggested that naringin protected mice exposed to a high-fat diet from metabolic syndrome through an AMPK-dependent mechanism involving multiple types of intracellular signaling and reduction of oxidative damage. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation.

    Science.gov (United States)

    Rayssiguier, Yves; Libako, Patrycja; Nowacki, Wojciech; Rock, Edmond

    2010-06-01

    Magnesium (Mg) intake is inadequate in the western diet and metabolic syndrome is highly prevalent in populations around the world. Epidemiological studies suggest that high Mg intake may reduce the risk but the possibility of confounding factors exists, given the strong association between Mg and other beneficial nutriments (vegetables, fibers, cereals). The concept that metabolic syndrome is an inflammatory condition may explain the role of Mg.Mg deficiency results in a stress effect and increased susceptibility to physiological damage produced by stress. Stress activates the hypothalamic-pituitary-adrenal axis (HPA) axis and the sympathetic nervous system. The activation of the renin-angiotensin-aldosterone system is a factor in the development of insulin resistance by increasing oxidative stress. In both humans and rats, aldosteronism results in an immunostimulatory state and leads to an inflammatory phenotype. Stress response induces the release of large quantities of excitatory amino acids and activates the nuclear factor NFkappaB, promoting translation of molecules involved in cell regulation, metabolism and apoptosis. The rise in neuropeptides is also well documented. Stress-induced HPA activation has been identified to play an important role in the preferential body fat accumulation but evidence that Mg is involved in body weight regulation is lacking. One of the earliest events in the acute response to stress is endothelial dysfunction. Endothelial cells actively contribute to inflammation by elaborating cytokines, synthesizing chemical mediators and expressing adhesion molecules. Experimental Mg deficiency in rats induces a clinical inflammatory syndrome characterized by leukocyte and macrophage activation, synthesis of inflammatory cytokines and acute phase proteins, extensive production of free radicals. An increase in extracellular Mg concentration decreases inflammatory effects, while reduction in extracellular Mg results in cell activation. The

  1. Independent associations of physical activity and cardiorespiratory fitness with metabolic risk factors in children: the European youth heart study

    DEFF Research Database (Denmark)

    Ekelund, U; Anderssen, S A; Froberg, K

    2007-01-01

    AIMS/HYPOTHESIS: High levels of cardiorespiratory fitness (CRF) and physical activity (PA) are associated with a favourable metabolic risk profile. However, there has been no thorough exploration of the independent contributions of cardiorespiratory fitness and subcomponents of activity (total PA...... the association between activity and clustered risk is independent of adiposity. Our results suggest that fitness and activity affect metabolic risk through different pathways....

  2. BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures.

    Science.gov (United States)

    Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R; Lutas, Andrew; Yellen, Gary; Danial, Nika N

    2012-05-24

    Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phosphoregulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive K(ATP) channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the K(ATP) channel, implicating the BAD-K(ATP) axis in metabolic control of neuronal excitation and seizure responses. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Motility, ATP levels and metabolic enzyme activity of sperm from bluegill (Lepomis macrochirus).

    Science.gov (United States)

    Burness, Gary; Moyes, Christopher D; Montgomerie, Robert

    2005-01-01

    Male bluegill displays one of two life history tactics. Some males (termed "parentals") delay reproduction until ca. 7 years of age, at which time they build nests and actively courts females. Others mature precociously (sneakers) and obtain fertilizations by cuckolding parental males. In the current study, we studied the relations among sperm motility, ATP levels, and metabolic enzyme activity in parental and sneaker bluegill. In both reproductive tactics, sperm swimming speed and ATP levels declined in parallel over the first 60 s of motility. Although sneaker sperm initially had higher ATP levels than parental sperm, by approximately 30 s postactivation, no differences existed between tactics. No differences were noted between tactics in swimming speed, percent motility, or the activities of key metabolic enzymes, although sperm from parentals had a higher ratio of creatine phosphokinase (CPK) to citrate synthase (CS). In both tactics, with increasing CPK and CS activity, sperm ATP levels increased at 20 s postactivation, suggesting that capacities for phosphocreatine hydrolysis and aerobic metabolism may influence interindividual variation in rates of ATP depletion. Nonetheless, there was no relation between sperm ATP levels and either swimming speed or percent of sperm that were motile. This suggests that interindividual variation in ATP levels may not be the primary determinant of variation in sperm swimming performance in bluegill.

  4. Reactive oxygen species in the paraventricular nucleus of the hypothalamus alter sympathetic activity during metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    JOSIANE CAMPOS CRUZ

    2015-12-01

    Full Text Available The paraventricular nucleus of the hypothalamus (PVN contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II, which activates AT1 receptors in the circumventricular organs (OCVs, mainly in the subfornical organ (SFO. Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS, leading to increases in sympathetic nerve activity (SNA. Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS: dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS.

  5. Fluvoxamine alters the activity of energy metabolism enzymes in the brain

    Directory of Open Access Journals (Sweden)

    Gabriela K. Ferreira

    2014-09-01

    Full Text Available Objective: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Methods: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. Results: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. Conclusions: Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent.

  6. Photoperiodism and enzyme activity: towards a model for the control of circadian metabolic rhythms in the crassulacean Acid metabolism.

    Science.gov (United States)

    Queiroz, O; Morel, C

    1974-04-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system.

  7. Ruptured human Achilles tendon has elevated metabolic activity up to 1 year after repair

    International Nuclear Information System (INIS)

    Eliasson, Pernilla; Couppe, Christian; Magnusson, S.P.; Lonsdale, Markus; Friberg, Lars; Svensson, Rene B.; Kjaer, Michael; Neergaard, Christian

    2016-01-01

    Following Achilles tendon rupture, running is often allowed after 6 months. However, tendon healing is slow and the metabolic status of the tendon at this point is unknown. The purpose of this study was to investigate tendon metabolism (glucose uptake) and vascularization at 3, 6 and 12 months after Achilles tendon rupture as measured using PET and power Doppler ultrasonography (PDUS). The study group comprised 23 patients with surgically repaired Achilles tendon rupture who were investigated at 3 months (n = 7), 6 months (n = 7) and 12 months (n = 9) after surgery. The triceps surae complex was loaded over 20 min of slow treadmill walking while a radioactive tracer ( 18 F-FDG) was administered prior to PET. Vascularization was measured in terms of PDUS flow activity, and patient-reported outcomes were scored using the Achilles tendon rupture score (ATRS) and sports assessment (VISA-A) questionnaire. Relative glucose uptake ( 18 F-FDG) was higher in repaired tendons than in intact tendons at all time-points (6, 3 and 1.6 times higher at 3, 6 and 12 months, respectively; P ≤ 0.001), and was also higher in the tendon core than in the periphery at 3 and 6 months (P ≤ 0.02), but lower at 12 months (P = 0.06). Relative glucose uptake was negatively related to ATRS at 6 months after repair (r = -0.89, P ≤ 0.01). PDUS flow activity was higher in repaired tendons than in intact tendons at 3 and 6 months (P < 0.05 for both), but had normalized by 12 months. These data demonstrate that the healing process as determined by metabolic activity and vascularization continues for 6 months after injury when large loads are typically allowed on the tendon. Indeed, metabolic activity remained elevated for more than 1 year after injury despite normalized vascularization. The robust negative correlation between tendon metabolism and patient-reported outcome suggests that a high metabolic activity 6 months after the injury may be related to a poor clinical healing outcome. (orig.)

  8. [L-arginine metabolism enzyme activities in rat liver subcellular fractions under condition of protein deprivation].

    Science.gov (United States)

    Kopyl'chuk, G P; Buchkovskaia, I M

    2014-01-01

    The features of arginase and NO-synthase pathways of arginine's metabolism have been studied in rat liver subcellular fractions under condition of protein deprivation. During the experimental period (28 days) albino male rats were kept on semi synthetic casein diet AIN-93. The protein deprivation conditions were designed as total absence of protein in the diet and consumption of the diet partially deprived with 1/2 of the casein amount compared to in the regular diet. Daily diet consumption was regulated according to the pair feeding approach. It has been shown that the changes of enzyme activities, involved in L-arginine metabolism, were characterized by 1.4-1.7 fold decrease in arginase activity, accompanied with unchanged NO-synthase activity in cytosol. In mitochondrial fraction the unchanged arginase activity was accompanied by 3-5 fold increase of NO-synthase activity. At the terminal stages of the experiment the monodirectional dynamics in the studied activities have been observed in the mitochondrial and cytosolfractions in both experimental groups. In the studied subcellular fractions arginase activity decreased (2.4-2.7 fold with no protein in the diet and 1.5 fold with partly supplied protein) and was accompanied by NO-synthase activity increase by 3.8 fold in cytosole fraction, by 7.2 fold in mitochondrial fraction in the group with no protein in the diet and by 2.2 and 3.5 fold in the group partialy supplied with protein respectively. The observed tendency is presumably caused by the switch of L-arginine metabolism from arginase into oxidizing NO-synthase parthway.

  9. Metabolism-Activated Multitargeting (MAMUT): An Innovative Multitargeting Approach to Drug Design and Development.

    Science.gov (United States)

    Mátyus, Péter; Chai, Christina L L

    2016-06-20

    Multitargeting is a valuable concept in drug design for the development of effective drugs for the treatment of multifactorial diseases. This concept has most frequently been realized by incorporating two or more pharmacophores into a single hybrid molecule. Many such hybrids, due to the increased molecular size, exhibit unfavorable physicochemical properties leading to adverse effects and/or an inappropriate ADME (absorption, distribution, metabolism, and excretion) profile. To avoid this limitation and achieve additional therapeutic benefits, here we describe a novel multitargeting strategy based on the synergistic effects of a parent drug and its active metabolite(s). The concept of metabolism-activated multitargeting (MAMUT) is illustrated using a number of examples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism

    DEFF Research Database (Denmark)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two......-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover......, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus...

  11. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism.

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John D R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-04-23

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus of glucose uptake as visualized by functional brain imaging.

  12. BAT Exosomes: Metabolic Crosstalk with Other Organs and Biomarkers for BAT Activity.

    Science.gov (United States)

    Goody, Deborah; Pfeifer, Alexander

    2018-04-10

    In the last decade, exosomes have gained interest as a new type of intercellular communication between cells and tissues. Exosomes are circulating, cell-derived lipid vesicles smaller than 200 nm that contain proteins and nucleic acids, including microRNAs (miRNAs), and are able to modify cellular targets. Exosomal miRNAs function as signalling molecules that regulate the transcription of their target genes and can cause phenotypic transformation of recipient cells. Recent studies have shown that brown fat secretes exosomes as a form of communication with other metabolic organs such as the liver. Moreover, it has been shown that levels of miRNAs in BAT-derived exosomes change after BAT activation in vitro and in vivo. Thus, BAT-derived exosomes can be used as potential biomarkers of BAT activity. Here, we review the present knowledge about BAT-derived exosomes and their role in metabolism.

  13. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018

  14. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Aisha, M.D. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); Nor-Ashikin, M.N.K. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Sharaniza, A.B.R. [DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Nawawi, H. [Center for Pathology Diagnostic and Research Laboratories, Clinical Training Center, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia); Froemming, G.R.A., E-mail: gabriele@salam.uitm.edu.my [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia)

    2015-09-10

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases. - Highlights: • OFS stress transmits anabolic signals to osteoblasts. • Actin and tubulin fibers are rearranged under OFS stress. • OFS stress increases mitochondrial metabolism and proliferation. • Reduced RANKL/OPG ratio in response to OFS inhibits osteoclastogenesis. • OFS stress prevents apoptosis and stimulates ALP and OCN.

  15. Metabolic mapping of functional activity in human subjects with the [18F]fluorodeoxyglucose technique

    International Nuclear Information System (INIS)

    Greenberg, J.H.; Reivich, M.; Alavi, A.

    1981-01-01

    The 2-[ 18 F]fluoro-2-deoxy-D-glucose technique was used to measure regional cerebral glucose utilization by human subjects during functional activation. Normal male volunteers subjected to one or more sensory stimuli exhibited focal increases in glucose metabolism in response to the stimulus. These results demonstrate that the technique is capable of providing functional maps in vivo related to both body region and submodality of sensory information in the human brain

  16. Radiometric detection of metabolic activity of Paracoccidiodes brasiliensis and its susceptibility to amphotericin B and Diethylstilbestrol

    International Nuclear Information System (INIS)

    Camargo, E.E.; Sato, M.K.; Del Negro, G.M.B.; Lacaz, C.S.

    1987-01-01

    A radiometric assay system has been applied to study the metabolic activity and the effect of drugs (amphotericin B and diethylstilbestrol) on the fungus Paracoccidiodes brasiliensis ''in vitro''. The Y form of the yeast, grown in liquid Sabouraud medium was inoculated into sterile reaction vials containing the 6B aerobic medium along with 2.0μCi of 14 C-substrates. (M.A.C.) [pt

  17. Octulosonic acid derivatives from Roman chamomile (Chamaemelum nobile) with activities against inflammation and metabolic disorder.

    Science.gov (United States)

    Zhao, Jianping; Khan, Shabana I; Wang, Mei; Vasquez, Yelkaira; Yang, Min Hye; Avula, Bharathi; Wang, Yan-Hong; Avonto, Cristina; Smillie, Troy J; Khan, Ikhlas A

    2014-03-28

    Six new octulosonic acid derivatives (1-6) were isolated from the flower heads of Roman chamomile (Chamaemelum nobile). Their structures were elucidated by means of spectroscopic interpretation. The biological activity of the isolated compounds was evaluated toward multiple targets related to inflammation and metabolic disorder such as NAG-1, NF-κB, iNOS, ROS, PPARα, PPARγ, and LXR. Similar to the action of NSAIDs, all the six compounds (1-6) increased NAG-1 activity 2-3-fold. They also decreased cellular oxidative stress by inhibiting ROS generation. Compounds 3, 5, and 6 activated PPARγ 1.6-2.1-fold, while PPARα was activated 1.4-fold by compounds 5 and 6 only. None of the compounds showed significant activity against iNOS or NF-κB. This is the first report of biological activity of octulosonic acid derivatives toward multiple pathways related to inflammation and metabolic disorder. The reported anti-inflammatory, hypoglycemic, antiedemic, and antioxidant activities of Roman chamomile could be partly explained as due to the presence of these constituents.

  18. Bace1 activity impairs neuronal glucose metabolism: rescue by beta-hydroxybutyrate and lipoic acid

    Directory of Open Access Journals (Sweden)

    John A Findlay

    2015-10-01

    Full Text Available Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer’s disease (AD pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP cleaving enzyme 1 (BACE1, responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD.

  19. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    Science.gov (United States)

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  20. Manipulation of dopamine metabolism contributes to attenuating innate high locomotor activity in ICR mice.

    Science.gov (United States)

    Yamaguchi, Takeshi; Nagasawa, Mao; Ikeda, Hiromi; Kodaira, Momoko; Minaminaka, Kimie; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-06-15

    Attention-deficit hyperactivity disorder (ADHD) is defined as attention deficiency, restlessness and distraction. The main characteristics of ADHD are hyperactivity, impulsiveness and carelessness. There is a possibility that these abnormal behaviors, in particular hyperactivity, are derived from abnormal dopamine (DA) neurotransmission. To elucidate the mechanism of high locomotor activity, the relationship between innate activity levels and brain monoamines and amino acids was investigated in this study. Differences in locomotor activity between ICR, C57BL/6J and CBA/N mice were determined using the open field test. Among the three strains, ICR mice showed the greatest amount of locomotor activity. The level of striatal and cerebellar DA was lower in ICR mice than in C57BL/6J mice, while the level of L-tyrosine (L-Tyr), a DA precursor, was higher in ICR mice. These results suggest that the metabolic conversion of L-Tyr to DA is lower in ICR mice than it is in C57BL/6J mice. Next, the effects of intraperitoneal injection of (6R)-5, 6, 7, 8-tetrahydro-l-biopterin dihydrochloride (BH 4 ) (a co-enzyme for tyrosine hydroxylase) and L-3,4-dihydroxyphenylalanine (L-DOPA) on DA metabolism and behavior in ICR mice were investigated. The DA level in the brain was increased by BH 4 administration, but the increased DA did not influence behavior. However, L-DOPA administration drastically lowered locomotor activity and increased DA concentration in several parts of the brain. The reduced locomotor activity may have been a consequence of the overproduction of DA. In conclusion, the high level of locomotor activity in ICR mice may be explained by a strain-specific DA metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review

    International Nuclear Information System (INIS)

    Xue Weiling; Warshawsky, David

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic compounds (HACs) constitute a major class of chemical carcinogens present in the environment. These compounds require activation to electrophilic metabolites to exert their mutagenic or carcinogenic effects. There are three principal pathways currently proposed for metabolic activation of PAH and HAC: the pathway via bay region dihydrodiol epoxide by cytochrome P450 enzymes (CYPs), the pathway via radical cation by one-electron oxidation, and the ortho-quinone pathway by dihydrodiol dehydrogenase (DD). In addition to these major pathways, a brief description of a minor metabolic activation pathway, sulfonation, for PAHs that contain a primary benzylic alcoholic group or secondary hydroxyl group(s) is included in this review. The DNA damages caused through the reactive metabolites of PAH/HAC are described involving the DNA covalent binding to form stable or depurinating adducts, the formation of apurinic sites, and the oxidative damage. The review emphasizes the chemical/biochemical reactions involved in the metabolic processes and the chemical structures of metabolites and DNA adducts

  2. Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth.

    Science.gov (United States)

    Novodvorska, Michaela; Stratford, Malcolm; Blythe, Martin J; Wilson, Raymond; Beniston, Richard G; Archer, David B

    2016-09-01

    The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germination, generation of CO2 increased dramatically. For a short period, which coincided with mobilisation of the intracellular polyol, trehalose, there was no increase in uptake of O2 indicating that trehalose was metabolised by fermentation. Data from genome-wide mRNA profiling showed the presence of transcripts associated with fermentative and respiratory metabolism in resting conidia. Following triggering of conidial outgrowth, there was a clear switch to respiration after 25min, confirmed by cyanide inhibition. No effect of SHAM, salicylhydroxamic acid, on respiration suggests electron flow via cytochrome c oxidase. Glucose entry into spores was not detectable before 1h after triggering germination. The impact of sorbic acid on germination was examined and we showed that it inhibits glucose uptake. O2 uptake was also inhibited, delaying the onset of respiration and extending the period of fermentation. In conclusion, we show that conidia suspended in water are not completely dormant and that conidial outgrowth involves fermentative metabolism that precedes respiration. Copyright © 2016. Published by Elsevier Inc.

  3. Intrinsic Xenobiotic Metabolizing Enzyme Activities in Early Life Stages of Zebrafish (Danio rerio).

    Science.gov (United States)

    Otte, Jens C; Schultz, Bernadette; Fruth, Daniela; Fabian, Eric; van Ravenzwaay, Bennard; Hidding, Björn; Salinas, Edward R

    2017-09-01

    Early life stages of zebrafish (Danio rerio, zf) are gaining attention as an alternative invivo test system for drug discovery, early developmental toxicity screenings and chemical testing in ecotoxicological and toxicological testing strategies. Previous studies have demonstrated transcriptional evidence for xenobiotic metabolizing enzymes (XME) during early zf development. However, elaborate experiments on XME activities during development are incomplete. In this work, the intrinsic activities of representative phase I and II XME were monitored by transformation of putative zf model substrates analyzed using photometry and high pressure liquid chromatography techniques. Six different defined stages of zf development (between 2.5 h postfertilization (hpf) to 120 hpf) were investigated by preparing a subcellular fraction from whole organism homogenates. We demonstrated that zf embryos as early as 2.5 hpf possess intrinsic metabolic activities for esterase, Aldh, Gst, and Cyp1a above the methodological detection limit. The activities of the enzymes Cyp3a and Nat were measurable during later stages in development. Activities represent dynamic patterns during development. The role of XME activities revealed in this work is relevant for the assessing toxicity in this test system and therefore contributes to a valuable characterization of zf embryos as an alternative testing organism in toxicology. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. The relationship between microbial metabolic activity and biocorrosion of carbon steel.

    Science.gov (United States)

    Dzierzewicz, Z; Cwalina, B; Chodurek, E; Wilczok, T

    1997-12-01

    The effect of metabolic activity (expressed by generation time, rate of H2S production and the activity of hydrogenase and adenosine phosphosulphate (APS)-reductase enzymes) of the 8 wild strains of Desulfovibrio desulfuricans and of their resistance to metal ions (Hg2+, Cu2+, Mn2+, Zn2+, Ni2+, Cr3+) on the rate of corrosion of carbon steel was studied. The medium containing lactate as the carbon source and sulphate as the electron acceptor was used for bacterial metabolic activity examination and in corrosive assays. Bacterial growth inhibition by metal ions was investigated in the sulphate-free medium. The rate of H2S production was approximately directly proportional to the specific activities of the investigated enzymes. These activities were inversely proportional to the generation time. The rate of microbiologically induced corrosion (MIC) of carbon steel was directly proportional to bacterial resistance to metal ions (correlation coefficient r = 0.95). The correlation between the MIC rate and the activity of enzymes tested, although weaker, was also observed (r = 0.41 for APS-reductase; r = 0.69 for hydrogenase; critical value rc = 0.30, p = 0.05, n = 40).

  5. Kynurenine pathway metabolic balance influences microglia activity: Targeting kynurenine monooxygenase to dampen neuroinflammation.

    Science.gov (United States)

    Garrison, Allison M; Parrott, Jennifer M; Tuñon, Arnulfo; Delgado, Jennifer; Redus, Laney; O'Connor, Jason C

    2018-08-01

    Chronic stress or inflammation increases tryptophan metabolism along the kynurenine pathway (KP), and the generation of neuroactive kynurenine metabolites contributes to subsequent depressive-like behaviors. Microglia regulate KP balance by preferentially producing oxidative metabolites, including quinolinic acid. Research has focused on the interplay between cytokines and HPA axis-derived corticosteroids in regulating microglial activity and effects of KP metabolites directly on neurons; however, the potential role that KP metabolites have directly on microglial activity is unknown. Here, murine microglia were stimulated with lipopolysaccharide(LPS). After 6 h, mRNA expression of interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α and inducible nitric oxide synthase(iNOS) was dose-dependently increased along with the rate-limiting enzymes for oxidative KP metabolism, indoleamine-2,3-dioxygenase(IDO)-1 and kynurenine 3-monooxygenase(KMO). By 24 h post-LPS, kynurenine and quinolinic acid in the media was elevated. Inhibiting KMO with Ro 61-8048 during LPS challenge attenuated extracellular nitrite accumulation and expression of KMO and TNF-α in response to LPS. Similarly, primary microglia isolated from KMO -/- mice exhibited a significantly reduced pro-inflammatory response to LPS compared to WT controls. To determine whether the substrate (kynurenine) or end product (quinolinic acid) of KMO-dependent metabolism modulates the LPS response, microglia were treated with increasing concentrations of L-kynurenine or quinolinic acid in combination with LPS or saline. Interestingly, quinolinic acid did not impact the microglial LPS response. However, L-kynurenine had dose-dependent inhibitory effect on the LPS response. These data are the first to show an anti-inflammatory effect of KMO inhibition on microglia during immune challenge and suggest that KP metabolic balance may play a direct role in regulating microglia activity. Published by Elsevier Ltd.

  6. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation

    NARCIS (Netherlands)

    Feige, Jérôme N.; Lagouge, Marie; Canto, Carles; Strehle, Axelle; Houten, Sander M.; Milne, Jill C.; Lambert, Philip D.; Mataki, Chikage; Elliott, Peter J.; Auwerx, Johan

    2008-01-01

    The NAD(+)-dependent deacetylase SIRT1 controls metabolic processes in response to low nutrient availability. We report the metabolic phenotype of mice treated with SRT1720, a specific and potent synthetic activator of SIRT1 that is devoid of direct action on AMPK. SRT1720 administration robustly

  7. [Important application of intestinal transporters and metabolism enzymes on gastrointestinal disposal of active ingredients of Chinese materia medica].

    Science.gov (United States)

    Bi, Xiaolin; Du, Qiu; Di, Liuqing

    2010-02-01

    Oral drug bioavailability depends on gastrointestinal absorption, intestinal transporters and metabolism enzymes are the important factors in drug gastrointestinal absorption and they can also be induced or inhibited by the active ingredients of Chinese materia medica. This article presents important application of intestinal transporters and metabolism enzymes on gastrointestinal disposal of the active ingredients of Chinese materia medica, and points out the importance of research on transport and metabolism of the active ingredients of Chinese materia medica in Chinese extract and Chinese medicinal formulae.

  8. Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite.

    Directory of Open Access Journals (Sweden)

    Varsha Agarwal

    2008-06-01

    Full Text Available Cytochrome P450 (P450 is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

  9. Are barriers to physical activity similar for adults with and without abnormal glucose metabolism?

    Science.gov (United States)

    Hume, Clare; Dunstan, David; Salmon, Jo; Healy, Genevieve; Andrianopoulos, Nick; Owen, Neville

    2010-01-01

    The purpose of this study was to examine perceived barriers to physical activity among adults with and without abnormal glucose metabolism (AGM), and whether barriers varied according to physical activity status. The 1999 to 2000 Australian Diabetes, Obesity, and Lifestyle Study (AusDiab) was a population-based cross-sectional study among adults aged > or =25 years. AGM was identified through an oral glucose tolerance test. The previous week's physical activity and individual, social, and environmental barriers to physical activity were self-reported. Logistic regression analyses examined differences in barriers to physical activity between those with and without AGM, and for those with and without AGM who did and did not meet the minimum recommendation of 150 minutes/week of moderate-to-vigorous intensity physical activity. Of the 7088 participants (47.5 +/- 12.7 years; 46% male), 18.5% had AGM. Approximately 47.5% of those with AGM met the physical activity recommendation, compared to 54.7% of those without AGM (P barriers to physical activity included lack of time, other priorities, and being tired. Following adjustment for sociodemographic and behavioral factors, there were few differences in barriers to physical activity between those with and without AGM, even after stratifying according to physical activity. Adults with AGM report similar barriers to physical activity, as do those without AGM. Programs for those with AGM can therefore focus on the known generic adult-reported barriers to physical activity.

  10. Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    Science.gov (United States)

    Corona de la Peña, Norma; Gutiérrez-Aguilar, Manuel; Hernández-Reséndiz, Ileana; Marín-Hernández, Álvaro

    2017-01-01

    Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation. PMID:28817667

  11. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    DEFF Research Database (Denmark)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle...... HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...

  12. Influence of carbofuran on certain metabolic and symbiotic activities of a cowpea Rhizobium

    International Nuclear Information System (INIS)

    Palaniappan, S.; Balasubramanian, A.

    1983-01-01

    Using carbon 14 radioisotope an in-vitro study of the effect of insecticides, carbofuran, on the metabolic and symbiotic activities of Rhizobium sp. cowpea group, was carried out. The study indicated that at 10 ppm carbofuran inhibited the in-vitro growth of the bacterium, suppressed the oxidation of all the Trichloroacetic acid (TCA) cycle intermediates, significantly reduced glucose oxidation and translocation and affected the growth and symbiotic activities of the cowpea as reflected by a reduction in the dry matter production and total nitrogen content. The insecticide was itself degraded by the Rhizobium sp. within 30 days of incubation

  13. Transcriptional activity of the giant barrel sponge, Xestospongia muta Holobiont: Molecular Evidence for Metabolic Interchange

    Directory of Open Access Journals (Sweden)

    Cara L Fiore

    2015-04-01

    Full Text Available Compared to our understanding of the taxonomic composition of the symbiotic microbes in marine sponges, the functional diversity of these symbionts is largely unknown. Furthermore, the application of genomic, transcriptomic, and proteomic techniques to functional questions on sponge host-symbiont interactions is in its infancy. In this study, we generated a transcriptome for the host and a metatranscriptome of its microbial symbionts for the giant barrel sponge, Xestospongia muta, from the Caribbean. In combination with a gene-specific approach, our goals were to 1 characterize genetic evidence for nitrogen cycling in X. muta, an important limiting nutrient on coral reefs 2 identify which prokaryotic symbiont lineages are metabolically active and, 3 characterize the metabolic potential of the prokaryotic community. Xestospongia muta expresses genes from multiple nitrogen transformation pathways that when combined with the abundance of this sponge, and previous data on dissolved inorganic nitrogen fluxes, shows that this sponge is an important contributor to nitrogen cycling on coral reefs. Additionally, we observed significant differences in gene expression of the archaeal amoA gene, which is involved in ammonia oxidation, between coral reef locations consistent with differences in the fluxes of dissolved inorganic nitrogen previously reported. In regards to symbiont metabolic potential, the genes in the biosynthetic pathways of several amino acids were present in the prokaryotic metatranscriptome dataset but in the host-derived transcripts only the catabolic reactions for these amino acids were present. A similar pattern was observed for the B vitamins (riboflavin, biotin, thiamin, cobalamin. These results expand our understanding of biogeochemical cycling in sponges, and the metabolic interchange highlighted here advances the field of symbiont physiology by elucidating specific metabolic pathways where there is high potential for host

  14. The relationship between metabolic presbycusis and serum paraoxonase/arylesterase activity.

    Science.gov (United States)

    Keleş, Erol; Kapusuz, Zeliha; Gürsu, Mehmet Ferit; Karlıdag, Turgut; Kaygusuz, Irfan; Bulmuş, Funda Gülcü; Yalcın, Sinasi

    2014-01-01

    To determine the presence of a relationship between metabolic presbycusis and serum paraoxonase/arylesterase activity. A total of 30 patients who had been admitted to the Ear, Nose, and Throat (ENT) Clinic of Fırat University Medical Faculty and diagnosed as metabolic presbycusis were included in the study. The control group was composed of 30 healthy volunteers. Pure tone audiometry and impedencemeter were performed on all subjects included in the study at the audiometry laboratory of the ENT clinic. The presence of a regular hearing curve, a symmetrical sensorineural hearing loss more than 25 dB with preserved speech discrimination were accepted as criteria for metabolic presbycusis. Blood samples were drawn from the patients prior to the hearing tests. The sera were separated for measurements of total cholesterol, triglyceride, high-density lipoprotein, very low-density lipoprotein, low-density lipoprotein, human serum paraoxonase and arylesterase levels, respectively. No statistically significant difference was found between the patient and the control groups in terms of age and gender. Paraoxonase, arylesterase and paraoxonase/arylesterase, high-density lipoprotein levels were found to decrease in the study group and the difference was found to be statistically significant compared to the control group (P presbycusis. Furthermore, the results of this study make us think that there could be a relationship between metabolic presbycusis and cardiovascular diseases. In this case, metabolic presbycusis may be a determining parameter in the early diagnosis of cardiovascular diseases. We consider that this study may be the pioneer for further studies conducted with larger patient numbers.

  15. Physical activity and not sedentary time per se influences on clustered metabolic risk in elderly community-dwelling women.

    Directory of Open Access Journals (Sweden)

    Andreas Nilsson

    Full Text Available Whether amount of time spent in sedentary activities influences on clustered metabolic risk in elderly, and to what extent such an influence is independent of physical activity behavior, remain unclear. Therefore, the aim of the study was to examine cross-sectional associations of objectively assessed physical activity and sedentary behavior on metabolic risk outcomes in a sample of elderly community-dwelling women.Metabolic risk outcomes including waist circumference, systolic and diastolic blood pressures, fasting levels of plasma glucose, HDL-cholesterol and triglycerides were assessed in 120 community-dwelling older women (65-70 yrs. Accelerometers were used to retrieve daily sedentary time, breaks in sedentary time, daily time in light (LPA and moderate-to-vigorous physical activity (MVPA, and total amount of accelerometer counts. Multivariate regression models were used to examine influence of physical activity and sedentary behavior on metabolic risk outcomes including a clustered metabolic risk score.When based on isotemporal substitution modeling, replacement of a 10-min time block of MVPA with a corresponding time block of either LPA or sedentary activities was associated with an increase in clustered metabolic risk score (β = 0.06 to 0.08, p < 0.05, and an increase in waist circumference (β = 1.78 to 2.19 p < 0.01. All associations indicated between sedentary time and metabolic risk outcomes were lost once variation in total accelerometer counts was adjusted for.Detrimental influence of a sedentary lifestyle on metabolic health is likely explained by variations in amounts of physical activity rather than amount of sedentary time per se. Given our findings, increased amounts of physical activity with an emphasis on increased time in MVPA should be recommended in order to promote a favorable metabolic health profile in older women.

  16. Joint association of physical activity in leisure and total sitting time with metabolic syndrome amongst 15,235 Danish adults

    DEFF Research Database (Denmark)

    Petersen, Christina Bjørk; Nielsen, Asser Jon; Bauman, Adrian

    2014-01-01

    and total daily sitting time were assessed by self-report in 15,235 men and women in the Danish Health Examination Survey 2007-2008. Associations between leisure time physical activity, total sitting time and metabolic syndrome were investigated in logistic regression analysis. RESULTS: Adjusted odds ratios......BACKGROUND: Recent studies suggest that physical inactivity as well as sitting time are associated with metabolic syndrome. Our aim was to examine joint associations of leisure time physical activity and total daily sitting time with metabolic syndrome. METHODS: Leisure time physical activity...... (OR) for metabolic syndrome were 2.14 (95% CI: 1.88-2.43) amongst participants who were inactive in leisure time compared to the most active, and 1.42 (95% CI: 1.26-1.61) amongst those who sat for ≥10h/day compared to physical activity, sitting time...

  17. Physical activity does not attenuate the relationship between daily cortisol and metabolic syndrome in obese youth.

    Science.gov (United States)

    Guseman, Emily Hill; Pfeiffer, Karin A; Carlson, Joseph J; Stansbury, Kathy; Eisenmann, Joey C

    2016-01-01

    We examined the associations among daily cortisol, physical activity (MVPA) and continuous metabolic syndrome score (cMetS) in obese youth. Fifty adolescents (mean age 14.8 ± 1.9 years) were recruited from medical clinics. Daily MVPA (min/day) was assessed by accelerometry. Saliva was sampled at prescribed times: immediately upon waking; 30 min after waking; and 3, 6 and 9 h after waking. Fasting lipids, glucose, waist circumference and blood pressure were used to calculate a continuous metabolic syndrome score (cMetS). Multiple linear regression analysis was used to examine associations among variables. The mean cMetS score was 4.16 ± 4.30 and did not differ by clinic or sex. No significant relationship was found between cortisol area under the curve (cAUC) and cMetS, nor did the interaction of MVPA with cAUC significantly predict cMetS. Physical activity, cortisol, and metabolic risk were not associated in this sample of obese adolescents. Future research should examine the role of insulin sensitivity in these relationships.

  18. Tributyltin toxicity in abalone (Haliotis diversicolor supertexta) assessed by antioxidant enzyme activity, metabolic response, and histopathology.

    Science.gov (United States)

    Zhou, Jin; Zhu, Xiao-shan; Cai, Zhong-hua

    2010-11-15

    A toxicity test was performed to investigate the possible harmful effects of tributyltin (TBT) on abalone (Haliotis diversicolor supertexta). Animals were exposed to TBT in a range of environmentally relevant concentrations (2, 10 and 50 ng/L) for 30 days under laboratory conditions. TBT-free conditions were used as control treatments. The activity of antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD), and malondialdehyde (MDA), along with levels of haemolymph metabolites, and hepatopancreas histopathology were analyzed. The results showed that TBT decreased SOD activity, and increased POD level and MDA production in a dose-dependent way, indicating that oxidative injury was induced by TBT. Haemolymph metabolite measurements showed that TBT increased alanine and glutamate levels, and decreased glucose content, which suggested perturbation of energy metabolism. Elevated levels of acetate and pyruvate in the haemolymph indicated partial alteration of lipid metabolism. A decrease in lactate and an increase in succinate, an intermediate of the tricarboxylic acid (TCA) cycle, indicated disturbance of amino acid metabolism. Hepatopancreas tissues also exhibited inflammatory responses characterized by histopathological changes such as cell swelling, granular degeneration, and inflammation. Taken together, these results demonstrated that TBT was a potential toxin with a variety of deleterious effects on abalone. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Blood flow to long bones indicates activity metabolism in mammals, reptiles and dinosaurs.

    Science.gov (United States)

    Seymour, Roger S; Smith, Sarah L; White, Craig R; Henderson, Donald M; Schwarz-Wings, Daniela

    2012-02-07

    The cross-sectional area of a nutrient foramen of a long bone is related to blood flow requirements of the internal bone cells that are essential for dynamic bone remodelling. Foramen area increases with body size in parallel among living mammals and non-varanid reptiles, but is significantly larger in mammals. An index of blood flow rate through the foramina is about 10 times higher in mammals than in reptiles, and even higher if differences in blood pressure are considered. The scaling of foramen size correlates well with maximum whole-body metabolic rate during exercise in mammals and reptiles, but less well with resting metabolic rate. This relates to the role of blood flow associated with bone remodelling during and following activity. Mammals and varanid lizards have much higher aerobic metabolic rates and exercise-induced bone remodelling than non-varanid reptiles. Foramen areas of 10 species of dinosaur from five taxonomic groups are generally larger than from mammals, indicating a routinely highly active and aerobic lifestyle. The simple measurement holds possibilities offers the possibility of assessing other groups of extinct and living vertebrates in relation to body size, behaviour and habitat.

  20. Moderate daily exercise activates metabolic flexibility to prevent prenatally induced obesity.

    Science.gov (United States)

    Miles, Jennifer L; Huber, Korinna; Thompson, Nichola M; Davison, Michael; Breier, Bernhard H

    2009-01-01

    Obesity and its associated comorbidities are of major worldwide concern. It is now recognized that there are a number of metabolically distinct pathways of obesity development. The present paper investigates the effect of moderate daily exercise on the underlying mechanisms of one such pathway to obesity, through interrogation of metabolic flexibility. Pregnant Wistar rats were either fed chow ad libitum or undernourished throughout pregnancy, generating control or intrauterine growth restricted (IUGR) offspring, respectively. At 250 d of age, dual-emission x-ray absorptiometry scans and plasma analyses showed that moderate daily exercise, in the form of a measured amount of wheel running (56 m/d), prevented the development of obesity consistently observed in nonexercised IUGR offspring. Increased plasma C-peptide and hepatic atypical protein kinase Czeta levels explained increased glucose uptake and increased hepatic glycogen storage in IUGR offspring. Importantly, whereas circulating levels of retinol binding protein 4 were elevated in obese, nonexercised IUGR offspring, indicative of glucose sparing without exercise, retinol binding protein 4 levels were normalized in the exercised IUGR group. These data suggest that IUGR offspring have increased flexibility of energy storage and use and that moderate daily exercise prevents obesity development through activation of distinct pathways of energy use. Thus, despite a predisposition to develop obesity under sedentary conditions, obesity development was prevented in IUGR offspring when exercise was available. These results emphasize the importance of tailored lifestyle changes that activate distinct pathways of metabolic flexibility for obesity prevention.

  1. Icariin Is A PPARα Activator Inducing Lipid Metabolic Gene Expression in Mice

    Directory of Open Access Journals (Sweden)

    Yuan-Fu Lu

    2014-11-01

    Full Text Available Icariin is effective in the treatment of hyperlipidemia. To understand the effect of icariin on lipid metabolism, effects of icariin on PPARα and its target genes were investigated. Mice were treated orally with icariin at doses of 0, 100, 200, and 400 mg/kg, or clofibrate (500 mg/kg for five days. Liver total RNA was isolated and the expressions of PPARα and lipid metabolism genes were examined. PPARα and its marker genes Cyp4a10 and Cyp4a14 were induced 2-4 fold by icariin, and 4-8 fold by clofibrate. The fatty acid (FA binding and co-activator proteins Fabp1, Fabp4 and Acsl1 were increased 2-fold. The mRNAs of mitochondrial FA β-oxidation enzymes (Cpt1a, Acat1, Acad1 and Hmgcs2 were increased 2-3 fold. The mRNAs of proximal β-oxidation enzymes (Acox1, Ech1, and Ehhadh were also increased by icariin and clofibrate. The expression of mRNAs for sterol regulatory element-binding factor-1 (Srebf1 and FA synthetase (Fasn were unaltered by icariin. The lipid lysis genes Lipe and Pnpla2 were increased by icariin and clofibrate. These results indicate that icariin is a novel PPARα agonist, activates lipid metabolism gene expressions in liver, which could be a basis for its lipid-lowering effects and its beneficial effects against diabetes.

  2. Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

    International Nuclear Information System (INIS)

    Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska; Levels, Johannes H.M.; Quax, Paul H.A.; Meijers, Joost C.M.; Pannekoek, Hans; Groen, Albert K.; Vries, Carlie J.M. de

    2008-01-01

    NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor, and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

  3. AMP-activated protein kinase: Role in metabolism and therapeutic implications.

    Science.gov (United States)

    Schimmack, Greg; Defronzo, Ralph A; Musi, Nicolas

    2006-11-01

    AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge which becomes activated in situations of energy consumption. AMPK functions to restore cellular ATP levels by modifying diverse metabolic and cellular pathways. In the skeletal muscle, AMPK is activated during exercise and is involved in contraction-stimulated glucose transport and fatty acid oxidation. In the heart, AMPK activity increases during ischaemia and functions to sustain ATP, cardiac function and myocardial viability. In the liver, AMPK inhibits the production of glucose, cholesterol and triglycerides and stimulates fatty acid oxidation. Recent studies have shown that AMPK is involved in the mechanism of action of metformin and thiazolidinediones, and the adipocytokines leptin and adiponectin. These data, along with evidence that pharmacological activation of AMPK in vivo improves blood glucose homeostasis, cholesterol concentrations and blood pressure in insulin-resistant rodents, make this enzyme an attractive pharmacological target for the treatment of type 2 diabetes, ischaemic heart disease and other metabolic diseases.

  4. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism

    DEFF Research Database (Denmark)

    Szekeres, Ferenc; Chadt, Alexandra; Tom, Robby Z

    2012-01-01

    The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL...... be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice......)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose...

  5. Physical activity energy expenditure vs cardiorespiratory fitness level in impaired glucose metabolism

    DEFF Research Database (Denmark)

    Lidegaard, Lærke P; Hansen, Anne-Louise Smidt; Johansen, Nanna B

    2015-01-01

    Aim/hypothesis: Little is known about the relative roles of physical activity energy expenditure (PAEE) and cardiorespiratory fitness (CRF) as determinants of glucose regulation. The aim of this study was to examine the associations of PAEE and CRF with markers of glucose metabolism, and to test...... the hypothesis that CRF modifies the association between PAEE and glucose metabolism. Methods: We analysed cross-sectional data from 755 adults from the Danish ADDITION-PRO study. On the basis of OGTT results, participants without known diabetes were classified as having normal glucose tolerance, isolated...... impaired fasting glycaemia (i-IFG), isolated impaired glucose tolerance (i-IGT), combined IFG + IGT or screen-detected diabetes mellitus. Markers of insulin sensitivity and beta cell function were determined. PAEE was measured using a combined heart rate and movement sensor. CRF (maximal oxygen uptake...

  6. Metabolic Activation of the Tumorigenic Pyrrolizidine Alkaloid, Retrorsine, Leading to DNA Adduct Formation In Vivo

    Directory of Open Access Journals (Sweden)

    Ming W. Chou

    2005-04-01

    Full Text Available Pyrrolizidine alkaloids are naturally occurring genotoxic chemicals produced by a large number of plants. The high toxicity of many pyrrolizidine alkaloids has caused considerable loss of free-ranging livestock due to liver and pulmonary lesions. Chronic exposure of toxic pyrrolizidine alkaloids to laboratory animals induces cancer. This investigation studies the metabolic activation of retrorsine, a representative naturally occurring tumorigenic pyrrolizidine alkaloid, and shows that a genotoxic mechanism is correlated to the tumorigenicity of retrorsine. Metabolism of retrorsine by liver microsomes of F344 female rats produced two metabolites, 6, 7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP, at a rate of 4.8 ± 0.1 nmol/mg/min, and retrorsine-N-oxide, at a rate of 17.6±0.5 nmol/mg/min. Metabolism was enhanced 1.7-fold by using liver microsomes prepared from dexamethasone-treated rats. DHP formation was inhibited 77% and retrorsine N-oxide formation was inhibited 29% by troleandomycin, a P450 3A enzyme inhibitor. Metabolism of retrorsine with lung, kidney, and spleen microsomes from dexamethasone-treated rats also generated DHP and the N-oxide derivative. When rat liver microsomal metabolism of retrorsine occurred in the presence of calf thymus DNA, a set of DHP-derived DNA adducts was formed; these adducts were detected and quantified by using a previously developed 32P-postlabeling/HPLC method. These same DNA adducts were also found in liver DNA of rats gavaged with retrorsine. Since DHP-derived DNA adducts are suggested to be potential biomarkers of riddelliine-induced tumorigenicity, our results indicate that (i similar to the metabolic activation of riddelliine, the mechanism of retrorsine-induced carcinogenicity in rats is also through a genotoxic mechanism involving DHP; and (ii the set of DHP-derived DNA adducts found in liver DNA of rats gavaged with retrorsine or riddelliine can serve as biomarkers for the

  7. Metabolic Activation of the Tumorigenic Pyrrolizidine Alkaloid, Retrorsine, Leading to DNA Adduct Formation In Vivo

    Science.gov (United States)

    Wang, Yu-Ping; Fu, Peter P.; Chou, Ming W.

    2005-01-01

    Pyrrolizidine alkaloids are naturally occurring genotoxic chemicals produced by a large number of plants. The high toxicity of many pyrrolizidine alkaloids has caused considerable loss of free-ranging livestock due to liver and pulmonary lesions. Chronic exposure of toxic pyrrolizidine alkaloids to laboratory animals induces cancer. This investigation studies the metabolic activation of retrorsine, a representative naturally occurring tumorigenic pyrrolizidine alkaloid, and shows that a genotoxic mechanism is correlated to the tumorigenicity of retrorsine. Metabolism of retrorsine by liver microsomes of F344 female rats produced two metabolites, 6, 7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP), at a rate of 4.8 ± 0.1 nmol/mg/min, and retrorsine-N-oxide, at a rate of 17.6±0.5 nmol/mg/min. Metabolism was enhanced 1.7-fold by using liver microsomes prepared from dexamethasone-treated rats. DHP formation was inhibited 77% and retrorsine N-oxide formation was inhibited 29% by troleandomycin, a P450 3A enzyme inhibitor. Metabolism of retrorsine with lung, kidney, and spleen microsomes from dexamethasone-treated rats also generated DHP and the N-oxide derivative. When rat liver microsomal metabolism of retrorsine occurred in the presence of calf thymus DNA, a set of DHP-derived DNA adducts was formed; these adducts were detected and quantified by using a previously developed 32P-postlabeling/HPLC method. These same DNA adducts were also found in liver DNA of rats gavaged with retrorsine. Since DHP-derived DNA adducts are suggested to be potential biomarkers of riddelliine-induced tumorigenicity, our results indicate that (i) similar to the metabolic activation of riddelliine, the mechanism of retrorsine-induced carcinogenicity in rats is also through a genotoxic mechanism involving DHP; and (ii) the set of DHP-derived DNA adducts found in liver DNA of rats gavaged with retrorsine or riddelliine can serve as biomarkers for the tumorigenicity induced by

  8. [Lipid and metabolic profiles in adolescents are affected more by physical fitness than physical activity (AVENA study)].

    Science.gov (United States)

    García-Artero, Enrique; Ortega, Francisco B; Ruiz, Jonatan R; Mesa, José L; Delgado, Manuel; González-Gross, Marcela; García-Fuentes, Miguel; Vicente-Rodríguez, Germán; Gutiérrez, Angel; Castillo, Manuel J

    2007-06-01

    To determine whether the level of physical activity or physical fitness (i.e., aerobic capacity and muscle strength) in Spanish adolescents influences lipid and metabolic profiles. From a total of 2859 Spanish adolescents (age 13.0-18.5 years) taking part in the AVENA (Alimentación y Valoración del Estado Nutricional en Adolescentes) study, 460 (248 male, 212 female) were randomly selected for blood analysis. Their level of physical activity was determined by questionnaire. Aerobic capacity was assessed using the Course-Navette test. Muscle strength was evaluated using manual dynamometry, the long jump test, and the flexed arm hang test. A lipid-metabolic cardiovascular risk index was derived from the levels of triglycerides, low-density lipoprotein cholesterol (LDLC), high-density lipoprotein cholesterol (HDLC), and glucose. No relationship was found between the level of physical activity and lipid-metabolic index in either sex. In contrast, there was an inverse relationship between the lipid-metabolic index and aerobic capacity in males (P=.003) after adjustment for physical activity level and muscle strength. In females, a favorable lipid-metabolic index was associated with greater muscle strength (P=.048) after adjustment for aerobic capacity. These results indicate that, in adolescents, physical fitness, and not physical activity, is related to lipid and metabolic cardiovascular risk. Higher aerobic capacity in males and greater muscle strength in females were associated with lower lipid and metabolic risk factors for cardiovascular disease.

  9. Physical activity and metabolic disease among people with affective disorders: Prevention, management and implementation.

    Science.gov (United States)

    Vancampfort, Davy; Stubbs, Brendon

    2017-12-15

    One in ten and one in three of people with affective disorders experience diabetes and metabolic syndrome respectively. Physical activity (PA) and sedentary behaviour (SB) are key risk factors that can ameliorate the risk of metabolic disease among this population. However, PA is often seen as luxury and/or a secondary component within the management of people with affective disorders. The current article provides a non-systematic best-evidence synthesis of the available literature, detailing a number of suggestions for the implementation of PA into clinical practice. Whilst the evidence is unequivocal for the efficacy of PA to prevent and manage metabolic disease in the general population, it is in its infancy in this patient group. Nonetheless, action must be taken now to ensure that PA and reducing SB are given a priority to prevent and manage metabolic diseases and improve wider health outcomes. PA should be treated as a vital sign and all people with affective disorders asked about their activity levels and if appropriate advised to increase this. There is a need for investment in qualified exercise specialists in clinical practice such as physiotherapists to undertake and oversee PA in practice. Behavioural strategies such as the self-determined theory should be employed to encourage adherence. Funding is required to develop the evidence base and elucidate the optimal intervention characteristics. PA interventions should form an integral part of the multidisciplinary management of people with affective disorders and our article outlines the evidence and strategies to implement this in practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Metabolic and behavioral responses to high-fat feeding in mice selectively bred for high wheel-running activity

    NARCIS (Netherlands)

    Vaanholt, L. M.; Jonas, I.; Doornbos, M.; Schubert, K. A.; Nyakas, C.; Garland, T.; Visser, G. H.; van Dijk, G.; Garland Jr., T.

    2008-01-01

    Objective: Increased dietary fat intake is a precipitating factor for the development of obesity and associated metabolic disturbances. Physically active individuals generally have a reduced risk of developing these unhealthy states, but the underlying mechanisms are poorly understood. In the

  11. Metabolic stabilization of acetylcholine receptors in vertebrate neuromuscular junction by muscle activity

    International Nuclear Information System (INIS)

    Rotzler, S.; Brenner, H.R.

    1990-01-01

    The effects of muscle activity on the growth of synaptic acetylcholine receptor (AChR) accumulations and on the metabolic AChR stability were investigated in rat skeletal muscle. Ectopic end plates induced surgically in adult soleus muscle were denervated early during development when junctional AChR number and stability were still low and, subsequently, muscles were either left inactive or they were kept active by chronic exogenous stimulation. AChR numbers per ectopic AChR cluster and AChR stabilities were estimated from the radioactivity and its decay with time, respectively, of end plate sites whose AChRs had been labeled with 125 I-alpha-bungarotoxin (alpha-butx). The results show that the metabolic stability of the AChRs in ectopic clusters is reversibly increased by muscle activity even when innervation is eliminated very early in development. 1 d of stimulation is sufficient to stabilize the AChRs in ectopic AChR clusters. Muscle stimulation also produced an increase in the number of AChRs at early denervated end plates. Activity-induced cluster growth occurs mainly by an increase in area rather than in AChR density, and for at least 10 d after denervation is comparable to that in normally developing ectopic end plates. The possible involvement of AChR stabilization in end plate growth is discussed

  12. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress.

    Science.gov (United States)

    Kant, Shashi; Standen, Claire L; Morel, Caroline; Jung, Dae Young; Kim, Jason K; Swat, Wojciech; Flavell, Richard A; Davis, Roger J

    2017-09-19

    Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA) activation of a non-receptor tyrosine kinase (SRC)-dependent cJun NH 2 -terminal kinase (JNK) signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress

    Directory of Open Access Journals (Sweden)

    Shashi Kant

    2017-09-01

    Full Text Available Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA activation of a non-receptor tyrosine kinase (SRC-dependent cJun NH2-terminal kinase (JNK signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway.

  14. Metabolic profile in two physically active Inuit groups consuming either a western or a traditional Inuit diet

    DEFF Research Database (Denmark)

    Andersen, Thor Munch; Olsen, David B; Søndergaard, Hans

    2012-01-01

    To evaluate the effect of regular physical activity on metabolic risk factors and blood pressure in Inuit with high BMI consuming a western diet (high amount of saturated fatty acids and carbohydrates with a high glycemic index).......To evaluate the effect of regular physical activity on metabolic risk factors and blood pressure in Inuit with high BMI consuming a western diet (high amount of saturated fatty acids and carbohydrates with a high glycemic index)....

  15. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F

    2016-07-01

    Aerobic glycolysis occurs during brain activation and is characterized by preferential up-regulation of glucose utilization compared with oxygen consumption even though oxygen level and delivery are adequate. Aerobic glycolysis is a widespread phenomenon that underlies energetics of diverse brain activities, such as alerting, sensory processing, cognition, memory, and pathophysiological conditions, but specific cellular functions fulfilled by aerobic glycolysis are poorly understood. Evaluation of evidence derived from different disciplines reveals that aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non-specific β-adrenoceptor antagonist. The metabolic pathways that contribute to excess utilization of glucose compared with oxygen include glycolysis, the pentose phosphate shunt pathway, the malate-aspartate shuttle, and astrocytic glycogen turnover. Increased lactate production by unidentified cells, and lactate dispersal from activated cells and lactate release from the brain, both facilitated by astrocytes, are major factors underlying aerobic glycolysis in subjects with low blood lactate levels. Astrocyte-neuron lactate shuttling with local oxidation is minor. Blockade of aerobic glycolysis by propranolol implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus. Norepinephrine has a powerful influence on astrocytic metabolism and glycogen turnover that can stimulate carbohydrate utilization more than oxygen consumption, whereas β-receptor blockade 're-balances' the stoichiometry of oxygen-glucose or -carbohydrate metabolism by suppressing glucose and glycogen utilization more than oxygen consumption. This conceptual framework may be helpful for design of future studies to elucidate functional roles of preferential non-oxidative glucose utilization and glycogen turnover during brain

  16. Acyl-CoA synthetase activity links wild-type but not mutant a-Synuclein to brain arachidonate metabolism

    DEFF Research Database (Denmark)

    Golovko, Mikhail; Rosenberger, Thad; Færgeman, Nils J.

    2006-01-01

    Because alpha-synuclein (Snca) has a role in brain lipid metabolism, we determined the impact that the loss of alpha-synuclein had on brain arachidonic acid (20:4n-6) metabolism in vivo using Snca-/- mice. We measured [1-(14)C]20:4n-6 incorporation and turnover kinetics in brain phospholipids using......, our data demonstrate that alpha-synuclein has a major role in brain 20:4n-6 metabolism through its modulation of endoplasmic reticulum-localized acyl-CoA synthetase activity, although mutant forms of alpha-synuclein fail to restore this activity....

  17. Disposition, Metabolism and Histone Deacetylase and Acetyltransferase Inhibition Activity of Tetrahydrocurcumin and Other Curcuminoids

    Directory of Open Access Journals (Sweden)

    Júlia T. Novaes

    2017-10-01

    Full Text Available Tetrahydrocurcumin (THC, curcumin and calebin-A are curcuminoids found in turmeric (Curcuma longa. Curcuminoids have been established to have a variety of pharmacological activities and are used as natural health supplements. The purpose of this study was to identify the metabolism, excretion, antioxidant, anti-inflammatory and anticancer properties of these curcuminoids and to determine disposition of THC in rats after oral administration. We developed a UHPLC–MS/MS assay for THC in rat serum and urine. THC shows multiple redistribution phases with corresponding increases in urinary excretion rate. In-vitro antioxidant activity, histone deacetylase (HDAC activity, histone acetyltransferase (HAT activity and anti-inflammatory inhibitory activity were examined using commercial assay kits. Anticancer activity was determined in Sup-T1 lymphoma cells. Our results indicate THC was poorly absorbed after oral administration and primarily excreted via non-renal routes. All curcuminoids exhibited multiple pharmacological effects in vitro, including potent antioxidant activity as well as inhibition of CYP2C9, CYP3A4 and lipoxygenase activity without affecting the release of TNF-α. Unlike curcumin and calebin-A, THC did not inhibit HDAC1 and PCAF and displayed a weaker growth inhibition activity against Sup-T1 cells. We show evidence for the first time that curcumin and calebin-A inhibit HAT and PCAF, possibly through a Michael-addition mechanism.

  18. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models

    Directory of Open Access Journals (Sweden)

    Hammami Ines

    2012-07-01

    Full Text Available Abstract Background The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs. Incubating bone marrow (BM precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-6 (IL-6 generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. Results Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK was activated during MDSC maturation in GM-CSF and IL-6–treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was

  19. Metabolic potential and in situ activity of marine Marinimicrobia bacteria in an anoxic water column.

    Science.gov (United States)

    Bertagnolli, Anthony D; Padilla, Cory C; Glass, Jennifer B; Thamdrup, Bo; Stewart, Frank J

    2017-11-01

    Marinimicrobia bacteria are widespread in subeuphotic areas of the oceans and particularly abundant in oxygen minimum zones (OMZs). Information on Marinimicrobia metabolism is sparse, making the biogeochemical influence of this group challenging to predict. Here, metagenome-assembled genomes representing Marinimicrobia subgroups PN262000N21 and ARCTIC96B-7 were retrieved to near completion (97% and 94%) from OMZ metagenomes, with contamination (14.1%) observed only in ARCTIC96B-7. Genes for aerobic carbon monoxide (CO) oxidation, polysulfide metabolism and hydrogen utilization were identified only in PN262000N21, while genes for partial denitrification occurred in both genomes. Transcripts mapping to these genomes increased from utilizing proteins, including sulfur transferases, were enriched at sulfidic depths. PN262000N21 transcripts encoding a protein with fibronectin domains similar to those in cellulosome-producing bacteria were also abundant, suggesting a potential for high molecular weight carbon cycling. These data provide omic-level descriptions of metabolic potential and activity in OMZ-associated Marinimicrobia, suggesting differentiation between subgroups with roles in carbon and dissimilatory inorganic nitrogen and sulfur cycling. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Metabolic profiles and free radical scavenging activity of Cordyceps bassiana fruiting bodies according to developmental stage.

    Directory of Open Access Journals (Sweden)

    Sun-Hee Hyun

    Full Text Available The metabolic profiles of Cordyceps bassiana according to fruiting body developmental stage were investigated using gas chromatography-mass spectrometry. We were able to detect 62 metabolites, including 48 metabolites from 70% methanol extracts and 14 metabolites from 100% n-hexane extracts. These metabolites were classified as alcohols, amino acids, organic acids, phosphoric acids, purine nucleosides and bases, sugars, saturated fatty acids, unsaturated fatty acids, or fatty amides. Significant changes in metabolite levels were found according to developmental stage. Relative levels of amino acids, purine nucleosides, and sugars were higher in development stage 3 than in the other stages. Among the amino acids, valine, isoleucine, lysine, histidine, glutamine, and aspartic acid, which are associated with ABC transporters and aminoacyl-tRNA biosynthesis, also showed higher levels in stage 3 samples. The free radical scavenging activities, which were significantly higher in stage 3 than in the other stages, showed a positive correlation with purine nucleoside metabolites such as adenosine, guanosine, and inosine. These results not only show metabolic profiles, but also suggest the metabolic pathways associated with fruiting body development stages in cultivated C. bassiana.

  1. Phytochemical Composition and Metabolic Performance Enhancing Activity of Dietary Berries Traditionally Used by Native North Americans

    Science.gov (United States)

    Burns Kraft, Tristan F.; Dey, Moul; Rogers, Randy B.; Ribnicky, David M.; Gipp, David M.; Cefalu, William T.; Raskin, Ilya; Lila, Mary Ann

    2009-01-01

    Four wild berry species, Amelanchier alnifolia, Viburnum trilobum, Prunus virginiana, and Shepherdia argentea, all integral to the traditional subsistence diet of Native American tribal communities, were evaluated to elucidate phytochemical composition and bioactive properties related to performance and human health. Biological activity was screened using a range of bioassays that assessed the potential for these little-known dietary berries to affect diabetic microvascular complications, hyperglycemia, pro-inflammatory gene expression, and metabolic syndrome symptoms. Non-polar constituents from berries, including carotenoids, were potent inhibitors of aldose reductase (an enzyme involved in the etiology of diabetic microvascular complications) whereas the polar constituents, mainly phenolic acids, anthocyanins, and proanthocyanidins, were hypoglycemic agents and strong inhibitors of IL-1β and COX-2 gene expression. Berry samples also showed the ability to modulate lipid metabolism and energy expenditure in a manner consistent with improving metabolic syndrome. The results demonstrate that these berries traditionally consumed by tribal cultures contain a rich array of phytochemicals that have the capacity to promote health and protect against chronic diseases, such as diabetes. PMID:18211018

  2. Metabolic activity of sodium, measured by neutron activation, in the hands of patients suffering from bone diseases: concise communication

    International Nuclear Information System (INIS)

    Spinks, T.J.; Bewley, D.K.; Paolillo, M.; Vlotides, J.; Joplin, G.F.; Ranicar, A.S.O.

    1980-01-01

    Turnover of sodium in the human hand was studied by neutron activation. Patients suffering from various metabolic abnormalities affecting the skeleton, who were undergoing routine neutron activation for the measurement of calcium, were investigated along with a group of healthy volunteers. Neutron activation labels the sodium atoms simultaneously and with equal probability regardless of the turnover time of individual body compartments. The loss of sodium can be described either by a sum of two exponentials or by a single power function. Distinctions between patients and normal subjects were not apparent from the exponential model but were brought out by the power function. The exponent of time in the latter is a measure of clearance rate. The mean values of this parameter in (a) a group of patients suffering from acromegaly; (b) a group including Paget's disease, osteoporosis, Cushing's disease, and hyperparathyroidism; and (c) a group of healthy subjects, were found to be significantly different from each other

  3. Metabolic Potential and Activity in Fluids of the Coast Range Ophiolite Microbial Observatory, California, USA

    Science.gov (United States)

    Hoehler, T.; Som, S.; Schrenk, M.; McCollom, T.; Cardace, D.

    2016-01-01

    Metabolic potential and activity associated with hydrogen and carbon monoxide were characterized in fluids sampled from the the Coast Range Ophiolite Microbial Observatory (CROMO). CROMO consists of two clusters of science-dedicated wells drilled to varying depths up to 35m in the actively serpentinizing, Jurassic-age Coast Range Ophiolite of Northern California, along with a suite of pre-existing monitoring wells at the same site. Consistent with the fluid chemistry observed in other serpentinizing systems, CROMO fluids are highly alkaline, with pH up to 12.5, high in methane, with concentrations up 1600 micromolar, and low in dissolved inorganic carbon (DIC), with concentrations of 10's to 100's of micromolar. CROMO is conspicuous for fluid H2 concentrations that are consistently sub-micromolar, orders of magnitude lower than is typical of other systems. However, higher H2 concentrations (10's -100's of micromolar) at an earlier stage of fluid chemical evolution are predicted by, or consistent with: thermodynamic models for fluid chemistry based on parent rock composition equivalent to local peridotite and with water:rock ratio constrained by observed pH; the presence of magnetite at several wt% in CROMO drill cores; and concentrations of formate and carbon monoxide that would require elevated H2 if formed in equilibrium with H2 and DIC. Calculated Gibbs energy changes for reaction of H2 and CO in each of several metabolisms, across the range of fluid composition encompassed by the CROMO wells, range from bioenergetically feasible (capable of driving ATP synthesis) to thermodynamically unfavorable. Active consumption relative to killed controls was observed for both CO and H2 during incubation of fluids from the pre-existing monitoring wells; in incubations of freshly cored solids, consumption was only observed in one sample set (corresponding to the lowest pH) out of three. The specific metabolisms by which H2 and CO are consumed remain to be determined.

  4. Brain energy metabolism is activated after acute and chronic administration of fenproporex in young rats.

    Science.gov (United States)

    Rezin, Gislaine T; Jeremias, Isabela C; Ferreira, Gabriela K; Cardoso, Mariane R; Morais, Meline O S; Gomes, Lara M; Martinello, Otaviana B; Valvassori, Samira S; Quevedo, João; Streck, Emilio L

    2011-12-01

    Obesity is a chronic disease of multiple etiologies, including genetic, metabolic, environmental, social, and other factors. Pharmaceutical strategies in the treatment of obesity include drugs that regulate food intake, thermo genesis, fat absorption, and fat metabolism. Fenproporex is the second most commonly consumed amphetamine-based anorectic worldwide; this drug is rapidly converted in vivo into amphetamine. Studies suggest that amphetamine induces neurotoxicity through generation of free radicals and mitochondrial apoptotic pathway by cytochrome c release, accompanied by a decrease of mitochondrial membrane potential. Mitochondria are intracellular organelles that play a crucial role in ATP production. Thus, in the present study we evaluated the activities of some enzymes of Krebs cycle, mitochondrial respiratory chain complexes and creatine kinase in the brain of young rats submitted to acute and chronic administration of fenproporex. In the acute administration, the animals received a single injection of fenproporex (6.25, 12.5 or 25 mg/kg i.p.) or tween. In the chronic administration, the animals received a single injection daily for 14 days of fenproporex (6.25, 12.5 or 25 mg/Kg i.p.). Two hours after the last injection, the rats were sacrificed by decapitation and the brain was removed for evaluation of biochemical parameters. Our results showed that the activities of citrate synthase, malate dehydrogenase and succinate dehydrogenase were increased by acute and chronic administration of fenproporex. Complexes I, II, II-III and IV and creatine kinase activities were also increased after acute and chronic administration of the drug. Our results are consistent with others reports that showed that some psychostimulant drugs increased brain energy metabolism in young rats. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  5. Modeling and Classification of Kinetic Patterns of Dynamic Metabolic Biomarkers in Physical Activity.

    Directory of Open Access Journals (Sweden)

    Marc Breit

    2015-08-01

    Full Text Available The objectives of this work were the classification of dynamic metabolic biomarker candidates and the modeling and characterization of kinetic regulatory mechanisms in human metabolism with response to external perturbations by physical activity. Longitudinal metabolic concentration data of 47 individuals from 4 different groups were examined, obtained from a cycle ergometry cohort study. In total, 110 metabolites (within the classes of acylcarnitines, amino acids, and sugars were measured through a targeted metabolomics approach, combining tandem mass spectrometry (MS/MS with the concept of stable isotope dilution (SID for metabolite quantitation. Biomarker candidates were selected by combined analysis of maximum fold changes (MFCs in concentrations and P-values resulting from statistical hypothesis testing. Characteristic kinetic signatures were identified through a mathematical modeling approach utilizing polynomial fitting. Modeled kinetic signatures were analyzed for groups with similar behavior by applying hierarchical cluster analysis. Kinetic shape templates were characterized, defining different forms of basic kinetic response patterns, such as sustained, early, late, and other forms, that can be used for metabolite classification. Acetylcarnitine (C2, showing a late response pattern and having the highest values in MFC and statistical significance, was classified as late marker and ranked as strong predictor (MFC = 1.97, P < 0.001. In the class of amino acids, highest values were shown for alanine (MFC = 1.42, P < 0.001, classified as late marker and strong predictor. Glucose yields a delayed response pattern, similar to a hockey stick function, being classified as delayed marker and ranked as moderate predictor (MFC = 1.32, P < 0.001. These findings coincide with existing knowledge on central metabolic pathways affected in exercise physiology, such as β-oxidation of fatty acids, glycolysis, and glycogenolysis. The presented modeling

  6. Metabolism and biological activity of 24,25-dihydroxyvitamin D3 in the chick

    International Nuclear Information System (INIS)

    Holick, M.F.; Baxter, L.A.; Schraufrogel, P.K.; Tavela, T.E.; DeLuca, H.F.

    1976-01-01

    The vitamin, 24R,24,25-dihydroxyvitamin D 3 , is capable of inducing a minimal intestinal calcium transport response in chicks when compared to an equal amount of 25-hydroxyvitamin D 3 . 1,24,25-Trihydroxyvitamin D 3 is also less active than 1,25-dihydroxyvitamin D 3 , and its activity is much shorter lived than that of 1,25-dihydroxyvitamin D 3 . A comparison of the metabolism of 25-hydroxy[26,27- 3 H]vitamin D 3 and 24,25-dihydroxy[26,27- 3 H]vitamin D 3 in the rat and chick shows that 24,25-dihydroxyvitamin D 3 and 1,24,25-trihydroxyvitamin D 3 disappear at least 10 times more rapidly from the blood and intestine of chicks. Furthermore, examination of the excretory products from both of these species demonstrates that chicks receiving a single dose of 24,25-dihydroxy[26,27- 3 H]vitamin D 3 excrete 66% of the total radioactivity by 48 hours, whereas rats receiving the same dose excrete less than one-half that amount. These results demonstrate that 24,25-dihydroxyvitamin D 3 is considerably less biologically active in the chick than in the rat, probably due to more rapid metabolism and excretion

  7. Kaempferol ameliorates symptoms of metabolic syndrome by regulating activities of liver X receptor-β.

    Science.gov (United States)

    Hoang, Minh-Hien; Jia, Yaoyao; Mok, Boram; Jun, Hee-jin; Hwang, Kwang-Yeon; Lee, Sung-Joon

    2015-08-01

    Kaempferol is a dietary flavonol previously shown to regulate cellular lipid and glucose metabolism. However, its molecular mechanisms of action and target proteins have remained elusive, probably due to the involvement of multiple proteins. This study investigated the molecular targets of kaempferol. Ligand binding of kaempferol to liver X receptors (LXRs) was quantified by time-resolved fluorescence resonance energy transfer and surface plasmon resonance analyses. Kaempferol directly binds to and induces the transactivation of LXRs, with stronger specificity for the β-subtype (EC50 = 0.33 μM). The oral administration of kaempferol in apolipoprotein-E-deficient mice (150 mg/day/kg body weight) significantly reduced plasma glucose and increased high-density lipoprotein cholesterol levels and insulin sensitivity compared with the vehicle-fed control. Kaempferol also reduced plasma triglyceride concentrations and did not cause liver steatosis, a common side effect of potent LXR activation. In immunoblotting analysis, kaempferol reduced the nuclear accumulation of sterol regulatory element-binding protein-1 (SREBP-1). Our results show that the suppression of SREBP-1 activity and the selectivity for LXR-β over LXR-α by kaempferol contribute to the reductions of plasma and hepatic triglyceride concentrations in mice fed kaempferol. They also suggest that kaempferol activates LXR-β and suppresses SREBP-1 to enhance symptoms in metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Stoichiometry and kinetics of poly-{beta}-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures

    Energy Technology Data Exchange (ETDEWEB)

    Beun, J.J.; Paletta, F.; Loosdrecht, M.C.M. Van; Heijnen, J.J.

    2000-02-20

    This paper discusses the poly-{beta}-hydroxybutyrate (PHB) metabolism in aerobic, slow growing, activated sludge cultures, based on experimental data and on a metabolic model. The dynamic conditions which occur in activated sludge processes were simulated in a 2-L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). Under these conditions intracellular storage and consumption of PHB was observed. It appeared that in the feast period, 66% to almost 100% of the substrate consumed is used for storage of PHB, the remainder is used for growth and maintenance processes. Furthermore, it appeared that at high sludge retention time (SRT) the growth rate in the feast and famine periods was the same. With decreasing SRT the growth rate in the feast period increased relative to the growth rate in the famine period. Acetate consumption and PHB production in the feast period both proceeded with a zero-order rate in acetate and PHB concentration respectively. PHB consumption in the famine period could best be described kinetically with a nth order degradation equation in PHB concentration. The obtained results are discussed in the context of the general activated sludge models.

  9. Metabolic rate and thyroid activity of hens in relation to the state of feathering.

    Science.gov (United States)

    Pietras, M

    1981-01-01

    Heat production, rectal temperature and thyroid activity were determined in NH X Lg hens that were 40 and 80% defeathered. Within individual groups there was a significant increase in heat production only in hens that were 80% defeathered. In comparison with the control group, defeathered chickens had higher metabolic rates during each examined period. During the third week of the experiment there was a temporary drop in the rectal temperature of the experimental birds. After nine weeks chicken with the greatest degree of defeathering had the highest thyroid weight and the highest levels of thyroxin in the blood plasma.

  10. AMP-Activated Protein Kinase (AMPK) Regulates Energy Metabolism through Modulating Thermogenesis in Adipose Tissue

    Science.gov (United States)

    Wu, Lingyan; Zhang, Lina; Li, Bohan; Jiang, Haowen; Duan, Yanan; Xie, Zhifu; Shuai, Lin; Li, Jia; Li, Jingya

    2018-01-01

    Obesity occurs when excess energy accumulates in white adipose tissue (WAT), whereas brown adipose tissue (BAT), which is specialized in dissipating energy through thermogenesis, potently counteracts obesity. White adipocytes can be converted to thermogenic “brown-like” cells (beige cells; WAT browning) under various stimuli, such as cold exposure. AMP-activated protein kinase (AMPK) is a crucial energy sensor that regulates energy metabolism in multiple tissues. However, the role of AMPK in adipose tissue function, especially in the WAT browning process, is not fully understood. To illuminate the effect of adipocyte AMPK on energy metabolism, we generated Adiponectin-Cre-driven adipose tissue-specific AMPK α1/α2 KO mice (AKO). These AKO mice were cold intolerant and their inguinal WAT displayed impaired mitochondrial integrity and biogenesis, and reduced expression of thermogenic markers upon cold exposure. High-fat-diet (HFD)-fed AKO mice exhibited increased adiposity and exacerbated hepatic steatosis and fibrosis and impaired glucose tolerance and insulin sensitivity. Meanwhile, energy expenditure and oxygen consumption were markedly decreased in the AKO mice both in basal conditions and after stimulation with a β3-adrenergic receptor agonist, CL 316,243. In contrast, we found that in HFD-fed obese mouse model, chronic AMPK activation by A-769662 protected against obesity and related metabolic dysfunction. A-769662 alleviated HFD-induced glucose intolerance and reduced body weight gain and WAT expansion. Notably, A-769662 increased energy expenditure and cold tolerance in HFD-fed mice. A-769662 treatment also induced the browning process in the inguinal fat depot of HFD-fed mice. Likewise, A-769662 enhanced thermogenesis in differentiated inguinal stromal vascular fraction (SVF) cells via AMPK signaling pathway. In summary, a lack of adipocyte AMPKα induced thermogenic impairment and obesity in response to cold and nutrient-overload, respectively

  11. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    DEFF Research Database (Denmark)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...

  12. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    International Nuclear Information System (INIS)

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V.

    2010-01-01

    Research highlights: → Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). → Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. → We are reporting that mutations in POR may reduce CYP3A4 activity. → POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. → Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  13. Dietary patterns as compared with physical activity in relation to metabolic syndrome among Chinese adults.

    Science.gov (United States)

    He, Y; Li, Y; Lai, J; Wang, D; Zhang, J; Fu, P; Yang, X; Qi, L

    2013-10-01

    To examine the nationally-representative dietary patterns and their joint effects with physical activity on the likelihood of metabolic syndrome (MS) among 20,827 Chinese adults. CNNHS was a nationally representative cross-sectional observational study. Metabolic syndrome was defined according to the Joint Interim Statement definition. The "Green Water" dietary pattern, characterized by high intakes of rice and vegetables and moderate intakes in animal foods was related to the lowest prevalence of MS (15.9%). Compared to the "Green Water" dietary pattern, the "Yellow Earth" dietary pattern, characterized by high intakes of refined cereal products, tubers, cooking salt and salted vegetable was associated with a significantly elevated odds of MS (odds ratio 1.66, 95%CI: 1.40-1.96), after adjustment of age, sex, socioeconomic status and lifestyle factors. The "Western/new affluence" dietary pattern characterized by higher consumption of beef/lamb, fruit, eggs, poultry and seafood also significantly associated with MS (odds ratio: 1.37, 95%CI: 1.13-1.67). Physical activity showed significant interactions with the dietary patterns in relation to MS risk (P for interaction = 0.008). In the joint analysis, participants with the combination of sedentary activity with the "Yellow Earth" dietary pattern or the "Western/new affluence" dietary pattern both had more than three times (95%CI: 2.8-6.1) higher odds of MS than those with active activity and the "Green Water" dietary pattern. Our findings from the large Chinese national representative data indicate that dietary patterns affect the likelihood of MS. Combining healthy dietary pattern with active lifestyle may benefit more in prevention of MS. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Metabolic activity and collagen turnover in human tendon in response to physical activity

    DEFF Research Database (Denmark)

    Kjaer, M; Langberg, H; Miller, B F

    2005-01-01

    Connective tissue of the human tendon plays an important role in force transmission. The extracellular matrix turnover of tendon is influenced by physical activity. Blood flow, oxygen demand, and the level of collagen synthesis and matrix metalloproteinases increase with mechanical loading. Gene...... of overuse tendon injuries occurring during sport, work or leisure-related activities....

  15. Metabolic and hemodynamic activation of postischemic rat brain by cortical spreading depression.

    Science.gov (United States)

    Kocher, M

    1990-07-01

    Following transient ischemia of the brain, the coupling between somatosensory activation and the hemodynamic-metabolic response is abolished for a certain period despite the partial recovery of somatosensory evoked responses. To determine whether this disturbance is due to alterations of the stimulus-induced neuronal excitation or to a breakdown of the coupling mechanisms, cortical spreading depression was used as a metabolic stimulus in rats before and after ischemia. Adult rats were subjected to 30 min of global forebrain ischemia and 3-6 h of recirculation. EEG, cortical direct current (DC) potential, and laser-Doppler flow were continuously recorded. Local CBF (LCBF), local CMRglc (LCMRglc), regional tissue contents of ATP, glucose, and lactate, and regional pH were determined by quantitative autoradiography, substrate-induced bioluminescence, and fluorometry. Amplitude and frequency of the DC shifts did not differ between groups. In control animals, spreading depression induced a 77% rise in cortical glucose consumption, a 66% rise in lactate content, and a drop in tissue pH of 0.3 unit. ATP and glucose contents were not depleted. During the passage of DC shifts, transient increases (less than 2 min) in laser-Doppler flow were observed, followed by a post-spreading depression hypoperfusion. A comparable although less expressed pattern of hemodynamic and metabolic changes was observed in the postischemic rats. Although baseline LCMRglc was depressed after ischemia, it was activated 47% during spreading depression. Lactate increased by 26%, pH decreased by 0.3 unit, and ATP and glucose remained unchanged. The extent of the transient increase in laser-Doppler flow did not differ from that of the control group, and a post-spreading depression hypoperfusion was also found.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Silymarin ameliorates metabolic dysfunction associated with Diet-induced Obesity via activation of farnesyl X receptor

    Directory of Open Access Journals (Sweden)

    Ming Gu

    2016-09-01

    Full Text Available AbstractBACKGROUND AND PURPOSESilymarin, a standardized extract of the milk thistle seeds, has been widely used to treat chronic hepatitis, cirrhosis and other types of toxic liver damage. . Despite increasing studies on the action of silymarin and its major active constituent, silybin in their therapeutic properties against insulin resistance, diabetes and hyperlipidaemia in vitro and in vivo, the mechanism underlying silymarin action remains unclear. EXPERIMENTAL APPROACHC57BL/6 mice were fed high-fat diet (HFD for 3 months to induce obesity, insulin resistance, hyperlipidaemia and fatty liver. These mice were then continuously treated with HFD alone or mixed with silymarin at 40 mg/100 g for additional 6 weeks. Biochemical analysis was used to test the serum lipid and bile acid profiles. FXR and NF-κB transactivities were analysed in liver using a gene reporter assay based onquantitative RT-PCR.KEY RESULTSSilymarin treatment ameliorated insulin resistance, dyslipidaemia and inflammation, and reconstituted the bile acid pool in liver of diet-induced obesity. Associated with this, silybin and silymarin enhanced FXR transactivity. Consistently, in HepG2 cells, silybin inhibited NF-κB signalling, which was enhanced by FXR activation. CONCLUSIONS AND IMPLICATIONSOur results suggest that silybin is an effective component of silymarin for treating metabolic syndrome by stimulating FXR signalling. Key words: silymarin; silybin; metabolic syndrome; non-alcoholic fatty liver disease; farnesyl X receptorAbbreviationsALT, alanine aminotransferase; AST, aspartate transaminase; BA, bile acid; DIO, diet-induced obesity; CA, cholic acid; DMSO, dimethylsulfoxide; FXR, farnesyl X receptor; HDL-c, high density lipoprotein cholesterol; HF, high-fat; IPITT, intraperitoneal insulin tolerance test; LDL-c, low density lipoprotein cholesterol; NAFLD, non-alcoholic fatty liver disease; NF-κB, nuclear factor kappa B; NR, nuclear receptor; MS, metabolic syndrome

  17. A review of Ramadan fasting and regular physical activity on metabolic syndrome indices

    Directory of Open Access Journals (Sweden)

    Seyyed Reza Attarzadeh Hosseini

    2016-03-01

    Full Text Available Introduction: Metabolic syndrome constitutes a cluster of risk factors such as obesity, hyperglycemia,  hypertension, and dyslipidemia, which increase the risk of cardiovascular diseases and type II diabetes mellitus. In this review article, we aimed to discuss the possible effects of fasting and regular physical activity on risk factors for cardiovascular diseases.  Methods: Online databases including Google Scholar, SID, PubMed, and MagIran were searched, using the following keywords:  “training”, “exercise”, “physical activity”, “fasting”, “Ramadan”, “metabolic syndrome”, “fat percentage”, “blood pressure”, “blood sugar”, “cholesterol”, “triglyceride”, and “lowdensity lipoprotein-cholesterol”. All articles including research studies, review articles, descriptive and analytical studies, and ross-sectional research, published during 2006-2015, were reviewed. In case of any errors in the methodologyof articles, they were removed from our analysis. Results:Based on our literature review, inconsistent findings have been reported on risk factors formetabolic syndrome. However, the majority of conducted studies have suggested the positive effects offasting on reducing the risk factors for metabolic syndrome. Conclusion: Although fasting in different seasons of the year has no significant impacts on mental health or physical fitness, it can reduce the risk of various diseases such as cardiovascular diseases. Also, based on the conducted studies, if individuals adhere to a proper diet, avoid excessive eating, drink sufficient amounts of fluids, and keep a healthy level of physical activity, fasting can improve their physical health.

  18. METs in adults while playing active video games: a metabolic chamber study.

    Science.gov (United States)

    Miyachi, Motohiko; Yamamoto, Kenta; Ohkawara, Kazunori; Tanaka, Shigeho

    2010-06-01

    Active video game systems controlled through arm gestures and motions (Nintendo Wii Sports) and video games controlled through force plate (Wii Fit Plus) are becoming increasingly popular. This study was performed to determine the energy expenditure (EE) during Wii Fit Plus and Wii Sports game activities. Twelve adult men and women performed all the activities of Wii Sports (five activities: golf, bowling, tennis, baseball, and boxing) and Wii Fit Plus (63 activities classified as yoga, resistance, balance, and aerobic exercises). Each activity was continued for at least 8 min to obtain a steady-state EE. Because EE was assessed in an open-circuit indirect metabolic chamber consisting of an airtight room (20,000 or 15,000 L), subjects were freed of apparatus to collect expired gas while playing the games. MET value was calculated from resting EE and steady-state EE during activity. The mean MET values of all 68 activities were distributed over a wide range from 1.3 METs (Lotus Focus) to 5.6 METs (single-arm stand). The mean MET values in yoga, balance, resistance, and aerobic exercise of Wii Fit Plus and Wii Sports were 2.1, 2.0, 3.2, 3.4, and 3.0 METs, respectively. Forty-six activities (67%) were classified as light intensity (6.0 METs). Time spent playing one-third of the activities supplied by motion- and gesture-controlled video games can count toward the daily amount of exercise required according to the guidelines provided by the American College of Sports Medicine and the American Heart Association, which focus on 30 min of moderate-intensity daily physical activity 5 d x wk(-1).

  19. Oncogenic MYC Activates a Feedforward Regulatory Loop Promoting Essential Amino Acid Metabolism and Tumorigenesis.

    Science.gov (United States)

    Yue, Ming; Jiang, Jue; Gao, Peng; Liu, Hudan; Qing, Guoliang

    2017-12-26

    Most tumor cells exhibit obligatory demands for essential amino acids (EAAs), but the regulatory mechanisms whereby tumor cells take up EAAs and EAAs promote malignant transformation remain to be determined. Here, we show that oncogenic MYC, solute carrier family (SLC) 7 member 5 (SLC7A5), and SLC43A1 constitute a feedforward activation loop to promote EAA transport and tumorigenesis. MYC selectively activates Slc7a5 and Slc43a1 transcription through direct binding to specific E box elements within both genes, enabling effective EAA import. Elevated EAAs, in turn, stimulate Myc mRNA translation, in part through attenuation of the GCN2-eIF2α-ATF4 amino acid stress response pathway, leading to MYC-dependent transcriptional amplification. SLC7A5/SLC43A1 depletion inhibits MYC expression, metabolic reprogramming, and tumor cell growth in vitro and in vivo. These findings thus reveal a MYC-SLC7A5/SLC43A1 signaling circuit that underlies EAA metabolism, MYC deregulation, and tumorigenesis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Litter environment affects behavior and brain metabolic activity of adult knockout mice

    Directory of Open Access Journals (Sweden)

    David Crews

    2009-08-01

    Full Text Available In mammals, the formative environment for social and anxiety-related behaviors is the family unit; in the case of rodents, this is the litter and the mother-young bond. A deciding factor in this environment is the sex ratio of the litter and, in the case of mice lacking functional copies of gene(s, the ratio of the various genotypes in the litter. Both Sex and Genotype ratios of the litter affect the nature and quality of the individual’s behavior later in adulthood, as well as metabolic activity in brain nuclei that underlie these behaviors. Mice were raised in litters reconstituted shortly after to birth to control for Sex ratio and Genotype ratio (wild type pups vs. pups lacking a functional estrogen receptor α. In both males and females the Sex and Genotype of siblings in the litter affected aggressive behaviors as well as patterns of metabolic activity in limbic nuclei in the social behavior network later in adulthood. Further, this pattern in males varied depending upon the Genotype of their brothers and sisters. Principal Components Analysis revealed two components comprised of several amygdalar and hypothalamic nuclei; the VMH showed strong correlations in both clusters, suggesting its pivotal nature in the organization of two neural networks.

  1. The metabolically active bacterial microbiome of tonsils and mandibular lymph nodes of slaughter pigs

    Directory of Open Access Journals (Sweden)

    Evelyne eMann

    2015-12-01

    Full Text Available The exploration of microbiomes in lymphatic organs is relevant for basic and applied research into explaining microbial translocation processes and understanding cross-contamination during slaughter. This study aimed to investigate whether metabolically active bacteria (MAB could be detected within tonsils and mandibular lymph nodes (MLNs of pigs. The hypervariable V1-V2 region of the bacterial 16S rRNA genes was amplified from cDNA from tonsils and MLNs of eight clinically healthy slaughter pigs. Pyrosequencing yielded 82,857 quality-controlled sequences, clustering into 576 operational taxonomic units (OTUs, which were assigned to 230 genera and 16 phyla. The actual number of detected OTUs per sample varied highly (23-171 OTUs. Prevotella zoogleoformans and Serratia proteamaculans (best type strain hits were most abundant (10.6% and 41.8% respectively in tonsils and MLNs, respectively. To explore bacterial correlation patterns between samples of each tissue, pairwise Spearman correlations (rs were calculated. In total, 194 strong positive and negative correlations |rs| ≥ 0.6 were found. We conclude that (i lymphatic organs harbor a high diversity of metabolically active bacteria, (ii the occurrence of viable bacteria in lymph nodes is not restricted to pathological processes and (iii lymphatic tissues may serve as a contamination source in pig slaughterhouses. This study confirms the necessity of the EFSA regulation with regard to a meat inspection based on visual examinations to foster a minimization of microbial contamination.

  2. Alimentary habits, physical activity, and Framingham global risk score in metabolic syndrome.

    Science.gov (United States)

    Soares, Thays Soliman; Piovesan, Carla Haas; Gustavo, Andréia da Silva; Macagnan, Fabrício Edler; Bodanese, Luiz Carlos; Feoli, Ana Maria Pandolfo

    2014-04-01

    Metabolic syndrome is a complex disorder represented by a set of cardiovascular risk factors. A healthy lifestyle is strongly related to improve Quality of Life and interfere positively in the control of risk factors presented in this condition. To evaluate the effect of a program of lifestyle modification on the Framingham General Cardiovascular Risk Profile in subjects diagnosed with metabolic syndrome. A sub-analysis study of a randomized clinical trial controlled blind that lasted three months. Participants were randomized into four groups: dietary intervention + placebo (DIP), dietary intervention + supplementation of omega 3 (fish oil 3 g/day) (DIS3), dietary intervention + placebo + physical activity (DIPE) and dietary intervention + physical activity + supplementation of omega 3 (DIS3PE). The general cardiovascular risk profile of each individual was calculated before and after the intervention. The study included 70 subjects. Evaluating the score between the pre and post intervention yielded a significant value (p study emphasizes the importance of lifestyle modification in the prevention and treatment of cardiovascular diseases.

  3. Metabolism and prebiotics activity of anthocyanins from black rice (Oryza sativa L.) in vitro.

    Science.gov (United States)

    Zhu, Yongsheng; Sun, Hanju; He, Shudong; Lou, Qiuyan; Yu, Min; Tang, Mingming; Tu, Lijun

    2018-01-01

    Anthocyanins are naturally active substances. In this study, anthocyanins from black rice were obtained by membrane filtration and column chromatography separation. Five anthocyanin monomers in black rice extract were identified by HPLC-MS/MS, and the major anthocyanin monomer (cyanidin-3-glucoside, C3G) was purified by preparative HPLC (Pre-HPLC). The proliferative effects of the anthocyanins on Bifidobacteria and Lactobacillus were investigated by determining the media pH, bacterial populations and metabolic products. After anaerobic incubation at 37 °C for 48 h, not only the pH of the media containing C3G was lower than that of the extract of black rice anthocyanin (BRAE), but the numbers of both Bifidobacteria and Lactobacillus were also significantly increased. Furthermore, hydroxyphenylpropionic, hydroxyphenylacetic, and hydroxybenzoic acids and other metabolites were detected by GC-MS in vitro. Our results revealed that the anthocyanins and anthocyanin monomers from black rice had prebiotic activity and they were metabolized into several small molecules by Bifidobacteria and Lactobacillus.

  4. Alimentary Habits, Physical Activity, and Framingham Global Risk Score in Metabolic Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Thays Soliman; Piovesan, Carla Haas; Gustavo, Andréia da Silva; Macagnan, Fabrício Edler; Bodanese, Luiz Carlos; Feoli, Ana Maria Pandolfo, E-mail: anamariafeoli@hotmail.com [Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil)

    2014-04-15

    Metabolic syndrome is a complex disorder represented by a set of cardiovascular risk factors. A healthy lifestyle is strongly related to improve Quality of Life and interfere positively in the control of risk factors presented in this condition. To evaluate the effect of a program of lifestyle modification on the Framingham General Cardiovascular Risk Profile in subjects diagnosed with metabolic syndrome. A sub-analysis study of a randomized clinical trial controlled blind that lasted three months. Participants were randomized into four groups: dietary intervention + placebo (DIP), dietary intervention + supplementation of omega 3 (fish oil 3 g/day) (DIS3), dietary intervention + placebo + physical activity (DIPE) and dietary intervention + physical activity + supplementation of omega 3 (DIS3PE). The general cardiovascular risk profile of each individual was calculated before and after the intervention. The study included 70 subjects. Evaluating the score between the pre and post intervention yielded a significant value (p < 0.001). We obtained a reduction for intermediate risk in 25.7% of subjects. After intervention, there was a significant reduction (p < 0.01) on cardiovascular age, this being more significant in groups DIP (5.2%) and DIPE (5.3%). Proposed interventions produced beneficial effects for reducing cardiovascular risk score. This study emphasizes the importance of lifestyle modification in the prevention and treatment of cardiovascular diseases.

  5. Alimentary Habits, Physical Activity, and Framingham Global Risk Score in Metabolic Syndrome

    International Nuclear Information System (INIS)

    Soares, Thays Soliman; Piovesan, Carla Haas; Gustavo, Andréia da Silva; Macagnan, Fabrício Edler; Bodanese, Luiz Carlos; Feoli, Ana Maria Pandolfo

    2014-01-01

    Metabolic syndrome is a complex disorder represented by a set of cardiovascular risk factors. A healthy lifestyle is strongly related to improve Quality of Life and interfere positively in the control of risk factors presented in this condition. To evaluate the effect of a program of lifestyle modification on the Framingham General Cardiovascular Risk Profile in subjects diagnosed with metabolic syndrome. A sub-analysis study of a randomized clinical trial controlled blind that lasted three months. Participants were randomized into four groups: dietary intervention + placebo (DIP), dietary intervention + supplementation of omega 3 (fish oil 3 g/day) (DIS3), dietary intervention + placebo + physical activity (DIPE) and dietary intervention + physical activity + supplementation of omega 3 (DIS3PE). The general cardiovascular risk profile of each individual was calculated before and after the intervention. The study included 70 subjects. Evaluating the score between the pre and post intervention yielded a significant value (p < 0.001). We obtained a reduction for intermediate risk in 25.7% of subjects. After intervention, there was a significant reduction (p < 0.01) on cardiovascular age, this being more significant in groups DIP (5.2%) and DIPE (5.3%). Proposed interventions produced beneficial effects for reducing cardiovascular risk score. This study emphasizes the importance of lifestyle modification in the prevention and treatment of cardiovascular diseases

  6. Effects of three types of physical activity on reduction of metabolic parameters involved in cardiovascular risk

    Directory of Open Access Journals (Sweden)

    Petrović-Oggiano Gordana

    2009-01-01

    Full Text Available The aim of present study was to investigate the effects of three different types of physical activity on reduction of the metabolic parameters mainly responsible for cardiovascular diseases. This prospective-intervention study was performed at the 'ČIGOTA' Thyroid Institute on Mt. Zlatibor (Serbia between August 2004 and June 2006. Sixty-eight overweight/obese patients aged 40-70 years with hyperlipidemia were divided into three groups according to their weight and overall health. The program of physical workout included: group I - fast walking; group II - gymnastic exercises and specially chosen exercises in the swimming pool; and group III - combined physical training of higher intensity and greater length. All patients were also on a special reduced diet of 1000 kcal per day, the AHA step-2 diet. We monitored the body mass index, body composition, glucose, cholesterol (total, LDL-, and HDL-, and triglycerides before, during, and after the intervention. After 2 and particularly 12 weeks of intervention, a significant improvement of all metabolic parameters was achieved in all three groups of patients. Although most patients completed the study with normal values of all parameters, the most desirable results were achieved in group III (combined exercises with an average energy expenditure of 900 kcal per day. Our research indicates that a specially conceived program of physical activity and diet intervention resulted in significant reduction of cardiovascular risk factors.

  7. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears.

    Science.gov (United States)

    Schwab, Clarissa; Gänzle, Michael

    2011-03-01

    The composition of the intestinal microbiota depends on gut physiology and diet. Ursidae possess a simple gastrointestinal system composed of a stomach, small intestine, and indistinct hindgut. This study determined the composition and stability of fecal microbiota of 3 captive polar bears by group-specific quantitative PCR and PCR-DGGE (denaturing gradient gel electrophoresis) using the 16S rRNA gene as target. Intestinal metabolic activity was determined by analysis of short-chain fatty acids in feces. For comparison, other Carnivora and mammals were included in this study. Total bacterial abundance was approximately log 8.5 DNA gene copies·(g feces)-1 in all 3 polar bears. Fecal polar bear microbiota was dominated by the facultative anaerobes Enterobacteriaceae and enterococci, and the Clostridium cluster I. The detection of the Clostridium perfringens α-toxin gene verified the presence of C. perfringens. Composition of the fecal bacterial population was stable on a genus level; according to results obtained by PCR-DGGE, dominant bacterial species fluctuated. The total short-chain fatty acid content of Carnivora and other mammals analysed was comparable; lactate was detected in feces of all carnivora but present only in trace amounts in other mammals. In comparison, the fecal microbiota and metabolic activity of captive polar bears mostly resembled the closely related grizzly and black bears.

  8. Variation in the peroxisome proliferator-activated receptor δ gene in relation to common metabolic traits in 7,495 middle-aged white people

    DEFF Research Database (Denmark)

    Grarup, Niels; Albrechtsen, A.; Ek, J.

    2007-01-01

    Studies in animals reveal that peroxisome proliferator-activated receptor delta (PPARdelta) regulates glucose metabolism and insulin sensitivity in both the liver and skeletal muscles. Moreover, PPARdelta augments physical endurance and increases oxidative metabolism, thereby averting obesity. Th...

  9. Assessment of chitosan-affected metabolic response by peroxisome proliferator-activated receptor bioluminescent imaging-guided transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Kao

    Full Text Available Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholesteremic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice, which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR, a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo.

  10. The relationship between objectively measured physical activity, salivary cortisol, and the metabolic syndrome score in girls.

    Science.gov (United States)

    DuBose, Katrina D; McKune, Andrew J

    2014-08-01

    The relationship between physical activity levels, salivary cortisol, and the metabolic syndrome (MetSyn) score was examined. Twenty-three girls (8.4 ± 0.9 years) had a fasting blood draw, waist circumference and blood pressure measured, and wore an ActiGraph accelerometer for 5 days. Saliva samples were collected to measure cortisol levels. Previously established cut points estimated the minutes spent in moderate, vigorous, and moderate-to-vigorous physical activity. A continuous MetSyn score was created from blood pressure, waist circumference, high-density-lipoprotein (HDL), triglyceride, and glucose values. Correlation analyses examined associations between physical activity, cortisol, the MetSyn score, and its related components. Regression analysis examined the relationship between cortisol, the MetSyn score, and its related components adjusting for physical activity, percent body fat, and sexual maturity. Vigorous physical activity was positively related with 30 min post waking cortisol values. The MetSyn score was not related with cortisol values after controlling for confounders. In contrast, HDL was negatively related with 30 min post waking cortisol. Triglyceride was positively related with 30 min post waking cortisol and area under the curve. The MetSyn score and many of its components were not related to cortisol salivary levels even after adjusting for physical activity, body fat percentage, and sexual maturity.

  11. Relation between presence-absence of a visible nucleoid and metabolic activity in bacterioplankton cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joon, W.; Sherr, E.B.; Sherr, B.F. [Oregon State Univ., Corvallis, OR (United States)

    1996-09-01

    We investigated the report of Zweifel and Hagstroem that only a portion of marine bacteria contain nucleoids--the DNA-containing regions of procaryotic cells-- and that such bacteria correspond to the active or viable fraction of bacterioplankton. In Oregon coastal waters, 21-64% of bacteria had visible nucleoids; number of nucleoid-visible (NV) bacteria were greater than numbers of metabolically active bacteria, based on cells with active electron transport systems (ETS) and intact cell membranes. During log growth of a marine isolate, proportions of NV and ETS-active cells approached 100%. In stationary growth phase, the fraction of ETS-active cells decreased rapidly, while that of NV cells remained high for 7 d. When starved cells of the isolate were resupplied with nutrient (50 mg liter{sup -1} peptone), total cell number did not increase during the initial 6 h, but the proportion of NV cells increased from 27 to 100%, and that of ETS-active cells from 6 to 75%. In an analogous experiment with a bacterioplankton assemblage, a similar trend was observed: the number of NV cells double during the initial 6 h prior to an increase in total cell counts. These results show that some bacteria without visible nucleoids are capable of becoming NV cells, and thus have DNa in a nucleoid region not detectable with the method used here. 18 refs., 4 figs., 1 tab.

  12. Physical activity, Cardio-Respiratory Fitness, and Metabolic Traits in Rural Mexican Tarahumara

    DEFF Research Database (Denmark)

    Christensen, Dirk Lund; Alcala-Sanchez, Imelda; Leal-Berumen, Irene

    2012-01-01

    Objectives: To study the association between physical activity energy expenditure (PAEE) and cardio-respiratory fitness (CRF) with key metabolic traits and anthropometric measures in the Tarahumara of Mexico. Methods: A cross-sectional study was carried out in five rural communities in Chihuahua...... suggests high levels of overweight and hypertension in the Tarahumara, and points to fitness and physical activity as potential intervention targets although findings should be confirmed in larger samples.......) to estimate CRF. Random blood glucose level and resting blood pressure (BP) were measured with standard anthropometrics. Results: Mean (SD) PAEE was 71.2 (30.3) kJ kg21 day21 and CRF was 36.6 (6.5) mlO2 min21 kg21. Mean (SD) glucose was 127.9 (32.4) mg/dl, with 3.3% having diabetes. Mean (SD) systolic...

  13. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    DEFF Research Database (Denmark)

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E.

    2014-01-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive...... structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors...... sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT...

  14. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ines eLassowskat

    2014-10-01

    Full Text Available Mitogen-activated protein kinases (MAPKs target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3 and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phosphoproteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g. WRKY transcription factors and proteins encoded by the genes from the PEN pathway required for penetration resistance to filamentous pathogens. Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org.

  15. GABAA receptor activity modulating piperine analogs: In vitro metabolic stability, metabolite identification, CYP450 reaction phenotyping, and protein binding.

    Science.gov (United States)

    Zabela, Volha; Hettich, Timm; Schlotterbeck, Götz; Wimmer, Laurin; Mihovilovic, Marko D; Guillet, Fabrice; Bouaita, Belkacem; Shevchenko, Bénédicte; Hamburger, Matthias; Oufir, Mouhssin

    2018-01-01

    In a screening of natural products for allosteric modulators of GABA A receptors (γ-aminobutyric acid type A receptor), piperine was identified as a compound targeting a benzodiazepine-independent binding site. Given that piperine is also an activator of TRPV1 (transient receptor potential vanilloid type 1) receptors involved in pain signaling and thermoregulation, a series of piperine analogs were prepared in several cycles of structural optimization, with the aim of separating GABA A and TRPV1 activating properties. We here investigated the metabolism of piperine and selected analogs in view of further cycles of lead optimization. Metabolic stability of the compounds was evaluated by incubation with pooled human liver microsomes, and metabolites were analyzed by UHPLC-Q-TOF-MS. CYP450 isoenzymes involved in metabolism of compounds were identified by reaction phenotyping with Silensomes™. Unbound fraction in whole blood was determined by rapid equilibrium dialysis. Piperine was the metabolically most stable compound. Aliphatic hydroxylation, and N- and O-dealkylation were the major routes of oxidative metabolism. Piperine was exclusively metabolized by CYP1A2, whereas CYP2C9 contributed significantly in the oxidative metabolism of all analogs. Extensive binding to blood constituents was observed for all compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Effects of waterlogging on the growth and energy-metabolic enzyme activities of different tree species].

    Science.gov (United States)

    Wang, Gui-Bin; Cao, Fu-Liang; Zhang, Xiao-Yan; Zhang, Wang-Xiang

    2010-03-01

    Aimed to understand the waterlogging tolerance and adaptation mechanisms of different tree species, a simulated field experiment was conducted to study the growth and energy-metabolic enzyme activities of one-year-old seedlings of Taxodium distichum, Carya illinoensis, and Sapium sebiferum. Three treatments were installed, i. e., CK, waterlogging, and flooding, with the treatment duration being 60 days. Under waterlogging and flooding, the relative growth of test tree species was in the order of T. distichum > C. illinoensis > S. sebiferum, indicating that T. distichum had the strongest tolerance against waterlogging and flooding, while S. sebiferum had the weakest one. Also under waterlogging and flooding, the root/crown ratio of the three tree species increased significantly, suggesting that more photosynthates were allocated in roots, and the lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH) activities of the tree species also had a significant increase. Among the test tree species, T. distichum had the lowest increment of LDH and ADH activities under waterlogging and flooding, but the increment could maintain at a higher level in the treatment duration, while for C. illinoensis and S. sebiferum, the increment was larger during the initial and medium period, but declined rapidly during the later period of treatment. The malate dehydrogenase (MDH), phosphohexose (HPI), and glucose-6-phosphate dehydrogenase (G6PDH) -6-phosphogluconate dehydrogenase (6PGDH) activities of the tree species under waterlogging and flooding had a significant decrease, and the decrement was the largest for T. distichum, being 35.6% for MDH, 21.0% for HPI, and 22.7% for G6PDH - 6PGDH under flooding. It was suggested that under waterlogging and flooding, the tree species with strong waterlogging tolerance had a higher ability to maintain energy-metabolic balance, and thus, its growth could be maintained at a certain level.

  17. Altered fatty acid metabolism and reduced stearoyl-coenzyme a desaturase activity in asthma.

    Science.gov (United States)

    Rodriguez-Perez, N; Schiavi, E; Frei, R; Ferstl, R; Wawrzyniak, P; Smolinska, S; Sokolowska, M; Sievi, N A; Kohler, M; Schmid-Grendelmeier, P; Michalovich, D; Simpson, K D; Hessel, E M; Jutel, M; Martin-Fontecha, M; Palomares, O; Akdis, C A; O'Mahony, L

    2017-11-01

    Fatty acids and lipid mediator signaling play an important role in the pathogenesis of asthma, yet this area remains largely underexplored. The aims of this study were (i) to examine fatty acid levels and their metabolism in obese and nonobese asthma patients and (ii) to determine the functional effects of altered fatty acid metabolism in experimental models. Medium- and long-chain fatty acid levels were quantified in serum from 161 human volunteers by LC/MS. Changes in stearoyl-coenzyme A desaturase (SCD) expression and activity were evaluated in the ovalbumin (OVA) and house dust mite (HDM) murine models. Primary human bronchial epithelial cells from asthma patients and controls were evaluated for SCD expression and activity. The serum desaturation index (an indirect measure of SCD) was significantly reduced in nonobese asthma patients and in the OVA murine model. SCD1 gene expression was significantly reduced within the lungs following OVA or HDM challenge. Inhibition of SCD in mice promoted airway hyper-responsiveness. SCD1 expression was suppressed in bronchial epithelial cells from asthma patients. IL-4 and IL-13 reduced epithelial cell SCD1 expression. Inhibition of SCD reduced surfactant protein C expression and suppressed rhinovirus-induced IP-10 secretion, which was associated with increased viral titers. This is the first study to demonstrate decreased fatty acid desaturase activity in humans with asthma. Experimental models in mice and human epithelial cells suggest that inhibition of desaturase activity leads to airway hyper-responsiveness and reduced antiviral defense. SCD may represent a new target for therapeutic intervention in asthma patients. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  18. Body mass index, metabolic factors, and striatal activation during stressful and neutral-relaxing states: an FMRI study.

    Science.gov (United States)

    Jastreboff, Ania M; Potenza, Marc N; Lacadie, Cheryl; Hong, Kwangik A; Sherwin, Robert S; Sinha, Rajita

    2011-02-01

    Stress is associated with alterations in neural motivational-reward pathways in the ventral striatum (VS), hormonal/metabolic changes, and weight increases. The relationship between these different factors is not well understood. We hypothesized that body mass index (BMI) status and hormonal/metabolic factors would be associated with VS activation. We used functional magnetic resonance imaging (fMRI) to compare brain responses of overweight and obese (OW/OB: BMI ≥ 25 kg/m(2): N=27) individuals with normal weight (NW: BMI<18.5-24.9 kg/m(2): N=21) individuals during exposure to personalized stress, alcohol cue, and neutral-relaxing situations using a validated, autobiographical, script-driven, guided-imagery paradigm. Metabolic factors, including fasting plasma glucose (FPG), insulin, and leptin, were examined for their association with VS activation. Consistent with previous studies, stress and alcohol cue exposure each increased activity in cortico-limbic regions. Compared with NW individuals, OW/OB individuals showed greater VS activation in the neutral-relaxing and stress conditions. FPG was correlated with VS activation. Significant associations between VS activation and metabolic factors during stress and relaxation suggest the involvement of metabolic factors in striatal dysfunction in OW/OB individuals. This relationship may contribute to non-homeostatic feeding in obesity.

  19. Life-history evolution and the microevolution of intermediary metabolism: activities of lipid-metabolizing enzymes in life-history morphs of a wing-dimorphic cricket.

    Science.gov (United States)

    Zera, Anthony J; Zhao, Zhangwu

    2003-03-01

    Although a considerable amount of information is available on the ecology, genetics, and physiology of life-history traits, much more limited data are available on the biochemical and genetic correlates of life-history variation within species. Specific activities of five enzymes of lipid biosynthesis and two enzymes of amino acid catabolism were compared among lines selected for flight-capable (LW[f]) versus flightless (SW) morphs of the cricket Gryllus firmus. These morphs, which exist in natural populations, differ genetically in ovarian growth (100-400% higher in SW) and aspects of flight capability including the size of wings and flight muscles, and the concentration of triglyceride flight fuel (40% greater in LW[f]). Consistently higher activity of each enzyme in LW(f) versus SW-selected lines, and strong co-segregation between morph and enzyme activity, demonstrated genetically based co-variance between wing morph and enzyme activity. Developmental profiles of enzyme activities strongly paralleled profiles of triglyceride accumulation during adulthood and previous measures of in vivo lipid biosynthesis. These data strongly imply that genetically based elevation in activities of lipogenic enzymes, and enzymes controlling the conversion of amino acids into lipids, is an important cause underlying the elevated accumulation of triglyceride in the LW(f) morph, a key biochemical component of the trade-off between elevated early fecundity and flight capability. Global changes in lipid and amino-acid metabolism appear to have resulted from microevolutionary alteration of regulators of metabolism. Finally, strong genotype x environment (diet) interactions were observed for most enzyme activities. Future progress in understanding the functional causes of life-history evolution requires a more detailed synthesis of the fields of life-history evolution and metabolic biochemistry. Wing polymorphism is a powerful experimental model in such integrative studies.

  20. The metabolic regulator CodY links L. monocytogenes metabolism to virulence by directly activating the virulence regulatory gene, prfA

    Science.gov (United States)

    Lobel, Lior; Sigal, Nadejda; Borovok, Ilya; Belitsky, Boris R.; Sonenshein, Abraham L.; Herskovits, Anat A.

    2015-01-01

    Summary Metabolic adaptations are critical to the ability of bacterial pathogens to grow within host cells and are normally preceded by sensing of host-specific metabolic signals, which in turn can influence the pathogen's virulence state. Previously, we reported that the intracellular bacterial pathogen Listeria monocytogenes responds to low availability of branched-chain amino acids (BCAA) within mammalian cells by up-regulating both BCAA biosynthesis and virulence genes. The induction of virulence genes required the BCAA-responsive transcription regulator, CodY, but the molecular mechanism governing this mode of regulation was unclear. In this report, we demonstrate that CodY directly binds the coding sequence of the L. monocytogenes master virulence activator gene, prfA, 15 nt downstream of its start codon, and that this binding results in up-regulation of prfA transcription specifically under low concentrations of BCAA. Mutating this site abolished CodY binding and reduced prfA transcription in macrophages, and attenuated bacterial virulence in mice. Notably, the mutated binding site did not alter prfA transcription or PrfA activity under other conditions that are known to activate PrfA, such as during growth in the presence of glucose-1-phosphate. This study highlights the tight crosstalk between L. monocytogenes metabolism and virulence' while revealing novel features of CodY-mediated regulation. PMID:25430920

  1. Effects of a glucokinase activator on hepatic intermediary metabolism: study with 13C-isotopomer-based metabolomics

    OpenAIRE

    Nissim, Itzhak; Horyn, Oksana; Nissim, Ilana; Daikhin, Yevgeny; Wehrli, Suzanne L.; Yudkoff, Marc; Matschinsky, Franz M.

    2012-01-01

    GKAs (glucokinase activators) are promising agents for the therapy of Type 2 diabetes, but little is known about their effects on hepatic intermediary metabolism. We monitored the fate of 13C-labelled glucose in both a liver perfusion system and isolated hepatocytes. MS and NMR spectroscopy were deployed to measure isotopic enrichment. The results demonstrate that the stimulation of glycolysis by GKA led to numerous changes in hepatic metabolism: (i) augmented flux through the TCA (tricarboxy...

  2. The influence of hydrologic connectivity on ecosystem metabolism and nitrate uptake in an active beaver meadow

    Science.gov (United States)

    Wegener, P.; Covino, T. P.; Wohl, E.; Kampf, S. K.; Lacy, S.

    2015-12-01

    Wetlands have been widely demonstrated to provide important watershed services, such as the sequestration of carbon (C) and removal of nitrate (NO3-) from through-flowing water. Hydrologic connectivity (degree of water and associated material exchange) between floodplain water bodies (e.g., side channels, ponds) and the main channel influence rates of C accumulation and NO3- uptake, and the degree to which wetlands contribute to enhanced water quality at the catchment scale. However, environmental engineers have largely ignored the role of hydrologic connectivity in providing essential ecosystem services, and constructed wetlands are commonly built using compacted clay and berms that result in less groundwater and surface water exchange than observed in natural wetlands. In a study of an active beaver meadow (multithreaded, riparian wetland) in Rocky Mountain National Park, CO, we show how shifts in hydrology (connectivity, residence times, flow paths) from late spring snowmelt (high connectivity) to autumn/winter baseflow (low connectivity) influence ecosystem metabolism metrics (e.g., gross primary production, ecosystem respiration, and net ecosystem productivity) and NO3- uptake rates. We use a combination of mixing analyses, tracer tests, and hydrometric methods to evaluate shifts in surface and subsurface hydrologic connections between floodplain water bodies from snowmelt to baseflow. In the main channel and three floodplain water bodies, we quantify metabolism metrics and NO3- uptake kinetics across shifting flow regimes. Results from our research indicate that NO3- uptake and metabolism dynamics respond to changing levels of hydrologic connectivity to the main channel, emphasizing the importance of incorporating connectivity in wetland mitigation practices that seek to enhance water quality at the catchment scale.

  3. Metabolic activity in the insular cortex and hypothalamus predicts hot flashes: an FDG-PET study.

    Science.gov (United States)

    Joffe, Hadine; Deckersbach, Thilo; Lin, Nancy U; Makris, Nikos; Skaar, Todd C; Rauch, Scott L; Dougherty, Darin D; Hall, Janet E

    2012-09-01

    Hot flashes are a common side effect of adjuvant endocrine therapies (AET; leuprolide, tamoxifen, aromatase inhibitors) that reduce quality of life and treatment adherence in breast cancer patients. Because hot flashes affect only some women, preexisting neurobiological traits might predispose to their development. Previous studies have implicated the insula during the perception of hot flashes and the hypothalamus in thermoregulatory dysfunction. The aim of the study was to understand whether neurobiological factors predict hot flashes. [18F]-Fluorodeoxyglucose (FDG) positron emission tomography (PET) brain scans coregistered with structural magnetic resonance imaging were used to determine whether metabolic activity in the insula and hypothalamic thermoregulatory and estrogen-feedback regions measured before and in response to AET predict hot flashes. Findings were correlated with CYP2D6 genotype because of CYP2D6 polymorphism associations with tamoxifen-induced hot flashes. We measured regional cerebral metabolic rate of glucose uptake (rCMRglu) in the insula and hypothalamus on FDG-PET. Of 18 women without hot flashes who began AET, new-onset hot flashes were reported by 10 (55.6%) and were detected objectively in nine (50%) participants. Prior to the use of all AET, rCMRglu in the insula (P ≤ 0.01) and hypothalamic thermoregulatory (P = 0.045) and estrogen-feedback (P = 0.007) regions was lower in women who reported developing hot flashes. In response to AET, rCMRglu was further reduced in the insula in women developing hot flashes (P ≤ 0.02). Insular and hypothalamic rCMRglu levels were lower in intermediate than extensive CYP2D6 metabolizers. Trait neurobiological characteristics predict hot flashes. Genetic variability in CYP2D6 may underlie the neurobiological predisposition to hot flashes induced by AET.

  4. Metabolic activation of carbon tetrachloride by the cervico-vaginal epithelium in rodents

    International Nuclear Information System (INIS)

    Brittebo, E.B.; Brandt, I.

    1989-01-01

    The metabolism and binding of 14 C-labelled carbon tetrachloride (CCl 4 ) in the genital tract of female adult or juvenile NMRI-mice and Sprague-Dawly rats (mainly in the pro-oestrous/oestrous stage) and an adult New Zealand rabbit were studied. A marked irreversible binding of radioactivity in the squamous cervico-vaginal epithelium of mice given intravenous injections of 14 C-CCl 4 was revealed by autoradiography of solvent-extracted tissue. The localization of binding in the mouse genital tract incubated with 14 C-CCl 4 under air was similar to that observed in vivo. Bound radioactivity was also present in the cylindrical epithelium of the rabbit vagina incubated with 14 C-CCl 4 in vitro. For a comparison, no preferential binding of radiolabelled diethylstilbestrol or ethinylestradiol was observed in the mouse cervico-vaginal epithelium. The level of irreversible binding to PMSG-primed (pregnant mare's serum gonadotrophin) vaginal epithelial 100 x g supernatants of mice and rats incubated with 14 C-CCl 4 under air was low. Addition of the reducing agent dithionite to the incubations increased the binding in the vaginal epithelium 20-fold. In juvenile mice and rats injected with 14 C-CCl 4 , the levels of metabolites in the epithelium were low, whereas PMSG-primed juvenile rats contained a higher level of metabolites. The results show that the cervico-vaginal epithelium can metabolically activate CCl 4 to reactive metabolites and suggest that the metabolism is under endocrine control. (author)

  5. [Sedentary lifestyle is associated with metabolic and cardiovascular risk factors independent of physical activity].

    Science.gov (United States)

    Leiva, Ana María; Martínez, María Adela; Cristi-Montero, Carlos; Salas, Carlos; Ramírez-Campillo, Rodrigo; Díaz Martínez, Ximena; Aguilar-Farías, Nicolás; Celis-Morales, Carlos

    2017-04-01

    Sedentary behavior is a main risk factor for cardiovascular disease and mortality. To investigate the association between sedentary behavior and metabolic and cardiovascular risk factors. We assessed 322 participants aged between 18 to 65 years. Physical activity and sedentary behavior were measured with accelerometers (Actigraph®). Body mass index (BMI), waist circumference, percentage of body fat, diet and blood markers (glucose, lipid profile, insulin and HOMA-IR) were measured with standardized protocols. Thirty four percent of participants were physically inactive and spent on average 8.7 h/day on sedentary activities. Per one hour increase in sedentary behavior there were significant adverse changes in glucose (4.79 mg/dl), insulin (2.73 pmol/l), HOMA-IR (0.75), BMI (0.69 kg/m²), waist circumference (1.95 cm), fat mass (1.03%), total cholesterol (9.73 mg/dl), HDL-cholesterol (-3.50 mg/dl), LDL-cholesterol (10.7 mg/dl) and triglycerides (12.4 mg/dl). These findings were independent of main confounding factors including total physical activity, dietary factors, BMI and socio-demographics. The detrimental effect of sedentary behaviors on cardiometabolic and obesity-related traits is independent of physical activity levels. Therefore, reducing sedentary time should be targeted in the population apart from increasing their physical activity levels.

  6. Omega-6 polyunsaturated fatty acids, serum zinc, delta-5- and delta-6-desaturase activities and incident metabolic syndrome.

    Science.gov (United States)

    Yary, T; Voutilainen, S; Tuomainen, T-P; Ruusunen, A; Nurmi, T; Virtanen, J K

    2017-08-01

    The associations of n-6 polyunsaturated fatty acids (PUFA) with metabolic syndrome have been poorly explored. We investigated the associations of the serum n-6 PUFA and the activities of enzymes involved in the PUFA metabolism, delta-5-desaturase (D5D) and delta-6-desaturase (D6D) with risk of incident metabolic syndrome. We also investigated whether zinc, a cofactor for these enzymes, modifies these associations. A prospective follow-up study was conducted on 661 men who were aged 42-60 years old at baseline in 1984-1989 and who were re-examined in 1998-2001. Men in the highest versus the lowest serum total omega-6 PUFA tertile had a 70% lower multivariate-adjusted risk of incident metabolic syndrome [odds ratio (OR) = 0.30; 95% confidence interval (CI) = 0.18-0.51, P trend metabolic syndrome components at the re-examinations. Most associations were attenuated after adjustment for body mass index. Finally, the associations of D6D and LA were stronger among those with a higher serum zinc concentration. Higher serum total n-6 PUFA, linoleic acid and arachidonic acid concentrations and D5D activity were associated with a lower risk of developing metabolic syndrome and higher D6D activity was associated with a higher risk. The role of zinc also needs to be investigated in other populations. © 2016 The British Dietetic Association Ltd.

  7. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats.

    Directory of Open Access Journals (Sweden)

    Nady Braidy

    2011-04-01

    Full Text Available The cofactor nicotinamide adenine dinucleotide (NAD+ has emerged as a key regulator of metabolism, stress resistance and longevity. Apart from its role as an important redox carrier, NAD+ also serves as the sole substrate for NAD-dependent enzymes, including poly(ADP-ribose polymerase (PARP, an important DNA nick sensor, and NAD-dependent histone deacetylases, Sirtuins which play an important role in a wide variety of processes, including senescence, apoptosis, differentiation, and aging. We examined the effect of aging on intracellular NAD+ metabolism in the whole heart, lung, liver and kidney of female wistar rats. Our results are the first to show a significant decline in intracellular NAD+ levels and NAD:NADH ratio in all organs by middle age (i.e.12 months compared to young (i.e. 3 month old rats. These changes in [NAD(H] occurred in parallel with an increase in lipid peroxidation and protein carbonyls (o- and m- tyrosine formation and decline in total antioxidant capacity in these organs. An age dependent increase in DNA damage (phosphorylated H2AX was also observed in these same organs. Decreased Sirt1 activity and increased acetylated p53 were observed in organ tissues in parallel with the drop in NAD+ and moderate over-expression of Sirt1 protein. Reduced mitochondrial activity of complex I-IV was also observed in aging animals, impacting both redox status and ATP production. The strong positive correlation observed between DNA damage associated NAD+ depletion and Sirt1 activity suggests that adequate NAD+ concentrations may be an important longevity assurance factor.

  8. Urease Activity Represents an Alternative Pathway for Mycobacterium tuberculosis Nitrogen Metabolism

    Science.gov (United States)

    Lin, Wenwei; Mathys, Vanessa; Ang, Emily Lei Yin; Koh, Vanessa Hui Qi; Martínez Gómez, Julia María; Ang, Michelle Lay Teng; Zainul Rahim, Siti Zarina; Tan, Mai Ping; Pethe, Kevin

    2012-01-01

    Urease represents a critical virulence factor for some bacterial species through its alkalizing effect, which helps neutralize the acidic microenvironment of the pathogen. In addition, urease serves as a nitrogen source provider for bacterial growth. Pathogenic mycobacteria express a functional urease, but its role during infection has yet to be characterized. In this study, we constructed a urease-deficient Mycobacterium tuberculosis strain and confirmed the alkalizing effect of the urease activity within the mycobacterium-containing vacuole in resting macrophages but not in the more acidic phagolysosomal compartment of activated macrophages. However, the urease-mediated alkalizing effect did not confer any growth advantage on M. tuberculosis in macrophages, as evidenced by comparable growth profiles for the mutant, wild-type (WT), and complemented strains. In contrast, the urease-deficient mutant exhibited impaired in vitro growth compared to the WT and complemented strains when urea was the sole source of nitrogen. Substantial amounts of ammonia were produced by the WT and complemented strains, but not with the urease-deficient mutant, which represents the actual nitrogen source for mycobacterial growth. However, the urease-deficient mutant displayed parental colonization profiles in the lungs, spleen, and liver in mice. Together, our data demonstrate a role for the urease activity in M. tuberculosis nitrogen metabolism that could be crucial for the pathogen's survival in nutrient-limited microenvironments where urea is the sole nitrogen source. Our work supports the notion that M. tuberculosis virulence correlates with its unique metabolic versatility and ability to utilize virtually any carbon and nitrogen sources available in its environment. PMID:22645285

  9. A Copolymer Scaffold Functionalized with Nanodiamond Particles Enhances Osteogenic Metabolic Activity and Bone Regeneration.

    Science.gov (United States)

    Yassin, Mohammed A; Mustafa, Kamal; Xing, Zhe; Sun, Yang; Fasmer, Kristine Eldevik; Waag, Thilo; Krueger, Anke; Steinmüller-Nethl, Doris; Finne-Wistrand, Anna; Leknes, Knut N

    2017-06-01

    Functionalizing polymer scaffolds with nanodiamond particles (nDPs) has pronounced effect on the surface properties, such as improved wettability, an increased active area and binding sites for cellular attachment and adhesion, and increased ability to immobilize biomolecules by physical adsorption. This study aims to evaluate the effect of poly(l-lactide-co-ε-caprolactone) (poly(LLA-co-CL)) scaffolds, functionalized with nDPs, on bone regeneration in a rat calvarial critical size defect. Poly(LLA-co-CL) scaffolds functionalized with nDPs are also compared with pristine scaffolds with reference to albumin adsorption and seeding efficiency of bone marrow stromal cells (BMSCs). Compared with pristine scaffolds, the experimental scaffolds exhibit a reduction in albumin adsorption and a significant increase in the seeding efficiency of BMSCs (p = 0.027). In the calvarial defects implanted with BMSC-seeded poly(LLA-co-CL)/nDPs scaffolds, live imaging at 12 weeks discloses a significant increase in osteogenic metabolic activity (p = 0.016). Microcomputed tomography, confirmed by histological data, reveals a substantial increase in bone volume (p = 0.021). The results show that compared with conventional poly(LLA-co-CL) scaffolds those functionalized with nDPs promote osteogenic metabolic activity and mineralization capacity. It is concluded that poly(LLA-co-CL) composite matrices functionalized with nDPs enhance osteoconductivity and therefore warrant further study as potential scaffolding material for bone tissue engineering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Diversity of Metabolically Active Bacteria in Water-Flooded High-Temperature Heavy Oil Reservoir

    Directory of Open Access Journals (Sweden)

    Tamara N. Nazina

    2017-04-01

    Full Text Available The goal of this work was to study the overall genomic diversity of microorganisms of the Dagang high-temperature oilfield (PRC and to characterize the metabolically active fraction of these populations. At this water-flooded oilfield, the microbial community of formation water from the near-bottom zone of an injection well where the most active microbial processes of oil degradation occur was investigated using molecular, cultural, radiotracer, and physicochemical techniques. The samples of microbial DNA and RNA from back-flushed water were used to obtain the clone libraries for the 16S rRNA gene and cDNA of 16S rRNA, respectively. The DNA-derived clone libraries were found to contain bacterial and archaeal 16S rRNA genes and the alkB genes encoding alkane monooxygenases similar to those encoded by alkB-geo1 and alkB-geo6 of geobacilli. The 16S rRNA genes of methanogens (Methanomethylovorans, Methanoculleus, Methanolinea, Methanothrix, and Methanocalculus were predominant in the DNA-derived library of Archaea cloned sequences; among the bacterial sequences, the 16S rRNA genes of members of the genus Geobacillus were the most numerous. The RNA-derived library contained only bacterial cDNA of the 16S rRNA sequences belonging to metabolically active aerobic organotrophic bacteria (Tepidimonas, Pseudomonas, Acinetobacter, as well as of denitrifying (Azoarcus, Tepidiphilus, Calditerrivibrio, fermenting (Bellilinea, iron-reducing (Geobacter, and sulfate- and sulfur-reducing bacteria (Desulfomicrobium, Desulfuromonas. The presence of the microorganisms of the main functional groups revealed by molecular techniques was confirmed by the results of cultural, radioisotope, and geochemical research. Functioning of the mesophilic and thermophilic branches was shown for the microbial food chain of the near-bottom zone of the injection well, which included the microorganisms of the carbon, sulfur, iron, and nitrogen cycles.

  11. Contrasting effects of strabismic amblyopia on metabolic activity in superficial and deep layers of striate cortex.

    Science.gov (United States)

    Adams, Daniel L; Economides, John R; Horton, Jonathan C

    2015-05-01

    To probe the mechanism of visual suppression, we have raised macaques with strabismus by disinserting the medial rectus muscle in each eye at 1 mo of age. Typically, this operation produces a comitant, alternating exotropia with normal acuity in each eye. Here we describe an unusual occurrence: the development of severe amblyopia in one eye of a monkey after induction of exotropia. Shortly after surgery, the animal demonstrated a strong fixation preference for the left eye, with apparent suppression of the right eye. Later, behavioral testing showed inability to track or to saccade to targets with the right eye. With the left eye occluded, the animal demonstrated no visually guided behavior. Optokinetic nystagmus was absent in the right eye. Metabolic activity in striate cortex was assessed by processing the tissue for cytochrome oxidase (CO). Amblyopia caused loss of CO in one eye's rows of patches, presumably those serving the blind eye. Layers 4A and 4B showed columns of reduced CO, in register with pale rows of patches in layer 2/3. Layers 4C, 5, and 6 also showed columns of CO activity, but remarkably, comparison with more superficial layers showed a reversal in contrast. In other words, pale CO staining in layers 2/3, 4A, and 4B was aligned with dark CO staining in layers 4C, 5, and 6. No experimental intervention or deprivation paradigm has been reported previously to produce opposite effects on metabolic activity in layers 2/3, 4A, and 4B vs. layers 4C, 5, and 6 within a given eye's columns. Copyright © 2015 the American Physiological Society.

  12. Increased metabolic activity in the septum and habenula during stress is linked to subsequent expression of learned helplessness behavior.

    Science.gov (United States)

    Mirrione, Martine M; Schulz, Daniela; Lapidus, Kyle A B; Zhang, Samuel; Goodman, Wayne; Henn, Fritz A

    2014-01-01

    Uncontrollable stress can have a profound effect on an organism's ability to respond effectively to future stressful situations. Behavior subsequent to uncontrollable stress can vary greatly between individuals, falling on a spectrum between healthy resilience and maladaptive learned helplessness. It is unclear whether dysfunctional brain activity during uncontrollable stress is associated with vulnerability to learned helplessness; therefore, we measured metabolic activity during uncontrollable stress that correlated with ensuing inability to escape future stressors. We took advantage of small animal positron emission tomography (PET) and 2-deoxy-2[(18)F]fluoro-D-glucose ((18)FDG) to probe in vivo metabolic activity in wild type Sprague Dawley rats during uncontrollable, inescapable, unpredictable foot-shock stress, and subsequently tested the animals response to controllable, escapable, predictable foot-shock stress. When we correlated metabolic activity during the uncontrollable stress with consequent behavioral outcomes, we found that the degree to which animals failed to escape the foot-shock correlated with increased metabolic activity in the lateral septum and habenula. When used a seed region, metabolic activity in the habenula correlated with activity in the lateral septum, hypothalamus, medial thalamus, mammillary nuclei, ventral tegmental area, central gray, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and rostromedial tegmental nucleus, caudal linear raphe, and subiculum transition area. Furthermore, the lateral septum correlated with metabolic activity in the preoptic area, medial thalamus, habenula, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and caudal linear raphe. Together, our data suggest a group of brain regions involved in sensitivity to uncontrollable stress involving the lateral septum and habenula.

  13. Increased metabolic activity in the septum and habenula during stress is linked to subsequent expression of learned helplessness behavior

    Directory of Open Access Journals (Sweden)

    Martine M Mirrione

    2014-02-01

    Full Text Available Uncontrollable stress can have a profound effect on an organism’s ability to respond effectively to future stressful situations. Behavior subsequent to uncontrollable stress can vary greatly between individuals, falling on a spectrum between healthy resilience and maladaptive learned helplessness. It is unclear whether dysfunctional brain activity during uncontrollable stress is associated with vulnerability to learned helplessness; therefore, we measured metabolic activity during uncontrollable stress that correlated with ensuing inability to escape future stressors. We took advantage of small animal positron emission tomography (PET and 2-deoxy-2[18F]fluoro-D-glucose (18FDG to probe in vivo metabolic activity in wild type Sprague Dawley rats during uncontrollable, inescapable, unpredictable foot-shock stress, and subsequently tested the animals response to controllable, escapable, predictable foot-shock stress. When we correlated metabolic activity during the uncontrollable stress with consequent behavioral outcomes, we found that the degree to which animals failed to escape the foot-shock correlated with increased metabolic activity in the lateral septum and habenula. When used a seed region, metabolic activity in the habenula correlated with activity in the lateral septum, hypothalamus, medial thalamus, mammillary nuclei, ventral tegmental area, central gray, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and rostromedial tegmental nucleus, caudal linear raphe, and subiculum transition area. Furthermore, the lateral septum correlated with metabolic activity in the preoptic area, medial thalamus, habenula, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and caudal linear raphe. Together, our data suggest a group of brain regions involved in sensitivity to uncontrollable stress involving the lateral septum and habenula.

  14. Effects of photoperiod on food intake, activity and metabolic rate in adult neutered male cats.

    Science.gov (United States)

    Kappen, K L; Garner, L M; Kerr, K R; Swanson, K S

    2014-10-01

    With the continued rise in feline obesity, novel weight management strategies are needed. To date, strategies aimed at altering physical activity, an important factor in weight maintenance, have been lacking. Photoperiod is known to cause physiological changes in seasonal mammals, including changes in body weight (BW) and reproductive status. Thus, our objective was to determine the effect of increased photoperiod (longer days) on voluntary physical activity levels, resting metabolic rate (RMR), food intake required to maintain BW, and fasting serum leptin and ghrelin concentrations in adult cats. Eleven healthy, adult, neutered, male domestic shorthair cats were used in a randomized crossover design study. During two 12-week periods, cats were exposed to either a short-day (SD) photoperiod of 8 h light: 16 h dark or a long-day (LD) photoperiod of 16 h light: 8 h dark. Cats were fed a commercial diet to maintain baseline BW. In addition to daily food intake and twice-weekly BW, RMR (via indirect calorimetry), body composition [via dual-energy X-ray absorptiometry (DEXA)] and physical activity (via Actical activity monitors) were measured at week 0 and 12 of each period. Fasting serum leptin and ghrelin concentrations were measured at week 0, 6 and 12 of each period. Average hourly physical activity was greater (p = 0.008) in LD vs. SD cats (3770 vs. 3129 activity counts/h), which was primarily due to increased (p dark period activity (1188 vs. 710 activity counts/h). This corresponded to higher (p energy intake (mean over 12-week period: 196 vs. 187 kcal/day), and increased (p = 0.048) RMR in LD cats (9.02 vs. 8.37 kcal/h). Body composition, serum leptin and serum ghrelin were not altered by photoperiod. More research is needed to determine potential mechanisms by which these physiological changes occurred and how they may apply to weight management strategies.

  15. Changes in energy metabolism in relation to physical activity due to fermentable carbohydrates in group housed, growing pigs

    NARCIS (Netherlands)

    Schrama, J.W.; Bakker, G.C.M.

    1999-01-01

    Fermentable nonstarch polysaccharides (dietary fiber) affect energy retention in group-housed growing pigs by reducing physical activity. This study assessed the effects of fermentation and bulkiness of dietary carbohydrates on physical activity in relation to energy metabolism. Eight clusters of 14

  16. Changes in energy metabolism in relation to physical activity due to fermentable carbohydrates in group-housed growing pigs

    NARCIS (Netherlands)

    Schrama, J.W.; Bakker, G.C.M.

    1999-01-01

    Fermentable nonstarch polysaccharides (dietary fiber) affect energy retention in group-housed growing pigs by reducing physical activity. This study assessed the effects of fermentation and bulkiness of dietary carbohydrates on physical activity in relation to energy metabolism. Eight clusters of 14

  17. Effects of pesticide chemicals on the activity of metabolic enzymes: focus on thiocarbamates.

    Science.gov (United States)

    Mathieu, Cécile; Duval, Romain; Xu, Ximing; Rodrigues-Lima, Fernando; Dupret, Jean-Marie

    2015-01-01

    Thiocarbamates are chemicals widely used as pesticides. Occupational exposure is associated with acute intoxication. Populations can be exposed through food and water. Moreover, certain thiocarbamates are used clinically. The widespread use of thiocarbamates raises many issues regarding their toxicological and pharmacological impact. Thiocarbamates and their metabolites can modify biological macromolecules functions, in particular enzymes, through modification of cysteine residues, chelation of metal ions or modulation of the oxidative stress. Loss of enzyme activity can lead to the disruption of metabolic pathways, and explain, at least in part, the effects of these pesticides. Additionally, their reactivity and ability to easily cross biological barrier confer them a great interest for development of clinical applications. Many advances in the study of thiocarbamates metabolism and reactivity have led to a better knowledge of biological effects of these compounds. However, more data are needed on the determination of targets and specificity. Only few data concerning the exposure to a cocktail of pesticides/chemicals are available, raising the need to evaluate the toxic side effects of representative pesticides mixtures. Moreover, the dithiocarbamate Disulfiram has shown great potential in therapeutic applications and leads to the development of pharmacological thiocarbamates derivatives, highly specific to their target and easily distributed.

  18. Adrenal activity and metabolic risk during randomized escitalopram or placebo treatment in PCOS.

    Science.gov (United States)

    Glintborg, Dorte; Altinok, Magda Lambaa; Ravn, Pernille; Stage, Kurt Bjerregaard; Højlund, Kurt; Andersen, Marianne

    2018-03-01

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance, adrenal hyperactivity and decreased mental health. We aimed to investigate the changes in adrenal activity, metabolic status and mental health in PCOS during treatment with escitalopram or placebo. Forty-two overweight premenopausal women with PCOS and no clinical depression were randomized to 12-week SSRI (20 mg escitalopram/day, n  = 21) or placebo ( n  = 21). Patients underwent clinical examination, fasting blood samples, adrenocorticotroph hormone (ACTH) test, 3-h oral glucose tolerance test (OGTT) and filled in questionnaires regarding mental health and health-related quality of life (HRQoL): WHO Well-Being Index (WHO-5), Major Depression Inventory (MDI), Short Form 36 (SF-36) and PCOS questionnaire. Included women were aged 31 (6) years (mean (s.d.)) and had body mass index (BMI) 35.8 (6.5) kg/m 2 and waist 102 (12) cm. Escitalopram was associated with increased waist (median (quartiles) change 1 (0; 3) cm), P  = 0.005 vs change during placebo and increased cortisol levels (cortisol 0, cortisol 60, peak cortisol and area under the curve for cortisol during ACTH test), all P   PCOS and no clinical depression, whereas metabolic risk markers, mental health and HRQol were unchanged. © 2018 The authors.

  19. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.

    Science.gov (United States)

    Xiong, Weili; Abraham, Paul E; Li, Zhou; Pan, Chongle; Hettich, Robert L

    2015-10-01

    The human gastrointestinal tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome is not merely a collection of opportunistic parasites, but rather provides important functions to the host that are absolutely critical to many aspects of health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial metaproteomics provides the ability to characterize the human gut microbiota functions and metabolic activities at a remarkably deep level, revealing information about microbiome development and stability as well as their interactions with their human host. Generally, microbial and human proteins can be extracted and then measured by high performance MS-based proteomics technology. Here, we review the field of human gut microbiome metaproteomics, with a focus on the experimental and informatics considerations involved in characterizing systems ranging from low-complexity model gut microbiota in gnotobiotic mice, to the emerging gut microbiome in the GI tract of newborn human infants, and finally to an established gut microbiota in human adults. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity.

    Science.gov (United States)

    López-Lluch, Guillermo

    2017-03-01

    Mitochondria play an essential role in ageing and longevity. During ageing, a general deregulation of metabolism occurs, affecting molecular, cellular and physiological activities in the organism. Dysfunction of mitochondria has been associated with ageing and age-related diseases indicating their importance in the maintenance of cell homeostasis. Three major nutritional sensors, mTOR, AMPK and Sirtuins are involved in the control of mitochondrial physiology. These nutritional sensors control mitochondrial biogenesis, dynamics by regulating fusion and fission processes, and turnover through mito- and autophagy. Apart of the known factors involved in fusion, OPA1 and mitofusins, and fission, DRP1 and FIS1, emerging factors such as prohibitins and sestrins can play important functions in mitochondrial dynamics regulation. Mitochondria is also affected by sexual hormones that suffer drastic changes during ageing. The recent literature demonstrates the complex interaction between nutritional sensors and mitochondrial homeostasis in the physiology of adipose tissue and in the accumulation of fat in other organs such as muscle and liver. In this article, the role of mitochondrial homeostasis in ageing and age-dependent fat accumulation is revised. This review highlights the importance of mitochondria in the accumulation of fat during ageing and related diseases such as obesity, metabolic syndrome or type 2 diabetes mellitus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. BAD-Dependent Regulation of Fuel Metabolism and KATP Channel Activity Confers Resistance to Epileptic Seizures

    OpenAIRE

    Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K.; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R.; Lutas, Andrew; Yellen, Gary; Danial, Nika N.

    2012-01-01

    Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phospho-regulation of BAD and are independent of its apoptotic function. BAD modific...

  2. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage

    OpenAIRE

    Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong

    2017-01-01

    Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vasc...

  3. Palmitoleic Acid Improves Metabolic Functions in Fatty Liver by PPARα-Dependent AMPK Activation.

    Science.gov (United States)

    de Souza, Camila O; Teixeira, Alexandre A S; Biondo, Luana A; Lima Junior, Edson A; Batatinha, Helena A P; Rosa Neto, Jose C

    2017-08-01

    Palmitoleic acid, since described as lipokine, increases glucose uptake by modulation of 5'AMP-activated protein kinase (AMPK), as well as increasing lipolysis by activation of peroxisome proliferator-activated receptor-α (PPARα), in adipose tissue. However, in liver, the effects of palmitoleic acid on glucose metabolism and the role of PPARα remain unknown. To investigate whether palmitoleic acid improved the hepatic insulin sensitivity of obese mice. C57BL6 and PPARα knockout (KO) mice were fed for 12 weeks with a standard diet (SD) or high-fat diet (HF), and in the last 2 weeks were treated with oleic or palmitoleic acid. Palmitoleic acid promoted a faster uptake of glucose in the body, associated with higher insulin concentration; however, even when stimulated with insulin, palmitoleic acid did not modulate the insulin pathway (AKT, IRS). Palmitoleic acid increased the phosphorylation of AMPK, upregulated glucokinase and downregulated SREBP-1. Regarding AMPK downstream, palmitoleic acid increased the production of FGF-21 and stimulated the expression of PPARα. Palmitoleic acid treatment did not increase AMPK phosphorylation, modulate glucokinase or increase FGF-21 in liver of PPARα KO mice. In mice fed with a high-fat diet, palmitoleic acid supplementation stimulated the uptake of glucose in liver through activation of AMPK and FGF-21, dependent on PPARα. J. Cell. Physiol. 232: 2168-2177, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Tissue-specific metabolic activation and mutagenicity of 3-nitrobenzanthrone in MutaMouse.

    Science.gov (United States)

    Chen, Guosheng; Gingerich, John; Soper, Lynda; Douglas, George R; White, Paul A

    2008-10-01

    3-Nitrobenzanthrone (3-NBA) is a mutagen and suspected human carcinogen detected in diesel exhaust, airborne particulate matter, and urban soil. We investigated the tissue specific mutagenicity of 3-NBA at the lacZ locus of transgenic MutaMouse following acute single dose or 28-day repeated-dose oral administration. In the acute high dose (50 mg/kg) exposure, increased lacZ mutant frequency was observed in bone marrow and colonic epithelium, but not in liver and bladder. In the repeated-dose study, a dose-dependent increase in lacZ mutant frequency was observed in bone marrow and liver (2- and 4-fold increase above control), but not in lung or intestinal epithelium. In addition, a concentration-dependent increase in mutant frequency (8.5-fold above control) was observed for MutaMouse FE1 lung epithelial cells exposed in vitro. 1-Nitropyrene reductase, 3-NBA reductase, and acetyltransferase activities were measured in a variety of MutaMouse specimens in an effort to link metabolic activation and mutagenicity. High 3-NBA nitroreductase activities were observed in lung, liver, colon and bladder, and detectable N-acetyltransferase activities were found in all tissues except bone marrow. The relatively high 3-NBA nitroreductase activity in MutaMouse tissues, as compared with those in Salmonella TA98 and TA100, suggests that 3-NBA is readily reduced and activated in vivo. High 3-NBA nitroreductase levels in liver and colon are consistent with the elevated lacZ mutant frequency values, and previously noted inductions of hepatic DNA adducts. Despite an absence of induced lacZ mutations, the highest 3-NBA reductase activity was detected in lung. Further studies are warranted, especially following inhalation or intratracheal exposures. Published 2008 Wiley-Liss, Inc.

  5. Metabolic changes after prior treatment with ethanol. Evidence against in involvement of the Na+ + K+-activated ATPase in the increase in ethanol metabolism.

    Science.gov (United States)

    Yuki, T; Thurman, R G; Schwabe, U; Scholz, R

    1980-01-01

    In perfused rat liver, the inhibition of ethanol uptake by ouabain does not follow the rapid inhibition of the Na+ K+- activated ATPase as assessed by changes in perfusate [K+] (half-time, t 1/2 = 2--3 min), but correlated rather with the slow inhibition of oxygen uptake (maximal inhibition = 40% in 20 min). The data indicate that ouabain exerts its effect on ethanol metabolism via the following sequence of events; inhibition of the sodium pump is followed gradually by a perturbation of the intracellular cation milieu; this leads to an inhibition of the mitochondrial respiratory chain, resulting in diminished rate of NADH oxidation, which in turn causes in inhibition of ethanol metabolism. PMID:6249265

  6. Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab).

    Science.gov (United States)

    Healy, Genevieve N; Wijndaele, Katrien; Dunstan, David W; Shaw, Jonathan E; Salmon, Jo; Zimmet, Paul Z; Owen, Neville

    2008-02-01

    We examined the associations of objectively measured sedentary time and physical activity with continuous indexes of metabolic risk in Australian adults without known diabetes. An accelerometer was used to derive the percentage of monitoring time spent sedentary and in light-intensity and moderate-to-vigorous-intensity activity, as well as mean activity intensity, in 169 Australian Diabetes, Obesity and Lifestyle Study (AusDiab) participants (mean age 53.4 years). Associations with waist circumference, triglycerides, HDL cholesterol, resting blood pressure, fasting plasma glucose, and a clustered metabolic risk score were examined. Independent of time spent in moderate-to-vigorous-intensity activity, there were significant associations of sedentary time, light-intensity time, and mean activity intensity with waist circumference and clustered metabolic risk. Independent of waist circumference, moderate-to-vigorous-intensity activity time was significantly beneficially associated with triglycerides. These findings highlight the importance of decreasing sedentary time, as well as increasing time spent in physical activity, for metabolic health.

  7. Physical activity and risk of Metabolic Syndrome in an urban Mexican cohort

    Directory of Open Access Journals (Sweden)

    Huitrón Gerardo

    2009-07-01

    Full Text Available Abstract Background In the Mexican population metabolic syndrome (MS is highly prevalent. It is well documented that regular physical activity (PA prevents coronary diseases, type 2 diabetes and MS. Most studies of PA have focused on moderate-vigorous leisure-time activity, because it involves higher energy expenditures, increase physical fitness, and decrease the risk of MS. However, for most people it is difficult to get a significant amount of PA from only moderately-vigorous leisure activity, so workplace activity may be an option for working populations, because, although may not be as vigorous in terms of cardio-respiratory efforts, it comprises a considerable proportion of the total daily activity with important energy expenditure. Since studies have also documented that different types and intensity of daily PA, including low-intensity, seem to confer important health benefits such as prevent MS, we sought to assess the impact of different amounts of leisure-time and workplace activities, including low-intensity level on MS prevention, in a sample of urban Mexican adults. Methods The study population consisted of 5118 employees and their relatives, aged 20 to 70 years, who were enrolled in the baseline evaluation of a cohort study. MS was assessed according to the criteria of the National Cholesterol Education Program, ATP III and physical activity with a validated self-administered questionnaire. Associations between physical activity and MS risk were assessed with multivariate logistic regression models. Results The prevalence of the components of MS in the study population were: high glucose levels 14.2%, high triglycerides 40.9%, high blood pressure 20.4%, greater than healthful waist circumference 43.2% and low-high density lipoprotein 76.9%. The prevalence of MS was 24.4%; 25.3% in men and 21.8% in women. MS risk was reduced among men (OR 0.72; 95%CI 0.57–0.95 and women (OR 0.78; 95%CI 0.64–0.94 who reported an amount of ≥30

  8. Physical activity, sleep duration and metabolic health in children fluctuate with the lunar cycle

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael; Hjorth, Mads Fiil; Damsgaard, Camilla Trab

    2015-01-01

    Behaviours of several animal species have been linked to lunar periodicity. Evidence for such links in humans is weak; however, recently, shorter sleep duration was reported around full moon in two small samples of adults. As restrictions in sleep duration have been shown to adversely affect...... and sleep as well as 2000 measurements of different cardiometabolic risk factors, including insulin sensitivity, appetite hormones and blood pressure, during nine lunar phases. During the period around full moon, children were 5.0 and 3.2 min per day less active, slept 2.4 and 4.1 min per night longer, had...... compared with days around half moon (both P sleep is responsible for the metabolic alterations observed around full moon. However, we have no understanding of potential mechanisms that may mediate a potential true link between childhood...

  9. Adrenal activity and metabolic risk during randomized escitalopram or placebo treatment in PCOS

    DEFF Research Database (Denmark)

    Glintborg, Dorte; Altinok, Magda Lambaa; Ravn, Pernille

    2018-01-01

    BACKGROUND/AIMS: Polycystic ovary syndrome (PCOS) is associated with insulin resistance, adrenal hyperactivity and decreased mental health. We aimed to investigate the changes in adrenal activity, metabolic status and mental health in PCOS during treatment with escitalopram or placebo. METHODS......: Forty-two overweight premenopausal women with PCOS and no clinical depression were randomized to 12-week SSRI (20 mg escitalopram/day, n = 21) or placebo (n = 21). Patients underwent clinical examination, fasting blood samples, adrenocorticotroph hormone (ACTH) test, 3-h oral glucose tolerance test...... (OGTT) and filled in questionnaires regarding mental health and health-related quality of life (HRQoL): WHO Well-Being Index (WHO-5), Major Depression Inventory (MDI), Short Form 36 (SF-36) and PCOS questionnaire. RESULTS: Included women were aged 31 (6) years (mean (s.d.)) and had body mass index (BMI...

  10. [Wellness-activities to prevent metabolic syndrome among patients with schizophrenia].

    Science.gov (United States)

    Brönner, Monika; Betz, Christine; Christ, Sarah; Froböse, Teresa; Pitschel-Walz, Gabi; Bäuml, Josef

    2010-01-01

    Weight gain and metabolic disturbances are growing side effects of a modern antipsychotic therapy. Different programs were developed to reduce them. This article gives an overview of existing and evaluated programs. A literature research was made through PubMed. Relevant reviews and intervention studies were identified. Studies with the main outcome variable of weight reductions are numerous, even randomised controlled trials. Short-term weight loss under antipsychotic treatment is possible, but there is still a lack of long-term studies. Life style interventions, which include e. g. physical exercise, are not that common. Also, interventions such as wellness-activities, which contribute by means of adequate motivation strategies to an enhancement of the general well-being, are still missing. Present results turned out to be positive. Further programs which exceed weight management are required. There is necessity for more studies with consistent outcome variables and methods, especially long-term programs. Georg Thieme Verlag KG Stuttgart, New York.

  11. Zebrafish Embryonic Lipidomic Analysis Reveals that the Yolk Cell Is Metabolically Active in Processing Lipid

    Directory of Open Access Journals (Sweden)

    Daniel Fraher

    2016-02-01

    Full Text Available The role of lipids in providing energy and structural cellular components during vertebrate development is poorly understood. To elucidate these roles further, we visualized lipid deposition and examined expression of key lipid-regulating genes during zebrafish embryogenesis. We also conducted a semiquantitative analysis of lipidomic composition using liquid chromatography (LC-mass spectrometry. Finally, we analyzed processing of boron-dipyrromethene (BODIPY lipid analogs injected into the yolk using thin layer chromatography. Our data reveal that the most abundant lipids in the embryo are cholesterol, phosphatidylcholine, and triglyceride. Moreover, we demonstrate that lipids are processed within the yolk prior to mobilization to the embryonic body. Our data identify a metabolically active yolk and body resulting in a dynamic lipid composition. This provides a foundation for studying lipid biology during normal or pharmacologically compromised embryogenesis.

  12. Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Nielsen, Jannie; Overgaard, M

    2010-01-01

    Maximal exercise may be limited by central fatigue defined as an inability of the central nervous system to fully recruit the involved muscles. This study evaluated whether a reduction in the cerebral oxygen-to-carbohydrate index (OCI) and in the cerebral mitochondrial oxygen tension relate to th...... indicating that reduced cerebral oxygenation may play a role in the development of central fatigue and may be an exercise capacity limiting factor.......Maximal exercise may be limited by central fatigue defined as an inability of the central nervous system to fully recruit the involved muscles. This study evaluated whether a reduction in the cerebral oxygen-to-carbohydrate index (OCI) and in the cerebral mitochondrial oxygen tension relate...... of perceived exertion (RPE), arm maximal voluntary force (MVC), and voluntary activation of elbow flexor muscles assessed with transcranial magnetic stimulation. Low intensity exercise did not produce any indication of central fatigue or marked cerebral metabolic deviations. Exercise in hypoxia (0.10) reduced...

  13. Spheroid cancer stem cells display reprogrammed metabolism and obtain energy by actively running the tricarboxylic acid (TCA) cycle.

    Science.gov (United States)

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Takahashi, Juri; Eguchi, Satoko; Yamashita, Aki; Tomio, Kensuke; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Osuga, Yutaka; Fujii, Tomoyuki

    2016-05-31

    The Warburg effect is a metabolic hallmark of cancer cells; cancer cells, unlike normal cells, exclusively activate glycolysis, even in the presence of enough oxygen. On the other hand, intratumoral heterogeneity is currently of interest in cancer research, including that involving cancer stem cells (CSCs). In the present study, we attempted to gain an understanding of metabolism in CSCs that is distinct from that in non-CSCs. After forming spheroids from the OVTOKO (ovarian clear cell adenocarcinoma) and SiHa (cervical squamous cell carcinoma) cell lines, the metabolites of these cells were compared with the metabolites of cancer cells that were cultured in adherent plates. A principle components analysis clearly divided their metabolic features. Amino acids that participate in tricarboxylic acid (TCA) cycle reactions, such as serine and glutamine, were significantly increased in the spheroids. Indeed, spheroids from each cell line contained more total adenylates than did their corresponding cells in adherent cultures. This study demonstrated that cancer metabolism is not limited to aerobic glycolysis (i.e. the Warburg effect), but is flexible and context-dependent. In addition, activation of TCA cycles was suggested to be a metabolic feature of CSCs that was distinct from non-CSCs. The amino acid metabolic pathways discussed here are already considered as targets for cancer therapy, and they are additionally proposed as potential targets for CSC treatment.

  14. The Central Metabolism Regulator EIIAGlc Switches Salmonella from Growth Arrest to Acute Virulence through Activation of Virulence Factor Secretion

    Directory of Open Access Journals (Sweden)

    Alain Mazé

    2014-06-01

    Full Text Available The ability of Salmonella to cause disease depends on metabolic activities and virulence factors. Here, we show that a key metabolic protein, EIIAGlc, is absolutely essential for acute infection, but not for Salmonella survival, in a mouse typhoid fever model. Surprisingly, phosphorylation-dependent EIIAGlc functions, including carbohydrate transport and activation of adenylate cyclase for global regulation, do not explain this virulence phenotype. Instead, biochemical studies, in vitro secretion and translocation assays, and in vivo genetic epistasis experiments suggest that EIIAGlc binds to the type three secretion system 2 (TTSS-2 involved in systemic virulence, stabilizes its cytoplasmic part including the crucial TTSS-2 ATPase, and activates virulence factor secretion. This unexpected role of EIIAGlc reveals a striking direct link between central Salmonella metabolism and a crucial virulence mechanism.

  15. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.; Chassy, B.M.; Egan, W.

    1985-04-01

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of (/sup 14/C)lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution /sup 31/P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM.

  16. PET/CT-guided biopsies of metabolically active bone lesions: applications and clinical impact

    Energy Technology Data Exchange (ETDEWEB)

    Klaeser, Bernd; Wartenberg, Jan; Weitzel, Thilo; Krause, Thomas [Bern University Hospital and University of Bern, Department of Nuclear Medicine, Inselspital, Bern (Switzerland); Wiskirchen, Jakub [Bern University Hospital and University of Bern, Department of Nuclear Medicine, Inselspital, Bern (Switzerland); University Hospital Tuebingen, Department of Radiology, Neuroradiology, and Nuclear Medicine, Tuebingen (Germany); Schmid, Ralph A. [Bern University Hospital and University of Bern, Department of Thoracic Surgery, Inselspital, Bern (Switzerland); Mueller, Michel D. [Bern University Hospital and University of Bern, Department of Obstetrics and Gynaecology, Inselspital, Bern (Switzerland)

    2010-11-15

    In a minority of cases a definite diagnosis and stage grouping in cancer patients is not possible based on the imaging information of PET/CT. We report our experience with percutaneous PET/CT-guided bone biopsies to histologically verify the aetiology of hypermetabolic bone lesions. We retrospectively reviewed the data of 20 consecutive patients who underwent multimodal image-guided bone biopsies using a dedicated PET/CT system in a step-by-step technique. Technical and clinical success rates of PET/CT-guided biopsies were evaluated. Questionnaires were sent to the referring physicians to assess the impact of biopsies on patient management and to check the clinical need for PET/CT-guided biopsies. Clinical indications for biopsy were to histologically verify the aetiology of metabolically active bone lesions without a morphological correlate confirming the suspicion of metastases in 15 patients, to determine the origin of suspected metastases in 3 patients and to evaluate the appropriateness of targeted therapy options in 2 patients. Biopsies were technically successful in all patients. In 19 of 20 patients a definite histological diagnosis was possible. No complications or adverse effects occurred. The result of PET/CT-guided bone biopsies determined a change of the planned treatment in overall 56% of patients, with intramodality changes, e.g. chemotherapy with palliative instead of curative intent, and intermodality changes, e.g. systemic therapy instead of surgery, in 22 and 50%, respectively. PET/CT-guided bone biopsies are a promising alternative to conventional techniques to make metabolically active bone lesions - especially without a distinctive morphological correlate - accessible for histological verification. PET/CT-guided biopsies had a major clinical impact in patients who otherwise cannot be reliably stage grouped at the time of treatment decisions. (orig.)

  17. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities

    International Nuclear Information System (INIS)

    Thompson, J.; Chassy, B.M.; Egan, W.

    1985-01-01

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of [ 14 C]lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution 31 P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM

  18. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities.

    Science.gov (United States)

    Lindh, Markus V; Figueroa, Daniela; Sjöstedt, Johanna; Baltar, Federico; Lundin, Daniel; Andersson, Agneta; Legrand, Catherine; Pinhassi, Jarone

    2015-01-01

    Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, increasing loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper bacteria generally reached higher abundances than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating a replacement effect. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating an adjustment effect. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, a priming effect resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial ecosystem process rates.

  19. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities

    Directory of Open Access Journals (Sweden)

    Markus V Lindh

    2015-04-01

    Full Text Available Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, intensifying loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2 and Bothnian Sea (salinity 3.6 water. Baltic Proper bacteria generally reached higher abundance than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating a higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating replacement. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating adjustment. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, the original triggering, or priming effect, resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment, and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial

  20. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    Science.gov (United States)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  1. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria.

    Science.gov (United States)

    Hoffman, Stephen L; Billingsley, Peter F; James, Eric; Richman, Adam; Loyevsky, Mark; Li, Tao; Chakravarty, Sumana; Gunasekera, Anusha; Chattopadhyay, Rana; Li, Minglin; Stafford, Richard; Ahumada, Adriana; Epstein, Judith E; Sedegah, Martha; Reyes, Sharina; Richie, Thomas L; Lyke, Kirsten E; Edelman, Robert; Laurens, Matthew B; Plowe, Christopher V; Sim, B Kim Lee

    2010-01-01

    Immunization of volunteers by the bite of mosquitoes carrying radiation-attenuated Plasmodium falciparum sporozoites protects greater than 90% of such volunteers against malaria, if adequate numbers of immunizing biting sessions and sporozoite-infected mosquitoes are used. Nonetheless, until recently it was considered impossible to develop, license and commercialize a live, whole parasite P. falciparum sporozoite (PfSPZ) vaccine. In 2003 Sanaria scientists reappraised the potential impact of a metabolically active, non-replicating PfSPZ vaccine, and outlined the challenges to producing such a vaccine. Six years later, significant progress has been made in overcoming these challenges. This progress has enabled the manufacture and release of multiple clinical lots of a 1(st) generation metabolically active, non-replicating PfSPZ vaccine, the Sanaria PfSPZ Vaccine, submission of a successful Investigational New Drug application to the US Food and Drug Administration, and initiation of safety, immunogenicity and protective efficacy studies in volunteers in MD, US. Efforts are now focused on how best to achieve submission of a successful Biologics License Application and introduce the vaccine to the primary target population of African children in the shortest possible period of time. This will require implementation of a systematic, efficient clinical development plan. Short term challenges include optimizing the (1) efficiency and scale up of the manufacturing process and quality control assays, (2) dosage regimen and method of administration, (3) potency of the vaccine, and (4) logistics of delivering the vaccine to those who need it most, and finalizing the methods for vaccine stabilization and attenuation. A medium term goal is to design and build a facility for manufacturing highly potent and stable vaccine for pivotal Phase 3 studies and commercial launch.

  2. [Association between occupational stress and aminotransferase activity in patients with metabolic syndrome].

    Science.gov (United States)

    Zhao, H; Song, L; Qiang, Y; Liu, H R; Qiu, F Y; Li, X Z; Song, H

    2016-12-20

    Objective: To investigate the association between occupational stress and activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in patients with metabolic syndrome. Methods: A case-control study was performed. According to inclusion and exclusion criteria, among the staff members of enterprises and public institutions aged 20~60 years who underwent physical examination in The Affiliated Hospital of Ningxia Medical University and The People's Hospital of Wuzhong from October 2011 to October 2012, 622 patients with metabolic syndrome who did not have a blood relationship with each other were enrolled as case group, and 600 healthy staff members who also did not have a blood relationshipwith each otherwere enrolled as control group. Questionnaire investigation, chronic occupational stress investigation, physical examination, and laboratory tests were performed for all subjects. Results: Compared with the control group, the case group had significantly higher serum levels and abnormal rates of AST and ALT ( t =-4.338 and-5.485, χ(2)=11.168 and 34.302, all P occupational stresses in both groups ( F =2.192 and 2.567, χ(2)=2.694 and 5.402, all P >0.05) , but there were significant differencesbetween the subgroups in all subjects ( F =5.005, χ(2)=6.398, all P occupational stresses in the case group, the control group, and all subjects ( F =0.845, 0.450, and 1.416, χ(2)=2.564, 1.344, and 3.147, all P >0.05) . The partial correlation analysis showed that the total score of occupational stress was positively correlated withthe serum level of AST ( r =0.071, P 0.05) , and that the serum level of AST was positively correlated with that of ALT ( r =0.736, P occupational stress was positively correlated with the serum level of AST ( r =0.069, P 0.05) , and the serum level of AST was positively correlated with that of ALT ( r =0.730, P occupational stress ( b =0.131, P =0.013) . Conclusion: Occupational stress is associated with increased serum level

  3. Nuclear factor erythroid 2-related factor-2 activity controls 4-hydroxynonenal metabolism and activity in prostate cancer cells.

    Science.gov (United States)

    Pettazzoni, Piergiorgio; Ciamporcero, Eric; Medana, Claudio; Pizzimenti, Stefania; Dal Bello, Federica; Minero, Valerio Giacomo; Toaldo, Cristina; Minelli, Rosalba; Uchida, Koji; Dianzani, Mario Umberto; Pili, Roberto; Barrera, Giuseppina

    2011-10-15

    4-Hydroxynonenal (HNE) is an end product of lipoperoxidation with antiproliferative and proapoptotic properties in various tumors. Here we report a greater sensitivity to HNE in PC3 and LNCaP cells compared to DU145 cells. In contrast to PC3 and LNCaP cells, HNE-treated DU145 cells showed a smaller reduction in growth and did not undergo apoptosis. In DU145 cells, HNE did not induce ROS production and DNA damage and generated a lower amount of HNE-protein adducts. DU145 cells had a greater GSH and GST A4 content and GSH/GST-mediated HNE detoxification. Nuclear factor erythroid 2-related factor-2 (Nrf2) is a regulator of the antioxidant response. Nrf2 protein content and nuclear accumulation were higher in DU145 cells compared to PC3 and LNCaP cells, whereas the expression of KEAP1, the main negative regulator of Nrf2 activity, was lower. Inhibition of Nrf2 expression with specific siRNA resulted in a reduction in GST A4 expression and GS-HNE formation, indicating that Nrf2 controls HNE metabolism. In addition, Nrf2 knockdown sensitized DU145 cells to HNE-mediated antiproliferative and proapoptotic activity. In conclusion, we demonstrated that increased Nrf2 activity resulted in a reduction in HNE sensitivity in prostate cancer cells, suggesting a potential mechanism of resistance to pro-oxidant therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Metabolic activity, urease production, antibiotic resistance and virulence in dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus

    Science.gov (United States)

    Vandecandelaere, Ilse; Van Nieuwerburgh, Filip; Deforce, Dieter

    2017-01-01

    In this paper, the metabolic activity in single and dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus isolates was investigated. Our results demonstrated that there was less metabolic activity in dual species biofilms compared to S. aureus biofilms. However, this was not observed if S. aureus and S. epidermidis were obtained from the same sample. The largest effect on metabolic activity was observed in biofilms of S. aureus Mu50 and S. epidermidis ET-024. A transcriptomic analysis of these dual species biofilms showed that urease genes and genes encoding proteins involved in metabolism were downregulated in comparison to monospecies biofilms. These results were subsequently confirmed by phenotypic assays. As metabolic activity is related to acid production, the pH in dual species biofilms was slightly higher compared to S. aureus Mu50 biofilms. Our results showed that S. epidermidis ET-024 in dual species biofilms inhibits metabolic activity of S. aureus Mu50, leading to less acid production. As a consequence, less urease activity is required to compensate for low pH. Importantly, this effect was biofilm-specific. Also S. aureus Mu50 genes encoding virulence-associated proteins (Spa, SplF and Dps) were upregulated in dual species biofilms compared to monospecies biofilms and using Caenorhabditis elegans infection assays, we demonstrated that more nematodes survived when co-infected with S. epidermidis ET-024 and S. aureus mutants lacking functional spa, splF or dps genes, compared to nematodes infected with S. epidermidis ET-024 and wild- type S. aureus. Finally, S. epidermidis ET-024 genes encoding resistance to oxacillin, erythromycin and tobramycin were upregulated in dual species biofilms and increased resistance was subsequently confirmed. Our data indicate that both species in dual species biofilms of S. epidermidis and S. aureus influence each other’s behavior, but additional studies are required necessary to elucidate the exact

  5. Metabolic Profiling of Total Physical Activity and Sedentary Behavior in Community-Dwelling Men.

    Directory of Open Access Journals (Sweden)

    Kota Fukai

    Full Text Available Physical activity is known to be preventive against various non-communicable diseases. We investigated the relationship between daily physical activity level and plasma metabolites using a targeted metabolomics approach in a population-based study.A total of 1,193 participants (male, aged 35 to 74 years with fasting blood samples were selected from the baseline survey of a cohort study. Information on daily total physical activity, classified into four levels by quartile of metabolic equivalent scores, and sedentary behavior, defined as hours of sitting per day, was collected through a self-administered questionnaire. Plasma metabolite concentrations were quantified by capillary electrophoresis mass spectrometry method. We performed linear regression analysis models with multivariable adjustment and corrected p-values for multiple testing in the original population (n = 808. The robustness of the results was confirmed by replication analysis in a separate population (n = 385 created by random allocation.Higher levels of total physical activity were associated with various metabolite concentrations, including lower concentrations of amino acids and their derivatives, and higher concentrations of pipecolate (FDR p <0.05 in original population. The findings persisted after adjustment for age, body mass index, smoking, alcohol intake, and energy intake. Isoleucine, leucine, valine, 4-methyl-2-oxoisopentanoate, 2-oxoisopentanoate, alanine, and proline concentrations were lower with a shorter sitting time.Physical activity is related to various plasma metabolites, including known biomarkers for future insulin resistance or type 2 diabetes. These metabolites might potentially play a key role in the protective effects of higher physical activity and/or less sedentary behavior on non-communicable diseases.

  6. G0/G1 Switch Gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Claire Laurens

    2016-07-01

    Full Text Available Objective: Recent data suggest that adipose triglyceride lipase (ATGL plays a key role in providing energy substrate from triglyceride pools and that alterations of its expression/activity relate to metabolic disturbances in skeletal muscle. Yet little is known about its regulation. We here investigated the role of the protein G0/G1 Switch Gene 2 (G0S2, recently described as an inhibitor of ATGL in white adipose tissue, in the regulation of lipolysis and oxidative metabolism in skeletal muscle. Methods: We first examined G0S2 protein expression in relation to metabolic status and muscle characteristics in humans. We next overexpressed and knocked down G0S2 in human primary myotubes to assess its impact on ATGL activity, lipid turnover and oxidative metabolism, and further knocked down G0S2 in vivo in mouse skeletal muscle. Results: G0S2 protein is increased in skeletal muscle of endurance-trained individuals and correlates with markers of oxidative capacity and lipid content. Recombinant G0S2 protein inhibits ATGL activity by about 40% in lysates of mouse and human skeletal muscle. G0S2 overexpression augments (+49%, p < 0.05 while G0S2 knockdown strongly reduces (−68%, p < 0.001 triglyceride content in human primary myotubes and mouse skeletal muscle. We further show that G0S2 controls lipolysis and fatty acid oxidation in a strictly ATGL-dependent manner. These metabolic adaptations mediated by G0S2 are paralleled by concomitant changes in glucose metabolism through the modulation of Pyruvate Dehydrogenase Kinase 4 (PDK4 expression (5.4 fold, p < 0.001. Importantly, downregulation of G0S2 in vivo in mouse skeletal muscle recapitulates changes in lipid metabolism observed in vitro. Conclusion: Collectively, these data indicate that G0S2 plays a key role in the regulation of skeletal muscle ATGL activity, lipid content and oxidative metabolism. Keywords: Lipid metabolism, Skeletal muscle, Lipolysis, Adipose triglyceride lipase

  7. IDO chronic immune activation and tryptophan metabolic pathway: A potential pathophysiological link between depression and obesity.

    Science.gov (United States)

    Chaves Filho, Adriano José Maia; Lima, Camila Nayane Carvalho; Vasconcelos, Silvânia Maria Mendes; de Lucena, David Freitas; Maes, Michael; Macedo, Danielle

    2018-01-03

    Obesity and depression are among the most pressing health problems in the contemporary world. Obesity and depression share a bidirectional relationship, whereby each condition increases the risk of the other. By inference, shared pathways may underpin the comorbidity between obesity and depression. Activation of cell-mediated immunity (CMI) is a key factor in the pathophysiology of depression. CMI cytokines, including IFN-γ, TNFα and IL-1β, induce the catabolism of tryptophan (TRY) by stimulating indoleamine 2,3-dioxygenase (IDO) resulting in the synthesis of kynurenine (KYN) and other tryptophan catabolites (TRYCATs). In the CNS, TRYCATs have been related to oxidative damage, inflammation, mitochondrial dysfunction, cytotoxicity, excitotoxicity, neurotoxicity and lowered neuroplasticity. The pathophysiology of obesity is also associated with a state of aberrant inflammation that activates aryl hydrocarbon receptor (AHR), a pathway involved in the detection of intracellular or environmental changes as well as with increases in the production of TRYCATs, being KYN an agonists of AHR. Both AHR and TRYCATS are involved in obesity and related metabolic disorders. These changes in the TRYCAT pathway may contribute to the onset of neuropsychiatric symptoms in obesity. This paper reviews the role of immune activation, IDO stimulation and increased TRYCAT production in the pathophysiology of depression and obesity. Here we suggest that increased synthesis of detrimental TRYCATs is implicated in comorbid obesity and depression and is a new drug target to treat both diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Effect of Culture Medium on Metabolic and Antibacterial Activities of Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Mirdavoudi F

    2012-01-01

    Full Text Available Background and Objectives: Probiotic bacteria is added directly to food components and it has beneficial effect on function and the health of organisms. The bifidogenic factors enter the colon where they contribute to an increase lactic acid bacteria population including Lactobacilli and Bifidobacteria and they inhibit enteric pathogenic bacterial growth. The aim of this study is to investigate the effect of culture medium on metabolic and antibacterial of probiotic bacteria.Methods: In this study, the probiotics bacterial and intestine pathogenic are to be used. Lactobacilli and Bifidobacterium were identified by plating samples on MRS medium, Gram Staining and standard biochemical methods. The effect of antagonistic probiotics was investigated in the presence of growth factor in the method well diffusion Ager on the Shigella flexneri (PTCC 1234, Escherichia coli (PTCC 1552, Salmonella typhi ( PTCC 1609 and the culture medium pH was measured.Results: The probiotics bacterial growth in MRS and lactose1%, sorbitol, raffinose, riboflavin were shown the effect antibacterial. The results of the study show the most antagonistic activity in commercial strain Lactobacillus acidophilus on Shigella flexneri and lower activity was in Lactobacillus casei (PTCC 1608, and Salmonella typhimurium (PTCC 1609, and also in Bbifidobacterium bifidum, it showed the most decrease pH value.Conclusion: According to the result of the study, adding growth factors to MRS medium base and lactose 1%, probiotic growth was increased and which also increased antagonistic activity.

  9. Anthropometry and physical activity level in the prediction of metabolic syndrome in children.

    Science.gov (United States)

    Andaki, Alynne Christian Ribeiro; Tinôco, Adelson Luiz Araújo; Mendes, Edmar Lacerda; Andaki Júnior, Roberto; Hills, Andrew P; Amorim, Paulo Roberto S

    2014-10-01

    To evaluate the effectiveness of anthropometric measures and physical activity level in the prediction of metabolic syndrome (MetS) in children. Cross-sectional study with children from public and private schools. Children underwent an anthropometric assessment, blood pressure measurement and biochemical evaluation of serum for determination of TAG, HDL-cholesterol and glucose. Physical activity level was calculated and number of steps per day obtained using a pedometer for seven consecutive days. Viçosa, south-eastern Brazil. Boys and girls (n 187), mean age 9·90 (SD 0·7) years. Conicity index, sum of four skinfolds, physical activity level and number of steps per day were accurate in predicting MetS in boys. Anthropometric indicators were accurate in predicting MetS for girls, specifically BMI, waist circumference measured at the narrowest point and at the level of the umbilicus, four skinfold thickness measures evaluated separately, the sum of subscapular and triceps skinfold thickness, the sum of four skinfolds and body fat percentage. The sum of four skinfolds was the most accurate method in predicting MetS in both genders.

  10. Cold resistance and metabolic activity of lichens below 0 degC

    Science.gov (United States)

    Kappen, L.; Schroeter, B.; Scheidegger, C.; Sommerkorn, M.; Hestmark, G.

    Laboratory measurements show that lichens are extremely tolerant of freezing stress and of low-temperature exposure. Metabolic activity recovered quickly after severe and extended cold treatment. Experimental results demonstrate also that CO_2 exchange is already active at around -20 degC. The psychrophilic character of polar lichen species is demonstrated by optimum temperatures for net photosynthesis between 0 and 15 degC. In situ measurements show that lichens begin photosynthesizing below 0 degC if the dry thalli receive fresh snow. The lowest temperature measured in active lichens was -17 degC at a continental Antarctic site. The fine structure and the hydration state of photobiont and mycobiont cells were studied by low-temperature scanning electron microscopy (LTSEM) of frozen hydrated specimens. Water potentials of the frozen system are in the range of or even higher than those allowing dry lichens to start photosynthesis by water vapor uptake at +10 degC. The great success of lichens in polar and high alpine regions gives evidence of their physiological adaptation to low temperatures. In general lichens are able to persist through glacial periods, but extended snow cover and glaciation are limiting factors.

  11. Wheel-running activity and energy metabolism in relation to ambient temperature in mice selected for high wheel-running activity

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Garland, Theodore; Daan, Serge; Visser, G. Henk; Garland Jr., Theodore; Heldmaier, G.

    Interrelationships between ambient temperature, activity, and energy metabolism were explored in mice that had been selectively bred for high spontaneous wheel-running activity and their random-bred controls. Animals were exposed to three different ambient temperatures (10, 20 and 30 degrees C) and

  12. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity.

    Science.gov (United States)

    Shan, Bo; Wang, Xiaoxia; Wu, Ying; Xu, Chi; Xia, Zhixiong; Dai, Jianli; Shao, Mengle; Zhao, Feng; He, Shengqi; Yang, Liu; Zhang, Mingliang; Nan, Fajun; Li, Jia; Liu, Jianmiao; Liu, Jianfeng; Jia, Weiping; Qiu, Yifu; Song, Baoliang; Han, Jing-Dong J; Rui, Liangyou; Duan, Sheng-Zhong; Liu, Yong

    2017-05-01

    Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1 f/f ; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1 f/f ; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.

  13. Effects of algal-produced neurotoxins on metabolic activity in telencephalon, optic tectum and cerebellum of Atlantic salmon (Salmo salar)

    International Nuclear Information System (INIS)

    Bakke, Marit Jorgensen; Horsberg, Tor Einar

    2007-01-01

    Neurotoxins from algal blooms have been reported to cause mortality in a variety of species, including sea birds, sea mammals and fish. Farmed fish cannot escape harmful algal blooms and their potential toxins, thus they are more vulnerable for exposure than wild stocks. Sublethal doses of the toxins are likely to affect fish behaviour and may impair cognitive abilities. In the present study, changes in the metabolic activity in different parts of the Atlantic salmon (Salmo salar) brain involved in central integration and cognition were investigated after exposure to sublethal doses of three algal-produced neurotoxins; saxitoxin (STX), brevetoxin (BTX) and domoic acid (DA). Fish were randomly selected to four groups for i.p. injection of saline (control) or one of the neurotoxins STX (10 μg STX/kg bw), BTX (68 μg BTX/kg bw) or DA (6 mg DA/kg bw). In addition, 14 C-2-deoxyglucose was i.m. injected to measure brain metabolic activity by autoradiography. The three regions investigated were telencephalon (Tel), optic tectum (OT) and cerebellum (Ce). There were no differences in the metabolic activity after STX and BTX exposure compared to the control in these regions. However, a clear increase was observed after DA exposure. When the subregions with the highest metabolic rate were pseudocoloured in the three brain regions, the three toxins caused distinct differences in the respective patterns of metabolic activation. Fish exposed to STX displayed similar patterns as the control fish, whereas fish exposed to BTX and DA showed highest metabolic activity in subregions different from the control group. All three neurotoxins affected subregions that are believed to be involved in cognitive abilities in fish

  14. Suppression of metabolic activity caused by infantile strabismus and strabismic amblyopia in striate visual cortex of macaque monkeys.

    Science.gov (United States)

    Wong, Agnes M F; Burkhalter, Andreas; Tychsen, Lawrence

    2005-02-01

    Suppression is a major sensorial abnormality in humans and monkeys with infantile strabismus. We previously reported evidence of metabolic suppression in the visual cortex of strabismic macaques, using the mitochondrial enzyme cytochrome oxidase as an anatomic label. The purpose of this study was to further elucidate alterations in cortical metabolic activity, with or without amblyopia. Six macaque monkeys were used in the experiments (four strabismic and two control). Three of the strabismic monkeys had naturally occurring, infantile strabismus (two esotropic, one exotropic). The fourth strabismic monkey had infantile microesotropia induced by alternating monocular occlusion in the first months of life. Ocular motor behaviors and visual acuity were tested after infancy in each animal, and development of stereopsis was recorded during infancy in one strabismic and one control monkey. Ocular dominance columns (ODCs) of the striate visual cortex (area V1) were labeled using cytochrome oxidase (CO) histochemistry alone, or CO in conjunction with an anterograde tracer ([H 3 ]proline or WGA-HRP) injected into one eye. Each of the strabismic monkeys showed inequalities of metabolic activity in ODCs of opposite ocularity, visible as rows of lighter CO staining, corresponding to ODCs of lower metabolic activity, alternating with rows of darker CO staining, corresponding to ODCs of higher metabolic activity. In monkeys who had infantile strabismus and unilateral amblyopia, lower metabolic activity was found in (suppressed) ODCs driven by the nondominant eye in each hemisphere. In monkeys who had infantile esotropia and alternating fixation (no amblyopia), metabolic activity was lower in ODCs driven by the ipsilateral eye in each hemisphere. The suppression included a monocular core zone at the center of ODCs and binocular border zones at the boundaries of ODCs. This suppression was not evident in the monocular lamina of the LGN, indicating an intracortical rather than

  15. The Stress-Metabolic Syndrome Relationship in Adolescents: An Examination of the Moderating Potential of Physical Activity.

    Science.gov (United States)

    Holmes, Megan E; Pivarnik, Jim; Pfeiffer, Karin; Maier, Kimberly S; Eisenmann, Joey C; Ewing, Martha

    2016-10-01

    The role of psychosocial stress in the development of obesity and metabolic syndrome is receiving increased attention and has led to examination of whether physical activity may moderate the stress-metabolic syndrome relationship. The current study examined relationships among physical activity, stress, and metabolic syndrome in adolescents. Participants (N = 126; 57 girls, 69 boys) were assessed for anthropometry, psychosocial stress, physical activity, and metabolic syndrome variables; t tests were used to examine sex differences, and regression analysis was used to assess relationships among variables controlling for sex and maturity status. Mean body mass index approached the 75th percentile for both sexes. Typical sex differences were observed for systolic blood pressure, time spent in moderate and vigorous physical activity, and perceived stress. Although stress was not associated with MetS (β = -.001, P = .82), a modest, positive relationship was observed with BMI (β = .20, P = .04). Strong relationships between physical activity and stress with MetS or BMI were not found in this sample. Results may be partially explained by overall good physical health status of the participants. Additional research in groups exhibiting varying degrees of health is needed.

  16. Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II-oxidizer

    Directory of Open Access Journals (Sweden)

    Jennyfer eMIOT

    2015-09-01

    Full Text Available Microbial biomineralization sometimes leads to periplasmic encrustation, which is predicted to enhance microorganism preservation in the fossil record. Mineral precipitation within the periplasm is however thought to induce death, as a result of permeability loss preventing nutrient and waste transit across the cell wall. This hypothesis had however never been investigated down to the single cell level. Here, we cultured the nitrate reducing Fe(II oxidizing bacteria Acidovorax sp. strain BoFeN1 that have been previously shown to promote the precipitation of a diversity of Fe minerals (lepidocrocite, goethite, Fe phosphate encrusting the periplasm. We investigated the connection of Fe biomineralization with carbon assimilation at the single cell level, using a combination of electron microscopy and Nano-Secondary Ion Mass Spectrometry (NanoSIMS. Our analyses revealed strong individual heterogeneities of Fe biomineralization. Noteworthy, a small proportion of cells remaining free of any precipitate persisted even at advanced stages of biomineralization. Using pulse chase experiments with 13C-acetate, we provide evidences of individual phenotypic heterogeneities of carbon assimilation, correlated with the level of Fe biomineralization. Whereas non- and moderately encrusted cells were able to assimilate acetate, higher levels of periplasm encrustation prevented any carbon incorporation. Carbon assimilation only depended on the level of Fe encrustation and not on the nature of Fe minerals precipitated in the cell wall. Carbon assimilation decreased exponentially with increasing cell-associated Fe content. Persistence of a small proportion of non-mineralized and metabolically active cells might constitute a strategy of survival in highly ferruginous environments. Eventually, our results suggest that periplasmic Fe biomineralization may provide a signature of individual metabolic status, which could be looked for in the fossil record and in modern

  17. Metabolic risk factors, physical activity and physical fitness in azorean adolescents: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Soares-Miranda Luísa

    2011-04-01

    Full Text Available Abstract Background The prevalence of metabolic syndrome has increased over the last few decades in adolescents and has become an important health challenge worldwide. This study analyzed the relationships between metabolic risk factors (MRF and physical activity (PA and physical fitness (PF in a sample of Azorean adolescents. Methods A cross-sectional school-based study was conducted on 417 adolescents (243 girls aged 15-18 from the Azorean Islands, Portugal. Height, weight, waist circumference, fasting glucose, HDL-cholesterol, triglycerides, and blood pressure were measured. A sum of MRF was computed, and adolescents were classified into three groups: no MRF, one MRF and two or more MRF. PA was assessed by a sealed pedometer. PF was assessed using five tests from the Fitnessgram Test Battery. Dietary intake was obtained using a semi-quantitative food frequency questionnaire. Results Mean daily steps for girls and boys were 7427 ± 2725 and 7916 ± 3936, respectively. Fifty-nine percent of the adolescents showed at least one MRF and 57.6% were under the healthy zone in the 20 m Shuttle Run Test. Ordinal logistic regression analysis showed that after adjusting for sex, body mass index, socio-economic status and adherence to a Mediterranean diet, adolescents who were in the highest quartile of the pedometer step/counts (≥9423 steps/day and those who achieved the healthy zone in five tests were less likely to have one or more MRF (OR = 0.56;95%CI:0.33-0.95; OR = 0.55;95%CI:0.31-0.98, respectively. Conclusions Daily step counts and PF levels were negatively associated with having one or more MRF among Azorean adolescents. Our findings emphasize the importance of promoting and increasing regular PA and PF to reduce the public health burden of chronic diseases associated with a sedentary lifestyle.

  18. Shell carbon isotope indicators of metabolic activity in the deep-sea mussel Bathymodiolus childressi

    Science.gov (United States)

    Riekenberg, P. M.; Carney, R. S.; Fry, B.

    2018-04-01

    The incorporation of metabolic carbon (Cm) into shells of mollusks has been used as an indicator of animal condition and availability of food resources in estuarine and freshwater settings. This study examines Cm in Bathymodiolus childressi, a marine cold seep mussel dependent on methanotrophic symbionts. As seeps develop, mature, and go quiescent, methane supply will vary and affect the amount of metabolic carbon deposited into the growing shell. B. childressi (n = 136) were live-collected from two seep sites over a 17 year period in the Northern Gulf of Mexico to investigate whether changes in Cm were detectable between sites and across years. Significant differences in Cm were observed between mussel populations at Brine Pool (15.4 ± 0.4%) and Bush Hill (10.3 ± 0.3%). Cm also changed significantly within each site across year (Bush Hill 1991: 12.2 ± 0.5%, 1992: 17.3 ± 0.8%) and decadal time scales (Brine Pool 1989: 15.5 ± 0.7%, 2006: 19.5 ± 0.7%). These findings agree with previous studies that found mussel condition was higher at Brine Pool and correlate well with a trophic mixing model that indicated significantly higher methane source utilization at the Brine Pool (65 ± 1.1%) than at Bush Hill (49 ± 1.6%). Further development of this method should allow for assessment of Cm in shell assemblages as an indicator of historical resource availability at both active and former cold seep sites.

  19. Metabolic activity of uncultivated magnetotactic bacteria revealed by NanoSIMS

    Science.gov (United States)

    He, M.; Zhang, W.; Gu, L.; Pan, Y.; Lin, W.

    2017-12-01

    Microorganisms that exhibit magnetotaxis behavior, collectively known as the magnetotactic bacteria (MTB), are those whose motility is influenced by the Earth's magnetic field. MTB are a physiologically diverse group of bacteria with a unique feature of intracellular biomineralization of magnetosomes (Fe3O4 and/or Fe3S4) (Bazylinski et al., 2013). However, the ecophysiology of uncultivated MTB, especially those within the Nitrospirae phylum forming hundreds of bullet-shaped magnetite magnetosomes per cell, is still not well characterized (Lin et al., 2014). Nanoscale secondary ion mass spectrometry (NanoSIMS) is a powerful tool for revealing element distribution in nanometer-scale resolution, which opens exciting possibilities for the study of interactions between microorganisms and environments (Gao et al., 2016; Musat et al., 2016). Here we applied NanoSIMS to investigate the dynamics of carbon and nitrogen assimilations in two magnetotactic Nitrospirae populations at single cell level. Our NanoSIMS results confirmed the metabolic potential of Nitrospirae MTB proposed by genomic and metagenomic analysis and provided additional insights into the ecophysiology of uncultivated MTB. This study suggests that NanoSIMS-based analyses are powerful approaches for investigating and characterizing the ecological function of environmental microorganisms. References: Bazylinski D A., Lefèvre, C T., Schüler D., 2013. Magnetotactic Bacteria. 453-494.Lin W, Bazylinski DA, Xiao T, Wu L- F, Pan Y., 2014. Life with compass: diversity and biogeography of magnetotactic bacteria. Environ Microbiol, 16: 1462-2920.Gao D., Huang X., Tao Y., 2016. A critical review of NanoSIMS in analysis of microbial metabolic activities at single-cell level. Crit Rev Biotechnol, 36: 884-890.Musat N., Musat F., Weber PK., Pett-Ridge J., 2016. Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol, 41: 114-121.

  20. Adrenal activity and metabolic risk during randomized escitalopram or placebo treatment in PCOS

    Directory of Open Access Journals (Sweden)

    Dorte Glintborg

    2018-03-01

    Full Text Available Background/aims: Polycystic ovary syndrome (PCOS is associated with insulin resistance, adrenal hyperactivity and decreased mental health. We aimed to investigate the changes in adrenal activity, metabolic status and mental health in PCOS during treatment with escitalopram or placebo. Methods: Forty-two overweight premenopausal women with PCOS and no clinical depression were randomized to 12-week SSRI (20 mg escitalopram/day, n = 21 or placebo (n = 21. Patients underwent clinical examination, fasting blood samples, adrenocorticotroph hormone (ACTH test, 3-h oral glucose tolerance test (OGTT and filled in questionnaires regarding mental health and health-related quality of life (HRQoL: WHO Well-Being Index (WHO-5, Major Depression Inventory (MDI, Short Form 36 (SF-36 and PCOS questionnaire. Results: Included women were aged 31 (6 years (mean (s.d. and had body mass index (BMI 35.8 (6.5 kg/m2 and waist 102 (12 cm. Escitalopram was associated with increased waist (median (quartiles change 1 (0; 3 cm, P = 0.005 vs change during placebo and increased cortisol levels (cortisol 0, cortisol 60, peak cortisol and area under the curve for cortisol during ACTH test, all P < 0.05 vs changes during placebo. Escitalopram had no significant effect on measures of insulin sensitivity, insulin secretion, fasting lipids, mental health or HRQoL. Conclusion: Waist circumference and cortisol levels increased during treatment with escitalopram in women with PCOS and no clinical depression, whereas metabolic risk markers, mental health and HRQol were unchanged.

  1. Plasminogen activator inhibitor-1 is elevated in patients with COPD independent of metabolic and cardiovascular function

    Science.gov (United States)

    Waschki, Benjamin; Watz, Henrik; Holz, Olaf; Magnussen, Helgo; Olejnicka, Beata; Welte, Tobias; Rabe, Klaus F; Janciauskiene, Sabina

    2017-01-01

    Introduction Plasminogen activator inhibitor-1 (PAI-1), a major inhibitor of fibrinolysis, is associated with thrombosis, obesity, insulin resistance, dyslipidemia, and premature aging, which all are coexisting conditions of chronic obstructive pulmonary disease (COPD). The role of PAI-1 in COPD with respect to metabolic and cardiovascular functions is unclear. Methods In this study, which was nested within a prospective cohort study, the serum levels of PAI-1 were cross-sectionally measured in 74 stable COPD patients (Global Initiative for Chronic Obstructive Lung Disease [GOLD] Stages I–IV) and 18 controls without lung disease. In addition, triglycerides, high-density lipoprotein cholesterol, fasting plasma glucose, waist circumference, blood pressure, smoking status, high-sensitive C-reactive protein (hs-CRP), adiponectin, ankle–brachial index, N-terminal pro-B-type natriuretic peptide, and history of comorbidities were also determined. Results The serum levels of PAI-1 were significantly higher in COPD patients than in controls, independent of a broad spectrum of possible confounders including metabolic and cardiovascular dysfunction. A multivariate regression analysis revealed triglyceride and hs-CRP levels to be the best predictors of PAI-1 within COPD. GOLD Stages II and III remained independently associated with higher PAI-1 levels in a final regression analysis. Conclusion The data from the present study showed that the serum levels of PAI-1 are higher in patients with COPD and that moderate-to-severe airflow limitation, hypertriglyceridemia, and systemic inflammation are independent predictors of an elevated PAI-1 level. PAI-1 may be a potential biomarker candidate for COPD-specific and extra-pulmonary manifestations. PMID:28356730

  2. Influence of physical and emotional activity on the metabolic profile of blood serum of race horses

    Directory of Open Access Journals (Sweden)

    T. I. Bayeva

    2016-09-01

    Full Text Available In the article data are presented on dynamics of the level of indicators of metabolic profile of blood serum of race horses of the Ukrainian riding breed in the conditions of physical and emotional loading. Clinically healthy race horses were the object of  research. Blood was taken from the jugular vein to obtain serum and for further biochemical research. For the research 12 race horses from a training group were chosen. From time to time the animals took part in competitions; they were not specially used in races and were mostly used for the training of junior riders and sportsmen of different levels. Blood was taken in conditions of relative rest after ordinary training and after emotional stress during the entertainment performances when a large number of people were present and loud music was played. In the blood serum the following biochemical indicators were defined: whole protein, urea, creatinine, uric acid, total bilirubin and its fractions, glucose, cholestererol, triacylglycerol, calcium, ferrum, lactate, pyruvate, activity of the AlAT, SGOT, GGTP, LDH, an alkaline phosphatase – which makes it possible to determine reasonably accurately the adaptation potential of a horse under various types of loading. We established that during training and psychoemotional loading of racing horses of the training group of the Ukrainian riding breed, multidirectional changes in the level of biochemical indicators of blood serum occurred, which is evidence of stress in the metabolic processes in the animals’ organisms. Concentration of a biomarker of an oxidative stress, uric acid, increased after physical loading by 8.6%, and after emotional loading by 55.1%, which demonstrates that emotional stress had the more negative effect, indicating insufficient adaptation by the horses before demonstration performances. After physical loading, reaction of transamination in the horses’ liver cells intensified, and after emotional loading its intensity

  3. Leisure time sedentary behavior, occupational/domestic physical activity, and metabolic syndrome in U.S. men and women.

    Science.gov (United States)

    Sisson, Susan B; Camhi, Sarah M; Church, Timothy S; Martin, Corby K; Tudor-Locke, Catrine; Bouchard, Claude; Earnest, Conrad P; Smith, Steven R; Newton, Robert L; Rankinen, Tuomo; Katzmarzyk, Peter T

    2009-12-01

    This study examines leisure time sedentary behavior (LTSB) and usual occupational/domestic activity (UODA) and their relationship with metabolic syndrome and individual cardiovascular disease (CVD) risk factors, independent of physical activity level. National Health and Nutrition Examination Survey (NHANES) 2003-2006 data from men (n = 1868) and women (n = 1688) with fasting measures were classified as having metabolic syndrome by the American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI) definition. LTSB was determined from self-reported television viewing and computer usage. UODA was self-reported daily behavior (sitting, standing, walking, carrying loads). LTSB >or=4 hours/day was associated with odds of having metabolic syndrome of 1.94 (95% confidence interval [CI], 1.24, 3.03) in men compared to or=4 hour/day was also associated with higher odds of elevated waist circumference (1.88, CI, 1.03, 3.41), low high-density lipoprotein cholesterol (HDL-C) (1.84, CI, 1.35, 2.51), and high blood pressure (1.55, CI, 1.07, 2.24) in men. LTSB 2-3 hours/day was associated with higher odds of elevated glucose (1.32, CI, 1.00, 1.75) in men. In women, odds of metabolic syndrome were 1.54 (CI, 1.00, 2.37) with >or=4 hours/day LTSB, but LTSB was not associated with risk of the individual CVD risk factors. Higher LTSB was associated with metabolic syndrome in inactive men (1.50, CI, 1.07, 2.09), active men (1.74, CI, 1.11, 2.71), inactive women (1.69, CI, 1.24, 2.33), but not active women (1.62, CI, 0.87,3.01). UODA was not strongly associated with metabolic syndrome or CVD risk factors in either men or women. In men, high LTSB is associated with higher odds of metabolic syndrome and individual CVD risk factors regardless of meeting physical activity recommendations. In women, high LTSB is associated with higher odds of metabolic syndrome only in those not meeting the physical activity recommendations.

  4. Role of N-acetylglucosaminidase and N-acetylmuramidase activities in Enterococcus faecalis peptidoglycan metabolism.

    Science.gov (United States)

    Mesnage, Stéphane; Chau, Françoise; Dubost, Lionel; Arthur, Michel

    2008-07-11

    Identification of the full complement of peptidoglycan hydrolases detected by zymogram in Enterococcus faecalis extracts led to the characterization of two novel hydrolases that we named AtlB and AtlC. Both enzymes have a similar modular organization comprising a central catalytic domain fused to two LysM peptidoglycan-binding modules. AtlB and AtlC displayed N-acetylmuramidase activity, as demonstrated by tandem mass spectrometry analyses of peptidoglycan fragments generated by the purified enzymes. The genes encoding AtlB and AtlC were deleted either alone or in combination with the gene encoding AtlA, a previously described N-acetylglucosaminidase. No autolytic activity was detected in the triple mutant indicating that AtlA, AtlB, and AtlC account for the major hydrolytic activities in E. faecalis. Analysis of cell size distribution by flow cytometry showed that deletion of atlA resulted in the formation of long chains. Thus, AtlA digests the septum and is required for cell separation after cell division. We found that AtlB could act as a surrogate for AtlA, although the enzyme was less efficient at septum digestion. Deletion of atlC had no impact on cell morphology. Labeling of the peptidoglycan with N-[14C]acetylglucosamine revealed an unusually slow turnover as compared with model organisms, almost completely dependent upon the combined activities of AtlA and AtlB. In contrast to atlA, the atlB and atlC genes are located in putative prophages. Because AtlB and AtlC were produced in the absence of cell lysis or production of phage progeny, these enzymes may have been hijacked by E. faecalis to contribute to peptidoglycan metabolism.

  5. Physical fitness and activity, metabolic profile, adipokines and endothelial function in children.

    Science.gov (United States)

    Penha, Jociene Terra da; Gazolla, Fernanda Mussi; Carvalho, Cecília Noronha de Miranda; Madeira, Isabel Rey; Rodrigues-Junior, Flávio; Machado, Elisabeth de Amorim; Sicuro, Fernando Lencastre; Farinatti, Paulo; Bouskela, Eliete; Collett-Solberg, Paulo Ferrez

    2018-05-29

    The prevalence of obesity is increasing. The aim of this study was to investigate if there is endothelial dysfunction in children with normal or excess weight, and whether the metabolic profile, adipokines, and endothelial dysfunction would be more strongly associated with physical fitness or with physical activity levels. Cross-sectional study involving children aged 5-12 years. The evaluation included venous occlusion plethysmography, serum levels of adiponectin, leptin and insulin, lipid profile, physical activity score (PAQ-C questionnaire), and physical fitness evaluation (Yo-Yo test). A total of 62 children participated in this study. Based on the body mass index, 27 were eutrophic, 10 overweight and 25 obese. Triglycerides, LDL cholesterol, HOMA-IR, and leptin were higher in the obese and excess-weight groups compared to the eutrophic group (pPAQ-C. The Yo-Yo test was significantly associated with HDL cholesterol (rho=-0.41; p=0.01), and this association remained after adjusting for body mass index z-score (rho=0.28; p=0.03). This study showed that endothelial dysfunction is already present in obese children, suggesting a predisposition to atherosclerotic disease. Moreover, HDL cholesterol levels were correlated with physical fitness, regardless of body mass index. Copyright © 2018. Published by Elsevier Editora Ltda.

  6. 3'-Azido-3'-deoxythymidine (AZT) induces apoptosis and alters metabolic enzyme activity in human placenta

    International Nuclear Information System (INIS)

    Collier, Abby C.; Helliwell, Rachel J.A.; Keelan, Jeffrey A.; Paxton, James W.; Mitchell, Murray D.; Tingle, Malcolm D.

    2003-01-01

    The anti-HIV drug 3'-azido-3'-deoxythymidine (AZT) is the drug of choice for preventing maternal-fetal HIV transmission during pregnancy. Our aim was to assess the cytotoxic effects of AZT on human placenta in vitro. The mechanisms of AZT-induced effects were investigated using JEG-3 choriocarcinoma cells and primary explant cultures from term and first-trimester human placentas. Cytotoxicity measures included trypan blue exclusion, MTT, and reactive oxygen species (ROS) assays. Apoptosis was measured with an antibody specific to cleaved caspase-3 and by rescue of cells by the general caspase inhibitor Boc-D-FMK. The effect of AZT on the activities of glutathione-S-transferase, β-glucuronidase, UDP-glucuronosyl transferase, cytochrome P450 (CYP) 1A, and CYP reductase (CYPR) in the placenta was assessed using biochemical assays and immunoblotting. AZT increased ROS levels, decreased cellular proliferation rates, was toxic to mitochondria, and initiated cell death by a caspase-dependent mechanism in the human placenta in vitro. In the absence of serum, the effects of AZT were amplified in all the models used. AZT also increased the amounts of activity of GST, β-glucuronidase, and CYP1A, whereas UGT and CYPR were decreased. We conclude that AZT causes apoptosis in the placenta and alters metabolizing enzymes in human placental cells. These findings have implications for the safe administration of AZT in pregnancy with respect to the maintenance of integrity of the maternal-fetal barrier

  7. Changes in dietary habits, physical activity and status of metabolic syndrome among expatriates in Saudi Arabia.

    Science.gov (United States)

    Alzeidan, Rasmieh A; Rabiee, Fatemeh; Mandil, Ahmed A; Hersi, Ahmad S; Ullah, Anhar A

    2018-03-05

    The aim of this paper is to assess the impact of living in Saudi Arabia on expatriate employees and their families' behavioural cardiovascular risk factors (BCVRFs), and to examine the association between changes in BCVRFs and metabolic syndrome (MetS). A cross-sectional study was conducted on 1437 individuals, aged ≥ 18 years, from King Saud University in Riyadh, Saudi Arabia. We used the World Health Organization STEPS questionnaire to ask every participant questions about BCVRFs twice: (1) to reflect their period of living in Saudi Arabia and (2) to shed light upon life in their country of origin. Their mean age was 40.9 (11.7) years. The prevalence of BCVRFs was as follows: tobacco use in 156 (11%), physical inactivity in 1049 (73%) low intake of fruit and vegetables in 1264 (88%) and MetS in 378 (26%). Residing in Saudi Arabia had reduced physical activity and intake of fruit and vegetables. There was also a significant increase in the fast food consumption. In conclusion, living in Saudi Arabia had a significant negative effect on BCVRFs. However, there was no statistically significant association between changes in fruit and vegetable intake and physical activity and MetS status, except that intake of fast food was lower among participants with MetS.

  8. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    Science.gov (United States)

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K; McCormick, Frank; Graeber, Thomas G; Christofk, Heather R

    2014-04-01

    Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    KAUST Repository

    Jolivet, Renaud

    2015-02-26

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.

  10. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    Science.gov (United States)

    Jolivet, Renaud; Coggan, Jay S.; Allaman, Igor; Magistretti, Pierre J.

    2015-01-01

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging. PMID:25719367

  11. Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble.

    Directory of Open Access Journals (Sweden)

    Renaud Jolivet

    2015-02-01

    Full Text Available Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS are still debated. To address this question, we developed a detailed biophysical model of the brain's metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.

  12. Effects of ozone on adult and aged lung oxygen consumption, glucose metabolism and G6PDH activity

    International Nuclear Information System (INIS)

    Raska-Emery, P.; Balis, J.U.; Montgomery, M.R.

    1991-01-01

    Fischer-344 male adult (4-6 mo) and aged (24-26 mo) rats were exposed to 0-3.0 ppm O 3 for 8h, sacrificed immediately, and O 2 consumption, 1 C 14 -glucose metabolism and G6PDH activity were determined. For O 2 consumption, the exp to 0.5 ppm O 3 produced a stimulation in both age groups. Decrements in O 2 consumption were only evident in aged rats after 1.5 and 3.0 ppm. Glucose metabolism showed a marked difference rats were 40% adult rats. Control values in aged rats were 40% of adults. Exp to 0.5 ppm was stimulatory in adults and aged, while 1.5 and 3.0 pp, decreased glucose metabolism in both groups. No age-related difference in G6PDH activity between control and exposed was seen. However, in both age groups, 0.5 ppm O 3 resulted in a significant increase in activity (33-41%)l 1.5 and 3.0 ppm were without effect. The combined results show a biphasic response of adult and aged lung to severe, acute O 3 exp. One-half ppm O 3 for 8h is stimulatory for all three parameters examined in both age groups. Three ppm O 3 inhibits O 2 consumption and glucose metabolism in both age groups but is ineffective on G6PDH activity

  13. Impaired Homocysteine Transmethylation and Protein-Methyltransferase Activity Reduce Expression of Selenoprotein P: Implications for Obesity and Metabolic Syndrome

    Science.gov (United States)

    Obesity causes Metabolic Syndrome and Type-II Diabetes, disrupting hepatic function, methionine (Met)/homocysteine (Hcy) transmethylation and methyltransferase (PRMT) activities. Selenoprotein P (SEPP1), exported from the liver, is the predominate form of plasma selenium (Se) and the physiological S...

  14. Metabolic syndrome in people with a long-standing spinal cord injury : associations with physical activity and capacity

    NARCIS (Netherlands)

    de Groot, Sonja; Adriaansen, Jacinthe J.; Tepper, Marga; Snoek, Govert J.; van der Woude, Lucas H. V.; Post, Marcel W. M.

    This study investigated (i) the prevalence of the metabolic syndrome (MetS) in people with a long-standing spinal cord injury (SCI); (ii) whether personal or lesion characteristics are determinants of the MetS; and (iii) the association with physical activity or peak aerobic capacity on the MetS. In

  15. Acute and short-term effects of caloric restriction on metabolic profile and brain activation in obese, postmenopausal women

    NARCIS (Netherlands)

    Jakobsdottir, S.; van Nieuwpoort, I. C.; van Bunderen, C. C.; de Ruiter, M. B.; Twisk, J. W. R.; Deijen, J. B.; Veltman, D. J.; Drent, M. L.

    2016-01-01

    Early anthropometric and metabolic changes during a caloric-restricted diet in obese postmenopausal women and correlations between these factors with activity in brain areas involved in processing of visual food related stimuli were investigated. An 8-week prospective intervention study of 18

  16. Acute and short term effects of caloric restriction on metabolic profile and brain activation in obese, postmenopausal women.

    NARCIS (Netherlands)

    Jakobsdottir, S.; van Nieuwpoort, I.C.; van Bunderen, C.C.; de Ruiter, M.B.; Twisk, J.W.R.; Deijen, J.B.; Veltman, D.J.; Drent, M.L.

    2016-01-01

    OBJECTIVE:Early anthropometric and metabolic changes during a caloric-restricted diet in obese postmenopausal women and correlations between these factors with activity in brain areas involved in processing of visual food related stimuli were investigated.SUBJECTS AND METHODS:An 8-week prospective

  17. Survey of the Relationship Between Activity Energy Expenditure Metabolic Equivalents and Barrier Factors of Physical Activity in the Elderly in Kashan

    OpenAIRE

    Sadrollahi, Ali; Khalili, Zahra; Pour Nazari, Robab; Mohammadi, Majid; Ahmadi Khatir, Maryam; Mossadegh, Najima

    2016-01-01

    Background Physical activity in the elderly is influenced by aspects of aging that cause personal, mental, environmental, and social changes. Increases in factors that are barriers to activity cause physical energy expenditure to decrease. Objectives The aim of the present study was to survey the relationship between energy expenditure in metabolic equivalent units (MET) and factors that are barriers to physical activity in elderly people in Kashan, Iran Methods This is a descriptive analysis...

  18. Plasminogen activator inhibitor-1 is elevated in patients with COPD independent of metabolic and cardiovascular function

    Directory of Open Access Journals (Sweden)

    Waschki B

    2017-03-01

    Full Text Available Benjamin Waschki,1–3 Henrik Watz,2,3 Olaf Holz,4,5 Helgo Magnussen,2,3 Beata Olejnicka,6 Tobias Welte,5,7 Klaus F Rabe,1,3 Sabina Janciauskiene5,7 1Pneumology, LungenClinic Grosshansdorf, Grosshansdorf, Germany; 2Pulmonary Research Institute at LungenClinic Grosshansdorf, Grosshansdorf, Germany; 3Airway Research Center North (ARCN, German Center for Lung Research (DZL, Grosshansdorf, Germany; 4Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany; 5Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH, German Center for Lung Research (DZL, Hannover, Germany; 6Department of Medicine, Trelleborg Hospital, Trelleborg, Sweden; 7Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany Introduction: Plasminogen activator inhibitor-1 (PAI-1, a major inhibitor of fibrinolysis, is associated with thrombosis, obesity, insulin resistance, dyslipidemia, and premature aging, which all are coexisting conditions of chronic obstructive pulmonary disease (COPD. The role of PAI-1 in COPD with respect to metabolic and cardiovascular functions is unclear. Methods: In this study, which was nested within a prospective cohort study, the serum levels of PAI-1 were cross-sectionally measured in 74 stable COPD patients (Global Initiative for Chronic Obstructive Lung Disease [GOLD] Stages I–IV and 18 controls without lung disease. In addition, triglycerides, high-density lipoprotein cholesterol, fasting plasma glucose, waist circumference, blood pressure, smoking status, high-sensitive C-reactive protein (hs-CRP, adiponectin, ankle–brachial index, N-terminal pro-B-type natriuretic peptide, and history of comorbidities were also determined. Results: The serum levels of PAI-1 were significantly higher in COPD patients than in controls, independent of a broad spectrum of possible confounders including metabolic and cardiovascular dysfunction. A multivariate regression analysis revealed

  19. Comparing Enchytraeus albidus populations from contrasting climatic environments suggest a link between cold tolerance and metabolic activity.

    Science.gov (United States)

    Žagar, Anamarija; Holmstrup, Martin; Simčič, Tatjana; Debeljak, Barabara; Slotsbo, Stine

    2018-06-06

    Basal metabolic activity and freezing of body fluids create reactive oxygen species (ROS) in freeze-tolerant organisms. These sources of ROS can have an additive negative effect via oxidative stress. In cells, antioxidant systems are responsible for removing ROS in order to avoid damage due to oxidative stress. Relatively little is known about the importance of metabolic rate for the survival of freezing, despite a good understanding of several cold tolerance related physiological mechanisms. We hypothesized that low basal metabolism would be selected for in freeze-tolerant organisms where winter survival is important for fitness for two reasons. First, avoidance of the additive effect of ROS production from metabolism and freezing, and second, as an energy-saving mechanism under extended periods of freezing where the animal is metabolically active, but unable to feed. We used the terrestrial oligochaete, Enchytraeus albidus, which is widely distributed from Spain to the high Arctic and compared eight populations originating across a broad geographical and climatic gradient after they had been cold acclimated at 5 °C in a common garden experiment. Cold tolerance (lower lethal temperature: LT50) and the potential metabolic activity (PMA, an estimator of the maximal enzymatic potential of the mitochondrial respiration chain) of eight populations were positively correlated amongst each other and correlated negatively with latitude and positively with average yearly temperature and the average temperature of the coldest month. These results indicate that low PMA in cold tolerant populations is important for survival in extremely cold environments. Copyright © 2018. Published by Elsevier Inc.

  20. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere.

    Science.gov (United States)

    Liu, Jinguang; Wang, Xingxiang; Zhang, Taolin; Li, Xiaogang

    2017-12-01

    Phenolic acids can enhance the mycotoxin production and activities of hydrolytic enzymes related to pathogenicity of soilborne fungus Fusarium oxysporum. However, characteristics of phenolic acid-degrading bacteria have not been investigated. The objectives of this study were to isolate and characterize bacteria capable of growth on benzoic and vanillic acids as the sole carbon source in the peanut rhizosphere. Twenty-four bacteria were isolated, and the identification based on 16S rRNA gene sequencing revealed that pre-exposure to phenolic acids before sowing shifted the dominant culturable bacterial degraders from Arthrobacter to Burkholderia stabilis-like isolates. Both Arthrobacter and B. stabilis-like isolates catalysed the aromatic ring cleavage via the ortho pathway, and Arthrobacter isolates did not exhibit higher C12O enzyme activity than B. stabilis-like isolates. The culture filtrate of Fusarium sp. ACCC36194 caused a strong inhibition of Arthrobacter growth but not B. stabilis-like isolates. Additionally, Arthrobacter isolates responded differently to the culture filtrates of B. stabilis-like isolates. The Arthrobacter isolates produced higher indole acetic acid (IAA) levels than B. stabilis-like isolates, but B. stabilis-like isolates were also able to produce siderophores, solubilize mineral phosphate, and exert an antagonistic activity against peanut root rot pathogen Fusarium sp. ACCC36194. Results indicate that phenolic acids can shift their dominant culturable bacterial degraders from Arthrobacter to Burkholderia species in the peanut rhizosphere, and microbial interactions might lead to the reduction of culturable Arthrobacter. Furthermore, increasing bacterial populations metabolizing phenolic acids in monoculture fields might be a control strategy for soilborne diseases caused by Fusarium spp. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Carbohydrate metabolism teaching strategy for the Pharmacy course, applying active teaching methodology

    Directory of Open Access Journals (Sweden)

    Uderlei Donizete Silveira Covizzi

    2012-12-01

    Full Text Available The traditional teaching method has been widely questioned on the development of skills and abilities in training healthcare professionals. In the traditional methodology the main transmitter of knowledge is the teacher while students assume passive spectator role. Some Brazilian institutions broke with this model, structuring the curriculum to student-centered learning. Some medical schools have adopted the Problem Based Learning (PBL, a methodology that presents problem questions, to be encountered by future physicians, for resolution in small tutorial groups. Our work proposes to apply an active teaching-learning methodology addressing carbohydrate metabolism during the discipline of biochemistry for under graduation students from pharmacy course. Thus, the academic content was presented through brief and objective talks. Later, learners were split into tutorial groups for the resolution of issues in context. During the activities, the teacher drove the discussion to the issues elucidation. At the end of the module learners evaluated the teaching methodology by means of an applied questionnaire and the developed content was evaluated by an usual individual test. The questionnaire analysis indicates that students believe they have actively participated in the teaching-learning process, being encouraged to discuss and understand the theme. The answers highlight closer ties between students and tutor. According to the professor, there is a greater student engagement with learning. It is concluded that an innovative methodology, where the primary responsibility for learning is centered in the student himself, besides to increase the interest in learning, facilitates learning by cases discussion in groups. The issues contextualization establishes a narrowing between theory and practice.

  2. Relationship among physical activity, smoking, drinking and clustering of the metabolic syndrome diagnostic components.

    Science.gov (United States)

    Katano, Sayuri; Nakamura, Yasuyuki; Nakamura, Aki; Murakami, Yoshitaka; Tanaka, Taichiro; Nakagawa, Hideaki; Takebayashi, Toru; Yamato, Hiroshi; Okayama, Akira; Miura, Katsuyuki; Okamura, Tomonori; Ueshima, Hirotsugu

    2010-06-30

    To examine the relation between lifestyle and the number of metabolic syndrome (MetS) diagnostic components in a general population, and to find a means of preventing the development of MetS components. We examined baseline data from 3,365 participants (2,714 men and 651 women) aged 19 to 69 years who underwent a physical examination, lifestyle survey, and blood chemical examination. The physical activity of each participant was classified according to the International Physical Activity Questionnaire (IPAQ). We defined four components for MetS in this study as follows: 1) high BP: systolic BP > or = 130 mmHg or diastolic BP > or = 85 mmHg, or the use of antihypertensive drugs; 2) dyslipidemia: high-density lipoprotein-cholesterol concentration or = 150 mg/dL, or on medication for dyslipidemia; 3) Impaired glucose tolerance: fasting blood sugar level > or = 110 mg/d, or if less than 8 hours after meals > or = 140 mg/dL), or on medication for diabetes mellitus; 4) obesity: body mass index > or = 25 kg/m(2). Those who had 0 to 4 MetS diagnostic components accounted for 1,726, 949, 484, 190, and 16 participants, respectively, in the Poisson distribution. Poisson regression analysis revealed that independent factors contributing to the number of MetS diagnostic components were being male (regression coefficient b=0.600, p physical activity was inversely associated with the number of MetS diagnostic components, whereas smoking was not associated.

  3. Distribution, Community Composition, and Potential Metabolic Activity of Bacterioplankton in an Urbanized Mediterranean Sea Coastal Zone.

    Science.gov (United States)

    Richa, Kumari; Balestra, Cecilia; Piredda, Roberta; Benes, Vladimir; Borra, Marco; Passarelli, Augusto; Margiotta, Francesca; Saggiomo, Maria; Biffali, Elio; Sanges, Remo; Scanlan, David J; Casotti, Raffaella

    2017-09-01

    Bacterioplankton are fundamental components of marine ecosystems and influence the entire biosphere by contributing to the global biogeochemical cycles of key elements. Yet, there is a significant gap in knowledge about their diversity and specific activities, as well as environmental factors that shape their community composition and function. Here, the distribution and diversity of surface bacterioplankton along the coastline of the Gulf of Naples (GON; Italy) were investigated using flow cytometry coupled with high-throughput sequencing of the 16S rRNA gene. Heterotrophic bacteria numerically dominated the bacterioplankton and comprised mainly Alphaproteobacteria , Gammaproteobacteria , and Bacteroidetes Distinct communities occupied river-influenced, coastal, and offshore sites, as indicated by Bray-Curtis dissimilarity, distance metric (UniFrac), linear discriminant analysis effect size (LEfSe), and multivariate analyses. The heterogeneity in diversity and community composition was mainly due to salinity and changes in environmental conditions across sites, as defined by nutrient and chlorophyll a concentrations. Bacterioplankton communities were composed of a few dominant taxa and a large proportion (92%) of rare taxa (here defined as operational taxonomic units [OTUs] accounting for coastal zones is of critical importance, considering that these areas are highly productive and anthropogenically impacted. Their richness and evenness, as well as their potential activity, are very important to assess ecosystem health and functioning. Here, we investigated bacterial distribution, community composition, and potential metabolic activity in the GON, which is an ideal test site due to its heterogeneous environment characterized by a complex hydrodynamics and terrestrial inputs of varied quantities and quality. Our study demonstrates that bacterioplankton communities in this region are highly diverse and strongly regulated by a combination of different environmental

  4. Carnobacterium species: Effect of metabolic activity and interaction with Brochothrix thermosphacta on sensory characteristics of modified atmosphere packed shrimp

    DEFF Research Database (Denmark)

    Laursen, Birgit Groth; Leisner, J.J.; Dalgaard, Paw

    2006-01-01

    of Carnobacterium divergens, Carnobacterium maltaromaticum, and Carnobacterium mobile. Metabolic activity was studied in cooked and peeled modified atmosphere packed (MAP) shrimp at 5 degrees C as carnobacteria has been anticipated to contribute to spoilage of shrimp products. C. divergens and C. maltaromaticum...... caused sensory spoilage of shrimps and generated ammonia, tyramine, and various alcohols, aldehydes, and ketones. The effects of Carnobacterium species on the growth and metabolism of Brochothrix thermosphacta were also evaluated, but metabiosis between the two groups of bacteria was not observed. C...

  5. Body Mass Index, Metabolic Factors, and Striatal Activation During Stressful and Neutral-Relaxing States: An fMRI Study

    OpenAIRE

    Jastreboff, Ania M; Potenza, Marc N; Lacadie, Cheryl; Hong, Kwangik A; Sherwin, Robert S; Sinha, Rajita

    2010-01-01

    Stress is associated with alterations in neural motivational-reward pathways in the ventral striatum (VS), hormonal/metabolic changes, and weight increases. The relationship between these different factors is not well understood. We hypothesized that body mass index (BMI) status and hormonal/metabolic factors would be associated with VS activation. We used functional magnetic resonance imaging (fMRI) to compare brain responses of overweight and obese (OW/OB: BMI ⩾25 kg/m2: N=27) individuals w...

  6. Peroxisome proliferator-activated receptor γ: Its role in metabolic syndrome

    International Nuclear Information System (INIS)

    Pakala, Rajbabu; Kuchulakanti, Pramod; Rha, Seung-Woon; Cheneau, Edouard; Baffour, Richard; Waksman, Ron

    2004-01-01

    Here we review PPARγ function in relation to human adipogenesis, insulin sensitization, lipid metabolism, blood pressure regulation and prothrombotic state to perhaps provide justification for this nuclear receptor remaining a key therapeutic target for the continuing development of agents to treat human metabolic syndrome

  7. Environmental physiology: effects of energy-related pollutants on daily cycles of energy metabolism, motor activity, and thermoregulation

    International Nuclear Information System (INIS)

    Sacher, G.A.; Rosenberg, R.S.; Duffy, P.H.; Obermeyer, W.; Russell, J.J.

    1979-01-01

    This section contains a summary of research on the effects of energy-related pollutants on daily cycles of energy metabolism, motor activity, and thermoregulation. So far, mice have been exposed to fast neutron-gamma radiation or to the chemical effluents of an atmospheric pressure experimental fluidized-bed combustor. The physiological parameters measured included: O 2 consumption; CO 2 production; motor activity; and deep body temperatures

  8. Phytol directly activates peroxisome proliferator-activated receptor α (PPARα) and regulates gene expression involved in lipid metabolism in PPARα-expressing HepG2 hepatocytes

    International Nuclear Information System (INIS)

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kato, Sota; Egawa, Kahori; Ebisu, Shogo; Moriyama, Tatsuya; Fushiki, Tohru; Kawada, Teruo

    2005-01-01

    The peroxisome proliferator-activated receptor (PPAR) is one of the indispensable transcription factors for regulating lipid metabolism in various tissues. In our screening for natural compounds that activate PPAR using luciferase assays, a branched-carbon-chain alcohol (a component of chlorophylls), phytol, has been identified as a PPARα-specific activator. Phytol induced the increase in PPARα-dependent luciferase activity and the degree of in vitro binding of a coactivator, SRC-1, to GST-PPARα. Moreover, the addition of phytol upregulated the expression of PPARα-target genes at both mRNA and protein levels in PPARα-expressing HepG2 hepatocytes. These findings indicate that phytol is functional as a PPARα ligand and that it stimulates the expression of PPARα-target genes in intact cells. Because PPARα activation enhances circulating lipid clearance, phytol may be important in managing abnormalities in lipid metabolism

  9. Changes in Cholinesterase Activity in Blood of Adolescent with Metabolic Syndrome after Supplementation with Extract from Aronia melanocarpa

    Directory of Open Access Journals (Sweden)

    Piotr Duchnowicz

    2018-01-01

    Full Text Available Obesity and metabolic syndrome (MetS are growing problems among children and adolescents. There are no reports of changes in the activity of butyrylcholinesterase (BChE in children and adolescents with metabolic syndrome especially after supplementation with extract from Aronia melanocarpa. Materials studied included plasma and erythrocytes isolated from peripheral blood of patients with MetS and healthy subjects. We have estimated the following parameters: acetylcholinesterase (AChE and butyrylcholinesterase (BChE activity, lipid peroxidation and lipids levels in plasma, and erythrocytes membrane. In patients with MetS, a significant increase in AChE and BChE activity, higher LDL-cholesterol and triacylglycerol levels, and lower HDL-cholesterol level were observed. Supplementation with A. melanocarpa extract resulted in mild but statistically significant reduction of total cholesterol, LDL-cholesterol, and triacylglycerol levels and caused an increase in HDL-cholesterol level and a decrease in lipid peroxidation in plasma patients with MetS. Additionally, a decrease in lipid peroxidation and cholesterol level and a decrease in AChE activity in the erythrocyte membranes after supplementation with A. melanocarpa were noted. Summarizing, an increase in AChE and BChE activity and disruption of lipid metabolism in patients with MetS were observed. After supplementation of MetS patients with A. melanocarpa extract, a decrease in AChE activity and oxidative stress was noted.

  10. Long-Chain Metabolites of Vitamin E: Metabolic Activation as a General Concept for Lipid-Soluble Vitamins?

    Science.gov (United States)

    Schubert, Martin; Kluge, Stefan; Schmölz, Lisa; Wallert, Maria; Galli, Francesco; Birringer, Marc; Lorkowski, Stefan

    2018-01-12

    Vitamins E, A, D and K comprise the class of lipid-soluble vitamins. For vitamins A and D, a metabolic conversion of precursors to active metabolites has already been described. During the metabolism of vitamin E, the long-chain metabolites (LCMs) 13'-hydroxychromanol (13'-OH) and 13'-carboxychromanol (13'-COOH) are formed by oxidative modification of the side-chain. The occurrence of these metabolites in human serum indicates a physiological relevance. Indeed, effects of the LCMs on lipid metabolism, apoptosis, proliferation and inflammatory actions as well as tocopherol and xenobiotic metabolism have been shown. Interestingly, there are several parallels between the actions of the LCMs of vitamin E and the active metabolites of vitamin A and D. The recent findings that the LCMs exert effects different from that of their precursors support their putative role as regulatory metabolites. Hence, it could be proposed that the mode of action of the LCMs might be mediated by a mechanism similar to vitamin A and D metabolites. If the physiological relevance and this concept of action of the LCMs can be confirmed, a general concept of activation of lipid-soluble vitamins via their metabolites might be deduced.

  11. Metabolic Risk Factors, Leisure Time Physical Activity, and Nutrition in German Children and Adolescents

    Science.gov (United States)

    Haas, Gerda-Maria; Liepold, Evelyn; Schwandt, Peter

    2012-01-01

    Purpose. We assessed the five components of the metabolic syndrome (MetS) as defined by the International Diabetes Federation (IDF) in 6040 (3158 males) youths aged 6–16 years who participated in the Präventions-Erziehungs-Programm (PEP Family Heart Study) in Nuernberg between 2000 and 2007. The purpose of this cross-sectional study was to examine associations with lifestyle habits. Results and Discussion. The prevalence of MetS was low in children (1.6%) and adolescents (2.3%). High waist circumference (WC) and low HDL-C were slightly higher in females (9.5% and 7.5%, resp.) than in males (8.8% and 5.7%, resp.). Low leisure time physical activity (LTPA) was significantly associated with low HDL-C (odds ratio [OR] 2.4; 95% CI 1.2–5.0) and inversely associated with hypertension (r = −0.146), hypertriglyceridemia (r = −0.141), and central adiposity (r = −0.258). The risk for low HDL-C (≤1.3 mmol/L) was 1.7-fold (CI 1.0–2.6) higher in youth with high (≥33%) saturated fat consumption. A low polyunsaturated/saturated fat ratio (P/S ratio) was significantly associated with fasting hyperglycemia (OR 1.4; 95% CI 1.0–1.2). PMID:22778928

  12. Cytotoxicity and genotoxicity of clothianidin in human lymphocytes with or without metabolic activation system.

    Science.gov (United States)

    Atlı Şekeroğlu, Zülal; Şekeroğlu, Vedat; Uçgun, Ebru; Kontaş Yedier, Seval; Aydın, Birsen

    2018-02-26

    Clothianidin (CHN) is a broad-spectrum neonicotinoid insecticide. Limited studies have been carried out on the cytotoxic and genotoxic effects of both CHN using different genotoxicity tests in human cells with or without human metabolic activation system (S9 mix). Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of CHN and its metabolites on human lymphocyte cultures with or without S9 mix using chromosomal aberration (CA) and micronucleus (MN) tests. The cultures were treated with 25, 50, and 100 µg/ml of CHN in the presence (3 h treatment) and absence (48 h treatment) of S9 mix. Dimethyl sulfoxide (DMSO) was used as a solvent control. CHN showed cytotoxic and genotoxic effects due to significant decreases in mitotic index (MI) and nuclear division index (NDI), and significant increases in the CAs, aberrant cells, and MN formation in the absence of S9 mix when compared with solvent control. However, CHN did not significantly induce cytotoxicity and genotoxicity in the presence of S9 mix. Our results indicated that CHN has cytotoxic, cytostatic, and genotoxic potential on human peripheral blood lymphocyte cultures, but not its metabolites under the experimental conditions.

  13. Effect of Condensed Tannins on Bacterial Diversity and Metabolic Activity in the Rat Gastrointestinal Tract

    Science.gov (United States)

    Smith, Alexandra H.; Mackie, Roderick I.

    2004-01-01

    The effect of dietary condensed tannins (proanthocyanidins) on rat fecal bacterial populations was ascertained in order to determine whether the proportion on tannin-resistant bacteria increased and if there was a change in the predominant bacterial populations. After 3 weeks of tannin diets the proportion of tannin-resistant bacteria increased significantly (P tannin diet and to 47.2% ± 5.1% with a 2% tannin diet. The proportion of tannin-resistant bacteria returned to preexposure levels in the absence of dietary tannins. A shift in bacterial populations was confirmed by molecular fingerprinting of fecal bacterial populations by denaturing gradient gel electrophoresis (DGGE). Posttreatment samples were generally still distinguishable from controls after 3.5 weeks. Sequence analysis of DGGE bands and characterization of tannin-resistant isolates indicated that tannins selected for Enterobacteriaceae and Bacteroides species. Dot blot quantification confirmed that these gram-negative bacterial groups predominated in the presence of dietary tannins and that there was a corresponding decrease in the gram-positive Clostridium leptum group and other groups. Metabolic fingerprint patterns revealed that functional activities of culturable fecal bacteria were affected by the presence of tannins. Condensed tannins of Acacia angustissima altered fecal bacterial populations in the rat gastrointestinal tract, resulting in a shift in the predominant bacteria towards tannin-resistant gram-negative Enterobacteriaceae and Bacteroides species. PMID:14766594

  14. Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome.

    Science.gov (United States)

    Rocha, Natalia G; Sales, Allan R K; Penedo, Leticia A; Pereira, Felipe S; Silva, Mayra S; Miranda, Renan L; Silva, Jemima F R; Silva, Bruno M; Santos, Aline A; Nobrega, Antonio C L

    2015-01-01

    Increased levels of adhesion molecules or metalloproteinases (MMPs) may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs) from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS). We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P ≤ 0.03). After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P exercise. There was no difference between moments in nonexercise session (P > 0.05). In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise.

  15. New insight for activity intensity relativity, metabolic expenditure during object projection skill performance.

    Science.gov (United States)

    Sacko, Ryan S; McIver, Kerry; Brian, Ali; Stodden, David F

    2018-04-02

    This study examined the metabolic cost (METs) of performing object projection skills at three practice trial intervals (6, 12, and 30 seconds). Forty adults (female n = 20) aged 18-30 (M = 23.7 ± 2.9 years) completed three, nine-minute sessions of skill trials performed at 6, 12, and 30 second intervals. Participants performed kicking, throwing and striking trials in a blocked schedule with maximal effort. Average METs during each session were measured using a COSMED K4b2. A three (interval condition) X two (sex) ANOVA was conducted to examine differences in METs across interval conditions and by sex. Results indicated a main effect for interval condition (F(5,114) = 187.02, p < .001, η 2  = 0.76) with decreased interval times yielding significantly higher METs [30 sec = 3.45, 12 sec = 5.68, 6 sec = 8.21]. A main effect for sex (F(5, 114) = 35.39, p < .001, η 2  = 0.24) also was found with men demonstrating higher METs across all intervals. At a rate of only two trials/min, participants elicited moderate physical activity, with 12 and 6-second intervals exhibiting vigorous PA. Demonstrating MVPA during the performance of object projection skill performance has potential implications for PA interventions.

  16. Antiviral activity of tenofovir against Cauliflower mosaic virus and its metabolism in Brassica pekinensis plants.

    Science.gov (United States)

    Spak, Josef; Votruba, Ivan; Pavingerová, Daniela; Holý, Antonín; Spaková, Vlastimila; Petrzik, Karel

    2011-11-01

    The antiviral effect of the acyclic nucleoside phosphonate tenofovir (R)-PMPA on double-stranded DNA Cauliflower mosaic virus (CaMV) in Brassica pekinensis plants grown in vitro on liquid medium was evaluated. Double antibody sandwich ELISA and PCR were used for relative quantification of viral protein and detecting nucleic acid in plants. (R)-PMPA at concentrations of 25 and 50 mg/l significantly reduced CaMV titers in plants within 6-9 weeks to levels detectable neither by ELISA nor by PCR. Virus-free plants were obtained after 3-month cultivation of meristem tips on semisolid medium containing 50 mg/l (R)-PMPA and their regeneration to whole plants in the greenhouse. Studying the metabolism of (R)-PMPA in B. pekinensis revealed that mono- and diphosphate, structural analogs of NDP and/or NTP, are the only metabolites formed. The data indicate very low substrate activity of the enzymes toward (R)-PMPA as substrate. The extent of phosphorylation in the plant's leaves represents only 4.5% of applied labeled (R)-PMPA. In roots, we detected no radioactive peaks of phosphorylated metabolites of (R)-PMPAp or (R)-PMPApp. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Plasma plasminogen activator inhibitor-1 levels and nonalcoholic fatty liver in individuals with features of metabolic syndrome.

    Science.gov (United States)

    de Larrañaga, Gabriela; Wingeyer, Silvia Perés; Graffigna, Mabel; Belli, Susana; Bendezú, Karla; Alvarez, Silvia; Levalle, Oscar; Fainboim, Hugo

    2008-07-01

    Fatty liver represents the liver component of metabolic syndrome and may be involved in plasminogen activator inhibitor-1 (PAI-1) synthesis. We studied plasma PAI-1 levels and relationships with risk factors for metabolic syndrome, including fatty liver, in 170 patients. Liver ultrasound scan was performed on all patients, and a liver biopsy was performed on those patients with chronically elevated transaminase levels. Plasma PAI-1 levels correlated significantly (P < .05) with body mass index, degree of steatosis, insulin resistance, insulin level, waist circumference, triglycerides, and high-density lipoprotein (HDL) -cholesterol. However, only body mass index (beta = .455) and HDL-cholesterol (beta = .293) remained predictors of PAI-1 levels. Liver biopsy revealed a significant correlation (P < .05) between insulin resistance (r = 0.381) or insulin level (r = 0.519) and liver fibrosis. In patients presenting features of metabolic syndrome, plasma PAI-1 levels were mainly conditioned by the whole-body fat content.

  18. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes

    DEFF Research Database (Denmark)

    Pamp, Sünje Johanna; Gjermansen, Morten; Johansen, Helle Krogh

    2008-01-01

    -mediated killing in biofilms, conventional antimicrobial compounds such as ciprofloxacin and tetracycline were found to specifically kill the subpopulation of metabolically active biofilm cells, whereas the subpopulation exhibiting low metabolic activity survived the treatment. Consequently, targeting the two...... physiologically distinct subpopulations by combined antimicrobial treatment with either ciprofloxacin and colistin or tetracycline and colistin almost completely eradicated all biofilm cells....

  19. Metabolic enzyme activities of abyssal and hadal fishes: pressure effects and a re-evaluation of depth-related changes

    Science.gov (United States)

    Gerringer, M. E.; Drazen, J. C.; Yancey, P. H.

    2017-07-01

    Metabolic enzyme activities of muscle tissue have been useful and widely-applied indicators of whole animal metabolic capacity, particularly in inaccessible systems such as the deep sea. Previous studies have been conducted at atmospheric pressure, regardless of organism habitat depth. However, maximum reaction rates of some of these enzymes are pressure dependent, complicating the use of metabolic enzyme activities as proxies of metabolic rates. Here, we show pressure-related rate changes in lactate and malate dehydrogenase (LDH, MDH) and pyruvate kinase (PK) in six fish species (2 hadal, 2 abyssal, 2 shallow). LDH maximal reaction rates decreased with pressure for the two shallow species, but, in contrast to previous findings, it increased for the four deep species, suggesting evolutionary changes in LDH reaction volumes. MDH maximal reaction rates increased with pressure in all species (up to 51±10% at 60 MPa), including the tide pool snailfish, Liparis florae (activity increase at 60 MPa 44±9%), suggesting an inherent negative volume change of the reaction. PK was inhibited by pressure in all species tested, including the hadal liparids (up to 34±3% at 60 MPa), suggesting a positive volume change during the reaction. The addition of 400 mM TMAO counteracted this inhibition at both 0.5 and 2.0 mM ADP concentrations for the hadal liparid, Notoliparis kermadecensis. We revisit depth-related trends in metabolic enzyme activities according to these pressure-related rate changes and new data from seven abyssal and hadal species from the Kermadec and Mariana trenches. Results show that, with abyssal and hadal species, pressure-related rate changes are another variable to be considered in the use of enzyme activities as proxies for metabolic rate, in addition to factors such as temperature and body mass. Intraspecific increases in tricarboxylic acid cycle enzymes with depth of capture, independent of body mass, in two hadal snailfishes suggest improved nutritional

  20. Energy metabolism during activity-promoting video games practice in subjects with spinal cord injury: evidences for health promotion.

    Science.gov (United States)

    Gaffurini, P; Bissolotti, L; Calza, S; Calabretto, C; Orizio, C; Gobbo, M

    2013-02-01

    Activity promoting video game (APVG) practice significantly affects energy metabolism through energy expenditure (EE) increase and has been recently included in strategies for health promotion. It is not known if the APVG practice provides similar outcomes in subjects with spinal cord injury (SCI). Aim of the study was to evaluate cardio-pulmonary and metabolic adaptations during APVG practice and to find whether EE increase above resting condition could suggest the inclusion of this exercise in a more general strategy for health promotion and body weight control in subjects with SCI. Repeated measures study. Rehabilitation Institute. Ten male subjects with SCI (lesion levels from C7 to L1) age 26 to 55 years. We recorded pulmonary ventilation (VE), oxygen consumption (VO2) for EE esteem and heart rate (HR) at rest and while playing virtual bowling, tennis and boxing games using a portable metabolimeter equipped with ECG electrodes. The standard metabolic equivalent of task (METs) was calculated offline. The metabolic and functional parameters were referred to the 10th minute of each activity. Metabolic and functional parameters increased significantly from rest to bowling, tennis and boxing. METs exceeded in average 3 during boxing. One hour of APVG can increase daily EE by about 6% (bowling), 10% (tennis) and 15% (boxing). These considerable results suggest that physical exertion during APVG practice in subjects with SCI could contribute to health promotion as well as caloric balance control, especially when boxing is considered. This can be safely achieved at home with regular activity. These findings substantiate the potential for novel exercise modalities to counteract deconditioning due to inactivity in subjects with SCI by promoting physical activity through implementation of APVG exercise programs.

  1. Metabonomics-based analysis of Brachyspira pilosicoli's response to tiamulin reveals metabolic activity despite significant growth inhibition.

    Science.gov (United States)

    Le Roy, Caroline Ivanne; Passey, Jade Louise; Woodward, Martin John; La Ragione, Roberto Marcello; Claus, Sandrine Paule

    2017-06-01

    Pathogenic anaerobes Brachyspira spp. are responsible for an increasing number of Intestinal Spirochaetosis (IS) cases in livestock against which few approved treatments are available. Tiamulin is used to treat swine dysentery caused by Brachyspira spp. and recently has been used to handle avian intestinal spirochaetosis (AIS). The therapeutic dose used in chickens requires further evaluation since cases of bacterial resistance to tiamulin have been reported. In this study, we evaluated the impact of tiamulin at varying concentrations on the metabolism of B. pilosicoli using a 1 H-NMR-based metabonomics approach allowing the capture of the overall bacterial metabolic response to antibiotic treatment. Based on growth curve studies, tiamulin impacted bacterial growth even at very low concentration (0.008 μg/mL) although its metabolic activity was barely affected 72 h post exposure to antibiotic treatment. Only the highest dose of tiamulin tested (0.250 μg/mL) caused a major metabolic shift. Results showed that below this concentration, bacteria could maintain a normal metabolic trajectory despite significant growth inhibition by the antibiotic, which may contribute to disease reemergence post antibiotic treatment. Indeed, we confirmed that B. pilosicoli remained viable even after exposition to the highest antibiotic dose. This paper stresses the need to ensure new evaluation of bacterial viability post bacteriostatic exposure such as tiamulin to guarantee treatment efficacy and decrease antibiotic resistance development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Glucose Regulates Hypothalamic Long-chain Fatty Acid Metabolism via AMP-activated Kinase (AMPK) in Neurons and Astrocytes*

    Science.gov (United States)

    Taïb, Bouchra; Bouyakdan, Khalil; Hryhorczuk, Cécile; Rodaros, Demetra; Fulton, Stephanie; Alquier, Thierry

    2013-01-01

    Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance. PMID:24240094

  3. Glucose regulates hypothalamic long-chain fatty acid metabolism via AMP-activated kinase (AMPK) in neurons and astrocytes.

    Science.gov (United States)

    Taïb, Bouchra; Bouyakdan, Khalil; Hryhorczuk, Cécile; Rodaros, Demetra; Fulton, Stephanie; Alquier, Thierry

    2013-12-27

    Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance.

  4. Oxcarbazepine-induced cytotoxicity and genotoxicity in human lymphocyte cultures with or without metabolic activation.

    Science.gov (United States)

    Atlı Şekeroğlu, Zülal; Kefelioğlu, Haluk; Kontaş Yedier, Seval; Şekeroğlu, Vedat; Delmecioğlu, Berrin

    2017-03-01

    There has been considerable debate about the relationship between epilepsy and cancer. Oxcarbazepine (OXC) is used for treating certain types of seizures in patients with epilepsy. There have been no detailed investigations about genotoxicity of OXC and its metabolites. Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of OXC and its metabolites on cultured human lymphocytes. The cytotoxicity and genotoxicity of OXC on human peripheral blood lymphocytes were examined in vitro by sister chromatid exchange (SCE), chromosomal aberration (CA) and micronucleus (MN) tests. Cultures were treated with 125, 250 and 500 μg/ml of OXC in the presence (3 h treatment) and absence (24 h and 48 h treatment) of a metabolic activator (S9 mix). Dimethyl sulfoxide (DMSO) was used as a solvent control. OXC showed cytotoxic activities due to significant decreases in mitotic index (MI), proliferation index (PI) and nuclear division index (NDI) in the absence of S9 mix when compared with solvent control. Metabolites of OXC also significantly reduced MI and PI in cultures with S9 mix. OXC significantly increased the CAs, aberrant cells, SCE and MN values in the presence and absence of S9 mix. Our results indicated that both OXC and its metabolites have cytotoxic, cytostatic and genotoxic potential on human peripheral blood lymphocyte cultures under the experimental conditions. Further studies are necessary to elucidate the relationship between cytotoxic, cytostatic and genotoxic effects, and to make a possible risk assessment in patients receiving therapy with this drug.

  5. Mast cell granules modulate alveolar macrophage respiratory-burst activity and eicosanoid metabolism.

    Science.gov (United States)

    Rock, M J; Despot, J; Lemanske, R F

    1990-10-01

    Alveolar macrophages (AMs) and mast cells reside in the airway, and both have been demonstrated to contribute independently to allergic inflammatory responses through the generation of respiratory-burst metabolites and the release of biologically active mediators, respectively. Since mast cell granules (MCGs) contain mediators that could potentially interact with the AM respiratory burst, we investigated the effects of isolated MCGs on this important inflammatory pathway of the AM. MCGs and AMs were obtained by peritoneal and tracheoalveolar lavage, respectively, of Sprague-Dawley rats. First, the overall respiratory-burst activity was measured by luminal-enhanced chemiluminescence (CL), and second, the individual oxygen species contributing to CL (superoxide anion [O2-], hydrogen peroxide [H2O2], and hypochlorous acid) were measured. MCGs alone enhanced AM CL responses to an equivalent degree compared to zymosan-stimulated AMs. However, AMs preincubated with MCGs followed by zymosan stimulation significantly and synergistically enhanced the CL responses. This enhanced CL was not due to an increased production of O2-, H2O2, or hypochlorous acid; in fact, there were decreased measured amounts of O2- and H2O2 from zymosan-stimulated AMs in the presence of MCGs, most likely caused by the content of granules of superoxide dismutase and peroxidase, respectively. The lipoxygenase inhibitor, nordihydroguaiaretic acid, completely abolished the enhanced CL of AM preincubated with MCGs and subsequently stimulated by zymosan, but O2- production was not affected by nordihydroguaiaretic acid. Taken together, these results suggest that derivatives of arachidonic acid metabolism, most likely those of the lipoxygenase pathway, are responsible for the enhanced AM CL response observed in the presence of MCGs. Thus, mast cell-macrophage interactions may be important within the airway in enhancing the generation of mediators that contribute to tissue inflammation and bronchospasm.

  6. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose.

    Science.gov (United States)

    Decker, Eva-Maria; Klein, Christian; Schwindt, Dimitri; von Ohle, Christiane

    2014-12-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the

  7. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose

    Institute of Scientific and Technical Information of China (English)

    Eva-Maria Decker; Christian Klein; Dimitri Schwindt; Christiane von Ohle

    2014-01-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media:Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5%sucrose, and Schaedler broth supplemented with 1%xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters:culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the cariogenic potential

  8. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    Science.gov (United States)

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.

  9. Ethanol effect on metabolic activity of the ethalogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Paschos, Thomas; Xiros, Charilaos; Christakopoulos, Paul

    2015-03-12

    Fusarium oxysporum is a filamentous fungus which has attracted a lot of scientific interest not only due to its ability to produce a variety of lignocellulolytic enzymes, but also because it is able to ferment both hexoses and pentoses to ethanol. Although this fungus has been studied a lot as a cell factory, regarding applications for the production of bioethanol and other high added value products, no systematic study has been performed concerning its ethanol tolerance levels. In aerobic conditions it was shown that both the biomass production and the specific growth rate were affected by the presence of ethanol. The maximum allowable ethanol concentration, above which cells could not grow, was predicted to be 72 g/L. Under limited aeration conditions the ethanol-producing capability of the cells was completely inhibited at 50 g/L ethanol. The lignocellulolytic enzymatic activities were affected to a lesser extent by the presence of ethanol, while the ethanol inhibitory effect appears to be more severe at elevated temperatures. Moreover, when the produced ethanol was partially removed from the broth, it led to an increase in fermenting ability of the fungus up to 22.5%. The addition of F. oxysporum's system was shown to increase the fermentation of pretreated wheat straw by 11%, in co-fermentation with Saccharomyces cerevisiae. The assessment of ethanol tolerance levels of F. oxysporum on aerobic growth, on lignocellulolytic activities and on fermentative performance confirmed its biotechnological potential for the production of bioethanol. The cellulolytic and xylanolytic enzymes of this fungus could be exploited within the biorefinery concept as their ethanol resistance is similar to that of the commercial enzymes broadly used in large scale fermentations and therefore, may substantially contribute to a rational design of a bioconversion process involving F. oxysporum. The SSCF experiments on liquefied wheat straw rich in hemicellulose indicated that the

  10. Final Project Report - Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloriethylene Co-Metabolism: Co-Metabolic Enzyme Activity Probes and Modeling Co-Metabolism and Attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Starr, Robert C; Orr, Brennon R; Lee, M Hope; Delwiche, Mark

    2010-02-26

    Trichloroethene (TCE) (also known as trichloroethylene) is a common contaminant in groundwater. TCE is regulated in drinking water at a concentration of 5 µg/L, and a small mass of TCE has the potential to contaminant large volumes of water. The physical and chemical characteristics of TCE allow it to migrate quickly in most subsurface environments, and thus large plumes of contaminated groundwater can form from a single release. The migration and persistence of TCE in groundwater can be limited by biodegradation. TCE can be biodegraded via different processes under either anaerobic or aerobic conditions. Anaerobic biodegradation is widely recognized, but aerobic degradation is less well recognized. Under aerobic conditions, TCE can be oxidized to non hazardous conditions via cometabolic pathways. This study applied enzyme activity probes to demonstrate that cometabolic degradation of TCE occurs in aerobic groundwater at several locations, used laboratory microcosm studies to determine aerobic degradation rates, and extrapolated lab-measured rates to in situ rates based on concentrations of microorganisms with active enzymes involved in cometabolic TCE degradation. Microcosms were constructed using basalt chips that were inoculated with microorganisms to groundwater at the Idaho National Laboratory Test Area North TCE plume by filling a set of Flow-Through In Situ Reactors (FTISRs) with chips and placing the FTISRs into the open interval of a well for several months. A parametric study was performed to evaluate predicted degradation rates and concentration trends using a competitive inhibition kinetic model, which accounts for competition for enzyme active sites by both a growth substrate and a cometabolic substrate. The competitive inhibition kinetic expression was programmed for use in the RT3D reactive transport package. Simulations of TCE plume evolution using both competitive inhibition kinetics and first order decay were performed.

  11. Low Levels of Serum Paraoxonase Activities are Characteristic of Metabolic Syndrome and May Influence the Metabolic-Syndrome-Related Risk of Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Nicola Martinelli

    2012-01-01

    Full Text Available Low concentrations of plasma high-density lipoprotein (HDLs are characteristic in metabolic syndrome (MS. The antioxidant ability of HDLs is, at least in part, attributable to pleiotropic serum paraoxonase (PON1. Different PON1 activities have been assessed in 293 subjects with (=88 or without MS (=205 and with (=195 or without (=98 angiographically proven coronary artery disease (CAD. MS subjects had low PON1 activities, with a progressively decreasing trend by increasing the number of MS abnormalities. The activity versus 7-O-diethyl phosphoryl,3-cyano,4-methyl,7-hydroxycoumarin (DEPCyMC, which is considered a surrogate marker of PON1 concentration, showed the most significant association with MS, independently of both HDL and apolipoprotein A-I levels. Subjects with MS and low DEPCyMCase activity had the highest CAD risk (OR 4.34 with 95% CI 1.44–13.10, while no significant increase of risk was found among those with MS but high DEPCyMCase activity (OR 1.45 with 95% CI 0.47–4.46. Our results suggest that low PON1 concentrations are typical in MS and may modulate the MS-related risk of CAD.

  12. Low levels of serum paraoxonase activities are characteristic of metabolic syndrome and may influence the metabolic-syndrome-related risk of coronary artery disease.

    Science.gov (United States)

    Martinelli, Nicola; Micaglio, Roberta; Consoli, Letizia; Guarini, Patrizia; Grison, Elisa; Pizzolo, Francesca; Friso, Simonetta; Trabetti, Elisabetta; Pignatti, Pier Franco; Corrocher, Roberto; Olivieri, Oliviero; Girelli, Domenico

    2012-01-01

    Low concentrations of plasma high-density lipoprotein (HDLs) are characteristic in metabolic syndrome (MS). The antioxidant ability of HDLs is, at least in part, attributable to pleiotropic serum paraoxonase (PON1). Different PON1 activities have been assessed in 293 subjects with (n = 88) or without MS (n = 205) and with (n = 195) or without (n = 98) angiographically proven coronary artery disease (CAD). MS subjects had low PON1 activities, with a progressively decreasing trend by increasing the number of MS abnormalities. The activity versus 7-O-diethyl phosphoryl,3-cyano,4-methyl,7-hydroxycoumarin (DEPCyMC), which is considered a surrogate marker of PON1 concentration, showed the most significant association with MS, independently of both HDL and apolipoprotein A-I levels. Subjects with MS and low DEPCyMCase activity had the highest CAD risk (OR 4.34 with 95% CI 1.44-13.10), while no significant increase of risk was found among those with MS but high DEPCyMCase activity (OR 1.45 with 95% CI 0.47-4.46). Our results suggest that low PON1 concentrations are typical in MS and may modulate the MS-related risk of CAD.

  13. Uses of Activation Analysis in Studies of Mineral Element Metabolism in Man. Papers Given at a Panel Meeting

    International Nuclear Information System (INIS)

    1970-01-01

    In June, 1968, the International Atomic Energy Agency held a panel meeting in Teheran, Iran, to discuss some of the uses of activation analysis in studies of mineral element metabolism in man. The aims of the meeting were to identify and draw attention to specific medical problems to which activation analysis could be fruitfully applied, to review the capabilities of the technique itself, and to recommend specific action which the Agency might take to support further work in this field. The scientific papers presented at the meeting have been gathered together in this report, and it is hoped that their publication will be of interest to all concerned with mineral element metabolism in man, whether studied by activation analysis or by other methods

  14. Thermal effects on metabolic activities of thermophilic microorganisms from the thermal discharge point of Tuticorin thermal power plant area

    International Nuclear Information System (INIS)

    Muthukkannan, N.; Murugesan, A.G.

    2002-01-01

    Metabolic activities of thermophilic microorganisms isolated from the thermal water discharge point at Tuticorin thermal power station were studied by growing the microorganisms in sterile medium and at various temperature regimes of 25, 35, 45, 55 and 65degC. The optimum temperature for the growth of the bacterium isolated from the thermal power plant station was 45 degC and beyond 65 degC the growth was gradually decreased. The bacteria isolated from open sea water were mesophiles with their growth optimum at 35 degC and microbes inhabiting the thermal discharge area were thermopiles as they were tolerant even at 55 degC. The amylase production, carbohydrate metabolism and lactose fermentation activities were optimum at 45 degC. At 25 degC and beyond 65 degC biochemical activities of the organisms were inhibited to a greater extent. (author)

  15. Distribution of Metabolically Active Prokaryotes (Archaea and Bacteria) throughout the Profiles of Chernozem and Brown Semidesert Soil

    Science.gov (United States)

    Semenov, M. V.; Manucharova, N. A.; Stepanov, A. L.

    2016-02-01

    The distribution of metabolically active cells of archaea and bacteria in the profiles of typical chernozems (Voronezh oblast) and brown semidesert soils (Astrakhan oblast) of natural and agricultural ecosystems was studied using the method of fluorescent in situ hybridization (FISH). The studied soils differed sharply in the microbial biomass and in the numbers of metabolically active cells of archaea and bacteria. The number of active bacterial cells was 3.5-7.0 times greater than that of archaea. In the arable chernozem, the numbers of active cells of archaea and bacteria were 2.6 and 1.5 times, respectively, lower than those in the chernozem under the shelterbelt. The agricultural use of the brown semidesert soil had little effect on the abundances of bacteria and archaea. The soil organic carbon content was the major factor controlling the numbers of metabolically active cells of both domains. However, the dependence of the abundance of bacteria on the organic matter content was more pronounced. The decrease in the organic carbon and total nitrogen contents down the soil profiles was accompanied by the decrease in the bacteria: archaea ratio attesting to a better adaptation of archaea to the permanent deficiency of carbon and nitrogen. The bacteria: archaea ratio can serve as an ecotrophic indicator of the state of soil microbial communities.

  16. Relationship between intracellular pH, metabolic co-factors and caspase-3 activation in cancer cells during apoptosis.

    Science.gov (United States)

    Sergeeva, Tatiana F; Shirmanova, Marina V; Zlobovskaya, Olga A; Gavrina, Alena I; Dudenkova, Varvara V; Lukina, Maria M; Lukyanov, Konstantin A; Zagaynova, Elena V

    2017-03-01

    A complex cascade of molecular events occurs in apoptotic cells but cell-to-cell variability significantly complicates determination of the order and interconnections between different processes. For better understanding of the mechanisms of programmed cell death, dynamic simultaneous registration of several parameters is required. In this paper we used multiparameter fluorescence microscopy to analyze energy metabolism, intracellular pH and caspase-3 activation in living cancer cells in vitro during staurosporine-induced apoptosis. We performed metabolic imaging of two co-factors, NAD(P)H and FAD, and used the genetically encoded pH-indicator SypHer1 and the FRET-based sensor for caspase-3 activity, mKate2-DEVD-iRFP, to visualize these parameters by confocal fluorescence microscopy and two-photon fluorescence lifetime imaging microscopy. The correlation between energy metabolism, intracellular pH and caspase-3 activation and their dynamic changes were studied in CT26 cancer cells during apoptosis. Induction of apoptosis was accompanied by a switch to oxidative phosphorylation, cytosol acidification and caspase-3 activation. We showed that alterations in cytosolic pH and the activation of oxidative phosphorylation are relatively early events associated with the induction of apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Adherence to a pedometer-based physical activity intervention following kidney transplant and impact on metabolic parameters.

    Science.gov (United States)

    Lorenz, Elizabeth C; Amer, Hatem; Dean, Patrick G; Stegall, Mark D; Cosio, Fernando G; Cheville, Andrea L

    2015-06-01

    The majority of kidney transplant recipients die from cardiovascular events. Physical activity may be a modifiable risk factor for cardiovascular disease following transplant. The goal of our study was to examine adherence to a physical activity intervention following kidney transplant and its impact on metabolic parameters. All patients who received a kidney transplant at our center between 12/2010 and 12/2011 received usual care (n = 162), while patients transplanted between 12/2011 and 1/2013 received a 90-day pedometer-based physical activity intervention (n = 145). Metabolic parameters were assessed at four and 12 months post-transplant. Baseline demographics and clinical management were similar between cohorts. Adherence to the prescription was 36.5%. Patients in the physical activity cohort had lower systolic and diastolic blood pressure four months post-transplant compared to the usual care cohort (122 ± 18 vs. 126 ± 16 mmHg, p = 0.049 and 73 ± 10 vs. 77 ± 9, p = 0.004) and less impaired fasting glucose (20.7% vs. 30.9%, p = 0.04). Twelve-month outcomes were not different between cohorts. Over one-third of our cohort adhered to a pedometer-based physical activity intervention following kidney transplant, and the intervention was associated with improved metabolic parameters. Further study of post-transplant exercise interventions and methods to optimize long-term adherence are needed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. C75, a fatty acid synthase inhibitor, modulates AMP-activated protein kinase to alter neuronal energy metabolism.

    Science.gov (United States)

    Landree, Leslie E; Hanlon, Andrea L; Strong, David W; Rumbaugh, Gavin; Miller, Ian M; Thupari, Jagan N; Connolly, Erin C; Huganir, Richard L; Richardson, Christine; Witters, Lee A; Kuhajda, Francis P; Ronnett, Gabriele V

    2004-01-30

    C75, a synthetic inhibitor of fatty acid synthase (FAS), is hypothesized to alter the metabolism of neurons in the hypothalamus that regulate feeding behavior to contribute to the decreased food intake and profound weight loss seen with C75 treatment. In the present study, we characterize the suitability of primary cultures of cortical neurons for studies designed to investigate the consequences of C75 treatment and the alteration of fatty acid metabolism in neurons. We demonstrate that in primary cortical neurons, C75 inhibits FAS activity and stimulates carnitine palmitoyltransferase-1 (CPT-1), consistent with its effects in peripheral tissues. C75 alters neuronal ATP levels and AMP-activated protein kinase (AMPK) activity. Neuronal ATP levels are affected in a biphasic manner with C75 treatment, decreasing initially, followed by a prolonged increase above control levels. Cerulenin, a FAS inhibitor, causes a similar biphasic change in ATP levels, although levels do not exceed control. C75 and cerulenin modulate AMPK phosphorylation and activity. TOFA, an inhibitor of acetyl-CoA carboxylase, increases ATP levels, but does not affect AMPK activity. Several downstream pathways are affected by C75 treatment, including glucose metabolism and acetyl-CoA carboxylase (ACC) phosphorylation. These data demonstrate that C75 modulates the levels of energy intermediates, thus, affecting the energy sensor AMPK. Similar effects in hypothalamic neurons could form the basis for the effects of C75 on feeding behavior.

  19. NDRG2 overexpression suppresses hepatoma cells survival during metabolic stress through disturbing the activation of fatty acid oxidation

    International Nuclear Information System (INIS)

    Pan, Tao; Zhang, Mei; Zhang, Fang; Yan, Guang; Ru, Yi; Wang, Qinhao; Zhang, Yao; Wei, Xuehui; Xu, Xinyuan; Shen, Lan; Zhang, Jian; Wu, Kaichun; Yao, Libo; Li, Xia

    2017-01-01

    Because of the high nutrient consumption and inadequate vascularization, solid tumor constantly undergoes metabolic stress during tumor development. Oncogenes and tumor suppressor genes participated in cancer cells' metabolic reprogramming. N-Myc downstream regulated gene 2 (NDRG2) is a recently identified tumor suppressor gene, but its function in cancer metabolism, particularly during metabolic stress, remains unclear. In this study, we found that NDRG2 overexpression significantly reduced hepatoma cell proliferation and enhanced cell apoptosis under glucose limitation. Moreover, NDRG2 overexpression aggravated energy imbalance and oxidative stress by decreasing the intracellular ATP and NADPH generation and increasing ROS levels. Strikingly, NDRG2 inhibited the activation of fatty acid oxidation (FAO), which preserves ATP and NADPH purveyance in the absence of glucose. Finally, mechanistic investigation showed that NDRG2 overexpression suppressed the glucose-deprivation induced AMPK/ACC pathway activation in hepatoma cells, whereas the expression of a constitutively active form of AMPK abrogated glucose-deprivation induced AMPK activation and cell apoptosis. Thus, as a negative regulator of AMPK, NDRG2 disturbs the induction of FAO genes by glucose limitation, leading to dysregulation of ATP and NADPH, and thus reduces the tolerance of hepatoma cells to glucose limitation. - Highlights: • NDRG2 overexpression reduces the tolerance of hepatoma cells to glucose limitation. • NDRG2 overexpression aggravates energy imbalance and oxidative stress under glucose deprivation. • NDRG2 overexpression disturbs the activation of FAO in hepatoma cells under glucose limitation. • NDRG2 overexpression inhibits the activation of AMPK/ACC pathway in hepatoma cells during glucose starvation.

  20. Effects of anthropogenic sound on digging behavior, metabolism, Ca2+/Mg2+ ATPase activity, and metabolism-related gene expression of the bivalve Sinonovacula constricta

    Science.gov (United States)

    Peng, Chao; Zhao, Xinguo; Liu, Saixi; Shi, Wei; Han, Yu; Guo, Cheng; Jiang, Jingang; Wan, Haibo; Shen, Tiedong; Liu, Guangxu

    2016-01-01

    Anthropogenic sound has increased significantly in the past decade. However, only a few studies to date have investigated its effects on marine bivalves, with little known about the underlying physiological and molecular mechanisms. In the present study, the effects of different types, frequencies, and intensities of anthropogenic sounds on the digging behavior of razor clams (Sinonovacula constricta) were investigated. The results showed that variations in sound intensity induced deeper digging. Furthermore, anthropogenic sound exposure led to an alteration in the O:N ratios and the expression of ten metabolism-related genes from the glycolysis, fatty acid biosynthesis, tryptophan metabolism, and Tricarboxylic Acid Cycle (TCA cycle) pathways. Expression of all genes under investigation was induced upon exposure to anthropogenic sound at ~80 dB re 1 μPa and repressed at ~100 dB re 1 μPa sound. In addition, the activity of Ca2+/Mg2+-ATPase in the feet tissues, which is directly related to muscular contraction and subsequently to digging behavior, was also found to be affected by anthropogenic sound intensity. The findings suggest that sound may be perceived by bivalves as changes in the water particle motion and lead to the subsequent reactions detected in razor clams. PMID:27063002

  1. Effects of anthropogenic sound on digging behavior, metabolism, Ca(2+)/Mg(2+) ATPase activity, and metabolism-related gene expression of the bivalve Sinonovacula constricta.

    Science.gov (United States)

    Peng, Chao; Zhao, Xinguo; Liu, Saixi; Shi, Wei; Han, Yu; Guo, Cheng; Jiang, Jingang; Wan, Haibo; Shen, Tiedong; Liu, Guangxu

    2016-04-11

    Anthropogenic sound has increased significantly in the past decade. However, only a few studies to date have investigated its effects on marine bivalves, with little known about the underlying physiological and molecular mechanisms. In the present study, the effects of different types, frequencies, and intensities of anthropogenic sounds on the digging behavior of razor clams (Sinonovacula constricta) were investigated. The results showed that variations in sound intensity induced deeper digging. Furthermore, anthropogenic sound exposure led to an alteration in the O:N ratios and the expression of ten metabolism-related genes from the glycolysis, fatty acid biosynthesis, tryptophan metabolism, and Tricarboxylic Acid Cycle (TCA cycle) pathways. Expression of all genes under investigation was induced upon exposure to anthropogenic sound at ~80 dB re 1 μPa and repressed at ~100 dB re 1 μPa sound. In addition, the activity of Ca(2+)/Mg(2+)-ATPase in the feet tissues, which is directly related to muscular contraction and subsequently to digging behavior, was also found to be affected by anthropogenic sound intensity. The findings suggest that sound may be perceived by bivalves as changes in the water particle motion and lead to the subsequent reactions detected in razor clams.

  2. Effects of anthropogenic sound on digging behavior, metabolism, Ca2+/Mg2+ ATPase activity, and metabolism-related gene expression of the bivalve Sinonovacula constricta

    Science.gov (United States)

    Peng, Chao; Zhao, Xinguo; Liu, Saixi; Shi, Wei; Han, Yu; Guo, Cheng; Jiang, Jingang; Wan, Haibo; Shen, Tiedong; Liu, Guangxu

    2016-04-01

    Anthropogenic sound has increased significantly in the past decade. However, only a few studies to date have investigated its effects on marine bivalves, with little known about the underlying physiological and molecular mechanisms. In the present study, the effects of different types, frequencies, and intensities of anthropogenic sounds on the digging behavior of razor clams (Sinonovacula constricta) were investigated. The results showed that variations in sound intensity induced deeper digging. Furthermore, anthropogenic sound exposure led to an alteration in the O:N ratios and the expression of ten metabolism-related genes from the glycolysis, fatty acid biosynthesis, tryptophan metabolism, and Tricarboxylic Acid Cycle (TCA cycle) pathways. Expression of all genes under investigation was induced upon exposure to anthropogenic sound at ~80 dB re 1 μPa and repressed at ~100 dB re 1 μPa sound. In addition, the activity of Ca2+/Mg2+-ATPase in the feet tissues, which is directly related to muscular contraction and subsequently to digging behavior, was also found to be affected by anthropogenic sound intensity. The findings suggest that sound may be perceived by bivalves as changes in the water particle motion and lead to the subsequent reactions detected in razor clams.

  3. Magnesium isoglycyrrhizinate blocks fructose-induced hepatic NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder.

    Science.gov (United States)

    Zhao, Xiao-Juan; Yang, Yan-Zi; Zheng, Yan-Jing; Wang, Shan-Chun; Gu, Hong-Mei; Pan, Ying; Wang, Shui-Juan; Xu, Hong-Jiang; Kong, Ling-Dong

    2017-08-15

    Magnesium isoglycyrrhizinate as a hepatoprotective agent possesses immune modulation and anti-inflammation, and treats liver diseases. But its effects on immunological-inflammatory and metabolic profiles for metabolic syndrome with liver injury and underlying potential mechanisms are not fully understood. In this study, magnesium isoglycyrrhizinate alleviated liver inflammation and lipid accumulation in fructose-fed rats with metabolic syndrome. It also suppressed hepatic inflammatory signaling activation by reducing protein levels of phosphorylation of nuclear factor-kappa B p65 (p-NF-κB p65), inhibitor of nuclear factor kappa-B kinase α/β (p-IKKα/β) and inhibitor of NF-κB α (p-IκBα) as well as nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and Caspase-1 in rats, being consistent with its reduction of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 levels. Furthermore, magnesium isoglycyrrhizinate modulated lipid metabolism-related genes characterized by up-regulating peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyl transferase-1 (CPT-1), and down-regulating sensor for fatty acids to control-1 (SREBP-1) and stearoyl-CoA desaturase 1 (SCD-1) in the liver of fructose-fed rats, resulting in the reduction of triglyceride and total cholesterol levels. These effective actions were further confirmed in fructose-exposed BRL-3A and HepG2 cells. The molecular mechanisms underpinning these observations suggest that magnesium isoglycyrrhizinate may inhibit NF-κB/NLRP3 inflammasome activation to reduce immunological-inflammatory response, which in turn may prevent liver lipid metabolic disorder and accumulation under high fructose condition. Thus, blockade of NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder by magnesium isoglycyrrhizinate may be the potential therapeutic approach for improving fructose-induced liver injury with

  4. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts

    Science.gov (United States)

    Krais, Annette M.; Mühlbauer, Karl-Rudolf; Kucab, Jill E.; Chinbuah, Helena; Cornelius, Michael G.; Wei, Quan-Xiang; Hollstein, Monica; Phillips, David H.; Arlt, Volker M.; Schmeiser, Heinz H.

    2015-01-01

    We compared mouse embryonic stem (ES) cells and fibroblasts (MEFs) for their ability to metabolically activate the environmental carcinogens benzo[a]pyrene (BaP), 3-nitrobenzanthrone (3-NBA) and aristolochic acid I (AAI), measuring DNA adduct formation by 32P-postlabelling and expression of xenobiotic-metabolism genes by quantitative real-time PCR. At 2 μM, BaP induced Cyp1a1 expression in MEFs to a much greater extent than in ES cells and formed 45 times more adducts. Nqo1 mRNA expression was increased by 3-NBA in both cell types but induction was higher in MEFs, as was adduct formation. For AAI, DNA binding was over 450 times higher in MEFs than in ES cells, although Nqo1 and Cyp1a1 transcriptional levels did not explain this difference. We found higher global methylation of DNA in ES cells than in MEFs, which suggests higher chromatin density and lower accessibility of the DNA to DNA damaging agents in ES cells. However, AAI treatment did not alter DNA methylation. Thus mouse ES cells and MEFs have the metabolic competence to activate a number of environmental carcinogens, but MEFs have lower global DNA methylation and higher metabolic capacity than mouse ES cells. PMID:25230394

  5. Tissue-Specific Peroxisome Proliferator Activated Receptor Gamma Expression and Metabolic Effects of Telmisartan

    Czech Academy of Sciences Publication Activity Database

    Zídek, Václav; Mlejnek, Petr; Šimáková, Miroslava; Šilhavý, Jan; Landa, Vladimír; Kazdová, L.; Pravenec, Michal; Kurtz, T. W.

    2013-01-01

    Roč. 26, č. 6 (2013), s. 829-835 ISSN 0895-7061 R&D Projects: GA ČR(CZ) GAP303/10/0505; GA MŠk(CZ) LH11049; GA MŠk(CZ) LL1204; GA MŠk(CZ) 7E10067 Institutional support: RVO:67985823 Keywords : telmisartan * metabolic effects * tissue-specific Pparg knockout mice Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.402, year: 2013

  6. Metabolic syndrome, activity of the hypothalamic-pituitary-adrenal axis and inflammatory mediators in depressive disorder.

    Science.gov (United States)

    Martinac, Marko; Pehar, Davor; Karlović, Dalibor; Babić, Dragan; Marcinko, Darko; Jakovljević, Miro

    2014-03-01

    Depression has been associated with various cardiovascular risk factors such as hypertension, obesity, atherogenic dyslipidemia and hyperglycemia. In depressive disorder, hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis and changes in the immune system have been observed. On the other hand, somatic diseases such as obesity, hyperlipidemia, hypertension and diabetes mellitus type 2 are now perceived as important comorbid conditions in patients with depression. The pathogenesis of the metabolic syndrome and depression is complex and poorly researched; however, it is considered that the interaction of chronic stress, psychotrauma, hypercotisolism and disturbed immune functions contribute to the development of these disorders. The aim of the study was to investigate the relationship between depression and metabolic syndrome regarding the HPA axis dysfunction and altered inflammatory processes. Literature search in Medline and other databases included articles written in English published between 1985 and 2012. Analysis of the literature was conducted using a systematic approach with the search terms such as depression, metabolic syndrome, inflammation, cytokines, glucocorticoids, cortisol, and HPA axis. In conclusion, the relationship between depression and metabolic syndrome is still a subject of controversy. Further prospective studies are required to clarify the possible causal relationship between depression and metabolic syndrome and its components. Furthermore, it is important to explore the possibility of a common biologic mechanism in the pathogenesis of these two disorders, in which special attention should be paid to the immune system function, especially the possible specific mechanisms by which cytokines can induce and maintain depressive symptoms and metabolic disorders. The data presented here emphasize the importance of recognition and treatment of depressive disorders with consequent reduction in the incidence of metabolic syndrome, but

  7. The Effect of Culture Medium on Metabolic and Antibacterial Activities of Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    f Mirdavoudi

    2012-05-01

    Full Text Available

    Background and Objectives: Probiotic bacteria is added directly to food components and it has beneficial effect on function and the health of organisms. The bifidogenic factors enter the colon where they contribute to an increase lactic acid bacteria population including Lactobacilli and Bifidobacteria and they inhibit enteric pathogenic bacterial growth. The aim of this study is to investigate the effect of culture medium on metabolic and antibacterial of probiotic bacteria.

     

    Methods: In this study, the probiotics bacterial and intestine pathogenic are to be used. Lactobacilli and Bifidobacterium were identified by plating samples on MRS medium, Gram Staining and standard biochemical methods. The effect of antagonistic probiotics was investigated in the presence of growth factor in the method well diffusion Ager on the Shigella flexneri (PTCC 1234, Escherichia coli (PTCC 1552, Salmonella typhi ( PTCC 1609 and the culture medium pH was measured.

     

    Results: The probiotics bacterial growth in MRS and lactose1%, sorbitol, raffinose, riboflavin were shown the effect antibacterial. The results of the study show the most antagonistic activity in commercial strain Lactobacillus acidophilus on Shigella flexneri and lower activity was in Lactobacillus casei (PTCC 1608, and Salmonella typhimurium (PTCC 1609, and also in Bbifidobacterium bifidum, it showed the most decrease pH value.

     

    Conclusion: According to the result of the study, adding growth factors to MRS medium base and lactose 1%, probiotic growth was increased and which also increased antagonistic activity.

     

  8. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    International Nuclear Information System (INIS)

    Kim, Young C.; Yim, Hye K.; Jung, Young S.; Park, Jae H.; Kim, Sung Y.

    2007-01-01

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards

  9. Role of ring oxidation in the metabolic activation of 1-nitropyrene.

    Science.gov (United States)

    Beland, F A

    1991-12-01

    Nitrated polycyclic aromatic hydrocarbons are wide-spread environmental pollutants that have been detected in photocopier toners, airborne particulates, coal fly ash, and diesel engine exhaust emissions. 1-Nitropyrene, a representative nitropolycyclic aromatic hydrocarbon present in diesel particulates, is a mutagen in Salmonella typhimurium and a tumorigen in laboratory animals. The activation of 1-nitropyrene to a bacterial mutagen has been attributed to nitroreduction; however, the metabolic pathways involved in its metabolism to a tumorigen are not known, but may involve nitroreduction, ring oxidation, or a combination of the two. In these experiments, we examined the importance of ring oxidation in the activation of 1-nitropyrene (99.85 to 99.98 percent 1-nitropyrene, 0.15 to 0.02 percent 1,3-, 1,6-, and 1,8-dinitropyrene by mass spectral analyses) to a mammalian-cell mutagen and carcinogen. Chinese hamster ovary cells were used to assess the mutagenicity of ring-oxidized 1-nitropyrene metabolites. In the absence of a rat liver 9,000 x g supernatant, 6-hydroxy-1-nitropyrene, 1-nitropyrene-9,10-oxide, and pyrene-4,5-oxide were the most mutagenic compounds tested. 3-Hydroxy-1-nitropyrene, 8-hydroxy-1-nitropyrene, and 1-nitropyrene-4,5-oxide were weaker mutagens, whereas pyrene and 1-nitropyrene were essentially nonmutagenic. The order of mutagenic potency with S9 was: 1-nitropyrene-4,5-oxide greater than 6-hydroxy-1-nitropyrene approximately 1-nitropyrene-9,10-oxide greater than 1-nitropyrene approximately 3-hydroxy-1-nitropyrene approximately 8-hydroxy-1-nitropyrene greater than pyrene approximately pyrene-4,5-oxide, with the last two compounds being nearly nonmutagenic. The epoxide hydrase inhibitor 1,2-epoxy-3,3,3-trichloropropane increased the mutation frequency fivefold. In addition, guinea pig liver microsomes and Aroclor-induced rat liver microsomes, which increased the formation of 1-nitropyrene-4,5-oxide and 1-nitropyrene-9,10-oxide, increased the

  10. Effects of Curcuma xanthorrhiza Extracts and Their Constituents on Phase II Drug-metabolizing Enzymes Activity.

    Science.gov (United States)

    Salleh, Nurul Afifah Mohd; Ismail, Sabariah; Ab Halim, Mohd Rohaimi

    2016-01-01

    Curcuma xanthorrhiza is a native Indonesian plant and traditionally utilized for a range of illness including liver damage, hypertension, diabetes, and cancer. The study determined the effects of C. xanthorrhiza extracts (ethanol and aqueous) and their constituents (curcumene and xanthorrhizol) on UDP-glucuronosyltransferase (UGT) and glutathione transferase (GST) activities. The inhibition studies were evaluated both in rat liver microsomes and in human recombinant UGT1A1 and UGT2B7 enzymes. p-nitrophenol and beetle luciferin were used as the probe substrates for UGT assay while 1-chloro-2,4-dinitrobenzene as the probe for GST assay. The concentrations of extracts studied ranged from 0.1 to 1000 μg/mL while for constituents ranged from 0.01 to 500 μM. In rat liver microsomes, UGT activity was inhibited by the ethanol extract (IC 50 =279.74 ± 16.33 μg/mL). Both UGT1A1 and UGT2B7 were inhibited by the ethanol and aqueous extracts with IC 50 values ranging between 9.59-22.76 μg/mL and 110.71-526.65 μg/Ml, respectively. Rat liver GST and human GST Pi-1 were inhibited by ethanol and aqueous extracts, respectively (IC 50 =255.00 ± 13.06 μg/mL and 580.80 ± 18.56 μg/mL). Xanthorrhizol was the better inhibitor of UGT1A1 (IC 50 11.30 ± 0.27 μM) as compared to UGT2B7 while curcumene did not show any inhibition. For GST, both constituents did not show any inhibition. These findings suggest that C. xanthorrhiza have the potential to cause herb-drug interaction with drugs that are primarily metabolized by UGT and GST enzymes. Findings from this study would suggest which of Curcuma xanthorrhiza extracts and constituents that would have potential interactions with drugs which are highly metabolized by UGT and GST enzymes. Further clinical studies can then be designed if needed to evaluate the in vivo pharmacokinetic relevance of these interactions Abbreviations Used : BSA: Bovine serum albumin, CAM: Complementary and alternative medicine, cDNA: Complementary

  11. Effects of Curcuma xanthorrhiza Extracts and Their Constituents on Phase II Drug-metabolizing Enzymes Activity

    Science.gov (United States)

    Salleh, Nurul Afifah Mohd; Ismail, Sabariah; Ab Halim, Mohd Rohaimi

    2016-01-01

    Background: Curcuma xanthorrhiza is a native Indonesian plant and traditionally utilized for a range of illness including liver damage, hypertension, diabetes, and cancer. Objective: The study determined the effects of C. xanthorrhiza extracts (ethanol and aqueous) and their constituents (curcumene and xanthorrhizol) on UDP-glucuronosyltransferase (UGT) and glutathione transferase (GST) activities. Materials and Methods: The inhibition studies were evaluated both in rat liver microsomes and in human recombinant UGT1A1 and UGT2B7 enzymes. p-nitrophenol and beetle luciferin were used as the probe substrates for UGT assay while 1-chloro-2,4-dinitrobenzene as the probe for GST assay. The concentrations of extracts studied ranged from 0.1 to 1000 μg/mL while for constituents ranged from 0.01 to 500 μM. Results: In rat liver microsomes, UGT activity was inhibited by the ethanol extract (IC50 =279.74 ± 16.33 μg/mL). Both UGT1A1 and UGT2B7 were inhibited by the ethanol and aqueous extracts with IC50 values ranging between 9.59–22.76 μg/mL and 110.71–526.65 μg/Ml, respectively. Rat liver GST and human GST Pi-1 were inhibited by ethanol and aqueous extracts, respectively (IC50 =255.00 ± 13.06 μg/mL and 580.80 ± 18.56 μg/mL). Xanthorrhizol was the better inhibitor of UGT1A1 (IC50 11.30 ± 0.27 μM) as compared to UGT2B7 while curcumene did not show any inhibition. For GST, both constituents did not show any inhibition. Conclusion: These findings suggest that C. xanthorrhiza have the potential to cause herb-drug interaction with drugs that are primarily metabolized by UGT and GST enzymes. SUMMARY Findings from this study would suggest which of Curcuma xanthorrhiza extracts and constituents that would have potential interactions with drugs which are highly metabolized by UGT and GST enzymes. Further clinical studies can then be designed if needed to evaluate the in vivo pharmacokinetic relevance of these interactions Abbreviations Used: BSA: Bovine serum albumin

  12. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    Directory of Open Access Journals (Sweden)

    M. Ryan Smith

    2016-08-01

    Full Text Available Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP, decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231 breast adenocarcinoma cells up to 6 days after an initial 24 h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10 µM of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC protein levels, although other protein levels were

  13. Metabolic activation of hepatotoxic drug (benzbromarone) induced mitochondrial membrane permeability transition

    Energy Technology Data Exchange (ETDEWEB)

    Shirakawa, Maho; Sekine, Shuichi; Tanaka, Ayaka [The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (Japan); Horie, Toshiharu [Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo (Japan); Ito, Kousei, E-mail: itokousei@chiba-u.jp [The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (Japan)

    2015-10-01

    The risk of drug-induced liver injury (DILI) is of great concern to the pharmaceutical industry. It is well-known that metabolic activation of drugs to form toxic metabolites (TMs) is strongly associated with DILI onset. Drug-induced mitochondrial dysfunction is also strongly associated with increased risk of DILI. However, it is difficult to determine the target of TMs associated with exacerbation of DILI because of difficulties in identifying and purifying TMs. In this study, we propose a sequential in vitro assay system to assess TM formation and their ability to induce mitochondrial permeability transition (MPT) in a one-pot process. In this assay system, freshly-isolated rat liver mitochondria were incubated with reaction solutions of 44 test drugs preincubated with liver microsomes in the presence or absence of NADPH; then, NADPH-dependent MPT pore opening was assessed as mitochondrial swelling. In this assay system, several hepatotoxic drugs, including benzbromarone (BBR), significantly induced MPT in a NADPH-dependent manner. We investigated the rationality of using BBR as a model drug, since it showed the most prominent MPT in our assay system. Both the production of a candidate toxic metabolite of BBR (1′,6-(OH){sub 2} BBR) and NADPH-dependent MPT were inhibited by several cytochrome P450 (CYP) inhibitors (clotrimazole and SKF-525A, 100 μM). In summary, this assay system can be used to evaluate comprehensive metabolite-dependent MPT without identification or purification of metabolites. - Highlights: • We constructed a sequential assay system for toxic metabolite induced MPT in one pot. • 14 drugs (e.g. benzbromarone (BBR)) induced toxic metabolite dependent MPT. • Both the production of toxic metabolite and MPT could be inhibited by CYP inhibitors. • This system could evaluate the comprehensive MPT without purification of metabolites.

  14. Effects of temperature and UVR on organic matter fluxes and the metabolic activity of Acropora muricata

    Directory of Open Access Journals (Sweden)

    Lucile Courtial

    2017-08-01

    Full Text Available Coral bleaching events are predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes depends on many factors, including the magnitude of thermal stress and irradiance. The interactions among these two factors, and in particular with ultra-violet radiation (UVR, the most harmful component of light, are more complex than assumed, and are not yet well understood. This paper explores the individual and combined effects of temperature and UVR on the metabolism of Acropora muricata, one of the most abundant coral species worldwide. Particulate and dissolved organic matter (POM/DOM fluxes and organic matter (OM degradation by the mucus-associated bacteria were also monitored in all conditions. The results show that UVR exposure exacerbated the temperature-induced bleaching, but did not affect OM fluxes, which were only altered by seawater warming. Temperature increase induced a shift from POM release and DOM uptake in healthy corals to POM uptake and DOM release in stressed ones. POM uptake was linked to a significant grazing of pico- and nanoplankton particles during the incubation, to fulfil the energetic requirements of A. muricata in the absence of autotrophy. Finally, OM degradation by mucus-associated bacterial activity was unaffected by UVR exposure, but significantly increased under high temperature. Altogether, our results demonstrate that seawater warming and UVR not only affect coral physiology, but also the way corals interact with the surrounding seawater, with potential consequences for coral reef biogeochemical cycles and food webs.

  15. A close link between metabolic activity and functional connectivity in the resting human brain

    Energy Technology Data Exchange (ETDEWEB)

    Passow, Susanne [Department of Biological and Medical Psychology, University of Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Specht, Karsten [Department of Biological and Medical Psychology, University of Bergen (Norway); Department of Clinical Engineering, Haukeland University Hospital, Bergen (Norway); Adamsen, Tom Christian [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Chemistry, University of Bergen (Norway); Biermann, Martin; Brekke, Njål [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen (Norway); Craven, Alexander Richard [Department of Biological and Medical Psychology, University of Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Ersland, Lars [Department of Clinical Engineering, Haukeland University Hospital, Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Grüner, Renate [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Physics and Technology, University of Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Kleven-Madsen, Nina [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Physics and Technology, University of Bergen (Norway); Kvernenes, Ole-Heine [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Schwarzlmüller, Thomas [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Clinical Medicine, University of Bergen (Norway); Olesen, Rasmus [Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus (Denmark); Hugdahl, Kenneth [Department of Biological and Medical Psychology, University of Bergen (Norway); Department of Radiology, Haukeland University Hospital, Bergen (Norway); Division of Psychiatry, Haukeland University Hospital, Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway)

    2015-05-18

    Default-mode network (DMN) functional connectivity and its task-dependent down-regulation have attracted a lot of attention in the field of neuroscience. Nevertheless, the exact underlying mechanisms of DMN functional connectivity, or more specifically, the blood oxygen level-dependent (BOLD) signal, are still not completely understood. To investigate more directly the association between local glucose consumption, local glutamatergic neurotransmission and DMN functional connectivity during rest, the present study combined for the first time 2-Deoxy-2-[18F]fluoroglucose positron emission tomography (FDG-PET), proton magnetic resonance spectroscopy (1H-MRS), and resting-state functional magnetic resonance imaging (rs-fMRI). Seed-based correlation analyses, using a key region of the DMN i.e. the dorsal posterior cingulate cortex as seed, revealed overall striking spatial similarities between fluctuations in FDG-uptake and the BOLD signal. More specifically, a conjunction analysis across both modalities showed that DMN areas as the inferior parietal lobe, angular gyrus, precuneus, middle and medial frontal gyrus were positively correlated with the dorsal posterior cingulate cortex. Furthermore, we could demonstrate that local glucose consumption in the medial frontal gyrus, posterior cingulate cortex and left angular gyrus was associated with functional connectivity within the DMN. We did not find a relationship between glutamatergic neurotransmission and functional connectivity. In line with very recent findings, our results provide further evidence for a close association between local metabolic activity and functional connectivity and enable further insights towards a better understanding of the underlying mechanisms of the BOLD signal.

  16. A close link between metabolic activity and functional connectivity in the resting human brain

    International Nuclear Information System (INIS)

    Passow, Susanne; Specht, Karsten; Adamsen, Tom Christian; Biermann, Martin; Brekke, Njål; Craven, Alexander Richard; Ersland, Lars; Grüner, Renate; Kleven-Madsen, Nina; Kvernenes, Ole-Heine; Schwarzlmüller, Thomas; Olesen, Rasmus; Hugdahl, Kenneth

    2015-01-01

    Default-mode network (DMN) functional connectivity and its task-dependent down-regulation have attracted a lot of attention in the field of neuroscience. Nevertheless, the exact underlying mechanisms of DMN functional connectivity, or more specifically, the blood oxygen level-dependent (BOLD) signal, are still not completely understood. To investigate more directly the association between local glucose consumption, local glutamatergic neurotransmission and DMN functional connectivity during rest, the present study combined for the first time 2-Deoxy-2-[18F]fluoroglucose positron emission tomography (FDG-PET), proton magnetic resonance spectroscopy (1H-MRS), and resting-state functional magnetic resonance imaging (rs-fMRI). Seed-based correlation analyses, using a key region of the DMN i.e. the dorsal posterior cingulate cortex as seed, revealed overall striking spatial similarities between fluctuations in FDG-uptake and the BOLD signal. More specifically, a conjunction analysis across both modalities showed that DMN areas as the inferior parietal lobe, angular gyrus, precuneus, middle and medial frontal gyrus were positively correlated with the dorsal posterior cingulate cortex. Furthermore, we could demonstrate that local glucose consumption in the medial frontal gyrus, posterior cingulate cortex and left angular gyrus was associated with functional connectivity within the DMN. We did not find a relationship between glutamatergic neurotransmission and functional connectivity. In line with very recent findings, our results provide further evidence for a close association between local metabolic activity and functional connectivity and enable further insights towards a better understanding of the underlying mechanisms of the BOLD signal.

  17. Adhesion and metabolic activity of human corneal cells on PCL based nanofiber matrices

    Energy Technology Data Exchange (ETDEWEB)

    Stafiej, Piotr; Küng, Florian [Department of Ophthalmology, Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen (Germany); Institute of Polymer Materials, Universität Erlangen-Nürnberg, Martensstraße 7, 91054 Erlangen (Germany); Thieme, Daniel; Czugala, Marta; Kruse, Friedrich E. [Department of Ophthalmology, Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen (Germany); Schubert, Dirk W. [Institute of Polymer Materials, Universität Erlangen-Nürnberg, Martensstraße 7, 91054 Erlangen (Germany); Fuchsluger, Thomas A., E-mail: thomas.fuchsluger@uk-erlangen.de [Department of Ophthalmology, Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen (Germany)

    2017-02-01

    In this work, polycaprolactone (PCL) was used as a basic polymer for electrospinning of random and aligned nanofiber matrices. Our aim was to develop a biocompatible substrate for ophthalmological application to improve wound closure in defects of the cornea as replacement for human amniotic membrane. We investigated whether blending the hydrophobic PCL with poly (glycerol sebacate) (PGS) or chitosan (CHI) improves the biocompatibility of the matrices for cell expansion. Human corneal epithelial cells (HCEp) and human corneal keratocytes (HCK) were used for in vitro biocompatibility studies. After optimization of the electrospinning parameters for all blends, scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and water contact angle were used to characterize the different matrices. Fluorescence staining of the F-actin cytoskeleton of the cells was performed to analyze the adherence of the cells to the different matrices. Metabolic activity of the cells was measured by cell counting kit-8 (CCK-8) for 20 days to compare the biocompatibility of the materials. Our results show the feasibility of producing uniform nanofiber matrices with and without orientation for the used blends. All materials support adherence and proliferation of human corneal cell lines with oriented growth on aligned matrices. Although hydrophobicity of the materials was lowered by blending PCL, no increase in biocompatibility or proliferation, as was expected, could be measured. All tested matrices supported the expansion of human corneal cells, confirming their potential as substrates for biomedical applications. - Highlights: • PCL was blended with chitosan and poly(glycerol sebacate) for electrospinning. • Biocompatibility was proven with two human corneal cell lines. • Both cell lines adhered and proliferated on random and aligned nanofiber matrices. • Cytoskeletal orientation is shown on aligned nanofiber matrices.

  18. Low Levels of Physical Activity Are Associated with Increased Metabolic Syndrome Risk Factors in Korean Adults

    Directory of Open Access Journals (Sweden)

    Dong Hoon Lee

    2013-04-01

    Full Text Available BackgroundLow levels of physical activity (PA are strongly associated with the development of metabolic syndrome (MetS and chronic diseases. However, few studies have examined this association in Koreans. The primary purpose of this study was to examine the associations between PA and MetS risks in Korean adults.MethodsA total of 1,016 Korean adults (494 males and 522 females participated in this study. PA levels were assessed using the International PA Questionnaire. MetS risk factors were determined using clinically established diagnostic criteria.ResultsCompared with the highest PA group, the group with the lowest level of PA was at greater risk of high triglyceride (TG in males (odds ratio [OR], 1.87; 95% confidence interval [CI], 1.07 to 3.24 and of hemoglobin A1c ≥5.5% in females (OR, 1.75; 95% CI, 1.00 to 3.04 after adjusting for age and body mass index. Compared with subjects who met the PA guidelines, those who did not meet the guidelines were more likely to have low high density lipoprotein cholesterol in both males (OR, 1.69; 95% CI, 1.11 to 2.58, and females (OR, 1.82; 95% CI, 1.20 to 2.77. Furthermore, those who did not meet the PA guidelines were at increased risk of high TG levels in males (OR, 1.69; 95% CI, 1.23 to 2.86 and abnormal fasting glucose (OR, 1.93; 95% CI, 1.17 to 3.20 and MetS (OR, 2.10; 95% CI, 1.15 to 3.84 in females.ConclusionIncreased levels of PA are significantly associated with a decreased risk of abnormal MetS components.

  19. The Role of Peroxisome Proliferator-Activated Receptor β/δ on the Inflammatory Basis of Metabolic Disease

    Directory of Open Access Journals (Sweden)

    Teresa Coll

    2010-01-01

    Full Text Available The pathophysiology underlying several metabolic diseases, such as obesity, type 2 diabetes mellitus, and atherosclerosis, involves a state of chronic low-level inflammation. Evidence is now emerging that the nuclear receptor Peroxisome Proliferator-Activated Receptor (PPARβ/δ ameliorates these pathologies partly through its anti-inflammatory effects. PPARβ/δ activation prevents the production of inflammatory cytokines by adipocytes, and it is involved in the acquisition of the anti-inflammatory phenotype of macrophages infiltrated in adipose tissue. Furthermore, PPARβ/δ ligands prevent fatty acid-induced inflammation in skeletal muscle cells, avoid the development of cardiac hypertrophy, and suppress macrophage-derived inflammation in atherosclerosis. These data are promising and suggest that PPARβ/δ ligands may become a therapeutic option for preventing the inflammatory basis of metabolic diseases.

  20. Oligo-Carrageenan Kappa-Induced Reducing Redox Status and Increase in TRR/TRX Activities Promote Activation and Reprogramming of Terpenoid Metabolism in Eucalyptus Trees

    Directory of Open Access Journals (Sweden)

    Alberto González

    2014-06-01

    Full Text Available In order to analyze whether the reducing redox status and activation of thioredoxin reductase (TRR/thioredoxin(TRX system induced by oligo-carrageenan (OC kappa in Eucalyptus globulus activate secondary metabolism increasing terpenoid synthesis, trees were sprayed on the leaves with water, with OC kappa, or with inhibitors of NAD(PH, ascorbate (ASC and (GSH synthesis and TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO and auranofine, respectively, and with OC kappa and cultivated for four months. The main terpenoids in control Eucalyptus trees were eucalyptol (76%, α-pinene (7.4%, aromadendrene (3.6%, silvestrene (2.8%, sabinene (2% and α-terpineol (0.9%. Treated trees showed a 22% increase in total essential oils as well as a decrease in eucalyptol (65% and sabinene (0.8% and an increase in aromadendrene (5%, silvestrene (7.8% and other ten terpenoids. In addition, treated Eucalyptus showed seven de novo synthesized terpenoids corresponding to carene, α-terpinene, α-fenchene, γ-maaliene, spathulenol and α-camphenolic aldehyde. Most increased and de novo synthesized terpenoids have potential insecticidal and antimicrobial activities. Trees treated with CHS-828, lycorine, BSO and auranofine and with OC kappa showed an inhibition of increased and de novo synthesized terpenoids. Thus, OC kappa-induced reducing redox status and activation of TRR/TRX system enhance secondary metabolism increasing the synthesis of terpenoids and reprogramming of terpenoid metabolism in Eucalyptus trees.

  1. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    Science.gov (United States)

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  2. Oligo-carrageenan kappa-induced reducing redox status and increase in TRR/TRX activities promote activation and reprogramming of terpenoid metabolism in Eucalyptus trees.

    Science.gov (United States)

    González, Alberto; Gutiérrez-Cutiño, Marlen; Moenne, Alejandra

    2014-06-05

    In order to analyze whether the reducing redox status and activation of thioredoxin reductase (TRR)/thioredoxin(TRX) system induced by oligo-carrageenan (OC) kappa in Eucalyptus globulus activate secondary metabolism increasing terpenoid synthesis, trees were sprayed on the leaves with water, with OC kappa, or with inhibitors of NAD(P)H, ascorbate (ASC) and (GSH) synthesis and TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO) and auranofine, respectively, and with OC kappa and cultivated for four months. The main terpenoids in control Eucalyptus trees were eucalyptol (76%), α-pinene (7.4%), aromadendrene (3.6%), silvestrene (2.8%), sabinene (2%) and α-terpineol (0.9%). Treated trees showed a 22% increase in total essential oils as well as a decrease in eucalyptol (65%) and sabinene (0.8%) and an increase in aromadendrene (5%), silvestrene (7.8%) and other ten terpenoids. In addition, treated Eucalyptus showed seven de novo synthesized terpenoids corresponding to carene, α-terpinene, α-fenchene, γ-maaliene, spathulenol and α-camphenolic aldehyde. Most increased and de novo synthesized terpenoids have potential insecticidal and antimicrobial activities. Trees treated with CHS-828, lycorine, BSO and auranofine and with OC kappa showed an inhibition of increased and de novo synthesized terpenoids. Thus, OC kappa-induced reducing redox status and activation of TRR/TRX system enhance secondary metabolism increasing the synthesis of terpenoids and reprogramming of terpenoid metabolism in Eucalyptus trees.

  3. Goutweed (Aegopodium podagraria L. biological activity and the possibilities of its use for the correction of the lipid metabolism disorders

    Directory of Open Access Journals (Sweden)

    O. Tovchiga

    2017-12-01

    Full Text Available The article summarizes data concerning the biological activity of the promising herbal raw material: aerial part of goutweed (Aegopodium podagraria L., Apiaceae. This plant since time immemorial has been used as vegetable and fodder plant as well as in folk medicine including the treatment of the metabolic disorders. Nowadays the interest in this plant increases. The technology of obtaining the extract and the tincture from goutweed aerial part is described, the chemical composition of these preparations is elucidated. Pharmacological effects of the preparations obtained from goutweed are characterized with the special emphasis on the possibilities of the lipid metabolism disorders correction and prevention. The presented experimental results substantiate the efficacy of goutweed extract and the tincture under the conditions of alimentary lipemia together with their safety in the intact animals. Thus, the hypolipidemic activity of goutweed extract (1 g/kg intragastrically and goutweed tincture (1 cm3/kg intragastrically was shown in the test with olive oil loading in rats. The extract appeared to be able to decrease significantly the level of triglycerides in blood plasma, while the tincture reduced the content of plasma total lipids. In the intact rats, the extract at doses of 100 mg/kg and 1 g/kg as well as the tincture at doses of 1 and 5 cm3/kg did not influence on the values of the lipid metabolism after 12 days of administration. Total and HDL cholesterol as well as atherogenic index and plasma total lipids level remained unchanged. In contast to the data previously obtained on the models of hyperuricemia, in the intact rats there were no changes in plasma uric acid concentration (which was determined proceeding from the role of the purine metabolism disorders in metabolic syndrome pathogenesis. Thus, goutweed preparations are characterized with the regulatory mode of action and sufficient level of safety. The development of drugs as

  4. Total {sup 18}F-dopa PET tumour uptake reflects metabolic endocrine tumour activity in patients with a carcinoid tumour

    Energy Technology Data Exchange (ETDEWEB)

    Fiebrich, Helle-Brit; Walenkamp, Annemiek M.; Vries, Elisabeth G.E. de [University Medical Centre Groningen, Department of Medical Oncology, Groningen (Netherlands); Jong, Johan R. de; Koopmans, Klaas Pieter; Dierckx, Rudi A.J.O.; Brouwers, Adrienne H. [University Medical Centre Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Kema, Ido P. [University Medical Centre Groningen, Department of Laboratory Medicine, Groningen (Netherlands); Sluiter, Wim; Links, Thera P. [University Medical Centre Groningen, Department of Endocrinology, Groningen (Netherlands)

    2011-10-15

    Positron emission tomography (PET) using 6-[{sup 18}F]fluoro-L-dihydroxyphenylalanine ({sup 18}F-dopa) has an excellent sensitivity to detect carcinoid tumour lesions. {sup 18}F-dopa tumour uptake and the levels of biochemical tumour markers are mediated by tumour endocrine metabolic activity. We evaluated whether total {sup 18}F-dopa tumour uptake on PET, defined as whole-body metabolic tumour burden (WBMTB), reflects tumour load per patient, as measured with tumour markers. Seventy-seven consecutive carcinoid patients who underwent an {sup 18}F-dopa PET scan in two previously published studies were analysed. For all tumour lesions mean standardised uptake values (SUVs) at 40% of the maximal SUV and tumour volume on {sup 18}F-dopa PET were determined and multiplied to calculate a metabolic burden per lesion. WBMTB was the sum of the metabolic burden of all individual lesions per patient. The 24-h urinary serotonin, urine and plasma 5-hydroxindoleacetic acid (5-HIAA), catecholamines (nor)epinephrine, dopamine and their metabolites, measured in urine and plasma, and serum chromogranin A served as tumour markers. All but 1 were evaluable for WBMTB; 74 patients had metastatic disease. {sup 18}F-dopa PET detected 979 lesions. SUV{sub max} on {sup 18}F-dopa PET varied up to 29-fold between individual lesions within the same patients. WBMTB correlated with urinary serotonin (r = 0.51) and urinary and plasma 5-HIAA (r = 0.78 and 0.66). WBMTB also correlated with urinary norepinephrine, epinephrine, dopamine and plasma dopamine, but not with serum chromogranin A. Tumour load per patient measured with {sup 18}F-dopa PET correlates with tumour markers of the serotonin and catecholamine pathway in urine and plasma in carcinoid patients, reflecting metabolic tumour activity. (orig.)

  5. Expression of Peroxisome Proliferator-Activated Receptor-γ in Key Neuronal Subsets Regulating Glucose Metabolism and Energy Homeostasis

    OpenAIRE

    Sarruf, David A.; Yu, Fang; Nguyen, Hong T.; Williams, Diana L.; Printz, Richard L.; Niswender, Kevin D.; Schwartz, Michael W.

    2008-01-01

    In addition to increasing insulin sensitivity and adipogenesis, peroxisome proliferator-activated receptor (PPAR)-γ agonists cause weight gain and hyperphagia. Given the central role of the brain in the control of energy homeostasis, we sought to determine whether PPARγ is expressed in key brain areas involved in metabolic regulation. Using immunohistochemistry, PPARγ distribution and its colocalization with neuron-specific protein markers were investigated in rat and mouse brain sections spa...

  6. Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells.

    Directory of Open Access Journals (Sweden)

    Vinay K Tripathi

    Full Text Available The expression and metabolic profile of cytochrome P450s (CYPs is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y and glial (U373-MG cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC, cyclophosphamide (CPA, ethanol and known neurotoxicant- monocrotophos (MCP, a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against

  7. Prevalence of Metabolic Syndrome in Patients with HIV in the Era of Highly Active Antiretroviral Therapy.

    Science.gov (United States)

    Lombo, Bernardo; Alkhalil, Imran; Golden, Marjorie P; Fotjadhi, Irma; Ravi, Sreedhar; Virata, Michael; Lievano, Marta; Diez, Jose; Ghantous, Andre; Donohue, Thomas

    2015-05-01

    Since the introduction of combination antiretroviral therapy (cART) as the standard of care for HIV disease, there has been a precipitous decline in the death rate due to HIV/ AIDS. The purpose of this study was to report the prevalence of metabolic syndrome in HIV infected patients. Retrospective, cross-sectional, observational study of 259 patients with HIV infection treated with cART from an urban community hospital. Metabolic syndrome prevalence was defined using the International Diabetes Federation (IDF) and the U.S. National Cholesterol Education Program Adult Treatment Panel III (ATP III) criteria. Study patients were included regardless of the duration of cART. The prevalence of metabolic syndrome was 27% using IDF criteria and 26% using ATP III criteria. Logistic regression analysis found an association between treatment with the protease inhibitor darunavir and metabolic syndrome. (OR 3.32 with 95% confidence interval between 1.54 and 7.15). There is a high prevalence of metabolic syndrome and obesity in HIV patients treated with cART, especially those taking the protease inhibitor darunavir.

  8. Myocardial metabolism, perfusion, wall motion and electrical activity in Duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Perloff, J.K.; Henze, E.; Schelbert, H.R.

    1982-01-01

    The cardiomyopathy of Duchenne's muscular dystrophy originates in the posterobasal left ventricle and extends chiefly to the contiguous lateral wall. Ultrastructural abnormalities in these regions precede connective tissue replacement. We postulated that a metabolic fault coincided with or antedated the subcellular abnormality. Accordingly, regional left ventricular metabolism, perfusion and wall motion were studied using positron computed tomography and metabolic isotopes supplemented by thallium perfusion scans, equilibrium radionuclide angiography and M-mode and two-dimensional echocardiography. To complete the assessment, electrocardiograms, vectorcardiograms, 24 hour taped electrocardiograms and chest x-rays were analyzed. Positron computed tomography utilizing F-18 2-fluoro 2-deoxyglucose (FDG) provided the first conclusive evidence supporting the hypothesis of a premorphologic regional metabolic fault. Thus, cardiac involvement in duchenne dystrophy emerges as a unique form of heart disease, genetically targeting specific regions of ventricular myocardium for initial metabolic and subcellular changes. Reported ultrastructural abnormalities of the impulse and conduction systems provide, at least in part, a basis for the clinically observed sinus node, intraatrial, internodal, AV nodal and infranodal disorders

  9. Cross-sectional surveillance study to phenotype lorry drivers’ sedentary behaviours, physical activity and cardio-metabolic health

    Science.gov (United States)

    Varela-Mato, Veronica; O’Shea, Orlagh; King, James A; Yates, Thomas; Stensel, David J; Biddle, Stuart JH; Nimmo, Myra A; Clemes, Stacy A

    2017-01-01

    Objectives Elevated risk factors for a number of chronic diseases have been identified in lorry drivers. Unhealthy lifestyle behaviours such as a lack of physical activity (PA) and high levels of sedentary behaviour (sitting) likely contribute to this elevated risk. This study behaviourally phenotyped UK lorry drivers’ sedentary and non-sedentary behaviours during workdays and non-workdays and examined markers of drivers cardio-metabolic health. Setting A transport company from the East Midlands, UK. Participants A sample of 159 male heavy goods vehicle drivers (91% white European; (median (range)) age: 50 (24, 67) years) completed the health assessments. 87 (age: 50.0 (25.0, 65.0); body mass index (BMI): 27.7 (19.6, 43.4) kg/m2) provided objective information on sedentary and non-sedentary time. Outcomes Participants self-reported their sociodemographic information. Primary outcomes: sedentary behaviour and PA, assessed over 7 days using an activPAL3 inclinometer. Cardio-metabolic markers included: blood pressure (BP), heart rate, waist circumference (WC), hip circumference, body composition and fasted capillary blood glucose, triglycerides, high-density lipopreotein cholesterol, low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels. These cardio-metabolic markers were treated as secondary outcomes. Results Lorry drivers presented an unhealthy cardio-metabolic health profile (median (IQR) systolic BP: 129 (108.5, 164) mm Hg; diastolic BP: 81 (63, 104) mm Hg; BMI: 29 (20, 47) kg/m2; WC: 102 (77.5, 146.5) cm; LDL-C: 3 (1, 6) mmol/L; TC: 4.9 (3, 7.5) mmol/L). 84% were overweight or obese, 43% had type 2 diabetes or prediabetes and 34% had the metabolic syndrome. The subsample of lorry drivers with objective postural data (n=87) accumulated 13 hours/day and 8 hours/day of sedentary behaviour on workdays and non-workdays (pdrivers accrued 12 min/day on workdays and 6 min/day on non-workdays of moderate-to-vigorous PA (MVPA). Conclusion

  10. Cross-sectional surveillance study to phenotype lorry drivers' sedentary behaviours, physical activity and cardio-metabolic health.

    Science.gov (United States)

    Varela-Mato, Veronica; O'Shea, Orlagh; King, James A; Yates, Thomas; Stensel, David J; Biddle, Stuart Jh; Nimmo, Myra A; Clemes, Stacy A

    2017-06-21

    Elevated risk factors for a number of chronic diseases have been identified in lorry drivers. Unhealthy lifestyle behaviours such as a lack of physical activity (PA) and high levels of sedentary behaviour (sitting) likely contribute to this elevated risk. This study behaviourally phenotyped UK lorry drivers' sedentary and non-sedentary behaviours during workdays and non-workdays and examined markers of drivers cardio-metabolic health. A transport company from the East Midlands, UK. A sample of 159 male heavy goods vehicle drivers (91% white European; (median (range)) age: 50 (24, 67) years) completed the health assessments. 87 (age: 50.0 (25.0, 65.0); body mass index (BMI): 27.7 (19.6, 43.4) kg/m 2 ) provided objective information on sedentary and non-sedentary time. Participants self-reported their sociodemographic information. Primary outcomes: sedentary behaviour and PA, assessed over 7 days using an activPAL3 inclinometer. Cardio-metabolic markers included: blood pressure (BP), heart rate, waist circumference (WC), hip circumference, body composition and fasted capillary blood glucose, triglycerides, high-density lipopreotein cholesterol, low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels. These cardio-metabolic markers were treated as secondary outcomes. Lorry drivers presented an unhealthy cardio-metabolic health profile (median (IQR) systolic BP: 129 (108.5, 164) mm Hg; diastolic BP: 81 (63, 104) mm Hg; BMI: 29 (20, 47) kg/m 2 ; WC: 102 (77.5, 146.5) cm; LDL-C: 3 (1, 6) mmol/L; TC: 4.9 (3, 7.5) mmol/L). 84% were overweight or obese, 43% had type 2 diabetes or prediabetes and 34% had the metabolic syndrome. The subsample of lorry drivers with objective postural data (n=87) accumulated 13 hours/day and 8 hours/day of sedentary behaviour on workdays and non-workdays (pdrivers accrued 12 min/day on workdays and 6 min/day on non-workdays of moderate-to-vigorous PA (MVPA). Lorry drivers demonstrate a high-risk cardio-metabolic

  11. Stress during puberty boosts metabolic activation associated with fear-extinction learning in hippocampus, basal amygdala and cingulate cortex.

    Science.gov (United States)

    Toledo-Rodriguez, Maria; Pitiot, Alain; Paus, Tomáš; Sandi, Carmen

    2012-07-01

    Adolescence is characterized by major developmental changes that may render the individual vulnerable to stress and the development of psychopathologies in a sex-specific manner. Earlier we reported lower anxiety-like behavior and higher risk-taking and novelty seeking in rats previously exposed to peri-pubertal stress. Here we studied whether peri-pubertal stress affected the acquisition and extinction of fear memories and/or the associated functional engagement of various brain regions, as assessed with 2-deoxyglucose. We showed that while peri-pubertal stress reduced freezing during the acquisition of fear memories (training) in both sexes, it had a sex-specific effect on extinction of these memories. Moreover hippocampus, basal amygdala and cingulate and motor cortices showed higher metabolic rates during extinction in rats exposed to peri-pubertal stress. Interestingly, activation of the infralimbic cortex was negatively correlated with freezing during extinction only in control males, while only males stressed during puberty showed a significant correlation between behavior during extinction and metabolic activation of hippocampus, amygdala and paraventricular nucleus. No correlations between brain activation and behavior during extinction were observed in females (control or stress). These results indicate that exposure to peri-pubertal stress affects behavior and brain metabolism when the individual is exposed to an additional stressful challenge. Some of these effects are sex-specific. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes.

    Science.gov (United States)

    Gorné, Lucas D; Acosta-Rodríguez, Victoria A; Pasquaré, Susana J; Salvador, Gabriela A; Giusto, Norma M; Guido, Mario Eduardo

    2015-02-01

    The circadian system involves central and peripheral oscillators regulating temporally biochemical processes including lipid metabolism; their disruption leads to severe metabolic diseases (obesity, diabetes, etc). Here, we investigated the temporal regulation of glycerophospholipid (GPL) synthesis in mouse liver, a well-known peripheral oscillator. Mice were synchronized to a 12:12 h light-dark (LD) cycle and then released to constant darkness with food ad libitum. Livers collected at different times exhibited a daily rhythmicity in some individual GPL content with highest levels during the subjective day. The activity of GPL-synthesizing/remodeling enzymes: phosphatidate phosphohydrolase 1 (PAP-1/lipin) and lysophospholipid acyltransferases (LPLATs) also displayed significant variations, with higher levels during the subjective day and at dusk. We evaluated the temporal regulation of expression and activity of phosphatidylcholine (PC) synthesizing enzymes. PC is mainly synthesized through the Kennedy pathway with Choline Kinase (ChoK) as a key regulatory enzyme or through the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. The PC/PE content ratio exhibited a daily variation with lowest levels at night, while ChoKα and PEMT mRNA expression displayed maximal levels at nocturnal phases. Our results demonstrate that mouse liver GPL metabolism oscillates rhythmically with a precise temporal control in the expression and/or activity of specific enzymes.

  13. Dietary modulators of peroxisome proliferator-activated receptors: implications for the prevention and treatment of metabolic syndrome.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2008-01-01

    In its simplest form, obesity is a state characterized by nutrient overabundance leading to hypertrophy of storage cells in white adipose tissue and the deposition of excess lipids into key metabolic regions, such as skeletal muscle and liver. Ever so steadily, this condition begins to manifest itself as progressive insulin resistance and thus ensues a myriad of other chronic diseases, such as type 2 diabetes, cardiovascular disease, and hypertension, which all fall into the realm of the metabolic syndrome. To offset imbalances in nutrient availability, however, it appears that nature has developed the peroxisome proliferator-activated receptors (PPARs), a family of endogenous lipid sensors that adeptly modulate our rates of macronutrient oxidation and regulate the systemic inflammatory response, which itself is tightly linked to the development of obesity-induced chronic disease. By understanding how PPARs alpha, delta and gamma act jointly to maintain metabolic homeostasis and reduce the chronic inflammation associated with obesity, we may one day discover that the machinery needed to defeat obesity and control the devastating consequences of the metabolic syndrome have been with us the entire time.

  14. Hydrodynamics-based functional forms of activity metabolism: a case for the power-law polynomial function in animal swimming energetics.

    Science.gov (United States)

    Papadopoulos, Anthony

    2009-01-01

    The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.

  15. Hydrodynamics-based functional forms of activity metabolism: a case for the power-law polynomial function in animal swimming energetics.

    Directory of Open Access Journals (Sweden)

    Anthony Papadopoulos

    Full Text Available The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.

  16. Is the alkaline tide a signal to activate metabolic or ionoregulatory enzymes in the dogfish shark (Squalus acanthias)?

    Science.gov (United States)

    Wood, Chris M; Kajimura, Makiko; Mommsen, Thomas P; Walsh, Patrick J

    2008-01-01

    Experimental metabolic alkalosis is known to stimulate whole-animal urea production and active ion secretion by the rectal gland in the dogfish shark. Furthermore, recent evidence indicates that a marked alkaline tide (systemic metabolic alkalosis) follows feeding in this species and that the activities of the enzymes of the ornithine-urea cycle (OUC) for urea synthesis in skeletal muscle and liver and of energy metabolism and ion transport in the rectal gland are increased at this time. We therefore evaluated whether alkalosis and/or NaCl/volume loading (which also occurs with feeding) could serve as a signal for activation of these enzymes independent of nutrient loading. Fasted dogfish were infused for 20 h with either 500 mmol L(-1) NaHCO3 (alkalosis + volume expansion) or 500 mmol L(-1) NaCl (volume expansion alone), both isosmotic to dogfish plasma, at a rate of 3 mL kg(-1) h(-1). NaHCO3 infusion progressively raised arterial pH to 8.28 (control = 7.85) and plasma [HCO3-] to 20.8 mmol L(-1) (control = 4.5 mmol L(-1)) at 20 h, with unchanged arterial P(CO2), whereas NaCl/volume loading had no effect on blood acid-base status. Rectal gland Na+,K+-ATPase activity was increased 50% by NaCl loading and more than 100% by NaHCO3 loading, indicating stimulatory effects of both volume expansion and alkalosis. Rectal gland lactate dehydrogenase activity was elevated 25% by both treatments, indicating volume expansion effects only, whereas neither treatment increased the activities of the aerobic enzymes citrate synthase, NADP-isocitrate dehydrogenase, or the ketone body-utilizing enzyme beta-hydroxybutyrate dehydrogenase in the rectal gland or liver. The activity of ornithine-citrulline transcarbamoylase in skeletal muscle was doubled by NaHCO3 infusion, but neither treatment altered the activities of other OUC-related enzymes (glutamine synthetase, carbamoylphosphate synthetase III). We conclude that both the alkaline tide and salt loading/volume expansion act as

  17. Metabolism of chlorobiphenyls by a variant biphenyl dioxygenase exhibiting enhanced activity toward dibenzofuran

    International Nuclear Information System (INIS)

    Viger, Jean-François; Mohammadi, Mahmood; Barriault, Diane; Sylvestre, Michel

    2012-01-01

    Highlights: ► Burkholderia xenovorans LB400 biphenyl dioxygenase (BphAE LB400 ) metabolizes PCBs. ► Asn338Gln/Leu409Phe double mutation speeds up electron transfer of enzyme reaction. ► We tested how the mutations affect the PCB-degrading abilities of BphAE LB400 variants. ► The same mutations also broaden the PCB substrate range of BphAE LB400 variants. -- Abstract: The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE LB400 ) catalyzes the dihydroxylation of biphenyl and of several polychlorinated biphenyls (PCBs) but it poorly oxidizes dibenzofuran. In this work we showed that BphAE RR41 , a variant which was previously found to metabolize dibenzofuran more efficiently than its parent BphAE LB400 , metabolized a broader range of PCBs than BphAE LB400 . Hence, BphAE RR41 was able to metabolize 2,6,2′,6′-, 3,4,3′,5′- and 2,4,3′,4′-tetrachlorobiphenyl that BphAE LB400 is unable to metabolize. BphAE RR41 was obtained by changing Thr335Phe336Asn338Ile341Leu409 of BphAE LB400 to Ala335Met336Gln338Val341Phe409. Site-directed mutagenesis was used to create combinations of each substitution, in order to assess their individual contributions. Data show that the same Asn338Glu/Leu409Phe substitution that enhanced the ability to metabolize dibenzofuran resulted in a broadening of the PCB substrates range of the enzyme. The role of these substitutions on regiospecificities toward selected PCBs is also discussed.

  18. Metabolism of chlorobiphenyls by a variant biphenyl dioxygenase exhibiting enhanced activity toward dibenzofuran

    Energy Technology Data Exchange (ETDEWEB)

    Viger, Jean-Francois; Mohammadi, Mahmood; Barriault, Diane [Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Quebec, Canada H4K 1C2 (Canada); Sylvestre, Michel, E-mail: Michel.Sylvestre@iaf.inrs.ca [Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Quebec, Canada H4K 1C2 (Canada)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Burkholderia xenovorans LB400 biphenyl dioxygenase (BphAE{sub LB400}) metabolizes PCBs. Black-Right-Pointing-Pointer Asn338Gln/Leu409Phe double mutation speeds up electron transfer of enzyme reaction. Black-Right-Pointing-Pointer We tested how the mutations affect the PCB-degrading abilities of BphAE{sub LB400} variants. Black-Right-Pointing-Pointer The same mutations also broaden the PCB substrate range of BphAE{sub LB400} variants. -- Abstract: The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE{sub LB400}) catalyzes the dihydroxylation of biphenyl and of several polychlorinated biphenyls (PCBs) but it poorly oxidizes dibenzofuran. In this work we showed that BphAE{sub RR41}, a variant which was previously found to metabolize dibenzofuran more efficiently than its parent BphAE{sub LB400}, metabolized a broader range of PCBs than BphAE{sub LB400}. Hence, BphAE{sub RR41} was able to metabolize 2,6,2 Prime ,6 Prime -, 3,4,3 Prime ,5 Prime - and 2,4,3 Prime ,4 Prime -tetrachlorobiphenyl that BphAE{sub LB400} is unable to metabolize. BphAE{sub RR41} was obtained by changing Thr335Phe336Asn338Ile341Leu409 of BphAE{sub LB400} to Ala335Met336Gln338Val341Phe409. Site-directed mutagenesis was used to create combinations of each substitution, in order to assess their individual contributions. Data show that the same Asn338Glu/Leu409Phe substitution that enhanced the ability to metabolize dibenzofuran resulted in a broadening of the PCB substrates range of the enzyme. The role of these substitutions on regiospecificities toward selected PCBs is also discussed.

  19. Basal levels of metabolic activity are elevated in Genetic Absence Epilepsy Rats from Strasbourg (GAERS): measurement of regional activity of cytochrome oxidase and lactate dehydrogenase by histochemistry.

    Science.gov (United States)

    Dufour, Franck; Koning, Estelle; Nehlig, Astrid

    2003-08-01

    The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are considered an isomorphic, predictive, and homologous model of human generalized absence epilepsy. It is characterized by the expression of spike-and-wave discharges in the thalamus and cortex. In this strain, basal regional rates of cerebral glucose utilization measured by the quantitative autoradiographic [(14)C]2-deoxyglucose technique display a widespread consistent increase compared to a selected strain of genetically nonepileptic rats (NE). In order to verify whether these high rates of glucose metabolism are paralleled by elevated activities of the enzymes of the glycolytic and tricarboxylic acid cycle pathways, we measured by histochemistry the regional activity of the two key enzymes of glucose metabolism, lactate dehydrogenase (LDH) for the anaerobic pathway and cytochrome oxidase (CO) for the aerobic pathway coupled to oxidative phosphorylation. CO and LDH activities were significantly higher in GAERS than in NE rats in 24 and 28 of the 30 brain regions studied, respectively. The differences in CO and LDH activity between both strains were widespread, affected all brain systems studied, and ranged from 12 to 63%. The data of the present study confirm the generalized increase in cerebral glucose metabolism in GAERS, occurring both at the glycolytic and at the oxidative step. However, they still do not allow us to understand why the ubiquitous mutation(s) generates spike-and-wave discharges only in the thalamocortical circuit.

  20. Tight coupling of astrocyte energy metabolism to synaptic activity revealed by genetically encoded FRET nanosensors in hippocampal tissue.

    Science.gov (United States)

    Ruminot, Iván; Schmälzle, Jana; Leyton, Belén; Barros, L Felipe; Deitmer, Joachim W

    2017-01-01

    The potassium ion, K + , a neuronal signal that is released during excitatory synaptic activity, produces acute activation of glucose consumption in cultured astrocytes, a phenomenon mediated by the sodium bicarbonate cotransporter NBCe1 ( SLC4A4). We have explored here the relevance of this mechanism in brain tissue by imaging the effect of neuronal activity on pH, glucose, pyruvate and lactate dynamics in hippocampal astrocytes using BCECF and FRET nanosensors. Electrical stimulation of Schaffer collaterals produced fast activation of glucose consumption in astrocytes with a parallel increase in intracellular pyruvate and biphasic changes in lactate . These responses were blocked by TTX and were absent in tissue slices prepared from NBCe1-KO mice. Direct depolarization of astrocytes with elevated extracellular K + or Ba 2+ mimicked the metabolic effects of electrical stimulation. We conclude that the glycolytic pathway of astrocytes in situ is acutely sensitive to neuronal activity, and that extracellular K + and the NBCe1 cotransporter are involved in metabolic crosstalk between neurons and astrocytes. Glycolytic activation of astrocytes in response to neuronal K + helps to provide an adequate supply of lactate, a metabolite that is released by astrocytes and which acts as neuronal fuel and an intercellular signal.

  1. Iminosugar inhibitors of carbohydrate-active enzymes that underpin cereal grain germination and endosperm metabolism

    DEFF Research Database (Denmark)

    Andriotis, Vasilios M. E.; Rejzek, Martin; Rugen, Michael D.

    2016-01-01

    limited knowledge about the nature and control of starch degradation in plants. Increased societal and commercial demand for enhanced yield and quality in starch crops requires a better understanding of starch metabolism as a whole. Here we review recent advances in understanding the roles of carbohydrate...... the properties and uses of cereal grains, it is possible that starch degradation may be amenable to manipulation through genetic or chemical intervention at the level of cell wall metabolism, rather than simply in the starch degradation pathway per se....

  2. Acute and short-term effects of caloric restriction on metabolic profile and brain activation in obese, postmenopausal women.

    Science.gov (United States)

    Jakobsdottir, S; van Nieuwpoort, I C; van Bunderen, C C; de Ruiter, M B; Twisk, J W R; Deijen, J B; Veltman, D J; Drent, M L

    2016-11-01

    Early anthropometric and metabolic changes during a caloric-restricted diet in obese postmenopausal women and correlations between these factors with activity in brain areas involved in processing of visual food related stimuli were investigated. An 8-week prospective intervention study of 18 healthy postmenopausal women, with a body mass index of 30-35 kg m -2 . The first 2 weeks subjects were on an isocaloric diet and 4 weeks on a 1000 kcal restricted diet followed by 2 weeks on an isocaloric diet. Anthropometric and laboratory analyses were performed weekly during the isocaloric diet and three times a week during the caloric-restricted diet. Functional magnetic resonance imaging scans were obtained before and after the caloric restriction in four separate sessions (fasting or sated). Generalized Estimating Equations analysis was used for data analysis. A mean weight loss of 4.2±0.5 kg (4.8%) and a 4.2±0.4 cm decline in waist circumference were achieved. In the first week of caloric restriction, triglyceride, leptin, resistin and adiponectin levels as well as systolic blood pressure decreased and insulin-like growth factor-binding protein 1 levels increased. During and after weight loss, a significant increase in ghrelin levels was observed. Before weight loss, increased activation of the right amygdala was seen in response to food stimuli, and free fatty acids and glucose correlated with activity in various areas involved in food reward processing. After weight loss, fasting ghrelin and sated leptin levels correlated with activity in these areas. Already in the first week of caloric restriction in obese postmenopausal women, various favourable metabolic changes occur before clinically relevant weight loss is achieved. Activity in the amygdala region and correlations of metabolic factors with activity in brain areas involved in food reward processing differ substantially before and after weight loss.

  3. Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK.

    Science.gov (United States)

    Murase, Takatoshi; Misawa, Koichi; Haramizu, Satoshi; Minegishi, Yoshihiko; Hase, Tadashi

    2010-08-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that is implicated in the control of energy metabolism and is considered to be a molecular target for the suppression of obesity and the treatment of metabolic syndrome. Here, we identified and characterized nootkatone, a constituent of grapefruit, as a naturally occurring AMPK activator. Nootkatone induced an increase in AMPKalpha1 and -alpha2 activity along with an increase in the AMP/ATP ratio and an increase the phosphorylation of AMPKalpha and the downstream target acetyl-CoA carboxylase (ACC), in C(2)C(12) cells. Nootkatone-induced activation of AMPK was possibly mediated both by LKB1 and Ca(2+)/calmodulin-dependent protein kinase kinase. Nootkatone also upregulated PPARgamma coactivator-1alpha in C(2)C(12) cells and C57BL/6J mouse muscle. In addition, administration of nootkatone (200 mg/kg body wt) significantly enhanced AMPK activity, accompanied by LKB1, AMPK, and ACC phosphorylation in the liver and muscle of mice. Whole body energy expenditure evaluated by indirect calorimetry was also increased by nootkatone administration. Long-term intake of diets containing 0.1% to 0.3% (wt/wt) nootkatone significantly reduced high-fat and high-sucrose diet-induced body weight gain, abdominal fat accumulation, and the development of hyperglycemia, hyperinsulinemia, and hyperleptinemia in C57BL/6J mice. Furthermore, endurance capacity, evaluated as swimming time to exhaustion in BALB/c mice, was 21% longer in mice fed 0.2% nootkatone than in control mice. These findings indicate that long-term intake of nootkatone is beneficial toward preventing obesity and improving physical performance and that these effects are due, at least in part, to enhanced energy metabolism through AMPK activation in skeletal muscle and liver.

  4. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: rodriguj@unican.es [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  5. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    International Nuclear Information System (INIS)

    Bolado-Carrancio, A.; Riancho, J.A.; Sainz, J.; Rodríguez-Rey, J.C.

    2014-01-01

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity

  6. [The study on metabolic difference of human body affected by active stress and passive stress under special events].

    Science.gov (United States)

    Guo, Guang-hong; Gu, Feng; Dong, Zhen-nan; Yuan, Xin-hong; Wang, Ling; Tian, Ya-ping

    2010-05-01

    To study the metabolic difference of body influenced by active stress and passive stress under special events. To detect serum multiple biochemistry index of 57 earthquake rescue medical team and 13 victims of a natural calamity in Wenchuan earthquake by using Hitachi 7600 automatic analyzer. Stress affected biochemistry index deeply. To compared with rescue medical team, the serum ADA, ALP and TG of victims increased obviously and TP, ALB, MAO, Cr, UA, K, Na, Cl, Ca, ApoA1 and HDL decreased obviously. Many biochemistry index have been changed under stress and it relate with stress extent. The human body function status was better in active stress than in passive stress.

  7. Antisense Suppression of 2-Cysteine Peroxiredoxin in Arabidopsis Specifically Enhances the Activities and Expression of Enzymes Associated with Ascorbate Metabolism But Not Glutathione Metabolism1

    Science.gov (United States)

    Baier, Margarete; Noctor, Graham; Foyer, Christine H.; Dietz, Karl-Josef

    2000-01-01

    The aim of this study was to characterize the effect of decreased 2-cysteine peroxiredoxin (2-CP) on the leaf anti-oxidative system in Arabidopsis. At three stages of leaf development, two lines of transgenic Arabidopsis mutants with decreased contents of chloroplast 2-CP were compared with wild type and a control line transformed with an empty vector. Glutathione contents and redox state were similar in all plants, and no changes in transcript levels for enzymes involved in glutathione metabolism were observed. Transcript levels for chloroplastic glutathione peroxidase were much lower than those for 2-CP, and both cytosolic and chloroplastic glutathione peroxidase were not increased in the mutants. In contrast, the foliar ascorbate pool was more oxidized in the mutants, although the difference decreased with plant age. The activities of thylakoid and stromal ascorbate peroxidase and particularly monodehydroascorbate reductase were increased as were transcripts for these enzymes. No change in dehydroascorbate reductase activity was observed, and effects on transcript abundance for glutathione reductase, catalase, and superoxide dismutase were slight or absent. The results demonstrate that 2-CP forms an integral part of the anti-oxidant network of chloroplasts and is functionally interconnected with other defense systems. Suppression of 2-CP leads to increased expression of other anti-oxidative genes possibly mediated by increased oxidation state of the leaf ascorbate pool. PMID:11027730

  8. Effects of a Physical Activity Program on Markers of Endothelial Dysfunction, Oxidative Stress, and Metabolic Status in Adolescents with Metabolic Syndrome

    Science.gov (United States)

    Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham

    2012-01-01

    The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450

  9. Effects of whole grain, fish and bilberries on serum metabolic profile and lipid transfer protein activities: a randomized trial (Sysdimet.

    Directory of Open Access Journals (Sweden)

    Maria Lankinen

    Full Text Available We studied the combined effects of wholegrain, fish and bilberries on serum metabolic profile and lipid transfer protein activities in subjects with the metabolic syndrome.Altogether 131 subjects (40-70 y, BMI 26-39 kg/m(2 with impaired glucose metabolism and features of the metabolic syndrome were randomized into three groups with 12-week periods according to a parallel study design. They consumed either: a wholegrain and low postprandial insulin response grain products, fatty fish 3 times a week, and bilberries 3 portions per day (HealthyDiet, b wholegrain and low postprandial insulin response grain products (WGED, or c refined wheat breads as cereal products (Control. Altogether 106 subjects completed the study. Serum metabolic profile was studied using an NMR-based platform providing information on lipoprotein subclasses and lipids as well as low-molecular-weight metabolites.There were no significant differences in clinical characteristics between the groups at baseline or at the end of the intervention. Mixed model analyses revealed significant changes in lipid metabolites in the HealthyDiet group during the intervention compared to the Control group. All changes reflected increased polyunsaturation in plasma fatty acids, especially in n-3 PUFAs, while n-6 and n-7 fatty acids decreased. According to tertiles of changes in fish intake, a greater increase of fish intake was associated with increased concentration of large HDL particles, larger average diameter of HDL particles, and increased concentrations of large HDL lipid components, even though total levels of HDL cholesterol remained stable.The results suggest that consumption of diet rich in whole grain, bilberries and especially fatty fish causes changes in HDL particles shifting their subclass distribution toward larger particles. These changes may be related to known protective functions of HDL such as reverse cholesterol transport and could partly explain the known protective

  10. Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    International Nuclear Information System (INIS)

    Nault, Rance; Abdul-Fattah, Hiba; Mironov, Gleb G.; Berezovski, Maxim V.; Moon, Thomas W.

    2013-01-01

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist β-naphthoflavone (βNF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na + /K + -ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 μM βNF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na + /K + -ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by βNF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to βNF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism

  11. Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nault, Rance, E-mail: naultran@msu.edu [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Abdul-Fattah, Hiba [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Mironov, Gleb G.; Berezovski, Maxim V. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Moon, Thomas W. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada)

    2013-08-15

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist β-naphthoflavone (βNF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 μM βNF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by βNF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to βNF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.

  12. Acute Activation of Metabolic Syndrome Components in Pediatric Acute Lymphoblastic Leukemia Patients Treated with Dexamethasone

    NARCIS (Netherlands)

    Warris, Lidewij T.; van den Akker, Erica L. T.; Bierings, Marc B.; van den Bos, Cor; Zwaan, Christian M.; Sassen, Sebastiaan D. T.; Tissing, Wim J. E.; Veening, Margreet A.; Pieters, Rob; van den Heuvel-Eibrink, Marry M.

    2016-01-01

    Although dexamethasone is highly effective in the treatment of pediatric acute lymphoblastic leukemia (ALL), it can cause serious metabolic side effects. Because studies regarding the effects of dexamethasone are limited by their small scale, we prospectively studied the direct effects of treating

  13. Metabolic rate and clothing insulation data of children and adolescents during various school activities

    NARCIS (Netherlands)

    Havenith, G.

    2007-01-01

    Data on metabolic rates (n = 0;81) and clothing insulation (n = 96) of school children and adolescents (A, primary school: age 9-10; B, primary school: age 10-11 year; C, junior vocational (technical) education: age 13-16 (lower level); D, same as C but at advanced level; and E, senior vocational

  14. Metabolic Disruption Early in Life is Associated With Latent Carcinogenic Activity of Dichloroacetic Acid in Mice