WorldWideScience

Sample records for meso-structure surface details

  1. Unifying Inference of Meso-Scale Structures in Networks.

    Science.gov (United States)

    Tunç, Birkan; Verma, Ragini

    2015-01-01

    Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities) of the brain, as well as its auxiliary characteristics (core-periphery).

  2. Unifying Inference of Meso-Scale Structures in Networks.

    Directory of Open Access Journals (Sweden)

    Birkan Tunç

    Full Text Available Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities of the brain, as well as its auxiliary characteristics (core-periphery.

  3. New strategy for surface functionalization of periodic mesoporous silica based on meso-HSiO1.5.

    Science.gov (United States)

    Xie, Zhuoying; Bai, Ling; Huang, Suwen; Zhu, Cun; Zhao, Yuanjin; Gu, Zhong-Ze

    2014-01-29

    Organic functionalization of periodic mesoporous silicas (PMSs) offers a way to improve their excellent properties and wide applications owing to their structural superiority. In this study, a new strategy for organic functionalization of PMSs is demonstrated by hydrosilylation of the recently discovered "impossible" periodic mesoporous hydridosilica, meso-HSiO1.5. This method overcomes the disadvantages of present pathways for organic functionalization of PMSs with organosilica. Moreover, compared to the traditional functionalization on the surface of porous silicon by hydrosilylation, the template-synthesized meso-HSiO1.5 is more flexible to access functional-groups-loaded PMSs with adjustable microstructures. The new method and materials will have wider applications based on both the structure and surface superiorities.

  4. Meso-decorated self-healing gels: network structure and properties

    Science.gov (United States)

    Gong, Jin; Sawamura, Kensuke; Igarashi, Susumu; Furukawa, Hidemitsu

    2013-04-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  5. Structural and Molecular Characterization of meso-Substituted Zinc Porphyrins: A DFT Supported Study

    Directory of Open Access Journals (Sweden)

    Giuseppe Mele

    2011-12-01

    Full Text Available Structural parameters of a range of over 100 meso-substituted zinc porphyrins were reviewed and compared to show how far the nature of the functional group may affect the interatomic distances and bond angles within the porphyrin core. It was proved that even despite evident deformations of the molecular structure, involving twisting of the porphyrin's central plane, the coupled π-bonding system remains flexible and stable. DFT calculations were applied to a number of selected porphyrins representative for the reviewed compounds to emphasize the relevance of theoretical methods in structural investigations of complex macrocyclic molecular systems. Experimental and DFT-simulated IR spectral data were reported and analyzed in context of the individual molecular features introduced by the meso substituents into the porphyrin moiety base. Raw experimental spectral data, including 1H- and 13C-NMR, UV-Vis, FTIR, XRD, and other relevant physicochemical details have been provided for a specially chosen reference zinc porphyrin functionalized by tert-butylphenyl groups.

  6. Methanol-Sensing Property Improvement of Meso structured Zinc Oxide Prepared by the Nano casting Strategy

    International Nuclear Information System (INIS)

    Gao, Q.; Zheng, W.T.; Wei, C.D.; Lin, H.M.

    2013-01-01

    The specific structure and morphology often play a critical role in governing the excellent intrinsic properties of the compound semiconductor. Herein, meso structured ZnO with excellent methanol-sensing properties was prepared by a structure replication procedure through the incipient wetness technique. The investigation on the crystal structure and morphology of the resultant material shows that the product consists of hexagonally arranged meso pores and crystalline walls, and its structure is an ideal replication of CMK-3 template. Consequently, meso structured ZnO was fabricated as a gas sensor for methanol. The excellent methanol-sensing performance was achieved at a relatively low operating temperature of 120°C. In comparison with the non porous ZnO prepared through conventional coprecipitation approach, meso structured ZnO material shows the higher sensitivity and stability. Furthermore, it shows the discrimination between methanol and ethanol sensitivity, which makes it a good candidate in fabricating selective methanol sensor in practice

  7. Meso-optics for science and industry

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1996-01-01

    The paper represents a concise overview of the meso-optical devices which provide very high selectivity and productivity. The source of these advantages is governed by the absence of the traditional 3D scanning operations. The information compression is accomplished on-line via conical wavefronts without any computer data processing. The factor of merits is of the order of 100:1. Meso-optical Fourier transition microscope for nuclear emulsion sees only straight line particle tracks and does not require depth scanning. Confocal meso-optical microscope accomplishes selective observation of the vertical particle tracks. In the meso-optical profilometer we use the phenomenon of the longitudinal interference of the conical waves. Meso-optical undulator as inserted device in the photon factories transforms conical waves into spherical ones and then into a point. Self-focusing undulator focuses side-going synchrotron radiation. Meso-optical conicometer accomplishes precise control of the conical surfaces both internal and external. Meso-optical interferometer with multipass transmission of the conical waves is used for on-line observation of the deviation of the surface of the industrial parts from the conical etalon without any scanning operations. 23 refs., 23 figs

  8. The Meso-level Structure of F/OSS Collaboration Network

    DEFF Research Database (Denmark)

    Conald, Guido; Rullani, Francesco

    2010-01-01

    Social networks in Free/Open Source Software (F/OSS) have been usually analyzed at the level of the single project e.g., [6], or at the level of a whole ecology of projects, e.g., [33]. In this paper, we also investigate the social network generated by developers who collaborate to one or multiple...... F/OSS projects, but we focus on the less-studied meso-level structure emerging when applying to this network a community-detection technique. The network of ‘communities’ emerging from this analysis links sub-groups of densely connected developers, sub-groups that are smaller than the components...... of the network but larger than the teams working on single projects. Our results reveal the complexity of this meso-level structure, where several dense sub-groups of developers are connected by sparse collaboration among different sub-groups. We discuss the theoretical implications of our findings...

  9. Meso-scale wrinkled coatings to improve heat transfers of surfaces facing ambient air

    International Nuclear Information System (INIS)

    Kakiuchida, Hiroshi; Tajiri, Koji; Tazawa, Masato; Yoshimura, Kazuki; Shimono, Kazuaki; Nakagawa, Yukio; Takahashi, Kazuhiro; Fujita, Keisuke; Myoko, Masumi

    2015-01-01

    Meso-scale (micrometer-to submillimeter-scale) wrinkled surfaces coated on steel sheets used in outdoor storage and transport facilities for industrial low-temperature liquids were discovered to efficiently increase convective heat transfer between ambient air and the surface. The radiative and convective heat transfer coefficients of various wrinkled surfaces, which were formed by coating steel sheets with several types of shrinkable paints, were examined. The convective heat transfer coefficient of a surface colder than ambient air monotonically changed with average height difference and interval distance of the wrinkle undulation, where the proportions were 0.0254 and 0.0054 W/m 2 /K/μm, respectively. With this wrinkled coating, users can lower the possibility of condensation and reduce rust and maintenance cost of facilities for industrial low-temperature liquids. From the point of view of manufacturers, this coating method can be easily adapted to conventional manufacturing processes. - Highlights: • Various wrinkled surfaces were fabricated by a practical process. • Topographical effect on convection was parameterized separately from radiation. • Meso-scale wrinkled coatings increased convective heat transfer with ambient air. • Maintenance cost of outdoor steel sheets due to condensation can be reduced

  10. Meso-Decorated Switching-Knot Gels

    Science.gov (United States)

    Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  11. A Hierarchically Micro-Meso-Macroporous Zeolite CaA for Methanol Conversion to Dimethyl Ether

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2016-11-01

    Full Text Available A hierarchical zeolite CaA with microporous, mesoporous and macroporous structure was hydrothermally synthesized by a ”Bond-Blocking” method using organo-functionalized mesoporous silica (MS as a silica source. The characterization by XRD, SEM/TEM and N2 adsorption/desorption techniques showed that the prepared material had well-crystalline zeolite Linde Type A (LTA topological structure, microspherical particle morphologies, and hierarchically intracrystalline micro-meso-macropores structure. With the Bond-Blocking principle, the external surface area and macro-mesoporosity of the hierarchical zeolite CaA can be adjusted by varying the organo-functionalized degree of the mesoporous silica surface. Similarly, the distribution of the micro-meso-macroporous structure in the zeolite CaA can be controlled purposely. Compared with the conventional microporous zeolite CaA, the hierarchical zeolite CaA as a catalyst in the conversion of methanol to dimethyl ether (DME, exhibited complete DME selectivity and stable catalytic activity with high methanol conversion. The catalytic performances of the hierarchical zeolite CaA results clearly from the micro-meso-macroporous structure, improving diffusion properties, favoring the access to the active surface and avoiding secondary reactions (no hydrocarbon products were detected after 3 h of reaction.

  12. Strengthening of the RAFMS RUSFER-EK181 through nano structuring surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Panin, A.; Melnikova, E.A. [Tomsk State Univ., lnstitute of Strength Physics and Materials Science, SB, RAS (Russian Federation); Chernov, V.M. [Bochvar Institute of Inorganic Materials, Moscow (Russian Federation); Leontieva-Smirnova, M.V. [A.A. Bochvar Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2007-07-01

    Full text of publication follows: Surface nano-structuring increases yield point and strength of the reduced activation ferritic-martensitic steel (RAFMS ) RUSREF - EK181. Ultrasonic impact treatment was used to produce a nano-structure within the surface layers of the specimens. Using scanning tunnelling microscope reveals a new mechanism of mesoscale-level plastic deformation of nano-structured surface layers of the RAFMS RUSREF - EK181 as doubled spirals of localised-plastic deformation meso-bands. A linear dependence of their sizes on thickness of strengthened layer was obtained. The effect of localised deformation meso-bands on macro-mechanical properties of a material was demonstrated. A certain combination of thermal and mechanical treatment as well as optimum proportion of nano-structured surface layer thickness to thickness of a whole specimen are necessary to achieve maximum strength values. Tests performed at high temperatures in the range from 20 to 700 deg. C shows efficiency of the surface hardening of the RAFMS RUSREF - EK181. The effect of nano-structured surface layer on the character of plastic deformation and mechanical properties of the RAFMS RUSREF - EK181 was considered in the framework of a multilevel model in which loss of shear stability and generation of structural defects occur self-consistently at various scale levels such as nano-, micro-, meso-, and macro-Chessboard like distribution of stresses and misfit deformations was theoretical and experimentally shown to appear at the 'nano-structured surface layer - bulk of material' interface. Zones of compressive normal stresses alternates with zones of tensile normal stresses as on a chessboard. Plastic shear can generate only within local zones of tensile normal stresses. Critical meso-volume of non-equilibrium states required for local structure-phase transformation can be formed within these zones. Whereas within the zones of compressive normal stresses acting from both

  13. Density functional theory studies on the structures and electronic communication of meso-ferrocenylporphyrins: long range orbital coupling via porphyrin core.

    Science.gov (United States)

    Zhang, Lijuan; Qi, Dongdong; Zhang, Yuexing; Bian, Yongzhong; Jiang, Jianzhuang

    2011-02-01

    The molecular and electronic structures together with the electronic absorption spectra of a series of metal free meso-ferrocenylporphyrins, namely 5-ferrocenylporphyrin (1), 5,10-diferrocenylporphyrin (2), 5,15-diferrocenylporphyrin (3), 5,10,15-triferrocenylporphyrin (4), and 5,10,15,20-tetraferrocenylporphyrin (5) have been studied with the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. For the purpose of comparative studies, metal free porphyrin without any ferrocenyl group (0) and isolated ferrocene (6) were also calculated. The effects of the number and position of meso-attached ferrocenyl substituents on their molecular and electronic structures, atomic charges, molecular orbitals, and electronic absorption spectra of 1-5 were systematically investigated. The orbital coupling is investigated in detail, explaining well the long range coupling of ferrocenyl substituents connected via porphyrin core and the systematic change in the electronic absorption spectra of porphyrin compounds. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Preparation of gluten-free bread using a meso-structured whey protein particle system

    NARCIS (Netherlands)

    Riemsdijk, van L.E.; Goot, van der A.J.; Hamer, R.J.; Boom, R.M.

    2011-01-01

    This article presents a novel method for making gluten-free bread using mesoscopically structured whey protein. The use of the meso-structured protein is based on the hypothesis that the gluten structure present in a developed wheat dough features a particle structure on a mesoscopic length scale

  15. Image-based correlation between the meso-scale structure and deformation of closed-cell foam

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yongle, E-mail: yongle.sun@manchester.ac.uk [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); Zhang, Xun [Henry Moseley X-ray Imaging Facility, School of Materials, The University of Manchester, Upper Brook Street, Manchester M13 9PL (United Kingdom); Shao, Zhushan [School of Civil Engineering, Xi' an University of Architecture & Technology, Xi' an 710055 (China); Li, Q.M. [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2017-03-14

    In the correlation between structural parameters and compressive behaviour of cellular materials, previous studies have mostly focused on averaged structural parameters and bulk material properties for different samples. This study focuses on the meso-scale correlation between structure and deformation in a 2D foam sample generated from a computed tomography slice of Alporas™ foam, for which quasi-static compression was simulated using 2D image-based finite element modelling. First, a comprehensive meso-scale structural characterisation of the 2D foam was carried out to determine the size, aspect ratio, orientation and anisotropy of individual cells, as well as the length, straightness, inclination and thickness of individual cell walls. Measurements were then conducted to obtain the axial distributions of local structural parameters averaged laterally to compression axis. Second, the meso-scale deformation was characterised by cell-wall strain, cell area ratio, digital image correlation strain and local compressive engineering strain. According to the results, the through-width sub-regions over an axial length between the average (lower bound) and the maximum (upper bound) of cell size should be used to characterise the meso-scale heterogeneity of the cell structure and deformation. It was found that the first crush band forms in a sub-region where the ratio of cell-wall thickness to cell-wall length is a minimum, in which the collapse deformation is dominated by the plastic bending and buckling of cell walls. Other morphological parameters have secondary effect on the initiation of crush band in the 2D foam. The finding of this study suggests that the measurement of local structural properties is crucial for the identification of the “weakest” region which determines the initiation of collapse and hence the corresponding collapse load of a heterogeneous cellular material.

  16. Image-based correlation between the meso-scale structure and deformation of closed-cell foam

    International Nuclear Information System (INIS)

    Sun, Yongle; Zhang, Xun; Shao, Zhushan; Li, Q.M.

    2017-01-01

    In the correlation between structural parameters and compressive behaviour of cellular materials, previous studies have mostly focused on averaged structural parameters and bulk material properties for different samples. This study focuses on the meso-scale correlation between structure and deformation in a 2D foam sample generated from a computed tomography slice of Alporas™ foam, for which quasi-static compression was simulated using 2D image-based finite element modelling. First, a comprehensive meso-scale structural characterisation of the 2D foam was carried out to determine the size, aspect ratio, orientation and anisotropy of individual cells, as well as the length, straightness, inclination and thickness of individual cell walls. Measurements were then conducted to obtain the axial distributions of local structural parameters averaged laterally to compression axis. Second, the meso-scale deformation was characterised by cell-wall strain, cell area ratio, digital image correlation strain and local compressive engineering strain. According to the results, the through-width sub-regions over an axial length between the average (lower bound) and the maximum (upper bound) of cell size should be used to characterise the meso-scale heterogeneity of the cell structure and deformation. It was found that the first crush band forms in a sub-region where the ratio of cell-wall thickness to cell-wall length is a minimum, in which the collapse deformation is dominated by the plastic bending and buckling of cell walls. Other morphological parameters have secondary effect on the initiation of crush band in the 2D foam. The finding of this study suggests that the measurement of local structural properties is crucial for the identification of the “weakest” region which determines the initiation of collapse and hence the corresponding collapse load of a heterogeneous cellular material.

  17. Detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural components

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Laboratoire de Mecanique des Contacts et des Structures (LaMCoS), INSA Lyon, 20 Avenue des Sciences, F-69621 Villeurbanne Cedex (France); Li, H. [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Li, M.Q., E-mail: zc9997242256@126.com [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China)

    2016-05-15

    Graphical abstract: This study focused on the detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural component. A special surface with regular patterns was processed to be joined so as to observe the extent of surface asperity deformation under different applied bonding pressures. Fracture surface characteristic combined with surface roughness profiles distinctly revealed the enhanced surface asperity deformation as the applied pressure increases. The influence of surface asperity deformation mechanism on joint formation was analyzed: (a) surface asperity deformation not only directly expanded the interfacial contact areas, but also released deformation heat and caused defects, indirectly accelerating atomic diffusion, then benefits to void shrinkage; (b) surface asperity deformation readily introduced stored energy difference between two opposite sides of interface grain boundary, resulting in strain induced interface grain boundary migration. In addition, the influence of void on interface grain boundary migration was analyzed in detail. - Highlights: • A high quality hollow structural component has been fabricated by diffusion bonding. • Surface asperity deformation not only expands the interfacial contact areas, but also causes deformation heat and defects to improve the atomic diffusion. • Surface asperity deformation introduces the stored energy difference between the two opposite sides of interface grain boundary, leading to strain induced interface grain boundary migration. • The void exerts a dragging force on the interface grain boundary to retard or stop interface grain boundary migration. - Abstract: This study focused on the detailed analysis of surface asperity deformation mechanism in similar diffusion bonding as well as on the fabrication of high quality martensitic stainless steel hollow structural components. A special surface with regular patterns was processed to be joined so as to

  18. [Soil meso- and micro-fauna community structures in different urban forest types in Shanghai, China.

    Science.gov (United States)

    Jin, Shi Ke; Wang, Juan Juan; Zhu, Sha; Zhang, Qi; Li, Xiang; Zheng, Wen Jing; You, Wen Hui

    2016-07-01

    Soil meso- and micro-fauna of four urban forest types in Shanghai were investigated in four months which include April 2014, July 2014, October 2014 and January 2015. A total of 2190 soil fauna individuals which belong to 6 phyla, 15 classes and 22 groups were collected. The dominant groups were Nematoda and Arcari, accounting for 56.0% and 21.8% of the total in terms of individual numbers respectively. The common groups were Enchytraeidae, Rotatoria, Collembola and Hymenoptera and they accounted for 18.7% of the total in terms of individual numbers. There was a significant difference (PMetasequoia glyptostroboides forest, the smallest in Cinnamomum camphora forest. The largest groupe number was found in near-nature forest, the smallest was found in M. glyptostroboides forest. There was obvious seasonal dynamics in each urban forest type and green space which had larger density in autumn and larger groupe number in summer and autumn. In soil profiles, the degree of surface accumulation of soil meso- and micro-fauna in C. camphora forest was higher than in other forests and the vertical distribution of soil meso- and micro-fauna in near-nature forest was relatively homogeneous in four layers. Density-group index was ranked as: near-nature forest (6.953)> C. camphora forest (6.351)> Platanus forest (6.313)>M. glyptostroboides forest (5.910). The community diversity of soil fauna in each vegetation type could be displayed preferably by this index. It could be inferred through redundancy analysis (RDA) that the soil bulk density, organic matter and total nitrogen were the main environmental factors influencing soil meso- and micro-fauna community structure in urban forest. The positive correlations occurred between the individual number of Arcari, Enchytraeidae and soil organic matter and total nitrogen, as well as between the individual number of Diptera larvae, Rotatoria and soil water content.

  19. [Community structure of soil meso- and micro-fauna in different habitats of urbanized region].

    Science.gov (United States)

    Qin, Zhong; Zhang, Jia-en; Li, Qing-fang

    2009-12-01

    Investigations were made in May, June, and November 2007 and January 2008 to study the structural characteristics and their seasonal variations of soil meso- and micro-fauna communities in six habitats of three land use types (forest land, constructed grassland and farmland) in Tianhe District of Guangzhou City. The horizontal spatial distribution of soil fauna differed with habitat. During the investigation periods, the Botanical Garden of South China Agricultural University had the highest individual number (1286) of soil mesa- and micro-fauna, while the farmland, especially in the Fenghuang Street area, had the lowest number of individuals and groups. The seasonal variation of the individual number was in order of autumn (1815) > spring (1623) > winter (1365) > summer (1276). Hierarchical clustering and detrended correspondence analysis also showed that the community composition of soil meso- and micro-fauna in different habitats exhibited distinct seasonal variation. In the same seasons, the community structure and composition of soil meso- and micro-fauna in different habitats were correlated to the degrees of human interferences and the properties of soil environment.

  20. Experimental Study on Meso-Scale Milling Process Using Nanofluid Minimum Quantity Lubrication

    International Nuclear Information System (INIS)

    Lee, P. H.; Nam, T. S.; Li, Cheng Jun; Lee, S. W.

    2010-01-01

    This paper present the characteristics of micro- and meso-scale milling processes in which compressed cold air, minimum quantity lubrication (MQL) and MoS 2 nanofluid MQL are used. For process characterization, the micro and meso-scale milling experiments are conducted using desktop meso-scale machine tool system and the surface roughness is measured. The experimental results show that the use of compressed chilly air and nanofluid MQL in the micro- and meso-scale milling processes is effective in improving the surface finish

  1. Probing properties, stability, and performances of hierarchical meso-porous materials with nano-scale interfaces

    International Nuclear Information System (INIS)

    Baldinozzi, Gianguido; Gosset, Dominique; Simeone, David; Muller, Guillaume; Laberty-Robert, Christel; Sanchez, Clement

    2012-01-01

    Nano-crystals growth mechanism embedded into meso-porous thin films has been determined directly from grazing incidence X-ray diffraction data. We have shown, for the first time, that surface capillary forces control the growth mechanism of nano-crystals into these nano-architectures. Moreover, these data allow an estimation of the surface tension of the nano-crystals organized into a 3-D nano-architecture. The analysis of the variations in the strain field of these nano-crystals gives information on the evolution of the microstructure of these meso-porous films, that is, the contacts among nano-crystals. This work represents the first application of grazing incidence X-ray for understanding stability and performances of meso-porous thin films. This approach can be used to understand the structural stability of these nano-architectures at high temperature. (authors)

  2. Meso-structures of dynamical chaos and E-infinity theory

    International Nuclear Information System (INIS)

    Mukhamedov, A.M.

    2009-01-01

    A novel proposal is made to develop a unified theory of dynamical chaos using an idea of extra-coordinates. It is supposed that chaos is capable to translate influences from quantum level of description to the classical macroscopic one and vise versa. The notion of macroscopically prepared microstates is proposed to determine a special case of extra-coordinates induced by cooperative effects at quantum resolution of dynamical events. Meso-structures mediating quantum and classical appearances of chaotic motion are studied in the light of E-infinity theory.

  3. Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Hoa

    2015-01-01

    Full Text Available Development and/or design of new materials and/or structures for effective gas sensor applications with fast response and high sensitivity, selectivity, and stability are very important issues in the gas sensor technology. This critical review introduces our recent progress in the development of meso-/nanoporous semiconducting metal oxides and their applications to gas sensors. First, the basic concepts of resistive gas sensors and the recent synthesis of meso-/nanoporous metal oxides for gas sensor applications are introduced. The advantages of meso-/nanoporous metal oxides are also presented, taking into account the crystallinity and ordered/disordered porous structures. Second, the synthesis methods of meso-/nanoporous metal oxides including the soft-template, hard-template, and temple-free methods are introduced, in which the advantages and disadvantages of each synthetic method are figured out. Third, the applications of meso-/nanoporous metal oxides as gas sensors are presented. The gas nanosensors are designed based on meso-/nanoporous metal oxides for effective detection of toxic gases. The sensitivity, selectivity, and stability of the meso-/nanoporous gas nanosensors are also discussed. Finally, some conclusions and an outlook are presented.

  4. CH of masonry materials via meshless meso-modeling

    Directory of Open Access Journals (Sweden)

    Giuseppe Giambanco

    2014-07-01

    Full Text Available In the present study a multi-scale computational strategy for the analysis of masonry structures is presented. The structural macroscopic behaviour is obtained making use of the Computational Homogenization (CH technique based on the solution of the boundary value problem (BVP of a detailed Unit Cell (UC chosen at the meso-scale and representative of the heterogeneous material. The smallest UC is composed by a brick and half of its surrounding joints, the former assumed to behave elastically while the latter considered with an elastoplastic softening response. The governing equations at the macroscopic level are formulated in the framework of finite element method while the Meshless Method (MM is adopted to solve the BVP at the mesoscopic level. The work focuses on the BVP solution. The consistent tangent stiffness matrix at a macroscopic quadrature point is evaluated on the base of BVP results for the UC together with a localisation procedure. Validation of the MM procedure at the meso-scale level is demonstrated by numerical examples that show the results of the BVP for the simple cases of normal and shear loading of the UC.

  5. The synthesis, characterization, crystal structure and theoretical calculations of a new meso-BOBIPY substituted phthalonitrile

    International Nuclear Information System (INIS)

    Sen, Pinar; Yildiz, S. Zeki; Atalay, Yusuf; Dege, Necmi; Demirtas, Günes

    2014-01-01

    A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile (6) derivative has been synthesized starting from BF 3 –OEt 2 complex and 4-(2-meso-dipyrromethene-phenoxy)phthalonitrile (5) which was prepared by the oxidation of 4-(2-meso-dipyrromethane-phenoxy)phthalonitrile (4). The final product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. The original compounds prepared in the reaction pathway were characterized by the combination of FT-IR, 1 H and 13 C NMR, UV–vis, MS and HRMS spectral data. The final product (6) was obtained as single crystal which crystallized in the triclinic space group P-1 with a=7.9411 (6) Å, b=9.0150 (6) Å, c=14.419 (1) Å, α=74.917 (5)°, β=86.824 (6)°, γ=84.109 (5)° and Z=2. The crystal structure has intermolecular C–H···F–B and C–H···N interactions. These interactions construct bifurcated hydrogen bonds in the crystal structure. In this study, It has been calculated; molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound by using B3LYP method with 6–311++G(dp) basis set, and the electronic spectral characterization was investigated for the target product, as well. - Highlights: • A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile derivative has been synthesized. • The title product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. • The final product (6) was obtained as single crystal which crystallized in the triclinic space group. • Molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound were calculated theoretically. • The electronic spectral characterization was investigated, as well. • The title compound is also open to prepare further BODIPY substituted oligomeric molecules via on it

  6. Constitutive relation of concrete containing meso-structural characteristics

    Directory of Open Access Journals (Sweden)

    Li Guo

    Full Text Available A constitutive model of concrete is proposed based on the mixture theory of porous media within thermodynamic framework. By treating concrete as a multi-phase multi-component mixture, we constructed the constitutive functions for elastic, interfacial, and plastic strain energy respectively. A constitutive law of concrete accommodating internal micro-cracks and interfacial boundaries was established. The peak stress predicted with the developed model depends primarily on the volume ratio of aggregate, and the results explain very well reported experimental phenomena. The strain-stress curve under uniaxial loading was found in a good agreement with experimental data for concrete with three different mixing proportions. Keywords: Constitutive model of concrete, Mixture theory of porous media, Meso-structure, Interfacial energy

  7. Preparation, characterization of electrospun meso-hydroxylapatite nanofibers and their sorptions on Co(II)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hualin, E-mail: hlwang@hfut.edu.cn [School of Chemical Technology, Hefei University of Technology, Hefei, Anhui 230009 (China); Zhang, Peng; Ma, Xingkong; Jiang, Suwei; Huang, Yan; Zhai, Linfeng [School of Chemical Technology, Hefei University of Technology, Hefei, Anhui 230009 (China); Jiang, Shaotong [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China)

    2014-01-30

    Highlights: • PVA/HA nanofibers could change into meso-HA nanofibers by calcination process. • Sorption of Co(II) on meso-HA was strongly dependent on pH and ionic strength. • Sorption kinetic data were well fitted by the pseudo-second-order rate equation. • Sorption isotherms could be well described by the Langmuir model. • Sorption process of Co(II) on meso-HA nanofibers was spontaneous and endothermic. -- Abstract: In this work, mesoporous hydroxylapatite (meso-HA) nanofibers were prepared via calcination process with polyvinyl alcohol/HA (PVA/HA) hybrid nanofibers fabricated by electrospinning technique as precursors, and the removal efficiency of meso-HA nanofibers toward Co(II) was evaluated via sorption kinetics and sorption isotherms. Furthermore, the sorption behaviors of Co(II) on meso-HA nanofibers were explored as a function of pH, ionic strength, and thermodynamic parameters. There existed hydrogen bonds between HA and PVA matrix in precursor nanofibers which could change into meso-HA nanofibers with main pore diameter at 27 nm and specific surface area at 114.26 m{sup 2}/g by calcination process. The sorption of Co(II) on meso-HA was strongly dependent on pH and ionic strength. Outer-sphere surface complexation or ion exchange was the main mechanisms of Co(II) adsorption on meso-HA at low pH, whereas inner-sphere surface complexation was the main adsorption mechanism at high pH. The sorption kinetic data were well fitted by the pseudo-second-order rate equation. The sorption isotherms could be well described by the Langmuir model. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature-dependent sorption isotherms suggested that the sorption process of Co(II) on meso-HA nanofibers was spontaneous and endothermic.

  8. Nanoparticles of Pt and Ag supported in meso porous SiO2: characterization and catalytic applications

    International Nuclear Information System (INIS)

    Espinosa, M.E.; Perez H, R.; Perez A, M.; Mondragon G, G.; Arenas A, J.

    2004-01-01

    The surface properties of catalysts of Pt and Ag supported in conventional SiO 2 hey have been studied through reduction reactions of N 2 O with H 2 which is a sensitive reaction to the structure. In our case it was used a meso porous ceramic support of SiO 2 of great surface area (1100 m 2 /gr), where it is caused a high dispersion of the metallic nanoparticles of Pt and Ag, the total charge of the active phase in the meso porous support was of 3% in weight. The catalysts show a variation in the percentages of conversion of N 2 O depending on the size and dispersion of the metallic phases. (Author)

  9. An efficient sodium citrate-promoted synthetic method for the preparation of AuNPs@mesoSiO2 for surface enhanced Raman spectroscopy in the detection of diluted blood

    Directory of Open Access Journals (Sweden)

    Yun Zou

    2017-12-01

    Full Text Available We report on a novel, green, and efficient organically synthetic method for the preparation of gold nanoparticles embedded in mesoporous silica (AuNPs@mesoSiO2. AuNPs@mesoSiO2 prepared by one-pot synthesis method using sodium citrate as the key reactant was applied for surface enhanced Raman spectroscopy (SERS application in the analysis of diluted blood traces. The synthesized nanoparticles are of high quality, as characterized by use of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. They exhibit high surface areas (170.18–883 m2/g and significant SERS enhancement. Detection of diluted blood (v/v, 1:50 traces through AuNPs@mesoSiO2 enhanced SERS is demonstrated, which has not been studied in previous literature. The combination of the SERS and AuNPs@mesoSiO2 would be a valuable tool for forensic investigation. Keywords: Gold nanoparticles, Mesoporous materials, Synthesis, SERS, Blood trace

  10. Relationship between land use pattern and the structure and diversity of soil meso-micro arthropod community.

    Science.gov (United States)

    Zhang, Limin; Zhang, Xueping; Cui, Wei

    2014-05-01

    Soil arthropod communities can provide valuable information regarding the impacts of human disturbances on ecosystem structure. Our study evaluated the structure, composition and diversity of soil meso-micro arthropod communities, in six different vegetation types and assessed the impacts of human activity. A completely randomized design, including 3 replicates from 6 sites (mowing steppe, natural grassland, severe degradation grassland, farmland, artificial shelter forest, and wetland) was used. Soil samples from the depth of 0 to 20 cm were collected during May, July, and September 2007. Soil meso-micro arthropod were separated using the Tullgren funnels method, and were identified and counted. Soil pH value, organic matter, and total nitrogen were measured in topsoil (0-20 cm) from each site. A total of 5,602 soil meso-micro arthropod individuals were collected, representing 4 classes, 14 orders, and 57 families. Most soil arthropods were widely distributed; however, some species appeared to be influenced by environment variables, and might serve as bioindicators of adverse human impacts. Canonical correspondence analysis indicated the soil arthropod distribution in the severely degraded grassland, mowing steppe, farmland, and shelter forest differed from the natural grassland. Arthropod density and diversity were greatest in May, and the forestland community was the most stable. Because of the vital role soil arthropods have in maintaining a healthy ecosystem, mechanisms to maintain their abundance and diversity should be further evaluated.

  11. Influence of the ammonium hydroxide concentration in morphological control of meso porous silica particles

    International Nuclear Information System (INIS)

    Yoon, Sukbon; Jung, Chonghun; Yoon, Inho; Kim, Changki; Choi, Wangkyu; Moon, Jeikwon

    2012-01-01

    The discovery of new M41S meso porous silica families in 1992 extended the applications into much wider pore ranges, bringing in a new prosperous era in porous material research. The synthesis of these meso porous silicas has been mainly accomplished through a self-assembly between surfactant molecules and inorganic species under various pH conditions. Meanwhile, many studies have been conducted on the application as catalysts, adsorbents, and packing materials for separation columns due to their unique properties such as high specific surface area, large pore volume, tuneable pore size, and narrow pore size distribution. The pore sizes of these materials can be easily controlled by changing the alkyl-chain length of the surfactant used. However, the control of the morphology and the pore structure is not so common. The morphological control of these materials in particular is one of the major challenges for their industrial application. Recently, the meso porous silica materials with various shapes such as fibers, films, polyhedral particles, and spheres have been reported. In our previous study, the core-shell nanoparticles with a silica core and a meso porous shell under basic conditions were synthesized using the silica nanoparticles as a core and tetraethyl orthosilicate (TEOS)-cetyltrimethylammonium bromide (CTABr)-NH 4 OH-H 2 O-C 2 H 5 OH system. In this work, we report the synthesis of the most well known hexagonal MCM-41 among three main mesophases in the M41S families using TEOS-CTABr-NH 4 OH-H 2 O system. Also, in the control of the morphology and pore structure of the meso porous silica materials, the influence of the NH 4 OH concentration was investigated

  12. The effect of NaOH and KOH on the characterization of meso porous AlOOH nano structures in the hydrothermal route

    International Nuclear Information System (INIS)

    Haghnazari, N.; Abdollahifar, M.; Jahani, F.

    2014-01-01

    Meso porous AlOOH was synthesized by hydrothermal treatment from aluminium nitrate and NaOH or KOH. The effect of NaOH and KOH as precipitating agents on the characterization of samples were investigated. XRD, Ftir, FESEM and N 2 adsorption-desorption analytical techniques were used to characterize the products. Our results showed that using KOH as precipitating agent was favour-able for the formation of meso porous and crystalline AlOOH with high Bet-specific surface area of 98 m 2 /g. (Author)

  13. The effect of NaOH and KOH on the characterization of meso porous AlOOH nano structures in the hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Haghnazari, N.; Abdollahifar, M.; Jahani, F., E-mail: abdollahifar@gmail.com [Islamic Azad University, Kermanshah Branch, Department of Chemical Engineering, 67131 Kermanshah (Iran, Islamic Republic of)

    2014-10-01

    Meso porous AlOOH was synthesized by hydrothermal treatment from aluminium nitrate and NaOH or KOH. The effect of NaOH and KOH as precipitating agents on the characterization of samples were investigated. XRD, Ftir, FESEM and N{sub 2} adsorption-desorption analytical techniques were used to characterize the products. Our results showed that using KOH as precipitating agent was favour-able for the formation of meso porous and crystalline AlOOH with high Bet-specific surface area of 98 m{sup 2}/g. (Author)

  14. Micro- and meso-scale effects of forested terrain

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Sogachev, Andrey

    2011-01-01

    scales are the height of the planetary boundary layer and the Monin-Obukhov length, which both are related to the energy balance of the surface. Examples of important micro- and meso-scale effects of forested terrain are shown using data and model results from recent and ongoing experiments. For micro......The height and rotor diameter of modern wind turbines are so extensive, that the wind conditions they encounter often are well above the surface layer, where traditionally it is assumed that wind direction and turbulent fluxes are constant with respect to height, if the surface is homogenous....... Deviations from the requirement of homogeneity are often the focus of micro-scale studies in forested areas. Yet, to explain the wind climate in the relevant height range for turbines, it is necessary to also account for the length scales that are important parameters for the meso-scale flow. These length...

  15. Crystal structures, DFT calculations, and Hirshfeld surface analyses of two new copper(II) and nickel(II) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine

    Science.gov (United States)

    Seifikar Ghomi, Leila; Behzad, Mahdi; Tarahhomi, Atekeh; Arab, Ali

    2017-12-01

    Two new Ni(II) and Cu(II) complexes of a tetradentate Schiff base ligand (1 and 2, respectively), derived from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with 2-hydroxy-6-methoxy benzaldehyde, were synthesized and characterized by IR, UV-Vis, 1H NMR spectroscopy, and X-Ray crystallography. The central metal ions in both complexes are coordinated via the N2O2 coordination sphere of the ligand with square-planar geometry. DFT results revealed that the Msbnd N and Msbnd O interactions (M = Ni, Cu) are weaker than the typical covalent single bond indicating that ionic and electrostatic interactions are dominated in Msbnd N and Msbnd O bonds. Hirshfeld surface (HS) analyses of the studied structures 1 and 2 have been performed. The study using 3D HSs and 2D fingerprint plots (FPs) highlighted the dominant contacts H⋯H, C⋯H/H⋯C and O⋯H/H⋯O in both structures, and H⋯Cl in 2. The molecular assemblies held by C⋯O/O⋯C (in 1) and C⋯C (in 1 and 2) type dipole-dipole interactions are also found in the crystal packing contributing towards stability. The significant contributions arising from the mentioned interactions in crystal packing are also revealed from the Hirshfeld surface FPs showing a major contribution to total HS area for the H⋯H contacts for both structures.

  16. Preparation of reduced graphene oxide/meso-TiO_2/AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue

    International Nuclear Information System (INIS)

    Yang, Yongfang; Ma, Zheng; Xu, Lidong; Wang, Hefang; Fu, Nian

    2016-01-01

    Graphical abstract: Reduced graphene oxide/meso-TiO_2/AuNPs (RGO/meso-TiO_2/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO_2/AuNPs under a hydrothermal condition. The RGO/meso-TiO_2/AuNPs ternary composites show high photocatalytic activity toward MB. - Highlights: • RGO/meso-TiO_2/AuNPs were obtained by addition of graphene oxide to meso-TiO_2/AuNPs. • Au NPs in the mesopores of meso-TiO_2 reduce the recombination of charge carriers. • RGO covered with the surface of the meso-TiO_2 enhance the adsorption of MB. • RGO/meso-TiO_2/AuNPs composites show high photocatalytic performance toward MB. - Abstract: Reduced graphene oxide/meso-TiO_2/AuNPs (RGO/meso-TiO_2/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO_2/AuNPs under hydrothermal conditions. The structure and the morphology of the RGO/meso-TiO_2/AuNPs materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The photocatalytic activity of RGO/meso-TiO_2/AuNPs was evaluated by degradation of methyl blue (MB) under visible-light illumination. The ternary composites present an extended light absorption range, efficient charge separation properties, high adsorption ability for MB and high photocatalytic degradation activity of MB compared to the meso-TiO_2 and meso-TiO_2/AuNPs.

  17. Controlled in meso phase crystallization--a method for the structural investigation of membrane proteins.

    Directory of Open Access Journals (Sweden)

    Jan Kubicek

    Full Text Available We investigated in meso crystallization of membrane proteins to develop a fast screening technology which combines features of the well established classical vapor diffusion experiment with the batch meso phase crystallization, but without premixing of protein and monoolein. It inherits the advantages of both methods, namely (i the stabilization of membrane proteins in the meso phase, (ii the control of hydration level and additive concentration by vapor diffusion. The new technology (iii significantly simplifies in meso crystallization experiments and allows the use of standard liquid handling robots suitable for 96 well formats. CIMP crystallization furthermore allows (iv direct monitoring of phase transformation and crystallization events. Bacteriorhodopsin (BR crystals of high quality and diffraction up to 1.3 Å resolution have been obtained in this approach. CIMP and the developed consumables and protocols have been successfully applied to obtain crystals of sensory rhodopsin II (SRII from Halobacterium salinarum for the first time.

  18. Meso-Molding Three-Dimensional Macroporous Perovskites: A New Approach to Generate High-Performance Nanohybrid Catalysts

    DEFF Research Database (Denmark)

    Arandiyan, Hamidreza; Scott, Jason; Wang, Yuan

    2016-01-01

    Newly designed 3D highly ordered macro/mesoporous multifunctional La1-xCexCoO3 nanohybrid frameworks with a 2D hexagonal mesostructure were fabricated via facile meso-molding in a three-dimensionally macroporous perovskite (MTMP) route. The nanohybrid framework exhibited excellent catalytic...... activity for methane combustion, which derived from the MTMP providing a larger surface area and pore volume, uniform pore sizes, higher accessible surface oxygen concentration, better low-temperature reducibility, and a unique nanovoid 3D structure....

  19. Preparation of reduced graphene oxide/meso-TiO{sub 2}/AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongfang; Ma, Zheng; Xu, Lidong [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); Wang, Hefang, E-mail: whf0618@163.com [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); Fu, Nian, E-mail: funian3678@163.com [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); College of Physics Science and Technology of Hebei University, Baoding 071002 (China)

    2016-04-30

    Graphical abstract: Reduced graphene oxide/meso-TiO{sub 2}/AuNPs (RGO/meso-TiO{sub 2}/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO{sub 2}/AuNPs under a hydrothermal condition. The RGO/meso-TiO{sub 2}/AuNPs ternary composites show high photocatalytic activity toward MB. - Highlights: • RGO/meso-TiO{sub 2}/AuNPs were obtained by addition of graphene oxide to meso-TiO{sub 2}/AuNPs. • Au NPs in the mesopores of meso-TiO{sub 2} reduce the recombination of charge carriers. • RGO covered with the surface of the meso-TiO{sub 2} enhance the adsorption of MB. • RGO/meso-TiO{sub 2}/AuNPs composites show high photocatalytic performance toward MB. - Abstract: Reduced graphene oxide/meso-TiO{sub 2}/AuNPs (RGO/meso-TiO{sub 2}/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO{sub 2}/AuNPs under hydrothermal conditions. The structure and the morphology of the RGO/meso-TiO{sub 2}/AuNPs materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The photocatalytic activity of RGO/meso-TiO{sub 2}/AuNPs was evaluated by degradation of methyl blue (MB) under visible-light illumination. The ternary composites present an extended light absorption range, efficient charge separation properties, high adsorption ability for MB and high photocatalytic degradation activity of MB compared to the meso-TiO{sub 2} and meso-TiO{sub 2}/AuNPs.

  20. Meso-scale effects of tropical deforestation in Amazonia: preparatory LBA modelling studies

    Directory of Open Access Journals (Sweden)

    A. J. Dolman

    1999-08-01

    Full Text Available As part of the preparation for the Large-Scale Biosphere Atmosphere Experiment in Amazonia, a meso-scale modelling study was executed to highlight deficiencies in the current understanding of land surface atmosphere interaction at local to sub-continental scales in the dry season. Meso-scale models were run in 1-D and 3-D mode for the area of Rondonia State, Brazil. The important conclusions are that without calibration it is difficult to model the energy partitioning of pasture; modelling that of forest is easier due to the absence of a strong moisture deficit signal. The simulation of the boundary layer above forest is good, above deforested areas (pasture poor. The models' underestimate of the temperature of the boundary layer is likely to be caused by the neglect of the radiative effects of aerosols caused by biomass burning, but other factors such as lack of sufficient entrainment in the model at the mixed layer top may also contribute. The Andes generate patterns of subsidence and gravity waves, the effects of which are felt far into the Rondonian area The results show that the picture presented by GCM modelling studies may need to be balanced by an increased understanding of what happens at the meso-scale. The results are used to identify key measurements for the LBA atmospheric meso-scale campaign needed to improve the model simulations. Similar modelling studies are proposed for the wet season in Rondonia, when convection plays a major role.Key words. Atmospheric composition and structure (aerosols and particles; biosphere-atmosphere interactions · Meterology and atmospheric dynamics (mesoscale meterology

  1. Meso-scale effects of tropical deforestation in Amazonia: preparatory LBA modelling studies

    Directory of Open Access Journals (Sweden)

    A. J. Dolman

    Full Text Available As part of the preparation for the Large-Scale Biosphere Atmosphere Experiment in Amazonia, a meso-scale modelling study was executed to highlight deficiencies in the current understanding of land surface atmosphere interaction at local to sub-continental scales in the dry season. Meso-scale models were run in 1-D and 3-D mode for the area of Rondonia State, Brazil. The important conclusions are that without calibration it is difficult to model the energy partitioning of pasture; modelling that of forest is easier due to the absence of a strong moisture deficit signal. The simulation of the boundary layer above forest is good, above deforested areas (pasture poor. The models' underestimate of the temperature of the boundary layer is likely to be caused by the neglect of the radiative effects of aerosols caused by biomass burning, but other factors such as lack of sufficient entrainment in the model at the mixed layer top may also contribute. The Andes generate patterns of subsidence and gravity waves, the effects of which are felt far into the Rondonian area The results show that the picture presented by GCM modelling studies may need to be balanced by an increased understanding of what happens at the meso-scale. The results are used to identify key measurements for the LBA atmospheric meso-scale campaign needed to improve the model simulations. Similar modelling studies are proposed for the wet season in Rondonia, when convection plays a major role.

    Key words. Atmospheric composition and structure (aerosols and particles; biosphere-atmosphere interactions · Meterology and atmospheric dynamics (mesoscale meterology

  2. AuRu/meso-Mn2O3: A Highly Active and Stable Catalyst for Methane Combustion

    Science.gov (United States)

    Han, Z.; Fang, J. Y.; Xie, S. H.; Deng, J. G.; Liu, Y. X.; Dai, H. X.

    2018-05-01

    Three-dimensionally ordered mesoporous Mn2O3 (meso-Mn2O3) and its supported Au, Ru, and AuRu alloy (0.49 wt% Au/meso-Mn2O3, 0.48 wt% Ru/meso-Mn2O3, and 0.97 wt% AuRu/meso-Mn2O3 (Au/Ru molar ratio = 0.98)) nanocatalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected reduction methods, respectively. Physicochemical properties of the samples were characterized by means of numerous techniques, and their catalytic activities were evaluated for the combustion of methane. It is found that among all of the samples, 0.48 wt% Ru/meso-Mn 2O3 and 0.97 wt% AuRu/meso-Mn2O3 performed the best (the reaction temperature (T90% ) at 90% methane conversion was 530-540°C), but the latter showed a better thermal stability than the former. The partial deactivation of 0.97 wt% AuRu/meso-Mn2O3 due to H2O or CO2 introduction was reversible. It is concluded that the good catalytic activity and thermal stability of 0.97 wt% AuRu/meso-Mn2O3 was associated with the high dispersion of AuRu alloy NPs (2-5 nm) on the surface of meso-Mn2O3 and good low-temperature reducibility.

  3. Controlled release of ibuprofen by meso-macroporous silica

    Science.gov (United States)

    Santamaría, E.; Maestro, A.; Porras, M.; Gutiérrez, J. M.; González, C.

    2014-02-01

    Structured meso-macroporous silica was successfully synthesized from an O/W emulsion using decane as a dispersed phase. Sodium silicate solution, which acts as a silica source and a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (EO19PO39EO19) denoted as P84 was used in order to stabilize the emulsion and as a mesopore template. The materials obtained were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angle X-ray diffraction scattering (SAXS) and nitrogen adsorption-desorption isotherms. Ibuprofen (IBU) was selected as the model drug and loaded into ordered meso-macroporous materials. The effect of the materials’ properties on IBU drug loading and release was studied. The results showed that the loading of IBU increases as the macropore presence in the material is increased. The IBU adsorption process followed the Langmuir adsorption isotherm. A two-step release process, consisting of an initial fast release and then a slower release was observed. Macropores enhanced the adsorption capacity of the material; this was probably due to the fact that they allowed the drug to access internal pores. When only mesopores were present, ibuprofen was probably adsorbed on the mesopores close to the surface. Moreover, the more macropore present in the material, the slower the release behaviour observed, as the ibuprofen adsorbed in the internal pores had to diffuse along the macropore channels up to the surface of the material. The material obtained from a highly concentrated emulsion was functionalized with amino groups using two methods, the post-grafting mechanism and the co-condensation mechanism. Both routes improve IBU adsorption in the material and show good behaviour as a controlled drug delivery system.

  4. Meso-Helical Ag(I) Coordination Polymer Based on a Pyridylimidazole Ligand

    International Nuclear Information System (INIS)

    Kang, Youngjin; Kim, Jinho; Lee, Eunji; Park, Ki-Min; Moon, Suk-Hee

    2016-01-01

    In the fields of material science and metallosupramolecular chemistry, coordination polymers with various helical types have been extensively explored because of their charming structures, and their potential applications in material chemistry. Among them, meso-helical coordination polymers consisting of achiral 1D strands, which are generally constructed by a crystallographic inversion symmetry, are relatively rare. The coordination polymer 1 exhibits a rare one-dimensional meso-helical chain topology constructed by its internal inversion symmetry. The skeleton of this meso-helical chain is preserved up to 300°C. The complexation of silver(I) ion to the free pyim ligand give rise to the enhanced photoluminescence intensity and slightly blue-shifted emission maximum, originated from intraligand (IL) π[BOND]π* transition and rigidochromic effect. Further exploration of complexation of this ligand with other transition metal ions is currently in progress

  5. Electrohydrodynamic Liquid Disintegration in Micro-, Meso- and Nanoscopic Dimensions

    Science.gov (United States)

    Vertes, Akos

    2008-11-01

    The electrohydrodynamic dispersion of liquids spans length scales from 1 mm to 1 nm and involves temporal variations from 1 s to 10 ps. The disintegration mechanisms are diverse and, due to the differences in the dominating forces, vary on the micro-, meso- and nanoscale extending to lower boundaries of 1 μm, 10 nm and 1 nm, respectively. Using fast imaging, spray current measurements, phase Doppler anemometry and molecular dynamics calculations, we followed the behavior of electrified liquids in the three most common geometries, spherical, pendant drop and slender jet, with dimensions ranging from 100 μm to 1 nm. Microscale disintegration involves jet ejection from conical surface deformations, jet breakup due to varicose, kink and ramified jet instabilities, and asymmetric droplet fission resulting in side jets. As the liquid dimensions shift from the microscopic dimensions where the processes are governed by the surface tension and the Maxwell stress, to the meso- and nanoscale, thermal fluctuations become increasingly important. The presence of charges in nanodroplets leads to enhanced surface fluctuations, the formation of extreme protrusions and eventually solvated ion evaporation. Charging of slender nanojets results in longer shape relaxation times along with the fission of systems charged below the Rayleigh limit. In collaboration with Jelena Lusic and Peter Nemes, George Washington University.

  6. Enhanced Thermal Properties of Novel Latent Heat Thermal Storage Material Through Confinement of Stearic Acid in Meso-Structured Onion-Like Silica

    Science.gov (United States)

    Gao, Junkai; Lv, Mengjiao; Lu, Jinshu; Chen, Yan; Zhang, Zijun; Zhang, Xiongjie; Zhu, Yingying

    2017-12-01

    Meso-structured onion-like silica (MOS), which had a highly ordered, onion-like multilayer; large surface area and pore volume; and highly curved mesopores, were synthesized as a support for stearic acid (SA) to develop a novel shape-stabilized phase change material (SA/MOS). The characterizations of SA/MOS were studied by the analysis technique of scanning electron microscope, infrared spectroscopy, x-ray diffraction, differential scanning calorimeter (DSC), and thermal gravimetry analysis (TGA). The results showed that the interaction between the SA and the MOS was physical adsorption and that the MOS had no effect on the crystal structure of the SA. The DSC results suggested that the melting and solidifying temperature of the SA/MOS were 72.7°C and 63.9°C with a melting latent heat of 108.0 J/g and a solidifying latent heat of 126.0 J/g, respectively, and the TGA results indicated that the SA/MOS had a good thermal stability. All of the results demonstrated that the SA/MOS was a promising thermal energy storage material candidate for practical applications.

  7. On micro-meso relations homogenizing electrical properties of transversely cracked laminated composites

    KAUST Repository

    Lubineau, Gilles

    2013-11-01

    A practical way to track the development of transverse cracking in a laminated composite is to monitor the change of its electrical resistance. Yet, the relations between transverse cracking and the global modification of resistivity is still unclear that makes difficult to interpret these non-destructive-testing results. Here, we introduce the homogenization process that defines at the meso scale an equivalent homogeneous ply that is energetically equivalent to the cracked one. It is shown that this equivalent ply mainly depends on the cracking level while it can be considered independent on the rest of the laminated structure. The direct consequence is that the meso scale is a pertinent one to perform the homogenization. Then, non-destructive electrical measurements can be considered as a reliable technique to access meso scale damage indicators. © 2013 Elsevier Ltd.

  8. Experiences with the ALICE Mesos infrastructure

    Science.gov (United States)

    Berzano, D.; Eulisse, G.; Grigoraş, C.; Napoli, K.

    2017-10-01

    Apache Mesos is a resource management system for large data centres, initially developed by UC Berkeley, and now maintained under the Apache Foundation umbrella. It is widely used in the industry by companies like Apple, Twitter, and Airbnb and it is known to scale to 10 000s of nodes. Together with other tools of its ecosystem, such as Mesosphere Marathon or Metronome, it provides an end-to-end solution for datacenter operations and a unified way to exploit large distributed systems. We present the experience of the ALICE Experiment Offline & Computing in deploying and using in production the Apache Mesos ecosystem for a variety of tasks on a small 500 cores cluster, using hybrid OpenStack and bare metal resources. We will initially introduce the architecture of our setup and its operation, we will then describe the tasks which are performed by it, including release building and QA, release validation, and simple Monte Carlo production. We will show how we developed Mesos enabled components (called “Mesos Frameworks”) to carry out ALICE specific needs. In particular, we will illustrate our effort to integrate Work Queue, a lightweight batch processing engine developed by University of Notre Dame, which ALICE uses to orchestrate release validation. Finally, we will give an outlook on how to use Mesos as resource manager for DDS, a software deployment system developed by GSI which will be the foundation of the system deployment for ALICE next generation Online-Offline (O2).

  9. CO2 capture on micro/meso-porous composites of (zeolite A)/(MCM-41) with Ca2+ located: Computer simulation and experimental studies

    International Nuclear Information System (INIS)

    Jianhai Zhou; Huiling Zhao; Jinxia Li; Yujun Zhu; Jun Hu; Honglai Liu; Ying Hu

    2013-01-01

    Composing of both zeolite and meso-porous structures, micro/meso-porous composites exhibit promising CO 2 capture capabilities. In this work, a full-atomic mimetic 5A-MCM-41 structure with bimodal pores has been constructed, in which the microporous structure of 5A zeolite is constructed and optimized based on zeolite A with Ca and Na cations introduced; whereas the meso-porous MCM-41 structure is produced by caving the cylindrical pores in the obtained 5A zeolite matrix. CO 2 adsorption on 5A-MCM- 41 has been simulated by the grand canonical Monte Carlo (GCMC). The simulation results demonstrated that CO 2 is preferentially adsorbed in micropores, and the CO 2 adsorption capacity and its isosteric heat on 5A-MCM-41 are much larger than those of N 2 . The CO 2 selectivity of 5A-MCM-41 results from the electrostatic interaction of the quadrupole CO 2 molecule with Ca 2+ cations of the zeolite. Furthermore, the hierarchical micro/meso-porous composites are synthesized to verify the simulated predictions. By the hydrothermal reaction using 5A zeolite 'seeds' as the silicon source and hexadecyl trimethylammonium bromide (CTAB) as the meso-porous template, 5A-MCM-41 composites are obtained, the characteristic results show that typical 5A microporous structure is remained and disordered meso-porous networks are produced in the composites.Moreover, the CO 2 adsorption capacity of the 5A-MCM- 41 composites can reach as high as 4.08 mmol/g at 100 kPa and 298 K. These observations have been strongly supported that micro/meso-porous composites with metal ions located would be promising adsorbents for CO 2 separation. (authors)

  10. Stratigraphic and structural relationships between Meso-Cenozoic Lagonegro basin and coeval carbonate platforms in southern Apennines, Italy

    Science.gov (United States)

    Pescatore, Tullio; Renda, Pietro; Schiattarella, Marcello; Tramutoli, Mariano

    1999-12-01

    Lucanian segment — are shown by means of both regional and detailed geological cross-sections. The Lagonegro units constantly underlie the carbonate units originating from detachment and thrusting of the western platform and overlie the eastern (i.e. Apulian) platform. The Lagonegro units show a strong lateral variability of map-scale structures. Dome-and-basin folds are in fact largely observable in the Lucanian Apennine. Further, the belt is widely affected by Plio-Quaternary strike-slip and extensional faults. Yet, excluding the brittle deformation due to Quaternary faulting, the complexity of structural styles seems to result from the Neogene refolding of more ancient structures produced by Oligo-Miocene intraplate deformation. This hypothesis is supported by two independent lines of evidence: the first is the recognition of unconformities between the lower Miocene Numidian sandstone and the underlying Lagonegro successions, at least in the southwestern sectors; the second is that the internal (i.e. western) platform remains undeformed until the early Miocene. Both stratigraphic and structural data suggest an external position of the Meso-Cenozoic Lagonegro basin with regard to the coeval Apenninic platform.

  11. Meso-ester and carboxylic acid substituted BODIPYs with far-red and near-infrared emission for bioimaging applications

    KAUST Repository

    Ni, Yong

    2014-01-21

    A series of meso-ester-substituted BODIPY derivatives 1-6 are synthesized and characterized. In particular, dyes functionalized with oligo(ethylene glycol) ether styryl or naphthalene vinylene groups at the α positions of the BODIPY core (3-6) become partially soluble in water, and their absorptions and emissions are located in the far-red or near-infrared region. Three synthetic approaches are attempted to access the meso-carboxylic acid (COOH)-substituted BODIPYs 7 and 8 from the meso-ester-substituted BODIPYs. Two feasible synthetic routes are developed successfully, including one short route with only three steps. The meso-COOH-substituted BODIPY 7 is completely soluble in pure water, and its fluorescence maximum reaches around 650 nm with a fluorescence quantum yield of up to 15 %. Time-dependent density functional theory calculations are conducted to understand the structure-optical properties relationship, and it is revealed that the Stokes shift is dependent mainly on the geometric change from the ground state to the first excited singlet state. Furthermore, cell staining tests demonstrate that the meso-ester-substituted BODIPYs (1 and 3-6) and one of the meso-COOH-substituted BODIPYs (8) are very membrane-permeable. These features make these meso-ester- and meso-COOH-substituted BODIPY dyes attractive for bioimaging and biolabeling applications in living cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A condição das coxas anteriores, do meso-catepímero e do meso-catepisterno dos Tabanidae (Diptera e sua possível importância na classificação

    Directory of Open Access Journals (Sweden)

    Nelson Bernardi

    1990-01-01

    Full Text Available The condition of certain neglected structures and their possible importance to the classification of the family Tabanidae are studied. The front coxae are considered as belonging to two types: 1 short and robust; 2 long and slender. The posterior edge of the meso-katepimeron presents two conditions: 1 without projection, 2 with backward projection. Similar conditions are found in the meso-Katepisternum, but with intermediate conditions. These characters are discussed in relation to the system proposed for the family by Mackerras. Conditions 1 and 2 of the former two structures separate, respectively, the Pangoniinae and Scepsidinae from the Chrysopsinae and Tabaninae. Condition 2 of the third structure seems to be developing independently in different groups of Tabaninae, with varying degrees of development.

  13. Detailed electromagnetic simulation for the structural color of butterfly wings.

    Science.gov (United States)

    Lee, R Todd; Smith, Glenn S

    2009-07-20

    Many species of butterflies exhibit interesting optical phenomena due to structural color. The physical reason for this color is subwavelength features on the surface of a single scale. The exposed surface of a scale is covered with a ridge structure. The fully three-dimensional, periodic, finite-difference time-domain method is used to create a detailed electromagnetic model of a generic ridge. A novel method for presenting the three-dimensional observed color pattern is developed. Using these tools, the change in color that is a result of varying individual features of the scale is explored. Computational models are developed that are similar to three butterflies: Morpho rhetenor, Troides magellanus, and Ancyluris meliboeus.

  14. Imaging by Electrochemical Scanning Tunneling Microscopy and Deconvolution Resolving More Details of Surfaces Nanomorphology

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    observed in high-resolution images of metallic nanocrystallites may be effectively deconvoluted, as to resolve more details of the crystalline morphology (see figure). Images of surface-crystalline metals indicate that more than a single atomic layer is involved in mediating the tunneling current......Upon imaging, electrochemical scanning tunneling microscopy (ESTM), scanning electrochemical micro-scopy (SECM) and in situ STM resolve information on electronic structures and on surface topography. At very high resolution, imaging processing is required, as to obtain information that relates...... to crystallographic-surface structures. Within the wide range of new technologies, those images surface features, the electrochemical scanning tunneling microscope (ESTM) provides means of atomic resolution where the tip participates actively in the process of imaging. Two metallic surfaces influence ions trapped...

  15. Effects of confinement in meso-porous silica and carbon nano-structures

    International Nuclear Information System (INIS)

    Leon, V.

    2006-07-01

    Physico-chemical properties of materials can be strongly modified by confinement because of the quantum effects that appear at such small length scales and also because of the effects of the confinement itself. The aim of this thesis is to show that both the nature of the confining material and the size of the pores and cavities have a strong impact on the confined material. We first show the effect of the pore size of the host meso-porous silica on the temperature of the solid-solid phase transition of silver selenide, a semiconducting material with enhanced magnetoresistive properties under non-stoichiometric conditions. Narrowing the pores from 20 nm to 2 nm raises the phase transition temperature from 139 C to 146 C. This result can be explained by considering the interaction between the confining and confined materials as a driving force. The effects of confinement are also studied in the case of hydrogen and deuterium inside cavities of organized carbon nano-structures. The effects that appear in the adsorption/desorption cycles are much stronger with carbon nano-horns as the host material than with C60 pea-pods and single-walled carbon nano-tubes. (author)

  16. Sonochemical synthesis and photocatalytic activity of meso- and macro-porous TiO2 for oxidation of toluene

    International Nuclear Information System (INIS)

    Yang Liu; Yan Li; Wang Yuntao; Xie Lei; Zheng Jie; Li Xingguo

    2008-01-01

    Meso-and macro-porous TiO 2 were synthesized by ultrasonic induced solvothermal method. Octadecylamine as a soft template was used to direct the formation of porous structure. The as-prepared porous TiO 2 was characterized by low angle and wide angle X-ray diffraction, N 2 adsorption-desorption isotherms and BET surface area. The energy influence of ultrasound and heat and concentration of nitric acid for post extraction on formation of porous structure were investigated. The photocatalytic activities of TiO 2 were investigated by degrading toluene gas under UV light. The results revealed that proper energy facilitates the formation of porous structure and too low concentration of nitric acid cannot extract template from pores. The photocatalytic activities of TiO 2 with porous structure are higher than those of nonporous ones

  17. Innovative synthesis of meso-structured YSZ using V2O5 complex fluids as a template

    International Nuclear Information System (INIS)

    Guiot, Camille; Grandjean, Stephane; Batail, Patrick

    2008-01-01

    Full text of publication follows: Within the framework of generation IV nuclear reactors, the prospect of a closed fuel cycle generate a need for new advanced materials integrating the actinides jointly. Researches are conducted on fuel material precursors synthesized by soft chemistry processes, which allow a fine control of the homogeneity and ordering at a nano-scale[1]. In a view to meso-structure an inorganic matrix, recent studies[2,3] have highlighted the potential of mineral liquid crystals as templates in new soft chemistry synthesis routes. The studies presently exposed relate to an original synthesis of an inorganic-inorganic hybrid material consisting in a main zirconia matrix tem plated by ribbon-like vanadium pentoxide. After eliminating the V 2 O 5 template, the obtained solid is to be a meso-porous material with ordered pores, and becomes a prime choice material, for example to immobilize actinides. The zirconia matrix has been chosen for its ability to host actinides, which are surrogated by neodymium. It is also a preliminary material for the study of the synthesis of uranium oxide based materials, thus preventing from the drawbacks of working with radioactive materials. The vanadium pentoxide is used as a template since it structure itself as ribbon-like mineral liquid crystals that can be aligned in weak magnetic field; consequently, the final material may be structured at a nano-scale over a macroscopic range. Since the shape of vanadium oxide in solution is very sensitive to the ionic strength of the medium and the pH, the real challenge is to establish a synthesis protocol which is compatible with the presence of vanadium pentoxide, remaining in its ribbon-like liquid crystal form. References: [1] Masson, M.; Grandjean, S.; Lacquement, J.; Bourg, S.; Delauzun, J. M.; Lacombe, J.; Nuclear Engineering and Design, 236 (5-6),516 (2006). [2] Camerel, F.; Gabriel, J.-C.P.; Batail, P.; Adv. Funct. Mater., 13 (5), 377 (2003). [3] Gabriel, J

  18. MR imaging of brain surface structures: Surface anatomy scanning

    International Nuclear Information System (INIS)

    Katada, K.; Koga, S.; Asahina, M.; Kanno, T.; Asahina, K.

    1987-01-01

    Preoperative evaluation of brain surface anatomy, including cortical sulci and veins, relative to cerebral and cerebellar lesions is an important subject for surgeons. Until now, no imaging modality existed that allowed direct visualization of brain surface anatomy. A new MR imaging technique (surface anatomy scanning) was developed to visualize brain surface structures. The technique uses a spin-echo pulse sequence with long repetition and echo times, thick sections and a surface coil. Cortical sulci, fissures, veins, and intracranial lesions were clearly identified with this technique. Initial clinical results indicate that surface anatomy scanning is useful for lesion localization and for detailed evaluation of cortical and subcortical lesions

  19. Meso-pores carbon nano-tubes (CNTs) tissues-perfluorocarbons (PFCs) hybrid air-electrodes for Li-O2 battery

    Science.gov (United States)

    Balaish, Moran; Ein-Eli, Yair

    2018-03-01

    Adding immiscible perfluorocarbons (PFCs), possessing superior oxygen solubility and diffusivity, to a free-standing (metal-free and binder-free) CNTs air-electrode tissues with a meso-pore structure, fully maximized the advantages of PFCs as oxygenated-species' channels-providers. The discharge behavior of hybrid PFCs-CNT Li-O2 systems demonstrated a drastic increase in cell capacity at high current density (0.2 mA cm-2), where oxygen transport limitations are best illustrated. The results of this research revealed several key factors affecting PFCs-Li-O2 systems. The incorporation of PFCs with higher superoxide solubility and oxygen diffusivity, but more importantly higher PFCs/electrolyte miscibility, in a meso-pore air-electrode enabled better exploitation of PFCs potential. Consequently, the utilization of the air-electrode' surface area was enhanced via the formation of artificial three phase reaction zones with additional oxygen transportation routes, leading to uniform and intimate Li2O2 deposit at areas further away from the oxygen reservoir. Associated mechanisms are discussed along with insights into an improved Li-O2 battery system.

  20. Nanoparticles of Pt and Ag supported in meso porous SiO{sub 2}: characterization and catalytic applications; Nanoparticulas de Pt y Ag soportadas en SiO{sub 2} mesoporosa: caracterizacion y aplicaciones cataliticas

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, M.E.; Perez H, R.; Perez A, M.; Mondragon G, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Arenas A, J. [IFUNAM, A.P. 20-364, 01000 Mexico D.F. (Mexico)

    2004-07-01

    The surface properties of catalysts of Pt and Ag supported in conventional SiO{sub 2} hey have been studied through reduction reactions of N{sub 2}O with H{sub 2} which is a sensitive reaction to the structure. In our case it was used a meso porous ceramic support of SiO{sub 2} of great surface area (1100 m{sup 2}/gr), where it is caused a high dispersion of the metallic nanoparticles of Pt and Ag, the total charge of the active phase in the meso porous support was of 3% in weight. The catalysts show a variation in the percentages of conversion of N{sub 2}O depending on the size and dispersion of the metallic phases. (Author)

  1. Preparation of tailored carbons with meso- and micro- porosity via template synthesis route

    Directory of Open Access Journals (Sweden)

    Howard. M. Williams

    2009-02-01

    Full Text Available A low cost templating approach to making non-ordered carbons with a tailored meso/micropore structure is described. A series of mesoporous carbons was prepared from polyfurfuryl alcohol and phenolic resin precursors by a templating route, using a variety of commercially available silica gels as the template material. Carbons were produced with mesopore volumes up to 1 cm3 g-1, mesopore sizes in the range of 4 nm to 8 nm and surface areas in the range of 300 to 700 m2 g-1. These mesoporous carbons were subsequently activated in CO2 to add controlled amounts of microporosity to produce carbons with both a micro and mesoporous structure. Significantly, the activation process did not appreciably change the mesopore size distribution of the carbons. By altering the activation time, it was possible to tailor the micropore: mesopore volume ratios within wide limits.

  2. Sol–gel hybrid membranes loaded with meso/macroporous SiO2, TiO2–P2O5 and SiO2–TiO2–P2O5 materials with high proton conductivity

    International Nuclear Information System (INIS)

    Castro, Yolanda; Mosa, Jadra; Aparicio, Mario; Pérez-Carrillo, Lourdes A.; Vílchez, Susana; Esquena, Jordi; Durán, Alicia

    2015-01-01

    In this work, highly conductive hybrid organic–inorganic membranes loaded with SiO 2 , TiO 2 –P 2 O 5 and SiO 2 –TiO 2 –P 2 O 5 meso/macroporous particles were prepared via a sol–gel process. Meso/macroporous particles were incorporated to hybrid membranes, for improving water retention and enhancing electrochemical performance. These particles with a polymodal pore size distribution were prepared by templating in highly concentrated emulsions, the particles showed a specific surface area between 50 m 2 /g (TiO 2 –P 2 O 5 ) and 300 m 2 /g (SiO 2 –TiO 2 –P 2 O 5 ). The particles were dispersed in a hybrid silica sol and further sprayed onto glass paper. The films were polymerized and sintered; those loaded with meso/macroporous particles had a homogenous distribution. High temperature proton conductivity measurements confirmed a high water retention. Conductivity of these materials is higher than that of Nafion ® at higher temperatures (120 °C) (2·10 −2  S/cm). This study provides processing guideline to achieve hybrid electrolytes for efficient conduction of protons due to their high surface area and porous structure. - Highlights: • Hybrid electrolyte with meso/macroporous particles were synthesized by sol–gel. • Depositions of hybrid solutions by spraying onto glass substrates were performed. • Proton conductivity was evaluated as a function of composition and porous structure

  3. Pulse electrochemical meso/micro/nano ultraprecision machining technology.

    Science.gov (United States)

    Lee, Jeong Min; Kim, Young Bin; Park, Jeong Woo

    2013-11-01

    This study demonstrated meso/micro/nano-ultraprecision machining through electrochemical reactions using intermittent DC pulses. The experiment focused on two machining methods: (1) pulse electrochemical polishing (PECP) of stainless steel, and (2) pulse electrochemical nano-patterning (PECNP) on a silicon (Si) surface, using atomic force microscopy (AFM) for fabrication. The dissolution reaction at the stainless steel surface following PECP produced a very clean, smooth workpiece. The advantages of the PECP process included improvements in corrosion resistance, deburring of the sample surface, and removal of hydrogen from the stainless steel surface as verified by time-of-flight secondary-ion mass spectrometry (TOF-SIMS). In PECNP, the electrochemical reaction generated within water molecules produced nanoscale oxide textures on a Si surface. Scanning probe microscopy (SPM) was used to evaluate nanoscale-pattern processing on a Si wafer surface produced by AFM-PECNP For both processes using pulse electrochemical reactions, three-dimensional (3-D) measurements and AFM were used to investigate the changes on the machined surfaces. Preliminary results indicated the potential for advancing surface polishing techniques and localized micro/nano-texturing technology using PECP and PECNP processes.

  4. Projective and superconformal structures on surfaces

    International Nuclear Information System (INIS)

    Harvey, W.J.

    1990-01-01

    Much attention has recently been given to the study of super Riemann surfaces. Detailed accounts of these objects and their infinitesimal deformation theory are referenced where they are fitted into the framework of complex supermanifolds, superconformal structures and graded sheaves. One difficulty, which seems even more of a barrier than in the case of classical deformations of Riemann surface structure, is the lack of a good global description of super-moduli spaces. In this note, we outline an approach which places the theory in the classical setting of projective structures on variable Riemann surfaces. We explain how to construct a distribution (family of vector subspaces) inside the holomorphic cotangent space to the moduli space M g of Riemann surfaces with genus g and furnished with a level-4 homology structure, such that the corresponding rank-(2g-2) complex vector bundle models the soul deformations of a family of super-Riemann surfaces. The keystone in this construction is the existence of holomorphic sections for the space of non-singular odd theta characteristics on C g the universal curve over M g . (author)

  5. [Influence of surface chemical properties and pore structure characteristics of activated carbon on the adsorption of nitrobenzene from aqueous solution].

    Science.gov (United States)

    Liu, Shou-Xin; Chen, Xi; Zhang, Xian-Quan

    2008-05-01

    Commercial activated carbon was treated by HNO3 oxidation and then subsequently heat treated under N2 atmosphere. Effect of surface chemical properties and pore structure on the adsorption performance of nitrobenzene was investigated. N2/77K adsorption isotherm and scanning electron microscopy (SEM) were used to characterize the pore structure and surface morphology of carbon. Boehm titration, Fourier transform infrared spectroscopy (FTIR), the point of zero charge (pH(PZC)) measurement and elemental analysis were used to characterize the surface properties. The results reveal that HNO3 oxidation can modify the surface chemical properties, increase the number of acidic surface oxygen-containing groups and has trivial effect on the pore structure of carbon. Further heat treatment can cause the decomposition of surface oxygen-containing groups, and increase the external surface area and the number of mesopores. Adsorption capacity of nitrobenzene on AC(NO-T), AC(raw) and AC(NO) was 1011.31, 483.09 and 321.54 mg x g(-1), respectively. Larger external surface area and the number of meso-pores, together with the less acid surface oxygen-containing groups were the main reason for the larger adsorption capacity AC(NO-T).

  6. Caustic meso-optical confocal microscope for vertical particle tracks. Proposal

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1995-01-01

    The principal of the proposed caustic meso-optical microscope for vertical particle tracks in the nuclear photoemulsion is explained. The results of the experiments performed to illustrate the main features of this new meso-optical microscope are given. The proposed caustic meso-optical microscope for vertical particle tracks in the nuclear photoemulsion can be effectively used in the experimental investigation of such rare processes as ν μ - ν τ oscillations and of the Pb-Pb interactions. 2 refs., 7 figs

  7. Sodar study of the characteristics of presumable big toroid structures above an overheated surface

    International Nuclear Information System (INIS)

    Valery, K

    2008-01-01

    A set of sodars allowed to investigate the spatial variability of meso-scale organized structures under conditions of strong convection and weak wind. The distribution of velocity within the structures and the structure typical sizes have been determined as a result of processing of experimental data

  8. Detailed Structural Analyses of KOH Activated Carbon from Waste Coffee Beans

    Science.gov (United States)

    Takahata, Tomokazu; Toda, Ikumi; Ono, Hiroki; Ohshio, Shigeo; Akasaka, Hiroki; Himeno, Syuji; Kokubu, Toshinori; Saitoh, Hidetoshi

    2009-11-01

    The relationship of the detailed structural change of KOH activated carbon and hydrogen storage ability was investigated in activated carbon materials fabricated from waste coffee beans. The specific surface area of porous carbon materials calculated from N2 adsorption isotherms stood at 2070 m2/g when the weight ratio of KOH to carbon materials was 5:1, and pore size was in the range of approximately 0.6 to 1.1 nm as micropores. In the structural analysis, X-ray diffraction analysis and Raman spectroscopy indicated structural change in these carbon materials through KOH activation. The order of the graphite structure changed to a smaller scale with this activation. It is theorized that specific surface area increased using micropores provided by carbon materials developed from the descent of the graphite structure. Hydrogen storage ability improved with these structural changes, and reached 0.6 wt % at 2070 m2/g. These results suggest that hydrogen storage ability is conferred by the chemical effect on graphite of carbon materials.

  9. Optimizing CMS build infrastructure via Apache Mesos

    CERN Document Server

    Abduracmanov, David; Degano, Alessandro; Elmer, Peter; Eulisse, Giulio; Mendez, David; Muzaffar, Shahzad

    2015-12-23

    The Offline Software of the CMS Experiment at the Large Hadron Collider (LHC) at CERN consists of 6M lines of in-house code, developed over a decade by nearly 1000 physicists, as well as a comparable amount of general use open-source code. A critical ingredient to the success of the construction and early operation of the WLCG was the convergence, around the year 2000, on the use of a homogeneous environment of commodity x86-64 processors and Linux. Apache Mesos is a cluster manager that provides efficient resource isolation and sharing across distributed applications, or frameworks. It can run Hadoop, Jenkins, Spark, Aurora, and other applications on a dynamically shared pool of nodes. We present how we migrated our continuos integration system to schedule jobs on a relatively small Apache Mesos enabled cluster and how this resulted in better resource usage, higher peak performance and lower latency thanks to the dynamic scheduling capabilities of Mesos.

  10. Structural and electronic properties of hydrosilylated silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, A.

    2005-11-15

    The structural and electronic properties of alkyl-terminated Si surfaces prepared by thermallyinduced hydrosilylation have been studied in detail in the preceding chapters. Various surfaces have been used for the functionalization ranging from crystalline Si over amorphous hydrogenated Si to nanoscaled materials such as Si nanowires and nanoparticles. In each case, the alkyl-terminated surfaces have been compared to the native oxidized and H-terminated surfaces. (orig.)

  11. Quantitative study on crack of meso-damage and fracture concrete ...

    Indian Academy of Sciences (India)

    lysis of the meso-fracture process of concrete materials is performed. ... the result of the accumulation and development of damage and cracks at the meso-level. ... characteristics of concrete under uniaxial compression used fractal theory, and ...

  12. Imaging the internal structure of fluid upflow zones with detailed digital Parasound echosounder surveys

    Science.gov (United States)

    Spiess, V.; Zuehlsdorff, L.; von Lom-Keil, H.; Schwenk, T.

    2001-12-01

    Sites of venting fluids both with continuous and episodic supply often reveal complex surface and internal structures, which are difficult to image and cause problems to transfer results from local sampling towards a structural reconstruction and a quantification of (average) flux rates. Detailed acoustic and seismic surveys would be required to retrieve this information, but also an appropriate environment, where fluid migration can be properly imaged from contrasts to unaffected areas. Hemipelagic sediments are most suitable, since typically reflectors are coherent and of low lateral amplitude variation and structures are continuous over distances much longer than the scale of fluid migration features. During RV Meteor Cruise M473 and RV Sonne Cruise SO 149 detailed studies were carried out in the vicinity of potential fluid upflow zones in the Lower Congo Basin at 5oS in 3000 m water depth and at the Northern Cascadia Margin in 1000 m water depth. Unexpected sampling of massive gas hydrates from the sea floor as well as of carbonate concretions, shell fragments and different liveforms indicated active fluid venting in a typically hemipelagic realm. The acoustic signature of such zones includes columnar blanking, pockmark depressions at the sea floor, association with small offset faults (ParaDigMA System for further processing and display, to image the spatial structure of the upflow zones. Due to the high data density amplitudes and other acoustic properties could be investigated in a 3D volume and time slices as well as reflector surfaces were analyzed. Pronounced lateral variations of reflection amplitudes within a complex pattern indicate potential pathways for fluid/gas migration and occurrences of near-surface gas hydrate deposits, which may be used to trace detailed surface evidence from side scan sonar imaging down to depth and support dedicated sampling.

  13. Copepod faecal pellet transfer through the meso- and bathypelagic layers in the Southern Ocean in spring

    Science.gov (United States)

    Belcher, Anna; Manno, Clara; Ward, Peter; Henson, Stephanie A.; Sanders, Richard; Tarling, Geraint A.

    2017-03-01

    The faecal pellets (FPs) of zooplankton can be important vehicles for the transfer of particulate organic carbon (POC) to the deep ocean, often making large contributions to carbon sequestration. However, the routes by which these FPs reach the deep ocean have yet to be fully resolved. We address this by comparing estimates of copepod FP production to measurements of copepod FP size, shape, and number in the upper mesopelagic (175-205 m) using Marine Snow Catchers, and in the bathypelagic using sediment traps (1500-2000 m). The study is focussed on the Scotia Sea, which contains some of the most productive regions in the Southern Ocean, where epipelagic FP production is likely to be high. We found that, although the size distribution of the copepod community suggests that high numbers of small FPs are produced in the epipelagic, small FPs are rare in the deeper layers, implying that they are not transferred efficiently to depth. Consequently, small FPs make only a minor contribution to FP fluxes in the meso- and bathypelagic, particularly in terms of carbon. The dominant FPs in the upper mesopelagic were cylindrical and elliptical, while ovoid FPs were dominant in the bathypelagic. The change in FP morphology, as well as size distribution, points to the repacking of surface FPs in the mesopelagic and in situ production in the lower meso- and bathypelagic, which may be augmented by inputs of FPs via zooplankton vertical migrations. The flux of carbon to the deeper layers within the Southern Ocean is therefore strongly modulated by meso- and bathypelagic zooplankton, meaning that the community structure in these zones has a major impact on the efficiency of FP transfer to depth.

  14. Acid-base and coordination properties of Meso-substituted porphyrins in nonaqueous solutions

    Science.gov (United States)

    Pukhovskaya, S. G.; Nam, Dao Tkhe; Fien, Chan Ding; Domanina, E. N.; Ivanova, Yu. B.; Semeikin, A. S.

    2017-09-01

    Acid-base and coordination properties of alkyl and aryl meso-substituted porphyrins are studied spectrophotometrically in nonaqueous solutions. It is found that the nature of the substituent greatly affects the basicity of ligands for porphyrins characterized by a flat structure of macrocycle. The electronic effects of substituents have a much weaker influence on the kinetics of complexing. These effects could be due to the opposite orientation of some factors: an increase in the basicity and stability of the N-H bonds of porphyrin reaction centers. Dissociation constants p K b of the cationic forms of meso-substituted derivatives of porphyrin are measured. The values of p K b are in good agreement with classic concepts of the nature of substituents, particularly those indirectly included in the macrocycle through phenyl buffer rings.

  15. Hydrothermal synthesis of meso porous silica MCM-41 using commercial sodium silicate

    International Nuclear Information System (INIS)

    Melendez O, H. I.; Mercado S, A.; Garcia C, L. A.; Castruita, G.; Perera M, Y A.

    2013-01-01

    In this work, ordered meso porous silica MCM-41 was prepared by hydrothermal synthesis using industrial-grade sodium silicate (Na 2 SiO 3 ) as silica source, hexadecyltrimethyl-ammonium bromide (CTAB) as template agent and ethyl acetate as ph regulator. The influence of CTAB/SiO 2 molar ratio, reaction time, aging temperature, and co-surfactant type on the structural and morphological properties of the obtained silica was studied. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption isotherms. Ordered meso porous MCM-41 silica was obtained at 80 C by using a range of CTAB/SiO 2 molar ratio from 0.35 to 0.71 and reaction times up to 72 h and isopropanol (i-Pr OH) as co-surfactant. (Author)

  16. Optogenetic stimulation of a meso-scale human cortical model

    Science.gov (United States)

    Selvaraj, Prashanth; Szeri, Andrew; Sleigh, Jamie; Kirsch, Heidi

    2015-03-01

    Neurological phenomena like sleep and seizures depend not only on the activity of individual neurons, but on the dynamics of neuron populations as well. Meso-scale models of cortical activity provide a means to study neural dynamics at the level of neuron populations. Additionally, they offer a safe and economical way to test the effects and efficacy of stimulation techniques on the dynamics of the cortex. Here, we use a physiologically relevant meso-scale model of the cortex to study the hypersynchronous activity of neuron populations during epileptic seizures. The model consists of a set of stochastic, highly non-linear partial differential equations. Next, we use optogenetic stimulation to control seizures in a hyperexcited cortex, and to induce seizures in a normally functioning cortex. The high spatial and temporal resolution this method offers makes a strong case for the use of optogenetics in treating meso scale cortical disorders such as epileptic seizures. We use bifurcation analysis to investigate the effect of optogenetic stimulation in the meso scale model, and its efficacy in suppressing the non-linear dynamics of seizures.

  17. Vapor phase versus liquid phase grafting of meso-porous alumina

    NARCIS (Netherlands)

    Sripathi, V.G.P.; Mojet, Barbara; Nijmeijer, Arian; Benes, Nieck Edwin

    2013-01-01

    Functionalization of meso-porous c-alumina has been performed by grafting of 3-Aminopropyltrimethoxysilane (3APTMS) simultaneously from either the liquid phase or from the vapor phase. In both cases, after grafting nitrogen physisorption indicates that the materials remain meso-porous with

  18. Fabrication of Meso-Porous Gamma-Alumina Films by Sol-Gel and Gel Casting Processes for Making Moisture Sensors

    Directory of Open Access Journals (Sweden)

    Kalyan Kumar Mistry

    2007-04-01

    Full Text Available Meso-porous g-Al2O3 film may be used as a highly sensitive trace moisture sensor. The crack-free alumina film was developed using a combination of sol-gel and tape casting processes, which produce high porosity, high surface area and small pore dimensions in the range of few nano-meter at uniform distribution. Sol-gel processes are well known in nano-technology and nano-material preparation, but it is difficult to make crack-free thick or thin films using this method. Tape cast methods are used for the fabrication of flexible crack-free thick ceramic sheets. Our objective was to develop nano-structured, crack-free, transparent Al2O3 film a few microns thick, has a highly porous and stable crystallographic nature. A metallic paste was printed by screen printing on both side of the film surface for electrodes to form a sensitive element. A silver wire (dia j=0.1mm lead was connected to a grid structure electrode using a silver paste spot for fine joining. Alumina is absorbs moisture molecules into its meso-porous layer and changes its electrical characteristics according to the moisture content, its dielectric constant increase as moisture increase. Moisture molecules can be conceived of as dipoles in random state before the application of an electric field. When the dipole orientation was changed from random to an equilibrium state under the application of external field, a large change in dielectric constant was observed. The number of water molecules absorbed determines the electrical impedance of the capacitor, which in turn is proportional to water vapor pressure.

  19. Synthesis of hierarchically meso-macroporous TiO2/CdS heterojunction photocatalysts with excellent visible-light photocatalytic activity.

    Science.gov (United States)

    Zhao, Haixin; Cui, Shu; Yang, Lan; Li, Guodong; Li, Nan; Li, Xiaotian

    2018-02-15

    Photocatalysts with a hierarchically porous structure have attracted considerable attention owing to their wide pore size distribution and high surface area, which enhance the efficiency of transporting species to active sites. In this study, hierarchically meso-macroporous TiO 2 photocatalysts decorated with highly dispersed CdS nanoparticles were synthesized via hydrolysis, followed by a hydrothermal treatment. The textural mesopores and interconnected pore framework provided more accessible active sites and efficient mass transport for the photocatalytic process. The light collection efficiency was enhanced because of multiple scattering of incident light in the macropores. Moreover, the formation of a heterojunction between the CdS and TiO 2 nanoparticles extended the photoresponse of TiO 2 to the visible-light range and enhanced the charge separation efficiency. Therefore, the hierarchically meso-macroporous TiO 2 /CdS photocatalysts exhibited excellent photocatalytic activity for the degradation of rhodaming B under visible-light irradiation. Trapping experiments demonstrated that superoxide radicals (O 2 - ) and hydroxyl radicals (OH) were the main active species in photocatalysis. A reasonable photocatalytic mechanism of TiO 2 /CdS heterojunction photocatalysts was also presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Evolution of Meso-Cenozoic lithospheric thermal-rheological structure in the Jiyang sub-basin, Bohai Bay Basin, eastern North China Craton

    Science.gov (United States)

    Xu, Wei; Qiu, Nansheng; Wang, Ye; Chang, Jian

    2018-01-01

    The Meso-Cenozoic lithospheric thermal-rheological structure and lithospheric strength evolution of the Jiyang sub-basin were modeled using thermal history, crustal structure, and rheological parameter data. Results indicate that the thermal-rheological structure of the Jiyang sub-basin has exhibited obvious rheological stratification and changes over time. During the Early Mesozoic, the uppermost portion of the upper crust, middle crust, and the top part of the upper mantle had a thick brittle layer. During the early Early Cretaceous, the top of the middle crust's brittle layer thinned because of lithosphere thinning and temperature increase, and the uppermost portion of the upper mantle was almost occupied by a ductile layer. During the late Early Cretaceous, the brittle layer of the middle crust and the upper mantle changed to a ductile one. Then, the uppermost portion of the middle crust changed to a thin brittle layer in the late Cretaceous. During the early Paleogene, the thin brittle layer of the middle crust became even thinner and shallower under the condition of crustal extension. Currently, with the decrease in lithospheric temperature, the top of the upper crust, middle crust, and the uppermost portion of the upper mantle are of a brittle layer. The total lithospheric strength and the effective elastic thickness ( T e) in Meso-Cenozoic indicate that the Jiyang sub-basin experienced two weakened stages: during the late Early Cretaceous and the early Paleogene. The total lithospheric strength (approximately 4-5 × 1013 N m-1) and T e (approximately 50-60 km) during the Early Mesozoic was larger than that after the Late Jurassic (2-7 × 1012 N m-1 and 19-39 km, respectively). The results also reflect the subduction, and rollback of Pacific plate is the geodynamic mechanism of the destruction of the eastern North China Craton.

  1. The structure of reconstructed chalcopyrite surfaces

    Science.gov (United States)

    Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas

    2018-03-01

    Chalcopyrite (CuFeS2) surfaces are of major interest for copper exploitation in aqueous solution, called leaching. Since leaching is a surface process knowledge of the surface structure, bonding pattern and oxidation states is important for improving the efficiency. At present such information is not available from experimental studies. Therefore a detailed computational study of chalcopyrite surfaces is performed. The structures of low-index stoichiometric chalcopyrite surfaces {hkl} h, k, l ∈ {0, 1, 2} have been studied with density functional theory (DFT) and global optimization strategies. We have applied ab initio molecular dynamics (MD) in combination with simulated annealing (SA) in order to explore possible reconstructions via a minima hopping (MH) algorithm. In almost all cases reconstruction involving substantial rearrangement has occurred accompanied by reduction of the surface energy. The analysis of the change in the coordination sphere and migration during reconstruction reveals that S-S dimers are formed on the surface. Further it was observed that metal atoms near the surface move toward the bulk forming metal alloys passivated by sulfur. The obtained surface energies of reconstructed surfaces are in the range of 0.53-0.95 J/m2.

  2. Hydrothermal synthesis of meso porous silica MCM-41 using commercial sodium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Melendez O, H. I.; Mercado S, A.; Garcia C, L. A.; Castruita, G.; Perera M, Y A., E-mail: ivan_melendez380@hotmail.com [Centro de Investigacion en Quimica Aplicada, Bldv. Enrique Reyna Hermosillo No. 140, Saltillo 25294, Coahuila (Mexico)

    2013-08-01

    In this work, ordered meso porous silica MCM-41 was prepared by hydrothermal synthesis using industrial-grade sodium silicate (Na{sub 2}SiO{sub 3}) as silica source, hexadecyltrimethyl-ammonium bromide (CTAB) as template agent and ethyl acetate as ph regulator. The influence of CTAB/SiO{sub 2} molar ratio, reaction time, aging temperature, and co-surfactant type on the structural and morphological properties of the obtained silica was studied. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption isotherms. Ordered meso porous MCM-41 silica was obtained at 80 C by using a range of CTAB/SiO{sub 2} molar ratio from 0.35 to 0.71 and reaction times up to 72 h and isopropanol (i-Pr OH) as co-surfactant. (Author)

  3. Scaling of water vapor in the meso-gamma (2-20km) and lower meso-beta (20-50km) scales from tall tower time series

    Science.gov (United States)

    Pressel, K. G.; Collins, W.; Desai, A. R.

    2011-12-01

    Deficiencies in the parameterization of boundary layer clouds in global climate models (GCMs) remains one of the greatest sources of uncertainty in climate change predictions. Many GCM cloud parameterizations, which seek to include some representation of subgrid-scale cloud variability, do so by making assumptions regarding the subgrid-scale spatial probability density function (PDF) of total water content. Properly specifying the form and parameters of the total water PDF is an essential step in the formulation of PDF based cloud parameterizations. In the cloud free boundary layer, the PDF of total water mixing ratio is equivalent to the PDF of water vapor mixing ratio. Understanding the PDF of water vapor mixing ratio in the cloud free atmosphere is a necessary step towards understanding the PDF of water vapor in the cloudy atmosphere. A primary challenge in empirically constraining the PDF of water vapor mixing ratio is a distinct lack of a spatially distributed observational dataset at or near cloud scale. However, at meso-beta (20-50km) and larger scales, there is a wealth of information on the spatial distribution of water vapor contained in the physically retrieved water vapor profiles from the Atmospheric Infrared Sounder onboard NASA`s Aqua satellite. The scaling (scale-invariance) of the observed water vapor field has been suggested as means of using observations at satellite observed (meso-beta) scales to derive information about cloud scale PDFs. However, doing so requires the derivation of a robust climatology of water vapor scaling from in-situ observations across the meso- gamma (2-20km) and meso-beta scales. In this work, we present the results of the scaling of high frequency (10Hz) time series of water vapor mixing ratio as observed from the 447m WLEF tower located near Park Falls, Wisconsin. Observations from a tall tower offer an ideal set of observations with which to investigate scaling at meso-gamma and meso-beta scales requiring only the

  4. [Distribution pattern of meso-micro soil fauna in Eucalyptus grandis plantation].

    Science.gov (United States)

    Huang, Yumei; Zhang, Jian; Yang, Wanqin

    2006-12-01

    In this paper, meso-micro soil fauna were extracted and collected by Baermann's and Tullgren' s method, and their distribution pattern in the Eucalyptus grandis plantation of Hongya County, Sichuan Province was studied. A total of 13 550 specimens were collected, belonging to 6 phyla, 13 classes, and 26 orders. Acarina, Nematoda, Collembola were the dominant groups, and Enchytraeidae was the frequent one. The group and individual numbers of meso-micro soil fauna varied with seasons, being the maximum in autumn or winter, fewer in summer, and the minimum in spring. The density of meso-micro soil fauna in soil profile decreased rapidly with increasing soil depth, but a converse distribution was observed from time to time in 5 - 10 cm and 10 - 15 cm soil layers. The meso-micro soil fauna collected by Baermann's and Tullgren's method had a density of 3. 333 x 10(3) - 2. 533 x 10(5) ind x m(-2) and 1.670 x 10(2) - 2.393 x 10(5) ind x m(-2), respectively, and the decreasing rate of the density with the increase of soil depth was higher for those collected by Tullgren's method. The density-group index of meso-micro soil fauna in the E. grandis plantation was the lowest in spring, but the highest in autumn or summer. There were no significant differences in the density of meso-micro soil fauna and in the density-group index between E. grandis plantation and Quercus acutissima secondary forest.

  5. Electronic structure of incident carbon ions on a graphite surface

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Takeuchi, Takae; Yamamoto, Masao.

    1997-01-01

    The electronic structure of an incident carbon ion on a graphite surface is discussed on the basis of ab initio molecular orbital calculations. A carbon cation forms a covalent bond with the graphite, and a carbon nonion is attracted to the graphite surface through van der Waals interaction. A carbon anion has no stable state on a graphite surface. The charge effects of incident ions become clear upon detailed examination of the electronic structure. (author)

  6. Characterizing the Meso-scale Plasma Flows in Earth's Coupled Magnetosphere-Ionosphere-Thermosphere System

    Science.gov (United States)

    Gabrielse, C.; Nishimura, T.; Lyons, L. R.; Gallardo-Lacourt, B.; Deng, Y.; McWilliams, K. A.; Ruohoniemi, J. M.

    2017-12-01

    NASA's Heliophysics Decadal Survey put forth several imperative, Key Science Goals. The second goal communicates the urgent need to "Determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs...over a range of spatial and temporal scales." Sun-Earth connections (called Space Weather) have strong societal impacts because extreme events can disturb radio communications and satellite operations. The field's current modeling capabilities of such Space Weather phenomena include large-scale, global responses of the Earth's upper atmosphere to various inputs from the Sun, but the meso-scale ( 50-500 km) structures that are much more dynamic and powerful in the coupled system remain uncharacterized. Their influences are thus far poorly understood. We aim to quantify such structures, particularly auroral flows and streamers, in order to create an empirical model of their size, location, speed, and orientation based on activity level (AL index), season, solar cycle (F10.7), interplanetary magnetic field (IMF) inputs, etc. We present a statistical study of meso-scale flow channels in the nightside auroral oval and polar cap using SuperDARN. These results are used to inform global models such as the Global Ionosphere Thermosphere Model (GITM) in order to evaluate the role of meso-scale disturbances on the fully coupled magnetosphere-ionosphere-thermosphere system. Measuring the ionospheric footpoint of magnetospheric fast flows, our analysis technique from the ground also provides a 2D picture of flows and their characteristics during different activity levels that spacecraft alone cannot.

  7. Implications of meso- to micro-scale deformation for fault sealing capacity: Insights from the Lenghu5 fold-and-thrust belt, Qaidam Basin, NE Tibetan Plateau

    Science.gov (United States)

    Xie, Liujuan; Pei, Yangwen; Li, Anren; Wu, Kongyou

    2018-06-01

    As faults can be barriers to or conduits for fluid flow, it is critical to understand fault seal processes and their effects on the sealing capacity of a fault zone. Apart from the stratigraphic juxtaposition between the hanging wall and footwall, the development of fault rocks is of great importance in changing the sealing capacity of a fault zone. Therefore, field-based structural analysis has been employed to identify the meso-scale and micro-scale deformation features and to understand their effects on modifying the porosity of fault rocks. In this study, the Lenghu5 fold-and-thrust belt (northern Qaidam Basin, NE Tibetan Plateau), with well-exposed outcrops, was selected as an example for meso-scale outcrop mapping and SEM (Scanning Electron Microscope) micro-scale structural analysis. The detailed outcrop maps enabled us to link the samples with meso-scale fault architecture. The representative rock samples, collected in both the fault zones and the undeformed hanging walls/footwalls, were studied by SEM micro-structural analysis to identify the deformation features at the micro-scale and evaluate their influences on the fluid flow properties of the fault rocks. Based on the multi-scale structural analyses, the deformation mechanisms accounting for porosity reduction in the fault rocks have been identified, which are clay smearing, phyllosilicate-framework networking and cataclasis. The sealing capacity is highly dependent on the clay content: high concentrations of clay minerals in fault rocks are likely to form continuous clay smears or micro- clay smears between framework silicates, which can significantly decrease the porosity of the fault rocks. However, there is no direct link between the fault rocks and host rocks. Similar stratigraphic juxtapositions can generate fault rocks with very different magnitudes of porosity reduction. The resultant fault rocks can only be predicted only when the fault throw is smaller than the thickness of a faulted bed, in

  8. Meso-level analysis, the missing link in energy strategies

    International Nuclear Information System (INIS)

    Schenk, Niels J.; Moll, Henri C.; Schoot Uiterkamp, Anton J.M.

    2007-01-01

    Energy is essential for human societies. Energy systems, though, are also associated with several adverse environmental effects. So far societies have been unable to successfully change their energy systems in a way that addresses environmental and health concerns. Lack of policy consensus often resulted in so-called 'stop-go' policies, which were identified as some of the most important barriers regarding successful energy transitions. The lack of policy consensus and coherent long-term strategies may result from a lack of knowledge of energy systems' meso-level dynamics. The meso-level involves the dynamic behaviour of the individual system elements and the coupling of individual technologies, resulting in interdependencies and regimes. Energy systems are at the meso-level characterised by two typical aspects, i.e. dynamics driven by interactions between actors, and heterogeneous characteristics of actors. These aspects give rise to the ineffectiveness of traditional energy policies, which is illustrated with examples from the transport sector and household electricity consumption. We found that analysis of energy systems at the meso-level helps to better understand energy systems. To resolve persistent policy issues, the traditional 'one size fits all' energy policies are not sufficient. In order to tackle the difficult issues, 'redesign of system organisation', 'target group approach', or 'target group induced system re-orientation' are needed

  9. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes

    International Nuclear Information System (INIS)

    Caffrey, Martin

    2015-01-01

    A comprehensive and up-to-date review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes is reported. Recent applications of the method for in situ serial crystallography at X-ray free-electron lasers and synchrotrons are described. The lipid cubic phase or in meso method is a robust approach for crystallizing membrane proteins for structure determination. The uptake of the method is such that it is experiencing what can only be described as explosive growth. This timely, comprehensive and up-to-date review introduces the reader to the practice of in meso crystallogenesis, to the associated challenges and to their solutions. A model of how crystallization comes about mechanistically is presented for a more rational approach to crystallization. The possible involvement of the lamellar and inverted hexagonal phases in crystallogenesis and the application of the method to water-soluble, monotopic and lipid-anchored proteins are addressed. How to set up trials manually and automatically with a robot is introduced with reference to open-access online videos that provide a practical guide to all aspects of the method. These range from protein reconstitution to crystal harvesting from the hosting mesophase, which is noted for its viscosity and stickiness. The sponge phase, as an alternative medium in which to perform crystallization, is described. The compatibility of the method with additive lipids, detergents, precipitant-screen components and materials carried along with the protein such as denaturants and reducing agents is considered. The powerful host and additive lipid-screening strategies are described along with how samples that have low protein concentration and cell-free expressed protein can be used. Assaying the protein reconstituted in the bilayer of the cubic phase for function is an important element of quality control and is detailed. Host lipid design for crystallization at low temperatures and for

  10. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Martin, E-mail: martin.caffrey@tcd.ie [Trinity College Dublin, Dublin (Ireland)

    2015-01-01

    A comprehensive and up-to-date review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes is reported. Recent applications of the method for in situ serial crystallography at X-ray free-electron lasers and synchrotrons are described. The lipid cubic phase or in meso method is a robust approach for crystallizing membrane proteins for structure determination. The uptake of the method is such that it is experiencing what can only be described as explosive growth. This timely, comprehensive and up-to-date review introduces the reader to the practice of in meso crystallogenesis, to the associated challenges and to their solutions. A model of how crystallization comes about mechanistically is presented for a more rational approach to crystallization. The possible involvement of the lamellar and inverted hexagonal phases in crystallogenesis and the application of the method to water-soluble, monotopic and lipid-anchored proteins are addressed. How to set up trials manually and automatically with a robot is introduced with reference to open-access online videos that provide a practical guide to all aspects of the method. These range from protein reconstitution to crystal harvesting from the hosting mesophase, which is noted for its viscosity and stickiness. The sponge phase, as an alternative medium in which to perform crystallization, is described. The compatibility of the method with additive lipids, detergents, precipitant-screen components and materials carried along with the protein such as denaturants and reducing agents is considered. The powerful host and additive lipid-screening strategies are described along with how samples that have low protein concentration and cell-free expressed protein can be used. Assaying the protein reconstituted in the bilayer of the cubic phase for function is an important element of quality control and is detailed. Host lipid design for crystallization at low temperatures and for

  11. Study on Detailing Design of Precast Concrete Frame Structure

    Science.gov (United States)

    Lida, Tian; Liming, Li; Kang, Liu; Jiao, Geng; Ming, Li

    2018-03-01

    Taking a certain precast concrete frame structure as an example, this paper introduces the general procedures and key points in detailing design of emulative cast-in-place prefabricated structure from the aspects of structural scheme, precast element layout, shop drawing design and BIM 3D modelling. This paper gives a practical solution for the detailing design of precast concrete frame structure under structural design codes in China.

  12. Recubrimientos meso-estructurados de TiO2-anatasa obtenidos por el método EISA con actividad fotocatalítica

    Directory of Open Access Journals (Sweden)

    Durán, A.

    2010-12-01

    Full Text Available This paper reports the preparation of mesoporous and meso-structured TiO2-anatase thin films using the sol-gel route combining with the evaporation induced self-assembly method (EISA. Titania sols were prepared from TiCl4 using different no-ionic pore generating agents: Pluronic F127, Brij58 and Triton X100. The films were deposited by dipping and then characterised was performed by Fourier Transform Infrared Spectroscopy, Low angle and Graxing X-Ray Difraction and Transmision Electronic Microscopy to analyse the crystallization of the inorganic network and the direction order of the meso-structured porosity. Spectral Ellipsometry studies were performed to obtain the absorption-desorption isotherms and to determine pore size distribution, pore volume and specific surface area and exposed surface area of the films. The photocatalytic activity was studied through the degradation of methyl orange in aqueous solution (c= 3mg/L under ultraviolet-visible light exposure. Thickness, refraction index and contact angles change with the type of substrate used to deposit the films. Higher thickness and low refraction index and contact angle were obtained onto glass-slides substrate. The best photocatalytic activity was obtained for the 0.005 F127 at RH 20-70% and 0.3 Triton at RH 50%, which correspond with lowest pore size and highest Sexp. The TiO2 films obtained with 0.005 F127 at RH 20 and 20-70% and Brij58 at RH 50% show a perfect meso-structured order.En este trabajo se presenta la preparación de recubrimientos mesoporosos y meso-estructurados de TiO2-anatasa combinando el método sol-gel con el método de Autoensamblaje por Evaporación Inducida (EISA. Los soles de titania se prepararon a partir de TiCl4 incorporando distintos surfactantes: Pluronic F127, Brij58 y Tritón X100. Los recubrimientos se depositaron por inmersión y se caracterizaron por Espectroscopia Infrarroja por Transformada de Fourier, Difracción de Rayos X a bajo ángulo y

  13. A comparative study of the pore structures and surfaces of hardened cement pastes of potential use in radioactive waste repositories

    International Nuclear Information System (INIS)

    Rowan, S.M.; Donaldson, L.; White, S.

    1988-02-01

    Measurements of water vapour adsorption at 20 0 C and mercury intrusion have been used to compare the surfaces and pore structures of hardened cement pastes made from ordinary portland cement (OPC) and the additives blast furnace slag (BFS) and pulverised fuel ash (PFA). The results suggest that each additive, after taking part in the hydration reaction with OPC, produces a paste whose gel pore structure is similar to that derived from OPC alone. The BET adsorption surface area of the cement pastes, in the form of half inch diameter coupons was ca. 55 m 2 g -1 and was not influenced by the presence of the additives. However the pastes containing the additives have a larger and better interconnected meso and macropore structure than OPC which may account for larger diffusion coefficients reported elsewhere for caesium ions passing through concrete containing BFS in comparison with a concrete containing OPC alone. (author)

  14. Electronic structure of disordered alloys, surfaces and interfaces

    CERN Document Server

    Turek, Ilja; Kudrnovský, Josef; Šob, Mojmír; Weinberger, Peter

    1997-01-01

    At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu­ microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela­ tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand­ ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul­ tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use ...

  15. Developmentally Regulated Production of meso-Zeaxanthin in Chicken Retinal Pigment Epithelium/Choroid and Retina.

    Science.gov (United States)

    Gorusupudi, Aruna; Shyam, Rajalekshmy; Li, Binxing; Vachali, Preejith; Subhani, Yumna K; Nelson, Kelly; Bernstein, Paul S

    2016-04-01

    meso-Zeaxanthin is a carotenoid that is rarely encountered in nature outside of the vertebrate eye. It is not a constituent of a normal human diet, yet this carotenoid comprises one-third of the primate macular pigment. In the current study, we undertook a systematic approach to biochemically characterize the production of meso-zeaxanthin in the vertebrate eye. Fertilized White Leghorn chicken eggs were analyzed for the presence of carotenoids during development. Yolk, liver, brain, serum, retina, and RPE/choroid were isolated, and carotenoids were extracted. The samples were analyzed on C-30 or chiral HPLC columns to determine the carotenoid composition. Lutein and zeaxanthin were found in all studied nonocular tissues, but no meso-zeaxanthin was ever detected. Among the ocular tissues, the presence of meso-zeaxanthin was consistently observed starting at embryonic day 17 (E17) in the RPE/choroid, several days before its consistent detection in the retina. If RPE/choroid of an embryo was devoid of meso-zeaxanthin, the corresponding retina was always negative as well. This is the first report of developmentally regulated synthesis of meso-zeaxanthin in a vertebrate system. Our observations suggest that the RPE/choroid is the primary site of meso-zeaxanthin synthesis. Identification of meso-zeaxanthin isomerase enzyme in the developing chicken embryo will facilitate our ability to determine the biochemical mechanisms responsible for production of this unique carotenoid in other higher vertebrates, such as humans.

  16. Meso-scale modelling of the heat conductivity effect on the shock response of a porous material

    Science.gov (United States)

    Resnyansky, A. D.

    2017-06-01

    Understanding of deformation mechanisms of porous materials under shock compression is important for tailoring material properties at the shock manufacturing of advanced materials from substrate powders and for studying the response of porous materials under shock loading. Numerical set-up of the present work considers a set of solid particles separated by air representing a volume of porous material. Condensed material in the meso-scale set-up is simulated with a viscoelastic rate sensitive material model with heat conduction formulated from the principles of irreversible thermodynamics. The model is implemented in the CTH shock physics code. The meso-scale CTH simulation of the shock loading of the representative volume reveals the mechanism of pore collapse and shows in detail the transition from a high porosity case typical for abnormal Hugoniot response to a moderate porosity case typical for conventional Hugoniot response. Results of the analysis agree with previous analytical considerations and support hypotheses used in the two-phase approach.

  17. Sol–gel hybrid membranes loaded with meso/macroporous SiO{sub 2}, TiO{sub 2}–P{sub 2}O{sub 5} and SiO{sub 2}–TiO{sub 2}–P{sub 2}O{sub 5} materials with high proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Yolanda, E-mail: castro@icv.csic.es [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Mosa, Jadra, E-mail: jmosa@icv.csic.es [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Aparicio, Mario [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Pérez-Carrillo, Lourdes A.; Vílchez, Susana; Esquena, Jordi [Instituto de Química Avanzada de Cataluña, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona (Spain); Durán, Alicia [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain)

    2015-01-15

    In this work, highly conductive hybrid organic–inorganic membranes loaded with SiO{sub 2}, TiO{sub 2}–P{sub 2}O{sub 5} and SiO{sub 2}–TiO{sub 2}–P{sub 2}O{sub 5} meso/macroporous particles were prepared via a sol–gel process. Meso/macroporous particles were incorporated to hybrid membranes, for improving water retention and enhancing electrochemical performance. These particles with a polymodal pore size distribution were prepared by templating in highly concentrated emulsions, the particles showed a specific surface area between 50 m{sup 2}/g (TiO{sub 2}–P{sub 2}O{sub 5}) and 300 m{sup 2}/g (SiO{sub 2}–TiO{sub 2}–P{sub 2}O{sub 5}). The particles were dispersed in a hybrid silica sol and further sprayed onto glass paper. The films were polymerized and sintered; those loaded with meso/macroporous particles had a homogenous distribution. High temperature proton conductivity measurements confirmed a high water retention. Conductivity of these materials is higher than that of Nafion{sup ®} at higher temperatures (120 °C) (2·10{sup −2} S/cm). This study provides processing guideline to achieve hybrid electrolytes for efficient conduction of protons due to their high surface area and porous structure. - Highlights: • Hybrid electrolyte with meso/macroporous particles were synthesized by sol–gel. • Depositions of hybrid solutions by spraying onto glass substrates were performed. • Proton conductivity was evaluated as a function of composition and porous structure.

  18. Safety factor profile dependence of turbulent structure formation in relevant to internal transport barrier relaxation

    International Nuclear Information System (INIS)

    Tokunaga, S.; Yagi, M.; Itoh, S.-I.; Itoh, K.

    2009-01-01

    Full text: It is widely understood that the improved confinement mode with transport barrier is necessary to achieve the self-ignition condition in ITER. The negative magnetic shear, mean ExB flow shear, and zonal flow are considered to play important roles for ITB formation. In our previous study, it is found that the non-linear interaction between the meso-scale modes produces non-local energy transfer to the off-resonant mode in the vicinity of q min surface and brings global relaxation of the temperature profile involving ITB collapse. Experimental studies indicate that a relationship exists between the ITB formation and safety factor q-profile, with a reversed magnetic shear (RS) configuration. Transitional ITB events occur on the low-order rational resonant surface. The ITB shape and location depend on the q-profile and q min position. These observations indicate that the q-profile might play an essential role in determining the turbulent structure. In this study, the effect of safety factor profile on the ion temperature gradient driven drift wave (ITG) turbulence is investigated using a global non-linear simulation code based on the gyro-fluid model. A heat source and toroidal momentum source are introduced. Dependence of safety factor profiles on ITB formation and its stability is examined to clarify the influence of the radial distribution of the rational surfaces and the q min value. It is found that the nonlinearly excited meso-scale mode in the vicinity of q min depends on the value of q min . A detailed analysis of the structure selection rule is in progress. (author)

  19. The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2

    Science.gov (United States)

    Vionnet, V.; Brun, E.; Morin, S.; Boone, A.; Faroux, S.; Le Moigne, P.; Martin, E.; Willemet, J.-M.

    2012-05-01

    Detailed studies of snow cover processes require models that offer a fine description of the snow cover properties. The detailed snowpack model Crocus is such a scheme, and has been run operationally for avalanche forecasting over the French mountains for 20 yr. It is also used for climate or hydrological studies. To extend its potential applications, Crocus has been recently integrated within the framework of the externalized surface module SURFEX. SURFEX computes the exchanges of energy and mass between different types of surface and the atmosphere. It includes in particular the land surface scheme ISBA (Interactions between Soil, Biosphere, and Atmosphere). It allows Crocus to be run either in stand-alone mode, using a time series of forcing meteorological data or in fully coupled mode (explicit or fully implicit numerics) with atmospheric models ranging from meso-scale models to general circulation models. This approach also ensures a full coupling between the snow cover and the soil beneath. Several applications of this new simulation platform are presented. They range from a 1-D stand-alone simulation (Col de Porte, France) to fully-distributed simulations in complex terrain over a whole mountain range (Massif des Grandes Rousses, France), or in coupled mode such as a surface energy balance and boundary layer simulation over the East Antarctic Ice Sheet (Dome C).

  20. In meso in situ serial X-ray crystallography of soluble and membrane proteins

    International Nuclear Information System (INIS)

    Huang, Chia-Ying; Olieric, Vincent; Ma, Pikyee; Panepucci, Ezequiel; Diederichs, Kay; Wang, Meitian; Caffrey, Martin

    2015-01-01

    A method for performing high-throughput in situ serial X-ray crystallography with soluble and membrane proteins in the lipid cubic phase is described. It works with microgram quantities of protein and lipid (and ligand when present) and is compatible with the most demanding sulfur SAD phasing. The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the β 2 -adrenoreceptor–G s protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at macromolecular

  1. complexes based on meso-substituted dipyrrins

    Indian Academy of Sciences (India)

    Keywords. Coordination polymers; meso-substituted dipyrrins; heteroleptic; acetylacetonato; ... Room temperature magnetic susceptibility measurements were ... After cooling to ambient tem- perature it ... crystals of 1 were obtained from CH2Cl2/ hexane (1. : 1) solution. .... are air-stable, crystalline solids, soluble in common.

  2. Fabrication and properties of meso-macroporous electrodes screen-printed from mesoporous titania nanoparticles for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ma Liang; Liu Min; Peng Tianyou; Fan Ke; Lu Lanlan; Dai Ke

    2009-01-01

    A meso-macroporous TiO 2 film electrode was fabricated by using mesoporous TiO 2 (m-TiO 2 ) nanoparticles through a screen-printing technique in order to efficiently control the main fabrication step of dye-sensitized solar cells (DSSCs). The qualities of the screen-printed m-TiO 2 films were characterized by means of spectroscopy, electron microscopy, nitrogen adsorption-desorption and photoelectrochemical measurements. Under the optimal paste composition and printing conditions, the DSSC based on the meso-macroporous m-TiO 2 film electrode exhibits an energy conversion efficiency of 4.14%, which is improved by 1.70% in comparison with DSSC made with commercially available nonporous TiO 2 nanoparticles (P25, Degussa) electrode printed with a similar paste composition. The meso-macroporous structure within the m-TiO 2 film is of great benefit to the dye adsorption, light absorption and the electrolyte transportation, and then to the improvement of the overall energy conversion efficiency of DSSC.

  3. Synthesis of meso-crystalline Al2O3 nano-platelet coatings using combustion chemical vapor deposition (C-CVD)

    CSIR Research Space (South Africa)

    Dhonge, BP

    2014-09-01

    Full Text Available , National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa b Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India Abstract Meso...

  4. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  5. STUDY OF SUBCELLULAR DISTRIBUTION OF CRYSTALLINE MESO-TETRA(3-PYRIDYLBACTERIOCHLORIN NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Yu. S. Maklygina

    2016-01-01

    Full Text Available The results of the study of subcellular distribution of molecular meso-tetra(3-pyridylbacteriochlorin nanocrystals proposed as therapeutic agents for photodynamic therapy are represented in the article. Investigations and measurement of spectroscopic properties of molecular crystals of near-infrared photosensitizer were conducted using special device complex based on fiber-optic spectrometer. Investigation and analysis of the pattern of subcellular accumulation of meso-tetra(3-pyridylbacteriochlorin in molecular (dimethyl sulfoxide (DMSO as solvent and nanocrystalline forms on different cell lines: human monocytes (THP-1, human cervical cancer cells (HeLa and mouse malignant brain tumor cells (glioma C6. The dynamics of subcellylar accumulation of the agent at concentration of 5 and 10 mg/l was assessed with laser microscope-spectrum analyzer and by confocal microscopy. The study showed that in the course of interaction with cell lines molecular nanocrystals of the agent developed ability to fluorescence. Hence, in the cellular environment meso-tetra(3-pyridyl bacteriochlorin nanoparticles became phototoxic giving opportunities for their use for fluorescence diagnosis and photodynamic therapy. Specific role of meso-tetra(3-pyridylbacteriochlorin in the range of photosensitizers is determined by its spectral characteristics, i.e. absorption and fluorescence in near-infrared band, which allows measuring and affecting on deeper layers of biotissue. Thus, the use of meso-tetra(3-pyridylbacteriochlorin nanoparticles as nanophotosensitizers may improve the efficacy of diagnosis and treatment of deep-seated tumors.

  6. A new concept of the anatomy of the thoracic oesophagus: the meso-oesophagus. Observational study during thoracoscopic esophagectomy.

    Science.gov (United States)

    Cuesta, Miguel A; Weijs, Teus J; Bleys, Ronald L A W; van Hillegersberg, Richard; van Berge Henegouwen, Mark I; Gisbertz, Suzanne S; Ruurda, Jelle P; Straatman, Jennifer; Osugi, Harushi; van der Peet, Donald L

    2015-09-01

    During thoracoscopic oesophageal surgery, we observed not previously described fascia-like structures. Description of similar structures in rectal cancer surgery was of paramount importance in improving the quality of resection. Therefore, we aimed to describe a new comprehensive concept of the surgical anatomy of the thoracic oesophagus with definition of the meso-oesophagus. We retrospectively evaluated 35 consecutive unedited videos of thoracoscopic oesophageal resections for cancer, to determine the surgical anatomy of the oesophageal fascia's vessels and lymphatic drainage. The resulting concept was validated in a prospective study, including 20 patients at three different centres. Additional confirmation was sought by a histologic study of a cadaver's thorax. A thin layer of connective tissue around the infracarinal oesophagus, involving the lymph nodes at the level of the carina, was observed during thoracoscopic esophagectomy in 32 of the 35 patients included in the retrospective study and in 19 of the 20 patients included in the prospective study. A thick fascia-like structure from the upper thoracic aperture to the lower thoracic aperture was visualized in all patients. This fascia is encountered between the descending aorta and left aspect of the infracarinal oesophagus. Above the carina it expands on both sides of the oesophagus to lateral mediastinal structures. This fascia contains oesophageal vessels, lymph vessels and nodes and nerves. The histologic study confirmed these findings. Here we described the concept of the "meso-oesophagus". Applying the description of the meso-oesophagus will create a better understanding of the oesophageal anatomy, leading to more adequate and reproducible surgery.

  7. The detailed snowpack scheme Crocus and its implementation in SURFEX v7

    Science.gov (United States)

    Vionnet, V.; Brun, E.; Morin, S.; Boone, A.; Faroux, S.; Le Moigne, P.; Martin, E.; Willemet, J.-M.

    2011-09-01

    Detailed studies of snow cover processes require models that offer a fine description of the snow cover properties. The detailed snowpack model Crocus is such a scheme, and has been run operationally for avalanche forecasting over the French mountains for 20 years. It is also used for climate or hydrological studies. To extend its potential applications, Crocus has been recently integrated within the framework of the externalized surface module SURFEX. SURFEX computes the exchanges of energy and mass between different types of surface, and the atmosphere and includes in particular the land surface scheme ISBA (Interactions between Soil, Biosphere, and Atmosphere). It allows Crocus to be run either in stand-alone mode, using a time series of forcing meteorological data or in fully coupled mode (explicit or fully implicit numerics) with atmospheric models ranging from meso-scale models to general circulation models. This approach also insures a full coupling between the snow cover and the soil beneath. Several applications of this new simulation platform are presented. They range from a 1D stand-alone simulation (Col de Porte, France) to fully-distributed simulations in complex terrain, either in forced mode over a whole mountain range (Massif des Grandes Rousses, France), or in coupled mode such as a snow transport simulation (Col du Lac Blanc, France), or a surface energy balance and boundary layer simulation over a polar ice cap (Dome C, Antarctica).

  8. Advances on surface structural determination by LEED

    International Nuclear Information System (INIS)

    Soares, Edmar A; De Carvalho, Vagner E; De Castilho, Caio M C

    2011-01-01

    In the last 40 years, low energy electron diffraction (LEED) has proved to be the most reliable quantitative technique for surface structural determination. In this review, recent developments related to the theory that gives support to LEED structural determination are discussed under a critical analysis of the main theoretical approximation-the muffin-tin calculation. The search methodologies aimed at identifying the best matches between theoretical and experimental intensity versus voltage curves are also considered, with the most recent procedures being reviewed in detail. (topical review)

  9. A Multiscale Surface Water Temperature Data Acquisition Platform: Tests on Lake Geneva, Switzerland

    Science.gov (United States)

    Barry, D. A.; Irani Rahaghi, A.; Lemmin, U.; Riffler, M.; Wunderle, S.

    2015-12-01

    An improved understanding of surface transport processes is necessary to predict sediment, pollutant and phytoplankton patterns in large lakes. Lake surface water temperature (LSWT), which varies in space and time, reflects meteorological and climatological forcing more than any other physical lake parameter. There are different data sources for LSWT mapping, including remote sensing and in situ measurements. Satellite data can be suitable for detecting large-scale thermal patterns, but not meso- or small scale processes. Lake surface thermography, investigated in this study, has finer resolution compared to satellite images. Thermography at the meso-scale provides the ability to ground-truth satellite imagery over scales of one to several satellite image pixels. On the other hand, thermography data can be used as a control in schemes to upscale local measurements that account for surface energy fluxes and the vertical energy budget. Independently, since such data can be collected at high frequency, they can be also useful in capturing changes in the surface signatures of meso-scale eddies and thus to quantify mixing processes. In the present study, we report results from a Balloon Launched Imaging and Monitoring Platform (BLIMP), which was developed in order to measure the LSWT at meso-scale. The BLIMP consists of a small balloon that is tethered to a boat and equipped with thermal and RGB cameras, as well as other instrumentation for location and communication. Several deployments were carried out on Lake Geneva. In a typical deployment, the BLIMP is towed by a boat, and collects high frequency data from different heights (i.e., spatial resolutions) and locations. Simultaneous ground-truthing of the BLIMP data is achieved using an autonomous craft that collects a variety of data, including in situ surface/near surface temperatures, radiation and meteorological data in the area covered by the BLIMP images. With suitable scaling, our results show good consistency

  10. Isolation of two tissue-specific Drosophila paired box genes, Pox meso and Pox neuro.

    OpenAIRE

    Bopp, D; Jamet, E; Baumgartner, S; Burri, M; Noll, M

    1989-01-01

    Two new paired domain genes of Drosophila, Pox meso and Pox neuro, are described. In contrast to the previously isolated paired domain genes, paired and gooseberry, which contain both a paired and a homeo-domain (PHox genes), Pox meso and Pox neuro possess no homeodomain. Evidence suggesting that the new genes encode tissue-specific transcriptional factors and belong to the same regulatory cascade as the other paired domain genes includes (i) tissue-specific expression of Pox meso in the soma...

  11. Modelling daily sediment yield from a meso-scale catchment, a case study in SW Poland

    International Nuclear Information System (INIS)

    Keesstra, S. D.; Schoorl, J.; Temme, A. J. A. M.

    2009-01-01

    For management purposes it is important to be able to assess the sediment yield of a catchment. however, at this moment models designed for estimating sediment yield are only capable to give either very detailed storm-based information or year averages. The storm-based models require input data that are not available for most catchment. However, models that estimate yearly averages, ignore a lot of other detailed information, like daily discharge and precipitation data. There are currently no models available that model sediment yield on the temporal scale of one day and the spatial scale of a meso-scale catchment, without making use of very detailed input data. To fill this scientific and management gap, landscape evolution model LAPSUS has been adapted to model sediment yield on a daily basis. This model has the water balance as a base. To allow calibration with the discharge at the outlet, a subsurface flow module has been added to the model. (Author) 12 refs.

  12. Modelling daily sediment yield from a meso-scale catchment, a case study in SW Poland

    Energy Technology Data Exchange (ETDEWEB)

    Keesstra, S. D.; Schoorl, J.; Temme, A. J. A. M.

    2009-07-01

    For management purposes it is important to be able to assess the sediment yield of a catchment. however, at this moment models designed for estimating sediment yield are only capable to give either very detailed storm-based information or year averages. The storm-based models require input data that are not available for most catchment. However, models that estimate yearly averages, ignore a lot of other detailed information, like daily discharge and precipitation data. There are currently no models available that model sediment yield on the temporal scale of one day and the spatial scale of a meso-scale catchment, without making use of very detailed input data. To fill this scientific and management gap, landscape evolution model LAPSUS has been adapted to model sediment yield on a daily basis. This model has the water balance as a base. To allow calibration with the discharge at the outlet, a subsurface flow module has been added to the model. (Author) 12 refs.

  13. Las comunidades locales como estructuras meso.

    Directory of Open Access Journals (Sweden)

    Ferrand, Alexis

    2002-09-01

    Full Text Available Entre el nivel micro y el nivel macro: meso. Si el nivel macro está definido por la regulación nacional, estatal o del mercado y el nivel micro por la regulación interpersonal, una agencia de regulación intermediaria de mayor importancia ha sido definida como “comunidad local” (Wellman, Fischer. Aparte de las dimensiones organizacionales (organizaciones locales, clubes, tiendas... e institucionales (poder local, partidos... locales, es posible definir algunas propiedades estructurales pertinentes de los sistemas de relaciones interpersonales privadas: uno es el grado de “cerrado” (closure local (Barnes: redes locales vs. transversales, o la “dualidad” de estos sistemas. Apoyándose en la idea de que la eficiencia de los “puentes” reside en el tipo de cliques que conectan (Lin, es posible definir tipos variados de micro-estructuras, cuyas distribuciones en diferentes localidades son indicadores sucedáneos o aproximaciones de las diferentes meso estructuras de sistemas relacionales como combinaciones de redes “locales” y “no locales”.

  14. Meso Mechanical Analysis of AC Mixture Response

    NARCIS (Netherlands)

    Woldekidan, M.F.; Huurman, M.; Vaccari, E.; Poot, M.

    2012-01-01

    Ongoing research into performance modeling of Asphalt Concrete (AC) mixtures using meso mechanics approaches is being undertaken at Delft University of Technology (TUD). The approach has already been successfully employed for evaluating the long term performance of porous asphalt concrete. The work

  15. Control the Morphologies and the Pore Architectures of Meso porous Silicas through a Dual-Templating Approach

    International Nuclear Information System (INIS)

    Wang, H.; Chen, H.; Xu, Z.; Wang, S.; Li, B.; Li, Y.

    2012-01-01

    Meso porous silica nanospheres were prepared using a chiral cationic low-molecular-weight amphiphile and organic solvents such as toluene, cyclohexane, and tetrachlorocarbon through a dual-templating approach. X-ray diffraction, nitrogen sorption, field emission scanning electron microscopy, and transmission electron microscopy techniques have been used to characterize the meso porous silicas. The volume ratio of toluene to water plays an important role in controlling the morphologies and the pore architectures of the meso porous silicas. It was also found that meso porous silica nano flakes can be prepared by adding tetrahydrofuran to the reaction mixtures.

  16. Surface electron structure of short-period semiconductor superlattice

    International Nuclear Information System (INIS)

    Bartos, I.; Czech Academy Science, Prague,; Strasser, T.; Schattke, W.

    2004-01-01

    Full text: Semiconductor superlattices represent man-made crystals with unique physical properties. By means of the directed layer-by-layer molecular epitaxy growth their electric properties can be tailored (band structure engineering). Longer translational periodicity in the growth direction is responsible for opening of new electron energy gaps (minigaps) with surface states and resonances localized at superlattice surfaces. Similarly as for the electron structure of the bulk, a procedure enabling to modify the surface electron structure of superlattices is desirable. Short-period superlattice (GaAs) 2 (AlAs) 2 with unreconstructed (100) surface is investigated in detail. Theoretical description in terms of full eigenfunctions of individual components has to be used. The changes of electron surface state energies governed by the termination of a periodic crystalline potential, predicted on simple models, are confirmed for this system. Large surface state shifts are found in the lowest minigap of the superlattice when this is terminated in four different topmost layer configurations. The changes should be observable in angle resolved photoelectron spectroscopy as demonstrated in calculations based on the one step model of photoemission. Surface state in the center of the two dimensional Brillouin zone moves from the bottom of the minigap (for the superlattice terminated by two bilayers of GaAs) to its top (for the superlattice terminated by two bilayers of AlAs) where it becomes a resonance. No surface state/resonance is found for a termination with one bilayer of AlAs. The surface state bands behave similarly in the corresponding gaps of the k-resolved section of the electron band structure. The molecular beam epitaxy, which enables to terminate the superlattice growth with atomic layer precision, provides a way of tuning the superlattice surface electron structure by purely geometrical means. The work was supported by the Grant Agency of the Academy of Sciences

  17. Novel treatment option for MUC16-positive malignancies with the targeted TRAIL-based fusion protein Meso-TR3

    International Nuclear Information System (INIS)

    Garg, Gunjal; Spitzer, Dirk; Gibbs, Jesse; Belt, Brian; Powell, Matthew A; Mutch, David G; Goedegebuure, Peter; Collins, Lynne; Piwnica-Worms, David; Hawkins, William G

    2014-01-01

    engagement of the extrinsic death receptor pathway. Compared to non-targeted TR3, Meso-TR3 displayed a much reduced killing potency on cells that lack MUC16. Soluble Meso-TR3 targets the cancer biomarker MUC16 in vitro and in vivo. Following attachment to the tumor via surface bound MUC16, Meso-TR3 acquires full activation with superior killing profiles compared to non-targeted TR3, while its bioactivity is substantially reduced on cells that lack the tumor marker. This prodrug phenomenon represents a highly desirable property because it has the potential to enhance cancer killing with fewer side-effects than non-targeted TRAIL-based therapeutics. Thus, further exploration of this novel fusion protein is warranted as a possible therapeutic for patients with MUC16-positive malignancies

  18. Genotoxicity of meso-2,3-dimercapto succinic acid-coated silver sulfide quantum dot

    Directory of Open Access Journals (Sweden)

    Deniz Özkan Vardar

    2015-06-01

    Full Text Available Nanotecnology products have been used in wide applications in chemistry, electronics, energy generation, and medicine. Despite significant interest in developing quantum dots (QDs for biomedical applications, many researchers are convinced that QDs will never be used for the treatment of patients because of their potential toxicity. In various in vitro cell culture studies, the cytotoxic properties of some QD have been demonstrated and they have been suggested to be toxic in humans. In this study, the cytotoxic properties of Ag2S-(Meso-2,3-Dimercapto Succinic acid nanomaterials in V79 cells (Chinese lung fibroblast cell line were determined by MTT assay. The genotoxic effects of Ag2S-(Meso-2,3-Dimercapto Succinic acid were evaluated by the alkaline single cell gel electrophoresis. The cells were treated with Ag2S-(Meso-2,3-Dimercapto Succinic acid at the concentrations of 5- 2000 µg/ml. No cytotoxic effect of Ag2S-(Meso-2,3-Dimercapto Succinic acid at all concentrations studied was observed. No significant increases in DNA damage were found at the studied concentrations when compared to negative control in V79 cells. In conclusion, further in vitro and in vivo studies are required to determine the safety doses of Ag2S-(Meso-2,3-Dimercapto Succinic acid.

  19. Meso-optical Fourier transform microscope with double focusing

    International Nuclear Information System (INIS)

    Batusov, Yu.A.; Soroko, L.M.; Tereshchenko, V.V.

    1992-01-01

    The meso-optical Fourier transform microscope (MFTM) with double focusing for particle tracks of low ionization level in the nuclear emulsion is described. It is shown experimentally that this device enables one to get high concentration of information about the position of the particle track in the nuclear emulsion and thus to increase the signal-to-noise ratio. It is shown that spreading of the meso-optical image of the particle track in the sagittal section of the MFTM can be eliminated completely in the frame of the diffraction limit. The number of the additional degrees of freedom in this new MFTM system along depth coordinate is equal to 20 in comparison to single degree of freedom in the Fourier transform microscope of the direct observation. 10 refs.; 15 figs

  20. Simulation of Wind-Driven Snow Redistribution at a High-Elevation Alpine Site Using a Meso-Scale Atmospheric Model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2012-12-01

    In alpine regions, blowing snow events strongly influence the temporal and spatial evolution of the snow depth distribution throughout the winter season. We recently developed a new simulation system to gain understanding on the complex processes that drive the redistribution of snow by the wind in complex terrain. This new system couples directly the detailed snow-pack model Crocus with the meso-scale atmospheric model Meso-NH. A blowing snow scheme allows Meso-NH to simulate the transport of snow particles in the atmosphere. We used the coupled system to study a blowing snow event with snowfall that occurred in February 2011 in the Grandes Rousses range (French Alps). Three nested domains at an horizontal resolution of 450, 150 and 50 m allow the model to simulate the complex 3D precipitation and wind fields around our experimental site (2720 m a.s.l.) during this 22-hour event. Wind-induced snow transport is activated over the domains of higher resolution (150 and 50 m). We firstly assessed the ability of the model to reproduce atmospheric flows at high resolution in alpine terrain using a large dataset of observations (meteorological data, vertical profile of wind speed). Simulated blowing snow fluxes are then compared with measurements from SPC and mechanical snow traps. Finally a map of snow erosion and accumulation produced by Terrestrial Laser measurements allows to evaluate the quality of the simulated snow depth redistribution.

  1. Multisensor satellite observations of meso- and submesoscale surface circulation in the Liguro-Provençal Basin

    Science.gov (United States)

    Karimova, Svetlana; Alvera-Azcarate, Aida

    2017-04-01

    Despite great efforts being paid to studying circulation of the Western Mediterranean Basin and the factors triggering bioproductivity of its marine ecosystem, the evidence provided by satellite imagery has not been fully analysed yet. In the present paper, we concentrate our attention on mesoscale and submesoscale circulation features of the Liguro-Provençal Basin captured by satellite radiometer, spectroradiometer, and radar images. Using such a dataset makes it possible to observe the circulation features from a wide spatial range, from the basin scale through mesoscale to the scales of a few kilometers. Mesoscale features in this study are being mostly observed with thermal infrared imagery retrieved by AVHRR and AATSR sensors. Special attention in the work was paid to an analysis of the data coming from a geostationary satellite, namely ones provided by SEVIRI. Due to their uniquely high temporal resolution, such imagery allows observing circulation features in their evolution. During the winter blooming events, surface circulation at meso- to submesoscales in the region of interest was additionally highlighted by images obtained in the visible range. Full spatial resolution images provided by Envisat MERIS, Sentinel-2 MSI, and Landsat TM/ETM+/OLI made the greatest contribution to this part. The smallest scales (namely submesoscale) are being observed with synthetic aperture radar (SAR) imagery provided by Envisat ASAR and Sentinel-1 SAR. During an analysis of SAR images, it was noted that there was strikingly great amount of biogenic surfactants on the water surface in the region of interest. Apparently, low biological productivity typical for the Western Mediterranean ecosystem is not a limiting factor for the formation of surfactant films seen in SAR imagery. This finding though requires further consideration in some other researches, and hereafter we just benefited from the presence of surfactants, because they behave as good tracers of surface currents

  2. Comparative efficiency of racemic- and meso-2,3-dimercaptosuccinic acid to mobilize mercury in rats

    International Nuclear Information System (INIS)

    Prester, Lj.; Restek Samarzija, N.; Blanusa, M.; Piasek, M.; Kostial, K.; Jones, M.M.; Singh, P.K.

    1996-01-01

    Two stereoisomeric forms of chelating agent 2,3-dimercaptosuccinic acid (DMSA), meso- and racemic (rac-) DMSA, were compared for mercury mobilization in rats (Experiment 1). Acute oral toxicity of both chelators (LD 50 ) was also tested (Experiment 2). Experiments were carried out on 6-7 weeks old albino Wistar female rats. In Experiment 1 three groups of 9-10 animals were given intraperitoneally 0.5 mg HgCl 2 /kg b.w. and 2.5 mCi (92.5 kBq) of radioactive mercury in the form of 203 Hg(NO 3 ) 2 .Five days after mercury, therapy with 1.0 mmol/kg/day of either meso- or rac-DMSA was started and continued for four days. Whole body radioactivity was measured during the four-day therapy, i.e. 24 hours after each chelator application. In Experiment 2, chelators were given by gastric tube. They were dissolved in 8% NaHCOP 3 with addition of NaOH in equivalent quantities to obtain soluble sodium salts. Meso-DMSA was given at doses of 6, 8 or 12 mmol/kg and rac-DMSA at doses of 12 or 18.7 mmol/kg (3 rats at each dose level). Rat mortality was recorded during 8 days. Results of Experiment 1 showed that the efficiency of rac-DMSA in reducing body retention of mercury-203 was significantly higher than of meso-DMSA. At the end of experiment, reduction of mercury -203 whole body retention was 62% of control in meso-DMSA compared to 29% of control in rac D MSA group. In Experiment 2, the approximate oral LD 50 value were estimated to be >18.7 mmol/kg for meso-DMSA and between 8 and 12 mmol/kg for rac-DMSA. In conclusion, rac-DMSA reduces more efficiently mercury body load than its meso-form. However, more studies are needed to evaluate advantage of rac-DMSA application in spite of its higher toxicity compared to meso-DMSA. (author)

  3. Guanidine-catalyzed enantioselective desymmetrization of meso-aziridines

    KAUST Repository

    Zhang, Yan

    2011-01-01

    An amino-indanol derived chiral guanidine was developed as an efficient Brønsted base catalyst for the desymmetrization of meso-aziridines with both thiols and carbamodithioic acids as nucleophiles, which provided 1,2-difunctionalized ring-opened products in high yields and enantioselectivities. © The Royal Society of Chemistry.

  4. Development of a Meso-Scale Fiberoptic Rotation Sensor for a Torsion Actuator.

    Science.gov (United States)

    Sheng, Jun; Desai, Jaydev P

    2018-01-01

    This paper presents the development of a meso-scale fiberoptic rotation sensor for a shape memory alloy (SMA) torsion actuator for neurosurgical applications. Within the sensor, a rotary head with a reflecting surface is capable of modulating the light intensity collected by optical fibers when the rotary head is coupled to the torsion actuator. The mechanism of light intensity modulation is modeled, followed by experimental model verification. Meanwhile, working performances for different rotary head designs, optical fibers, and fabrication materials are compared. After the calibration of the fiberoptic rotation sensor, the sensor is capable of precisely measuring rotary motion and controlling the SMA torsion actuator with feedback control.

  5. Routing the asteroid surface vehicle with detailed mechanics

    Science.gov (United States)

    Yu, Yang; Baoyin, He-Xi

    2014-06-01

    The motion of a surface vehicle on/above an irregular object is investigated for a potential interest in the insitu explorations to asteroids of the solar system. A global valid numeric method, including detailed gravity and geomorphology, is developed to mimic the behaviors of the test particles governed by the orbital equations and surface coupling effects. A general discussion on the surface mechanical environment of a specified asteroid, 1620 Geographos, is presented to make a global evaluation of the surface vehicle's working conditions. We show the connections between the natural trajectories near the ground and differential features of the asteroid surface, which describes both the good and bad of typical terrains from the viewpoint of vehicles' dynamic performances. Monte Carlo simulations are performed to take a further look at the trajectories of particles initializing near the surface. The simulations reveal consistent conclusions with the analysis, i.e., the open-field flat ground and slightly concave basins/valleys are the best choices for the vehicles' dynamical security. The dependence of decending trajectories on the releasing height is studied as an application; the results show that the pole direction (where the centrifugal force is zero) is the most stable direction in which the shift of a natural trajectory will be well limited after landing. We present this work as an example for pre-analysis that provides guidance to engineering design of the exploration site and routing the surface vehicles.

  6. Relationship between structural properties and electrochemical characteristics of monolithic carbon xerogel-based electrochemical double-layer electrodes in aqueous and organic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, Mario [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Institute of Radiology, University Clinic, University of Wuerzburg (Germany); Lorrmann, Volker; Reichenauer, Gudrun; Wiener, Matthias [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Pflaum, Jens [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Department of Experimental Physics VI, Julius-Maximilians-University of Wuerzburg (Germany)

    2012-05-15

    The impact of the micropore width, external surface area, and meso-/macropore size on the charging performance of electrochemical double-layer capacitor (EDLC) electrodes is systematically investigated. Nonactivated carbon xerogels are used as model electrodes in aqueous and organic electrolytes. Monolithic porous model carbons with different structural parameters are prepared using a resorcinol-formaldehyde-based sol-gel process and subsequent pyrolysis of the organic precursors. Electrochemical properties are characterized by utilizing them as EDLC half-cells operated in aqueous and organic electrolytes, respectively. Experimental data derived for organic electrolytes reveals that the respective ions cannot enter the micropores within the skeleton of the meso- and macroporous carbons. Therefore the total capacitance is limited by the external surface formed by the interface between the meso-/macropores and the microporous carbon particles forming the xerogel skeleton. In contrast, for aqueous electrolytes the total capacitance solely depends on the total surface area, including interfaces at the micropore scale. For both types of electrolytes the charging rate of the electrodes is systematically enhanced when increasing the diameter of the carbon xerogel particles from 10 to 75 nm and the meso-/macropore size from 10 to 121 nm. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Structural concepts and details for seismic design

    International Nuclear Information System (INIS)

    Johnson, M.W.; Smietana, E.A.; Murray, R.C.

    1991-01-01

    As a part of the DOE Natural Phenomena Hazards Program, a new manual has been developed, entitled UCRL-CR-106554, open-quotes Structural Concepts and Details for Seismic Design.close quotes This manual describes and illustrates good practice for seismic-resistant design

  8. Onset of meso-scale turbulence in active nematics

    NARCIS (Netherlands)

    Doostmohammadi, A.; Shendruk, T.N.; Thijssen, K.; Yeomans, J.M.

    2017-01-01

    Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the

  9. Analysis of local influences in structural details of the bridges

    Directory of Open Access Journals (Sweden)

    Adam RUDZIK

    2015-03-01

    Full Text Available The article analyses the problems of local influences in structural details of bridges as the critical locations, whose damages or excessive force may directly affect the safety of users. These analyses are shown on selected examples. Presented is the example of local changes in the forms of proper vibrations in the node of the truss bridge that can be used in expert issues concerning the causes of damages. The second example are the changes in stresses in the stay cable anchorage element including the nonlinear material models. Models of this type can be successfully used by engineers as they allow for analysis of selected structural details without the need for detailed mapping of the entire structure, but only a selected section.

  10. Synthesis and characterization of new meso-substituted ...

    Indian Academy of Sciences (India)

    WINTEC

    tems. 10. Their ability to carry out the reactions rather unusual in organic chemistry has been the object of intensive investigations aiming to utilize them as a model compounds for biological systems and as catalysts. 11. Therefore, the synthesis of well defined meso-substituted unsymmetrical porphyrin deriva- tives (A3B) is ...

  11. Green's Kernels and meso-scale approximations in perforated domains

    CERN Document Server

    Maz'ya, Vladimir; Nieves, Michael

    2013-01-01

    There are a wide range of applications in physics and structural mechanics involving domains with singular perturbations of the boundary. Examples include perforated domains and bodies with defects of different types. The accurate direct numerical treatment of such problems remains a challenge. Asymptotic approximations offer an alternative, efficient solution. Green’s function is considered here as the main object of study rather than a tool for generating solutions of specific boundary value problems. The uniformity of the asymptotic approximations is the principal point of attention. We also show substantial links between Green’s functions and solutions of boundary value problems for meso-scale structures. Such systems involve a large number of small inclusions, so that a small parameter, the relative size of an inclusion, may compete with a large parameter, represented as an overall number of inclusions. The main focus of the present text is on two topics: (a) asymptotics of Green’s kernels in domai...

  12. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring.

    Science.gov (United States)

    Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G

    2015-05-18

    Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

  13. Potential of hybrid functionalized meso-porous materials for the separation and immobilization of radionuclides

    International Nuclear Information System (INIS)

    Luca, V.

    2013-01-01

    Functionalized meso-porous materials are a class of hybrid organic-inorganic material in which a meso-porous metal oxide framework is functionalized with multifunctional organic molecules. These molecules may contain one or more anchor groups that form strong bonds to the pore surfaces of the metal oxide framework and free functional groups that can impart and or modify the functionality of the material such as for binding metal ions in solution. Such materials have been extensively studied over the past decade and are of particular interest in absorption applications because of the tremendous versatility in choosing the composition and architecture of the metal oxide framework and the nature of the functional organic molecule as well as the efficient mass transfer that can occur through a well-designed hierarchically porous network. A sorbent for nuclear applications would have to be highly selective for particular radio nuclides, it would need to be hydrolytically and radiolytically stable, and it would have to possess reasonable capacity and fast kinetics. The sorbent would also have to be available in a form suitable for use in a column. Finally, it would also be desirable if once saturated with radio nuclides, the sorbent could be recycled or converted directly into a ceramic or glass waste form suitable for direct repository disposal or even converted directly into a material that could be used as a transmutation target. Such a cradle-to- grave strategy could have many benefits in so far as process efficiency and the generation of secondary wastes are concerned.This paper will provide an overview of work done on all of the above mentioned aspects of the development of functionalized meso-porous adsorbent materials for the selective separation of lanthanides and actinides and discuss the prospects for future implementation of a cradle-to-grave strategy with such materials. (author)

  14. Kinetic energy budget details

    Indian Academy of Sciences (India)

    Abstract. This paper presents the detailed turbulent kinetic energy budget and higher order statistics of flow behind a surface-mounted rib with and without superimposed acoustic excitation. Pattern recognition technique is used to determine the large-scale structure magnitude. It is observed that most of the turbulence ...

  15. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    Science.gov (United States)

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  16. Open-framework micro- and meso-structured chalcogenides and their ion exchange properties

    Science.gov (United States)

    Ding, Nan

    2007-12-01

    Micro- and meso- structured chalcogenides with open inorganic framework have driven tremendous attention and intense work during the last two decades. They belong to a special category of materials possessing multifunctional potential due to their large void space within the atomic skeletons and the novel physical properties brought by the chalcogen elements. The latter are not generally present in typical open-framework oxides. In addition, because of the different size and electronegativity of the chalcogen elements compared to oxygen, many new structural properties were expected to emerge when the work in this dissertation was undertaken. The major body of this work involves group 13 (e.g. Ga, In) or 14 (e.g. Ge, Sn) elements with chalcogen. Transition metals also are incorporated in a few examples. The first two groups of compounds reported belong to the latter case. Unique structure types have been obtained under hydrothermal conditions via the combination of M (M = Zn, Cd), Sn and Q (Q = S, Se) to build microporous A6M4Sn3Q13 (A = K, Rb) based on truncated penta-supertrahedral cluster [M4Sn4Q 17]10-. More surprisingly, the protonation of K 6Cd4Sn3Se13 led to another new compound K14Cd15Sn12Se46 which possesses a labyrinth-like void space within the compact [Cd15Sn12Se 46]14- anionic skeleton. This structural characteristic leads to an unusual stability of the compound in acid. Both the K6Cd 4Sn3Se13 and K14Cd15Sn 12Se46 are fast ion-exchangers and their K+ ions can be replaced by other alkali metal cations and even H+ for the latter. Other work reported was aimed at the heavier analogs of alumiophosphate, i.e. the open-frameworks based on group 13 (Ga, In), 15 (Sb) and chalcogen elements. Two groups of chalcoantimonates with two-dimensional architectures [M5Sb6S19]5- and polymorphic [M2Sb2Q7]2- (M = Ga, In; Q = S, Se) were obtained. With the help of bulky organic structure-directing agents, large windows were formed in some of these anionic slabs. The windows

  17. The instability characteristics of lean premixed hydrogen and syngas flames stabilized on meso-scale bluff-body

    KAUST Repository

    Kim, Yu Jeong

    2017-01-05

    Bluff-body flame stabilization has been used as one of main flame stabilization schemes to improve combustion stability in both large and small scale premixed combustion systems. The detailed investigation of instability characteristics is needed to understand flame stability mechanism. Direct numerical simulations are conducted to investigate flame dynamics on the instability of lean premixed hydrogen/air and syngas/air flames stabilized on a meso-scale bluff-body. A two-dimensional channel of 10 mm height and 10 mm length with a square bluff-body stabilizer of 0.5 mm is considered. The height of domain is chosen as an unconfined condition to minimize the effect of the blockage ratio. Flame/flow dynamics are observed by increasing the mean inflow velocity from a steady stable to unsteady asymmetrical instability, followed by blowoff. Detailed observations between hydrogen and syngas flames with a time scale analysis are presented.

  18. Detailed statistical contact angle analyses; "slow moving" drops on inclining silicon-oxide surfaces.

    Science.gov (United States)

    Schmitt, M; Groß, K; Grub, J; Heib, F

    2015-06-01

    Contact angle determination by sessile drop technique is essential to characterise surface properties in science and in industry. Different specific angles can be observed on every solid which are correlated with the advancing or the receding of the triple line. Different procedures and definitions for the determination of specific angles exist which are often not comprehensible or reproducible. Therefore one of the most important things in this area is to build standard, reproducible and valid methods for determining advancing/receding contact angles. This contribution introduces novel techniques to analyse dynamic contact angle measurements (sessile drop) in detail which are applicable for axisymmetric and non-axisymmetric drops. Not only the recently presented fit solution by sigmoid function and the independent analysis of the different parameters (inclination, contact angle, velocity of the triple point) but also the dependent analysis will be firstly explained in detail. These approaches lead to contact angle data and different access on specific contact angles which are independent from "user-skills" and subjectivity of the operator. As example the motion behaviour of droplets on flat silicon-oxide surfaces after different surface treatments is dynamically measured by sessile drop technique when inclining the sample plate. The triple points, the inclination angles, the downhill (advancing motion) and the uphill angles (receding motion) obtained by high-precision drop shape analysis are independently and dependently statistically analysed. Due to the small covered distance for the dependent analysis (contact angle determination. They are characterised by small deviations of the computed values. Additional to the detailed introduction of this novel analytical approaches plus fit solution special motion relations for the drop on inclined surfaces and detailed relations about the reactivity of the freshly cleaned silicon wafer surface resulting in acceleration

  19. Spatio-temporal distributions of meso convective systems in NE China and its vicinity

    Science.gov (United States)

    Yuan, Meiying; Li, Zechun; Zhang, Xiaoling; Li, Xun

    2008-08-01

    Based on the IR cloud imagery from the Chinese FY-2C satellite for June ~ August, 2005 - 2007, statistics is undertaken of meso convective systems (MCS) over NE China and its neighborhood, obtaining the space - time distributions of MCS. MCS include elliptical type( MCC's) , persistent elongated type (PECS's), in shape. Dividing the total MCS into MαMCS, MβMCS and MCC (PECS) . Results show that the number of meso-α MCS (dominantly PECS's) is considerably more than that of meso-β MCS (largely MCCss), which are observed mainly in the NE China plain and Daxing'an Mountains, especially in the entrance to the plain as well as its central ~ northern portion; the MCS occur mainly in June ~ August, particularly in June; the extratropical MCS show two peak phases, one being in 1500-2200 BST the other being 0000-0700 BST as the secondary peaking interval.

  20. Well-ordered structure of methylene blue monolayers on Au(111) surface: electrochemical scanning tunneling microscopy studies.

    Science.gov (United States)

    Song, Yonghai; Wang, Li

    2009-02-01

    Well-ordered structure of methylene blue (MB) monolayers on Au(111) surface has been successfully obtained by controlling the substrate potential. Electrochemical scanning tunneling microscopy (ECSTM) examined the monolayers of MB on Au(111) in 0.1 M HClO(4) and showed long-range ordered, interweaved arrays of MB with quadratic symmetry on the substrate in the potential range of double-layer charging. High-resolution ECSTM image further revealed the details of the MB monolayers structure of c(5 x 5 radical 3)rect and the flat-lying orientation of ad-molecules. The dependence of molecular organization on the substrate potential and the formation mechanism of well-ordered structure on Au(111) surface were investigated in detail. The obtained well-ordered structure at the interface between a metal and an aqueous electrolyte might possibly be used as high-density device for signal memory and templates for the advanced nanopatterning of surfaces. (c) 2008 Wiley-Liss, Inc.

  1. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2015-10-01

    Full Text Available The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

  2. Regionalization of meso-scale physically based nitrogen modeling outputs to the macro-scale by the use of regression trees

    Science.gov (United States)

    Künne, A.; Fink, M.; Kipka, H.; Krause, P.; Flügel, W.-A.

    2012-06-01

    In this paper, a method is presented to estimate excess nitrogen on large scales considering single field processes. The approach was implemented by using the physically based model J2000-S to simulate the nitrogen balance as well as the hydrological dynamics within meso-scale test catchments. The model input data, the parameterization, the results and a detailed system understanding were used to generate the regression tree models with GUIDE (Loh, 2002). For each landscape type in the federal state of Thuringia a regression tree was calibrated and validated using the model data and results of excess nitrogen from the test catchments. Hydrological parameters such as precipitation and evapotranspiration were also used to predict excess nitrogen by the regression tree model. Hence they had to be calculated and regionalized as well for the state of Thuringia. Here the model J2000g was used to simulate the water balance on the macro scale. With the regression trees the excess nitrogen was regionalized for each landscape type of Thuringia. The approach allows calculating the potential nitrogen input into the streams of the drainage area. The results show that the applied methodology was able to transfer the detailed model results of the meso-scale catchments to the entire state of Thuringia by low computing time without losing the detailed knowledge from the nitrogen transport modeling. This was validated with modeling results from Fink (2004) in a catchment lying in the regionalization area. The regionalized and modeled excess nitrogen correspond with 94%. The study was conducted within the framework of a project in collaboration with the Thuringian Environmental Ministry, whose overall aim was to assess the effect of agro-environmental measures regarding load reduction in the water bodies of Thuringia to fulfill the requirements of the European Water Framework Directive (Bäse et al., 2007; Fink, 2006; Fink et al., 2007).

  3. Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces

    Science.gov (United States)

    McBriarty, Martin E.

    Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.

  4. Overview of the Meso-NH model version 5.4 and its applications

    Directory of Open Access Journals (Sweden)

    C. Lac

    2018-05-01

    Full Text Available This paper presents the Meso-NH model version 5.4. Meso-NH is an atmospheric non hydrostatic research model that is applied to a broad range of resolutions, from synoptic to turbulent scales, and is designed for studies of physics and chemistry. It is a limited-area model employing advanced numerical techniques, including monotonic advection schemes for scalar transport and fourth-order centered or odd-order WENO advection schemes for momentum. The model includes state-of-the-art physics parameterization schemes that are important to represent convective-scale phenomena and turbulent eddies, as well as flows at larger scales. In addition, Meso-NH has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling. Here, we present the main innovations to the dynamics and physics of the code since the pioneer paper of Lafore et al. (1998 and provide an overview of recent applications and couplings.

  5. On Selective Derivatization of meso-Tetraarylporphyrins (A Microreview)

    International Nuclear Information System (INIS)

    Ostrowski, S.

    2003-01-01

    The studies on selective derivatization in one or two aromatic rings of meso-tetraarylporphyrin systems (and their zinc and copper complexes) using (a) selective nitration, (b) Vicarious Nucleophilic Substitution of Hydrogen(VNS), and (c) alkylation of the above intermediates with alkyl halides, are reported. The stepwise selective nitration of meso-aryl substituted porphyrins with fuming yellow nitric acid (d= 1.53) at the tempreture 0 deg to 20 deg results in the formation of 5-(4-nitroaryl)- 10, 15, 20-triarylporphyrins, 5,10-bis(4-nitroaryl)-15,20-diarylporphrins or trinitro- and tetranitro-derivatives, respectively, in good or reasonable yield. The above intermediates, after simple transformation to their copper or zinc complexes react with carbanions bearing leaving groups at the carbanionic center, according to VNS scheme. This reaction can be also realized at low temperature (-30 deg- 40 deg) without complexation of the parent nitroporphyrins. Alkylation of the products obtained with alkyl halides or alkyl halides bearing multiple bonds in the carbon chain led to useful compounds for further functionalization . (Author) 53 refs., 7sches., 4 figs

  6. Meso-ester and carboxylic acid substituted BODIPYs with far-red and near-infrared emission for bioimaging applications

    KAUST Repository

    Ni, Yong; Zeng, Lintao; Kang, Namyoung; Huang, Kuo-Wei; Wang, Liang; Zeng, Zebing; Chang, Young-Tae; Wu, Jishan

    2014-01-01

    -6) become partially soluble in water, and their absorptions and emissions are located in the far-red or near-infrared region. Three synthetic approaches are attempted to access the meso-carboxylic acid (COOH)-substituted BODIPYs 7 and 8 from the meso

  7. A three-dimensional meso-scale modeling for helium bubble growth in metals

    International Nuclear Information System (INIS)

    Suzudo, T.; Kaburaki, H.; Wakai, E.

    2007-01-01

    A three-dimensional meso-scale computer model using a Monte-Carlo simulation method has been proposed to simulate the helium bubble growth in metals. The primary merit of this model is that it enables the visual comparison between the microstructure observed by the TEM imaging and those by calculations. The modeling is so simple that one can control easily the calculation by tuning parameters. The simulation results are confirmed by the ideal gas law and the capillary relation. helium bubble growth, meso-scale modeling, Monte-Carlo simulation, the ideal gas law and the capillary relation. (authors)

  8. Synthesis of a Phlorin from a Meso-Fused Anthriporphyrin by a Diels-Alder Strategy.

    Science.gov (United States)

    Aslam, Adil S; Hong, Jung-Ho; Shin, June-Ho; Cho, Dong-Gyu

    2017-12-18

    An anthracene-containing meso-fused carbaporphyrin, which has extended π-conjugation pathways as compared to the corresponding naphthalene-containing carbaporphyrin, has been synthesized. The weak global aromaticity of the anthriporphyrin also allowed its use as the diene for a Diels-Alder reaction with dimethyl acetylenedicarboxylate (DMAD). The resulting phlorin contains an interesting bicyclic structure. Moreover, to the best of our knowledge, this phlorin is the first Diels-Alder adduct of a diene forming part of the global π-conjugation pathway of an aromatic porphyrinoid. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Abrasive wear mechanisms and surface layer structure of refractory materials after mechanical working

    International Nuclear Information System (INIS)

    Milman, Y.V.; Lotsko, D.V.

    1989-01-01

    The mechanisms of abrasive wear and surface layer structure formation after different kinds of mechanical working are considered in terms of fracture and plastic deformation mechanisms for various refractory materials. The principles for classification of abrasive wear mechanisms are proposed, the four types of wear mechanisms are distinguished for various combinations of fractures and plastic deformation types. The concept of characteristic deformation temperature t * (knee temperature) is used. Detailed examples are given of investigating the surface layer structures in grinded crystals of sapphire and molybdenum. The amorphisation tendency of the thinnest surface layer while mechanical polishing is discussed separately. 19 refs., 11 figs., 2 tabs. (Author)

  10. Safety analysis of urban arterials at the meso level.

    Science.gov (United States)

    Li, Jia; Wang, Xuesong

    2017-11-01

    Urban arterials form the main structure of street networks. They typically have multiple lanes, high traffic volume, and high crash frequency. Classical crash prediction models investigate the relationship between arterial characteristics and traffic safety by treating road segments and intersections as isolated units. This micro-level analysis does not work when examining urban arterial crashes because signal spacing is typically short for urban arterials, and there are interactions between intersections and road segments that classical models do not accommodate. Signal spacing also has safety effects on both intersections and road segments that classical models cannot fully account for because they allocate crashes separately to intersections and road segments. In addition, classical models do not consider the impact on arterial safety of the immediately surrounding street network pattern. This study proposes a new modeling methodology that will offer an integrated treatment of intersections and road segments by combining signalized intersections and their adjacent road segments into a single unit based on road geometric design characteristics and operational conditions. These are called meso-level units because they offer an analytical approach between micro and macro. The safety effects of signal spacing and street network pattern were estimated for this study based on 118 meso-level units obtained from 21 urban arterials in Shanghai, and were examined using CAR (conditional auto regressive) models that corrected for spatial correlation among the units within individual arterials. Results showed shorter arterial signal spacing was associated with higher total and PDO (property damage only) crashes, while arterials with a greater number of parallel roads were associated with lower total, PDO, and injury crashes. The findings from this study can be used in the traffic safety planning, design, and management of urban arterials. Copyright © 2017 Elsevier Ltd. All

  11. LSP Studies As a Quest For Meso-Level Regularities

    DEFF Research Database (Denmark)

    Engberg, Jan

    2015-01-01

    the suggested type of analysis. I proceed to present Knowledge Communication as theoretical-methodological framework of such analyses, followed by a presentation of the differences between a micro, a macro and a meso level approach to studying specialized communication. In the last part of the paper, I...

  12. Synthesis and crystallographic analysis of meso-2,3-difluoro-1,4-butanediol and meso-1,4-dibenzyloxy-2,3-difluorobutane

    Directory of Open Access Journals (Sweden)

    Bruno Linclau

    2010-06-01

    Full Text Available A large-scale synthesis of meso-2,3-difluoro-1,4-butanediol in 5 steps from (Z-but-2-enediol is described. Crystallographic analysis of the diol and the corresponding benzyl ether reveals an anti conformation of the vicinal difluoride moiety. Monosilylation of the diol is high-yielding but all attempts to achieve chain extension through addition of alkyl Grignard and acetylide nucleophiles failed.

  13. Fabrication of calix[4]pyrrole nanofilms at the glassy carbon surface and their characterization by spectroscopic, optic and electrochemical methods

    International Nuclear Information System (INIS)

    Taner, Bilge; Ozcan, Emine; Ustuendag, Zafer; Keskin, Selda; Solak, Ali Osman; Eksi, Haslet

    2010-01-01

    meso-Octamethylcalix[4]pyrrole (CP) and meso-heptaethylcalix[4]pyrrole-meso-4-aminophenyl (4APCP) modified glassy carbon (GC) electrodes were prepared by the electrochemical oxidation in acetonitrile solution. Binding of the calix[4]pyrroles with the glassy carbon surface was investigated that it is through the etheric linkage revealed from the reflection-absorption infrared spectroscopy (RAIRS). Surface films of CP and 4APCP were investigated by cyclic voltammetry (CV), ellipsometry, X-ray photoelectron spectroscopy, RAIRS and the contact angle measurements. The thicknesses of the films were determined by ellipsometry which confirmed that the film was multilayer and homogeneous over the surface. Ellipsometric measurements also provided that the CP and 4APCP film thicknesses were 2.49 nm and 4.58 nm for 6 CV cycle modification, corresponding to 66 μF/cm 2 and 106 μF/cm 2 capacitances obtained by CV. The wetting behavior was examined by contact angle measurements and found that the hydrophobicity of the GC-4APCP surface was higher than that of GC-CP, probably due to the aromatic meso substituent present in the former.

  14. Wastewater use in agriculture and potential effects on meso and macrofauna soil

    Directory of Open Access Journals (Sweden)

    Dinéia Tessaro

    2016-06-01

    Full Text Available ABSTRACT: The use of wastewater in agriculture has been practiced on an increasing scale over the past decades because of its fertilizing potential and the reduction in demand for surface water and groundwater. However, this practice may bring harm when performed without planning, not respecting the capacity of the soil to recycle organic waste. The most common problems are contamination of surface and groundwater via leaching and runoff, as well as accumulation of nutrients and potentially polluting elements that compromise chemical, physical and biological characteristics of the soil. The biological compartment, represented by the micro, meso and macrofauna, plays an important role in nutrient cycling, decomposition of organic matter, particle movement and transport of materials at different depths, helping to maintain soil physical and chemical characteristics. In this sense, this paper aims to discuss the effect of using different kinds of wastewater in agriculture on soil biology, highlighting strengths and weaknesses, as well as emphasizing the need to conduct investigations that enhance the positive aspects of wastewater use associated with edaphic processes.

  15. Meso-cenozoic extensional tectonics and uranium metallogenesis in southeast China

    International Nuclear Information System (INIS)

    Chen Yuehui; Chen Zuyi; Cai Yuqi; Fu Jin; Feng Quanhong; Shi Zuhai

    1998-12-01

    Through a systematic study on Meso-Cenozoic extensional tectonics in Southeast China, the authors point out that there are three major types of extensional tectonics such as taphrogenic thermo-upwelling, and gravitational extensional tectonics. The characteristics of structural forms, combination patterns, movement style and syn-tectonic magmatism of different extensional tectonics are studied. Then according to the known isotope age data of uranium mineralizations in the area, the relations between the process of extensional tectonics and regional uranium metallogenesis, as well as the corresponding relations in space and time between extensional tectonics and uranium deposits of different types are analyzed. In conclusion, the authors suggest that the uranium mineralizations of different types in Southeast China are characterized by an united ore-forming mechanism due to the apparent control of extensional tectonics to the regional uranium metallogenesis

  16. Discrete meso-element simulation of the failure behavior of short-fiber composites under dynamic loading

    International Nuclear Information System (INIS)

    Liu Wenyan; Tang, Z.P.; Liu Yunxin

    2000-01-01

    In recent years, more attention has been paid to a better understanding of the failure behavior and mechanism of heterogeneous materials at the meso-scale level. In this paper, the crack initiation and development in epoxy composites reinforced with short steel fibers under dynamic loading were simulated and analyzed with the 2D Discrete Meso-Element Dynamic Method. Results show that the damage process depends greatly on the binding property between matrix and fibers

  17. Isoporphyrin intermediate in heme oxygenase catalysis. Oxidation of alpha-meso-phenylheme.

    Science.gov (United States)

    Evans, John P; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-07-11

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the alpha-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin pi-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of alpha-meso-phenylheme-IX, alpha-meso-(p-methylphenyl)-mesoheme-III, and alpha-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593-42604), only the alpha-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced alpha-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation.

  18. An Approach to Preparation of trans-DHQs via Ring-Opening of meso-N-Sulfonylaziridines

    DEFF Research Database (Denmark)

    Nolsøe, Jens Mortansson Jelstrup; Riegert, David; Müller, Paul

    2011-01-01

    As an approach to the enantioselective synthesis of trans-decahydroquinolines (DHQs), desymmetrization of meso-aziridine (5) with various carbon nucleophiles under catalytic conditions was investigated. By applying TMSCN in the presence of YbCl3 and chiral nonracemic ligands, nitrile 13 was obtai......As an approach to the enantioselective synthesis of trans-decahydroquinolines (DHQs), desymmetrization of meso-aziridine (5) with various carbon nucleophiles under catalytic conditions was investigated. By applying TMSCN in the presence of YbCl3 and chiral nonracemic ligands, nitrile 13...

  19. Validation of Micro-Meso Electrical Relations for Laminates with Varying Anisotropy

    KAUST Repository

    Selvakumaran, Lakshmi; Lubineau, Gilles

    2015-01-01

    For electrical impedance tomography (EIT) to be useful in monitoring transverse cracks in composites, it is imperative to establish the relation between conductivity and cracking density. Micro to meso scale homogenization has been developed

  20. No Habitat Selection during Spring Migration at a Meso-Scale Range across Mosaic Landscapes: A Case Study with the Woodcock (Scolopax rusticola.

    Directory of Open Access Journals (Sweden)

    Ariñe Crespo

    Full Text Available Success of migration in birds in part depends on habitat selection. Overall, it is still poorly known whether there is habitat selection amongst landbird migrants moving across landscapes. Europe is chiefly covered by agro-forestry mosaic landscapes, so migratory species associated to either agricultural landscapes or woodland habitats should theoretically find suitable stopover sites along migration. During migration from wintering to breeding quarters, woodcocks (Scolopax rusticola tagged with PTT satellite-tracking transmitters were used to test for the hypothesis that migrants associated to agro-forest habitats have no habitat selection during migration, at a meso-scale level. Using a GIS platform we extracted at a meso-scale range habitat cover at stopover localities. Results obtained from comparisons of soil covers between points randomly selected and true stopover localities sites revealed, as expected, the species may not select for particular habitats at a meso-scale range, because the habitat (or habitats required by the species can be found virtually everywhere on their migration route. However, those birds stopping over in places richer in cropland or mosaic habitats including both cropland and forest and with proportionally less closed forest stayed for longer than in areas with lower surfaces of cropland and mosaic and more closed forest. This suggests that areas rich in cropland or mosaic habitat were optimal.

  1. Recovery of lactic acid from the pretreated fermentation broth based on a novel hyper-cross-linked meso-micropore resin: Modeling.

    Science.gov (United States)

    Song, Mingkai; Jiao, Pengfei; Qin, Taotao; Jiang, Kangkang; Zhou, Jingwei; Zhuang, Wei; Chen, Yong; Liu, Dong; Zhu, Chenjie; Chen, Xiaochun; Ying, Hanjie; Wu, Jinglan

    2017-10-01

    An innovative benign process for recovery lactic acid from its fermentation broth is proposed using a novel hyper-cross-linked meso-micropore resin and water as eluent. This work focuses on modeling the competitive adsorption behaviors of glucose, lactic acid and acetic acid ternary mixture and explosion of the adsorption mechanism. The characterization results showed the resin had a large BET surface area and specific pore structure with hydrophobic properties. By analysis of the physicochemical properties of the solutes and the resin, the mechanism of the separation is proposed as hydrophobic effect and size-exclusion. Subsequently three chromatographic models were applied to predict the competitive breakthrough curves of the ternary mixture under different operating conditions. The pore diffusion was the major limiting factor for the adsorption process, which was consistent with the BET results. The novel HD-06 resin can be a good potential adsorbent for the future SMB continuous separation process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Mathematical model and calculation algorithm of micro and meso levels of separation process of gaseous mixtures in molecular sieves

    International Nuclear Information System (INIS)

    Umarova, Zhanat; Botayeva, Saule; Yegenova, Aliya; Usenova, Aisaule

    2015-01-01

    In the given article, the main thermodynamic aspects of the issue of modeling diffusion transfer in molecular sieves have been formulated. Dissipation function is used as a basic notion. The differential equation, connecting volume flow with the change of the concentration of catchable component has been derived. As a result, the expression for changing the concentration of the catchable component and the coefficient of membrane detecting has been received. As well, the system approach to describing the process of gases separation in ultra porous membranes has been realized and micro and meso-levels of mathematical modeling have been distinguished. The non-ideality of the shared system is primarily taken into consideration at the micro-level and the departure from the diffusion law of Fick has been taken into account. The calculation method of selectivity considering fractal structure of membranes has been developed at the meso level. The calculation algorithm and its software implementation have been suggested

  3. Mathematical model and calculation algorithm of micro and meso levels of separation process of gaseous mixtures in molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Umarova, Zhanat; Botayeva, Saule; Yegenova, Aliya; Usenova, Aisaule [South Kazakhstan State University, 5, Tauke Khan Avenue, 160012 Shymkent (Kazakhstan)

    2015-05-15

    In the given article, the main thermodynamic aspects of the issue of modeling diffusion transfer in molecular sieves have been formulated. Dissipation function is used as a basic notion. The differential equation, connecting volume flow with the change of the concentration of catchable component has been derived. As a result, the expression for changing the concentration of the catchable component and the coefficient of membrane detecting has been received. As well, the system approach to describing the process of gases separation in ultra porous membranes has been realized and micro and meso-levels of mathematical modeling have been distinguished. The non-ideality of the shared system is primarily taken into consideration at the micro-level and the departure from the diffusion law of Fick has been taken into account. The calculation method of selectivity considering fractal structure of membranes has been developed at the meso level. The calculation algorithm and its software implementation have been suggested.

  4. Application of diazene-directed fragment assembly to the total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids

    OpenAIRE

    Lathrop, Stephen; Movassaghi, Mohammad

    2013-01-01

    We describe the first application of our methodology for heterodimerization via diazene fragmentation towards the total synthesis of (−)-calycanthidine, meso-chimonanthine, and (+)-desmethyl-meso-chimonanthine. Our syntheses of these alkaloids feature an improved route to C3a-aminocyclotryptamines, an enhanced method for sulfamide synthesis and oxidation, in addition to a late-stage diversification leading to the first enantioselective total synthesis of (+)-desmethyl-meso-chimonanthine and i...

  5. Atomic and electronic structures of novel silicon surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.H. Jr.

    1997-03-01

    The modification of silicon surfaces is presently of great interest to the semiconductor device community. Three distinct areas are the subject of inquiry: first, modification of the silicon electronic structure; second, passivation of the silicon surface; and third, functionalization of the silicon surface. It is believed that surface modification of these types will lead to useful electronic devices by pairing these modified surfaces with traditional silicon device technology. Therefore, silicon wafers with modified electronic structure (light-emitting porous silicon), passivated surfaces (H-Si(111), Cl-Si(111), Alkyl-Si(111)), and functionalized surfaces (Alkyl-Si(111)) have been studied in order to determine the fundamental properties of surface geometry and electronic structure using synchrotron radiation-based techniques.

  6. Evaluating healthcare priority setting at the meso level: A thematic review of empirical literature

    Science.gov (United States)

    Waithaka, Dennis; Tsofa, Benjamin; Barasa, Edwine

    2018-01-01

    Background: Decentralization of health systems has made sub-national/regional healthcare systems the backbone of healthcare delivery. These regions are tasked with the difficult responsibility of determining healthcare priorities and resource allocation amidst scarce resources. We aimed to review empirical literature that evaluated priority setting practice at the meso (sub-national) level of health systems. Methods: We systematically searched PubMed, ScienceDirect and Google scholar databases and supplemented these with manual searching for relevant studies, based on the reference list of selected papers. We only included empirical studies that described and evaluated, or those that only evaluated priority setting practice at the meso-level. A total of 16 papers were identified from LMICs and HICs. We analyzed data from the selected papers by thematic review. Results: Few studies used systematic priority setting processes, and all but one were from HICs. Both formal and informal criteria are used in priority-setting, however, informal criteria appear to be more perverse in LMICs compared to HICs. The priority setting process at the meso-level is a top-down approach with minimal involvement of the community. Accountability for reasonableness was the most common evaluative framework as it was used in 12 of the 16 studies. Efficiency, reallocation of resources and options for service delivery redesign were the most common outcome measures used to evaluate priority setting. Limitations: Our study was limited by the fact that there are very few empirical studies that have evaluated priority setting at the meso-level and there is likelihood that we did not capture all the studies. Conclusions: Improving priority setting practices at the meso level is crucial to strengthening health systems. This can be achieved through incorporating and adapting systematic priority setting processes and frameworks to the context where used, and making considerations of both process

  7. Experimental evidence and structural modeling of nonstoichiometric (010) surfaces coexisting in hydroxyapatite nano-crystals.

    Science.gov (United States)

    Ospina, C A; Terra, J; Ramirez, A J; Farina, M; Ellis, D E; Rossi, A M

    2012-01-01

    High-resolution transmission electron microscopy (HRTEM) and ab initio quantum-mechanical calculations of electronic structure were combined to investigate the structure of the hydroxyapatite (HA) (010) surface, which plays an important role in HA interactions with biological media. HA was synthesized by in vitro precipitation at 37°C. HRTEM images revealed thin elongated rod nanoparticles with preferential growth along the [001] direction and terminations parallel to the (010) plane. The focal series reconstruction (FSR) technique was applied to develop an atomic-scale structural model of the high-resolution images. The HRTEM simulations identified the coexistence of two structurally distinct terminations for (010) surfaces: a rather flat Ca(II)-terminated surface and a zig-zag structure with open OH channels. Density functional theory (DFT) was applied in a periodic slab plane-wave pseudopotential approach to refine details of atomic coordination and bond lengths of Ca(I) and Ca(II) sites in hydrated HA (010) surfaces, starting from the HRTEM model. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Fabrication of calix[4]pyrrole nanofilms at the glassy carbon surface and their characterization by spectroscopic, optic and electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Taner, Bilge; Ozcan, Emine [Selcuk University, Faculty of Science, Dept. of Chemistry, Konya (Turkey); Ustuendag, Zafer [Dumlupinar University, Faculty of Arts and Sciences, Dept. of Chemistry, Kuetahya (Turkey); Keskin, Selda [Middle East Technical University, Central Research Laboratory, Ankara (Turkey); Solak, Ali Osman, E-mail: osolak@science.ankara.edu.t [Ankara University, Faculty of Science, Department of Chemistry, Ankara (Turkey); Eksi, Haslet [Ankara University, Faculty of Science, Department of Chemistry, Ankara (Turkey)

    2010-10-29

    meso-Octamethylcalix[4]pyrrole (CP) and meso-heptaethylcalix[4]pyrrole-meso-4-aminophenyl (4APCP) modified glassy carbon (GC) electrodes were prepared by the electrochemical oxidation in acetonitrile solution. Binding of the calix[4]pyrroles with the glassy carbon surface was investigated that it is through the etheric linkage revealed from the reflection-absorption infrared spectroscopy (RAIRS). Surface films of CP and 4APCP were investigated by cyclic voltammetry (CV), ellipsometry, X-ray photoelectron spectroscopy, RAIRS and the contact angle measurements. The thicknesses of the films were determined by ellipsometry which confirmed that the film was multilayer and homogeneous over the surface. Ellipsometric measurements also provided that the CP and 4APCP film thicknesses were 2.49 nm and 4.58 nm for 6 CV cycle modification, corresponding to 66 {mu}F/cm{sup 2} and 106 {mu}F/cm{sup 2} capacitances obtained by CV. The wetting behavior was examined by contact angle measurements and found that the hydrophobicity of the GC-4APCP surface was higher than that of GC-CP, probably due to the aromatic meso substituent present in the former.

  9. Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis

    Science.gov (United States)

    2014-01-01

    Background D-2,3-butanediol has many industrial applications such as chiral reagents, solvents, anti-freeze agents, and low freezing point fuels. Traditional D-2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogenic and not capable of producing D-2,3-butanediol at high optical purity. Bacillus licheniformis is a potential 2,3-butanediol producer but the wild type strain (WX-02) produces a mix of D- and meso-type isomers. BudC in B. licheniformis is annotated as 2,3-butanediol dehydrogenase or acetoin reductase, but no pervious experiment was performed to verify this hypothesis. Results We developed a genetically modified strain of B. licheniformis (WX-02 ΔbudC) as a D-2,3-butanediol producer with high optimal purity. A marker-less gene deletion protocol based on a temperature sensitive knock-out plasmid T2-Ori was used to knock out the budC gene in B. licheniformis WX-02. The budC knock-out strain successfully abolished meso-2,3-butanediol production with enhanced D-2,3-butanediol production. No meso-BDH activity was detectable in cells of this strain. On the other hand, the complementary strain restored the characteristics of wild strain, and produced meso-2,3-butanediol and possessed meso-BDH activity. All of these data suggested that budC encoded the major meso-BDH catalyzing the reversible reaction from acetoin to meso-2,3-butanediol in B. licheniformis. The budC knock-out strain produced D-2,3-butanediol isomer only with a high yield of 30.76 g/L and a productivity of 1.28 g/L-h. Conclusions We confirmed the hypothesis that budC gene is responsible to reversibly transfer acetoin to meso-2,3-butanediol in B. licheniformis. A mutant strain of B. licheniformis with depleted budC gene was successfully developed and produced high level of the D-2,3-butanediol with high optimal purity. PMID:24475980

  10. Structural and vibrational studies of clean and chemisorbed metal surfaces

    International Nuclear Information System (INIS)

    Jiang, Qing-Tang.

    1992-01-01

    Using Medium Energy Ion Scattering, we have studied the structural and vibrational properties of a number of clean and chemisorbed metal surfaces. The work presented in this thesis is mainly of a fundamental nature. However, it is believed that an atomistic understanding of the forces that affect surface structural and vibrational properties can have a beneficial impact on a large number of areas of applied nature. We find that the surface structure of Cu(001) follows the common trend for metal surfaces, where a small oscillatory relaxation exists beginning with a slight contraction in the top layer. In addition, the surface vibrational amplitude is enhanced (as s usually the case) by ∼80%. A detailed analysis of our data shows an unexpected anisotropy of the vibrational amplitude, such that the out-of-plane vibrational amplitude is 30% smaller than the in-plane vibrational amplitude. The unexpected results may imply a large tensile stress on Cu(001). Upon adsorption of 1/4 of a monolayer of S, a p(2 x 2)-S/Cu(001) surface is created. This submonolayer amount of S atoms makes the surface bulk-like, in which the anisotropy of the surface vibrations is removed and the first interlayer contraction is lifted. By comparing our model to earlier contradictory results on this controversial system. We find excellent agreement with a recent LEED study. The presence of 0.1 monolayer of Ca atoms on the Au(113) surface induces a drastic atomic rearrangements, in which half of the top layer Au atoms are missing and a (1 x 2) symmetry results. In addition, the first interlayer spacing of Au(113) is significantly reduced. Our results are discussed in terms of the energy balance between competing surface electronic charge densities

  11. A Review of the Appropriateness of Existing Micro- and Meso-level Models of Athlete Development within Equestrian Sport

    NARCIS (Netherlands)

    de Haan, D.M.

    2017-01-01

    The aim of this paper was to use a case study approach to review the appropriateness of existing micro- and meso-level models of athlete development within the sport specific context of equestrianism. At a micro-level the Long Term Athlete Development (LTAD) model was chosen. At a meso-level, the

  12. Energy intensities in Mato Grosso state and in meso-regions; Intensidades energeticas nas mesorregioes de Mato Grosso

    Energy Technology Data Exchange (ETDEWEB)

    Canavarros, Otacilio Borges; Melo, Moises Candido de; Dorileo, Ivo Leandro [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Nucleo Interdisciplinar de Estudos em Planejamento Energetico (NIEPE)

    2004-07-01

    This work presents some energetic intensities in Mato Grosso state and in each of its five meso-regions that are in the document produced in 2002 by the NIPE/UFMT (Nucleo Interdisciplinar de Estudos em Planejamento Energetico of the Universidade Federal do Mato Grosso) entitled: 'Energetic Balance of the Mato Grosso and meso-regions: period 1995-2001'. (author)

  13. Characterization and anti-settlement aspects of surface micro-structures from Cancer pagurus

    International Nuclear Information System (INIS)

    Sullivan, T; Regan, F; McGuinness, K; Connor, N E O’

    2014-01-01

    Tuning surface and material properties to inhibit or prevent settlement and attachment of microorganisms is of interest for applications such as antifouling technologies. Here, optimization of nano- and microscale structures on immersed surfaces can be utilized to improve cell removal while reducing adhesion strength and the likelihood of initial cellular attachment. Engineered surfaces capable of controlling cellular behaviour under natural conditions are challenging to design due to the diversity of attaching cell types in environments such as marine waters, where many variations in cell shape, size and adhesion strategy exist. Nevertheless, understanding interactions between a cell and a potential substrate for adhesion, including topographically driven settlement cues, offers a route to designing surfaces capable of controlling cell settlement. Biomimetic design of artificial surfaces, based upon microscale features from natural surfaces, can be utilized as model surfaces to understand cell–surface interactions. The microscale surface features of the carapace from the crustacean Cancer pagurus has been previously found to influence the rate of attachment of particular organisms when compared to smooth controls. However, the nature of microscale topographic features from C. pagurus have not been examined in sufficient detail to allow design of biomimetic surfaces. In this work, the spatial distribution, chemical composition, size and shape descriptors of microscale surface features from C. pagurus are characterized in detail for the first time. Additionally, the influence of topography from C. pagurus on the settlement of marine diatoms is examined under field conditions. (paper)

  14. Utilization of Large Scale Surface Models for Detailed Visibility Analyses

    Science.gov (United States)

    Caha, J.; Kačmařík, M.

    2017-11-01

    This article demonstrates utilization of large scale surface models with small spatial resolution and high accuracy, acquired from Unmanned Aerial Vehicle scanning, for visibility analyses. The importance of large scale data for visibility analyses on the local scale, where the detail of the surface model is the most defining factor, is described. The focus is not only the classic Boolean visibility, that is usually determined within GIS, but also on so called extended viewsheds that aims to provide more information about visibility. The case study with examples of visibility analyses was performed on river Opava, near the Ostrava city (Czech Republic). The multiple Boolean viewshed analysis and global horizon viewshed were calculated to determine most prominent features and visibility barriers of the surface. Besides that, the extended viewshed showing angle difference above the local horizon, which describes angular height of the target area above the barrier, is shown. The case study proved that large scale models are appropriate data source for visibility analyses on local level. The discussion summarizes possible future applications and further development directions of visibility analyses.

  15. Selecting the thermo-cyclic treatment’s optimum parameters based analysis of fractal surfaces indicators

    Directory of Open Access Journals (Sweden)

    Вікторія Юріївна Іващенко

    2015-03-01

    Full Text Available Optimization of complex modes of heat treatments, in which control the properties of processed steel occurs by varying the large number of parameters, is quite time-consuming process. The influence of thermal processes on the formation of the metal structure manifested at the level of micro- and meso-sizes, which are realized qualitatively different mechanisms of destruction. Method of multi-factual description of the fracture’s surfaces, which was got after tests of mechanical properties, was used for the choice of the optimum thermo-cyclic mode with the variable temperatures Tmax and Tmin in cycles in this work. It vas founded the number of TCT-mode’s cycles and order changing Tmax affect the processes of dislocation motion and the formation of micro-voids in the metal. This work shows the relationship between these processes and fractal indices. Fractal indices of micro levels correlate to the dislocation density of the structure, and the meso-level indices - to the percentage reduction of area at fracture. It was proved that the analysis of the topography of the fracture’s surfaces using fractal indices to determine the optimal combination of processing parameters required to obtain the best mechanical properties. The new TCT-modes with variable temperature settings can be seen as reinforcing thermal technology that promotes self-organization phase-structural state of steels because it is able to generate an effective barrier to the movement of dislocations and cracks promotion

  16. An interview with James Wilbur, Ph.D. General Manager, Life Sciences, Meso Scale Discovery.

    Science.gov (United States)

    Wilbur, James

    2004-06-01

    James L. Wilbur, Ph.D. received a Bachelor's degree from the University of California, San Diego and a Ph.D. in Chemistry from Stanford University. After completing an NIH Postdoctoral Fellowship with Professor George M. Whitesides in the Department of Chemistry at Harvard University, he joined IGEN International, Inc., where he held a variety of positions in Research and Development. During that time, he was part of the team that developed the core technology and products for Meso Scale Discovery. He assumed his current position in 2001 when Meso Scale Discovery launched the products discussed here.

  17. Biochemical characterization of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-2,6-diaminopimelate ligase (MurE from Verrucomicrobium spinosum DSM 4136(T..

    Directory of Open Access Journals (Sweden)

    Sean E McGroty

    Full Text Available Verrucomicrobium spinosum is a Gram-negative bacterium that is related to bacteria from the genus Chlamydia. The bacterium is pathogenic towards Drosophila melanogaster and Caenorhabditis elegans, using a type III secretion system to facilitate pathogenicity. V. spinosum employs the recently discovered l,l-diaminopimelate aminotransferase biosynthetic pathway to generate the bacterial cell wall and protein precursors diaminopimelate and lysine. A survey of the V. spinosum genome provides evidence that the bacterium should be able to synthesize peptidoglycan de novo, since all of the necessary genes are present. The enzyme UDP-N-acetylmuramoyl-l-alanyl-d-glutamate: meso-2,6-diaminopimelate ligase (MurE (E.C. 6.3.2.15 catalyzes a reaction in the cytoplasmic step of peptidoglycan biosynthesis by adding the third amino acid residue to the peptide stem. The murE ortholog from V. spinosum (murE Vs was cloned and was shown to possess UDP-MurNAc-l-Ala-d-Glu:meso-2,6-diaminopimelate ligase activity in vivo using functional complementation. In vitro analysis using the purified recombinant enzyme demonstrated that MurEVs has a pH optimum of 9.6 and a magnesium optimum of 30 mM. meso-Diaminopimelate was the preferred substrate with a K m of 17 µM, when compared to other substrates that are structurally related. Sequence alignment and structural analysis using homology modeling suggest that key residues that make up the active site of the enzyme are conserved in MurEVs. Our kinetic analysis and structural model of MurEVs is consistent with other MurE enzymes from Gram-negative bacteria that have been characterized. To verify that V. spinosum incorporates diaminopimelate into its cell wall, we purified peptidoglycan from a V. spinosum culture; analysis revealed the presence of diaminopimelate, consistent with that of a bona fide peptidoglycan from Gram-negative bacteria.

  18. Influence of aqueous media properties on aggregation and solubility of four structurally related meso-porphyrin photosensitizers evaluated by spectrophotometric measurements.

    Science.gov (United States)

    Sobczyński, J; Tønnesen, H H; Kristensen, S

    2013-02-01

    Porphyrin photosensitizers tend to aggregate in aqueous solutions even in the micromolar concentration range. This is a challenge during formulation of e.g., parenteral preparations for photodynamic cancer therapy, or preparations for local or topical administration in antimicrobial photodynamic therapy. Monomerization is essential to achieve biocompatible drug formulations of high bioavailability and physiological response (i.e., photoreactivity) and low toxicity. The aggregation and solubilization of four structurally related meso-tetraphenyl porphyrin photosensitizers with nonionic (4-hydroxy), anionic (4-sulphonate; 4-carboxy) and cationic (4-trimethylanilinium) substituents were evaluated in various vehicles by use of UV-Vis spectroscopy. Substituents, overall charge and charge distribution influenced the pKa-values and interaction of the porphyrins with different solvents, excipients and impurities. Modification of medium polarity and solubilization by the nonionic surfactant Tween 80 adjusted the acid-base equilibria and increased the solubility by reduction of porphyrin aggregation. The selected porphyrins were sensitive towards ionic strength, temperature and inorganic impurities to various extents. The results will be further used during development of parenteral and topical formulations of porphyrin photosensitizers for use in photodynamic therapy of cancer and bacterial infections.

  19. Surface structures of equilibrium restricted curvature model on two fractal substrates

    International Nuclear Information System (INIS)

    Song Li-Jian; Tang Gang; Zhang Yong-Wei; Han Kui; Xun Zhi-Peng; Xia Hui; Hao Da-Peng; Li Yan

    2014-01-01

    With the aim to probe the effects of the microscopic details of fractal substrates on the scaling of discrete growth models, the surface structures of the equilibrium restricted curvature (ERC) model on Sierpinski arrowhead and crab substrates are analyzed by means of Monte Carlo simulations. These two fractal substrates have the same fractal dimension d f , but possess different dynamic exponents of random walk z rw . The results show that the surface structure of the ERC model on fractal substrates are related to not only the fractal dimension d f , but also to the microscopic structures of the substrates expressed by the dynamic exponent of random walk z rw . The ERC model growing on the two substrates follows the well-known Family—Vicsek scaling law and satisfies the scaling relations 2α + d f ≍ z ≍ 2z rw . In addition, the values of the scaling exponents are in good agreement with the analytical prediction of the fractional Mullins—Herring equation. (general)

  20. On real structures on rigid surfaces

    International Nuclear Information System (INIS)

    Kulikov, Vik S; Kharlamov, V M

    2002-01-01

    We construct examples of rigid surfaces (that is, surfaces whose deformation class consists of a unique surface) with a particular behaviour with respect to real structures. In one example the surface has no real structure. In another it has a unique real structure, which is not maximal with respect to the Smith-Thom inequality. These examples give negative answers to the following problems: the existence of real surfaces in each deformation class of complex surfaces, and the existence of maximal real surfaces in every complex deformation class that contains real surfaces. Moreover, we prove that there are no real surfaces among surfaces of general type with p g =q=0 and K 2 =9. These surfaces also provide new counterexamples to the 'Dif = Def' problem

  1. Study on coal mine macro, meso and micro safety management system

    Directory of Open Access Journals (Sweden)

    Longkang Wang

    2016-03-01

    Full Text Available In recent years, the coal mine safety production situation in our country improved year by year, but severe accidents still occurred; the accidents caused great economic loss to the national economy. According to statistical analysis, almost all of the coal mine accidents will expose the hidden danger in before, most of the accidents caused due to safety management not reaching the designated position and the hidden danger management does not take any decision in time. Based on the coal mine safety management holes in our country, the coal mine macro, meso and micro safety management system was established in this paper, which includes meaning and conception of the theories of the macro, meso and micro safety management, and also includes the matching hardware equipment, in order to achieve the hidden danger's closed-loop control and dynamic early warning in the process of coal mine production.

  2. Quantitative study on crack of meso-damage and fracture concrete ...

    Indian Academy of Sciences (India)

    1School of Civil Engineering, Chang'an University, Xi'an 710061, China. 2Institute of Geotechnical ... lysis of the meso-fracture process of concrete materials is performed. The results demonstrate that the ... realize the quantitative analysis of micro cracks of concrete material (Ammouche et al 2000). The whole CT images of ...

  3. Research of state of metal welded joint by deformation and corrosion surface projection parameters

    Directory of Open Access Journals (Sweden)

    Demchenko Maria Vyacheslavovna

    2017-10-01

    Full Text Available At industrial enterprises in building structures and equipment one can see corrosion damage, as well as damage accumulated during operation period. The areas of stress concentration are welded joints as their structure is heterogeneous. From the point of view of the scale hierarchy, the welded joint represents the welded and base metal zones at the meso-macrolevel, the weld zone, the thermal zone, the base metal at the micro-mesolevel, the grain constituents at the nano-microlevel. Borders are the stress concentrators at different scale levels, thus they becomes the most dangerous places of metal structure. Modeling by the molecular dynamics method at the atomic level has shown nanocracks initiation in triple junctions of grain boundaries and on the ledges of the grain boundaries. Due to active development of nanotechnology, it became possible to evaluate the state of the weld metal at the nanoscale, where irreversible changes take place from the very beginning. Existing methods of nondestructive testing can detect damage only at the meso- and macrolevel. Modern equipment makes it possible to use other methods of control and approaches. For example, according to GOST R55046-2012 and R57223-2016, the analysis of the parameters of the surface projection deformation performed by confocal laser scanning microscopy should be taken into account when the evaluation of state of metal pipelines is carried out. However, there is a problem to monitore it due to various factors affecting the surface during operation. The paper proposes an additional method to estimate the state of weld metal at any stage of deformation that uses 3D analysis of the parameters of the «artificial» corrosion relief of surface. During the operation period changes in the stress-strain state and structure of the metal take place, as the result the character and depth of etching of the grains of the structural components and their boundaries change too. Evaluation of the

  4. Crystal structures and catalytic performance of three new methoxy substituted salen type nickel(II) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine

    Science.gov (United States)

    Ghaffari, Abolfazl; Behzad, Mahdi; Pooyan, Mahsa; Amiri Rudbari, Hadi; Bruno, Giuseppe

    2014-04-01

    Three new nickel(II) complexes of a series of methoxy substituted salen type Schiff base ligands were synthesized and characterized by IR, UV-Vis and 1H NMR spectroscopy and elemental analysis. The ligands were synthesized from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with n-methoxysalicylaldehyde (n = 3, 4 and 5). Crystal structures of these complexes were determined. Electrochemical behavior of the complexes was studied by means of cyclic voltammetry in DMSO solutions. Catalytic performance of the complexes was studied in the epoxidation of cyclooctene using tert-butylhydroperoxide (TBHP) as oxidant under various conditions to find the optimum operating parameters. Low catalytic activity with moderate epoxide selectivity was observed in in-solvent conditions but in the solvent-free conditions, enhanced catalytic activity with high epoxide selectivity was achieved.

  5. Different coordination modes for disulfoxides towards diorganotin(IV) dichlorides. X-ray crystal structures of 1,2-cis-bis-(phenylsulfinyl)ethene (rac-,cis-cbpse) and adducts [{l_brace}Ph{sub 2}SnCl{sub 2}(meso-bpse){r_brace}{sub n}] and [{l_brace}n-Bu{sub 2}SnCl{sub 2}(pdtd){r_brace}{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Gerimario F. de [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Quimica], e-mail: gfreitas@unb.br; Ellena, Javier [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Fisica; Malta, Valeria R.S. [Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil). Dept. de Quimica e Biotecnologia; Ardisson, Jose D. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Fisica Aplicada

    2009-07-01

    The reactions of meso-1,2-bis(phenylsulfinyl)ethane (meso-bpse) with Ph{sub 2}SnCl{sub 2}, 2-phenyl-1,3-dithiane trans-1-trans-3-dioxide (pdtd) with n-Bu{sub 2}SnCl{sub 2} and 1,2-cis-bis-(phenylsulfinyl) ethene (rac-,cis-cbpse) with Ph{sub 2}SnCl{sub 2}, in 1:1 molar ratio, yielded [{l_brace}Ph{sub 2}SnCl{sub 2}(meso-bpse){r_brace}{sub n}], [{l_brace}n-Bu{sub 2}SnCl{sub 2}(pdtd){r_brace}{sub 2}] and [{l_brace}Ph{sub 2}SnCl{sub 2}(rac,cis-cbpse){r_brace}x] (x = 2 or n), respectively. All adducts were studied by IR, Moessbauer and {sup 119}Sn NMR spectroscopic methods, elemental analysis and single crystal X-ray diffractometry. The X-ray crystal structure of [{l_brace}Ph{sub 2}SnCl{sub 2}(meso-bpse){r_brace}{sub n}] revealed the occurrence of infinite chains in which the tin(IV) atoms appear in a distorted octahedral geometry with Cl atoms in cis and Ph groups in trans positions. The X-ray crystal structure of [{l_brace}n-Bu{sub 2}SnCl{sub 2}(pdtd){r_brace}{sub 2}] revealed discrete centrosymmetric dimeric species in which the tin(IV) atoms possess a distorted octahedral geometry with bridging disulfoxides in cis and n-butyl moieties in trans positions. The spectroscopic data indicated that the adduct containing the rac,cis-cbpse ligand can be dimeric or polymeric. The X-ray structural analysis of the free rac-,cis-cbpse sulfoxide revealed that the crystals belong to the C2/c space group. (author)

  6. Magnetism and Pressure-Induced Superconductivity of Checkerboard-Type Charge-Ordered Molecular Conductor β-(meso-DMBEDT-TTF2X (X = PF6 and AsF6

    Directory of Open Access Journals (Sweden)

    Yutaka Nishio

    2012-11-01

    Full Text Available The metallic state of the molecular conductor β-(meso-DMBEDT-TTF2X (DMBEDT-TTF = 2-(5,6-dihydro-1,3-dithiolo[4,5-b][1,4]dithiin-2-ylidene-5,6-dihydro-5,6-dimethyl-1,3-dithiolo[4,5-b][1,4]dithiin, X = PF6, AsF6 is transformed into the checkerboard-type charge-ordered state at around 75–80 K with accompanying metal-insulator (MI transition on the anisotropic triangular lattice. With lowering temperatures, the magnetic susceptibility decreases gradually and reveals a sudden drop at the MI transition. By applying pressure, the charge-ordered state is suppressed and superconductivity appears in β-(meso-DMBEDT-TTF2AsF6 as well as in the reported β-(meso-DMBEDT-TTF2PF6. The charge-ordered spin-gapped state and the pressure-induced superconducting state are discussed through the paired-electron crystal (PEC model, where the spin-bonded electron pairs stay and become mobile in the crystal, namely the valence-bond solid (VBS and the resonant valence bonded (RVB state in the quarter-filled band structure.

  7. On real structures on rigid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, Vik S [Steklov Mathematical Institute, Russian Academy of Sciences (Russian Federation); Kharlamov, V M [Institut de Recherche Matematique Avanee Universite Louis Pasteur et CNRS 7 rue Rene Descartes (France)

    2002-02-28

    We construct examples of rigid surfaces (that is, surfaces whose deformation class consists of a unique surface) with a particular behaviour with respect to real structures. In one example the surface has no real structure. In another it has a unique real structure, which is not maximal with respect to the Smith-Thom inequality. These examples give negative answers to the following problems: the existence of real surfaces in each deformation class of complex surfaces, and the existence of maximal real surfaces in every complex deformation class that contains real surfaces. Moreover, we prove that there are no real surfaces among surfaces of general type with p{sub g}=q=0 and K{sup 2}=9. These surfaces also provide new counterexamples to the 'Dif = Def' problem.

  8. Surface layers of Xanthomonas malvacearum, the cause of bacterial blight of cotton.

    Science.gov (United States)

    Verma, J P; Formanek, H

    1981-01-01

    Mureins were isolated from two strains of Xanthomonas malvacearum, a phytopathogenic bacterium causing bacterial blight of cotton. The purity of murein was 70-95 % and the amino acid and amino sugar components (glutamic acid, alanina, meso-disminopimelic acid, muramic acid and glucosamine) were present at the molar ratio of 1:1.9:1:l.12.0.85. The bacterium secreted a copious amount of slime which masked itd surface structure. The slime was composed of densley interwoven network of filamentous material originating from the cell surface and extended into the medium without and discernable boundary. The slime was secreted through surface layers pores by force, giving the effect of a spray or jet. Slime also played a role in chain formatin of baterial cells.

  9. Probabilistic, meso-scale flood loss modelling

    Science.gov (United States)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2016-04-01

    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  10. Evaluation of planetary boundary layer schemes in meso-scale simulations above the North and Baltic Sea

    Science.gov (United States)

    Wurps, Hauke; Tambke, Jens; Steinfeld, Gerald; von Bremen, Lueder

    2014-05-01

    The development and design of wind energy converters for offshore wind farms require profound knowledge of the wind profile in the lower atmosphere. Especially an accurate and reliable estimation of turbulence, shear and veer are necessary for the prediction of energy production and loads. Currently existing wind energy turbines in the North Sea have hub heights of around 90 m and upper tip heights around 150 m, which is already higher than the highest measurement masts (e.g. FINO1: 103 m). The next generation of wind turbines will clearly outrange these altitudes, so the interest is to examine the atmosphere's properties above the North Sea up to 300 m. Therefore, besides the Prandtl layer also the Ekman layer has to be taken into account, which implies that changes of the wind direction with height become more relevant. For this investigation we use the Weather Research and Forecasting Model (WRF), a meso-scale numerical weather prediction system. In this study we compare different planetary boundary layer (PBL) schemes (MYJ, MYNN, QNSE) with the same high quality input from ECMWF used as boundary conditions (ERA-Interim). It was found in previous studies that the quality of the boundary conditions is crucially important for the accuracy of comparisons between different PBL schemes. This is due to the fact that the major source of meso-scale simulation errors is introduced by the driving boundary conditions and not by the different schemes of the meso-scale model itself. Hence, small differences in results from different PBL schemes can be distorted arbitrarily by coarse input data. For instance, ERA-Interim data leads to meso-scale RMSE values of 1.4 m/s at 100 m height above sea surface with mean wind speeds around 10 m/s, whereas other Reanalysis products lead to RMSEs larger than 2 m/s. Second, we compare our simulations to operational NWP results from the COSMO model (run by the DWD). In addition to the wind profile, also the turbulent kinetic energy (TKE

  11. Electrochemical and Spectroscopic Characterization of Aluminium(III-para-methyl-meso-tetraphenylporphyrin Complexes Containing Substituted Salicylates as Axial Ligands

    Directory of Open Access Journals (Sweden)

    Gauri D. Bajju

    2013-01-01

    Full Text Available A series of aluminium(III-p-methyl-meso-tetraphenylporphyrin (p-CH3TPP-Al(III containing axially coordinated salicylate anion [p-CH3TPP-Al-X], where X = salicylate (SA, 4-chlorosalicylate (4-CSA, 5-chlorosalicylate (5-CSA, 5-flourosalicylate (5-FSA, 4-aminosalicylate (4-ASA, 5-aminosalicylate (5-ASA, 5-nitrosalicylate (5-NSA, and 5-sulfosalicylate (5-SSA, have been synthesized and characterized by various spectroscopic techniques including ultraviolet-visible (UV-vis, infrared (IR spectroscopy, proton nuclear magnetic resonance (1H NMR spectroscopy, 13C NMR, and elemental analysis. A detailed study of electrochemistry of all the synthesized compounds has been done to compare their oxidation and reduction mechanisms and to explain the effect of axial coordination on their redox properties.

  12. Dynamics of meso and thermo citrate synthases with implicit solvation

    Science.gov (United States)

    Cordeiro, J. M. M.

    The dynamics of hydration of meso and thermo citrate synthases has been investigated using the EEF1 methodology implemented with the CHARMM program. The native enzymes are composed of two identical subunits, each divided into a small and large domain. The dynamics behavior of both enzymes at 30°C and 60°C has been compared. The results of simulations show that during the hydration process, each subunit follows a different pathway of hydration, in spite of the identical sequence. The hydrated structures were compared with the crystalline structure, and the root mean square deviation (RMSD) of each residue along the trajectory was calculated. The regions with larger and smaller mobility were identified. In particular, helices belonging to the small domain are more mobile than those of the large domain. In contrast, the residues that constitute the active site show a much lower displacement compared with the crystalline structure. Hydration free energy calculations point out that Thermoplasma acidophilum citrate synthase (TCS) is more stable than chicken citrate synthase (CCS), at high temperatures. Such result has been ascribed to the higher number of superficial charges in the thermophilic homologue, which stabilizes the enzyme, while the mesophilic homologue denatures. These results are in accord with the experimental found that TCS keeps activity at temperatures farther apart from the catalysis regular temperature than the CCS.

  13. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... An algorithm to retrieve Land Surface Temperature using Landsat-8 Dataset Abstract PDF. ISSN: 2225-8531.

  14. Low energy ion scattering (LEIS) and the compositional and structural analysis of solid surfaces

    International Nuclear Information System (INIS)

    Berg, J.A. van den; Armour, D.G.

    1981-01-01

    The physics of Low Energy Ion Scattering (LEIS) and its application as a surface analytical technique are reviewed. It is shown that compositional and short-range structural information can be obtained by choosing experimental conditions which optimize the contributions of single and double (or multiple) collisions, respectively. The LEIS technique allows mass analysis in a straightforward way, possesses a high surface selectivity but is unable to provide quantitative information in isolation due to scattering cross-section uncertainties and not easily quantifiable charge exchange effects. Structural information regarding adsorbate positions on single crystal surfaces and the short-range substrate structure (including damaged and reconstructed surfaces) can be obtained by exploiting shadowing and/or multiple scattering phenomena. The progress made in recent years in this area is charted. It is shown that computer simulations often play an important role in this type of study. Effects, such as charge exchange, inelastic energy loss and ion beam surface perturbations, which complicate the use of low energy ion scattering for surface analysis are discussed in detail. The present status of the technique in the different areas of study is indicated. (author)

  15. The micro and meso-porous materials. Characterization; Les materiaux micro et mesoporeux. Caracterisation

    Energy Technology Data Exchange (ETDEWEB)

    Thibault-Starzyk, F.

    2004-10-01

    The micro and meso-porous materials, called zeolites, are very important in the modern chemical industry and in petrochemistry. This book deals in particular with the study and the characterization of zeolites. Its aim is to give to generalist chemists the tools for approaching experimentally these particular materials. The main methods of study and characterization are gathered in eight chapters, and the authors stress on the specificities due to the porous system: -structural analysis by the diffraction methods; -infrared spectroscopy; -NMR; -micro-calorimetry; -adsorption thermodynamics; -methods using the programed temperature; -modeling; -reactivity: kinetics and chemical engineering. This book appeals to students, engineers or searchers, without previous knowledge on these materials, but having a bachelor's degree or a master degree in general chemistry. (O.M.)

  16. Theoretical investigation of the charge-transfer properties in different meso-linked zinc porphyrins for highly efficient dye-sensitized solar cells.

    Science.gov (United States)

    Namuangruk, Supawadee; Sirithip, Kanokkorn; Rattanatwan, Rattanawelee; Keawin, Tinnagon; Kungwan, Nawee; Sudyodsuk, Taweesak; Promarak, Vinich; Surakhot, Yaowarat; Jungsuttiwong, Siriporn

    2014-06-28

    The charge transfer effect of different meso-substituted linkages on porphyrin analogue 1 (A1, B1 and C1) was theoretically investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The calculated geometry parameters and natural bond orbital analysis reveal that the twisted conformation between porphyrin macrocycle and meso-substituted linkages leads to blocking of the conjugation of the conjugated backbone, and the frontier molecular orbital plot shows that the intramolecular charge transfer of A1, B1 and C1 hardly takes place. In an attempt to improve the photoinduced intramolecular charge transfer ability of the meso-linked zinc porphyrin sensitizer, a strong electron-withdrawing group (CN) was introduced into the anchoring group of analogue 1 forming analogue 2 (A2, B2 and C2). The density difference plot of A2, B2 and C2 shows that the charge transfer properties dramatically improved. The electron injection process has been performed using TDDFT; the direct charge-transfer transition in the A2-(TiO2)38 interacting system takes place; our results strongly indicated that introducing electron-withdrawing groups into the acceptor part of porphyrin dyes can fine-tune the effective conjugation length of the π-spacer and improve intramolecular charge transfer properties, consequently inducing the electron injection process from the anchoring group of the porphyrin dye to the (TiO2)38 surface which may improve the conversion efficiency of the DSSCs. Our calculated results can provide valuable information and a promising outlook for computation-aided sensitizer design with anticipated good properties in further experimental synthesis.

  17. Meso-Cenozoic tectonic evolution and uranium potential evaluations of basins in Beishan-Gansu corridor region

    International Nuclear Information System (INIS)

    Guo Qingyin; Chen Zuyi; Liu Hongxu; Yu Jinshui

    2006-01-01

    Beishan-Gansu Corridor region is located at the intersection of the plates of Tarim, North China, Kazakhstan, Siberia and Qaidam. During the Meso-Cenozoic, the region experienced movements of Indo-sinian, Yanshanian, Sichuanian, North China, Himalayan and Neotectonic, and over 20 medium-small size superimposed continental basins were formed. On the basis of analyzing the tectonic stress field, sediment-filling and structure-deformation; the general trending of tectonic evolution in the Meso-Cenozoic is summarized as three-time compressional uplifting and two-time extensional down-faulting. The different evolution of basins under the above mentioned setting can be divided into six stages according to characteristics of filled sediment. The sand bodies developed in down-faulted basins are favorable for uranium ore-formation as they are formed under humid paleoclimates, and rich in reducing matter. Therefore, the Lower-Middle Jurassic is selected as the main target horizon for sandstone-hosted uranium deposit, and the Lower Cretaceous as the minor one. Although the tectonic reactivation of the target horizon after its deposition was generally strong, the slopes formed in some basins could be favorable for the infiltration of uranium-and oxygen-bearing groundwater into sand bodies and form uranium deposits. According to the favorable sand bodies and tectonic reactivation, the northern parts of Chaoshui and Bayingobi basins are regarded as potential regions which are worthy of further exploration. (authors)

  18. Investigating influences on current community pharmacy practice at micro, meso, and macro levels.

    Science.gov (United States)

    Hermansyah, Andi; Sainsbury, Erica; Krass, Ines

    The nature of Australian community pharmacy is continually evolving, raising the need to explore the current situation in order to understand the potential impact of any changes. Although community pharmacy has the potential to play a greater role in health care, it is currently not meeting this potential. To investigate the nature of the contemporary practice of community pharmacy in Australia and examine the potential missed opportunities for role expansion in health care. In-depth semi-structured interviews with a wide-range of key stakeholders within and beyond community pharmacy circles were conducted. Interviews were audio-recorded, transcribed verbatim and analyzed for emerging themes. Twenty-seven key informants across Eastern half of Australia were interviewed between December 2014 and August 2015. Several key elements of the current situation representing the social, economic and policy context of community pharmacy have been identified. These elements operate interdependently, influence micro, meso and macro levels of community pharmacy operation and are changing in the current climate. Community pharmacy has untapped potential in primary health care, but it has been slow to change to meet opportunities available in the current situation. As the current situation is complex, interrelated and dynamic with often unintended and unpredictable consequences, this paper suggests that policy makers to consider the micro, meso and macro levels of community pharmacy operation when making significant policy changes. The framework proposed in this study can be a helpful tool to analyze the processes operating at these three levels and their influences on practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Characterization and quantification of racemic and meso-ethylenediamine-N,N'-bis(2-hydroxy-5-sulfophenylacetic) acid/iron (III) by ion-pair ultra-high performance liquid chromatography coupled with diode array detector and electrospray tandem mass spectrometry.

    Science.gov (United States)

    Biasone, Alessandro; Cianci, Giusto; Di Tommaso, Donata; Piaggesi, Alberto; Tagliavini, Emilio; Galletti, Paola; Moretti, Fabio

    2013-03-22

    EDDHSA/Fe is a promising substitute of EDDHA/Fe to fight iron chlorosis. o,o-EDDHSA structure contains two chiral carbons giving the racemic and meso couples of stereoisomers. Ion-pair HPLC and UHPLC-UV/Vis-ESI-MS/MS methods were developed for the determination of racemic and meso-o,o-EDDHSA/Fe in commercial samples of chelates. The lack of a commercial EDDHSA standard was overcome by sulfonation of a commercial available o,o-EDDHA standard and subsequent quantification by (1)H-NMR. Assignment of configurations was carried out starting from racemic and meso-o,o-EDDHA/Fe by direct sulfonation to give the corresponding o,o-EDDHSA/Fe isomers. The performances of these methods were assessed in terms of intra and inter-day precision, linearity and selectivity. The high selectivity and lower detection limit (nanomolar) of the UHPLC-ESI-MS/MS method could allow to deepen the knowledge relative to meso and rac-o,o-EDDHSA/Fe interactions with plants, its fate in different soil conditions, its mobility and other environmental aspects. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Creating 3D Hierarchical Carbon Architectures with Micro-, Meso-, and Macropores via a Simple Self-Blowing Strategy for a Flow-through Deionization Capacitor.

    Science.gov (United States)

    Zhao, Shanshan; Yan, Tingting; Wang, Hui; Zhang, Jianping; Shi, Liyi; Zhang, Dengsong

    2016-07-20

    In this work, 3D hierarchical carbon architectures (3DHCAs) with micro-, meso-, and macropores were prepared via a simple self-blowing strategy as highly efficient electrodes for a flow-through deionization capacitor (FTDC). The obtained 3DHCAs have a hierarchically porous structure, large accessible specific surface area (2061 m(2) g(-1)), and good wettability. The electrochemical tests show that the 3DHCA electrode has a high specific capacitance and good electric conductivity. The deionization experiments demonstrate that the 3DHCA electrodes possess a high deionization capacity of 17.83 mg g(-1) in a 500 mg L(-1) NaCl solution at 1.2 V. Moreover, the 3DHCA electrodes present a fast deionization rate in 100-500 mg L(-1) NaCl solutions at 0.8-1.4 V. The 3DHCA electrodes also present a good regeneration behavior in the reiterative regeneration test. These above factors render the 3DHCAs a promising FTDC electrode material.

  1. Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Cheng [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Qi, Li; Wang, Hongyu [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Yoshio, Masaki [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2010-07-01

    The capacitive characteristics of micro- and meso-porous carbon materials have been compared in cyclic voltammetric studies and galvanostatic charge-discharge tests. Meso-porous carbon can keep certain high capacitance values at high scan rates, whereas micro-porous carbon possesses very high capacitance values at low scan rates but fades quickly as the scan rate rises up. For better performance of electric double-layer capacitors (EDLCs), the cooperative application of both kinds of carbon materials has been proposed in the following two ways: mixing both kinds of carbons in the same electrode or using the asymmetric configuration of carbon electrodes in the same EDLC. The cooperative effect on the electrochemical performance has also been addressed. (author)

  2. Design and evaluation of hybrid meso-porous silicas to uranium extraction from sulfuric media

    International Nuclear Information System (INIS)

    Charlot, Alexandre

    2016-01-01

    Nuclear industries are perpetually looking for technical, economic and environmental progresses. Important volumes of acidic waste are generated by nuclear plants of the front end. The extraction of uranium from these solutions is required to decontaminate effluents (decrease of the radioactivity) and value uranium (re-incorporation in the cycle). Uranium leaching is mostly achieved using sulfuric acid leading to the production of aqueous effluents that contain a large grade of sulfate complexes. In such conditions, uranyl sulfate complexes constitute the predominant uranium species in solution and its extraction represents a real scientific and technological challenge. Commonly, precipitation, solvent extraction or solid phase extraction are used. The last one is particularly adapted for low grade solutions due to it weak environmental footprint (no solvent are handling) and the facility of the process involved (i.e. fixed bed column). among the available solid-phase extraction candidates, hybrid meso-porous silicas get a crucial part. They develop a very high specific surface areas and a driven porosity which give them a high potential of extraction capacities. In this manuscript the tailoring and the evaluation of hybrid meso-porous silicas have been investigated. Firstly, the work focus on the organic part grafted by post-synthetic pathway, the N,N-dialkyl-carbamoyl-phosphonate based molecules have been identified to get interesting extraction properties. This study emphasizes that acid groups are required and that alkyl substituents get a real importance in the extraction efficiency. On the second hand, the role of pore size has been investigated. The results obtained disclosed that pores size diameters directly impact the grafting ratio as well as the homogeneity of the material: (1) materials with a pore size below 3 nm are heterogeneously functionalized due to steric issues, (2) a homogeneous organic monolayer grafted onto the silica skeleton occurs when

  3. Asymmetric Horner-Wadsworth-Emmons Reactions with meso-Dialdehydes: Scope, Mechanism, and Synthetic Applications

    DEFF Research Database (Denmark)

    Rein, Tobias; Vares, Lauri; Kawasaki, Ikuo

    1999-01-01

    Asymmetric Homer-Wadsworth-Emmons reactions between chiral phosphonate reagents and various meso-dialdehydes have been investigated. A mechanistic model useful for rationalizing the experimentally observed stereoselectivities is presented. Furthermore; strategies for applying these reactions...

  4. Molecular Details of Olfactomedin Domains Provide Pathway to Structure-Function Studies.

    Directory of Open Access Journals (Sweden)

    Shannon E Hill

    Full Text Available Olfactomedin (OLF domains are found within extracellular, multidomain proteins in numerous tissues of multicellular organisms. Even though these proteins have been implicated in human disorders ranging from cancers to attention deficit disorder to glaucoma, little is known about their structure(s and function(s. Here we biophysically, biochemically, and structurally characterize OLF domains from H. sapiens olfactomedin-1 (npoh-OLF, also called noelin, pancortin, OLFM1, and hOlfA, and M. musculus gliomedin (glio-OLF, also called collomin, collmin, and CRG-L2, and compare them with available structures of myocilin (myoc-OLF recently reported by us and R. norvegicus glio-OLF and M. musculus latrophilin-3 (lat3-OLF by others. Although the five-bladed β-propeller architecture remains unchanged, numerous physicochemical characteristics differ among these OLF domains. First, npoh-OLF and glio-OLF exhibit prominent, yet distinct, positive surface charges and copurify with polynucleotides. Second, whereas npoh-OLF and myoc-OLF exhibit thermal stabilities typical of human proteins near 55°C, and most myoc-OLF variants are destabilized and highly prone to aggregation, glio-OLF is nearly 20°C more stable and significantly more resistant to chemical denaturation. Phylogenetically, glio-OLF is most similar to primitive OLFs, and structurally, glio-OLF is missing distinguishing features seen in OLFs such as the disulfide bond formed by N- and C- terminal cysteines, the sequestered Ca2+ ion within the propeller central hydrophilic cavity, and a key loop-stabilizing cation-π interaction on the top face of npoh-OLF and myoc-OLF. While deciphering the explicit biological functions, ligands, and binding partners for OLF domains will likely continue to be a challenging long-term experimental pursuit, we used structural insights gained here to generate a new antibody selective for myoc-OLF over npoh-OLF and glio-OLF as a first step in overcoming the impasse in

  5. Structural alterations of the superior temporal gyrus in schizophrenia: Detailed subregional differences.

    Science.gov (United States)

    Ohi, K; Matsuda, Y; Shimada, T; Yasuyama, T; Oshima, K; Sawai, K; Kihara, H; Nitta, Y; Okubo, H; Uehara, T; Kawasaki, Y

    2016-05-01

    Reduced gray matter volumes in the superior temporal gyrus (STG) have been reported in patients with schizophrenia. Such volumetric abnormalities might denote alterations in cortical thickness, surface area, local gyrification or all of these factors. The STG can be anatomically divided into five subregions using automatic parcellation in FreeSurfer: lateral aspect of the STG, anterior transverse temporal gyrus of Heschl gyrus (HG), planum polare (PP) of the STG, planum temporale (PT) of the STG and transverse temporal sulcus. We acquired magnetic resonance imaging (MRI) 3T scans from 40 age- and sex-matched patients with schizophrenia and 40 healthy subjects, and the scans were automatically processed using FreeSurfer. General linear models were used to assess group differences in regional volumes and detailed thickness, surface area and local gyrification. As expected, patients with schizophrenia had significantly smaller bilateral STG volumes than healthy subjects. Of the five subregions in the STG, patients with schizophrenia showed significantly and marginally reduced volumes in the lateral aspect of the STG and PT of the STG bilaterally compared with healthy subjects. The volumetric alteration in bilateral lateral STG was derived from both the cortical thickness and surface area but not local gyrification. There was no significant laterality of the alteration in the lateral STG between patients and controls and no correlation among the structures and clinical characteristics. These findings suggest that of five anatomical subregions in the STG, the lateral STG is one of the most meaningful regions for brain pathophysiology in schizophrenia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Researching the Components of Formation of the Export Potential of Industry on the Micro-and Meso-Levels

    Directory of Open Access Journals (Sweden)

    Pavlenchyk Nataliya F.

    2017-11-01

    Full Text Available The article analyses approaches to formation of the export potential of industry on the micro- and meso-levels. A number of factors influencing the formation of the export potential of industry on the micro- and meso-levels has been considered. It was found that the components of the export potential of industry on the micro- and meso-levels are factors, capabilities (potential, and resources. It has been suggested to perceive the defining resources of formation of the export potential of industrial enterprises as: personnel, production, financial-investment, innovation, marketing, information, organizational, and managerial. It has been found that the main resources of export potential of the industry of region include: production, raw material, natural, financial, investment, social, and innovation. There is a number of opportunities that contribute to the formation of the export potential of the region’s industry, in particular: labor, industrial, financial, raw material, natural, investment, innovation, social, information, and organizational-managerial.

  7. A functional interaction approach to the definition of meso regions: The case of the Czech Republic

    Directory of Open Access Journals (Sweden)

    Erlebach Martin

    2016-06-01

    Full Text Available The definition of functional meso regions for the territory of the Czech Republic is articulated in this article. Functional regions reflect horizontal interactions in space and are presented as a useful tool for various types of geographical analyses, and also for spatial planning, economic policy designs, etc. This paper attempts to add to the discussion on the need to delineate areal units at different hierarchical levels, and to understand the functional flows and spatial behaviours of the population in a given space. Three agglomerative methods are applied in the paper (the CURDS regionalisation algorithm, Intramax, and cluster analysis, and they have not been used previously in Czech geography for the delineation of functional meso regions. Existing functional regions at the micro-level, based on daily travel-to-work flows from the 2001 census, have served as the building blocks. The analyses have produced five regional systems at the meso level, based on daily labour commuting movements of the population. Basic statistics and a characterisation of these systems are provided in this paper.

  8. meso-Octamethylcalix[4]pyrrole as an effective macrocyclic receptor for the univalent thallium cation in the gas phase: Experimental and theoretical study

    Czech Academy of Sciences Publication Activity Database

    Polášek, Miroslav; Makrlík, E.; Kvíčala, J.; Křížová, Věra; Vaňura, P.

    Roč. 1153 ( 2018 ), s. 78-84 ISSN 0022-2860 R&D Projects: GA MŠk CZ.1.05/3.2.00/08.0144 Grant - others:GA MŠk(CZ) 20/2015; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388955 Keywords : Thallium cation * meso-Octamethylcalix[4]pyrrole * Complexation * DFT calculations * Structures Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.753, year: 2016

  9. Detailed Geological Modelling in Urban Areas focused on Structures relevant to the Near Surface Groundwater Flow in the context of Climatic Changes

    Science.gov (United States)

    Bach, T.; Pallesen, T. M.; Jensen, N. P.; Mielby, S.; Sandersen, P.; Kristensen, M.

    2015-12-01

    This case demonstrates a practical example from the city of Odense (DK) where new geological modeling techniques has been developed and used in the software GeoScene3D, to create a detailed voxel model of the anthropogenic layer. The voxel model has been combined with a regional hydrostratigraphic layer model. The case is part of a pilot project partly financed by VTU (Foundation for Development of Technology in the Danish Water Sector) and involves many different datatypes such as borehole information, geophysical data, human related elements (landfill, pipelines, basements, roadbeds etc). In the last few years, there has been increased focus on detailed geological modeling in urban areas. The models serve as important input to hydrological models. This focus is partly due to climate changes as high intensity rainfalls are seen more often than in the past, and water recharge is a topic too. In urban areas, this arises new challenges. There is a need of a high level of detailed geological knowledge for the uppermost zone of the soil, which typically are problematic due to practically limitations, especially when using geological layer models. Furthermore, to accommodate the need of a high detail, all relevant available data has to be used in the modeling process. Human activity has deeply changed the soil layers, e.g. by constructions as roadbeds, buildings with basements, pipelines, landfill etc. These elements can act as barriers or pathways regarding surface near groundwater flow and can attribute to local flooding or mobilization and transport of contaminants etc. A geological voxel model is built by small boxes (a voxel). Each box can contain several parameters, ex. lithology, transmissivity or contaminant concentration. Human related elements can be implemented using tools, which gives the modeler advanced options for making detailed small-scale models. This case demonstrates the workflow and the resulting geological model for the pilot area.

  10. Investigations on a nano-scale periodical waveguide structure taking surface plasmon polaritons into consideration

    International Nuclear Information System (INIS)

    Liu Weihao; Zhong Renbin; Zhou Jun; Zhang Yaxin; Hu Min; Liu Shenggang

    2012-01-01

    Detailed theoretical analysis and computer simulations on the electromagnetic characteristics of a nano-scale periodical waveguide structure, taking surface plasmon polaritons (SPPs) into consideration, are carried out in this paper. The results show that SPPs will significantly influence the electromagnetic characteristics of the structure. When the operation frequency is in a certain band—the ‘radial confinement band’, neither radial surface plasmon waves nor guided waves, which both will lead to radial energy loss, can be excited in the structure. And the electromagnetic waves are completely confined within the longitudinal waveguide and propagate along it with little attenuation. The radial energy loss is then significantly reduced. These results are of great significance not only for increasing the efficiency of the radiation sources based on the nano-scale periodical waveguide structure but also for the development of high-efficiency waveguides and wide-band filters in the infrared and visible light regimes. (paper)

  11. GRASP2: visualization, surface properties, and electrostatics of macromolecular structures and sequences.

    Science.gov (United States)

    Petrey, Donald; Honig, Barry

    2003-01-01

    The widespread use of the original version of GRASP revealed the importance of the visualization of physicochemical and structural properties on the molecular surface. This chapter describes a new version of GRASP that contains many new capabilities. In terms of analysis tools, the most notable new features are sequence and structure analysis and alignment tools and the graphical integration of sequence and structural information. Not all the new GRASP2 could be described here and more capabilities are continually being added. An on-line manual, details on obtaining the software, and technical notes about the program and the Troll software library can be found at the Honig laboratory Web site (http://trantor.bioc.columbia.edu).

  12. Meso- and micropore characteristics of coal lithotypes: Implications for CO2 adsorption

    Science.gov (United States)

    Mastalerz, Maria; Drobniak, A.; Rupp, J.

    2008-01-01

    Lithotypes (vitrain, clarain, and fusain) of high volatile bituminous Pennsylvanian coals (Ro of 0.56-0.62%) from Indiana (the Illinois Basin) have been studied with regard to meso- and micropore characteristics using low-pressure nitrogen and carbon dioxide adsorption techniques, respectively. High-pressure CO2 adsorption isotherms were obtained from lithotypes of the Lower Block Coal Member (the Brazil Formation) and the Springfield Coal Member (the Petersburg Formation), and after evacuation of CO2, the lithotypes were re-analyzed for meso- and micropore characteristics to investigate changes related to high-pressure CO2 adsorption. Coal lithotypes have differing Brunauer-Emmett-Teller (BET) surface areas and mesopore volumes, with significantly lower values in fusains than in vitrains or clarains. Fusains have very limited pore volume in the pore size width of 4-10 nm, and the volume, increases with an increase in pore size, in contrast to vitrain, for which a 4-10 nm range is the dominant pore'Wlidth. For clarain, both pores of 4-10 nm and pores larger than 20 nm contribute substantially to the mesoporosity. Micropore surface areas are the smallest for fusain (from 72.8 to 98.2 m2/g), largest for vitrain (from 125.0 to,158.4 m2 /g), and intermediate for clarain (from 110.5 to 124.4 m2/g). Similar relationships are noted for micropore volumes, and the lower values of these parameters in fusains are related to smaller volumes of all incremental micropore sizes. In the Springfield and the Lower Block Coal Members, among lithotypes studied, fusain has the lowest adsorption capacity. For the Lower Block, vitrain has significantly higher adsorption capacity than fusain and clarain, whereas for the Springfield, vitrain and clarain have comparable but still significantly higher adsorption capacities than fusain. The Lower Block vitrain and fusain have much higher adsorption capacities than those in the Springfield, whereas the clarains of the two coals are comparable

  13. Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Harry Keo [Univ. of California, Davis, CA (United States)

    2008-07-11

    The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accounted for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed

  14. Optical and structural characterization od titanium dioxide films used for construction of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ivanovska, Tanja

    2012-01-01

    The dye-sensitized solar cells are the most serious concept that could replace the silicon solar cells. These are low-cost photovoltaic, and represent a technology which could seriously decrease the cost of the electrical energy they produce. The dye-sensitized solar cells are composed of several layers of materials that belong to the group of inorganic semiconductors. For the efficiency improvement of these cells, there are two basic concepts of research regarding the construction materials. On one side, investigation of new materials that will, as a result of their physical and electrochemical characteristics, increase the cell efficiency, and on the other side, use of materials that will contribute to the long term stability of the cell in atmospheric conditions. As a part of this Master thesis, compact and meso porous Ti(>2 films for dye- sensitized solar cells have been prepared. The compact Ti0 2 films were deposited with the technique of spray pyrolysis, and the preparation of the meso porous films was made with a blade casting technique. The optical and structural analysis and characterization of the films was done with optical spectroscopy in the visible and ultraviolet spectral region (UV- Vis), Raman spectroscopy and atomic force microscopy (AFM). The crystal structure of the films, surface uniformity, thickness and grain size dependence on the deposition parameters was investigated, this led to calculation of the optical constants for the compact films, as well as the determination of the electron transitions and the determination of the bang gap energy. Also regarding the structure and porosity of the meso porous films, characterization of the quality of the film depending on the chemical composition of the paste used for deposition was made. As a result of the preformed investigations, through defining the structural and optical parameters of quality compact and meso porous TiC>2 films for dye-sensitized solar cells, the optimal parameters for film

  15. Fe uptake from meso and D,L-racemic Fe(o,o-EDDHA) isomers by strategy I and II plants.

    Science.gov (United States)

    Cerdán, Mar; Alcañiz, Sara; Juárez, Margarita; Jordá, Juana D; Bermúdez, Dolores

    2006-02-22

    One of the most efficient fertilizers to correct Fe deficiency in calcareous soils and waters with high bicarbonate content is based on ferric ethylenediamine-N,N'-bis(o-hydroxyphenylacetic) acid [Fe(o,o-EDDHA)]. Fe(o,o-EDDHA) forms two groups of geometric isomers known as meso and D,L-racemic. To determine the Fe uptake from meso and D,L-racemic Fe(o,o-EDDHA), four iron-efficient plants, two plants representative of strategy I (tomato and pepper) and two plants representative of strategy II (wheat and oats), were grown in hydroponic culture. Results indicated that strategy II plants took up iron from both Fe(o,o-EDDHA) isomers equally. However, strategy I plants took mainly the iron associated with the meso form (the lowest stability isomer).

  16. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenchao; Yao, Yao, E-mail: yaoyao@fudan.edu.cn; Wu, Chang-Qin, E-mail: cqw@fudan.edu.cn [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)

    2015-04-21

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (R{sub rec}−V) and the current density-voltage (J–V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted R{sub rec} data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the R{sub rec}–V characteristics. For the perovskites of increased band gaps, the R{sub rec}'s are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the R{sub rec} decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  17. Meso-scale magnetic signatures for nuclear reactor steel irradiation embrittlement monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Suter, J. D., E-mail: pradeep.ramuhalli@pnnl.gov; Ramuhalli, P., E-mail: pradeep.ramuhalli@pnnl.gov; Hu, S.; Li, Y.; Jiang, W.; Edwards, D. J.; Schemer-Kohrn, A. L.; Johnson, B. R. [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); McCloy, J. S., E-mail: john.mccloy@wsu.edu; Xu, K., E-mail: john.mccloy@wsu.edu [Washington State University, PO Box 642920, Pullman, WA 99164 (United States)

    2015-03-31

    Verifying the structural integrity of passive components in light water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the “state of health” of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of nondestructive evaluation technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results of integrating advanced material characterization techniques with meso-scale computational models. In the future, this will help to provide an interpretive understanding of the state of degradation in structural materials. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. Ongoing research is focused on extending the measurements and models on thin films to gain insights into the structural state of irradiated materials and the resulting impact on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

  18. Detailed crustal structure of the North China and its implication for seismicity

    Science.gov (United States)

    Jiang, Wenliang; Wang, Xin; Tian, Tian; Zhang, Jingfa; Wang, Donglei

    2014-02-01

    Since the Mesozoic-Cenozoic era the North China Craton has experienced an important tectonic transition and it has given rise to complicated crustal structure and strong earthquake activity. Based on the large-scale surface gravity data, we studied the detailed crustal structure and seismogenic mechanism of the North China. The results indicate that the North China presents typical characteristics of adjoining depression and uplift, alternating basins and hills, inhomogeneous density and also great differences in crustal structure and Moho topography. The upper and middle crustal structures are dominated by the NNE-striking tectonic units, with many faults cut down to the middle crust. The lower crust is characterized by the folding-structure, with high and low-density placed alternately from west to east, presenting lateral heterogeneous feature. Adjusted by the gravity isostasy, Moho topography of the North China fluctuates greatly. Compared with the North China Basin, crustal thickness in the Western Taihang, northern Yanshan and Luzhong areas are much thicker while those densities are lower than the North China Basin. The dominating tectonic direction of the Moho topography strikes NE to NNE and undulates alternately from west to east. The epicenters are mostly concentrated in the upper and middle crust, especially the transitional areas between the high and low-gravity anomalies. The Tancheng earthquake in 1668, Sanhe earthquake in 1673, Tangshan earthquake in 1976, and all other seismic tectonic zones of the North China are all distributed in area where magma moves strongly beneath the crust, which is considered to be related to the movement of the high density, unstable and heat flows along the deep passage from the uppermost and asthenosphere due to the subduction of the Pacific slab towards the Eurasian plate.

  19. Synthesis and Characterization of Meso porous Material Functionalized with Different Silylating Agent and Their Capability to Remove Cu2+

    International Nuclear Information System (INIS)

    Zaini Hamzah; Norhidayu Narawi; Hamizah Mohd Rasid; Amira Nazirah Mohd Yusoff

    2012-01-01

    Meso porous material MCM-41 with uniform hexagonally ordered pores in range of 2-10 nm was synthesized through hydrothermal method. The synthesis started from highly pure silica source known as Ludox which act as an active source of silica in the presence of organic surfactant (CTABr) as structure-directing agent. MCM-41 has been functionalized with the organic group known as 3-aminopropyltriethoxysilane (APTES), 3-mercaptopropyltrimethoxysilane (MPTMS), and chloropropyl triethoxysilane (CPTES) by co-condensation method in order to enhance the surface hydrophobicity of MCM-41. The increasing hydrophobicity will lead to efficient reaction specifically for organic reaction in organic solvent. The resulting materials were characterized with various techniques which are PXRD, FTIR, NMR, Elemental Analysis and AAS. The formation of uniform hexagonal framework of synthesized materials was shown in PXRD result. The functionalized groups of modified MCM-41 can be characterized via FTIR and 13 C-NMR results. The Elemental Analysis shows the percentage of nitrogen, carbon, hydrogen and sulphur in MCM-41 and functionalized MCM-41. From AAS, MCM-41 MPTMS has high capability for removal of Cu (II) in aqueous solution compared with others. (author)

  20. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures.

    Science.gov (United States)

    Lassak, Kerstin; Ghosh, Abhrajyoti; Albers, Sonja-Verena

    2012-01-01

    Archaea have evolved fascinating surface structures allowing rapid adaptation to changing environments. The archaeal surface appendages display such diverse biological roles as motility, adhesion, biofilm formation, exchange of genetic material and species-specific interactions and, in turn, increase fitness of the cells. Intriguingly, despite sharing the same functions with their bacterial counterparts, the assembly mechanism of many archaeal surface structures is rather related to assembly of bacterial type IV pili. This review summarizes our state-of-the-art knowledge about unique structural and biochemical properties of archaeal surface appendages with a particular focus on archaeal type IV pili-like structures. The latter comprise not only widely distributed archaella (formerly known as archaeal flagella), but also different highly specialized archaeal pili, which are often restricted to certain species. Recent findings regarding assembly mechanisms, structural aspects and physiological roles of these type IV pili-like structures will be discussed in detail. Recently, first regulatory proteins involved in transition from both planktonic to sessile lifestyle and in assembly of archaella were identified. To conclude, we provide novel insights into regulatory mechanisms underlying the assembly of archaeal surface structures. Copyright © 2012. Published by Elsevier Masson SAS.

  1. Grid for Meso american Archaeology

    International Nuclear Information System (INIS)

    Lucet, G.

    2007-01-01

    Meso american archaeology works with large amounts of disperse and diverse information, thus the importance of including new methods that optimise the acquisition, conservation, retrieval, and analysis of data to generate knowledge more efficiently and create a better understanding of history. Further, this information --which includes texts, coordinates, raster graphs, and vector graphs-- comes from a considerable geographical area --parts of Mexico, Nicaragua, Honduras and Costa Rica as well as Guatemala, El Salvador and Belize-- is constantly expanding. This information includes elements like shards, buildings, mural paintings, high and low reliefs, topography, maps, and information about the fauna and soil. Grid computing offers a solution to handle all this information: it respects researchers' need for independence while supplying a platform to share, process and compare the data obtained. Additionally, the Grid can enhance space-time analyses with remote visualisation techniques that can, in turn, incorporate geographical information systems and virtual reality. (Author)

  2. Inclusion of gold nanoparticles in meso-porous silicon for the SERS analysis of cell adhesion on nano-structured surfaces

    KAUST Repository

    Coluccio, M.L.

    2016-03-25

    The study and the comprehension of the mechanism of cell adhesion and cell interaction with a substrate is a key point when biology and medicine meet engineering. This is the case of several biomedical applications, from regenerative medicine and tissue engineering to lab on chip and many others, in which the realization of the appropriate artificial surface allows the control of cell adhesion and proliferation. In this context, we aimed to design and develop a fabrication method of mesoporous (MeP) silicon substrates, doped with gold nanoparticles, in which we combine the capability of porous surfaces to support cell adhesion with the SERS capabilities of gold nanoparticles, to understand the chemical mechanisms of cell/surface interaction. MeP Si surfaces were realized by anodization of a Si wafer, creating the device for cell adhesion and growth. Gold nanoparticles were deposited on porous silicon by an electroless technique. We thus obtained devices with superior SERS capabilities, whereby cell activity may be controlled using Raman spectroscopy. MCF-7 breast cancer cells were cultured on the described substrates and SERS maps revealing the different expression and distribution of adhesion molecules were obtained by Raman spectroscopic analyses.

  3. Trajectory resolved analysis of LEIS energy spectra: Neutralization and surface structure

    International Nuclear Information System (INIS)

    Beikler, Robert; Taglauer, Edmund

    2001-01-01

    For a quantitative evaluation of low-energy ion scattering (LEIS) data with respect to surface composition and structure a detailed analysis of the energy spectra is required. This includes the identification of multiple scattering processes and the determination of ion survival probabilities. We analyzed scattered ion energy spectra by using the computer code MARLOWE for which we developed a new analysis routine that allows to record energy distributions in dependence of the number of projectile-target atom collisions, in dependence of the distance of closest approach, or in dependence of the scattering crystalline layer. This procedure also permits the determination of ion survival probabilities by applying simple collision-dependent neutralization models. Experimental energy spectra for various projectile (He + , Ne + , Na + ) and target (transition metals, oxides) combinations are well reproduced and quantitative results for ion survival probabilities are obtained. These are largely in agreement with results obtained for bimetallic crystal surfaces obtained in a different way. Such MARLOWE calculations are also useful for the identification of structure relevant processes. This is shown exemplarily for the reconstructed Au(1 1 0) surface including a possibility to determine the (1x2)→(1x1) transition temperature

  4. LBM estimation of thermal conductivity in meso-scale modelling

    International Nuclear Information System (INIS)

    Grucelski, A

    2016-01-01

    Recently, there is a growing engineering interest in more rigorous prediction of effective transport coefficients for multicomponent, geometrically complex materials. We present main assumptions and constituents of the meso-scale model for the simulation of the coal or biomass devolatilisation with the Lattice Boltzmann method. For the results, the estimated values of the thermal conductivity coefficient of coal (solids), pyrolytic gases and air matrix are presented for a non-steady state with account for chemical reactions in fluid flow and heat transfer. (paper)

  5. Content validity and electronic PRO (ePRO) usability of the Lung Cancer Symptom Scale-Mesothelioma (LCSS-Meso) in mesothelioma patients.

    Science.gov (United States)

    Gelhorn, Heather L; Skalicky, Anne M; Balantac, Zaneta; Eremenco, Sonya; Cimms, Tricia; Halling, Katarina; Hollen, Patricia J; Gralla, Richard J; Mahoney, Martin C; Sexton, Chris

    2018-02-01

    Obtaining qualitative data directly from the patient perspective enhances the content validity of patient-reported outcome (PRO) instruments. The objective of this qualitative study was to evaluate the content validity of the Lung Cancer Symptom Scale for Mesothelioma (LCSS-Meso) and its usability on an electronic device. A cross-sectional methodological study, using a qualitative approach, was conducted among patients recruited from four clinical sites. The primary target population included patients with pleural mesothelioma; data were also collected from patients with peritoneal mesothelioma on an exploratory basis. Semi-structured interviews were conducted consisting of concept elicitation, cognitive interviewing, and evaluation of electronic patient-reported outcome (ePRO) usability. Participants (n = 21) were interviewed in person (n = 9) or by telephone (n = 12); 71% were male with a mean age of 69 years (SD = 14). The most common signs and symptoms experienced by participants with pleural mesothelioma (n = 18) were shortness of breath, fluid build-up, pain, fatigue, coughing, and appetite loss. The most commonly described symptoms for those with peritoneal mesothelioma (n = 4) were bloating, changes in appetite, fatigue, fluid build-up, shortness of breath, and pain. Participants with pleural mesothelioma commonly described symptoms assessed by the LCSS-Meso in language consistent with the questionnaire and a majority understood and easily completed each of the items. The ePRO version was easy to use, and there was no evidence that the electronic formatting changed the way participants responded to the questions. Results support the content validity of the LCSS-Meso and the usability of the electronic format for use in assessing symptoms among patients with pleural mesothelioma.

  6. Evaluating the roles of detailed endocardial structures on right ventricular haemodynamics by means of CFD simulations.

    Science.gov (United States)

    Sacco, Federica; Paun, Bruno; Lehmkuhl, Oriol; Iles, Tinen L; Iaizzo, Paul A; Houzeaux, Guillaume; Vázquez, Mariano; Butakoff, Constantine; Aguado-Sierra, Jazmin

    2018-06-11

    Computational modelling plays an important role in right ventricular (RV) haemodynamic analysis. However, current approaches employ smoothed ventricular anatomies. The aim of this study is to characterise RV haemodynamics including detailed endocardial structures like trabeculae, moderator band and papillary muscles (PMs). Four paired detailed and smoothed RV endocardium models (two male and two female) were reconstructed from ex-vivo human hearts high-resolution magnetic resonance images (MRI). Detailed models include structures with ≥1 mm 2 cross-sectional area. Haemodynamic characterisation was done by computational fluid dynamics (CFD) simulations with steady and transient inflows, using high performance computing (HPC). The differences between the flows in smoothed and detailed models were assessed using Q-criterion for vorticity quantification, the pressure drop between inlet and outlet, and the wall shear stress (WSS). Results demonstrated that detailed endocardial structures increase the degree of intra-ventricular pressure drop, decrease the WSS and disrupt the dominant vortex creating secondary small vortices. Increasingly turbulent blood flow was observed in the detailed RVs. Female RVs were less trabeculated and presented lower pressure drops than the males. In conclusion, neglecting endocardial structures in RV haemodynamic models may lead to inaccurate conclusions about the pressures, stresses, and blood flow behaviour in the cavity. This article is protected by copyright. All rights reserved.

  7. Simulation of wind-induced snow transport in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2013-06-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It couples directly the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. A detailed representation of the first meters of the atmosphere allows a fine reproduction of the erosion and deposition process. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). For this purpose, a blowing snow event without concurrent snowfall has been selected and simulated. Results show that the model captures the main structures of atmospheric flow in alpine terrain, the vertical profile of wind speed and the snow particles fluxes near the surface. However, the horizontal resolution of 50 m is found to be insufficient to simulate the location of areas of snow erosion and deposition observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction in deposition of 5.3%. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  8. Structural and spectroscopic characterisations of the surface oxide scales and inclusions present on edge-burst hot-rolled steel coils

    International Nuclear Information System (INIS)

    Chowdhury, Anirban; Iyyappan, Ramasamy; Majumdar, Dipanwita; Singha, Achintya

    2014-01-01

    Detailed structural and spectroscopic characterisations have been carried out on the inclusions and the surface oxides present on edge-burst hot-rolled steel coils. Surface scales were characterised through X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. Evidence of different types of regular and non-stoichiometric Fe-oxides was found on the cracked surface of the steel wire. Along with the surface scales inclusions with calcium aluminate and spinel was characterized using Raman spectroscopy. The usefulness of Raman spectroscopy has been explored in detail for the characterisation of these inclusions; especially when XRD information ceases to be a limiting tool. The samples collected from the clogged nozzle area were found to be of grossite (CaO·2Al 2 O 3 ) phase and this was also observed in the inclusions in the finished coils. It was found that this particular calcium aluminate phase has a detrimental effect on casting and final finished steel products. - Highlights: • First investigation and surface study report on edge-bursting issue of steel coils. • Detailed characterisations of the inclusions and surface oxide scales in steel. • Influence of a particular type of calcium aluminate phase on process chemistry

  9. Photoelectric effect in surface-barrier structures

    International Nuclear Information System (INIS)

    Kononenko, V.K.; Tupenevich, P.A.

    1985-08-01

    Deviations from the Fowler law were observed when investigating photoelectric emission in p-type ZnTe surface-barrier structures. The revealed peculiarities of the structure photosensitivity spectrum are explained by the electron transitions involving surface states at the metal-semiconductor interface. (author)

  10. Genetic determination of the meso-diaminopimelate biosynthetic pathway of mycobacteria.

    OpenAIRE

    Cirillo, J. D.; Weisbrod, T. R.; Banerjee, A.; Bloom, B. R.; Jacobs, W. R.

    1994-01-01

    The increasing incidence of multiple-drug-resistant mycobacterial infections indicates that the development of new methods for treatment of mycobacterial diseases should be a high priority. meso-Diaminopimelic acid (DAP), a key component of a highly immunogenic subunit of the mycobacterial peptidoglycan layer, has been implicated as a potential virulence factor. The mycobacterial DAP biosynthetic pathway could serve as a target for design of new antimycobacterial agents as well as the constru...

  11. Multi-Dimensional Damage Detection for Surfaces and Structures

    Science.gov (United States)

    Williams, Martha; Lewis, Mark; Roberson, Luke; Medelius, Pedro; Gibson, Tracy; Parks, Steen; Snyder, Sarah

    2013-01-01

    Current designs for inflatable or semi-rigidized structures for habitats and space applications use a multiple-layer construction, alternating thin layers with thicker, stronger layers, which produces a layered composite structure that is much better at resisting damage. Even though such composite structures or layered systems are robust, they can still be susceptible to penetration damage. The ability to detect damage to surfaces of inflatable or semi-rigid habitat structures is of great interest to NASA. Damage caused by impacts of foreign objects such as micrometeorites can rupture the shell of these structures, causing loss of critical hardware and/or the life of the crew. While not all impacts will have a catastrophic result, it will be very important to identify and locate areas of the exterior shell that have been damaged by impacts so that repairs (or other provisions) can be made to reduce the probability of shell wall rupture. This disclosure describes a system that will provide real-time data regarding the health of the inflatable shell or rigidized structures, and information related to the location and depth of impact damage. The innovation described here is a method of determining the size, location, and direction of damage in a multilayered structure. In the multi-dimensional damage detection system, layers of two-dimensional thin film detection layers are used to form a layered composite, with non-detection layers separating the detection layers. The non-detection layers may be either thicker or thinner than the detection layers. The thin-film damage detection layers are thin films of materials with a conductive grid or striped pattern. The conductive pattern may be applied by several methods, including printing, plating, sputtering, photolithography, and etching, and can include as many detection layers that are necessary for the structure construction or to afford the detection detail level required. The damage is detected using a detector or

  12. 30 CFR 75.1708 - Surface structures, fireproofing.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface structures, fireproofing. 75.1708... structures, fireproofing. [Statutory Provisions] After March 30, 1970, all structures erected on the surface within 100 feet of any mine opening shall be of fireproof construction. Unless structures existing on or...

  13. Remarkable fluorescence enhancement versus complex formation of cationic porphyrins on the surface of ZnO nanoparticles

    KAUST Repository

    Aly, Shawkat Mohammede

    2014-06-12

    Fluorescence enhancement of organic fluorophores shows tremendous potential to improve image contrast in fluorescence-based bioimaging. Here, we present an experimental study of the interaction of two cationic porphyrins, meso-tetrakis(1-methylpyridinium-4-yl)porphyrin chloride (TMPyP) and meso-tetrakis(4-N,N,N-trimethylanilinium)porphyrin chloride (TMAP), with cationic surfactant-stabilized zinc oxide nanoparticles (ZnO NPs) based on several steady-state and time-resolved techniques. We show the first experimental measurements demonstrating a clear transition from pronounced fluorescence enhancement to charge transfer (CT) complex formation by simply changing the nature and location of the positive charge of the meso substituent of the cationic porphyrins. For TMPyP, we observe a sixfold increase in the fluorescence intensity of TMPyP upon addition of ZnO NPs. Our experimental results indicate that the electrostatic binding of TMPyP with the surface of ZnO NPs increases the symmetry of the porphyrin macrocycle. This electronic communication hinders the rotational relaxation of the meso unit and/or decreases the intramolecular CT character between the cavity and the meso substituent of the porphyrin, resulting in the enhancement of the intensity of the fluorescence. For TMAP, on the other hand, the different type and nature of the positive charge resulting in the development of the CT band arise from the interaction with the surface of ZnO NPs. This observation is confirmed by the femtosecond transient absorption spectroscopy, which provides clear spectroscopic signatures of photoinduced electron transfer from TMAP to ZnO NPs. © 2014 American Chemical Society.

  14. Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas

    Directory of Open Access Journals (Sweden)

    José Camilo Bedano

    2016-07-01

    Full Text Available Soil is the most basic resource for sustainable agricultural production; it promotes water quality, is a key component of the biogeochemical cycles and hosts a huge diversity of organisms. However, we are not paying enough attention to soil degradation produced by land use. Modern agriculture has been successful in increasing yields but has also caused extensive environmental damage, particularly soil degradation. In the Argentine Pampas, agriculturization reached a peak with the generalized use of the no-till technological package: genetically modified soybeans tolerant to glyphosate, no-till, glyphosate, and inorganic fertilizers. This phenomenon has been widely spread in the country; the no-till package has been applied in large areas and has been used by tenants in a 60%–70% of cultivated lands. Thus, those who were involved in developing management practices may not be the same as those who will face degradation issues related to those practices. Indeed, most evidence reviewed in this paper suggests that the most widely distributed practices in the Pampas region are actually producing severe soil degradation. Biological degradation is particularly important because soil biota is involved in numerous soil processes on which soil functioning relies, affecting soil fertility and productivity. For example, soil meso- and macrofauna are especially important in nutrient cycling and in soil structure formation and maintenance, and they are key components of the network that links microbial process to the scale of fields and landscapes where ecosystem services are produced. However, the knowledge of the impact of different agricultural managements on soil meso- and macrofauna in Pampas agroecosystems is far from conclusive at this stage. The reason for this lack of definite conclusions is that this area has been given less attention than in other parts of the world; the response of soil fauna to agricultural practices is complex and taxa

  15. Surface structure of AU3Cu(001)

    DEFF Research Database (Denmark)

    Eckstein, G.A.; Maupai, S.; Dakkouri, A.S.

    1999-01-01

    The surface morphology, composition, and structure of Au3Cu(001) as determined by scanning tunneling microscopy and surface x-ray diffraction are presented. Atomic resolution STM images reveal distinctive geometric features. The analysis of the surface x-ray diffraction data provides clear evidence...... for the surface structure. [S0163-1829(99)04535-X]....

  16. Mucosal detail at CT virtual reality: surface versus volume rendering.

    Science.gov (United States)

    Hopper, K D; Iyriboz, A T; Wise, S W; Neuman, J D; Mauger, D T; Kasales, C J

    2000-02-01

    To evaluate computed tomographic virtual reality with volumetric versus surface rendering. Virtual reality images were reconstructed for 27 normal or pathologic colonic, gastric, or bronchial structures in four ways: the transition zone (a) reconstructed separately from the wall by using volume rendering; (b) with attenuation equal to air; (c) with attenuation equal to wall (soft tissue); (d) with attenuation halfway between air and wall. The four reconstructed images were randomized. Four experienced imagers blinded to the reconstruction graded them from best to worst with predetermined criteria. All readers rated images with the transition zone as a separate structure as overwhelmingly superior (P Virtual reality is best with volume rendering, with the transition zone (mucosa) between the wall and air reconstructed as a separate structure.

  17. Mesoscopic Simulations of the Phase Behavior of Aqueous EO 19 PO 29 EO 19 Solutions Confined and Sheared by Hydrophobic and Hydrophilic Surfaces

    KAUST Repository

    Liu, Hongyi

    2012-01-25

    The MesoDyn method is used to investigate associative structures in aqueous solution of a nonionic triblock copolymer consisting of poly(propylene oxide) capped on both ends with poly(ethylene oxide) chains. The effect of adsorbing (hydrophobic) and nonadsorbing (hydrophilic) solid surfaces in contact with aqueous solutions of the polymer is elucidated. The macromolecules form self-assembled structures in solution. Confinement under shear forces is investigated in terms of interfacial behavior and association. The formation of micelles under confinement between hydrophilic surfaces occurs faster than in bulk aqueous solution while layered structures assemble when the polymers are confined between hydrophobic surfaces. Micelles are deformed under shear rates of 1 μs -1 and eventually break to form persistent, adsorbed layered structures. As a result, surface damage under frictional forces is prevented. Overall, this study indicates that aqueous triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (Pluronics, EO mPO nEO m) act as a boundary lubricant for hydrophobic surfaces but not for hydrophilic ones. © 2011 American Chemical Society.

  18. Mesoscopic Simulations of the Phase Behavior of Aqueous EO 19 PO 29 EO 19 Solutions Confined and Sheared by Hydrophobic and Hydrophilic Surfaces

    KAUST Repository

    Liu, Hongyi; Li, Yan; Krause, Wendy E.; Pasquinelli, Melissa A.; Rojas, Orlando J.

    2012-01-01

    The MesoDyn method is used to investigate associative structures in aqueous solution of a nonionic triblock copolymer consisting of poly(propylene oxide) capped on both ends with poly(ethylene oxide) chains. The effect of adsorbing (hydrophobic) and nonadsorbing (hydrophilic) solid surfaces in contact with aqueous solutions of the polymer is elucidated. The macromolecules form self-assembled structures in solution. Confinement under shear forces is investigated in terms of interfacial behavior and association. The formation of micelles under confinement between hydrophilic surfaces occurs faster than in bulk aqueous solution while layered structures assemble when the polymers are confined between hydrophobic surfaces. Micelles are deformed under shear rates of 1 μs -1 and eventually break to form persistent, adsorbed layered structures. As a result, surface damage under frictional forces is prevented. Overall, this study indicates that aqueous triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (Pluronics, EO mPO nEO m) act as a boundary lubricant for hydrophobic surfaces but not for hydrophilic ones. © 2011 American Chemical Society.

  19. Defect and structural imperfection effects on the electronic properties of BiTeI surfaces

    International Nuclear Information System (INIS)

    Fiedler, Sebastian; Seibel, Christoph; Lutz, Peter; Bentmann, Hendrik; Reinert, Friedrich; El-Kareh, Lydia; Bode, Matthias; Eremeev, Sergey V; Tereshchenko, Oleg E; Kokh, Konstantin A; Chulkov, Evgueni V; Kuznetsova, Tatyana V; Grebennikov, Vladimir I

    2014-01-01

    The surface electronic structure of the narrow-gap seminconductor BiTeI exhibits a large Rashba-splitting which strongly depends on the surface termination. Here we report on a detailed investigation of the surface morphology and electronic properties of cleaved BiTeI single crystals by scanning tunneling microscopy, photoelectron spectroscopy (ARPES, XPS), electron diffraction (SPA-LEED) and density functional theory calculations. Our measurements confirm a previously reported coexistence of Te- and I-terminated surface areas originating from bulk stacking faults and find a characteristic length scale of ∼100 nm for these areas. We show that the two terminations exhibit distinct types of atomic defects in the surface and subsurface layers. For electronic states resided on the I terminations we observe an energy shift depending on the time after cleavage. This aging effect is successfully mimicked by depositon of Cs adatoms found to accumulate on top of the I terminations. As shown theoretically on a microscopic scale, this preferential adsorbing behaviour results from considerably different energetics and surface diffusion lengths at the two terminations. Our investigations provide insight into the importance of structural imperfections as well as intrinsic and extrinsic defects on the electronic properties of BiTeI surfaces and their temporal stability. (paper)

  20. An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance

    International Nuclear Information System (INIS)

    Chang, Liang; Stacchiola, Dario J.; Hu, Yun Hang

    2017-01-01

    The efficient charge accumulation of an ideal supercapacitor electrode requires abundant micropores and its fast electrolyte-ions transport prefers meso/macropores. But, current electrode materials cannot meet both requirements, resulting in poor performance. We creatively constructed three-dimensional cabbage-coral-like graphene as an ideal electrode material, in which meso/macro channels are formed by graphene walls and rich micropores are incorporated in the surface layer of the graphene walls. The unique 3D graphene material can achieve a high gravimetric capacitance of 200 F/g with aqueous electrolyte, 3 times larger than that of commercially used activated carbon (70.8 F/g). Furthermore, it can reach an ultrahigh areal capacitance of 1.28 F/cm"2 and excellent rate capability (83.5% from 0.5 to 10 A/g) as well as high cycling stability (86.2% retention after 5000 cycles). The excellent electric double-layer performance of the 3D graphene electrode can be attributed to the fast electrolyte ion transport in the meso/macro channels and the rapid and reversible charge adsorption with negligible transport distance in the surface micropores.

  1. Optochemical sensing of hydrogen chloride gas using meso-tetramesitylporphyrin deposited glass plate

    International Nuclear Information System (INIS)

    Kalimuthu, Palanisamy; Abraham John, S.

    2008-01-01

    Meso-tetramesitylporphyrin (MTMP) deposited glass plate (solid state sensor) was used to sense hydrogen chloride (HCl) gas based on optochemical method. Exposure of the solid state sensor to HCl vapor results in the formation of protonated meso-tetramesitylporphyrin (PMTMP). UV-vis and fluorescence spectral techniques were used to study the protonation of MTMP in dichloromethane-methanol mixture. The optical spectra of MTMP show an intense Soret band at 418 nm with a 14 nm red shift upon protonation by HCl. Ab-initio calculations were carried out to visualize the effect of protonation on planarity and stability of the porphyrin ring. The solid state sensor was characterized by UV-vis spectral technique. The sensor exhibits characteristic Soret and Q bands for the deposited MTMP with slight red shift when compared to MTMP in dichloromethane. The concentration of gaseous HCl was monitored from the changes in the absorbance of Soret band of PMTMP at 452 nm. The detection limit of the solid state sensor towards gaseous HCl was found to be 0.03 ppm. The present solid state sensor was highly stable for several months

  2. Surface magnetic structures in amorphous ferromagnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    Usov, N.A., E-mail: usov@obninsk.ru [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Serebryakova, O.N.; Gudoshnikov, S.A. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Tarasov, V.P. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation)

    2017-05-01

    The spatial period of magnetization perturbations that occur near the surface of magnetic nanotube or nanowire under the influence of surface magnetic anisotropy is determined by means of numerical simulation as a function of the sample geometry and material parameters. The surface magnetization distribution obtained is then used to estimate the period of the surface magnetic texture in amorphous microwire of several micrometers in diameter by means of appropriate variational procedure. The period of the surface magnetic texture in amorphous microwire is found to be significantly smaller than the wire diameter. - Highlights: • Magnetic structure may arise near the magnetic nanotube surface under the influence of surface magnetic anisotropy. • The period of the surface magnetization pattern is calculated as a function of the sample geometry. • Similar magnetic structure may exist in amorphous microwire of several micrometers in diameter. • The period of the surface magnetic structure in amorphous wire is found to be significantly smaller than the wire diameter.

  3. Meso-scale modeling of irradiated concrete in test reactor

    International Nuclear Information System (INIS)

    Giorla, A.; Vaitová, M.; Le Pape, Y.; Štemberk, P.

    2015-01-01

    Highlights: • A meso-scale finite element model for irradiated concrete is developed. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • Confrontation with expansion and damage obtained from experiments is successful. • Effects of paste shrinkage, creep and ductility are discussed. - Abstract: A numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale is detailed in this paper. Irradiation experiments in test reactor (Elleuch et al., 1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al., 2015). The proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  4. Meso-scale modeling of irradiated concrete in test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giorla, A. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Vaitová, M. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic); Le Pape, Y., E-mail: lepapeym@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Štemberk, P. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic)

    2015-12-15

    Highlights: • A meso-scale finite element model for irradiated concrete is developed. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • Confrontation with expansion and damage obtained from experiments is successful. • Effects of paste shrinkage, creep and ductility are discussed. - Abstract: A numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale is detailed in this paper. Irradiation experiments in test reactor (Elleuch et al., 1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al., 2015). The proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  5. A meso-network of eddy covariance towers across the Northwest Territories to assess high-latitude carbon and water budgets under increasing pressure

    Science.gov (United States)

    Hurkuck, M.; Marsh, P.; Quinton, W. L.; Humphreys, E.; Lafleur, P.; Helbig, M.; Hould Gosselin, G.; Sonnentag, O.

    2017-12-01

    Given their large areal coverage, high carbon densities, unique land surface properties, and disturbance regimes, Canada's diverse high-latitude ecosystems across its multiple Arctic, subarctic and boreal ecozones are integral components of the global and regional climate systems. In northwestern Canada, large portions of these ecozones contain permafrost, i.e., perennially cryotic ground. Here, we describe efforts towards a meso-network of nine eddy covariance towers to measure carbon, water and energy fluxes across the Northwest Territories to shed light on high-latitude carbon and water budgets and their rapidly changing biotic and abiotic controls in response to increasing natural and anthropogenic pressures. Distributed across six research sites (Trail Valley Creek, 68.7°N, 133.3°W; Havikpak Creek, 68.3°N, 133.3°W; Daring Lake, 64.8°N, 111.5°W; Smith Creek, 63.1°N, 123.2°W; Scotty Creek, 63.1°N, 123.2°W; Yellowknife, 62.5°N, 114.4°W), the meso-network spans the central portion of the extended ABoVE Study Domain, covering two ecozones (Taiga Plains, Southern Arctic) with differing permafrost regimes (sporadic, discontinuous, continuous), climatic settings (coastal, interior), and seven high-latitude ecosystem types: forested permafrost peat plateau, permafrost-free collapse-scar bog, subarctic woodland, mixed and dwarf-shrub tundra, and sedge fen. With our contribution, we report on the current status of the meso-network development and present results from various synthesis activities examining the role of climatic setting and resulting tundra carbon and water budgets, quantifying the impact of permafrost thaw and associated wetland expansion on boreal forest carbon and water budgets, and determining the relative importance of treeline advance compared to shrub proliferation on tundra carbon and water budgets.

  6. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    Progress for the period Sept. 15, 1992 to Sept. 14, 1993 is discussed. Semiclassical methods that will allow much faster and more accurate three-dimensional atom--surface scattering calculations, both elastic and inelastic, are being developed. The scattering of He atoms from buckyballs is being investigated as a test problem. Somewhat more detail is given on studies of He atom scattering from defective Pt surfaces. Molecular dynamics simulations of He + and Ar + ion sputtering of Pt surfaces are also being done. He atom scattering from Xe overlayers on metal surfaces and the thermalized dissociation of H 2 on Cu(110) are being studied. (R.W.R.) 64 refs

  7. Effectiveness of Iron Ethylenediamine-N,N'-bis(hydroxyphenylacetic) Acid (o,o-EDDHA/Fe3+) Formulations with Different Ratios of Meso and d,l-Racemic Isomers as Iron Fertilizers.

    Science.gov (United States)

    Alcañiz, Sara; Jordá, Juana D; Cerdán, Mar

    2017-01-18

    Two o,o-EDDHA/Fe 3+ formulations (meso, 93.5% w/w of meso isomer; and d,l-racemic, 91.3% w/w of d,l-racemic mixture) were prepared, and their efficacy to avoid or to relieve iron deficiency in Fe-sufficient and Fe-deficient tomato plants grown on hydroponic solution was compared with that of the current o,o-EDDHA/Fe 3+ formulations (50% of meso and d,l-racemic isomers). The effectiveness of the three o,o-EDDHA/Fe 3+ formulations was different depending on the iron nutritional status of plants. The three o,o-EDDHA/Fe 3+ formulations tested were effective in preventing iron chlorosis in healthy plants. However, the higher the meso concentration in the formulations, the higher the effectiveness in the recovery of iron chlorotic plants from iron deficiency. Accordingly, o,o-EDDHA/Fe 3+ formulations rich in meso isomer are recommended in hydroponic systems.

  8. Structural and electronic properties of low-index stoichiometric BiOI surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wen-Wu; Zhao, Zong-Yan, E-mail: zzy@kmust.edu.cn

    2017-06-01

    As promising photocatalyst driven by visible-light, BiOI has attracted more and more attention in the past years. However, the surface structure and properties of BiOI that is the most important place for the photocatalytic have not been investigated in details. To this end, density functional theory was performed to calculate the structural and electronic properties of four low-index stoichiometric surfaces of BiOI. It is found that the relaxation of the low-index BiOI surfaces are relatively small, especially the (001) surface. Thus, the surface energies of BiOI are very relatively small. Moreover, there are a few surface states below the bottom of conduction band in the first layer except the (001) surface, which maybe capture the photo-excited carriers. In all of the most stable terminated planes, all the dangling bonds are cleaved from the broken Bi-O bonds. In the case of (001) surface, the dangling bond density of Bi atoms for the (001) surface is zero per square nano. Therefore, the (001) surface is thermodynamically lowest-energy surface of BiOI, and it is the predominant surface (51.4%). As a final remark, the dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. Finally, the equilibrium morphology of BiOI was also proposed and provided, which is determined through the Wulff construction. These results will help us to better understand the underlying photocatalytic mechanism that is related to BiOI surfaces, and provide theoretical support for some experimental studies about BiOI-based photocatalyst in future. - Highlights: • Four low-index BiOI surfaces have been calculated by DFT method. • The relaxations of the low-index BiOI surfaces are relatively small. • There are a few surface states below the bottom of conduction band in the first layer. • The dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. • The thermodynamic

  9. Surfaces of Minimal Paths from Topological Structures and Applications to 3D Object Segmentation

    KAUST Repository

    Algarni, Marei

    2017-10-24

    Extracting surfaces, representing boundaries of objects of interest, from volumetric images, has important applications in various scientific domains, from medicine to geology. In this thesis, I introduce novel mathematical, computational, and algorithmic machinery for extraction of sheet-like surfaces (with boundary), whose boundary is unknown a-priori, a particularly important case in applications that has no convenient methods. This case of a surface with boundaries has applications in extracting faults (among other geological structures) from seismic images in geological applications. Another application domain is in the extraction of structures in the lung from computed tomography (CT) images. Although many methods have been developed in computer vision for extraction of surfaces, including level sets, convex optimization approaches, and graph cut methods, none of these methods appear to be applicable to the case of surfaces with boundary. The novel methods for surface extraction, derived in this thesis, are built on the theory of Minimal Paths, which has been used primarily to extract curves in noisy or corrupted images and have had wide applicability in 2D computer vision. This thesis extends such methods to surfaces, and it is based on novel observations that surfaces can be determined by extracting topological structures from the solution of the eikonal partial differential equation (PDE), which is the basis of Minimal Path theory. Although topological structures are known to be difficult to extract from images, which are both noisy and discrete, this thesis builds robust methods based on Morse theory and computational topology to address such issues. The algorithms have run-time complexity O(NlogN), less complex than existing approaches. The thesis details the algorithms, theory, and shows an extensive experimental evaluation on seismic images and medical images. Experiments show out-performance in accuracy, computational speed, and user convenience

  10. Diamond surface: atomic and electronic structure

    International Nuclear Information System (INIS)

    Pate, B.B.

    1984-01-01

    Experimental studies of the diamond surface (with primary emphasis on the (111) surface) are presented. Aspects of the diamond surface which are addressed include (1) the electronic structure, (2) the atomic structure, and (3) the effect of termination of the lattice by foreign atoms. Limited studies of graphite are discussed for comparison with the diamond results. Experimental results from valence band and core level photoemission spectroscopy (PES), Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and carbon 1s near edge x-ray absorption fine structure (NEXAFS) spectroscopy (both the total electron yield (TEY) and Auger electron yield (AEY) techniques) are used to study and characterize both the clean and hydrogenated surface. In addition, the interaction of hydrogen with the diamond surface is examined using results from vibrational high resolution low energy electron loss spectroscopy (in collaboration with Waclawski, Pierce, Swanson, and Celotta at the National Bureau of Standards) and photon stimulated ion desorption (PSID) yield at photon energies near the carbon k-edge (hv greater than or equal to 280 eV). Both EELS and PSID verify that the mechanically polished 1 x 1 surface is hydrogen terminated and also that the reconstructed surface is hydrogen free. The (111) 2 x 2/2 x 1 reconstructed surface is obtained from the hydrogenated (111) 1 x 1:H surface by annealing to approx. = 1000 0 C. We observe occupied intrinsic surface states and a surface chemical shift (0.95 +- 0.1 eV) to lower binding energy of the carbon 1s level on the hydrogen-free reconstructed surface. Atomic hydrogen is found to be reactive with the reconstructed surface, while molecular hydrogen is relatively inert. Exposure of the reconstructed surface to atomic hydrogen results in chemisorption of hydrogen and removal of the intrinsic surface state emission in and near the band gap region

  11. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces. ...

  12. Heterometallic Pd(II)-Ni(II) complexes with meso-substituted dibenzotetraaza[14]annulene: double C-H bond activation and formation of a rectangular tetradibenzotetraaza[14]annulene.

    Science.gov (United States)

    Khaledi, Hamid; Olmstead, Marilyn M; Fukuda, Takamitsu; Ali, Hapipah Mohd

    2014-11-03

    Three isomeric 2[Pd(II)-Ni(II)] metal complexes, derived from indoleninyl meso-substituted dibenzotetraaza[14]annulene, were synthesized. The resulting dimers feature Ni···Ni or, alternatively, Ni···π interactions in staggered or slipped cofacial structures. A remarkable insertion of palladium into two different C-H bonds yielded a 4[Pd(II)-Ni(II)] rectangular complex with dimensions of 8.73 × 10.38 Å.

  13. Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Lokman

    2016-03-01

    Full Text Available In the present work, a heterogeneous solid acid catalyst was successfully developed from starch. The catalyst was prepared by a significant two-step process; the initial step was incomplete carbonization of starch (ICS at 400 °C for 12 h and consequently followed by sulfonation process using concentrated H2SO4 to produce sulfonated-incomplete carbonized starch (ICS-SO3H. The characterization of the ICS-SO3H catalyst was done for chemical and physical properties such as X-ray diffraction (XRD, ammonia-temperature programmed desorption (NH3-TPD, surface area analysis, thermal gravimetric analysis (TGA, elemental analysis and morphology analysis by scanning electron microscope (SEM. BET results showed the structure of ICS-SO3H consists of meso- and macro-porous properties, which allowed high density of the SO3H group attached on its carbon networks. The catalytic activity of ICS-SO3H catalyst was determined by analyzing the catalyst performance to esterify palm fatty acid distillate (PFAD and sequentially produced methyl ester. The maximum free fatty acid (FFA conversion and FAME yield were as high as 94.6% and 90.4%, respectively, at 75 °C using 10:1 methanol-to-PFAD molar ratio and 2 wt.% of catalyst within 3 h. The catalyst has sufficient potential to recycle up to 6 reactions without reactivation step and any remarkable loss of catalytic activity. It revealed that the heterogeneous ICS-SO3H catalyst exhibits high stability, reusability and catalytic activity.

  14. From polycrystal to multi-crystal: ''numerical meso-scope'' development for a local analysis in the elasto-viscoplastic field

    International Nuclear Information System (INIS)

    Heraud, St.

    2000-01-01

    The knowledge of the local mechanical fields over several adjacent grains is needed for a better understanding of damage initiation and intergranular. failure in metallic polycrystals. This thesis aimed at the derivation of such fields through a 'numerical meso-scope': this simulation tool relies on the finite element analysis of a multi-crystalline pattern embedded in a large matrix whose mechanical behaviour is derived experimentally from classical tests performed on the studied metal. First, we derived macroscopic elastic-viscoplastic constitutive equations from tensile and creep tests on a AIS1316 stainless steel and we inferred from them the general form of similar, but crystallographic equations to be used for the single crystals; the corresponding parameters were determined by fitting the computed overall response of an aggregate made of 1000 grains with the macroscopic experimental one. We then investigated a creep-damaged area of the same steel and we simulated the same grain ensemble in the 'numerical meso-scope' so as to compare the computed normal stress on all grain boundaries with the observed de-bonded boundaries: this showed the most damaged boundaries to sustain the largest normal stress. Another application was concerned with the understanding of the origin of intergranular damage of aged AIS321 stainless steel. A similar approach was adopted with help of the meso-scope: it showed that observations could not be explained by a sole intragranular hardening as it is currently proposed in the literature. Thus the pertinence of the 'numerical meso-scope' concept can now be demonstrated, which opens on a number of new interesting perspectives. (author)

  15. Up-scaling of multi-variable flood loss models from objects to land use units at the meso-scale

    Science.gov (United States)

    Kreibich, Heidi; Schröter, Kai; Merz, Bruno

    2016-05-01

    Flood risk management increasingly relies on risk analyses, including loss modelling. Most of the flood loss models usually applied in standard practice have in common that complex damaging processes are described by simple approaches like stage-damage functions. Novel multi-variable models significantly improve loss estimation on the micro-scale and may also be advantageous for large-scale applications. However, more input parameters also reveal additional uncertainty, even more in upscaling procedures for meso-scale applications, where the parameters need to be estimated on a regional area-wide basis. To gain more knowledge about challenges associated with the up-scaling of multi-variable flood loss models the following approach is applied: Single- and multi-variable micro-scale flood loss models are up-scaled and applied on the meso-scale, namely on basis of ATKIS land-use units. Application and validation is undertaken in 19 municipalities, which were affected during the 2002 flood by the River Mulde in Saxony, Germany by comparison to official loss data provided by the Saxon Relief Bank (SAB).In the meso-scale case study based model validation, most multi-variable models show smaller errors than the uni-variable stage-damage functions. The results show the suitability of the up-scaling approach, and, in accordance with micro-scale validation studies, that multi-variable models are an improvement in flood loss modelling also on the meso-scale. However, uncertainties remain high, stressing the importance of uncertainty quantification. Thus, the development of probabilistic loss models, like BT-FLEMO used in this study, which inherently provide uncertainty information are the way forward.

  16. Contact area measurements on structured surfaces

    DEFF Research Database (Denmark)

    Kücükyildiz, Ömer Can; Jensen, Sebastian Hoppe Nesgaard; De Chiffre, Leonardo

    In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means.......In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means....

  17. Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering

    International Nuclear Information System (INIS)

    Huang Xianai; Kocaefe, Duygu; Kocaefe, Yasar; Boluk, Yaman; Krause, Cornélia

    2013-01-01

    Highlights: ► Investigate detailed structural changes of heat-treated wood due to weathering. ► Identify connection between physical structural changes and chemical degradation. ► Study effect of heat treatment conditions on weathering degradation process. - Abstract: Effect of artificial weathering on the surface structural changes of birch (Betule papyrifera) wood, heat-treated to different temperatures, was studied using the fluorescence microscopy and the scanning electron microscopy (SEM). Changes in the chemical structure of wood components were analyzed by FTIR in order to understand the mechanism of degradation taking place due to heat treatment and artificial weathering. The results are compared with those of the untreated (kiln-dried) birch. The SEM analysis results show that the effect of weathering on the cell wall of the untreated birch surface is more than that of heat-treated samples. The FTIR spectroscopy results indicate that lignin is the most sensitive component of heat-treated birch to the weathering degradation process. Elimination of the amorphous and highly crystallised cellulose is observed for both heat-treated and untreated wood during weathering. It is also observed that heat treatment increases the lignin and crystallised cellulose contents, which to some extent protects heat-treated birch against degradation due to weathering.

  18. Study of the Arrangement Effect of Units on the Shear Strength Masonry Walls in Meso-Scale

    Directory of Open Access Journals (Sweden)

    M. Sepehrinia

    2016-12-01

    Full Text Available Masonry is one of the oldest building materials which have been used in most heritage structures and new construction. In this study by using a meso-scale finite element model, the behavior of masonry walls is investigated under monotonic loading by Abaqus software. The most important factor in determining the behavior of masonry structures is discontinuity joints which are interface between unit and mortar. In most previous studies cohesive element is used for modeling of interface element. But in this study, by ignoring cohesive elements that represents the interface element between unit and mortar in masonry structures, it can be seen that while reducing the computational requirements, the results are in good agreement with experimental studies. Another important factor in the behavior of masonry walls is the arrangement of masonry units. In this study the overlapping effect of rows of units on the shear strength and failure mode of masonry walls have been investigated. As a result, it was observed that by increasing overlap, shear resistance of masonry walls increased.

  19. Compact surface structures for the efficient excitation of surface plasmon-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz, S.; Mendez, E.R. [Division de Fisica Applicada, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, BC (Mexico); Macias, D.; Salas-Montiel, R.; Adam, P.M. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP-2060, 10010 Troyes Cedex (France)

    2012-06-15

    We present calculations of the efficiency of excitation of surface plasmon-polaritons (SPPs) with surface structures illuminated by focussed beams. First, it is shown that the low reflectivity observed with broad highly directional beams and periodic gratings does not necessarily imply an efficient coupling to SPPs. We then consider the coupling through surface features like steps, grooves and angled steps, and calculate efficiency maps for these structures as functions of the parameters that define them. Finally, we explore the possibilities of improving the coupling efficiency using periodic structures consisting of a small number of rectangular grooves. We find that a surface section with a length of about four wavelengths can couple as much as 45% of the incident light into a directional SPP. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Low-temperature structure and Fermi surface of (La,Ce)TiGe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Tobias; Grasemann, Jacob; Uhlarz, Marc; Wosnitza, Jochen [Dresden High Magnetic Field Laboratory (HLD), Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Rosner, Helge; Stockert, Oliver [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Kittler, Wolfram; Loehneysen, Hilbert von [Karlsruhe Institute of Technology, Karlsruhe (Germany); Fritsch, Veronika [Institut fuer Physik, Universitaet Augsburg, Augsburg (Germany)

    2016-07-01

    CeTiGe{sub 3} presents the rare case of a ferromagnetically (T{sub C} ∼ 14 K) ordered Kondo-lattice compound and is probably the first known example of an intermetallic hexagonal perovskite of the BaNiO{sub 3} structure type. LaTiGe{sub 3} may be used as its nonmagnetic reference, since both compounds crystallize in the same crystal structure. To clarify the interplay between structural, localized, and itinerant degrees of freedom an accurate knowledge of the electronic band structure is necessary. Here, we present a detailed electronic-structure study of both compounds applying full potential density functional calculations. Since the Ge's atomic position couples strongly to the band structure at the Fermi energy, a low-temperature, high-resolution structure refinement was made. We attempt to separate the influence of different parameters on the topology of the respective Fermi surfaces and will compare our results with de Haas-van Alphen measurements.

  1. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    Science.gov (United States)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  2. Detailed measurements of structure functions from nucleons and nuclei

    CERN Multimedia

    2002-01-01

    The experiment will study deep inelastic muon nucleon scattering in a wide range of $Q^{2}$(1-200 (GeV/c)$^{2}$) and $x(0.005-0.75)$. The main aims of the experiment are: \\\\\\\\ a) Detailed measurements of the nuclear dependence of the structure function $F_{2}^{A}$, of $R = \\sigma_/\\sigma_{T}$ and of the cross-section for $J/\\psi$ production. They will provide a basis for the understanding of the EMC effect: the modification of quark and gluon distributions due to the nuclear environment. \\\\b) A simultaneous high luminosity measurement of the structure function $F_{2}$ on hydrogen and deuterium. This will provide substantially improved accuracy in the knowledge of the neutron structure function $F_{2}^{n}$, of $F_{2}^{p}-F_{2}^{n}$ and $F_{2}^{n}/F_{2}^{p}$ and their $Q^{2}$ dependence. Furthermore, the data will allow a determination of the strong coupling constant $\\alpha_{S}(Q^{2})$ with reduced experimental and theoretical uncertainties as well as of the ratio of the down to up quark distributions in the v...

  3. Accuracy of implant transfer with open-tray and closed-tray impression techniques and surface detail reproduction of the tooth during impression

    Directory of Open Access Journals (Sweden)

    Hakimeh Siadat

    2012-01-01

    Full Text Available Background and Aims: Accurate recording of implant location is required to achieve passive fit and have the implants without stress concentration. The aim of this in-vitro study was to evaluate the dimensional and angular accuracy of open-tray and closed-tray impression techniques using polyether impression material and also to assess the surface detail reproduction of the tooth while impression making.Materials and Methods: One reference metal model with 2 implants (Implantium on the position of the maxillary second premolar and first molar and one molar tooth for evaluation of surface details was prepared. 27 polyether impressions of these models were made (9 using open-tray, 9 using closed-tray techniques and 9 were made just of the surface of the teeth without any implants. Impressions were poured with ADA type IV stone. Coordinate Measuring Machine was used for measuring the dimensional accuracy and video measuring machine for surface detail reproduction. All of these measurements were compared with the measurements on the reference model. Data were analyzed by and compared by T-test and One-way ANOVA.Results: There was a significant statistical difference between open-tray and closed-tray techniques (P0.05.Conclusion: The accuracy of open-tray impression technique was more than closed-tray technique. The surface detail reproduction of the tooth was not affected by impression technique.

  4. Moulding of Sub-micrometer Surface Structures

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik K.; Larsen, Niels Bent

    2006-01-01

    The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim.......The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim....

  5. Simulation of flame-vortex interaction using detailed and reduced

    Energy Technology Data Exchange (ETDEWEB)

    Hilka, M. [Gaz de France (GDF), 75 - Paris (France); Veynante, D. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France); Baum, M. [CERFACS (France); Poinsot, T.J. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France). Institut de Mecanique des Fluides de Toulouse

    1996-12-31

    The interaction between a pair of counter-rotating vortices and a lean premixed CH{sub 4}/O{sub 2}/N{sub 2} flame ({Phi} = + 0.55) has been studied by direct numerical simulations using detailed and reduced chemical reaction schemes. Results from the complex chemistry simulation are discussed with respect to earlier experiments and differences in the simulations using detailed and reduces chemistry are investigated. Transient evolutions of the flame surface and the total heat release rate are compared and modifications in the evolution of the local flame structure are displayed. (authors) 22 refs.

  6. LHCbDIRAC as Apache Mesos microservices

    CERN Multimedia

    Couturier, Ben

    2016-01-01

    The LHCb experiment relies on LHCbDIRAC, an extension of DIRAC, to drive its offline computing. This middleware provides a development framework and a complete set of components for building distributed computing systems. These components are currently installed and ran on virtual machines (VM) or bare metal hardware. Due to the increased load of work, high availability is becoming more and more important for the LHCbDIRAC services, and the current installation model is showing its limitations. Apache Mesos is a cluster manager which aims at abstracting heterogeneous physical resources on which various tasks can be distributed thanks to so called "framework". The Marathon framework is suitable for long running tasks such as the DIRAC services, while the Chronos framework meets the needs of cron-like tasks like the DIRAC agents. A combination of the service discovery tool Consul together with HAProxy allows to expose the running containers to the outside world while hiding their dynamic placements. Such an arc...

  7. Meso-scale wind variability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.; Larsen, X.; Vincent, C.; Soerensen, P.; Pinson, P.; Trombe, P.-J.; Madsen, H.; Cutululis, N.

    2011-11-15

    The project has aimed to characterize mesoscale meteorological phenomenon for the North Sea and the Inner Danish waters, and additionally aimed on improving the predictability and quality of the power production from offshore windfarms. The meso-scale meteorology has been characterized with respect to the physical processes, climatology, spectral characteristics and correlation properties based on measurements from wind farms, satellite data (SAR) and mesoscale numerical modeling (WRF). The abilities of the WRF model to characterize and predict relevant mesoscale phenomenon has been proven. Additionally application of statistical forecasting, using a Markov switching approach that can be related to the meteorological conditions, to analyze and short term predict the power production from an offshore wind farms have been documented. Two PhD studies have been conducted in connection with the project. The project has been a cooperative project between Risoe DTU, IMM DTU, DONG Energy, Vattenfall and VESTAS. It is registered as Energinet.dk, project no. 2007-1-7141. (Author)

  8. Climatological changing effects on wind, precipitation and erosion: Large, meso and small scale analysis

    International Nuclear Information System (INIS)

    Aslan, Z.

    2004-01-01

    The Fourier transformation analysis for monthly average values of meteorological parameters has been considered, and amplitudes, phase angles have been calculated by using ground measurements in Turkey. The first order harmonics of meteorological parameters show large scale effects, while higher order harmonics show the effects of small scale fluctuations. The variations of first through sixth order harmonic amplitudes and phases provide a useful means of understanding the large and local scale effects on meteorological parameters. The phase angle can be used to determine the time of year the maximum or minimum of a given harmonic occurs. The analysis helps us to distinguish different pressure, relative humidity, temperature, precipitation and wind speed regimes and transition regions. Local and large scale phenomenon and some unusual seasonal patterns are also defined near Keban Dam and the irrigation area. Analysis of precipitation based on long term data shows that semi-annual fluctuations are predominant in the study area. Similarly, pressure variations are mostly influenced by semi-annual fluctuations. Temperature and humidity variations are mostly influenced by meso and micro scale fluctuations. Many large and meso scale climate change simulations for the 21st century are based on concentration of green house gases. A better understanding of these effects on soil erosion is necessary to determine social, economic and other impacts of erosion. The second part of this study covers the time series analysis of precipitation, rainfall erosivity and wind erosion at the Marmara Region. Rainfall and runoff erosivity factors are defined by considering the results of field measurements at 10 stations. Climatological changing effects on rainfall erosion have been determined by monitoring meteorological variables. In the previous studies, Fournier Index is defined to estimate the rainfall erosivity for the study area. The Fournier Index or in other words a climatic index

  9. Setting Healthcare Priorities at the Macro and Meso Levels: A Framework for Evaluation.

    Science.gov (United States)

    Barasa, Edwine W; Molyneux, Sassy; English, Mike; Cleary, Susan

    2015-09-16

    Priority setting in healthcare is a key determinant of health system performance. However, there is no widely accepted priority setting evaluation framework. We reviewed literature with the aim of developing and proposing a framework for the evaluation of macro and meso level healthcare priority setting practices. We systematically searched Econlit, PubMed, CINAHL, and EBSCOhost databases and supplemented this with searches in Google Scholar, relevant websites and reference lists of relevant papers. A total of 31 papers on evaluation of priority setting were identified. These were supplemented by broader theoretical literature related to evaluation of priority setting. A conceptual review of selected papers was undertaken. Based on a synthesis of the selected literature, we propose an evaluative framework that requires that priority setting practices at the macro and meso levels of the health system meet the following conditions: (1) Priority setting decisions should incorporate both efficiency and equity considerations as well as the following outcomes; (a) Stakeholder satisfaction, (b) Stakeholder understanding, (c) Shifted priorities (reallocation of resources), and (d) Implementation of decisions. (2) Priority setting processes should also meet the procedural conditions of (a) Stakeholder engagement, (b) Stakeholder empowerment, (c) Transparency, (d) Use of evidence, (e) Revisions, (f) Enforcement, and (g) Being grounded on community values. Available frameworks for the evaluation of priority setting are mostly grounded on procedural requirements, while few have included outcome requirements. There is, however, increasing recognition of the need to incorporate both consequential and procedural considerations in priority setting practices. In this review, we adapt an integrative approach to develop and propose a framework for the evaluation of priority setting practices at the macro and meso levels that draws from these complementary schools of thought. © 2015

  10. Setting Healthcare Priorities at the Macro and Meso Levels: A Framework for Evaluation

    Science.gov (United States)

    Barasa, Edwine W.; Molyneux, Sassy; English, Mike; Cleary, Susan

    2015-01-01

    Background: Priority setting in healthcare is a key determinant of health system performance. However, there is no widely accepted priority setting evaluation framework. We reviewed literature with the aim of developing and proposing a framework for the evaluation of macro and meso level healthcare priority setting practices. Methods: We systematically searched Econlit, PubMed, CINAHL, and EBSCOhost databases and supplemented this with searches in Google Scholar, relevant websites and reference lists of relevant papers. A total of 31 papers on evaluation of priority setting were identified. These were supplemented by broader theoretical literature related to evaluation of priority setting. A conceptual review of selected papers was undertaken. Results: Based on a synthesis of the selected literature, we propose an evaluative framework that requires that priority setting practices at the macro and meso levels of the health system meet the following conditions: (1) Priority setting decisions should incorporate both efficiency and equity considerations as well as the following outcomes; (a) Stakeholder satisfaction, (b) Stakeholder understanding, (c) Shifted priorities (reallocation of resources), and (d) Implementation of decisions. (2) Priority setting processes should also meet the procedural conditions of (a) Stakeholder engagement, (b) Stakeholder empowerment, (c) Transparency, (d) Use of evidence, (e) Revisions, (f) Enforcement, and (g) Being grounded on community values. Conclusion: Available frameworks for the evaluation of priority setting are mostly grounded on procedural requirements, while few have included outcome requirements. There is, however, increasing recognition of the need to incorporate both consequential and procedural considerations in priority setting practices. In this review, we adapt an integrative approach to develop and propose a framework for the evaluation of priority setting practices at the macro and meso levels that draws from these

  11. Setting Healthcare Priorities at the Macro and Meso Levels: A Framework for Evaluation

    Directory of Open Access Journals (Sweden)

    Edwine W. Barasa

    2015-11-01

    Full Text Available Background Priority setting in healthcare is a key determinant of health system performance. However, there is no widely accepted priority setting evaluation framework. We reviewed literature with the aim of developing and proposing a framework for the evaluation of macro and meso level healthcare priority setting practices. Methods We systematically searched Econlit, PubMed, CINAHL, and EBSCOhost databases and supplemented this with searches in Google Scholar, relevant websites and reference lists of relevant papers. A total of 31 papers on evaluation of priority setting were identified. These were supplemented by broader theoretical literature related to evaluation of priority setting. A conceptual review of selected papers was undertaken. Results Based on a synthesis of the selected literature, we propose an evaluative framework that requires that priority setting practices at the macro and meso levels of the health system meet the following conditions: (1 Priority setting decisions should incorporate both efficiency and equity considerations as well as the following outcomes; (a Stakeholder satisfaction, (b Stakeholder understanding, (c Shifted priorities (reallocation of resources, and (d Implementation of decisions. (2 Priority setting processes should also meet the procedural conditions of (a Stakeholder engagement, (b Stakeholder empowerment, (c Transparency, (d Use of evidence, (e Revisions, (f Enforcement, and (g Being grounded on community values. Conclusion Available frameworks for the evaluation of priority setting are mostly grounded on procedural requirements, while few have included outcome requirements. There is, however, increasing recognition of the need to incorporate both consequential and procedural considerations in priority setting practices. In this review, we adapt an integrative approach to develop and propose a framework for the evaluation of priority setting practices at the macro and meso levels that draws from

  12. ‘Action’ on structured freeform surfaces

    Science.gov (United States)

    Whitehouse, David J.

    2018-06-01

    Surfaces are becoming more complex partly due to the more complicated function required of them and partly due to the introduction of different manufacturing processes. These have thrown into relief the need to consider new ways of measuring and characterizing such surfaces and more importantly to make such characterization more relevant by tying together the geometry and the function more closely. The surfaces which have freeform and structure have been chosen to be a carrier for this investigation because so far there has been little work carried out in this neglected but potentially important area. This necessitates the development of a strategy for their characterization. In this article, some ways have been found of identifying possible strategies for tackling this characterization problem but also linking this characterization to performance and manufacture, based in part on the principles of least action and on the way that nature has evolved to solve the marriage of flexible freeform geometry, structure and function. Recommendations are made for the most suitable surface parameter to use which satisfies the requirement for characterizing structured freeform surfaces as well as utilizing ‘Action’ to predict functionality.

  13. Up-scaling of multi-variable flood loss models from objects to land use units at the meso-scale

    Directory of Open Access Journals (Sweden)

    H. Kreibich

    2016-05-01

    Full Text Available Flood risk management increasingly relies on risk analyses, including loss modelling. Most of the flood loss models usually applied in standard practice have in common that complex damaging processes are described by simple approaches like stage-damage functions. Novel multi-variable models significantly improve loss estimation on the micro-scale and may also be advantageous for large-scale applications. However, more input parameters also reveal additional uncertainty, even more in upscaling procedures for meso-scale applications, where the parameters need to be estimated on a regional area-wide basis. To gain more knowledge about challenges associated with the up-scaling of multi-variable flood loss models the following approach is applied: Single- and multi-variable micro-scale flood loss models are up-scaled and applied on the meso-scale, namely on basis of ATKIS land-use units. Application and validation is undertaken in 19 municipalities, which were affected during the 2002 flood by the River Mulde in Saxony, Germany by comparison to official loss data provided by the Saxon Relief Bank (SAB.In the meso-scale case study based model validation, most multi-variable models show smaller errors than the uni-variable stage-damage functions. The results show the suitability of the up-scaling approach, and, in accordance with micro-scale validation studies, that multi-variable models are an improvement in flood loss modelling also on the meso-scale. However, uncertainties remain high, stressing the importance of uncertainty quantification. Thus, the development of probabilistic loss models, like BT-FLEMO used in this study, which inherently provide uncertainty information are the way forward.

  14. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    Science.gov (United States)

    Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu

    2016-05-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10-4-10-3 Ω-1·m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)

  15. Formation and structure of inhibitive molecular film of imidazole on iron surface

    International Nuclear Information System (INIS)

    Kokalj, Anton

    2013-01-01

    Highlights: ► Atomic scale details of interaction between imidazole and Fe(1 0 0) elucidated by DFT calculations. ► Imidazole dehydrogenates upon adsorption with the C2-H bond cleaved. ► Stablest identified structure consists of high coverage C2 dehydrogenated imidazoles. ► Passivation of Fe(1 0 0) due to strong adsorbate-surface bond and high adsorbate coverage. ► Previously suggested polymerization of imidazole molecules at high coverage is found improbable. - Abstract: Adsorption of imidazole on clean Fe(1 0 0) was addressed by DFT calculations. It is shown that even though the imidazole in protonated form binds stronger to the surface than the neutral form, it is prone to deprotonation (dehydrogenation) resulting in neutral form, which further dehydrogenates due to the breaking of the C2–H bond. Thermodynamically the stablest identified structures thus consist of strongly bound and densely packed C2 dehydrogenated imidazole molecules, which may act as a thin protective film. On the other hand, the polymerization of imidazole molecules upon adsorption has been found improbable.

  16. Hydroxyl migration disorders the surface structure of hydroxyapatite nanoparticles

    Science.gov (United States)

    Cheng, Xiajie; Wu, Hong; Zhang, Li; Ma, Xingtao; Zhang, Xingdong; Yang, Mingli

    2017-09-01

    The surface structure of nano-hydroxyapatite (HAP) was investigated using a combined simulated annealing and molecular dynamics method. The stationary structures of nano-HAP with 4-7 nm in diameter and annealed under different temperatures were analyzed in terms of pair distribution function, structural factor, mean square displacement and atomic coordination number. The particles possess different structures from bulk crystal. A clear radial change in their atomic arrangements was noted. From core to surface the structures change from ordered to disordered. A three-shell model was proposed to describe the structure evolution of nano-HAP. Atoms in the core zone keep their arrangements as in crystal, while atoms in the surface shell are in short-range order and long-range disorder, adopting a typically amorphous structure. Atoms in the middle shell have small displacements and/or deflections but basically retain their original locations as in crystal. The disordered shell is about 1 nm in thickness, in agreement with experimental observations. The disordering mainly stems from hydroxyl migration during which hydroxyls move to the surface and bond with the exposed Ca ions, and their left vacancies bring about a rearrangement of nearby atoms. The disordering is to some extent different for particles unannealed under different temperatures, resulting from fewer number of migrated hydroxyls at lower temperatures. Particles with different sizes have similar surface structures, and their surface energy decreases with increasing size. Moreover, the surface energy is reduced by hydroxyl migration because the exposed Ca ions on the surface are ionically bonded with the migrated hydroxyls. Our calculations proposed a new structure model for nano-HAP, which indicates a surface structure with activities different from those without surface reorganization. This is particularly interesting because most bioactivities of biomaterials are dominated by their surface activity.

  17. Surface modification method for reactor incore structural component

    International Nuclear Information System (INIS)

    Obata, Minoru; Sudo, Akira.

    1996-01-01

    A large number of metal or ceramic small spheres accelerated by pressurized air are collided against a surface of a reactor incore structures or a welded surface of the structural components, and then finishing is applied by polishing to form compression stresses on the surface. This can change residual stresses into compressive stress without increasing the strength of the surface. Accordingly, stress corrosion crackings of the incore structural components or welded portions thereof can be prevented thereby enabling to extend the working life of equipments. (T.M.)

  18. A CFD Analysis of The Performance of Pin-Fin Laminar Flow Micro/Meso Scale Heat Exchangers

    National Research Council Canada - National Science Library

    Dimas, Sotirios

    2005-01-01

    A full three dimensional computational study was carried out using a finite-volume based solver for analyzing the performance of pin-fin based micro/meso scale heat exchangers with air as the working fluid...

  19. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach

    NARCIS (Netherlands)

    Angnuureng, Donatus Bapentire; Almar, Rafael; Senechal, Nadia; Castelle, Bruno; Addo, Kwasi Appeaning; Marieu, Vincent; Ranasinghe, Roshanka

    2017-01-01

    This study investigates the impact of individual storms and storm clusters on shoreline recovery for the meso-to macrotidal, barred Biscarrosse beach in SW France, using 6 years of daily video observations. While the study area experienced 60 storms during the 6-year study period, only 36 storms

  20. Meso-meteorological effect of thermal releases from nuclear power plants in the GW range

    International Nuclear Information System (INIS)

    Bahloul, C.; Le Berre, P.

    1975-01-01

    A comparison is made between the energy released by nuclear power plants into the environment and the energy brought into action by meso-meteorological phenomena. Observations on the occasion of important heat release (forest fires) are made and compared with the thermal effluents generated by nuclear power plants [fr

  1. Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces

    Science.gov (United States)

    Kimura, Yusuke

    2018-03-01

    F-theory/heterotic duality is formulated in the stable degeneration limit of a K3 fibration on the F-theory side. In this note, we analyze the structure of the stable degeneration limit. We discuss whether stable degeneration exists for pairs of rational elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an identical complex structure, stable degeneration always exists. We provide an equation that systematically describes the stable degeneration of a K3 surface into a pair of isomorphic rational elliptic surfaces. When two rational elliptic surfaces have different complex structures, whether their sum glued along a smooth fiber admits deformation to a K3 surface can be determined by studying the structure of the K3 lattice. We investigate the lattice theoretic condition to determine whether a deformation to a K3 surface exists for pairs of extremal rational elliptic surfaces. In addition, we discuss the configurations of singular fibers under stable degeneration. The sum of two isomorphic rational elliptic surfaces glued together admits a deformation to a K3 surface, the singular fibers of which are twice that of the rational elliptic surface. For special situations, singular fibers of the resulting K3 surface collide and they are enhanced to a fiber of another type. Some K3 surfaces become attractive in these situations. We determine the complex structures and the Weierstrass forms of these attractive K3 surfaces. We also deduce the gauge groups in F-theory compactifications on these attractive K3 surfaces times a K3. E 6, E 7, E 8, SU(5), and SO(10) gauge groups arise in these compactifications.

  2. Impact damage reduction by structured surface geometry

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Fedorov, Vladimir; McGugan, Malcolm

    2018-01-01

    performance was observed for polyurethane-coated fibre composites with structured geometries at the back surfaces. Repeated impacts by rubber balls on the coated side caused damage and delamination of the coating. The laminates with structured back surfaces showed longer durability than those with a flat back...

  3. Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells.

    Science.gov (United States)

    Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U-Ser; Lin, Hao-Wu

    2015-09-04

    The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.

  4. Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells

    Science.gov (United States)

    Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U.-Ser; Lin, Hao-Wu

    2015-09-01

    The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.

  5. Surface detail reproduction and dimensional accuracy of stone models: influence of disinfectant solutions and alginate impression materials.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Borsato, Thaís Teixeira; Berger, Sandrine Bittencourt; Lopes, Murilo Baena; Gonini, Alcides; Sinhoreti, Mário Alexandre Coelho

    2012-01-01

    This study compared the surface detail reproduction and dimensional accuracy of stone models obtained from molds disinfected with 2% sodium hypochlorite, 2% chlorhexidine digluconate or 0.2% peracetic acid to models produced using molds which were not disinfected, with 3 alginate materials (Cavex ColorChange, Hydrogum 5 and Jeltrate Plus). The molds were prepared over matrix containing 20-, 50-, and 75-µm lines, performed under pressure with perforated metal tray. The molds were removed following gelation and either disinfected (using one of the solutions by spraying followed by storage in closed jars for 15 min) or not disinfected. The samples were divided into 12 groups (n=5). Molds were filled with dental gypsum Durone IV and 1 h after the start of the stone mixing the models were separated from the tray. Surface detail reproduction and dimensional accuracy were evaluated using optical microscopy on the 50-µm line with 25 mm in length, in accordance with the ISO 1563 standard. The dimensional accuracy results (%) were subjected to ANOVA. The 50 µm-line was completely reproduced by all alginate impression materials regardless of the disinfection procedure. There was no statistically significant difference in the mean values of dimensional accuracy in combinations between disinfectant procedure and alginate impression material (p=0.2130) or for independent factors. The disinfectant solutions and alginate materials used in this study are no factors of choice regarding the surface detail reproduction and dimensional accuracy of stone models.

  6. Surface structure investigations using noncontact atomic force microscopy

    International Nuclear Information System (INIS)

    Kolodziej, J.J.; Such, B.; Goryl, M.; Krok, F.; Piatkowski, P.; Szymonski, M.

    2006-01-01

    Surfaces of several A III B V compound semiconductors (InSb, GaAs, InP, InAs) of the (0 0 1) orientation have been studied with noncontact atomic force microscopy (NC-AFM). Obtained atomically resolved patterns have been compared with structural models available in the literature. It is shown that NC-AFM is an efficient tool for imaging complex surface structures in real space. It is also demonstrated that the recent structural models of III-V compound surfaces provide a sound base for interpretation of majority of features present in recorded patterns. However, there are also many new findings revealed by the NC-AFM method that is still new experimental technique in the context of surface structure determination

  7. Coastal Foredune Evolution, Part 2: Modeling Approaches for Meso-Scale Morphologic Evolution

    Science.gov (United States)

    2017-03-01

    for Meso-Scale Morphologic Evolution by Margaret L. Palmsten1, Katherine L. Brodie2, and Nicholas J. Spore2 PURPOSE: This Coastal and Hydraulics ...managers because foredunes provide ecosystem services and can reduce storm damages to coastal infrastructure, both of which increase the resiliency...MS 2 U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Duck, NC ERDC/CHL CHETN-II-57 March 2017 2 models of

  8. Sliding surface searching method for slopes containing a potential weak structural surface

    Directory of Open Access Journals (Sweden)

    Aijun Yao

    2014-06-01

    Full Text Available Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is polyline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simulated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.

  9. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... to blast loadings. Abstract PDF · Vol 9, No 3S (2017): Special Issue - Articles Experimental and numerical investigation on blast wave propagation in soil structure. Abstract PDF. ISSN: 1112-9867.

  10. Holocene surface-rupturing earthquakes along the Yadong Cross Structure (Himalaya)

    Science.gov (United States)

    Ferry, M. A.; Roth, T.; Jean-Francois, R.; Cattin, R.

    2017-12-01

    The Himalayan Arc accommodates 2 cm/yr of shortening from the India-Eurasia collision, mostly along the Main Himalayan Thust. Perpendicularly to the main structures, regional cross structures formed by en échelon grabens and half-grabens mark Quaternary extension from central Tibet to the Himalayas. The Yadong-Gulu Rift system is the most striking one with a total length of 500 km. Its southernmost segment -the 100-km-long Yadong half-graben- entrenches through the Himalayas and forms a 500-to-1500-m-deep asymmetric basin. The average basin surface elevation of 4500 m contrasts with high reliefs of the Jomolhari range that reach 7326 m. They are separated by the N15 Yadong normal fault (also called Jomolhari Fault System, JFS) that forms spectacular triangular facets and affects glacial landforms. Though observed as early as the 1980s, offset moraines were never studied in detail in terms of measured displacement or age determination. Recent efforts from paleoclimate studies yielded a high-resolution framework to identify the various stages of Holocene glacial advances and associated moraine formation. These landforms display specific geomorphometric features recognized regionally (ELA, rugosity, crest freshness) that allow correlating across the various glacial valleys within the Yadong Rift and across similar settings in western Bhutan and eastern Nepal. This serves as a robust basis to place our moraine sequence within the Holocene paleoclimatic record and propose formation ages. By combining satellite images from Sentinel-2 (10 m, visible and NIR), Pléiades (0.5 m, visible) and a Pléiades-derived tri-stereo photogrammetric DEM (1 m), we map the fault trace and affected landforms in details and extract topographic profiles to measure vertical offsets. Paleoclimatic age constraints yield age-vs-displacement measurements along the whole 100-km-long JFS and define a chronology of Holocene deformation events. Within the limits of our observations, we conclude

  11. Detailed Structural Analysis of Critical Wendelstein 7-X Magnet System Components

    International Nuclear Information System (INIS)

    Egorov, K.

    2006-01-01

    The Wendelstein 7-X (W7-X) stellarator experiment is presently under construction and assembly in Greifswald, Germany. The goal of the experiment is to verify that the stellarator magnetic confinement concept is a viable option for a fusion reactor. The complex W7-X magnet system requires a multi-level approach to structural analysis for which two types of finite element models are used: Firstly, global models having reasonably coarse meshes with a number of simplifications and assumptions, and secondly, local models with detailed meshes of critical regions and elements. Widely known sub-modelling technique with boundary conditions extracted from the global models is one of the approaches for local analysis with high assessment efficiency. In particular, the winding pack (WP) of the magnet coils is simulated in the global model as a homogeneous orthotropic material with effective mechanical characteristic representing its real composite structure. This assumption allows assessing the whole magnet system in terms of general structural factors like forces and moments on the support elements, displacements of the main components, deformation and stress in the coil casings, etc. In a second step local models with a detailed description of more critical WP zones are considered in order to analyze their internal components like conductor jackets, turn insulation, etc. This paper provides an overview of local analyses of several critical W7-X magnet system components with particular attention on the coil winding packs. (author)

  12. On-surface synthesis on a bulk insulator surface

    Science.gov (United States)

    Richter, Antje; Floris, Andrea; Bechstein, Ralf; Kantorovich, Lev; Kühnle, Angelika

    2018-04-01

    On-surface synthesis has rapidly emerged as a most promising approach to prepare functional molecular structures directly on a support surface. Compared to solution synthesis, performing chemical reactions on a surface offers several exciting new options: due to the absence of a solvent, reactions can be envisioned that are otherwise not feasible due to the insolubility of the reaction product. Perhaps even more important, the confinement to a two-dimensional surface might enable reaction pathways that are not accessible otherwise. Consequently, on-surface synthesis has attracted great attention in the last decade, with an impressive number of classical reactions transferred to a surface as well as new reactions demonstrated that have no classical analogue. So far, the majority of the work has been carried out on conducting surfaces. However, when aiming for electronic decoupling of the resulting structures, e.g. for the use in future molecular electronic devices, non-conducting surfaces are highly desired. Here, we review the current status of on-surface reactions demonstrated on the (10.4) surface of the bulk insulator calcite. Besides thermally induced C-C coupling of halogen-substituted aryls, photochemically induced [2  +  2] cycloaddition has been proven possible on this surface. Moreover, experimental evidence exists for coupling of terminal alkynes as well as diacetylene polymerization. While imaging of the resulting structures with dynamic atomic force microscopy provides a direct means of reaction verification, the detailed reaction pathway often remains unclear. Especially in cases where the presence of metal atoms is known to catalyze the corresponding solution chemistry reaction (e.g. in the case of the Ullmann reaction), disclosing the precise reaction pathway is of importance to understand and generalize on-surface reactivity on a bulk insulator surface. To this end, density-functional theory calculations have proven to provide atomic

  13. Characterization of technical surfaces by structure function analysis

    Science.gov (United States)

    Kalms, Michael; Kreis, Thomas; Bergmann, Ralf B.

    2018-03-01

    The structure function is a tool for characterizing technical surfaces that exhibits a number of advantages over Fourierbased analysis methods. So it is optimally suited for analyzing the height distributions of surfaces measured by full-field non-contacting methods. The structure function is thus a useful method to extract global or local criteria like e. g. periodicities, waviness, lay, or roughness to analyze and evaluate technical surfaces. After the definition of line- and area-structure function and offering effective procedures for their calculation this paper presents examples using simulated and measured data of technical surfaces including aircraft parts.

  14. Cluster structures influenced by interaction with a surface.

    Science.gov (United States)

    Witt, Christopher; Dieterich, Johannes M; Hartke, Bernd

    2018-05-30

    Clusters on surfaces are vitally important for nanotechnological applications. Clearly, cluster-surface interactions heavily influence the preferred cluster structures, compared to clusters in vacuum. Nevertheless, systematic explorations and an in-depth understanding of these interactions and how they determine the cluster structures are still lacking. Here we present an extension of our well-established non-deterministic global optimization package OGOLEM from isolated clusters to clusters on surfaces. Applying this approach to intentionally simple Lennard-Jones test systems, we produce a first systematic exploration that relates changes in cluster-surface interactions to resulting changes in adsorbed cluster structures.

  15. Adsorption of Carbon Dioxide onto Tetraethylenepentamine Impregnated PMMA Sorbents with Different Pore Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Dong Hyun; Park, Cheonggi; Jung, Hyunchul; Kim, Sung Hyun [Korea University, Seoul (Korea, Republic of)

    2015-02-15

    Poly(methyl methacrylate) (PMMA) supports and amine additives were investigated to adsorb CO{sub 2}. PMMA supports were fabricated by using different ratio of pore forming agents (porogen) to control the BET specific surface area, pore volume and distribution. Toluene and xylene are used for porogens. Supported amine sorbents were prepared by wet impregnation of tetraethylenepentamine (TEPA) on PMMA supports. So we could identify the effect of the pore structure of supports and the quantity of impregnated TEPA on the adsorption capacity. The increased amount of toluene as pore foaming agent resulted in the decreased average pore diameter and the increased BET surface area. Polymer supports with huge different pore distribution could be fabricated by controlling the ratio of porogen. After impregnation, the support with micropore structure is supposed the pore blocking and filling effect so that it has low CO{sub 2} capacity and kinetics due to the difficulty of diffusing. Macropore structure indicates fast adsorption capacity and low influence of amine loading. In case of support with mesopore, it has high performance of adsorption capacity and kinetics. So high surface area and meso-/macro- pore structure is suitable for CO{sub 2} capture.

  16. Light water reactor fuel analysis code FEMAXI-IV(Ver.2). Detailed structure and user's manual

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Saitou, Hiroaki.

    1997-11-01

    A light water reactor fuel behavior analysis code FEMAXI-IV(Ver.2) was developed as an improved version of FEMAXI-IV. Development of FEMAXI-IV has been already finished in 1992, though a detailed structure and input manual of the code have not been open to users yet. Here, the basic theories and structure, the models and numerical solutions applied to FEMAXI-IV(Ver.2), and the material properties adopted in the code are described in detail. In FEMAXI-IV(Ver.2), programming bugs in previous FEMAXI-IV were eliminated, renewal of the pellet thermal conductivity was performed, and a model of thermal-stress restraint on FP gas release was incorporated. For facilitation of effective and wide-ranging application of the code, methods of input/output of the code are also described in detail, and sample output is included. (author)

  17. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... No 3S (2017): Special Issue - Articles Experimental and numerical investigation on blast wave propagation in soil structure. Abstract PDF · Vol 9, No 3S (2017): Special Issue - Articles Simulation on ...

  18. Effects of confinement in meso-porous silica and carbon nano-structures; Etude des effets de confinement dans la silice mesoporeuse et dans certaines nanostructures carbonees

    Energy Technology Data Exchange (ETDEWEB)

    Leon, V

    2006-07-15

    Physico-chemical properties of materials can be strongly modified by confinement because of the quantum effects that appear at such small length scales and also because of the effects of the confinement itself. The aim of this thesis is to show that both the nature of the confining material and the size of the pores and cavities have a strong impact on the confined material. We first show the effect of the pore size of the host meso-porous silica on the temperature of the solid-solid phase transition of silver selenide, a semiconducting material with enhanced magnetoresistive properties under non-stoichiometric conditions. Narrowing the pores from 20 nm to 2 nm raises the phase transition temperature from 139 C to 146 C. This result can be explained by considering the interaction between the confining and confined materials as a driving force. The effects of confinement are also studied in the case of hydrogen and deuterium inside cavities of organized carbon nano-structures. The effects that appear in the adsorption/desorption cycles are much stronger with carbon nano-horns as the host material than with C60 pea-pods and single-walled carbon nano-tubes. (author)

  19. Surface and catalysis science in the Materials and Molecular Research Division

    International Nuclear Information System (INIS)

    1980-01-01

    Surface science studies at Lawrence Berkeley Laboratory are detailed. Subject areas include: structure of surfaces and adsorbed monolayers; reduction and oxidation of surfaces; catalytic chemistry; and structure of interfaces and thin films

  20. Precursor type affecting surface properties and catalytic activity of sulfated zirconia

    Directory of Open Access Journals (Sweden)

    Zarubica Aleksandra R.

    2007-01-01

    Full Text Available Zirconium-hydroxide precursor samples are synthesized from Zr-hydroxide, Zr-nitrate, and Zr-alkoxide, by precipitation/impregnation, as well as by a modified sol-gel method. Precursor samples are further sulphated for the intended SO4 2- content of 4 wt.%, and calcined at 500-700oC. Differences in precursors’ origin and calcination temperature induce the incorporation of SO4 2- groups into ZrO2 matrices by various mechanisms. As a result, different amounts of residual sulphates are coupled with other structural, as well as surface properties, resulting in various catalytic activities of sulphated zirconia samples. Catalyst activity and selectivity are a complex synergistic function of tetragonal phase fraction, sulphates contents, textural and surface characteristics. Superior activity of SZ of alkoxide origin can be explained by a beneficial effect of meso-pores owing to a better accommodation of coke deposits.

  1. Imaging Catalysts at Work: A Hierarchical Approach from the Macro- to the Meso- and Nano-scale

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; Wagner, Jakob Birkedal; Dunin-Borkowski, Rafal E.

    2013-01-01

    This review highlights the importance of developing multi-scale characterisation techniques for analysing operating catalysts in their working environment. We emphasise that a hierarchy of insitu techniques that provides macro-, meso- and nano-scale information is required to elucidate and optimise....../heat/mass transport gradients in shaped catalysts and catalyst grains and c)meso- and nano-scale information about particles and clusters, whose physical and electronic properties are linked directly to the micro-kinetic behaviour of the catalysts. Techniques such as X-ray diffraction (XRD), infrared (IR), Raman, X......-ray photoelectron spectroscopy (XPS), UV/Vis, and X-ray absorption spectroscopy (XAS), which have mainly provided global atomic scale information, are being developed to provide the same information on a more local scale, often with sub-second time resolution. X-ray microscopy, both in the soft and more recently...

  2. Meso- and bathy-pelagic fish parasites at the Mid-Atlantic Ridge (MAR): Low host specificity and restricted parasite diversity

    Science.gov (United States)

    Klimpel, Sven; Busch, Markus Wilhelm; Sutton, Tracey; Palm, Harry Wilhelm

    2010-04-01

    Seven meso- and bathy-pelagic fish species from the Mid-Atlantic Ridge (MAR) were firstly studied for fish parasites and feeding ecology. With a total of seven parasite species, the 247 meso- and bathy-pelagic deep-sea fish specimens belonging to the families Melamphaidae (3 spp.), Myctophidae (3 spp.) and Stomiidae (1 sp.) revealed low parasite diversity. The genetically identified nematodes Anisakis simplex (s.s.) and Anisakis pegreffii from the body cavity, liver and muscles of Myctophum punctatum were the most abundant parasites, reaching a prevalence of 91.4% and mean intensity of 3.1 (1-14). Anisakis sp. (unidentified) infected Chauliodus sloani and Poromitra crassiceps. Bothriocephalidean and tetraphyllidean cestode larvae infected Benthosema glaciale, the latter also occurring in C. sloani and Scopelogadus beanii, at low prevalences. Adult parasites at low infection rates included the digenean Lethadena sp. (2.9%), and the two copepod species Sarcotretes scopeli (5.7%) and Tautochondria dolichoura (5.3-11.4%). The myctophid Lampanyctus macdonaldi and the melamphaid Scopelogadus mizolepis mizolepis were free of parasites. Analyses of the stomach contents revealed crustaceans, especially copepods and euphausiids for the myctophids and also amphipods for the melamphaids as predominant prey items. While all stomachs showing distinct content comprising often unidentified 'tissue' (possibly gelatinous zooplankton), only C. sloani preyed upon fish. Though this feeding habit would enable transfer of a variety of crustacean-transmitted parasites into the fish, the parasite fauna in the meso- and bathy-pelagic fish was species poor. All observed parasites showed low host specificity, demonstrating no distinct pattern of host-parasite co-evolution. The MAR is no barrier for the parasite distribution in the North Atlantic meso- and bathy-pelagial.

  3. Crystallography and surface structure an introduction for surface scientists and nanoscientists

    CERN Document Server

    Hermann, Klaus

    2017-01-01

    A valuable learning tool as well as a reference, this book provides students and researchers in surface science and nanoscience with the theoretical crystallographic foundations, which are necessary to understand local structure and symmetry of bulk crystals, including ideal and real single crystal surfaces. The author deals with the subject at an introductory level, providing numerous graphic examples to illustrate the mathematical formalism. The book brings together and logically connects many seemingly disparate structural issues and notations used frequently by surface scientists and nanoscientists. Numerous exercises of varying difficulty, ranging from simple questions to small research projects, are included to stimulate discussions about the different subjects.

  4. The AMMA-CATCH Gourma observatory site in Mali: Relating climatic variations to changes in vegetation, surface hydrology, fluxes and natural resources

    Science.gov (United States)

    Mougin, E.; Hiernaux, P.; Kergoat, L.; Grippa, M.; de Rosnay, P.; Timouk, F.; Le Dantec, V.; Demarez, V.; Lavenu, F.; Arjounin, M.; Lebel, T.; Soumaguel, N.; Ceschia, E.; Mougenot, B.; Baup, F.; Frappart, F.; Frison, P. L.; Gardelle, J.; Gruhier, C.; Jarlan, L.; Mangiarotti, S.; Sanou, B.; Tracol, Y.; Guichard, F.; Trichon, V.; Diarra, L.; Soumaré, A.; Koité, M.; Dembélé, F.; Lloyd, C.; Hanan, N. P.; Damesin, C.; Delon, C.; Serça, D.; Galy-Lacaux, C.; Seghieri, J.; Becerra, S.; Dia, H.; Gangneron, F.; Mazzega, P.

    2009-08-01

    SummaryThe Gourma site in Mali is one of the three instrumented meso-scale sites deployed in West-Africa as part of the African Monsoon Multi-disciplinary Analysis (AMMA) project. Located both in the Sahelian zone sensu stricto, and in the Saharo-Sahelian transition zone, the Gourma meso-scale window is the northernmost site of the AMMA-CATCH observatory reached by the West African Monsoon. The experimental strategy includes deployment of a variety of instruments, from local to meso-scale, dedicated to monitoring and documentation of the major variables characterizing the climate forcing, and the spatio-temporal variability of surface processes and state variables such as vegetation mass, leaf area index (LAI), soil moisture and surface fluxes. This paper describes the Gourma site, its associated instrumental network and the research activities that have been carried out since 1984. In the AMMA project, emphasis is put on the relations between climate, vegetation and surface fluxes. However, the Gourma site is also important for development and validation of satellite products, mainly due to the existence of large and relatively homogeneous surfaces. The social dimension of the water resource uses and governance is also briefly analyzed, relying on field enquiry and interviews. The climate of the Gourma region is semi-arid, daytime air temperatures are always high and annual rainfall amounts exhibit strong inter-annual and seasonal variations. Measurements sites organized along a north-south transect reveal sharp gradients in surface albedo, net radiation, vegetation production, and distribution of plant functional types. However, at any point along the gradient, surface energy budget, soil moisture and vegetation growth contrast between two main types of soil surfaces and hydrologic systems. On the one hand, sandy soils with high water infiltration rates and limited run-off support almost continuous herbaceous vegetation with scattered woody plants. On the other

  5. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Isa, M.F.M.. Vol 9, No 3S (2017): Special Issue - Articles Experimental and numerical investigation on blast wave propagation in soil structure. Abstract PDF · Vol 9, No 3S (2017): Special Issue - ...

  6. Numerical Models for the Assessment of Historical Masonry Structures and Materials, Monitored by Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Stefano Invernizzi

    2016-04-01

    Full Text Available The paper reviews some recent numerical applications for the interpretation and exploitation of acoustic emission (AE monitoring results obtained from historical masonry structures and materials. Among possible numerical techniques, the finite element method and the distinct method are considered. The analyzed numerical models cover the entire scale range, from microstructure and meso-structure, up to full-size real structures. The micro-modeling includes heterogeneous concrete-like materials, but mainly focuses on the masonry texture meso-structure, where each brick and mortar joint is modeled singularly. The full-size models consider the different typology of historical structures such as masonry towers, cathedrals and chapels. The main difficulties and advantages of the different numerical approaches, depending on the problem typology and scale, are critically analyzed. The main insight we can achieve from micro and meso numerical modeling concerns the scaling of AE as a function of volume and time, since it is also able to simulate the b-value temporal evolution as the damage spread into the structure. The finite element modeling of the whole structure provides useful hints for the optimal placement of the AE sensors, while the combination of AE monitoring results is crucial for a reliable assessment of structural safety.

  7. Effectiveness of Iron Ethylenediamine-N,N′-bis(hydroxyphenylacetic) Acid (o,o-EDDHA/Fe3+) Formulations with Different Ratios of Meso and d,l-Racemic Isomers as Iron Fertilizers

    OpenAIRE

    Alcañiz Lucas, Sara; Jordá Guijarro, Juana Dolores; Cerdán, Mar

    2017-01-01

    Two o,o-EDDHA/Fe3+ formulations (meso, 93.5% w/w of meso isomer; and d,l-racemic, 91.3% w/w of d,l-racemic mixture) were prepared, and their efficacy to avoid or to relieve iron deficiency in Fe-sufficient and Fe-deficient tomato plants grown on hydroponic solution was compared with that of the current o,o-EDDHA/Fe3+ formulations (50% of meso and d,l-racemic isomers). The effectiveness of the three o,o-EDDHA/Fe3+ formulations was different depending on the iron nutritional status of plants. T...

  8. Elementary structural building blocks encountered in silicon surface reconstructions

    International Nuclear Information System (INIS)

    Battaglia, Corsin; Monney, Claude; Didiot, Clement; Schwier, Eike Fabian; Garnier, Michael Gunnar; Aebi, Philipp; Gaal-Nagy, Katalin; Onida, Giovanni

    2009-01-01

    Driven by the reduction of dangling bonds and the minimization of surface stress, reconstruction of silicon surfaces leads to a striking diversity of outcomes. Despite this variety even very elaborate structures are generally comprised of a small number of structural building blocks. We here identify important elementary building blocks and discuss their integration into the structural models as well as their impact on the electronic structure of the surface. (topical review)

  9. Diatoms as a fingerprint of sub-catchment contributions to meso-scale catchment runoff

    Science.gov (United States)

    Klaus, Julian; Wetzel, Carlos E.; Martinez-Carreras, Nuria; Ector, Luc; Pfister, Laurent

    2014-05-01

    In recent years, calls were made for new eco-hydrological approaches to improve understanding of hydrological processes. Recently diatoms, one of the most common and diverse algal groups that can be easily transported by flowing water due to their small size (~10-200 µm), were used to detect the onset and cessation of surface runoff to small headwater streams and constrain isotopic and hydro-chemical hydrograph separation methods. While the method showed its potential in the hillslope-riparian zone-stream continuum of headwater catchments, the behavior of diatoms and their use for hydrological process research in meso-scale catchments remains uncertain. Diatoms can be a valuable support for isotope and hydro-chemical tracer methods when these become ambiguous with increasing scale. Distribution and abundance of diatom species is controlled by various environmental factors (pH, soil type, moisture conditions, exposition to sunlight, etc.). We therefore hypothesize that species abundance and composition can be used as a proxy for source areas. This presentation evaluates the potential for diatoms to trace source-areas in the nested meso-scale Attert River basin (250 km2, Luxembourg, Europe). We sampled diatom populations in streamwater during one flood event in Fall 2011 in 6 sub-catchments and the basin outlet - 17 to 28 samples/catchment for the different sampling locations. Diatoms were classified and counted in every individual sample. In total more than 400 diatom species were detected. Ordination analysis revealed a clear distinction between communities sampled in different sub-catchments. The species composition at the catchment outlet reflects a mixing of the diatom composition originating from different sub-catchments. This data suggests that diatoms indeed can reflect the geographic origin of stream water at the catchment outlet. The centroids of the ordination analysis might be linked to the physiographic characteristics (geology and land use) of the

  10. The influence of the surface atomic structure on surface diffusion

    International Nuclear Information System (INIS)

    Ghaleb, Dominique

    1984-03-01

    This work represents the first quantitative study of the influence of the surface atomic structure on surface diffusion (in the range: 0.2 Tf up 0.5 Tf; Tf: melting temperature of the substrate). The analysis of our results on a microscopic scale shows low formation and migration energies for adatoms; we can describe the diffusion on surfaces with a very simple model. On (110) surfaces at low temperature the diffusion is controlled by the exchange mechanism; at higher temperature direct jumps of adatoms along the channels contribute also to the diffusion process. (author) [fr

  11. Compact complex surfaces with geometric structures related to split quaternions

    International Nuclear Information System (INIS)

    Davidov, Johann; Grantcharov, Gueo; Mushkarov, Oleg; Yotov, Miroslav

    2012-01-01

    We study the problem of existence of geometric structures on compact complex surfaces that are related to split quaternions. These structures, called para-hypercomplex, para-hyperhermitian and para-hyperkähler, are analogs of the hypercomplex, hyperhermitian and hyperkähler structures in the definite case. We show that a compact 4-manifold carries a para-hyperkähler structure iff it has a metric of split signature together with two parallel, null, orthogonal, pointwise linearly independent vector fields. Every compact complex surface admitting a para-hyperhermitian structure has vanishing first Chern class and we show that, unlike the definite case, many of these surfaces carry infinite-dimensional families of such structures. We provide also compact examples of complex surfaces with para-hyperhermitian structures which are not locally conformally para-hyperkähler. Finally, we discuss the problem of non-existence of para-hyperhermitian structures on Inoue surfaces of type S 0 and provide a list of compact complex surfaces which could carry para-hypercomplex structures.

  12. meso-Substituted bisanthenes as soluble and stable near-infrared dyes

    KAUST Repository

    Li, Jinling

    2010-02-05

    (Chemical Equation Presented) Three meso-substituted bisanthenes, 4-6, were prepared in a short synthetic route from the bisanthenequinone. They exhibit largely improved stability and solubility in comparison to the parent bisanthene. All of these compounds also show near-infrared (NIR) absorption and emission with high to moderate fluorescence quantum yields. Amphoteric redox behavior was observed for 4-6 by cyclic voltammetry, and these compounds can be reversibly oxidized and reduced into respective cationic and anionic species by both electrochemical and chemical processes. In addition, compound 5 adopts a herringbone π-stacking motif in the single crystal. © 2010 American Chemical Society.

  13. New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuefeng; Zhang, Minghao; Alvarado, Judith; Wang, Shen; Sina, Mahsa; Lu, Bingyu; Bouwer, James; Xu, Wu [Energy; Xiao, Jie [Energy; Zhang, Ji-Guang [Energy; Liu, Jun [Energy; Meng, Ying Shirley

    2017-11-02

    Lithium metal has been considered as the “holy grail” anode material for rechargeable batteries though the dendritic growth and low Coulombic efficiency (CE) have crippled its practical use for decades. Its high chemical reactivity and low stability make it difficult to explore the intrinsic chemical and physical properties of the electrochemically deposited lithium (EDLi) and its accompanied solid electrolyte interphase (SEI). To prevent the dendritic growth and enhance the electrochemical reversibility, it is crucial to understand the nano- and meso- structures of EDLi. However, Li metal is very sensitive to beam damage and has low contrast for commonly used characterization techniques such as electron microscopy. Inspired by biological imaging techniques, this work demonstrates the power of cryogenic (cryo)- electron microscopy to reveal the detailed structure of EDLi and the SEI composition at the nano scale while minimizing beam damage during imaging. Surprisingly, the results show that the nucleation dominated EDLi (five minutes at 0.5 mA cm-2) is amorphous while there is some crystalline LiF present in the SEI. The EDLi grown from various electrolytes with different additives exhibits distinctive surface properties. Consequently, these results highlight the importance of the SEI and its relationship with the CE. Our findings not only illustrate the capabilities of cryogenic microscopy for beam (thermal)-sensitive materials, but it yields crucial structural information of the EDLi evolution with and without electrolyte additives.

  14. Structure and Modification of Electrode Materials for Protein Electrochemistry.

    Science.gov (United States)

    Jeuken, Lars J C

    The interactions between proteins and electrode surfaces are of fundamental importance in bioelectrochemistry, including photobioelectrochemistry. In order to optimise the interaction between electrode and redox protein, either the electrode or the protein can be engineered, with the former being the most adopted approach. This tutorial review provides a basic description of the most commonly used electrode materials in bioelectrochemistry and discusses approaches to modify these surfaces. Carbon, gold and transparent electrodes (e.g. indium tin oxide) are covered, while approaches to form meso- and macroporous structured electrodes are also described. Electrode modifications include the chemical modification with (self-assembled) monolayers and the use of conducting polymers in which the protein is imbedded. The proteins themselves can either be in solution, electrostatically adsorbed on the surface or covalently bound to the electrode. Drawbacks and benefits of each material and its modifications are discussed. Where examples exist of applications in photobioelectrochemistry, these are highlighted.

  15. Surface hopping, transition state theory, and decoherence. II. Thermal rate constants and detailed balance

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Amber; Subotnik, Joseph E., E-mail: subotnik@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104 (United States)

    2015-10-07

    We investigate a simple approach to compute a non-adiabatic thermal rate constant using the fewest switches surface hopping (FSSH) dynamics. We study the effects of both decoherence (using our augmented-FSSH (A-FSSH) algorithm) and forbidden hops over a large range of parameters, including high and low friction regimes, and weak and strong electronic coupling regimes. Furthermore, when possible, we benchmark our results against exact hierarchy equations of motion results, where we usually find a maximum error of roughly a factor of two (at reasonably large temperatures). In agreement with Hammes-Schiffer and Tully, we find that a merger of transition state theory and surface hopping can be both accurate and efficient when performed correctly. We further show that detailed balance is followed approximately by A-FSSH dynamics.

  16. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.; Patel, Niral M.; Roberts, Sean T.; Allen, Kathryn; Djurovich, Peter I.; Bradforth, Stephen E.; Thompson, Mark E.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  17. XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate

    International Nuclear Information System (INIS)

    Fu Yongqing; Du Hejun; Zhang, Sam; Huang Weimin

    2005-01-01

    TiNi films were prepared by co-sputtering TiNi and Ti targets. X-ray photoelectron spectroscopy (XPS) was employed to study surface chemistry of the films and interfacial structure of Si/TiNi system. Exposure of the TiNi film to the ambient atmosphere (23 deg. C and 80% relatively humidity) facilitated quick adsorption of oxygen and carbon on the surface. With time, carbon and oxygen content increased drastically at the surface, while oxygen diffused further into the layer. After a year, carbon content at the surface became as high as 65.57% and Ni dropped below the detection limit of XPS. Depth profiling revealed that significant inter-diffusion occurred between TiNi film and Si substrate with a layer of 90-100 nm. The detailed bond changes of different elements with depth were obtained using XPS and the formation of titanium silicides at the interface were identified

  18. Structural details of Al/Al 2O3 junctions and their role in the formation of electron tunnel barriers

    Science.gov (United States)

    Koberidze, M.; Puska, M. J.; Nieminen, R. M.

    2018-05-01

    We present a computational study of the adhesive and structural properties of the Al/Al 2O3 interfaces as building blocks of the metal-insulator-metal (MIM) tunnel devices, where electron transport is accomplished via tunneling mechanism through the sandwiched insulating barrier. The main goal of this paper is to understand, on the atomic scale, the role of the geometrical details in the formation of the tunnel barrier profiles. Initially, we concentrate on the adhesive properties of the interfaces. To provide reliable results, we carefully assess the accuracy of the traditional methods used to examine Al/Al 2O3 systems. These are the most widely employed exchange-correlation functionals—local-density approximation and two different generalized gradient approximations; the universal binding-energy relation for predicting equilibrium interfacial distances and adhesion energies; and the ideal work of separation as a measure of junction stability. In addition, we show that the established interpretation of the computed ideal work of separation might be misleading in predicting the optimal interface structures. Finally, we perform a detailed analysis of the atomic and interplanar relaxations in each junction, and identify their contributions to the tunnel barrier parameters. Our results imply that the structural irregularities on the surface of the Al film have a significant contribution to lowering the tunnel barrier height, while atomic relaxations at the interface and interplanar relaxations in Al2O3 may considerably change the width of the barrier and, thus, distort its uniformity. Both the effects may critically influence the performance of the MIM tunnel devices.

  19. Electron backscatter diffraction characterization of laser-induced periodic surface structures on nickel surface

    Energy Technology Data Exchange (ETDEWEB)

    Sedao, Xxx, E-mail: sedao.xxx@gmail.com [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France); Maurice, Claire [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 St-Etienne (France); Garrelie, Florence; Colombier, Jean-Philippe; Reynaud, Stéphanie [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France); Quey, Romain; Blanc, Gilles [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 St-Etienne (France); Pigeon, Florent [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France)

    2014-05-01

    Graphical abstract: -- Highlight: •Lattice rotation and its distribution in laser-induced periodic surface structures (LIPSS) and the subsurface region on a nickel substrate are revealed using electron backscatter diffraction (EBSD). -- Abstract: We report on the structural investigation of laser-induced periodic surface structures (LIPSS) generated in polycrystalline nickel target after multi-shot irradiation by femtosecond laser pulses. Electron backscatter diffraction (EBSD) is used to reveal lattice rotation caused by dislocation storage during LIPSS formation. Localized crystallographic damages in the LIPSS are detected from both surface and cross-sectional EBSD studies. A surface region (up to 200 nm) with 1–3° grain disorientation is observed in localized areas from the cross-section of the LIPSS. The distribution of the local disorientation is inhomogeneous across the LIPSS and the subsurface region.

  20. Modellierung of meso- and macroscale river basins - a workshop held at Lauenburg; Modellierung in meso- bis makroskaligen Flusseinzugsgebieten - Tagungsband zum gleichnamigen Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sutmoeller, J.; Raschke, E. (eds.) [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    2001-07-01

    During the past decade measuring and modelling of global and regional processes that exchange energy and water in the climate system of the Earth became a focus in hydrological and meteorological research. Besides climate research many more applications will gain from this effort, e.g. as weather forecasting, water management and agriculture. As large scale weather and climate applications diversify to water related issues such as water resources, reservoir management, and flood and drought forecasting hydrologists and meteorologists are challenged to work interdisciplinary. The workshop 'Modelling of meso- and macroscale river basins' brought together various current aspects of this issue, ranging from coupled atmosphere-hydrology models to integrated river basin management to land use change. Recent results are introduced and summarised in this report. (orig.)

  1. Temperature Dependent Surface Structures and Electronic Properties of Organic-Inorganic Hybrid Perovskite Single Crystals

    Science.gov (United States)

    Jao, M.-H.; Teague, M. L.; Huang, J.-S.; Tseng, W.-S.; Yeh, N.-C.

    Organic-inorganic hybrid perovskites, arising from research of low-cost high performance photovoltaics, have become promising materials not only for solar cells but also for various optoelectronic and spintronic applications. An interesting aspect of the hybrid perovskites is that their material properties, such as the band gap, can be easily tuned by varying the composition, temperature, and the crystalline phases. Additionally, the surface structure is critically important for their optoelectronic applications. It is speculated that different crystalline facets could show different trap densities, thus resulting in microscopically inhomogeneous performance. Here we report direct studies of the surface structures and electronic properties of hybrid perovskite CH3NH3PbI3 single crystals by scanning tunneling microscopy and spectroscopy (STM/STS). We found long-range spatially homogeneous tunneling conductance spectra with a well-defined energy gap of (1.55 +/- 0.1) eV at 300 K in the tetragonal phase, suggesting high quality of the single crystals. The energy gap increased to (1.81 +/- 0.1) eV in the orthorhombic phase, below the tetragonal-to-orthorhombic phase transition temperature at 150 K. Detailed studies of the temperature evolution in the spatially resolved surface structures and local density of states will be discussed to elucidate how these properties may influence the optoelectronic performance of the hybrid perovskites. We thank the support from NTU in Taiwan and from NSF in the US.

  2. Influence of alginate impression materials and storage time on surface detail reproduction and dimensional accuracy of stone models.

    Science.gov (United States)

    Guiraldo, Ricardo D; Moreti, Ana F F; Martinelli, Julia; Berger, Sandrine B; Meneghel, Luciana L; Caixeta, Rodrigo V; Sinhoreti, Mário A C

    2015-01-01

    This study compared the surface detail reproduction and dimensional accuracy of stone models obtained from molds prepared using different alginate impression materials (Cavex ColorChange, Hydrogum 5, or Jeltrate Plus) and with different storage times (1, 3, and 5 days) to models from molds that were filled immediately with no storage time. The molds were prepared over a matrix containing 50-μm line, (ISO 1563 standard) under pressure with a perforated metal tray. The molds were removed 2 minutes after loss of sticky consistency and either filled immediately or stored in closed jars at 100% relative humidity and 37°C for 1, 3, or 5 days. The molds were filled with dental plaster (Durone IV). Surface detail reproduction and dimensional accuracy were evaluated using optical microscopy on the 50-μm wide line, which was 25 mm in length, according to ISO 1563 standard. The dimensional accuracy results (%) were subjected to analysis of variance. The 50-μm wide line (ISO 1563 standard) was completely reproduced by all alginate impression materials regardless of the storage time. There was no statistically significant difference in the mean dimensional accuracy values of stone models made from molds composed of different alginate impression materials and with different storage times (p = 0.989). In conclusion, storing the mold for five days prior to filling did not change the surface detail reproduction or dimensional accuracy of the alginates examined in this study.

  3. Labor migration, externalities and ethics: theorizing the meso-level determinants of HIV vulnerability.

    Science.gov (United States)

    Hirsch, Jennifer S

    2014-01-01

    This paper discusses labor migration as an example of how focusing on the meso-level highlights the social processes through which structural factors produce HIV risk. Situating that argument in relation to existing work on economic organization and HIV risk as well as research on labor migration and HIV vulnerabilities, the paper demonstrates how analyzing the processes through which labor migration creates vulnerability can shift attention away from the proximate behavioral determinants of HIV risk and toward the community and policy levels. Further, it presents the concepts of externalities and the ethics of consumption, which underline how both producers and consumers benefit from low-waged migrant labor, and thus are responsible for the externalization of HIV risk characteristic of supply chains that rely on migrant labor. These concepts point to strategies through which researchers and advocates could press the public and private sectors to improve the conditions in which migrants live and work, with implications for HIV as well as other health outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Modulation of photonic structures by surface acoustic waves

    International Nuclear Information System (INIS)

    Mauricio M de Lima Jr; Santos, Paulo V

    2005-01-01

    This paper reviews the interaction between coherently stimulated acoustic phonons in the form of surface acoustic waves with light beams in semiconductor based photonic structures. We address the generation of surface acoustic wave modes in these structures as well as the technological aspects related to control of the propagation and spatial distribution of the acoustic fields. The microscopic mechanisms responsible for the interaction between light and surface acoustic modes in different structures are then reviewed. Particular emphasis is given to the acousto-optical interaction in semiconductor microcavities and its application in photon control. These structures exhibit high optical modulation levels under acoustic excitation and are compatible with integrated light sources and detectors

  5. Report on the International Workshop “Networks, Regions and Institutions in Mongol Eurasia: A Meso-Historical Analysis”, Jerusalem, 17–18 May, 2017

    OpenAIRE

    Roman Hautala

    2017-01-01

    On May 17–18, 2017, an international workshop “Networks, Regions and Institutions in Mongol Eurasia: A Meso-Historical Analysis” was held at the Hebrew University in Jerusalem with the participation of researchers from Israel, Japan, Britain, United States, Russia, China, Hungary and Finland. The main goal of the workshop was to reveal the potential of the “meso-historical analysis” in the study of the Mongol Empire, including the simultaneous consideration of global changes in Eurasia caused...

  6. Detailed temporal structure of communication networks in groups of songbirds.

    Science.gov (United States)

    Stowell, Dan; Gill, Lisa; Clayton, David

    2016-06-01

    Animals in groups often exchange calls, in patterns whose temporal structure may be influenced by contextual factors such as physical location and the social network structure of the group. We introduce a model-based analysis for temporal patterns of animal call timing, originally developed for networks of firing neurons. This has advantages over cross-correlation analysis in that it can correctly handle common-cause confounds and provides a generative model of call patterns with explicit parameters for the influences between individuals. It also has advantages over standard Markovian analysis in that it incorporates detailed temporal interactions which affect timing as well as sequencing of calls. Further, a fitted model can be used to generate novel synthetic call sequences. We apply the method to calls recorded from groups of domesticated zebra finch (Taeniopygia guttata) individuals. We find that the communication network in these groups has stable structure that persists from one day to the next, and that 'kernels' reflecting the temporal range of influence have a characteristic structure for a calling individual's effect on itself, its partner and on others in the group. We further find characteristic patterns of influences by call type as well as by individual. © 2016 The Authors.

  7. Structural and electrochemical properties of β-tetrabromo-meso ...

    Indian Academy of Sciences (India)

    Administrator

    tetrakis(4-alkyloxyphenyl)porphyrins and their metal complexes. P BHYRAPPA* and C ARUNKUMAR. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036 e-mail: pbhyrappa@hotmail.com. MS received 6 June 2009; revised 15 August 2009; accepted 6 October 2009. Abstract. Crystal structure ...

  8. Influence of surface modification of halloysite nanotubes on their dispersion in epoxy matrix: Mesoscopic DPD simulation

    Science.gov (United States)

    Komarov, P.; Markina, A.; Ivanov, V.

    2016-06-01

    The problems of constructing of a meso-scale model of composites based on polymers and aluminosilicate nanotubes for prediction of the filler's spatial distribution at early stages of material formation have been considered. As a test system for the polymer matrix, the mixture of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate as epoxy resin monomers and 4-methylhexahydrophthalic anhydride as curing agent has been used. It is shown that the structure of a mixture of uncured epoxy resin and nanotubes is (mainly) determined by the surface functionalization of nanotubes. The results indicate that only nanotubes with maximum functionalization can preserve a uniform distribution in space.

  9. The plastic rotation effect in an isotropic gradient plasticity model for applications at the meso scale

    NARCIS (Netherlands)

    Poh, Leong Hien; Peerlings, R.H.J.

    2016-01-01

    Although formulated to represent a large system of polycrystals at the macroscopic level, isotropic gradient plasticity models have routinely been adopted at the meso scale. For such purposes, it is crucial to incorporate the plastic rotation effect in order to obtain a reasonable approximation of

  10. The structure of stepped surfaces

    International Nuclear Information System (INIS)

    Algra, A.J.

    1981-01-01

    The state-of-the-art of Low Energy Ion Scattering (LEIS) as far as multiple scattering effects are concerned, is discussed. The ion fractions of lithium, sodium and potassium scattered from a copper (100) surface have been measured as a function of several experimental parameters. The ratio of the intensities of the single and double scattering peaks observed in ion scattering spectroscopy has been determined and ion scattering spectroscopy applied in the multiple scattering mode is used to determine the structure of a stepped Cu(410) surface. The average relaxation of the (100) terraces of this surface appears to be very small. The adsorption of oxygen on this surface has been studied with LEIS and it is indicated that oxygen absorbs dissociatively. (C.F.)

  11. Facile fabrication of superhydrophobic surfaces with hierarchical structures.

    Science.gov (United States)

    Lee, Eunyoung; Lee, Kun-Hong

    2018-03-06

    Hierarchical structures were fabricated on the surfaces of SUS304 plates using a one-step process of direct microwave irradiation under a carbon dioxide atmosphere. The surface nanostructures were composed of chrome-doped hematite single crystals. Superhydrophobic surfaces with a water contact angle up to 169° were obtained by chemical modification of the hierarchical structures. The samples maintained superhydrophobicity under NaCl solution up to 2 weeks.

  12. Studies on the formation of hierarchical zeolite T aggregates with well-defined morphology in different template systems

    Science.gov (United States)

    Yin, Xiaoyan; Chu, Naibo; Lu, Xuewei; Li, Zhongfang; Guo, Hong

    2016-01-01

    In this paper, the disk-like and pumpkin-like hierarchical zeolite T aggregates consisted of primary nano-grains have been hydrothermally synthesized with and without the aid of the second template. The first template is used with tetramethylammonium hydroxide (TMAOH) and the second template is used with triethanolamine (TEA) or polyving akohol (PVA). A combination of characterization techniques, including XRD, SEM, TEM and N2 adsorption-desorption to examine the crystal crystallinity, morphology and surface properties of hierarchical zeolite T aggregates. In the single-template preparation process, the two-step varying-temperature treatment has been used to improve the meso-porosity of zeolite T aggregates. In the double-template preparation process, the amounts of PVA or TEA on the crystallinity, morphology and meso-porosity of zeolite T aggregates have been studied. It has been proved that the interstitial voids between the primary grains of aggregates are the origin of additional mesopores of samples. The micro- and meso-porosities of samples prepared with and without the second template have been contrasted in detail at last. In particular, the sample synthesized with the addition of PVA presents a hierarchical pore structure with the highest Sext value of 122 m2/g and Vmeso value of 0.255 cm3/g.

  13. Light water reactor fuel analysis code FEMAXI-IV(Ver.2). Detailed structure and user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Saitou, Hiroaki

    1997-11-01

    A light water reactor fuel behavior analysis code FEMAXI-IV(Ver.2) was developed as an improved version of FEMAXI-IV. Development of FEMAXI-IV has been already finished in 1992, though a detailed structure and input manual of the code have not been open to users yet. Here, the basic theories and structure, the models and numerical solutions applied to FEMAXI-IV(Ver.2), and the material properties adopted in the code are described in detail. In FEMAXI-IV(Ver.2), programming bugs in previous FEMAXI-IV were eliminated, renewal of the pellet thermal conductivity was performed, and a model of thermal-stress restraint on FP gas release was incorporated. For facilitation of effective and wide-ranging application of the code, methods of input/output of the code are also described in detail, and sample output is included. (author)

  14. Surface structure of polymer Gels and emerging functions

    CERN Document Server

    Kobiki, Y

    1999-01-01

    We report the surface structure of polymer gels on a submicrometer scale during the volume phase transition. Sponge-like domains with a mesoscopic scale were directly observed in water by using at atomic force microscope (AFM). The surface structure characterized by the domains is discussed in terms of the root-mean-square roughness and the auto-correlation function, which were calculated from the AFM images. In order to demonstrate the role of surface structure in determining the macroscopic properties of film-like poly (N-isopropylacrylamide: NIPA) gels. It was found that the temperature dependence, as well as the absolute values of the static contact angle, were strongly dependent on the bulk network inhomogeneities. The relation between the mesoscopic structure and the macroscopic properties is qualitatively discussed in terms of not only the changes in the chemical, but also in the physical, surface properties of the NIPA gels in response to a temperature change.

  15. 30 CFR 57.4530 - Exits for surface buildings and structures.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exits for surface buildings and structures. 57... Fire Prevention and Control Installation/construction/maintenance § 57.4530 Exits for surface buildings and structures. Surface buildings or structures in which persons work shall have a sufficient number...

  16. Wooden houses in detail. Holzhaeuser im Detail

    Energy Technology Data Exchange (ETDEWEB)

    Ruske, W. (ed.)

    1986-01-01

    Under the serial title 'Planning and construction of wooden houses', WEKA will publish a number of books of which this is the first. Details of design and construction are presented, e.g.: Details of modern one-family houses; Fundamentals of design and hints for planning of wooden houses and compact wooden structures; Constructional ecology, wood protection, thermal insulation, sound insulation; Modular systems for domestic buildings; The 'bookshelf-type' house at the Berlin International Construction Exhibition (IBA); Experience with do-it-yourself systems. With 439 figs.

  17. Resolving meso-scale seabed variability using reflection measurements from an autonomous underwater vehicle.

    Science.gov (United States)

    Holland, Charles W; Nielsen, Peter L; Dettmer, Jan; Dosso, Stan

    2012-02-01

    Seabed geoacoustic variability is driven by geological processes that occur over a wide spectrum of space-time scales. While the acoustics community has some understanding of horizontal fine-scale geoacoustic variability, less than O(10(0)) m, and large-scale variability, greater than O(10(3)) m, there is a paucity of data resolving the geoacoustic meso-scale O(10(0)-10(3)) m. Measurements of the meso-scale along an ostensibly "benign" portion of the outer shelf reveal three classes of variability. The first class was expected and is due to horizontal variability of layer thicknesses: this was the only class that could be directly tied to seismic reflection data. The second class is due to rapid changes in layer properties and/or boundaries, occurring over scales of meters to hundreds of meters. The third class was observed as rapid variations of the angle/frequency dependent reflection coefficient within a single observation and is suggestive of variability at scales of meter or less. Though generally assumed to be negligible in acoustic modeling, the second and third classes are indicative of strong horizontal geoacoustic variability within a given layer. The observations give early insight into possible effects of horizontal geoacoustic variability on long-range acoustic propagation and reverberation. © 2012 Acoustical Society of America

  18. Examination of the effect of blowing on the near-surface flow structure over a dimpled surface

    Science.gov (United States)

    Borchetta, C. G.; Martin, A.; Bailey, S. C. C.

    2018-03-01

    The near surface flow over a dimpled surface with flow injection through it was documented using time-resolved particle image velocimetry. The instantaneous flow structure, time-averaged statistics, and results from snapshot proper orthogonal decomposition were used to examine the coherent structures forming near the dimpled surface. In particular, the modifications made to the flow structures by the addition of flow injection through the surface were studied. It was observed that without flow injection, inclined flow structures with alternating vorticity from neighboring dimples are generated by the dimples and advect downstream. This behavior is coupled with fluid becoming entrained inside the dimples, recirculating and ejecting away from the surface. When flow injection was introduced through the surface, the flow structures became more disorganized, but some of the features of the semi-periodic structures observed without flow injection were preserved. The structures with flow injection appear in multiple wall-normal layers, formed from vortical structures shed from upstream dimples, with a corresponding increase in the size of the advecting structures. As a result of the more complex flow field observed with flow injection, there was an increase in turbulent kinetic energy and Reynolds shear stress, with the Reynolds shear stress representing an increase in vertical transport of momentum by sweeping and ejecting motions that were not present without flow injection.

  19. Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM

    Science.gov (United States)

    Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Oñate, E.

    2008-12-01

    The paper aims to introduce new fluid structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.

  20. Inclusion of gold nanoparticles in meso-porous silicon for the SERS analysis of cell adhesion on nano-structured surfaces

    KAUST Repository

    Coluccio, M.L.; De Vitis, S.; Strumbo, G.; Candeloro, P.; Perozziello, G.; Di Fabrizio, Enzo M.; Gentile, F.

    2016-01-01

    MeP Si surfaces were realized by anodization of a Si wafer, creating the device for cell adhesion and growth. Gold nanoparticles were deposited on porous silicon by an electroless technique. We thus obtained devices with superior SERS capabilities, whereby cell activity may be controlled using Raman spectroscopy. MCF-7 breast cancer cells were cultured on the described substrates and SERS maps revealing the different expression and distribution of adhesion molecules were obtained by Raman spectroscopic analyses.

  1. Caracterización de la meso y macrofauna edáfica en sistemas de cultivo del Sudeste Bonaerense Characterization of the meso and macrofauna of a Southeastern Buenos Aires province soil under different cropping systems

    Directory of Open Access Journals (Sweden)

    Antonio H Gizzi

    2009-06-01

    Full Text Available Los objetivos de este estudio fueron: i. determinar la composición taxonómica y la abundancia relativa de la meso y macrofauna y de sus grupos tróficos en suelos del sudeste de la provincia de Buenos Aires, ii. evaluar la densidad de los organismos que integran dichas comunidades y iii. estudiar el efecto de los sistemas de cultivo (combinación entre sistema de labranza y rotación y la fertilización sobre la meso y macrofauna. Se utilizaron cuatro sistemas de cultivo: LC50 [(50% pastura - 50% agricultura bajo labranza convencional (LC], SD50 [(50% pastura - 50% agricultura bajo siembra directa (SD], LC75 (25% pastura - 75% agricultura bajo LC, SD75 (25% pastura - 75% agricultura bajo SD y cuatro dosis de fertilización nitrogenada (0, 60, 120 y 180 kg de N ha-1. En el año 2000, en LC50 y en SD50 se sembró una pastura (P, la que en 2001 tenía un año de implantada. En el 2000, en LC75 y en SD75 se sembró maíz y en el 2001, soja. Dentro de la mesofauna, la mayoría de los individuos fueron enquitreidos, que en el primer año no presentaron diferencias entre LC y SD, mientras que en el segundo, los mayores porcentajes se observaron en P cuando ésta tenía más de un año de implantada. En la macrofauna predominaron oligoquetos megadrilos, isópodos y miriápodos y en P en ambos años los isópodos y miriápodos fueron dominantes. En el primer año, las densidades de la meso y macrofauna no mostraron diferencias significativas (p>0,003 entre sistemas de cultivo, sin embargo, fueron mayores en los cultivos bajo SD. En el segundo año, las densidades fueron significativamente mayores (p0,003 entre los sistemas de cultivo y las dosis de fertilización. A pesar de no haberse observado diferencias significativas (p>0,003 entre los sistemas en el primer año, los cuatro grupos fueron más abundantes en P y SD que en LC. En el segundo año, los detritívoros, los predadores y los omnívoros fueron significativamente más abundantes en P que en

  2. Scale-adaptive surface modeling of vascular structures

    Directory of Open Access Journals (Sweden)

    Ma Xin

    2010-11-01

    Full Text Available Abstract Background The effective geometric modeling of vascular structures is crucial for diagnosis, therapy planning and medical education. These applications require good balance with respect to surface smoothness, surface accuracy, triangle quality and surface size. Methods Our method first extracts the vascular boundary voxels from the segmentation result, and utilizes these voxels to build a three-dimensional (3D point cloud whose normal vectors are estimated via covariance analysis. Then a 3D implicit indicator function is computed from the oriented 3D point cloud by solving a Poisson equation. Finally the vessel surface is generated by a proposed adaptive polygonization algorithm for explicit 3D visualization. Results Experiments carried out on several typical vascular structures demonstrate that the presented method yields both a smooth morphologically correct and a topologically preserved two-manifold surface, which is scale-adaptive to the local curvature of the surface. Furthermore, the presented method produces fewer and better-shaped triangles with satisfactory surface quality and accuracy. Conclusions Compared to other state-of-the-art approaches, our method reaches good balance in terms of smoothness, accuracy, triangle quality and surface size. The vessel surfaces produced by our method are suitable for applications such as computational fluid dynamics simulations and real-time virtual interventional surgery.

  3. Accuracy of implant transfer and surface detail reproduction with polyether and polyvinyl siloxane using closed-tray impression technique

    Directory of Open Access Journals (Sweden)

    Marzieh Alikhasi

    2013-10-01

    Full Text Available   Background and Aims: Making accurate impressions of prepared teeth when they are adjacent to dental implants is of great importance. In these situations, disregarding the selection of appropriate impression material and technique, not only can affect accuracy of transferring of the 3-dimentional spatial status of implant, but also can jeopardize the accurate recording of tooth. In the present study, the accuracy of two impression materials with taper impression copings for recording implant position and surface details was evaluated.   Materials and Methods: One metal reference model with 2 implants (Implantium and a preparation of three grooves on a tooth according to ADA no. 19 standard was fabricated. 10 medium- consistency polyEther (PE impressions using custom trays and 10 polyVinyl Siloxane (PVS putty wash impressions using prefabricated trays with conical impression coping were made. Impressions were poured with ADA type IV stone. A Coordinate Measuring Machine (CMM evaluated x, y and angular displacement of the implant analog heads and also accuracy of groove reproduction were measured using a Video Measuring Machine (VMM. These measurements were compared to the ones from reference model. Data were analyzed using one-way ANOVA and T-test.   Results: Putty wash PVS had less linear discrepancy compared with reference model (P > 0.001. There was no significant difference in the surface detail reproduction (P = 0.15.   Conclusion: Putty wash PVS had better results for linear displacement compared with medium consistency PE. There was no significant difference in surface detail reproduction between the two impression materials.

  4. Modification of spontaneous emission from nanodiamond colour centres on a structured surface

    International Nuclear Information System (INIS)

    Inam, F A; Gaebel, T; Bradac, C; Withford, M J; Rabeau, J R; Steel, M J; Stewart, L; Dawes, J M

    2011-01-01

    Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for the development of efficient single-photon sources having high collection efficiency. A number of groups have achieved an enhancement in the emission rate over narrow wavelength ranges by coupling single emitters in nanodiamond crystals to resonant electromagnetic structures. In this paper, we characterize in detail the spontaneous emission rates of nitrogen-vacancy centres at various locations on a structured substrate. We found a factor of 1.5 average enhancement of the total emission rate when nanodiamonds are on an opal photonic crystal surface, and observed changes in the lifetime distribution. We present a model for explaining these observations and associate the lifetime properties with dipole orientation and polarization effects.

  5. Modification of spontaneous emission from nanodiamond colour centres on a structured surface

    Energy Technology Data Exchange (ETDEWEB)

    Inam, F A; Gaebel, T; Bradac, C; Withford, M J; Rabeau, J R; Steel, M J [Centre for Quantum Science and Technology, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Stewart, L; Dawes, J M, E-mail: james.rabeau@mq.edu.au, E-mail: michael.steel@mq.edu.au [MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia)

    2011-07-15

    Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for the development of efficient single-photon sources having high collection efficiency. A number of groups have achieved an enhancement in the emission rate over narrow wavelength ranges by coupling single emitters in nanodiamond crystals to resonant electromagnetic structures. In this paper, we characterize in detail the spontaneous emission rates of nitrogen-vacancy centres at various locations on a structured substrate. We found a factor of 1.5 average enhancement of the total emission rate when nanodiamonds are on an opal photonic crystal surface, and observed changes in the lifetime distribution. We present a model for explaining these observations and associate the lifetime properties with dipole orientation and polarization effects.

  6. Formulation of probabilistic models of protein structure in atomic detail using the reference ratio method

    DEFF Research Database (Denmark)

    Valentin, Jan B.; Andreetta, Christian; Boomsma, Wouter

    2014-01-01

    We propose a method to formulate probabilistic models of protein structure in atomic detail, for a given amino acid sequence, based on Bayesian principles, while retaining a close link to physics. We start from two previously developed probabilistic models of protein structure on a local length s....... The results indicate that the proposed method and the probabilistic models show considerable promise for probabilistic protein structure prediction and related applications. © 2013 Wiley Periodicals, Inc....

  7. Sub-µm structured lotus surfaces manufacturing

    DEFF Research Database (Denmark)

    Worgull, Matthias; Heckele, Mathias; Mappes, Timo

    2009-01-01

    . Unlike to stochastic methods, patterning with a LIGA-mold insert it is possible to structure surfaces very uniformly or even with controlled variations (e.g., with gradients). In this paper we present the process chain to realize polymer sub-lm structures with minimum lateral feature size of 400 nm...

  8. Stepwise π-extension of meso-alkylidenyl porphyrins through sequential 1,3-dipolar cycloaddition and redox reactions.

    Science.gov (United States)

    Park, Dowoo; Jeong, Seung Doo; Ishida, Masatoshi; Lee, Chang-Hee

    2014-08-25

    Several regioselectively π-extended, pyrrole fused porphyrinoids have been synthesized by the 1,3-dipolar cycloaddition of meso-alkylidene-(benzi)porphyrins. Pd(II) complexes gave oxidation resistant, bis-pyrrole fused adducts. The repeated 1,3-dipolar cycloaddition followed by oxidation-reduction of pentaphyrin analogs afforded π-extended porphyrin analogs.

  9. Determination of three-dimensional interfacial strain - A novel method of probing interface structure with X-ray Bragg-surface diffraction

    International Nuclear Information System (INIS)

    Sun, W.-C.; Chu, C.-H.; Chang, H.-C.; Wu, B.-K.; Chen, Y.-R.; Cheng, C.-W.; Chiu, M.-S.; Shen, Y.-C.; Wu, H.-H.; Hung, Y.-S.; Chang, S.-L.; Hong, M.-H.; Tang, M.-T.; Stetsko, Yu.P.

    2007-01-01

    A new X-ray diffraction technique is developed to probe structural variations at the interfaces between epitaxy thin films and single-crystal substrates. The technique utilizes three-wave Bragg-surface diffraction, where a symmetric Bragg reflection and an asymmetric surface reflection are involved. The propagation of the latter along the interfaces conveys structural information about the interfacial region between the substrate and epi-layers. The sample systems of Au/GaAs(001) are subject to the three-wave diffraction investigation using synchrotron radiation. The GaAs three-wave Bragg-surface diffractions (006)/(11-bar3) and (006)/(1-bar1-bar3), are employed. The images of the surface diffracted waves are recorded with an image plate. The obtained images show relative positions of diffraction spots near the image of the interfacial boundary, which give the variation of lattice constant along the surface normal and in-plane directions. With the aid of grazing-incidence diffraction, three-dimensional mapping of strain field at the interfaces is possible. Details about this diffraction technique and the analysis procedures are discussed

  10. Beyond fun runs and fruit bowls: an evaluation of the meso-level processes that shaped the Australian Healthy Workers Initiative.

    Science.gov (United States)

    Grunseit, Anne C; Rowbotham, Samantha; Pescud, Melanie; Indig, Devon; Wutzke, Sonia

    2016-02-01

    Issue addressed The Australian National Partnership Agreement on Preventive Health (NPAPH) charged states and territories with the development and implementation of the Healthy Workers Initiative (HWI) to improve workplace health promotion. Most evaluation efforts focus on the setting (micro) level. In the present study the HWI at the meso-level (state program development) was examined to understand how jurisdictions navigated theoretical, practical, and political priorities to develop their programs, and the programmatic choices that support or hinder perceived success. Methods Interviews with HWI program coordinators and managers across seven Australian jurisdictions explored decision-making processes related to developing and implementing the HWI and the impact of defunding. Interviews were audio-recorded, transcribed and analysed using thematic analysis. Results Despite taking a variety of approaches to the HWI, jurisdictions had common goals, namely achieving sustainability and capacity for meaningful change. These goals transcended the performance indicators set out by the NPAPH, which were considered unachievable in the given timeframe. Four ways jurisdictions sought to achieve their goals were identified, these were: 1) taking an embedded approach to workplace health promotion; 2) ensuring relevance of the HWI to businesses; 3) engaging in collaborative partnerships with agencies responsible for implementation; and 4) cultivating evolution of the HWI. Conclusions This meso-level evaluation has provided valuable insights into how health promotion program coordinators translate broad, national-level initiatives into state-specific programs and how they define program success. The study findings also highlight how broader, contextual factors, such as jurisdiction size, political imperatives and funding decisions impact on the implementation and success of a national health promotion initiative. So what? When evaluating the translation of complex initiatives, a

  11. Sub-µ structured Lotus Surfaces Manufacturing

    DEFF Research Database (Denmark)

    Worgull, Matthias; Heckele, Mathias; Mappes, Timo

    2008-01-01

    . Unlike to stochastic methods, patternin¬g with a LIGA-mold insert it is possible to structure surfaces very uniformly or even with controlled variations (e.g. with gradients). In this paper we present the process chain to realize polymer sub-micro structures with minimum lateral feature size of 400 nm...

  12. Surface band structures on Nb(001)

    International Nuclear Information System (INIS)

    Fang, B.; Lo, W.; Chien, T.; Leung, T.C.; Lue, C.Y.; Chan, C.T.; Ho, K.M.

    1994-01-01

    We report the joint studies of experimental and theoretical surface band structures of Nb(001). Angle-resolved photoelectron spectroscopy was used to determine surface-state dispersions along three high-symmetry axes bar Γ bar M, bar Γ bar X, and bar M bar X in the surface Brillouin zone. Ten surface bands have been identified. The experimental data are compared to self-consistent pseudopotential calculations for the 11-layer Nb(001) slabs that are either bulk terminated or fully relaxed (with a 12% contraction for the first interlayer spacing). The band calculations for a 12% surface-contracted slab are in better agreement with the experimental results than those for a bulk-terminated slab, except for a surface resonance near the Fermi level, which is related to the spin-orbit interaction. The charge profiles for all surface states or resonances have been calculated. Surface contraction effects on the charge-density distribution and the energy position of surface states and resonances will also be discussed

  13. Facile method for preparing superoleophobic surfaces with hierarchical microcubic/nanowire structures

    Science.gov (United States)

    Kwak, Wonshik; Hwang, Woonbong

    2016-02-01

    To facilitate the fabrication of superoleophobic surfaces having hierarchical microcubic/nanowire structures (HMNS), even for low surface tension liquids including octane (surface tension = 21.1 mN m-1), and to understand the influences of surface structures on the oleophobicity, we developed a convenient method to achieve superoleophobic surfaces on aluminum substrates using chemical acid etching, anodization and fluorination treatment. The liquid repellency of the structured surface was validated through observable experimental results the contact and sliding angle measurements. The etching condition required to ensure high surface roughness was established, and an optimal anodizing condition was determined, as a critical parameter in building the superoleophobicity. The microcubic structures formed by acid etching are essential for achieving the formation of the hierarchical structure, and therefore, the nanowire structures formed by anodization lead to an enhancement of the superoleophobicity for low surface tension liquids. Under optimized morphology by microcubic/nanowire structures with fluorination treatment, the contact angle over 150° and the sliding angle less than 10° are achieved even for octane.

  14. Influence of the atomic structure of crystal surfaces on the surface diffusion in medium temperature range

    International Nuclear Information System (INIS)

    Cousty, J.P.

    1981-12-01

    In this work, we have studied the influence of atomic structure of crystal surface on surface self-diffusion in the medium temperature range. Two ways are followed. First, we have measured, using a radiotracer method, the self-diffusion coefficient at 820 K (0.6 T melting) on copper surfaces both the structure and the cleanliness of which were stable during the experiment. We have shown that the interaction between mobile surface defects and steps can be studied through measurements of the anisotropy of surface self diffusion. Second, the behavior of an adatom and a surface vacancy is simulated via a molecular dynamics method, on several surfaces of a Lennard Jones crystal. An inventory of possible migration mechanisms of these surface defects has been drawn between 0.35 and 0.45 Tsub(m). The results obtained with both the methods point out the influence of the surface atomic structure in surface self-diffusion in the medium temperature range [fr

  15. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2014-03-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly couples the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed representation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Results show that the model captures the main structures of atmospheric flow in alpine terrain. However, at 50 m grid spacing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3% over the calculation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  16. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes

    Science.gov (United States)

    Zhong, Hui; Xu, Fei; Li, Zenghui; Fu, Ruowen; Wu, Dingcai

    2013-05-01

    A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer.A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer. Electronic supplementary information (ESI) available: Sample preparation, material characterization, electrochemical characterization and specific mass capacitance and energy density. See DOI: 10.1039/c3nr00738c

  17. [Adsorption of Cu on Core-shell Structured Magnetic Particles: Relationship Between Adsorption Performance and Surface Properties].

    Science.gov (United States)

    Li, Qiu-mei; Chen, Jing; Li, Hai-ning; Zhang, Xiao-lei; Zhang, Gao-sheng

    2015-12-01

    In order to reveal the relationship between the adsorption performance of adsorbents and their compositions, structure, and surface properties, the core-shell structured Fe₃O₄/MnO2 and Fe-Mn/Mn₂2 magnetic particles were systematically characterized using multiple techniques and their Cu adsorption behaviors as well as mechanism were also investigated in details. It was found that both Fe₃O4 and Fe-Mn had spinel structure and no obvious crystalline phase change was observed after coating with MnO₂. The introduction of Mn might improve the affinity between the core and the shell, and therefore enhanced the amount and distribution uniformity of the MnO₂ coated. Consequently, Fe-Mn/MnO₂ exhibited a higher BET specific surface area and a lower isoelectric point. The results of sorption experiments showed that Fe-Mn had a higher maximal Cu adsorption capacity of 33.7 mg · g⁻¹ at pH 5.5, compared with 17.5 mg · g⁻¹ of Fe₃O4. After coating, the maximal adsorption capacity of Fe-Mn/MnO₂ was increased to 58.2 mg · g⁻¹, which was 2.6 times as high as that of Fe₃O₄/MnO₂ and outperformed the majority of magnetic adsorbents reported in literature. In addition, a specific adsorption of Cu occurred at the surface of Fe₃O₄/MnO₂ or Fe-Mn/MnO₂ through the formation of inner-sphere complexes. In conclusion, the adsorption performance of the magnetic particles was positively related to their compositions, structure, and surface properties.

  18. Initialization of high resolution surface wind simulations using NWS gridded data

    Science.gov (United States)

    J. Forthofer; K. Shannon; Bret Butler

    2010-01-01

    WindNinja is a standalone computer model designed to provide the user with simulations of surface wind flow. It is deterministic and steady state. It is currently being modified to allow the user to initialize the flow calculation using National Digital Forecast Database. It essentially allows the user to downscale the coarse scale simulations from meso-scale models to...

  19. Investigating SWOT's capabilities to detect meso and submesoscale eddies in the western Mediterranean

    Science.gov (United States)

    Gomez-Navarro, Laura; Pascual, Ananda; Fablet, Ronan; Mason, Evan

    2017-04-01

    The primary oceanographic objective of the future Surface Water Ocean Topography (SWOT) altimetric satellite is to characterize the mesoscale and submesoscale ocean circulation. The aim of this study is to assess the capabilities of SWOT to resolve the meso and submesoscale in the western Mediterranean. With ROMS model data as inputs for the SWOT simulator, pseudo-SWOT data were generated. These data were compared with the original ROMS model data and ADT data from present day altimetric satellites to assess the temporal and spatial resolution of SWOT in the western Mediterranean. We then addressed the removal of the satellite's noise in the pseudo-SWOT data using a Laplacian diffusion. We investigated different parameters of the filter by looking at their impact on the spatial spectra and RMSEs calculated from the simulator outputs. To further assess the satellites capabilities, we derived absolute geostrophic velocities and relative vorticity. Our numerical experiments show that the noise patterns affect the spectral content of the pseudo-SWOT fields below 30 km. The Laplacian diffusion improves the recovery of the spectral signature of the altimetric field, especially down to 20 km. With the help of this filter, we manage to observe small scale oceanic features in pseudo-SWOT data, and in its derived variables.

  20. Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces

    OpenAIRE

    Kimura, Yusuke

    2018-01-01

    F-theory/heterotic duality is formulated in the stable degeneration limit of a K3 fibration on the F-theory side. In this note, we analyze the structure of the stable degeneration limit. We discuss whether stable degeneration exists for pairs of rational elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an identical complex structure, stable degeneration always exists. We provide an equation that systematically describes the stable degeneration of a K3 surface i...

  1. Tensioned Fabric Structures with Surface in the Form of Chen-Gackstatter

    Directory of Open Access Journals (Sweden)

    Yee Hooi Min

    2016-01-01

    Full Text Available Form-finding has to be carried out for tensioned fabric structure in order to determine the initial equilibrium shape under prescribed support condition and prestress pattern. Tensioned fabric structures are normally designed to be in the form of equal tensioned surface. Tensioned fabric structure is highly suited to be used for realizing surfaces of complex or new forms. However, research study on a new form as a tensioned fabric structure has not attracted much attention. Another source of inspiration minimal surface which could be adopted as form for tensioned fabric structure is very crucial. The aim of this study is to propose initial equilibrium shape of tensioned fabric structures in the form of Chen-Gackstatter. Computational form-finding using nonlinear analysis method is used to determine the Chen-Gackstatter form of uniformly stressed surfaces. A tensioned fabric structure must curve equally in opposite directions to give the resulting surface a three dimensional stability. In an anticlastic doubly curved surface, the sum of all positive and all negative curvatures is zero. This study provides an alternative choice for structural designer to consider the Chen-Gackstatter applied in tensioned fabric structures. The results on factors affecting initial equilibrium shape can serve as a reference for proper selection of surface parameter for achieving a structurally viable surface.

  2. Structure of layered C[sub 60] on Si(100) surface studied by ab initio and classical molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kawazoe, Yoshiyuki (Inst. for Materials Research, Tohoku Univ., Sendai (Japan)); Maruyama, Yutaka (Inst. for Materials Research, Tohoku Univ., Sendai (Japan)); Rafii-Tabar, H. (Inst. for Materials Research, Tohoku Univ., Sendai (Japan)); Ikeda, Makoto (Inst. for Materials Research, Tohoku Univ., Sendai (Japan)); Kamiyama, Hiroshi (Inst. for Materials Research, Tohoku Univ., Sendai (Japan)); Ohno, Kaoru (Inst. for Materials Research, Tohoku Univ., Sendai (Japan))

    1993-04-19

    The recent scanning tunnelling microscopy (STM) observations by Hashizume et al. concerning C[sub 60] buckeyballs deposited on an Si(100) surface revealed self-aligned c(4 x 4) and c(4 x 3) structures. Specific stripes on the buckeyballs in the STM images are also reported and this result proves that the buckeyballs on the Si surface are standing still, showing them to be pseudoatoms. A mixed-basis, all-electron calculation with the Car-Parinnello formalism has been introduced and performed to obtain a detailed understanding of the electronic states and dynamics of a single buckeyball. Based on the knowledge concerning a single buckeyball, a band structure calculation using the same formalism has been carried out and the experimental results have been explained clearly. A classical molecular dynamics simulation has also been performed to obtain the dynamics of the buckeyball motion on the Si surface. (orig.)

  3. Designing visual appearance using a structured surface

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Thamdrup, Lasse Højlund; Smitrup, Christian

    2015-01-01

    followed by numerical and experimental verification. The approach comprises verifying all design and fabrication steps required to produce a desired appearance. We expect that the procedure in the future will yield structurally colored surfaces with appealing prescribed visual appearances.......We present an approach for designing nanostructured surfaces with prescribed visual appearances, starting at design analysis and ending with a fabricated sample. The method is applied to a silicon wafer structured using deep ultraviolet lithography and dry etching and includes preliminary design...

  4. meso-Octamethylcalix[4]pyrrole as an effective macrocyclic receptor for the univalent thallium cation in the gas phase: Experimental and theoretical study

    Science.gov (United States)

    Polášek, Miroslav; Makrlík, Emanuel; Kvíčala, Jaroslav; Křížová, Věra; Vaňura, Petr

    2018-02-01

    By using electrospray ionization mass spectrometry (ESI-MS), it was proven experimentally that the univalent thallium cation (Tl+) forms with meso-octamethylcalix[4]pyrrole (1) the cationic complex species 1 Tl+. When this kinetically stable cation-π complex 1 Tl+ is collisionally activated, it decomposes by elimination of the whole ligand 1 or small meso-octamethylcalix[4]pyrrole fragments. Further, applying quantum chemical DFT calculations, four different conformations of the resulting complex 1 Tl+ were derived. It means that under the present experimental conditions, this ligand 1 can be considered as a very effective macrocyclic receptor for the thallium cation.

  5. MR imaging of brain surface structures

    International Nuclear Information System (INIS)

    Katada, Kazuhiro; Anno, Hirofumi; Takesita, Gen; Koga, Sukehiko; Kanno, Tetuo; Sakakibara, Tatuo; Yamada, Kazuhiro; Suzuki, Hirokazu; Saito, Sigeki.

    1989-01-01

    An imaging technique that permits direct and non-invasive visualization of brain surface structures was proposed. This technique (Surface anatomy scanning, SAS) consists of long TE-long TR spin echo sequence, thick slice and surface coil. Initial clinical trials in 31 patients with various cerebral pathology showed excellent visualization of sulci, gyri and major cortical veins on the lateral surface of the brain together with cortical and subcortical lesions. Our preliminary results indicate that the SAS is an effective method for the diagnosis and localization of cortical and subcortical pathology, and the possible application of SAS to the surgical and the radiation therapy planning is sugessted. (author)

  6. A structurally detailed finite element human head model for simulation of transcranial magnetic stimulation.

    Science.gov (United States)

    Chen, Ming; Mogul, David Jeffery

    2009-04-30

    Computational studies of the head utilizing finite element models (FEMs) have been used to investigate a wide variety of brain-electromagnetic (EM) field interaction phenomena including magnetic stimulation of the head using transcranial magnetic stimulation (TMS), direct electric stimulation of the brain for electroconvulsive therapy, and electroencephalography source localization. However, no human head model of sufficient complexity for studying the biophysics under these circumstances has been developed which utilizes structures at both the regional and cellular levels and provides well-defined smooth boundaries between tissues of different conductivities and orientations. The main barrier for building such accurate head models is the complex modeling procedures that include 3D object reconstruction and optimized meshing. In this study, a structurally detailed finite element model of the human head was generated that includes details to the level of cerebral gyri and sulci by combining computed tomography and magnetic resonance images. Furthermore, cortical columns that contain conductive processes of pyramidal neurons traversing the neocortical layers were included in the head model thus providing structure at or near the cellular level. These refinements provide a much more realistic model to investigate the effects of TMS on brain electrophysiology in the neocortex.

  7. Visualisation of details of a complicated inner structure of model objects by the method of diffusion optical tomography

    International Nuclear Information System (INIS)

    Tret'yakov, Evgeniy V; Shuvalov, Vladimir V; Shutov, I V

    2002-01-01

    An approximate algorithm is tested for solving the problem of diffusion optical tomography in experiments on the visualisation of details of the inner structure of strongly scattering model objects containing scattering and semitransparent inclusions, as well as absorbing inclusions located inside other optical inhomogeneities. The stability of the algorithm to errors is demonstrated, which allows its use for a rapid (2 - 3 min) image reconstruction of the details of objects with a complicated inner structure. (laser biology and medicine)

  8. An adaptive Bayesian inversion for upper mantle structure using surface waves and scattered body waves

    Science.gov (United States)

    Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.

    2018-04-01

    We present a methodology for 1-D imaging of upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterisation based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.

  9. Meso-microstructural computational simulation of the hydrogen permeation test to calculate intergranular, grain boundary and effective diffusivities

    Energy Technology Data Exchange (ETDEWEB)

    Jothi, S., E-mail: s.jothi@swansea.ac.uk [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Winzer, N. [Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg (Germany); Croft, T.N.; Brown, S.G.R. [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2015-10-05

    Highlights: • Characterized polycrystalline nickel microstructure using EBSD analysis. • Development meso-microstructural model based on real microstructure. • Calculated effective diffusivity using experimental electrochemical permeation test. • Calculated intergranular diffusivity of hydrogen using computational FE simulation. • Validated the calculated computation simulation results with experimental results. - Abstract: Hydrogen induced intergranular embrittlement has been identified as a cause of failure of aerospace components such as combustion chambers made from electrodeposited polycrystalline nickel. Accurate computational analysis of this process requires knowledge of the differential in hydrogen transport in the intergranular and intragranular regions. The effective diffusion coefficient of hydrogen may be measured experimentally, though experimental measurement of the intergranular grain boundary diffusion coefficient of hydrogen requires significant effort. Therefore an approach to calculate the intergranular GB hydrogen diffusivity using finite element analysis was developed. The effective diffusivity of hydrogen in polycrystalline nickel was measured using electrochemical permeation tests. Data from electron backscatter diffraction measurements were used to construct microstructural representative volume elements including details of grain size and shape and volume fraction of grains and grain boundaries. A Python optimization code has been developed for the ABAQUS environment to calculate the unknown grain boundary diffusivity.

  10. A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces with randomly distributed structures

    Science.gov (United States)

    Zhang, Li-Zhi; Yuan, Wu-Zhi

    2018-04-01

    The motion of coalescence-induced condensate droplets on superhydrophobic surface (SHS) has attracted increasing attention in energy-related applications. Previous researches were focused on regularly rough surfaces. Here a new approach, a mesoscale lattice Boltzmann method (LBM), is proposed and used to model the dynamic behavior of coalescence-induced droplet jumping on SHS with randomly distributed rough structures. A Fast Fourier Transformation (FFT) method is used to generate non-Gaussian randomly distributed rough surfaces with the skewness (Sk), kurtosis (K) and root mean square (Rq) obtained from real surfaces. Three typical spreading states of coalesced droplets are observed through LBM modeling on various rough surfaces, which are found to significantly influence the jumping ability of coalesced droplet. The coalesced droplets spreading in Cassie state or in composite state will jump off the rough surfaces, while the ones spreading in Wenzel state would eventually remain on the rough surfaces. It is demonstrated that the rough surfaces with smaller Sks, larger Rqs and a K at 3.0 are beneficial to coalescence-induced droplet jumping. The new approach gives more detailed insights into the design of SHS.

  11. Unoccupied surface electronic structure of Gd(0001)

    International Nuclear Information System (INIS)

    Li, D.; Dowben, P.A.; Ortega, J.E.; Himpsel, F.J.

    1994-01-01

    The unoccupied surface electronic structure of Gd(0001) was investigated with high-resolution inverse-photoemission spectroscopy. An empty surface state near E F is observed at bar Γ. Two other surface-sensitive features are also revealed at 1.2 and 3.1 eV above the Fermi level. Hydrogen adsorption on Gd surfaces was used to distinguish the surface-sensitive features from the bulk features. The unoccupied bulk-band critical points are determined to be Γ 3 + at 1.9 eV and A 1 at 0.8 eV

  12. Structure of the moon's surface

    CERN Document Server

    Fielder, Gilbert

    1961-01-01

    Structure of the Moon's Surface aims to assemble and marshal relevant matter, and to produce a largely unprejudiced text which brings lunar studies up to date and stresses the importance of certain features of the Moon which have frequently been disregarded in the past, largely because of lack of knowledge about them. The book contains 14 chapters organized into two parts. Part I reviews and summarizes important physical problems. These include the liberations of the moon; height determinations of points of the moon's surface; the figure of the moon; and the moon's temperature and atmosphere.

  13. Surface structural determination of UO2(111) using MeV ions

    International Nuclear Information System (INIS)

    Thompson, K.A.; Ellis, W.P.; Taylor, T.N.; Valone, S.M.; Maggiore, C.J.

    1983-01-01

    The UO 2 (111) surface was studied using MeV ions incident along the and directions. In addition, this surface was well characterized by LEED and Auger analysis. A resonance at 3.05 MeV for 4 He elastic scattering from 16 O made it possible to study the surface peaks for uranium and oxygen simultaneously. By combining previous surface studies with detailed analysis of the surface peaks and rocking curves for this compound material, an outward relaxation of 0.19 A +- 0.01 A was determined for uranium

  14. TED analysis of the Si(113) surface structure

    Science.gov (United States)

    Suzuki, T.; Minoda, H.; Tanishiro, Y.; Yagi, K.

    1999-09-01

    We carried out a TED (transmission electron diffraction) analysis of the Si(113) surface structure. The TED patterns taken at room temperature showed reflections due to the 3×2 reconstructed structure. The TED pattern indicated that a glide plane parallel to the direction suggested in some models is excluded. We calculated the R-factors (reliability factors) for six surface structure models proposed previously. All structure models with energy-optimized atomic positions have large R-factors. After revision of the atomic positions, the R-factors of all the structure models decreased below 0.3, and the revised version of Dabrowski's 3×2 model has the smallest R-factor of 0.17.

  15. Solvent effects on the fluorescence and effective three-photon absorption of a Zn(II)-[meso-tetrakis(4-octyloxyphenyl)porphyrin

    Science.gov (United States)

    Wan, Yong; Xue, Yuxiong; Sheng, Ning; Rui, Guanghao; Lv, Changgui; He, Jun; Gu, Bing; Cui, Yiping

    2018-06-01

    The fluorescence and effective three-photon absorption (3PA) properties of Zn(II)-[meso-tetrakis(4-octyloxyphenyl)porphyrin] (labeled Zn(II)-porphyrin) dissolved in three different polar solvents were systematically investigated. The electrochemical and photophysical properties of Zn(II)-porphyrin were investigated by 1H NMR spectra, IR spectra, mass spectroscopy, and electronic absorption spectra. The fluorescence emission of Zn(II)-porphyrin in three different solvents excited at the wavelengths of 420 nm (Soret band) and 550 nm (Q-band) were analyzed. By performing Z-scan experiments with femtosecond laser pulses at a wavelength of 800 nm, the effective 3PA process of Zn(II)-porphyrin in three different solvents was observed and the underlying mechanism was discussed in detail. It is found that the fluorescence spectra slightly depend on the polarity of the solvent. Interestingly, the effective 3PA properties of Zn(II)-porphyrin strongly depend on the solvent polarity. The lower the solvent polarity is, the larger effective 3PA cross-section is. Low polar solvents are beneficial to applications of Zn(II)-porphyrin in optical limiting, photodynamic therapy, etc.

  16. Surface forces between rough and topographically structured interfaces

    DEFF Research Database (Denmark)

    Thormann, Esben

    2017-01-01

    Within colloidal science, direct or indirect measurements of surface forces represent an important tool for developing a fundamental understanding of colloidal systems, as well as for predictions of the stability of colloidal suspensions. While the general understanding of colloidal interactions...... and manufactured materials, which possess topographical variations. Further, with technological advances in nanotechnology, fabrication of nano- or micro-structured surfaces has become increasingly important for many applications, which calls for a better understanding of the effect of surface topography...... on the interaction between interfaces. This paper presents a review of the current state of understanding of the effect of surface roughness on DLVO forces, as well as on the interactions between topographically structured hydrophobic surfaces in water. While the first case is a natural choice because it represents...

  17. Solid state and solution photoluminescence properties of a novel meso–meso-linked porphyrin dimer Schiff base ligand and its metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Tümer, Mehmet, E-mail: mtumer@ksu.edu.tr; Ali Güngör, S.; Raşit Çiftaslan, A.

    2016-02-15

    We prepared novel meso-meso linked 4-bromo-2,6-bis[5-(4-iminophenyl)-10,15,20-triphenylporphyrin]phenol (HL) and its Cu(II), Fe(III), Mn(III), Pt(II) and Zn(II) transition metal complexes. Structural characterizations of the ligand (HL) and its metal complexes were done by the spectroscopic and analytical methods. The electronic absorption and photoluminescence spectra of the ligand, its metal complexes and the metal salts used for preparing of the complexes were investigated in the solid and solution state. The emission and excitation data of the CuCl{sub 2}·2H{sub 2}O in both solid and the solution state were obsrved in the longest wavelenght. On the other hand, the emission value of the ZnCl{sub 2} salt was shown at the shortest wavelenght. The emission values of the [LCu{sub 4}Cl{sub 3}(H{sub 2}O){sub 2}]H{sub 2}O and LPt{sub 4}Cl{sub 3} complexes in the solid state are bigger than the other metal salts. The ligand and its metal complexes show the very interesting absorption spectral properties in the solid state. Metal complexes have less number Q bands in the solid state. The electrochemical properties of the ligand and its metal complexes were investigated and found that they show the reversible or irreversible redox processes at the different scan rates. Thermal properties of the compopunds were investigated in the 20–900 °C temperature range.

  18. Surface structure analysis by means of Rutherford scattering: methods to study surface relaxation

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Soszka, W.; Saris, F.W.; Kersten, H.H.; Colenbrander, B.G.

    1976-01-01

    The use of Rutherford backscattering for structural analysis of single crystal surfaces is reviewed, and a new method is introduced. With this method, which makes use of the channeling and blocking phenomenon of light ions of medium energy, surface atoms can be located with a precision of 0.02 A. This is demonstrated in a measurement of surface relaxation for the Cu(110) surface. (Auth.)

  19. Structure Optimization of 21,23-Core-Modified Porphyrins Absorbing Long-Wavelength Light as Potential Photosensitizers Against Breast Cancer Cells

    National Research Council Canada - National Science Library

    Detty, Michael R

    2007-01-01

    .... The structures of two derivatives were determined unambiguously be x-ray crystallography including the structure of a cis-ABCC meso-substituted derivative and the structure of a cis-AB disubstituted derivative...

  20. Compression and Injection Moulding of Nano-Structured Polymer Surfaces

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik Koblitz

    2006-01-01

    In our research we investigate the non-isothermal replication of complex nano and micro surface structures in injection and compression moulding.......In our research we investigate the non-isothermal replication of complex nano and micro surface structures in injection and compression moulding....

  1. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure.

    Science.gov (United States)

    Mockenhaupt, Bernd; Ensikat, Hans-Jürgen; Spaeth, Manuel; Barthlott, Wilhelm

    2008-12-02

    The stability of superhydrophobic properties of eight plants and four technical surfaces in respect to water condensation has been compared. Contact and sliding angles were measured after application of water drops of ambient temperature (20 degrees C) onto cooled surfaces. Water evaporating from the drops condensed, due to the temperature difference between the drops and the surface, on the cooled samples, forming "satellite droplets" in the vicinity of the drops. Surface cooling to 15, 10, and 5 degrees C showed a gradual decrease of superhydrophobicity. The decrease was dependent on the specific surface architecture of the sample. The least decrease was found on hierarchically structured surfaces with a combination of a coarse microstructure and submicrometer-sized structures, similar to that of the Lotus leaf. Control experiments with glycerol droplets, which show no evaporation, and thus no condensation, were carried out to verify that the effects with water were caused by condensation from the drop (secondary condensation). Furthermore, the superhydrophobic properties after condensation on cooled surfaces from a humid environment for 10 min were examined. After this period, the surfaces were covered with spherical water droplets, but most samples retained their superhydrophobicity. Again, the best stability of the water-repellent properties was found on hierarchically structured surfaces similar to that of the Lotus leaf.

  2. Density, viscosity, and surface tension of synthesis grade imidazolium,pyridinium, and pyrrolidinium based room temperature ionic liquids

    NARCIS (Netherlands)

    Galan Sanchez, L.M.; Espel, J.R.; Onink, S.A.F.; Meindersma, G.W.; Haan, de A.B.

    2009-01-01

    Density, viscosity, and surface tension data sets of 13 ionic liquids formed by imidazolium, pyridinium, or pyrrolidinium cations paired with dicyanamide (DCA), tetrafluoroborate (BF4¯), thiocyanate (SCN¯),methylsulfate (MeSO4¯), and trifluoroacetate (TFA) anions are reported. The properties were

  3. Surface morphology and electronic structure of Ni/Ag(100)

    International Nuclear Information System (INIS)

    Hite, D. A.; Kizilkaya, O.; Sprunger, P. T.; Howard, M. M.; Ventrice, C. A. Jr.; Geisler, H.; Zehner, D. M.

    2000-01-01

    The growth morphology and electronic structure of Ni on Ag(100) has been studied with scanning tunneling microscopy (STM) and synchrotron based angle resolved photoemission spectroscopy. At deposition temperatures at or below 300 K, STM reveals Ni cluster growth on the surface along with some subsurface growth. Upon annealing to 420 K, virtually all Ni segregates into the subsurface region forming embedded nanoclusters. The electronic structure of Ni d bands in the unannealed surface shows dispersion only perpendicular to the surface whereas the annealed surface has Ni d bands that exhibit a three-dimensional-like structure. This is a result of the increased Ni d-Ag sp hybridization bonding and increased coordination of the embedded Ni nanoclusters. (c) 2000 American Vacuum Society

  4. Meso- and Micro-scale flow modelling in the Gulf of Suez, Arab Republic of Egypt

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Said Said, Usama; Frank, Helmut Paul

    2003-01-01

    The results of a comprehensive, 10-year wind resource assessment programme in the Gulf of Suez are presented. The primary purpose has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricity producing wind-turbine installatio...... and power density are quite steep. The combination of meso- and micro-scale flow models – here the KAMM/WAsP methodology or the Numerical Wind Atlas – seem necessary in order to make reliable wind resource assessments in all parts of the Gulf of Suez.......The results of a comprehensive, 10-year wind resource assessment programme in the Gulf of Suez are presented. The primary purpose has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricity producing wind-turbine installations......; a secondary purpose has been to evaluate the applicability of current wind resource estimation and siting tools – in particular the European Wind Atlas methodology – to this region where the meso-scale effects are pronounced and the climatic conditions (e.g. atmospheric stability) somewhat extreme. The wind...

  5. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    Science.gov (United States)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  6. Surface tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Takizuka, Tomonori; Kurita, Gen-ichi; Azumi, Masafumi; Takeda, Tatsuoki

    1985-10-01

    Surface tearing modes in tokamaks are studied numerically and analytically. The eigenvalue problem is solved to obtain the growth rate and the mode structure. We investigate in detail dependences of the growth rate of the m/n = 2/1 resistive MHD modes on the safety factor at the plasma surface, current profile, wall position, and resistivity. The surface tearing mode moves the plasma surface even when the wall is close to the surface. The stability diagram for these modes is presented. (author)

  7. Structure of the Cascadia Subduction Zone Imaged Using Surface Wave Tomography

    Science.gov (United States)

    Schaeffer, A. J.; Audet, P.

    2017-12-01

    Studies of the complete structure of the Cascadia subduction zone from the ridge to the arc have historically been limited by the lack of offshore ocean bottom seismograph (OBS) infrastructure. On land, numerous dense seismic deployments have illuminated detailed structures and dynamics associated with the interaction between the subducting oceanic plate and the overriding continental plate, including cycling of fluids, serpentinization of the overlying forearc mantle wedge, and the location of the upper surface of the Juan de Fuca plate as it subducts beneath the Pacific Northwest. In the last half-decade, the Cascadia Initiative (CI), along with Neptune (ONC) and several other OBS initiatives, have instrumented both the continental shelf and abyssal plains off shore of the Cascadia subduction zone, facilitating the construction of a complete picture of the subduction zone from ridge to trench and volcanic arc. In this study, we present a preliminary azimuthally anisotropic surface-wave phase-velocity based model of the complete system, capturing both the young, unaltered Juan de Fuca plate from the ridge, to its alteration as it enters the subduction zone, in addition to the overlying continent. This model is constructed from a combination of ambient noise cross-correlations and teleseismic two station interferometry, and combines together concurrently running offshore OBS and onshore stations. We furthermore perform a number of representative 1D depth inversions for shear velocity to categorize the pristine oceanic, subducted oceanic, and continental crust and lithospheric structure. In the future the dispersion dataset will be jointly inverted with receiver functions to constrain a 3D shear-velocity model of the complete region.

  8. Multiscale structural study using scanning X-ray microscope

    International Nuclear Information System (INIS)

    Ohsumi, Hiroyuki; Arima, Taka-hisa

    2016-01-01

    Correspondence between structures at the atomic- and meso-scales can be given by scanning X-ray microscopy integrated with polarized X-ray diffractometry. Symmetry is the common structural feature available across multiple hierarchies. This article introduces a symmetry evaluation technique based on polarized X-ray diffractometry and describes two embodiments: chirality domain observation and antiferromagnetic domain observation. Multiscale structural studies would play an important role in uncovering universality of hierarchical structure. (author)

  9. Importance of surface structure on dissolution of fluorite

    DEFF Research Database (Denmark)

    Godinho, Jose; Piazolo, Sandra; Balic Zunic, Tonci

    2014-01-01

    forming the initial surface and its inclination to the closest stable planes, which are specific for each surface orientation. During an initial dissolution regime dissolution rates decrease significantly, even though the total surface area increases. During a second dissolution regime, some surfaces...... by the relative stability of the planes and type of edges that constitute a surface needs to be considered. Significant differences between dissolution rates calculated based on surface area alone, and based on surface reactivity are expected for materials with the fluorite structure....

  10. The E-ELT project: the telescope main structure detailed design study

    Science.gov (United States)

    Marchiori, Gianpietro; Busatta, Andrea; Ghedin, Leonardo; De Lorenzi, Simone

    2012-09-01

    The European Extremely Large Telescope (E-ELT) is the biggest telescope in the world. Within the Detailed Design activities, ESO has awarded EIE GROUP (European Industrial Engineering) a contract for the Design of the Main Structure to the point where the concept of the telescope has been consolidated, from a construction point of view. All the Design activities have been developed in order to create an integrated system in terms of functionality and performance, while the engineering activities have been performed with the aim of obtaining a telescope that can be built, transported, integrated, with a reduced maintainability.

  11. The elastic-plastic failure assessment diagram of surface cracked structure

    International Nuclear Information System (INIS)

    Ning, J.; Gao, Q.

    1987-01-01

    The simplified NLSM is able to calculate the EPFM parameters and failure assessment curve for the surface cracked structure correctly and conveniently. The elastic-plastic failure assessment curve of surface crack is relevant to crack geometry, loading form and material deformation behaviour. It is necessary to construct the EPFM failure assessment curve of the surface crack for the failure assessment of surface cracked structure. (orig./HP)

  12. Exploring image data assimilation in the prospect of high-resolution satellite oceanic observations

    Science.gov (United States)

    Durán Moro, Marina; Brankart, Jean-Michel; Brasseur, Pierre; Verron, Jacques

    2017-07-01

    Satellite sensors increasingly provide high-resolution (HR) observations of the ocean. They supply observations of sea surface height (SSH) and of tracers of the dynamics such as sea surface salinity (SSS) and sea surface temperature (SST). In particular, the Surface Water Ocean Topography (SWOT) mission will provide measurements of the surface ocean topography at very high-resolution (HR) delivering unprecedented information on the meso-scale and submeso-scale dynamics. This study investigates the feasibility to use these measurements to reconstruct meso-scale features simulated by numerical models, in particular on the vertical dimension. A methodology to reconstruct three-dimensional (3D) multivariate meso-scale scenes is developed by using a HR numerical model of the Solomon Sea region. An inverse problem is defined in the framework of a twin experiment where synthetic observations are used. A true state is chosen among the 3D multivariate states which is considered as a reference state. In order to correct a first guess of this true state, a two-step analysis is carried out. A probability distribution of the first guess is defined and updated at each step of the analysis: (i) the first step applies the analysis scheme of a reduced-order Kalman filter to update the first guess probability distribution using SSH observation; (ii) the second step minimizes a cost function using observations of HR image structure and a new probability distribution is estimated. The analysis is extended to the vertical dimension using 3D multivariate empirical orthogonal functions (EOFs) and the probabilistic approach allows the update of the probability distribution through the two-step analysis. Experiments show that the proposed technique succeeds in correcting a multivariate state using meso-scale and submeso-scale information contained in HR SSH and image structure observations. It also demonstrates how the surface information can be used to reconstruct the ocean state below

  13. Dissolved organic matter dynamics in the oligo/meso-haline zone of wetland-influenced coastal rivers

    Science.gov (United States)

    Maie, Nagamitsu; Sekiguchi, Satoshi; Watanabe, Akira; Tsutsuki, Kiyoshi; Yamashita, Youhei; Melling, Lulie; Cawley, Kaelin M.; Shima, Eikichi; Jaffé, Rudolf

    2014-08-01

    Wetlands are key components in the global carbon cycle and export significant amounts of terrestrial carbon to the coastal oceans in the form of dissolved organic carbon (DOC). Conservative behavior along the salinity gradient of DOC and chromophoric dissolved organic matter (CDOM) has often been observed in estuaries from their freshwater end-member (salinity = 0) to the ocean (salinity = 35). While the oligo/meso-haline (salinity DOC and CDOM optical properties determined by UV absorbance at 254 nm (A254) and excitation-emission matrix (EEM) fluorescence coupled with parallel factor analysis (PARAFAC) along the lower salinity range (salinity DOC and A254 was observed, while these parameters showed similar conservative behavior for the third. Three distinct EEM-PARAFAC models established for each of the rivers provided similar spectroscopic characteristics except for some unique fluorescence features observed for the Judan River. The distribution patterns of PARAFAC components suggested that the inputs from plankton and/or submerged aquatic vegetation can be important in the Bekanbeushi River. Further, DOM photo-products formed in the estuarine lake were also found to be transported upstream. In the Harney River, whereas upriver-derived terrestrial humic-like components were mostly distributed conservatively, some of these components were also derived from mangrove inputs in the oligo/meso-haline zone. Interestingly, fluorescence intensities of some terrestrial humic-like components increased with salinity for the Judan River possibly due to changes in the dissociation state of acidic functional groups and/or increase in the fluorescence quantum yield along the salinity gradient. The protein-like and microbial humic-like components were distributed differently between three wetland rivers, implying that interplay between loss to microbial degradation and inputs from diverse sources are different for the three wetland-influenced rivers. The results presented here

  14. In situ surface X-ray diffraction studies of the copper-electrolyte interface. Atomic structure and homoepitaxial grwoth

    Energy Technology Data Exchange (ETDEWEB)

    Golks, Frederik

    2011-05-19

    Copper electrodeposition is the predominantly used technique for on-chip wiring in the fabrication of ultra-large scale integrated (ULSI) microchips. In this 'damascene copper electroplating' process, multicomponent electrolytes containing organic additives realize void-free filling of trenches with high aspect ratio ('superconformal deposition'). Despite manifold studies, motivated by the continuous trend to shrink wiring dimensions and thus the demand of optimized plating baths, detailed knowledge on the growth mechanism - in presence and absence of additives - is still lacking. Using a recently developed hanging meniscus X-ray transmission cell, brilliant synchrotron x-rays and a fast, one-dimensional detector system, unique real-time in situ surface X-ray diffraction studies of copper electrodeposition were performed under realistic reaction conditions, approaching rates of technological relevance. Preparatory measurements of the electrochemical dissolution of Au(001) in chloride-containing electrolyte demonstrated the capability of this powerful technique, specifically the possibility to follow atomic-scale deposition or dissolution processes with a time resolution down to five milliseconds. The electrochemical as well as structural characterization of the Cu(001)- and Cu(111)-electrolyte interfaces provided detailed insight into the complex atomic-scale structures in presence of specifically adsorbed chloride on these surfaces. The interface of Cu(001) in chloride-containing electrolyte exhibits a continuous surface phase transition of a disordered Cl adlayer to a c(2 x 2) Cl adlayer with increasing potential. The latter was found to induce a small vertical corrugation of substrate atoms, which can be ascribed to lattice relaxations induced by the presence of coadsorbed water molecules and cations in the outer part of the electrochemical double layer. The study of the specific adsorption of chloride on Cu(111) from acidic aqueous

  15. In situ surface X-ray diffraction studies of the copper-electrolyte interface. Atomic structure and homoepitaxial grwoth

    Energy Technology Data Exchange (ETDEWEB)

    Golks, Frederik

    2011-05-19

    Copper electrodeposition is the predominantly used technique for on-chip wiring in the fabrication of ultra-large scale integrated (ULSI) microchips. In this 'damascene copper electroplating' process, multicomponent electrolytes containing organic additives realize void-free filling of trenches with high aspect ratio ('superconformal deposition'). Despite manifold studies, motivated by the continuous trend to shrink wiring dimensions and thus the demand of optimized plating baths, detailed knowledge on the growth mechanism - in presence and absence of additives - is still lacking. Using a recently developed hanging meniscus X-ray transmission cell, brilliant synchrotron x-rays and a fast, one-dimensional detector system, unique real-time in situ surface X-ray diffraction studies of copper electrodeposition were performed under realistic reaction conditions, approaching rates of technological relevance. Preparatory measurements of the electrochemical dissolution of Au(001) in chloride-containing electrolyte demonstrated the capability of this powerful technique, specifically the possibility to follow atomic-scale deposition or dissolution processes with a time resolution down to five milliseconds. The electrochemical as well as structural characterization of the Cu(001)- and Cu(111)-electrolyte interfaces provided detailed insight into the complex atomic-scale structures in presence of specifically adsorbed chloride on these surfaces. The interface of Cu(001) in chloride-containing electrolyte exhibits a continuous surface phase transition of a disordered Cl adlayer to a c(2 x 2) Cl adlayer with increasing potential. The latter was found to induce a small vertical corrugation of substrate atoms, which can be ascribed to lattice relaxations induced by the presence of coadsorbed water molecules and cations in the outer part of the electrochemical double layer. The study of the specific adsorption of chloride on Cu(111) from acidic aqueous electrolyte revealed a

  16. Basic reactions of osteoblasts on structured material surfaces

    Directory of Open Access Journals (Sweden)

    U. Meyer

    2005-04-01

    Full Text Available In order to assess how bone substitute materials determine bone formation in vivo it is useful to understand the mechanisms of the material surface/tissue interaction on a cellular level. Artificial materials are used in two applications, as biomaterials alone or as a scaffold for osteoblasts in a tissue engineering approach. Recently, many efforts have been undertaken to improve bone regeneration by the use of structured material surfaces. In vitro studies of bone cell responses to artificial materials are the basic tool to determine these interactions. Surface properties of materials surfaces as well as biophysical constraints at the biomaterial surface are of major importance since these features will direct the cell responses. Studies on osteoblast-like cell reactivity towards materials will have to focus on the different steps of protein and cell reactions towards defined surface properties. The introduction of new techniques allows nowadays the fabrication of materials with ordered surface structures. This paper gives a review of present knowledge on the various stages of osteoblast reactions on material surfaces, focused on basic cell events under in vitro conditions. Special emphasis is given to cellular reactions towards ordered nano-sized topographies.

  17. Layered surface structure of gas-atomized high Nb-containing TiAl powder and its impact on laser energy absorption for selective laser melting

    Science.gov (United States)

    Zhou, Y. H.; Lin, S. F.; Hou, Y. H.; Wang, D. W.; Zhou, P.; Han, P. L.; Li, Y. L.; Yan, M.

    2018-05-01

    Ti45Al8Nb alloy (in at.%) is designed to be an important high-temperature material. However, its fabrication through laser-based additive manufacturing is difficult to achieve. We present here that a good understanding of the surface structure of raw material (i.e. Ti45Al8Nb powder) is important for optimizing its process by selective laser melting (SLM). Detailed X-ray photoelectron spectroscopy (XPS) depth profiling and transmission electron microscopy (TEM) analyses were conducted to determine the surface structure of Ti45Al8Nb powder. An envelope structure (∼54.0 nm in thickness) was revealed for the powder, consisting of TiO2 + Nb2O5 (as the outer surface layer)/Al2O3 + Nb2O5 (as the intermediate layer)/Al2O3 (as the inner surface layer)/Ti45Al8Nb (as the matrix). During SLM, this layered surface structure interacted with the incident laser beam and improved the laser absorptivity of Ti45Al8Nb powder by ∼32.21%. SLM experiments demonstrate that the relative density of the as-printed parts can be realized to a high degree (∼98.70%), which confirms good laser energy absorption. Such layered surface structure with appropriate phase constitution is essential for promoting SLM of the Ti45Al8Nb alloy.

  18. Synthesis and application of nano-, meso- and macroporous sorbents based on lignin for detoxication of biological fluids

    Science.gov (United States)

    Chopabayeva, Nazira N.; Mukanov, Kanatbek N.; Tasmagambet, Amandyk T.

    2014-05-01

    Novel nano-, meso- and macroporous sorbents based on hydrolysis lignin have been synthesized by catalytic o-alkylation of biolpolymer with epoxy resin ED-20 and subsequent amination of formed α-oxyde derivative. Composition, structure, morphology and physical, chemical properties of ion-exchangers were investigated by FTIR, SEM, TEM, porosimetry and potentiometric titration method. It has been established that alkaline activated lignin shows an increase of SBET to 20.9 m2/g while modification leads to decrease of SBET more than double (from 9.2 to 5.2 m2/g) that of an untreared sample (14.5 m2/g). Synthesized sorbents are characterized by approximately identical mesoporous structure and mainly contained a pore size of 10-14 nm. The results clearly demonstrate the efficiency of lignin based sorbents for the removal of water and lipid soluble toxic metabolites from blood serum of diabetic retinopathy patients. Samples reduced the high level of total cholesterol, including its most atherogenic fractions (LDL-C, VLDL-C), triglyceride to the level of optimum compensated diabetes without significant removal of HDL-C. Concentration of glucose was decreased to physiological norms.

  19. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yao Jianwu; Zhang Chengyun; Liu Haiying; Dai Qiaofeng; Wu Lijun [Laboratory of Photonic Information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Lan, Sheng, E-mail: slan@scnu.edu.cn [Laboratory of Photonic Information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Gopal, Achanta Venu [Department of Condensed Matter Physics and Material Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Trofimov, Vyacheslav A.; Lysak, Tatiana M. [Department of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)

    2012-07-15

    Ripples with a subwavelength period were induced on the surface of a stainless steel (301 L) foil by femtosecond laser pulses. By optimizing the irradiation fluence of the laser pulses and the scanning speed of the laser beam, ripples with large amplitude ({approx}150 nm) and uniform period could be obtained, rendering vivid structural colors when illuminating the surface with white light. It indicates that these ripples act as a surface grating that diffracts light efficiently. The strong dependence of the ripple orientation on the polarization of laser light offers us the opportunity of decorating different regions of the surface with different types of ripples. As a result, different patterns can be selectively displayed with structural color when white light is irradiated on the surface from different directions. More interestingly, we demonstrated the possibility of decorating the same region with two or more types of ripples with different orientations. In this way, different patterns with spatial overlapping can be selectively displayed with structural color. This technique may find applications in the fields of anti-counterfeiting, color display, decoration, encryption and optical data storage.

  20. Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors

    Science.gov (United States)

    Hao, Xiaodong; Wang, Jie; Ding, Bing; Wang, Ya; Chang, Zhi; Dou, Hui; Zhang, Xiaogang

    2017-06-01

    Bacterial cellulose (BC), a typical biomass prepared from the microbial fermentation process, has been proved that it can be an ideal platform for design of three-dimensional (3D) multifunctional nanomaterials in energy storage and conversion field. Here we developed a simple and general silica-assisted strategy for fabrication of interconnected 3D meso-microporous carbon nanofiber networks by confine nanospace pyrolysis of sustainable BC, which can be used as binder-free electrodes for high-performance supercapacitors. The synthesized carbon nanofibers exhibited the features of interconnected 3D networks architecture, large surface area (624 m2 g-1), mesopores-dominated hierarchical porosity, and high graphitization degree. The as-prepared electrode (CN-BC) displayed a maximum specific capacitance of 302 F g-1 at a current density of 0.5 A g-1, high-rate capability and good cyclicity in 6 M KOH electrolyte. This work, together with cost-effective preparation strategy to make high-value utilization of cheap biomass, should have significant implications in the green and mass-producible energy storage.

  1. Investigations of the Electronic Properties and Surface Structures of Aluminium-Rich Quasicrystalline Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, Jason A. [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    equations. Transport behavior is described in terms of charge carriers and the mean-free time between carrier collisions. It is concluded that the mean-free time is much longer in the periodic direction than in the aperiodic direction. This difference produces the observed anisotropy in thermal transport. The third study presented a detailed analysis of the reversible, sputter-induced phase transformation which occurs on the 5-fold surface of an icosahedral Al-Cu-Fe quasicrystal. Reflection high-energy electron diffraction (RHEED), x-ray photoemission spectroscopy (XPS), and ultra-violet photoemission spectroscopy (UPS) data were collected as a function of annealing temperature and were used to probe surface structure, surface composition, and electronic structure, respectively. The composition and structure of the sputtered surface are consistent with a transformation to the β-Al-Cu-Fe cubic structure, and shows a sharp metallic cut-off in the spectral intensity of the electronic structure at the Fermi edge. Upon annealing the surface reverts to a quasicrystalline composition and structure. This transformation has been correlated with a reduction in the spectral intensity of the electronic structure at the Fermi level. This data clearly demonstrates that the observed reduction is intrinsic to a quasicrystalline surface. It is concluded that this is due to the opening of a pseudo-gap in the electronic density of states as the surface reverts from β-Al-Cu-Fe to quasicrystalline.

  2. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    Science.gov (United States)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  3. Hybrid Tower, Designing Soft Structures

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin; Holden Deleuran, Anders

    2015-01-01

    and constraint solvers and more rigorous Finite Element methods supporting respectively design analysis and form finding and performance evaluation and verification. The second investigation describes the inter-scalar feedback loops between design at the macro scale (overall structural behaviour), meso scale...... (membrane reinforcement strategy) and micro scale (design of bespoke textile membrane). The paper concludes with a post construction analysis. Comparing structural and environmental data, the predicted and the actual performance of tower are evaluated and discussed....

  4. The Modelling Analysis of the Response of Convective Transport of Energy and Water to Multiscale Surface Heterogeneity over Tibetan Plateau

    Science.gov (United States)

    SUN, G.; Hu, Z.; Ma, Y.; Ma, W.

    2017-12-01

    The land-atmospheric interactions over a heterogeneous surface is a tricky issue for accurately understanding the energy-water exchanges between land surface and atmosphere. We investigate the vertical transport of energy and water over a heterogeneous land surface in Tibetan Plateau during the evolution of the convective boundary layer using large eddy simulation (WRF_LES). The surface heterogeneity is created according to remote sensing images from high spatial resolution LandSat ETM+ images. The PBL characteristics over a heterogeneous surface are analyzed in terms of secondary circulations under different background wind conditions based on the horizontal and vertical distribution and evolution of wind. The characteristics of vertical transport of energy and heat over a heterogeneous surface are analyzed in terms of the horizontal distribution as well as temporal evolution of sensible and latent heat fluxes at different heights under different wind conditions on basis of the simulated results from WRF_LES. The characteristics of the heat and water transported into the free atmosphere from surface are also analyzed and quantified according to the simulated results from WRF_LES. The convective transport of energy and water are analyzed according to horizontal and vertical distributions of potential temperature and vapor under different background wind conditions. With the analysis based on the WRF_LES simulation, the performance of PBL schemes of mesoscale simulation (WRF_meso) is evaluated. The comparison between horizontal distribution of vertical fluxes and domain-averaged vertical fluxes of the energy and water in the free atmosphere is used to evaluate the performance of PBL schemes of WRF_meso in the simulation of vertical exchange of energy and water. This is an important variable because only the energy and water transported into free atmosphere is able to influence the regional and even global climate. This work would will be of great significance not

  5. Self-consistent electronic structure of the contracted tungsten (001) surface

    International Nuclear Information System (INIS)

    Posternak, M.; Krakauer, H.; Freeman, A.J.

    1982-01-01

    Self-consistent linearized-augmented-plane-wave energy-band studies using the warped muffin-tin approximation for a seven-layer W(001) single slab with the surface-layer separation contracted by 6% of the bulk interlayer spacing are reported. Surface electronic structure, local densities of states, generalized susceptibility for the surface, work function, and core-level shifts are found to have insignificant differences with corresponding results for the unrelaxed surface. Several differences in surface states between theory and recent angle-resolved photoemission experiments are discussed in the light of new proposed models of the actual unreconstructed surface structure at high temperatures

  6. Solubilization of meso-carbon microbeads by potassium- or dibutylzinc-promoted butylation and structural analysis of the butylated products; Mesocarbon microbeads no butyl ka ni yoru kayoka to erareta butyl kabutsu no kozo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Murata, S.; Zhang, Y.; Kidena, K.; Nomura, M. [Osaka University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    Tetrahydrofuran (THF) solubility and structure of the butylated products of meso-carbon microbeads (MCMB) were studied experimentally. In experiment, MCMB-A and MCMB-B obtained from two kinds of coal-tar pitch were used as specimens. MCMBs were butylated by BZ method using dibutylzinc-butyl iodide and KT method using K-butyl iodide-THF, and the butylated products were successfully obtained. The butylated products were investigated through THF solubility test, {sup 13}C-NMR measurement and gel permeation chromatography (GPC) measurement. As the experimental result, a BZ method produced the butylated products at a yield of nearly 170%, while a KT method produced them at a yield of nearly 130%. The THF solubility was estimated to be 89-97%. As the study result of molecular weight distributions by GPC measurement of solvent solubles, the molecular weight of raw material MCMB was estimated to be 590-770 in terms of polystyrene. 6 refs., 2 figs., 1 tab.

  7. Surface and interface electronic structure: Three year activity report

    International Nuclear Information System (INIS)

    Kevan, S.D.

    1992-01-01

    The 3-year activity report covers surface structure and phonon anomalies (surface reconstruction on W(001) and Mo(001), adsorbate lateral ordering, surface Fermi contours and phonon anomalies on Pt(111) and Pd(001)), adsorbate vibrational damping, charge transfer in momentum space: W(011)-K, surface states and resonances (relativistic effects ampersand computations, surface resonances)

  8. Simulations of molecular self-assembled monolayers on surfaces: packing structures, formation processes and functions tuned by intermolecular and interfacial interactions.

    Science.gov (United States)

    Wen, Jin; Li, Wei; Chen, Shuang; Ma, Jing

    2016-08-17

    Surfaces modified with a functional molecular monolayer are essential for the fabrication of nano-scale electronics or machines with novel physical, chemical, and/or biological properties. Theoretical simulation based on advanced quantum chemical and classical models is at present a necessary tool in the development, design, and understanding of the interfacial nanostructure. The nanoscale surface morphology, growth processes, and functions are controlled by not only the electronic structures (molecular energy levels, dipole moments, polarizabilities, and optical properties) of building units but also the subtle balance between intermolecular and interfacial interactions. The switchable surfaces are also constructed by introducing stimuli-responsive units like azobenzene derivatives. To bridge the gap between experiments and theoretical models, opportunities and challenges for future development of modelling of ferroelectricity, entropy, and chemical reactions of surface-supported monolayers are also addressed. Theoretical simulations will allow us to obtain important and detailed information about the structure and dynamics of monolayer modified interfaces, which will guide the rational design and optimization of dynamic interfaces to meet challenges of controlling optical, electrical, and biological functions.

  9. Characterization of Boroaluminosilicate Glass Surface Structures by B k-edge NEXAFS

    Energy Technology Data Exchange (ETDEWEB)

    R Schaut; R Lobello; K Mueller; C Pantano

    2011-12-31

    Techniques traditionally used to characterize bulk glass structure (NMR, IR, etc.) have improved significantly, but none provide direct measurement of local atomic coordination of glass surface species. Here, we used Near-Edge X-ray Absorption Fine Structure (NEXAFS) as a direct measure of atomic structure at multicomponent glass surfaces. Focusing on the local chemical structure of boron, we address technique-related issues of calibration, quantification, and interactions of the beam with the material. We demonstrate that beam-induced adsorption and structural damage can occur within the timeframe of typical measurements. The technique is then applied to the study of various fracture surfaces where it is shown that adsorption and reaction of water with boroaluminosilicate glass surfaces induces structural changes in the local coordination of boron, favoring B{sup IV} species after reaction.

  10. Cation-pi interaction of the univalent silver cation with meso-octamethylcalix[4]pyrrole: Experimental and theoretical study

    Czech Academy of Sciences Publication Activity Database

    Polášek, Miroslav; Kvíčala, J.; Makrlík, E.; Křížová, Věra; Vaňura, P.

    2017-01-01

    Roč. 1130, FEB 2017 (2017), s. 408-413 ISSN 0022-2860 Grant - others:GA MŠk(CZ) 20/2015; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388955 Keywords : silver cation * meso-octamethylcalix[4]pyrrole * complexation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.753, year: 2016

  11. pH-controlled self-assembling of meso-tetrakis(4-sulfonatophenyl)porphyrin-chitosan complexes

    Czech Academy of Sciences Publication Activity Database

    Synytsya, A.; Synytsya, Andriy.; Blafková, P.; Ederová, J.; Spěváček, Jiří; Slepička, P.; Král, V.; Volka, K.

    2009-01-01

    Roč. 10, č. 5 (2009), s. 1067-1076 ISSN 1525-7797 R&D Projects: GA ČR GA525/05/0273 Grant - others:GA AV ČR(CZ) KAN400480701; GA AV ČR(CZ) KAN200100801; GA AV ČR(CZ) KAN200200651; GA MŠk(CZ) LC06041; GA ČR(CZ) GA203/02/0420 Program:KA; KA; KA; LC; GA Institutional research plan: CEZ:AV0Z40500505 Keywords : self-assembling * meso-tetrakis(4-sulfonatophenyl)porphyrin- chitosan complex * spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.502, year: 2009

  12. Minding the Gap

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, Millicent Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    Neutron & X-ray scattering provides nano- to meso-scale details of complex fluid structure; 1D electronic density maps dervied from SAXS yield molecular level insights; Neutron reflectivity provides substructure details of substrate supported complex fluids; Complex fluids composition can be optimized to support a wide variety of both soluble and membrane proteins; The water gap dimensions can be finely tuned through polymer component.

  13. Meso and micro level workforce challenges in psychiatric rehabilitation.

    Science.gov (United States)

    Reifels, Lennart; Pirkis, Jane

    2012-01-01

    Results of an exploratory study are presented which examined workforce challenges in Australia's most established psychiatric rehabilitation sector. The study had the two-fold aim of investigating workforce challenges at an organizational ("meso") level and at the level of direct-service workers' daily practice ("micro"). Data from 23 key informant interviews conducted with service managers and long-serving staff were analyzed through basic descriptive and thematic analyses. Organizations faced significant annual staff turnover (25.6%), specific staff supply shortages, and challenges in recruiting staff with adequate experience and longevity to match the complexity of client issues. Workers equally encountered challenges in this increasingly complex and rapidly changing field of work. CONCLUSIONS & IMPLICATIONS FOR PRACTICE: Workforce strategies designed to attract/retain experienced staff can improve workforce cohesiveness and sustainability, as can training and support activities aimed at equipping staff to reflect on and operate in dynamic and changing work environments.

  14. Bionic Duplication of Fresh Navodon septentrionalis Fish Surface Structures

    Directory of Open Access Journals (Sweden)

    Bing Qu

    2011-01-01

    Full Text Available Biomimetic superhydrophobic surface was fabricated by replicating topography of the fresh fish skin surface of Navodon septentrionalis with polydimethylsiloxane (PDMS elastomer. A two-step replicating method was developed to make the surface structure of the fresh fish skin be replicated with high fidelity. After duplication, it was found that the static contact angle of the replica was as large as 173°. Theoretic analysis based on Young's and Cassie-Baxter (C-B model was performed to explain the relationship between structure and hydrophobicity.

  15. Solving complex and disordered surface structures with electron diffraction

    International Nuclear Information System (INIS)

    Van Hove, M.A.

    1987-10-01

    The past of surface structure determination with low-energy electron diffraction (LEED) will be briefly reviewed, setting the stage for a discussion of recent and future developments. The aim of these developments is to solve complex and disordered surface structures. Some efficient solutions to the theoretical and experimental problems will be presented. Since the theoretical problems dominate, the emphasis will be on theoretical approaches to the calculation of the multiple scattering of electrons through complex and disordered surfaces. 49 refs., 13 figs., 1 tab

  16. [Community structure of soil fauna in Eucalyptus grandis plantations at different slope locations].

    Science.gov (United States)

    Zhao, Yu; Zhong, Yu; Zhang, Jian; Yang, Wan-qin

    2010-09-01

    To understand the effects of slope location on the community structure of soil fauna in Eucalyptus grandis plantation, an investigation was made on the soil fauna in 3 E. grandis plantations at different slope locations in the hilly area of Sichuan Province from January to October 2009. A total of 39,2762 individuals were observed, belonging to 146 groups, 7 phyla, 16 classes, and 31 orders. The community composition, trophic group, diversity, and seasonal dynamics of soil fauna in the plantations all varied with slope. The abundance of macro-fauna, xeric meso- and micro-fauna, saprophagous macro-fauna, and omnivorous xeric meso- and micro-fauna increased with the decrease of slope, indicating that soil fauna had sensitive responses to the soil environmental factors affected by slope. Significant differences in the diversity of soil saprophagous macro-fauna and hygrophilous meso- and micro-fauna were observed at different slope locations, suggesting that these two faunal groups could be used as the indicators of the habitat heterogeneity of E. grandis plantations at different slope. Overall, slope location had definite effects on the community structure and distribution of soil fauna in the E. grandis plantations, but the effects were not statistically significant.

  17. A unified bond theory, probabilistic meso-scale modeling, and experimental validation of deformed steel rebar in normal strength concrete

    Science.gov (United States)

    Wu, Chenglin

    Bond between deformed rebar and concrete is affected by rebar deformation pattern, concrete properties, concrete confinement, and rebar-concrete interfacial properties. Two distinct groups of bond models were traditionally developed based on the dominant effects of concrete splitting and near-interface shear-off failures. Their accuracy highly depended upon the test data sets selected in analysis and calibration. In this study, a unified bond model is proposed and developed based on an analogy to the indentation problem around the rib front of deformed rebar. This mechanics-based model can take into account the combined effect of concrete splitting and interface shear-off failures, resulting in average bond strengths for all practical scenarios. To understand the fracture process associated with bond failure, a probabilistic meso-scale model of concrete is proposed and its sensitivity to interface and confinement strengths are investigated. Both the mechanical and finite element models are validated with the available test data sets and are superior to existing models in prediction of average bond strength (rib spacing-to-height ratio of deformed rebar. It can accurately predict the transition of failure modes from concrete splitting to rebar pullout and predict the effect of rebar surface characteristics as the rib spacing-to-height ratio increases. Based on the unified theory, a global bond model is proposed and developed by introducing bond-slip laws, and validated with testing of concrete beams with spliced reinforcement, achieving a load capacity prediction error of less than 26%. The optimal rebar parameters and concrete cover in structural designs can be derived from this study.

  18. Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics

    International Nuclear Information System (INIS)

    Rofouie, P.; Rey, A. D.; Pasini, D.

    2015-01-01

    Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations’ amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC’s surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices

  19. Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics

    Energy Technology Data Exchange (ETDEWEB)

    Rofouie, P.; Rey, A. D., E-mail: alejandro.rey@mail.mcgill.ca [Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 2B2 (Canada); Pasini, D. [Department of Mechanical Engineering, McGill University, 817 Sherbrook West, Montreal, Quebec H3A 0C3 (Canada)

    2015-09-21

    Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations’ amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC’s surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices.

  20. Protein secondary structure assignment revisited: a detailed analysis of different assignment methods

    Directory of Open Access Journals (Sweden)

    de Brevern Alexandre G

    2005-09-01

    Full Text Available Abstract Background A number of methods are now available to perform automatic assignment of periodic secondary structures from atomic coordinates, based on different characteristics of the secondary structures. In general these methods exhibit a broad consensus as to the location of most helix and strand core segments in protein structures. However the termini of the segments are often ill-defined and it is difficult to decide unambiguously which residues at the edge of the segments have to be included. In addition, there is a "twilight zone" where secondary structure segments depart significantly from the idealized models of Pauling and Corey. For these segments, one has to decide whether the observed structural variations are merely distorsions or whether they constitute a break in the secondary structure. Methods To address these problems, we have developed a method for secondary structure assignment, called KAKSI. Assignments made by KAKSI are compared with assignments given by DSSP, STRIDE, XTLSSTR, PSEA and SECSTR, as well as secondary structures found in PDB files, on 4 datasets (X-ray structures with different resolution range, NMR structures. Results A detailed comparison of KAKSI assignments with those of STRIDE and PSEA reveals that KAKSI assigns slightly longer helices and strands than STRIDE in case of one-to-one correspondence between the segments. However, KAKSI tends also to favor the assignment of several short helices when STRIDE and PSEA assign longer, kinked, helices. Helices assigned by KAKSI have geometrical characteristics close to those described in the PDB. They are more linear than helices assigned by other methods. The same tendency to split long segments is observed for strands, although less systematically. We present a number of cases of secondary structure assignments that illustrate this behavior. Conclusion Our method provides valuable assignments which favor the regularity of secondary structure segments.

  1. Seasonal meso- and microhabitat selection by the northern snakehead (Channa argus) in the Potomac river system

    Science.gov (United States)

    Lapointe, N.W.R.; Thorson, J.T.; Angermeier, P.L.

    2010-01-01

     The northern snakehead (Channa argus) is a large piscivorous fish that is invasive in eastern Europe and has recently been introduced in North America. We examined the seasonal habitat selection at meso- and microhabitat scales using radio-telemetry to increase understanding of the ecology of this species, which will help to inform management decisions. After the spawning season (postspawn season, September–November), northern snakeheads preferred offshore Eurasian water-milfoil (Myriophyllum spicatum) beds with shallow water (∼115 cm) and soft substrate. In the winter (November–April), these fish moved to deeper water (∼135 cm) with warmer temperatures, but habitat selection was weak at both scales. Northern snakeheads returned to shallower water (∼95 cm) in the prespawn season (April–June) and used milfoil and other cover. Habitat selection was the strongest at both meso- and microhabitat scales during the spawning season (June–September), when fish preferred macrophytes and cover in shallow water (∼88 cm). Our results help to identify habitats at the risk of invasion by northern snakeheads. We suggest that control efforts and future research focus on shallow waters, and take into consideration the seasonal habitat preferences.

  2. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures.

    Science.gov (United States)

    Müller, Frank A; Kunz, Clemens; Gräf, Stephan

    2016-06-15

    Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.

  3. Creation of Optically Pure Crystals from a Meso-Type Gold(I) Metalloligand with d- and l-Amino Acids: A Coordination Trick.

    Science.gov (United States)

    Itai, Takuma; Kojima, Tatsuhiro; Kuwamura, Naoto; Konno, Takumi

    2017-11-21

    A unique example of a coordination system that creates optically pure crystals from a meso compound with d- and l-amino acids is reported. The 1:1 reaction of a newly prepared meso digold(I) complex, [Au 2 (dcpe)(d-Hpen)(l-Hpen)] ([H 2 1]), with Co(OAc) 2 under aerobic conditions yielded a cationic Au I 2 Co III trinuclear complex, [Au 2 Co(dcpe)(d-pen)(l-pen)] + [2] + , in which [1] 2- acts as a hexadentate-N 2 ,O 2 ,S 2 metalloligand to a Co III center. Similar reactions with M(OAc) 2 (M=Ni and Zn) produced analogous but neutral Au I 2 M II complexes, [Au 2 M(dcpe)(d-pen)(l-pen)] ([3 M ]). Complexes [2] + and [3 M ] are chiral (C vs. A) at the octahedral Co III and M II centers due to the arrangement of the N 2 ,O 2 ,S 2 donor set. In addition, through spontaneous resolution, [3 M ] gave optically pure C-[3 M ] and A-[3 M ] crystals, showing the creation of homochirality from meso-[1] 2- and achiral M 2+ through crystallization. Such a phenomenon was not observed for [2] + , which gave a racemic compound containing both C-[2] + and A-[2] + . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of surface Fe-S hybrid structure on the activity of the perfect and reduced α-Fe2O3(001) for chemical looping combustion

    Science.gov (United States)

    Xiao, Xianbin; Qin, Wu; Wang, Jianye; Li, Junhao; Dong, Changqing

    2018-05-01

    Sulfurization of the gradually reduced Fe2O3 surfaces is inevitable while Fe2O3 is used as an oxygen carrier (OC) for coal chemical looping combustion (CLC), which will result in formation of Fe-S hybrid structure on the surfaces. The Fe-S hybrid structure will directly alter the reactivity of the surfaces. Therefore, detailed properties of Fe-S hybrid structure over the perfect and reduced Fe2O3(001) surfaces, and its effect on the interfacial interactions, including CO oxidization and decomposition on the surfaces, were investigated by using density functional theory (DFT) calculations. The S atom prefers to chemically bind to Fe site with electron transfer from the surfaces to the S atom, and a deeper reduction of Fe2O3(001) leads to an increasing interaction between S and Fe. The formation of Fe-S hybrid structure alters the electronic properties of the gradually reduced Fe2O3(001) surfaces, promoting CO oxidation on the surfaces ranging from Fe2O3 to FeO, but depressing carbon deposition on the surfaces ranging from FeO to Fe. The sulfurized FeO acts as a watershed to realize relatively high CO oxidation rate and low carbon deposition. Results provided a fundamental understanding for controlling and optimizing the CLC processes.

  5. Towards meso -Ester BODIPYs with Aggregation-Induced Emission Properties: The Effect of Substitution Positions

    KAUST Repository

    Chua, Ming Hui

    2015-06-17

    Three meso-ester boron dipyrromethene (BODIPY) dyes have been synthesized and functionalized with aggregation-induced emission (AIE)-active tetraphenylethene or triphenylethene moieties. It was found that functionalizing at the different positions of the BODIPY core resulted in the final dye having different emission properties in response to aggregation: from aggregation-induced quenching (ACQ) to being AIE active. X-ray crystallographic analysis was thus performed to provide an explanation for these differences. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Towards meso -Ester BODIPYs with Aggregation-Induced Emission Properties: The Effect of Substitution Positions

    KAUST Repository

    Chua, Ming Hui; Ni, Yong; Garai, Monalisa; Zheng, Bin; Huang, Kuo-Wei; Xu, Qing Hua; Xu, Jianwei; Wu, Jishan

    2015-01-01

    Three meso-ester boron dipyrromethene (BODIPY) dyes have been synthesized and functionalized with aggregation-induced emission (AIE)-active tetraphenylethene or triphenylethene moieties. It was found that functionalizing at the different positions of the BODIPY core resulted in the final dye having different emission properties in response to aggregation: from aggregation-induced quenching (ACQ) to being AIE active. X-ray crystallographic analysis was thus performed to provide an explanation for these differences. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electronic structures near surfaces of perovskite type oxides

    International Nuclear Information System (INIS)

    Hara, Toru

    2005-01-01

    This work is intended to draw attention to the origin of the electronic structures near surfaces of perovskite type oxides. Deep states were observed by ultraviolet photoelectron spectroscopic measurements. The film thickness dependent electronic structures near surfaces of (Ba 0.5 Sr 0.5 )TiO 3 thin films were observed. As for the 117-308 nm thick (Ba 0.5 Sr 0.5 )TiO 3 films, deep states were lying at 0.20, 0.55, and 0.85 eV below the quasi-fermi level, respectively. However, as for the 40 nm thick (Ba 0.5 Sr 0.5 )TiO 3 film, the states were overlapped. The A-site doping affected electronic structures near surfaces of SrTiO 3 single crystals. No evolution of deep states in non-doped SrTiO 3 single crystal was observed. However, the evolution of deep states in La-doped SrTiO 3 single crystal was observed

  8. Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces

    Science.gov (United States)

    Janjaroen, Dao; Ling, Fangqiong; Monroy, Guillermo; Derlon, Nicolas; Mogenroth, Eberhard; Boppart, Stephen A.; Liu, Wen-Tso; Nguyen, Thanh H.

    2013-01-01

    Mechanisms of Escherichia coli attachment on biofilms grown on PVC coupons were investigated. Biofilms were grown in CDC reactors using groundwater as feed solution over a period up to 27 weeks. Biofilm physical structure was characterized at the micro- and meso-scales using Scanning Electron Microscopy (SEM) and Optical Coherence Tomography (OCT), respectively. Microbial community diversity was analyzed with Terminal Restricted Fragment Length Polymorphism (T-RFLP). Both physical structure and microbial community diversity of the biofilms were shown to be changing from 2 weeks to 14 weeks, and became relatively stable after 16 weeks. A parallel plate flow chamber coupled with an inverted fluorescent microscope was also used to monitor the attachment of fluorescent microspheres and E. coli on clean PVC surfaces and biofilms grown on PVC surfaces for different ages. Two mechanisms of E. coli attachment were identified. The adhesion rate coefficients (kd) of E. coli on nascent PVC surfaces and 2-week biofilms increased with ionic strength. However, after biofilms grew for 8 weeks, the adhesion was found to be independent of solution chemistry. Instead, a positive correlation between kd and biofilm roughness as determined by OCT was obtained, indicating that the physical structure of biofilms could play an important role in facilitating the adhesion of E. coli cells. PMID:23497979

  9. Lightning climatology over Jakarta, Indonesia, based on long-term surface operational, satellite, and campaign observations

    Science.gov (United States)

    Mori, Shuichi; Wu, Peiming; Yamanaka, Manabu D.; Hattori, Miki; Hamada, Jun-Ichi; Arbain, Ardhi A.; Lestari, Sopia; Sulistyowati, Reni; Syamsudin, Fadli

    2016-04-01

    Lightning frequency over Indonesian Maritime Continent (MC) is quite high (Petersen and Rutledge 2001, Christian et al. 2003, Takayabu 2006, etc). In particular, Bogor (south of Jakarta, west Jawa) had 322 days of lightning in one year (Guinness Book in 1988). Lightning causes serious damage on nature and society over the MC; forest fore, power outage, inrush/surge currents on many kinds of electronics. Lightning climatology and meso-scale characteristics of thunderstorm over the MC, in particular over Jakarta, where social damage is quite serious, were examined. We made Statistical analysis of lightning and thunderstorm based on TRMM Lightning Image Sensor (LIS) and Global Satellite Mapping of Precipitation (GSMaP) together with long-term operational surface observation data (SYNOP) in terms of diurnal, intraseasonal, monsoonal, and interannual variations. In addition, we carried out a campaign observation in February 2015 in Bogor to obtain meso-scale structure and dynamics of thunderstorm over Jakarta to focus on graupel and other ice phase particles inside by using an X-band dual-polarimetric (DP) radar. Recently, Virts et al. (2013a, b) showed comprehensive lightning climatology based on the World Wide Lightning Location Network (WWLLN). However, they also reported problems with its detection efficiency (Japan Society for the Promotion of Science (JSPS) KAKENHI (Grants-in-Aid for Scientific Research) grant number 25350515 and the Japan Aerospace Exploration Agency (JAXA) 7th Research Announcement (RA).

  10. Turbulent flow over an interactive alternating land-water surface

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  11. Structure sensitivity of CO dissociation on Rh surfaces

    DEFF Research Database (Denmark)

    Mavrikakis, Manos; Baumer, M.; Freund, H.J.

    2002-01-01

    than the flat surface, but the effect is considerably weaker than the effect of surface structure on the dissociation barrier. Our findings are compared with available experimental data, and the consequences for CO activation in methanation and Fischer-Tropsch reactions are discussed.......Using periodic self-consistent density functional calculations it is shown that the barrier for CO dissociation is similar to120 kJ/mol lower on the stepped Rh(211) surface than on the close-packed Rh(111) surface. The stepped surface binds molecular CO and the dissociation products more strongly...

  12. CFD simulation of rotor aerodynamic performance when using additional surface structure array

    Science.gov (United States)

    Wang, Bing; Kong, Deyi

    2017-10-01

    The present work analyses the aerodynamic performance of the rotor with additional surface structure array in an attempt to maximize its performance in hover flight. The unstructured grids and the Reynolds Average Navier-Stokes equations were used to calculate the performance of the prototype rotor and the rotor with additional surface structure array in the air. The computational fluid dynamics software FLUENT was used to simulate the thrust of the rotors. The results of the calculations are in reasonable agreement with experimental data, which shows that the calculation model used in this work is useful in simulating the performance of the rotor with additional surface structure array. With this theoretical calculation model, the thrusts of the rotors with arrays of surface structure in three different shapes were calculated. According to the simulation results and the experimental data, the rotor with triangle surface structure array has better aerodynamic performance than the other rotors. In contrast with the prototype rotor, the thrust of the rotor with triangle surface structure array increases by 5.2% at the operating rotating speed of 3000r/min, and the additional triangle surface structure array has almost no influence on the efficiency of the rotor.

  13. Thermodynamics and structure of liquid surfaces investigated directly with surface analytical tools

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Gunther [Flinders Univ., Adelaide, SA (Australia). Centre for NanoScale Science and Technology; Morgner, Harald [Leipzig Univ. (Germany). Wilhelm Ostwald Inst. for Physical and Theoretical Chemistry

    2017-06-15

    Measuring directly the composition, the distribution of constituents as function of the depth and the orientation of molecules at liquid surfaces is essential for determining physicochemical properties of liquid surfaces. While the experimental tools that have been developed for analyzing solid surfaces can in principal be applied to liquid surfaces, it turned out that they had to be adjusted to the particular challenges imposed by liquid samples, e.g. by the unavoidable vapor pressure and by the mobility of the constituting atoms/molecules. In the present work it is shown, how electron spectroscopy and ion scattering spectroscopy have been used for analyzing liquid surfaces. The emphasis of this review is on using the structural information gained for determining the physicochemical properties of liquid surfaces. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  15. Structure and optical properties of water covered Cu(110) surfaces

    International Nuclear Information System (INIS)

    Baghbanpourasl, A.

    2014-01-01

    In this thesis structural and optical properties of the water covered Cu(110) surface is studied using density functional theory within independent particle approximation. Several stable adsorption structures are studied such as water clusters (monomer, dimer, trimer, tetramer and pentamer), different hexagonal monolayers, partially dissociated water monolayers and three different types of chains among them a chain that consists of pentagon rings. For a copper surface in contact with water vapor, the energetically stable H 2 O/OH adsorbed structures are compared thermodynamically using adsorption free energy (change of free energy due to adsorption). Several phase diagrams with respect to temperature and pressure are calculated. It is found that among the large number of energetically stable structures (i.e. structures with positive adsorption energy ) only limited number of them are thermodynamically stable. These thermodynamically stable structures are the class of almost energetically degenerate hexagonal overlayers, one type of partially dissociated water structure that contains Bjerrum defect in the hydrogen bond network and pentagon chain. Since hydrogen atoms are light weight their vibrational effects can be considerable. Zero point vibration decreases the adsorption energy up to 0.1 eV and free energy of adsorbed molecules arising from vibrational degree of freedom can go up to -0.2 eV per adsorbed molecule at 500 Kelvin. However zero point energy and vibrational free energy of adsorbed molecules do not alter relative stability of the adsorbed structures. To account for the long range van der Waals interactions, a semi-empirical scheme is applied. Reflectance Anisotropy Spectroscopy (RAS) is a fast and non destructive optical method that can be used to prob the surface in different conditions such as vacuum and electro-chemical environment. Elasto-optic coeficients of bulk are calculated from first principles and the change of the RA spectrum of the bare Cu

  16. Automatic monitoring of ecosystem structure and functions using integrated low-cost near surface sensors

    Science.gov (United States)

    Kim, J.; Ryu, Y.; Jiang, C.; Hwang, Y.

    2016-12-01

    Near surface sensors are able to acquire more reliable and detailed information with higher temporal resolution than satellite observations. Conventional near surface sensors usually work individually, and thus they require considerable manpower from data collection through information extraction and sharing. Recent advances of Internet of Things (IoT) provides unprecedented opportunities to integrate various low-cost sensors as an intelligent near surface observation system for monitoring ecosystem structure and functions. In this study, we developed a Smart Surface Sensing System (4S), which can automatically collect, transfer, process and analyze data, and then publish time series results on public-available website. The system is composed of micro-computer Raspberry pi, micro-controller Arduino, multi-spectral spectrometers made from Light Emitting Diode (LED), visible and near infrared cameras, and Internet module. All components are connected with each other and Raspberry pi intelligently controls the automatic data production chain. We did intensive tests and calibrations in-lab. Then, we conducted in-situ observations at a rice paddy field and a deciduous broadleaf forest. During the whole growth season, 4S obtained landscape images, spectral reflectance in red, green, blue, and near infrared, normalized difference vegetation index (NDVI), fraction of photosynthetically active radiation (fPAR), and leaf area index (LAI) continuously. Also We compared 4S data with other independent measurements. NDVI obtained from 4S agreed well with Jaz hyperspectrometer at both diurnal and seasonal scales (R2 = 0.92, RMSE = 0.059), and 4S derived fPAR and LAI were comparable to LAI-2200 and destructive measurements in both magnitude and seasonal trajectory. We believe that the integrated low-cost near surface sensor could help research community monitoring ecosystem structure and functions closer and easier through a network system.

  17. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures

    Directory of Open Access Journals (Sweden)

    Frank A. Müller

    2016-06-01

    Full Text Available Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS. In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.

  18. Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

    International Nuclear Information System (INIS)

    McCrea, Keith R.

    2001-01-01

    In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-(sigma) bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active than the other, since the concentration of the surface intermediate would be different on the two crystals. The most likely active intermediates are weakly adsorbed molecules such as(pi)-bonded ethylene and ethyl. These species are not easily detected because their concentration lies at the detection limit of SFG. The SFG spectra and GC data essentially show that ethylene hydrogenation is structure insensitive for Pt(111) and Pt(100). SFG has proven to be a unique and excellent technique for studying adsorbed species on single crystal surfaces under high-pressure catalytic reactions. Coupled with kinetic data obtained from gas chromatography measurements, it can

  19. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  20. Porous silicon structures with high surface area/specific pore size

    Science.gov (United States)

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  1. Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces

    Science.gov (United States)

    Olceroglu, Emre

    Because of their adjustable wetting characteristics, micro/nanostructured surfaces are attractive for the enhancement of phase-change heat transfer where liquid-solid-vapor interactions are important. Condensation, evaporation, and boiling processes are traditionally used in a variety of applications including water harvesting, desalination, industrial power generation, HVAC, and thermal management systems. Although they have been studied by numerous researchers, there is currently a lack of understanding of the underlying mechanisms by which structured surfaces improve heat transfer during phase-change. This PhD dissertation focuses on condensation onto engineered surfaces including fabrication aspect, the physics of phase-change, and the operational limitations of engineered surfaces. While superhydrophobic condensation has been shown to produce high heat transfer rates, several critical issues remain in the field. These include surface manufacturability, heat transfer coefficient measurement limitations at low heat fluxes, failure due to surface flooding at high supersaturations, insufficient modeling of droplet growth rates, and the inherent issues associated with maintenance of non-wetted surface structures. Each of these issues is investigated in this thesis, leading to several contributions to the field of condensation on engineered surfaces. A variety of engineered surfaces have been fabricated and characterized, including nanostructured and hierarchically-structured superhydrophobic surfaces. The Tobacco mosaic virus (TMV) is used here as a biological template for the fabrication of nickel nanostructures, which are subsequently functionalized to achieve superhydrophobicity. This technique is simple and sustainable, and requires no applied heat or external power, thus making it easily extendable to a variety of common heat transfer materials and complex geometries. To measure heat transfer rates during superhydrophobic condensation in the presence of non

  2. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    KAUST Repository

    Pramana, Stevin S.

    2017-03-02

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  3. Evaluation of the surface structure of composite restorations in light of own pilot research

    Directory of Open Access Journals (Sweden)

    Chalas Renata

    2016-09-01

    Full Text Available Research on the dental restorative materials employed in remedying dental cavities has been conducted on many levels and areas, both with application of clinical and laboratory methods. One of the elements that determines whether the restoration may be degraded is the condition of its surface. The aim of the study was to assess the texture surface of composite restorations using a non-contact method of teeth models scanning. In this work, ten medium size cavities on the occlusal surfaces of molars in adult patients were prepared and restored with resin composite. Before undertaking the procedure and after the finishing and polishing of the restorations, impressions were taken and sent into the laboratory so as to prepare plaster casts. Every cast was then scanned utilizing the non-contact 3D surface measurement instrument so as to assess the texture surface of the restoration. The resulting three dimensional analyses of post-restoration models showed the correct marginal adaptation of resin composite dental material to the hard tooth structures and its smooth filling occlusal surface. Additional comparison of scans done before and after restoring the cavities allowed the calculating of differences in volume, mean and maximum heights. The applied method of analysis is thought to be helpful in the detailed evaluation of restoration dental material texture. Moreover, the enabled possibility of continuous observation is expedient for assessing the usefulness of the method in standard dental practice.

  4. Detailed imaging of flowing structures at depth using microseismicity: a tool for site investigation?

    Science.gov (United States)

    Pytharouli, S.; Lunn, R. J.; Shipton, Z. K.

    2011-12-01

    Field evidence shows that faults and fractures can act as focused pathways or barriers for fluid migration. This is an important property for modern engineering problems, e.g., CO2 sequestration, geological radioactive waste disposal, geothermal energy exploitation, land reclamation and remediation. For such applications the detailed characterization of the location, orientation and hydraulic properties of existing fractures is necessary. These investigations are expensive, requiring the hire of expensive equipment (excavator or drill rigs), which incur standing charges when not in use. In addition, they only provide information for discrete sample 'windows'. Non-intrusive methods have the ability to gather information across an entire area. Methods including electrical resistivity/conductivity and ground penetrating radar (GRP), have been used as tools for site investigations. Their imaging ability is often restricted due to unfavourable on-site conditions e.g. GRP is not useful in cases where a layer of clay or reinforced concrete is present. Our research has shown that high quality seismic data can be successfully used in the detailed imaging of sub-surface structures at depth; using induced microseismicity data recorded beneath the Açu reservoir in Brazil we identified orientations and values of average permeability of open shear fractures at depths up to 2.5km. Could microseismicity also provide information on the fracture width in terms of stress drops? First results from numerical simulations showed that higher stress drop values correspond to narrower fractures. These results were consistent with geological field observations. This study highlights the great potential of using microseismicity data as a supplementary tool for site investigation. Individual large-scale shear fractures in large rock volumes cannot currently be identified by any other geophysical dataset. The resolution of the method is restricted by the detection threshold of the local

  5. Surfaces of Microparticles in Colloids: Structure and Molecular Adsorption Kinetics

    Science.gov (United States)

    Dai, Hai-Lung

    2002-03-01

    Surfaces of micron and sub-micron size particles in liquid solution are probed by second harmonic generation (SHG) facilitated with femtosecond laser pulses. The particles probed include inorganic objects such as carbon black and color pigments, polymeric species like polystyrene beads, and biological systems such as blood cells and ecoli. In the experiments, dye molecules are first adsorbed onto the particle surface to allow generation of second harmonics upon light irradiation. Competition for adsorption between these surface dye molecules and the molecules of interest in the solution is then monitored by the SHG signal to reveal the molecular adsorption kinetics and surface structure. Specifically, surfactant adsorption on polymer surfaces, the structure of carbon black surface, and protein adsorption on biological surfaces, monitored by this technique, will be discussed.

  6. Self-citations at the meso and individual levels: effects of different calculation methods.

    Science.gov (United States)

    Costas, Rodrigo; van Leeuwen, Thed N; Bordons, María

    2010-03-01

    This paper focuses on the study of self-citations at the meso and micro (individual) levels, on the basis of an analysis of the production (1994-2004) of individual researchers working at the Spanish CSIC in the areas of Biology and Biomedicine and Material Sciences. Two different types of self-citations are described: author self-citations (citations received from the author him/herself) and co-author self-citations (citations received from the researchers' co-authors but without his/her participation). Self-citations do not play a decisive role in the high citation scores of documents either at the individual or at the meso level, which are mainly due to external citations. At micro-level, the percentage of self-citations does not change by professional rank or age, but differences in the relative weight of author and co-author self-citations have been found. The percentage of co-author self-citations tends to decrease with age and professional rank while the percentage of author self-citations shows the opposite trend. Suppressing author self-citations from citation counts to prevent overblown self-citation practices may result in a higher reduction of citation numbers of old scientists and, particularly, of those in the highest categories. Author and co-author self-citations provide valuable information on the scientific communication process, but external citations are the most relevant for evaluative purposes. As a final recommendation, studies considering self-citations at the individual level should make clear whether author or total self-citations are used as these can affect researchers differently.

  7. Micro-nano hierarchically structured nylon 6,6 surfaces with unique wettability.

    Science.gov (United States)

    Zhang, Liang; Zhang, Xiaoyan; Dai, Zhen; Wu, Junjie; Zhao, Ning; Xu, Jian

    2010-05-01

    A micro-nano hierarchically structured nylon 6,6 surface was easily fabricated by phase separation. Nylon 6,6 plate was swelled by formic acid and then immersed in a coagulate bath to precipitate. Micro particles with nano protrusions were generated and linked together covering over the surface. After dried up, the as-formed surface showed superhydrophilic ability. Inspired by lotus only employing 2-tier structure and ordinary plant wax to maintain superhydrophobicity, paraffin wax, a low surface energy material, was used to modify the hierarchically structured nylon 6,6 surface. The resultant surface had water contact angle (CA) of 155.2+/-1.3 degrees and a low sliding angle. The whole process was carried on under ambient condition and only need a few minutes. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Intelligent sampling for the measurement of structured surfaces

    International Nuclear Information System (INIS)

    Wang, J; Jiang, X; Blunt, L A; Scott, P J; Leach, R K

    2012-01-01

    Uniform sampling in metrology has known drawbacks such as coherent spectral aliasing and a lack of efficiency in terms of measuring time and data storage. The requirement for intelligent sampling strategies has been outlined over recent years, particularly where the measurement of structured surfaces is concerned. Most of the present research on intelligent sampling has focused on dimensional metrology using coordinate-measuring machines with little reported on the area of surface metrology. In the research reported here, potential intelligent sampling strategies for surface topography measurement of structured surfaces are investigated by using numerical simulation and experimental verification. The methods include the jittered uniform method, low-discrepancy pattern sampling and several adaptive methods which originate from computer graphics, coordinate metrology and previous research by the authors. By combining the use of advanced reconstruction methods and feature-based characterization techniques, the measurement performance of the sampling methods is studied using case studies. The advantages, stability and feasibility of these techniques for practical measurements are discussed. (paper)

  9. Thickness-Dependent Bioelectrochemical and Energy Applications of Thickness-Controlled Meso-Macroporous Antimony-Doped Tin Oxide

    Directory of Open Access Journals (Sweden)

    Daniel Mieritz

    2018-04-01

    Full Text Available Coatings of hierarchically meso-macroporous antimony-doped tin oxide (ATO enable interfacing adsorbed species, such as biomacromolecules, with an electronic circuit. The coating thickness is a limiting factor for the surface coverage of adsorbates, that are electrochemically addressable. To overcome this challenge, a carbon black-based templating method was developed by studying the composition of the template system, and finding the right conditions for self-standing templates, preventing the reaction mixture from flowing out of the mask. The thicknesses of as-fabricated coatings were measured using stylus profilometry to establish a relationship between the mask thickness and the coating thickness. Cyclic voltammetry was performed on coatings with adsorbed cytochrome c to check whether the entire coating thickness was electrochemically addressable. Further, bacterial photosynthetic reaction centers were incorporated into the coatings, and photocurrent with respect to coating thickness was studied. The template mixture required enough of both carbon black and polymer, roughly 7% carbon black and 6% poly(ethylene glycol. Coatings were fabricated with thicknesses approaching 30 µm, and thickness was shown to be controllable up to at least 15 µm. Under the experimental conditions, photocurrent was found to increase linearly with the coating thickness, up to around 12 µm, above which were diminished gains.

  10. Cells responding to surface structure of calcium phosphate ceramics for bone regeneration.

    Science.gov (United States)

    Zhang, Jingwei; Sun, Lanying; Luo, Xiaoman; Barbieri, Davide; de Bruijn, Joost D; van Blitterswijk, Clemens A; Moroni, Lorenzo; Yuan, Huipin

    2017-11-01

    Surface structure largely affects the inductive bone-forming potential of calcium phosphate (CaP) ceramics in ectopic sites and bone regeneration in critical-sized bone defects. Surface-dependent osteogenic differentiation of bone marrow stromal cells (BMSCs) partially explained the improved bone-forming ability of submicron surface structured CaP ceramics. In this study, we investigated the possible influence of surface structure on different bone-related cells, which may potentially participate in the process of improved bone formation in CaP ceramics. Besides BMSCs, the response of human brain vascular pericytes (HBVP), C2C12 (osteogenic inducible cells), MC3T3-E1 (osteogenic precursors), SV-HFO (pre-osteoblasts), MG63 (osteoblasts) and SAOS-2 (mature osteoblasts) to the surface structure was evaluated in terms of cell proliferation, osteogenic differentiation and gene expression. The cells were cultured on tricalcium phosphate (TCP) ceramics with either micron-scaled surface structure (TCP-B) or submicron-scaled surface structure (TCP-S) for up to 14 days, followed by DNA, alkaline phosphatase (ALP) and quantitative polymerase chain reaction gene assays. HBVP were not sensitive to surface structure with respect to cell proliferation and osteogenic differentiation, but had downregulated angiogenesis-related gene expression (i.e. vascular endothelial growth factor) on TCP-S. Without additional osteogenic inducing factors, submicron-scaled surface structure enhanced ALP activity and osteocalcin gene expression of human (h)BMSCs and C2C12 cells, favoured the proliferation of MC3T3-E1, MG63 and SAOS-2, and increased ALP activity of MC3T3-E1 and SV-HFO. The results herein indicate that cells with osteogenic potency (either osteogenic inducible cells or osteogenic cells) could be sensitive to surface structure and responded to osteoinductive submicron-structured CaP ceramics in cell proliferation, ALP production or osteogenic gene expression, which favour bone

  11. Communication: Proper treatment of classically forbidden electronic transitions significantly improves detailed balance in surface hopping

    Energy Technology Data Exchange (ETDEWEB)

    Sifain, Andrew E. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485 (United States); Wang, Linjun [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Prezhdo, Oleg V. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485 (United States); Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062 (United States)

    2016-06-07

    Surface hopping is the most popular method for nonadiabatic molecular dynamics. Many have reported that it does not rigorously attain detailed balance at thermal equilibrium, but does so approximately. We show that convergence to the Boltzmann populations is significantly improved when the nuclear velocity is reversed after a classically forbidden hop. The proposed prescription significantly reduces the total number of classically forbidden hops encountered along a trajectory, suggesting that some randomization in nuclear velocity is needed when classically forbidden hops constitute a large fraction of attempted hops. Our results are verified computationally using two- and three-level quantum subsystems, coupled to a classical bath undergoing Langevin dynamics.

  12. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    Science.gov (United States)

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.

  13. High-frequency and meso-scale winter sea-ice variability in the Southern Ocean in a high-resolution global ocean model

    Science.gov (United States)

    Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger

    2018-03-01

    This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.

  14. The relationship of seismic velocity structure and surface fracture characteristics of basalt outcrops to rippability estimates

    International Nuclear Information System (INIS)

    Kay, S.E.; Dougherty, M.E.; Pelton, J.R.

    1994-01-01

    Seismic velocity has been shown in previous engineering studies to be related to the fracture characteristics and rippability of rock outcrops. However, common methods of measuring seismic velocity in outcrops do not take into account the many possible travel paths for wave propagation and the fact that velocity zones may exist within an outcrop. Presented here are the results of using raytracing inversion of first-arrival travel-time data to map P-velocity structure in basalt outcrops, and also the investigation of the relationship of the mapped velocities to observed surface fractures and hand-sample P-velocities. It is shown that basalt outcrops commonly consist of an irregular near-surface low-velocity zone underlain by higher velocity material; that velocity gradients can exist in outcrops; that hand-sample velocity measurements are typically higher than outcrop-scale measurements; and that the characteristics of surface fractures are empirically related to near-surface P-velocity. All of these findings are relevant to the estimated rippability of rock in geotechnical engineering. The data for this study are derived from eleven sites on basalt outcrops of the Troodos Ophiolite in Cyprus. The basalt types include pillow basalts, massive flows, and a pillow breccia. A commonly available raytracing inversion program (RAYINVR) was used to produce a velocity profile of each outcrop. Different velocity zones were detailed by inverting observed travel times to produce a model of outcrop velocity structure which produces rippability profiles for each outcrop. 16 refs., 9 figs

  15. Global structural optimizations of surface systems with a genetic algorithm

    International Nuclear Information System (INIS)

    Chuang, Feng-Chuan

    2005-01-01

    Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Al n (n up to 23) were performed using a genetic algorithm coupled with a tight-binding potential. Second, a genetic algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of √3 x √3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems

  16. MICRO-SEISMOMETERS VIA ADVANCED MESO-SCALE FABRICATION

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Caesar A; Onaran, Guclu; Avenson, Brad; Hall, Neal

    2014-11-07

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) seek revolutionary sensing innovations for the monitoring of nuclear detonations. Performance specifications are to be consistent with those obtainable by only an elite few products available today, but with orders of magnitude reduction in size, weight, power, and cost. The proposed commercial innovation calls upon several technologies including the combination of meso-scale fabrication and assembly, photonics-based displacement / motion detection methods, and the use of digital control electronics . Early Phase II development has demonstrated verified and repeatable sub 2ng noise floor from 3Hz to 100Hz, compact integration of 3-axis prototypes, and robust deployment exercises. Ongoing developments are focusing on low frequency challenges, low power consumption, ultra-miniature size, and low cross axis sensitivity. We are also addressing the rigorous set of specifications required for repeatable and reliable long-term explosion monitoring, including thermal stability, reduced recovery time from mass re-centering and large mechanical shocks, sensitivity stability, and transportability. Successful implementation will result in small, hand-held demonstration units with the ability to address national security needs of the DOE/NNSA. Additional applications envisioned include military/defense, scientific instrumentation, oil and gas exploration, inertial navigation, and civil infrastructure monitoring.

  17. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate

    International Nuclear Information System (INIS)

    Liu, Yan; Li, Shuyi; Niu, Shichao; Cao, Xiaowen; Han, Zhiwu; Ren, Luquan

    2016-01-01

    Highlights: • We have prepared a biomimetic hydrophobic surface on copper substrate by one-step femtosecond laser technique. • The hydrophobicity mechanism relies on morphology and chemical component on surface. • The hydrophobic surfaces exhibit different structural colors and a anisotropic wettability. - Abstract: Inspired by the unique creatures in the nature, the femtosecond laser technology has been usually used to fabricate the periodic microstructures due to its advantages of rapidness, simplicity, ease of large-area fabrication, and simultaneously offering dual micro/nano-scale structures simply via one-step process for a wide variety of materials. By changing the experimental conditions, multi-functional surfaces which possess superhydrophobicity and structural colors could be achieved on copper substrate. In addition, the apparent contact angle can reach 144.3° without any further modification, which also exhibits the anisotropic wettability. Moreover, it can be inferred that higher laser fluence can lead to a larger CA within a certain range. At the same time, due to the change of laser processing parameters, the obtained surfaces present different structural colors. This study may expand the applications of bio-inspired functional materials because multiple colors and hydrophobicity are both important features in the real life and industrial applications, such as display, decoration, and anti-counterfeiting technology etc.

  18. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022 (China); Li, Shuyi; Niu, Shichao [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Cao, Xiaowen [Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2016-08-30

    Highlights: • We have prepared a biomimetic hydrophobic surface on copper substrate by one-step femtosecond laser technique. • The hydrophobicity mechanism relies on morphology and chemical component on surface. • The hydrophobic surfaces exhibit different structural colors and a anisotropic wettability. - Abstract: Inspired by the unique creatures in the nature, the femtosecond laser technology has been usually used to fabricate the periodic microstructures due to its advantages of rapidness, simplicity, ease of large-area fabrication, and simultaneously offering dual micro/nano-scale structures simply via one-step process for a wide variety of materials. By changing the experimental conditions, multi-functional surfaces which possess superhydrophobicity and structural colors could be achieved on copper substrate. In addition, the apparent contact angle can reach 144.3° without any further modification, which also exhibits the anisotropic wettability. Moreover, it can be inferred that higher laser fluence can lead to a larger CA within a certain range. At the same time, due to the change of laser processing parameters, the obtained surfaces present different structural colors. This study may expand the applications of bio-inspired functional materials because multiple colors and hydrophobicity are both important features in the real life and industrial applications, such as display, decoration, and anti-counterfeiting technology etc.

  19. Surface and mineral structure of ferrihydrite

    NARCIS (Netherlands)

    Hiemstra, T.

    2013-01-01

    Ferrihydrite (Fh) is an yet enigmatic nano Fe(III)-oxide material, omnipresent in nature that can bind ions in large quantities, regulating bioavailability and ion mobility. Although extensively studied, to date no proper view exists on the surface structure and composition, while it is of vital

  20. Soil Structure - A Neglected Component of Land-Surface Models

    Science.gov (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  1. Low-energy electron diffraction experiment, theory and surface structure determination

    CERN Document Server

    Hove, Michel A; Chan, Chi-Ming

    1986-01-01

    Surface crystallography plays the same fundamental role in surface science which bulk crystallography has played so successfully in solid-state physics and chemistry. The atomic-scale structure is one of the most important aspects in the understanding of the behavior of surfaces in such widely diverse fields as heterogeneous catalysis, microelectronics, adhesion, lubrication, cor­ rosion, coatings, and solid-solid and solid-liquid interfaces. Low-Energy Electron Diffraction or LEED has become the prime tech­ nique used to determine atomic locations at surfaces. On one hand, LEED has yielded the most numerous and complete structural results to date (almost 200 structures), while on the other, LEED has been regarded as the "technique to beat" by a variety of other surface crystallographic methods, such as photoemission, SEXAFS, ion scattering and atomic diffraction. Although these other approaches have had impressive successes, LEED has remained the most productive technique and has shown the most versatility...

  2. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  3. LHCbDIRAC as Apache Mesos microservices

    Science.gov (United States)

    Haen, Christophe; Couturier, Benjamin

    2017-10-01

    The LHCb experiment relies on LHCbDIRAC, an extension of DIRAC, to drive its offline computing. This middleware provides a development framework and a complete set of components for building distributed computing systems. These components are currently installed and run on virtual machines (VM) or bare metal hardware. Due to the increased workload, high availability is becoming more and more important for the LHCbDIRAC services, and the current installation model is showing its limitations. Apache Mesos is a cluster manager which aims at abstracting heterogeneous physical resources on which various tasks can be distributed thanks to so called “frameworks” The Marathon framework is suitable for long running tasks such as the DIRAC services, while the Chronos framework meets the needs of cron-like tasks like the DIRAC agents. A combination of the service discovery tool Consul together with HAProxy allows to expose the running containers to the outside world while hiding their dynamic placements. Such an architecture brings a greater flexibility in the deployment of LHCbDirac services, allowing for easier deployment maintenance and scaling of services on demand (e..g LHCbDirac relies on 138 services and 116 agents). Higher reliability is also easier, as clustering is part of the toolset, which allows constraints on the location of the services. This paper describes the investigations carried out to package the LHCbDIRAC and DIRAC components into Docker containers and orchestrate them using the previously described set of tools.

  4. Verification of Meso-Zeaxanthin in Fish

    Science.gov (United States)

    Nolan, John M; Beatty, Stephen; Meagher, Katie A; Howard, Alan N; Kelly, David; Thurnham, David I

    2015-01-01

    Background/Objectives The carotenoids lutein (L), zeaxanthin (Z), and meso-zeaxanthin (MZ) accumulate in the central retina (the macula), where they are collectively known as macular pigment (MP). MP has been shown to enhance visual function in both diseased and non-diseased retinae, and therefore an understanding and confirmation of, the origins of these carotenoids is needed. Studies have shown that L and Z are present in many foodstuffs found in a typical Western diet (e.g. spinach, kale, peppers, yellow corn and eggs). It has been shown that MZ is generated from L in the primate retina and earlier reports suggested that MZ was present in some fish species. Recently, however, one research group reported that MZ is not present in fish and suggested that the earlier reports showing MZ in these marine species were a methodological artefact. The current study was designed to investigate the reason for the contradiction, and test for the presence of MZ in fish and some other foods. Methods Raw fruits, vegetables and fish were extracted for carotenoid analysis by high performance liquid chromatography. Results MZ was not detected in any of the fruits or vegetables tested in our study. However, using retention time matching, absorption spectrum comparison, and sample spiking, we verified the presence of MZ in salmon skin, sardine skin, trout skin and trout flesh. Conclusion This study confirmed the presence MZ in nature, and in the human food chain. PMID:25717420

  5. Dynamics of bluff-body-stabilized lean premixed syngas flames in a meso-scale channel

    KAUST Repository

    Lee, Bok Jik

    2016-07-15

    Direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized by a bluff-body in a meso-scale channel at near blow-off conditions, in order to provide fundamental insights into the physical mechanisms responsible for the critical phenomena. Flames in a two-dimensional meso-scale channel with a square flame holder are adopted as the model configuration, and a syngas mixture at an equivalence ratio of 0.5 with the CO:H ratio of 1 is considered. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blow-off limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to the blow-off limit, the recovery mode fails to occur but the flame survives as a short kernel attached to the base of the bluff-body, until it is completely extinguished as the attached flames are gradually shrunk towards the bluff-body. The results are systematically compared with the hydrogen flame results reported in our earlier study. Examination of the characteristic time scales of relevant processes provided understanding of key mechanisms responsible for the observed differences, thereby allowing improved description of the local extinction and re-ignition dynamics that are critical to flame stabilization.

  6. In situ diffraction studies of electrode surface structure during gold electrodeposition

    International Nuclear Information System (INIS)

    Magnussen, O.M.; Krug, K.; Ayyad, A.H.; Stettner, J.

    2008-01-01

    Surface X-ray scattering (SXS) in transmission geometry provides a valuable tool for in situ structural studies of electrochemical interfaces under reaction conditions, as illustrated here for homoepitaxial electrodeposition on Au(1 0 0) and Au(1 1 1) electrodes. Employing diffusion-limited deposition conditions to separate the effects of potential and deposition rate, a mutual interaction between the interface structure and the growth behavior is found. Time-dependent SXS measurements during Au(1 0 0) homoepitaxy show with decreasing potential transitions from step flow to layer-by-layer growth, then to multilayer growth, and finally back to layer-by-layer growth. This complex growth behavior can be explained within the framework of kinetic growth theory by the effect of potential, Cl adsorbates and the Au surface structure, specifically the presence of the surface reconstruction, on the Au surface mobility. Conversely, the electrodeposition process influences the structure of the reconstructed Au surface, as illustrated for Au(1 1 1), where a significant deposition-induced compression of the Au surface layer as compared to Au(1 1 1) surfaces under ultrahigh vacuum conditions or in Au-free electrolyte is found. This compression increases towards more negative potentials, which may be explained by a release of potential-induced surface stress

  7. Structural rearrangements in the C/W(001) surface system

    International Nuclear Information System (INIS)

    Lyman, P.F.; Mullins, D.R.

    1995-01-01

    We have investigated the surface structure of the C/W(001) surface system at submonolayer C coverages using Auger-electron spectroscopy and high-resolution core-level photoelectron spectroscopy. Core-level spectroscopy is a sensitive probe of an atom's local electronic environment; by examining the core levels of the W atoms in the selvedge region, we monitored the response of the substrate to C adsorption. The average shift of the 4f core-level binding energy provided evidence for a heretofore unknown surface reconstruction that occurs upon submonolayer C adsorption. We also performed line-shape analysis on these core-level spectra, and have thereby elucidated the mechanism by which the low-coverage (√2 x √2 )R45 degree structure evolves to a c(3 √2 x √2 )R45 degree arrangement upon further C adsorption. The line-shape analysis also provides corroborating evidence for a proposed model of the saturated C/W(001)-(5x1) surface structure, and suggests that the first two or three atomic W layers are perturbed by the C adsorption and attendant reconstruction

  8. Analysis of Fatigue Crack Growth in Ship Structural Details

    Directory of Open Access Journals (Sweden)

    Leheta Heba W.

    2016-04-01

    Full Text Available Fatigue failure avoidance is a goal that can be achieved only if the fatigue design is an integral part of the original design program. The purpose of fatigue design is to ensure that the structure has adequate fatigue life. Calculated fatigue life can form the basis for meaningful and efficient inspection programs during fabrication and throughout the life of the ship. The main objective of this paper is to develop an add-on program for the analysis of fatigue crack growth in ship structural details. The developed program will be an add-on script in a pre-existing package. A crack propagation in a tanker side connection is analyzed by using the developed program based on linear elastic fracture mechanics (LEFM and finite element method (FEM. The basic idea of the developed application is that a finite element model of this side connection will be first analyzed by using ABAQUS and from the results of this analysis the location of the highest stresses will be revealed. At this location, an initial crack will be introduced to the finite element model and from the results of the new crack model the direction of the crack propagation and the values of the stress intensity factors, will be known. By using the calculated direction of propagation a new segment will be added to the crack and then the model is analyzed again. The last step will be repeated until the calculated stress intensity factors reach the critical value.

  9. Meso-modeling of Carbon Fiber Composite for Crash Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shih-Po; Chen, Yijung; Zeng, Danielle; Su, Xuming

    2017-04-06

    In the conventional approach, the material properties for crash safety simulations are typically obtained from standard coupon tests, where the test results only provide single layer material properties used in crash simulations. However, the lay-up effects for the failure behaviors of the real structure were not considered in numerical simulations. Hence, there was discrepancy between the crash simulations and experimental tests. Consequently, an intermediate stage is required for accurate predictions. Some component tests are required to correlate the material models in the intermediate stage. In this paper, a Mazda Tube under high-impact velocity is chosen as an example for the crash safety analysis. The tube consists of 24 layers of uni-directional (UD) carbon fiber composite materials, in which 4 layers are perpendicular to, while the other layers are parallel to the impact direction. An LS-DYNA meso-model was constructed with orthotropic material models counting for the single-layer material behaviors. Between layers, a node-based tie-break contact was used for modeling the delamination of the composite material. Since fiber directions are not single-oriented, the lay-up effects could be an important effect. From the first numerical trial, premature material failure occurred due to the use of material parameters obtained directly from the coupon tests. Some parametric studies were conducted to identify the cause of the numerical instability. The finding is that the material failure strength used in the numerical model needs to be enlarged to stabilize the numerical model. Some hypothesis was made to provide the foundation for enlarging the failure strength and the corresponding experiments will be conducted to validate the hypothesis.

  10. Scanning moiré and spatial-offset phase-stepping for surface inspection of structures

    Science.gov (United States)

    Yoneyama, S.; Morimoto, Y.; Fujigaki, M.; Ikeda, Y.

    2005-06-01

    In order to develop a high-speed and accurate surface inspection system of structures such as tunnels, a new surface profile measurement method using linear array sensors is studied. The sinusoidal grating is projected on a structure surface. Then, the deformed grating is scanned by linear array sensors that move together with the grating projector. The phase of the grating is analyzed by a spatial offset phase-stepping method to perform accurate measurement. The surface profile measurements of the wall with bricks and the concrete surface of a structure are demonstrated using the proposed method. The change of geometry or fabric of structures and the defects on structure surfaces can be detected by the proposed method. It is expected that the surface profile inspection system of tunnels measuring from a running train can be constructed based on the proposed method.

  11. Improved analysis and visualization of friction loop data: unraveling the energy dissipation of meso-scale stick-slip motion

    Science.gov (United States)

    Kokorian, Jaap; Merlijn van Spengen, W.

    2017-11-01

    In this paper we demonstrate a new method for analyzing and visualizing friction force measurements of meso-scale stick-slip motion, and introduce a method for extracting two separate dissipative energy components. Using a microelectromechanical system tribometer, we execute 2 million reciprocating sliding cycles, during which we measure the static friction force with a resolution of \

  12. Transcription of Small Surface Structures in Injection Moulding - An Experimental Study

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Kjær, Erik Michael

    2000-01-01

    The ability to replicate the surface roughness from mold wall to the plastic part in injection moldning has many functional and cosmetic important implications from medical use to designer products. Generally the understanding of surface transcription i.e the the replication of the surface...... structure from the mould to plastic part, also relates to micro injection moulding and moulding of parts with specific micro structures on the surface such as optical parts. The present study concerns transcription of surface roughness as a function of process parameters. The study is carried out...

  13. Transcription of Small Surface Structures in Injection Molding - an Experimental Study

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Kjær, Erik Michael

    2001-01-01

    The ability to replicate the surface roughness from mold wall to the plastic part in injection moldning has many functional and cosmetic important implications from medical use to designer products. Generally the understanding of surface transcription i.e the the replication of the surface...... structure from the mould to plastic part, also relates to micro injection moulding and moulding of parts with specific micro structures on the surface such as optical parts. The present study concerns transcription of surface roughness as a function of process parameters. The study is carried out...

  14. A Capability Approach to Understanding Sport for Social Inclusion: Agency, Structure and Organisations

    Directory of Open Access Journals (Sweden)

    Naofumi Suzuki

    2017-06-01

    Full Text Available Despite the global diffusion of the term social inclusion, as well as the use of sport to promote it, questions have been raised regarding the extent to which sport is able to contribute to transforming the exclusive nature of the social structure. The lack of analytical clarity of the concept has not helped to address these questions. This article proposes a conceptual framework based on Amartya Sen’s capability approach, considering social exclusion as the denial of social relations that leads to serious deprivation of important capabilities. A person’s capabilities could potentially be improved through micro-, meso-, and macro-level social processes. At the micro level, sport-based social inclusion programmes could offer such social relations to varying degrees, though sport’s values are only relative to other leisure activities. The scale of impact depends primarily on the meso-level processes, in which the size and quality of each programme can be improved through organisational learning, and secondarily on the macro-level processes whereby the organisational population is institutionalised. It is argued that more research needs to be done on the meso and macro levels, as they are concerned with the ultimate potential of sport to facilitate structural transformation towards more socially inclusive society.

  15. Language learners privilege structured meaning over surface frequency

    Science.gov (United States)

    Culbertson, Jennifer; Adger, David

    2014-01-01

    Although it is widely agreed that learning the syntax of natural languages involves acquiring structure-dependent rules, recent work on acquisition has nevertheless attempted to characterize the outcome of learning primarily in terms of statistical generalizations about surface distributional information. In this paper we investigate whether surface statistical knowledge or structural knowledge of English is used to infer properties of a novel language under conditions of impoverished input. We expose learners to artificial-language patterns that are equally consistent with two possible underlying grammars—one more similar to English in terms of the linear ordering of words, the other more similar on abstract structural grounds. We show that learners’ grammatical inferences overwhelmingly favor structural similarity over preservation of superficial order. Importantly, the relevant shared structure can be characterized in terms of a universal preference for isomorphism in the mapping from meanings to utterances. Whereas previous empirical support for this universal has been based entirely on data from cross-linguistic language samples, our results suggest it may reflect a deep property of the human cognitive system—a property that, together with other structure-sensitive principles, constrains the acquisition of linguistic knowledge. PMID:24706789

  16. Multiphase static droplet simulations in hierarchically structured super-hydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Shin; Lee, Joon Sang [School of Mechanical Engineering, Yonsei University, Seoul (Korea, Republic of)

    2016-08-15

    The surface of first part of study is textured with microscopic pillars of prototypical top geometries as a rectangle. The second one is textured with a hierarchical structure, composed of secondary pillar structures added on the primary texture. The length ratio between two scales of texture is 1:16. We evaluated the non-wetting characteristics of two types of surfaces by measuring CAs as well as the transition from the Wenzel's to Cassie's regimes. We measure the Contact angles (CAs), using the Lattice Boltzmann model (LBM), for two different surface configurations. We evaluated the effect of the hierarchical structure; the robustness of the Cassie regime is enhanced and the apparent contact angle is increased by the secondary structures. This is achieved by increasing the energy barrier against the transition between wetting and non-wetting regimes.

  17. Community structure of copepods in the oceanic and neritic waters off Adélie and George V Land, East Antarctica, during the austral summer of 2008

    Science.gov (United States)

    Tachibana, Aiko; Watanabe, Yuko; Moteki, Masato; Hosie, Graham W.; Ishimaru, Takashi

    2017-06-01

    Copepods are one of the most important components of the Southern Ocean food web, and are widely distributed from surface to deeper waters. We conducted discrete depth sampling to clarify the community structure of copepods from the epi- to bathypelagic layers of the oceanic and neritic waters off Adélie and George V Land, East Antarctica, in the austral summer of 2008. Notably high diversity and species numbers were observed in the meso- and bathypelagic layers. Cluster analysis based on the similarity of copepod communities identified seven cluster groups, which corresponded well with water masses. In the epi- and upper- mesopelagic layers of the oceanic zone, the SB (Southern Boundary of the Antarctic Circumpolar Current) divided copepod communities. Conversely, in the lower meso- and bathypelagic layers (500-2000 m depth), communities were consistent across the SB. In these layers, the distributions of copepod species were separated by habitat depth ranges and feeding behaviour. The different food webs occur in the epipelagic layer with habitat segregation by zooplankton in their horizontal distribution ranges.

  18. Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects

    OpenAIRE

    Yu, Yang; Park, Ji-Won; Kwon, Hyun-Mi; Hwang, Hyun-Ok; Jang, In-Hwan; Masuda, Akiko; Kurokawa, Kenji; Nakayama, Hiroshi; Lee, Won-Jae; Dohmae, Naoshi; Zhang, Jinghai; Lee, Bok Luel

    2010-01-01

    In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, whereas the Imd pathway responds to the meso-diaminopimelic acid (DAP)-type peptidoglycan of Gram-negative bacteria and certain Gram-positive bacilli. Recently we determined the activation mechanism ...

  19. Hysteresis of boiling for different tunnel-pore surfaces

    Directory of Open Access Journals (Sweden)

    Pastuszko Robert

    2015-01-01

    Full Text Available Analysis of boiling hysteresis on structured surfaces covered with perforated foil is proposed. Hysteresis is an adverse phenomenon, preventing high heat flux systems from thermal stabilization, characterized by a boiling curve variation at an increase and decrease of heat flux density. Experimental data were discussed for three kinds of enhanced surfaces: tunnel structures (TS, narrow tunnel structures (NTS and mini-fins covered with the copper wire net (NTS-L. The experiments were carried out with water, R-123 and FC-72 at atmospheric pressure. A detailed analysis of the measurement results identified several cases of type I, II and III for TS, NTS and NTS-L surfaces.

  20. Architectural Surfaces and Structures from Circular Arcs

    KAUST Repository

    Shi, Ling

    2013-12-01

    In recent decades, the popularity of freeform shapes in contemporary architecture poses new challenges to digital design. One of them is the process of rationalization, i.e. to make freeform skins or structures affordable to manufacture, which draws the most attention from geometry researchers. In this thesis, we aim to realize this process with simple geometric primitives, circular arcs. We investigate architectural surfaces and structures consisting of circular arcs. Our focus is lying on how to employ them nicely and repetitively in architectural design, in order to decrease the cost in manufacturing. Firstly, we study Darboux cyclides, which are algebraic surfaces of order ≤ 4. We provide a computational tool to identify all families of circles on a given cyclide based on the spherical model of M ̈obius geometry. Practical ways to design cyclide patches that pass through certain inputs are presented. In particular, certain triples of circle families on Darboux cyclides may be suitably arranged as 3-webs. We provide a complete classification of all possible 3-webs of circles on Darboux cyclides. We then investigate the circular arc snakes, which are smooth sequences of circu- lar arcs. We evolve the snakes such that their curvature, as a function of arc length, remains unchanged. The evolution of snakes is utilized to approximate given surfaces by circular arcs or to generated freeform shapes, and it is realized by a 2-step pro- cess. More interestingly, certain 6-arc snake with boundary constraints can produce a smooth self motion, which can be employed to build flexible structures. Another challenging topic is approximating smooth freeform skins with simple panels. We contribute to this problem area by approximating a negatively-curved 5 surface with a smooth union of rational bilinear patches. We provide a proof for vertex consistency of hyperbolic nets using the CAGD approach of the rational B ́ezier form. Moreover, we use Darboux transformations for the

  1. Author Details

    African Journals Online (AJOL)

    Kioni, P N. Vol 9, No 1 (2007) - Articles Detailed structure of pipe flow with water hammer oscillations. Abstract. ISSN: 1561-7645. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL ...

  2. MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck.

    Directory of Open Access Journals (Sweden)

    Maria Ida Iacono

    Full Text Available Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1-2 mm and with 10-50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named "MIDA". The model was obtained by integrating three different magnetic resonance imaging (MRI modalities, the parameters of which were tailored to enhance the signals of specific tissues: i structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii magnetic resonance angiography (MRA data to image the vasculature, and iii diffusion tensor imaging (DTI to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community.

  3. Ion track membranes providing heat pipe surfaces with capillary structures

    International Nuclear Information System (INIS)

    Akapiev, G.N.; Dmitriev, S.N.; Erler, B.; Shirkova, V.V.; Schulz, A.; Pietsch, H.

    2003-01-01

    The microgalvanic method for metal filling of etched ion tracks in organic foils is of particular interest for the fabrication of microsized structures. Microstructures like copper whiskers with a high aspect ratio produced in ion track membranes are suitable for the generation of high-performance heat transfer surfaces. A surface with good heat transfer characteristics is defined as a surface on which a small temperature difference causes a large heat transfer from the surface material to the liquid. It is well-known that a porous surface layer transfers to an evaporating liquid a given quantity of heat at a smaller temperature difference than does a usual smooth surface. Copper whiskers with high aspect ratio and a density 10 5 per cm 2 form such a porous structure, which produces strong capillary forces and therefore a maximum of heat transfer coefficients

  4. Multiresolution Computation of Conformal Structures of Surfaces

    Directory of Open Access Journals (Sweden)

    Xianfeng Gu

    2003-10-01

    Full Text Available An efficient multiresolution method to compute global conformal structures of nonzero genus triangle meshes is introduced. The homology, cohomology groups of meshes are computed explicitly, then a basis of harmonic one forms and a basis of holomorphic one forms are constructed. A progressive mesh is generated to represent the original surface at different resolutions. The conformal structure is computed for the coarse level first, then used as the estimation for that of the finer level, by using conjugate gradient method it can be refined to the conformal structure of the finer level.

  5. Refining femtosecond laser induced periodical surface structures with liquid assist

    International Nuclear Information System (INIS)

    Jiao, L.S.; Ng, E.Y.K.; Zheng, H.Y.

    2013-01-01

    Highlights: ► LIPSS on silicon wafer was made in air and in ethanol environment. ► Ethanol environment produce cleaner surface ripples. ► Ethanol environment decrease spatial wavelength of the LIPSS by 30%. ► More number of pulses produce smaller spatial wavelength in air. ► Number of pulses do not influence spatial wavelength in ethanol environment. - Abstract: Laser induced periodic surface structures were generated on silicon wafer using femtosecond laser. The medium used in this study is both air and ethanol. The laser process parameters such as wavelength, number of pulse, laser fluence were kept constant for both the mediums. The focus of the study is to analyze spatial wavelength. When generating surface structures with air as a medium and same process parameter of the laser, spatial wavelength results showed a 30% increase compared to ethanol. The cleanliness of the surface generated using ethanol showed considerably less debris than in air. The results observed from the above investigation showed that the medium plays a predominant role in the generation of surface structures.

  6. Microphase separated structure and surface properties of fluorinated polyurethane resin

    International Nuclear Information System (INIS)

    Sudaryanto; Nishino, T.; Hori, Y.; Nakamae, K.

    2000-01-01

    The effect of fluorination on microphase separation and surface properties of segmented polyurethane (PU) resin were investigated. A series of fluorinated polyurethane resin (FPU) was synthesized by reacting a fluorinated diol with aromatic diisocyanate. The microphase separated structure of FPU was studied by thermal analysis, and small angle X-ray scattering (SAXS) as well as wide angle X-ray diffraction (WAXD). The surface structure and properties were characterized by X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurement. The incorporation of fluorine into hard segment brings the FPU to have a higher hard domain cohesion and increase the phase separation, however localization of fluorine on the surface could not be observed. On the other hands, localization of fluorine on the surface could be achieved for soft segment fluorinated PU without any significant change in microphase separated structure. The result from this study give an important basic information for designing PU coating material with a low surface energy and strong adhesion as well as for development of release film on pressure sensitive adhesive tape. (author)

  7. Validation of Micro-Meso Electrical Relations for Laminates with Varying Anisotropy

    KAUST Repository

    Selvakumaran, Lakshmi

    2015-08-01

    For electrical impedance tomography (EIT) to be useful in monitoring transverse cracks in composites, it is imperative to establish the relation between conductivity and cracking density. Micro to meso scale homogenization has been developed for classical carbon fiber reinforced polymer (CFRP) laminate which provides such a relationship. However, we have shown in previous studies that the detectability of transverse cracks in such CFRP, which are characterized by very anisotropic electrical properties, is poor. Then, it is better to lower the electrical anisotropy, which can be achieved by various technologies including doping the polymeric resin by conductive nanoparticles. However, the validity of mesoscale homogenization for laminates with such low anisotropy has not been tested before. Here, we show that the mesoscale damage indicator is intrinsic for composites with varying anisotropy.

  8. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  9. The retained templates as "helpers" for the spherical meso-silica in adsorption of heavy metals and impacts of solution chemistry.

    Science.gov (United States)

    Liang, Zhijie; Shi, Wenxin; Zhao, Zhiwei; Sun, Tianyi; Cui, Fuyi

    2017-06-15

    The spherical mesoporous silica (meso-silica) MCM-41 and those with different dosage of the retained templates were prepared and characterized. Particularly, effects of the retained template and its dosage on the adsorption of typical heavy metals (Cu 2+ and Cd 2+ ) in the synthesized materials were investigated. The results indicated that the retained templates acted as "helpers" for the adsorption of Cu 2+ and Cd 2+ in the spherical meso-silica MCM-41, and the maximum adsorption capacities (Q max ) increased with the increase of the retained template dosage. The interaction between the metal ions and the cationic heads of the templates contributed to the enhancement effect due to the anions (Cl - and OH - ) electronically adsorbed on the interface of the template micelles. Additionally, the presented results indicated that the adsorption of Cu 2+ and Cd 2+ depended on pH and high ion strength of the solution but not on the coexisted humic acid. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Template Assembly for Detailed Urban Reconstruction

    KAUST Repository

    Nan, Liangliang

    2015-05-04

    We propose a new framework to reconstruct building details by automatically assembling 3D templates on coarse textured building models. In a preprocessing step, we generate an initial coarse model to approximate a point cloud computed using Structure from Motion and Multi View Stereo, and we model a set of 3D templates of facade details. Next, we optimize the initial coarse model to enforce consistency between geometry and appearance (texture images). Then, building details are reconstructed by assembling templates on the textured faces of the coarse model. The 3D templates are automatically chosen and located by our optimization-based template assembly algorithm that balances image matching and structural regularity. In the results, we demonstrate how our framework can enrich the details of coarse models using various data sets.

  11. An Intelligent Method for Structural Reliability Analysis Based on Response Surface

    Institute of Scientific and Technical Information of China (English)

    桂劲松; 刘红; 康海贵

    2004-01-01

    As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such as offshore platform design. If the performance function is known in structural reliability analysis, the first-order second-moment method is often used. If the performance function could not be definitely expressed, the response surface method is always used because it has a very clear train of thought and simple programming. However, the traditional response surface method fits the response surface of quadratic polynomials where the problem of accuracy could not be solved, because the true limit state surface can be fitted well only in the area near the checking point. In this paper, an intelligent computing method based on the whole response surface is proposed, which can be used for the situation where the performance function could not be definitely expressed in structural reliability analysis. In this method, a response surface of the fuzzy neural network for the whole area should be constructed first, and then the structural reliability can be calculated by the genetic algorithm. In the proposed method, all the sample points for the training network come from the whole area, so the true limit state surface in the whole area can be fitted. Through calculational examples and comparative analysis, it can be known that the proposed method is much better than the traditional response surface method of quadratic polynomials, because, the amount of calculation of finite element analysis is largely reduced, the accuracy of calculation is improved,and the true limit state surface can be fitted very well in the whole area. So, the method proposed in this paper is suitable for engineering application.

  12. Detailed low-energy electron diffraction analysis of the (4×4) surface structure of C60 on Cu(111): Seven-atom-vacancy reconstruction

    Science.gov (United States)

    Xu, Geng; Shi, Xing-Qiang; Zhang, R. Q.; Pai, Woei Wu; Jeng, H. T.; Van Hove, M. A.

    2012-08-01

    A detailed and exhaustive structural analysis by low-energy electron diffraction (LEED) is reported for the C60-induced reconstruction of Cu(111), in the system Cu(111) + (4 × 4)-C60. A wide LEED energy range allows enhanced sensitivity to the crucial C60-metal interface that is buried below the 7-Å-thick molecular layer. The analysis clearly favors a seven-Cu-atom vacancy model (with Pendry R-factor Rp = 0.376) over a one-Cu-atom vacancy model (Rp = 0.608) and over nonreconstructed models (Rp = 0.671 for atop site and Rp = 0.536 for hcp site). The seven-Cu-atom vacancy forms a (4 × 4) lattice of bowl-like holes. In each hole, a C60 molecule can nestle by forming strong bonds (shorter than 2.30 Å) between 15 C atoms of the molecule and 12 Cu atoms of the outermost and second Cu layers.

  13. Architectural Surfaces and Structures from Circular Arcs

    KAUST Repository

    Shi, Ling

    2013-01-01

    the most attention from geometry researchers. In this thesis, we aim to realize this process with simple geometric primitives, circular arcs. We investigate architectural surfaces and structures consisting of circular arcs. Our focus is lying on how

  14. Use of low energy alkali ion scattering as a probe of surface structure

    International Nuclear Information System (INIS)

    Overbury, S.H.

    1986-01-01

    An overview is given of the use of low energy ion scattering as a probe of surface structure with emphasis on work done using alkali ions. Various schemes for extracting structural information from the ion energy and angle distributions are discussed in terms of advantages and disadvantages of each. The scattering potential which is the primary non-structural parameter needed for analysis, is discussed in terms of recent experimental results. The structure of clean and reconstructed surfaces are discussed, with examples of measurements of layer relaxations on the Mo(111) surface and missing row reconstructions on the Au(110) and Pt(110) surfaces. Studies of adsorbate covered surfaces are presented with respect to location of the adsorbate and its effect on the structure of the underlying substrate. Finally, examples are given which demonstrate the sensitivity of ion scattering to surface defects and disordering on reconstructed Au(110) and Pt(110) surfaces and unreconstructed Mo(111) surfaces, and to ordering of adsorbates on Mo(001). 47 refs., 12 figs

  15. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jieliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Su, Zhengliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Department of Automotive Engineering, Tsinghua University, Beijing 100084 (China); Yan, Shaoze, E-mail: yansz@mail.tsinghua.edu.cn [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China)

    2015-12-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  16. Algorithms for singularities and real structures of weak Del Pezzo surfaces

    KAUST Repository

    Lubbes, Niels

    2014-08-01

    In this paper, we consider the classification of singularities [P. Du Val, On isolated singularities of surfaces which do not affect the conditions of adjunction. I, II, III, Proc. Camb. Philos. Soc. 30 (1934) 453-491] and real structures [C. T. C. Wall, Real forms of smooth del Pezzo surfaces, J. Reine Angew. Math. 1987(375/376) (1987) 47-66, ISSN 0075-4102] of weak Del Pezzo surfaces from an algorithmic point of view. It is well-known that the singularities of weak Del Pezzo surfaces correspond to root subsystems. We present an algorithm which computes the classification of these root subsystems. We represent equivalence classes of root subsystems by unique labels. These labels allow us to construct examples of weak Del Pezzo surfaces with the corresponding singularity configuration. Equivalence classes of real structures of weak Del Pezzo surfaces are also represented by root subsystems. We present an algorithm which computes the classification of real structures. This leads to an alternative proof of the known classification for Del Pezzo surfaces and extends this classification to singular weak Del Pezzo surfaces. As an application we classify families of real conics on cyclides. © World Scientific Publishing Company.

  17. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    International Nuclear Information System (INIS)

    Zhao, Jieliang; Su, Zhengliang; Yan, Shaoze

    2015-01-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  18. The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films

    International Nuclear Information System (INIS)

    Csete, M.; Hild, S.; Plettl, A.; Ziemann, P.; Bor, Zs.; Marti, O.

    2004-01-01

    Poly-carbonate films containing different types of original surface roughness were illuminated by a polarized ArF excimer laser beam having a fluence of 4 mJ/cm 2 . Atomic force microscopy was applied to study the laser-induced periodic surface structure formation process at 0 deg. , 30 deg. and 45 deg. angles of incidence. The effect of initial surface structures on the intensity distribution was investigated in cases of: (a) grains on oriented and amorphous thick films; (b) holes on thin spin-coated films; and (c) nanoparticles arranged along micrometer long sides of hexagons below the spin-coated films. The presence of the scattering objects caused symmetry breaking, if the samples were illuminated by oblique incident 's' polarized beam. The Fourier analysis of the AFM pictures has shown the competition of structures having different periods. The characteristic of the permanent surface patterns proved that the interference of the incoming beam and the beams scattered on previously existing structures is the LIPSS generating feedback process. Ring-shaped structures having 228 nm diameter were produced

  19. Tetrabenzoporphyrin and -mono-, -cis-di- and Tetrabenzotriazaporphyrin Derivatives: Electrochemical and Spectroscopic Implications of meso CH Group Replacement with Nitrogen.

    Science.gov (United States)

    van As, Adele; Joubert, Chris C; Buitendach, Blenerhassitt E; Erasmus, Elizabeth; Conradie, Jeanet; Cammidge, Andrew N; Chambrier, Isabelle; Cook, Michael J; Swarts, Jannie C

    2015-06-01

    Nonperipherally hexyl-substituted metal-free tetrabenzoporphyrin (2H-TBP, 1a) tetrabenzomonoazaporphyrin (2H-TBMAP, 2a), tetrabenzo-cis-diazaporphyrin (2H-TBDAP, 3a), tetrabenzotriazaporphyrin (2H-TBTAP, 4a), and phthalocyanine (2H-Pc, 5a), as well as their copper complexes (1b-5b), were synthesized. As the number of meso nitrogen atoms increases from zero to four, λmax of the Q-band absorption peak becomes red-shifted by almost 100 nm, and extinction coefficients increased at least threefold. Simultaneously the blue-shifted Soret (UV) band substantially decreased in intensity. These changes were related to the relative electron-density of each macrocycle expressed as the group electronegativity sum of all meso N and CH atom groups, ∑χR. X-ray photoelectron spectroscopy differentiated between the three different types of macrocyclic nitrogen atoms (the Ninner, (NH)inner, and Nmeso) in the metal-free complexes. Binding energies of the Nmeso and Ninner,Cu atoms in copper chelates could not be resolved. Copper insertion lowered especially the cathodic redox potentials, while all four observed redox processes occurred at larger potentials as the number of meso nitrogens increased. Computational chemical methods using density functional theory confirmed 1b to exhibit a Cu(II) reduction prior to ring-based reductions, while for 2b, Cu(II) reduction is the first reductive step only if the nonperipheral substituents are hydrogen. When they are methyl groups, it is the second reduction process; when they are ethyl, propyl, or hexyl, it becomes the third reductive process. Spectro-electrochemical measurements showed redox processes were associated with a substantial change in intensity of at least two main absorbances (the Q and Soret bands) in the UV spectra of these compounds.

  20. Surface Chloride Levels in Colorado Structural Concrete

    Science.gov (United States)

    2018-01-01

    This project focused on the chloride-induced corrosion of reinforcing steel in structural concrete. The primary goal of this project is to analyze the surface chloride concentration level of the concrete bridge decks throughout Colorado. The study in...