WorldWideScience

Sample records for mems-based movable microelectrodes

  1. Long-term neural recordings using MEMS based moveable microelectrodes in the brain

    Directory of Open Access Journals (Sweden)

    Nathan Jackson

    2010-06-01

    Full Text Available One of the critical requirements of the emerging class of neural prosthetic devices is to maintain good quality neural recordings over long time periods. We report here a novel (Micro-ElectroMechanical Systems based technology that can move microelectrodes in the event of deterioration in neural signal to sample a new set of neurons. Microscale electro-thermal actuators are used to controllably move microelectrodes post-implantation in steps of approximately 9 µm. In this study, a total of 12 moveable microelectrode chips were individually implanted in adult rats. Two of the 12 moveable microelectrode chips were not moved over a period of 3 weeks and were treated as control experiments. During the first three weeks of implantation, moving the microelectrodes led to an improvement in the average SNR from 14.61 ± 5.21 dB before movement to 18.13 ± 4.99 dB after movement across all microelectrodes and all days. However, the average RMS values of noise amplitudes were similar at 2.98 ± 1.22 µV and 3.01 ± 1.16 µV before and after microelectrode movement. Beyond three weeks, the primary observed failure mode was biological rejection of the PMMA (dental cement based skull mount resulting in the device loosening and eventually falling from the skull. Additionally, the average SNR for functioning devices beyond three weeks was 11.88 ± 2.02 dB before microelectrode movement and was significantly different (p<0.01 from the average SNR of 13.34 ± 0.919 dB after movement. The results of this study demonstrate that MEMS based technologies can move microelectrodes in rodent brains in long-term experiments resulting in improvements in signal quality. Further improvements in packaging and surgical techniques will potentially enable movable microelectrodes to record cortical neuronal activity in chronic experiments.

  2. Movable MEMS Devices on Flexible Silicon

    KAUST Repository

    Ahmed, Sally

    2013-05-05

    Flexible electronics have gained great attention recently. Applications such as flexible displays, artificial skin and health monitoring devices are a few examples of this technology. Looking closely at the components of these devices, although MEMS actuators and sensors can play critical role to extend the application areas of flexible electronics, fabricating movable MEMS devices on flexible substrates is highly challenging. Therefore, this thesis reports a process for fabricating free standing and movable MEMS devices on flexible silicon substrates; MEMS flexure thermal actuators have been fabricated to illustrate the viability of the process. Flexure thermal actuators consist of two arms: a thin hot arm and a wide cold arm separated by a small air gap; the arms are anchored to the substrate from one end and connected to each other from the other end. The actuator design has been modified by adding etch holes in the anchors to suit the process of releasing a thin layer of silicon from the bulk silicon substrate. Selecting materials that are compatible with the release process was challenging. Moreover, difficulties were faced in the fabrication process development; for example, the structural layer of the devices was partially etched during silicon release although it was protected by aluminum oxide which is not attacked by the releasing gas . Furthermore, the thin arm of the thermal actuator was thinned during the fabrication process but optimizing the patterning and etching steps of the structural layer successfully solved this problem. Simulation was carried out to compare the performance of the original and the modified designs for the thermal actuators and to study stress and temperature distribution across a device. A fabricated thermal actuator with a 250 μm long hot arm and a 225 μm long cold arm separated by a 3 μm gap produced a deflection of 3 μm before silicon release, however, the fabrication process must be optimized to obtain fully functioning

  3. Carbon microelectromechanical systems (C-MEMS) based microsupercapacitors

    KAUST Repository

    Agrawal, Richa

    2015-05-18

    The rapid development in miniaturized electronic devices has led to an ever increasing demand for high-performance rechargeable micropower scources. Microsupercapacitors in particular have gained much attention in recent years owing to their ability to provide high pulse power while maintaining long cycle lives. Carbon microelectromechanical systems (C-MEMS) is a powerful approach to fabricate high aspect ratio carbon microelectrode arrays, which has been proved to hold great promise as a platform for energy storage. C-MEMS is a versatile technique to create carbon structures by pyrolyzing a patterned photoresist. Furthermore, different active materials can be loaded onto these microelectrode platforms for further enhancement of the electrochemical performance of the C-MEMS platform. In this article, different techniques and methods in order to enhance C-MEMS based various electrochemical capacitor systems have been discussed, including electrochemical activation of C-MEMS structures for miniaturized supercapacitor applications, integration of carbon nanostructures like carbon nanotubes onto C-MEMS structures and also integration of pseudocapacitive materials such as polypyrrole onto C-MEMS structures. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  4. Carbon microelectromechanical systems (C-MEMS) based microsupercapacitors

    KAUST Repository

    Agrawal, Richa; Beidaghi, Majid; Chen, Wei; Wang, Chunlei

    2015-01-01

    The rapid development in miniaturized electronic devices has led to an ever increasing demand for high-performance rechargeable micropower scources. Microsupercapacitors in particular have gained much attention in recent years owing to their ability to provide high pulse power while maintaining long cycle lives. Carbon microelectromechanical systems (C-MEMS) is a powerful approach to fabricate high aspect ratio carbon microelectrode arrays, which has been proved to hold great promise as a platform for energy storage. C-MEMS is a versatile technique to create carbon structures by pyrolyzing a patterned photoresist. Furthermore, different active materials can be loaded onto these microelectrode platforms for further enhancement of the electrochemical performance of the C-MEMS platform. In this article, different techniques and methods in order to enhance C-MEMS based various electrochemical capacitor systems have been discussed, including electrochemical activation of C-MEMS structures for miniaturized supercapacitor applications, integration of carbon nanostructures like carbon nanotubes onto C-MEMS structures and also integration of pseudocapacitive materials such as polypyrrole onto C-MEMS structures. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  5. Design, simulation and fabrication of a novel contact-enhanced MEMS inertial switch with a movable contact point

    International Nuclear Information System (INIS)

    Cai Haogang; Ding Guifu; Yang Zhuoqing; Su Zhijuan; Zhou Jiansheng; Wang Hong

    2008-01-01

    A novel inertial switch based on a micro-electro-mechanical system (MEMS) was designed, which consists of three main parts: a proof mass as the movable electrode, a cross beam as the stationary electrode and a movable contact point to prolong the contact time. A MATLAB/Simulink model, which had been verified by comparison with ANSYS transient simulation, was built to simulate the dynamic response, based on which the contact-enhancing mechanism was confirmed and the dependence of threshold acceleration on the proof mass thickness was studied. The simulated dynamic responses under various accelerations exhibit satisfactory device behaviors: the switch-on time is prolonged under transient acceleration; the switch-on state is more continuous than the conventional design under long lasting acceleration. The inertial micro-switch was fabricated by multilayer electroplating technology and then tested by a drop hammer experiment. The test results indicate that the contact effect was improved significantly and a steady switch-on time of over 50 µs was observed under half-sine wave acceleration with 1 ms duration, in agreement with the dynamic simulation

  6. Movable MEMS Devices on Flexible Silicon

    KAUST Repository

    Ahmed, Sally

    2013-01-01

    Flexible electronics have gained great attention recently. Applications such as flexible displays, artificial skin and health monitoring devices are a few examples of this technology. Looking closely at the components of these devices, although MEMS

  7. New movable plate for efficient millimeter wave vertical on-chip antenna

    KAUST Repository

    Marnat, Loic; Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Galicia Martinez, Miguel Angel; Foulds, Ian G.; Shamim, Atif

    2013-01-01

    A new movable plate concept is presented in this paper to realize mm-wave vertical on-chip antennas through MEMS based post-processing steps in a CMOS compatible process. By virtue of its vertical position, the antenna is isolated from the lossy Si substrate and hence performs with a better efficiency as compared to the horizontal position. In addition, the movable plate concept enables polarization diversity by providing both horizontal and vertical polarizations on the same chip. Through a first iteration fractal bowtie antenna design, dual band (60 and 77 GHz) operation is demonstrated in both horizontal and vertical positions without any change in dimensions or use of switches for two different mediums (Si and air). To support the movable plate concept, the transmission line and antenna are designed on a flexible polyamide, where the former has been optimized to operate in the bent position. The design is highly suitable for compact, low cost and efficient SoC solutions. © 1963-2012 IEEE.

  8. New movable plate for efficient millimeter wave vertical on-chip antenna

    KAUST Repository

    Marnat, Loic

    2013-04-01

    A new movable plate concept is presented in this paper to realize mm-wave vertical on-chip antennas through MEMS based post-processing steps in a CMOS compatible process. By virtue of its vertical position, the antenna is isolated from the lossy Si substrate and hence performs with a better efficiency as compared to the horizontal position. In addition, the movable plate concept enables polarization diversity by providing both horizontal and vertical polarizations on the same chip. Through a first iteration fractal bowtie antenna design, dual band (60 and 77 GHz) operation is demonstrated in both horizontal and vertical positions without any change in dimensions or use of switches for two different mediums (Si and air). To support the movable plate concept, the transmission line and antenna are designed on a flexible polyamide, where the former has been optimized to operate in the bent position. The design is highly suitable for compact, low cost and efficient SoC solutions. © 1963-2012 IEEE.

  9. Capacitive MEMS-based sensors : thermo-mechanical stability and charge trapping

    OpenAIRE

    van Essen, M.C.

    2009-01-01

    Micro-Electro Mechanical Systems (MEMS) are generally characterized as miniaturized systems with electrostatically driven moving parts. In many cases, the electrodes are capacitively coupled. This basic scheme allows for a plethora of specifications and functionality. This technology has presently matured and is widely employed in industry. A voltage across the electrodes will attract the movable part. This relation between electric field and separation (or capacitance) can be conveniently em...

  10. Electrostatic Spray Deposition-Based Manganese Oxide Films-From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands.

    Science.gov (United States)

    Agrawal, Richa; Adelowo, Ebenezer; Baboukani, Amin Rabiei; Villegas, Michael Franc; Henriques, Alexandra; Wang, Chunlei

    2017-07-26

    In this study, porous manganese oxide (MnO x ) thin films were synthesized via electrostatic spray deposition (ESD) and evaluated as pseudocapacitive electrode materials in neutral aqueous media. Very interestingly, the gravimetric specific capacitance of the ESD-based electrodes underwent a marked enhancement upon electrochemical cycling, from 72 F∙g -1 to 225 F∙g -1 , with a concomitant improvement in kinetics and conductivity. The change in capacitance and resistivity is attributed to a partial electrochemical phase transformation from the spinel-type hausmannite Mn₃O₄ to the conducting layered birnessite MnO₂. Furthermore, the films were able to retain 88.4% of the maximal capacitance after 1000 cycles. Upon verifying the viability of the manganese oxide films for pseudocapacitive applications, the thin films were integrated onto carbon micro-pillars created via carbon microelectromechanical systems (C-MEMS) for examining their application as potential microelectrode candidates. In a symmetric two-electrode cell setup, the MnO x /C-MEMS microelectrodes were able to deliver specific capacitances as high as 0.055 F∙cm -2 and stack capacitances as high as 7.4 F·cm -3 , with maximal stack energy and power densities of 0.51 mWh·cm -3 and 28.3 mW·cm -3 , respectively. The excellent areal capacitance of the MnO x -MEs is attributed to the pseudocapacitive MnO x as well as the three-dimensional architectural framework provided by the carbon micro-pillars.

  11. Electrostatic Spray Deposition-Based Manganese Oxide Films—From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands

    Directory of Open Access Journals (Sweden)

    Richa Agrawal

    2017-07-01

    Full Text Available In this study, porous manganese oxide (MnOx thin films were synthesized via electrostatic spray deposition (ESD and evaluated as pseudocapacitive electrode materials in neutral aqueous media. Very interestingly, the gravimetric specific capacitance of the ESD-based electrodes underwent a marked enhancement upon electrochemical cycling, from 72 F∙g−1 to 225 F∙g−1, with a concomitant improvement in kinetics and conductivity. The change in capacitance and resistivity is attributed to a partial electrochemical phase transformation from the spinel-type hausmannite Mn3O4 to the conducting layered birnessite MnO2. Furthermore, the films were able to retain 88.4% of the maximal capacitance after 1000 cycles. Upon verifying the viability of the manganese oxide films for pseudocapacitive applications, the thin films were integrated onto carbon micro-pillars created via carbon microelectromechanical systems (C-MEMS for examining their application as potential microelectrode candidates. In a symmetric two-electrode cell setup, the MnOx/C-MEMS microelectrodes were able to deliver specific capacitances as high as 0.055 F∙cm−2 and stack capacitances as high as 7.4 F·cm−3, with maximal stack energy and power densities of 0.51 mWh·cm−3 and 28.3 mW·cm−3, respectively. The excellent areal capacitance of the MnOx-MEs is attributed to the pseudocapacitive MnOx as well as the three-dimensional architectural framework provided by the carbon micro-pillars.

  12. Optical fibre angle sensor used in MEMS

    International Nuclear Information System (INIS)

    Golebiowski, J; Milcarz, Sz; Rybak, M

    2014-01-01

    There is a need for displacement and angle measurements in many movable MEMS structures. The use of fibre optical sensors helps to measure micrometre displacements and small rotation angles. Advantages of this type of transducers are their simple design, high precision of processing, low costs and ability of a non-contact measurement. The study shows an analysis of a fibre-optic intensity sensor used for MEMS movable structure rotation angle measurement. An intensity of the light in the photodetector is basically dependent on a distance between a reflecting surface and a head surface of the fibre transmitting arm, and the deflection angle. Experimental tests were made for PMMA 980/1000 plastic fibres, Θ NA =33°. The study shows both analytical and practical results. It proves that calculated and experimental characteristics for the analysed transducers are similar.

  13. Carbon material based microelectromechanical system (MEMS): Fabrication and devices

    Science.gov (United States)

    Xu, Wenjun

    silicon and metal based microsystems. In this thesis, this mature technique was exploited to generate a variety of microelectrode structures to facilitate the micropatterning and manipulation of the CNTs. Selective deposition of electrically charged CNTs onto desired locations was realized in an EPD process through patterning of electric field lines created by the microelectrodes fabricated through MEMS techniques. A variety of 2-D and 3-D micropatterns of CNTs with waferscale areas have been successfully achieved in both rigid and elastic systems. The thickness and morphology of the generated CNT patterns was found to be readily controllable through the parameters of the fabrication process. Studies also showed that for this technique, high surface hydrophobicity of the non-conductive regions in microstructures was critical to accomplish well-defined selective micropatterning of CNTs. Upon clearing the hurdles of the CNT manipulation, a patterned PDMS/CNT nanocomposite was fabricated through the aforementioned approach and was incorporated, investigated and validated in elastic force/strain microsensors. The gauge factor of the sensor exhibited a strong dependence on both the initial resistance of the device and the applied strain. Detailed analysis of the data suggests that the piezoresistive effect of this specially constructed bi-layer composite could be due to three mechanisms, and the sensing mechanism may vary when physical properties of the CNT network embedded in the polymer matrix alter. The feasibility of the PDSM/CNT composite being utilized as an elastic electret was further explored. The nanocomposite composed of these two non-traditional electret materials exhibited electret characteristics with reasonable charge storage stability when charged using a corona discharge. The power generation capacity of the corona-charged composite has been characterized and successfully demonstrated in both a ball drop experiment and cyclic mechanical load experiments

  14. Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays

    Directory of Open Access Journals (Sweden)

    Donna H. Wang

    2011-08-01

    Full Text Available Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM. The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA, due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors.

  15. High Efficiency Optical MEMS by the Integration of Photonic Lattices with Surface MEMS

    Energy Technology Data Exchange (ETDEWEB)

    FLEMING, JAMES G.; LIN, SHAWN-YU; MANI, SEETHAMBAL S.; RODGERS, M. STEVEN; DAGEL, DARYL J.

    2002-11-01

    This report outlines our work on the integration of high efficiency photonic lattice structures with MEMS (MicroElectroMechanical Systems). The simplest of these structures were based on 1-D mirror structures. These were integrated into a variety of devices, movable mirrors, switchable cavities and finally into Bragg fiber structures which enable the control of light in at least 2 dimensions. Of these devices, the most complex were the Bragg fibers. Bragg fibers consist of hollow tubes in which light is guided in a low index media (air) and confined by surrounding Bragg mirror stacks. In this work, structures with internal diameters from 5 to 30 microns have been fabricated and much larger structures should also be possible. We have demonstrated the fabrication of these structures with short wavelength band edges ranging from 400 to 1600nm. There may be potential applications for such structures in the fields of integrated optics and BioMEMS. We have also looked at the possibility of waveguiding in 3 dimensions by integrating defects into 3-dimensional photonic lattice structures. Eventually it may be possible to tune such structures by mechanically modulating the defects.

  16. MEMS-based transmission lines for microwave applications

    Science.gov (United States)

    Wu, Qun; Fu, Jiahui; Gu, Xuemai; Shi, Huajuan; Lee, Jongchul

    2003-04-01

    This paper mainly presents a briefly review for recent progress in MEMS-based transmission lines for use in microwave and millimeterwave range. MEMS-based transmission lines including different transmission line structure such as membrane-supported microstrip line microstrip line, coplanar microshield transmission line, LIGA micromachined planar transmission line, micromachined waveguides and coplanar waveguide are discussed. MEMS-based transmission lines are characterized by low propagation loss, wide operation frequency band, low dispersion and high quality factor, in addition, the fabrication is compatible with traditional processing of integrated circuits (IC"s). The emergence of MEMS-based transmission lines provided a solution for miniaturizing microwave system and monolithic microwave integrated circuits.

  17. “GEOHeritage” - GIS Based Application for Movable Heritage

    Directory of Open Access Journals (Sweden)

    Albina Moscicka

    2011-12-01

    Full Text Available The paper will present the results of a research project „A methodology for mapping movable heritage”.  This project, financed by the Polish Ministry of Science and Higher Education in 2008-2010, was realized by the Institute of Geodesy and Cartography in cooperation with the Research and Academic Computer Network (portal Polska.pl, the Central Archives of Historical Records and Department of Art History of the Wroclaw University. The idea of the project was to simplify access to digital movable cultural heritage by the use of spatial information. The main aspect of the project was to use a Geographic Information System (GIS - as a technology and as a tool - to integrate different digital collections, present their content in one space and provide online access to them from one common level – from an online map. The essence of the research was to present on the online map movable monument as multi-spatial object. The base of this assumption is that most of monuments, especially movable ones, can have several places in the geographical space that are connected with them (several various space relations. As a rule archival documents were created in one place, describe the other, today can be kept in places far away from the place they were prepared, and what more the parts of the same collection can be kept in different archives. Moreover, one single document can be connected or have relations (typological, thematically, temporal, spatial with other relations to the same or the other one. The reason for it is that documents concerning various places are housed in the same archive, various documents can present the same place or the place of creating particular document can be the place of housing another. In the project the basic source material was digital collections of original records. Their metadata defined in the international standards of monuments’ description were used for connecting digital monuments with the geographic space

  18. MEMS-based Circuits and Systems for Wireless Communication

    CERN Document Server

    Kaiser, Andreas

    2013-01-01

    MEMS-based Circuits and Systems for Wireless Communication provides comprehensive coverage of RF-MEMS technology from device to system level. This edited volume places emphasis on how system performance for radio frequency applications can be leveraged by Micro-Electro-Mechanical Systems (MEMS). Coverage also extends to innovative MEMS-aware radio architectures that push the potential of MEMS technology further ahead.  This work presents a broad overview of the technology from MEMS devices (mainly BAW and Si MEMS resonators) to basic circuits, such as oscillators and filters, and finally complete systems such as ultra-low-power MEMS-based radios. Contributions from leading experts around the world are organized in three parts. Part I introduces RF-MEMS technology, devices and modeling and includes a prospective outlook on ongoing developments towards Nano-Electro-Mechanical Systems (NEMS) and phononic crystals. Device properties and models are presented in a circuit oriented perspective. Part II focusses on ...

  19. Lead salt resonant cavity enhanced detector with MEMS mirror

    Science.gov (United States)

    Felder, F.; Fill, M.; Rahim, M.; Zogg, H.; Quack, N.; Blunier, S.; Dual, J.

    2010-01-01

    We describe a tunable resonant cavity enhanced detector (RCED) for the mid-infrared employing narrow gap lead-chalcogenide (IV-VI) layers on a Si substrate. The device consists of an epitaxial Bragg reflector layer, a thin p-n+ heterojunction with PbSrTe as detecting layer and a micro-electro-mechanical system (MEMS) micromirror as second mirror. Despite the thin absorber layer the sensitivity is even higher than for a conventional detector. Tunability is achieved by changing the cavity length with a vertically movable MEMS mirror. The device may be used as miniature infrared spectrometer to cover the spectral range from 30 μm.

  20. Silicon Wafer-Based Platinum Microelectrode Array Biosensor for Near Real-Time Measurement of Glutamate in Vivo

    Directory of Open Access Journals (Sweden)

    Nigel T. Maidment

    2008-08-01

    Full Text Available Using Micro-Electro-Mechanical-Systems (MEMS technologies, we have developed silicon wafer-based platinum microelectrode arrays (MEAs modified with glutamate oxidase (GluOx for electroenzymatic detection of glutamate in vivo. These MEAs were designed to have optimal spatial resolution for in vivo recordings. Selective detection of glutamate in the presence of the electroactive interferents, dopamine and ascorbic acid, was attained by deposition of polypyrrole and Nafion. The sensors responded to glutamate with a limit of detection under 1μM and a sub-1-second response time in solution. In addition to extensive in vitro characterization, the utility of these MEA glutamate biosensors was also established in vivo. In the anesthetized rat, these MEA glutamate biosensors were used for detection of cortically-evoked glutamate release in the ventral striatum. The MEA biosensors also were applied to the detection of stress-induced glutamate release in the dorsal striatum of the freely-moving rat.

  1. Glassy carbon MEMS for novel origami-styled 3D integrated intracortical and epicortical neural probes

    Science.gov (United States)

    Goshi, Noah; Castagnola, Elisa; Vomero, Maria; Gueli, Calogero; Cea, Claudia; Zucchini, Elena; Bjanes, David; Maggiolini, Emma; Moritz, Chet; Kassegne, Sam; Ricci, Davide; Fadiga, Luciano

    2018-06-01

    We report on a novel technology for microfabricating 3D origami-styled micro electro-mechanical systems (MEMS) structures with glassy carbon (GC) features and a supporting polymer substrate. GC MEMS devices that open to form 3D microstructures are microfabricated from GC patterns that are made through pyrolysis of polymer precursors on high-temperature resisting substrates like silicon or quartz and then transferring the patterned devices to a flexible substrate like polyimide followed by deposition of an insulation layer. The devices on flexible substrate are then folded into 3D form in an origami-fashion. These 3D MEMS devices have tunable mechanical properties that are achieved by selectively varying the thickness of the polymeric substrate and insulation layers at any desired location. This technology opens new possibilities by enabling microfabrication of a variety of 3D GC MEMS structures suited to applications ranging from biochemical sensing to implantable microelectrode arrays. As a demonstration of the technology, a neural signal recording microelectrode array platform that integrates both surface (cortical) and depth (intracortical) GC microelectrodes onto a single flexible thin-film device is introduced. When the device is unfurled, a pre-shaped shank of polyimide automatically comes off the substrate and forms the penetrating part of the device in a 3D fashion. With the advantage of being highly reproducible and batch-fabricated, the device introduced here allows for simultaneous recording of electrophysiological signals from both the brain surface (electrocorticography—ECoG) and depth (single neuron). Our device, therefore, has the potential to elucidate the roles of underlying neurons on the different components of µECoG signals. For in vivo validation of the design capabilities, the recording sites are coated with a poly(3,4-ethylenedioxythiophene)—polystyrene sulfonate—carbon nanotube composite, to improve the electrical conductivity of the

  2. Power Management of MEMS-Based Storage Devices for Mobile Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    2008-01-01

    Because of its small form factor, high capacity, and expected low cost, MEMS-based storage is a suitable storage technology for mobile systems. MEMS-based storage devices should also be energy efficient for deployment in mobile systems. The problem is that MEMS-based storage devices are mechanical,

  3. A MEMS-based, wireless, biometric-like security system

    Science.gov (United States)

    Cross, Joshua D.; Schneiter, John L.; Leiby, Grant A.; McCarter, Steven; Smith, Jeremiah; Budka, Thomas P.

    2010-04-01

    We present a system for secure identification applications that is based upon biometric-like MEMS chips. The MEMS chips have unique frequency signatures resulting from fabrication process variations. The MEMS chips possess something analogous to a "voiceprint". The chips are vacuum encapsulated, rugged, and suitable for low-cost, highvolume mass production. Furthermore, the fabrication process is fully integrated with standard CMOS fabrication methods. One is able to operate the MEMS-based identification system similarly to a conventional RFID system: the reader (essentially a custom network analyzer) detects the power reflected across a frequency spectrum from a MEMS chip in its vicinity. We demonstrate prototype "tags" - MEMS chips placed on a credit card-like substrate - to show how the system could be used in standard identification or authentication applications. We have integrated power scavenging to provide DC bias for the MEMS chips through the use of a 915 MHz source in the reader and a RF-DC conversion circuit on the tag. The system enables a high level of protection against typical RFID hacking attacks. There is no need for signal encryption, so back-end infrastructure is minimal. We believe this system would make a viable low-cost, high-security system for a variety of identification and authentication applications.

  4. A review of vibration-based MEMS piezoelectric energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Saadon, Salem; Sidek, Othman [Collaborative Microelectronic Design Excellence Center (CEDEC), School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2011-01-15

    The simplicity associated with the piezoelectric micro-generators makes it very attractive for MEMS applications, especially for remote systems. In this paper we reviewed the work carried out by researchers during the last three years. The improvements in experimental results obtained in the vibration-based MEMS piezoelectric energy harvesters show very good scope for MEMS piezoelectric harvesters in the field of power MEMS in the near future. (author)

  5. Vertically aligned carbon nanotubes for microelectrode arrays applications.

    Science.gov (United States)

    Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric

    2012-09-01

    In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology.

  6. System-Level Modelling and Simulation of MEMS-Based Sensors

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Madsen, Jan; Shafique, Mohammad

    2005-01-01

    The growing complexity of MEMS devices and their increased used in embedded systems (e.g., wireless integrated sensor networks) demands a disciplined aproach for MEMS design as well as the development of techniques for system-level modeling of these devices so that a seamless integration with the......The growing complexity of MEMS devices and their increased used in embedded systems (e.g., wireless integrated sensor networks) demands a disciplined aproach for MEMS design as well as the development of techniques for system-level modeling of these devices so that a seamless integration...... with the existing embedded system design methodologies is possible. In this paper, we present a MEMS design methodology that uses VHDL-AMS based system-level model of a MEMS device as a starting point and combines the top-down and bottom-up design approaches for design, verification, and optimization...

  7. Band-type microelectrodes for amperometric immunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ga-Yeon; Chang, Young Wook; Ko, Hyuk [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Kang, Min-Jung [Korea Institute of Science and Technology (KIST), Seoul (Korea, Republic of); Pyun, Jae-Chul, E-mail: jcpyun@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of)

    2016-07-20

    A band-type microelectrode was made using a parylene-N film as a passivation layer. A circular-type, mm-scale electrode with the same diameter as the band-type microelectrode was also made with an electrode area that was 5000 times larger than the band-type microelectrode. By comparing the amperometric signals of 3,5,3′,5′-tetramethylbenzidine (TMB) samples at different optical density (OD) values, the band-type microelectrode was determined to be 9 times more sensitive than the circular-type electrode. The properties of the circular-type and the band-type electrodes (e.g., the shape of their cyclic voltammograms, the type of diffusion layer used, and the diffusion layer thickness per unit electrode area) were characterized according to their electrode area using the COMSOL Multiphysics software. From these simulations, the band-type electrode was estimated to have the conventional microelectrode properties, even when the electrode area was 100 times larger than a conventional circular-type electrode. These results show that both the geometry and the area of an electrode can influence the properties of the electrode. Finally, amperometric analysis based on a band-type electrode was applied to commercial ELISA kits to analyze human hepatitis B surface antigen (hHBsAg) and human immunodeficiency virus (HIV) antibodies. - Highlights: • A band-type microelectrode was made using a parylene-N film as a passivation layer. • The band-type microelectrode was 14-times more sensitive than circular-type electrode. • The influence of geometry on microelectrode properties was simulated using COMSOL. • The band-type electrode was applied to ELISA kits for hHBsAg and hHIV-antibodies.

  8. Safety Performance Evaluations for the Vehicle Based Movable Barriers Using Full Scale Crash Tests

    Directory of Open Access Journals (Sweden)

    Jin Minsoo

    2017-01-01

    Full Text Available The present study aims to develop a prototype of large-size movable barriers to protect roadside workers from incoming vehicles to the road work area with the following functions: maximization of work space in the right and left directions, convenient mobility, and minimization of impact without modification of the inside of movable barriers into traffic lanes and perform safety performance assessment on passengers through full scale crash tests. The large movable barrier was divided into folder type and telescope type and the development stage was now at the prototype phase. A full scale crash test was conducted prior to certification test at a level of 90%. The full scale crash test result showed that both types of folder type movable barrier and telescope type movable barrier satisfied the standard of the passenger safety performance evaluation at a level of 90%.

  9. Digital reflection holography based systems development for MEMS testing

    Science.gov (United States)

    Singh, Vijay Raj; Liansheng, Sui; Asundi, Anand

    2010-05-01

    MEMS are tiny mechanical devices that are built onto semiconductor chips and are measured in micrometers and nanometers. Testing of MEMS device is an important part in carrying out their functional assessment and reliability analysis. Development of systems based on digital holography (DH) for MEMS inspection and characterization is presented in this paper. Two DH reflection systems, table-top and handheld types, are developed depending on the MEMS measurement requirements and their capabilities are presented. The methodologies for the systems are developed for 3D profile inspection and static & dynamic measurements, which is further integrated with in-house developed software that provides the measurement results in near real time. The applications of the developed systems are demonstrated for different MEMS devices for 3D profile inspection, static deformation/deflection measurements and vibration analysis. The developed systems are well suitable for the testing of MEMS and Microsystems samples, with full-field, static & dynamic inspection as well as to monitor micro-fabrication process.

  10. A novel combinational pH-PCO2 microelectrode.

    Science.gov (United States)

    Rao, X; Ma, Y

    1993-07-01

    A novel combinational pH-PCO2 microelectrode based on a neutral carrier hydrogen ion exchanger is described. It is easy to fabricate and allows pH and PCO2 to be measured simultaneously. The microelectrode has a 5-microns tip. The PCO2 microelectrode exhibits a linear response in the range 1.75 x 10(-5)-10(-2) mol/liter with a Nernstian slope of 57.0 mV/decade at 25 degrees C. The detection limit is 10(-5) mol/liter. The pH microelectrode exhibits a linear response in the range pH 4-12 with a Nernstian slope of 60.0 mV/decade at 25 degrees C. The 95% steady-state response time of the PCO2 microelectrode is about 2 min, while it is about 10 s for pH microelectrode. The electromotive force drift is 4.3 mV/h (PCO2) and 2.6 mV/h (pH), respectively. The lifetime is 3 to 4 days. The microelectrode can measure pH and PCO2 in body fluids simultaneously with satisfactory results. It is also a good basic electrode for enzyme microelectrolysis.

  11. Mechanical performance of SiC based MEMS capacitive microphone for ultrasonic detection in harsh environment

    Science.gov (United States)

    Zawawi, S. A.; Hamzah, A. A.; Mohd-Yasin, F.; Majlis, B. Y.

    2017-08-01

    In this project, SiC based MEMS capacitive microphone was developed for detecting leaked gas in extremely harsh environment such as coal mines and petroleum processing plants via ultrasonic detection. The MEMS capacitive microphone consists of two parallel plates; top plate (movable diaphragm) and bottom (fixed) plate, which separated by an air gap. While, the vent holes were fabricated on the back plate to release trapped air and reduce damping. In order to withstand high temperature and pressure, a 1.0 μm thick SiC diaphragm was utilized as the top membrane. The developed SiC could withstand a temperature up to 1400°C. Moreover, the 3 μm air gap is invented between the top membrane and the bottom plate via wafer bonding. COMSOL Multiphysics simulation software was used for design optimization. Various diaphragms with sizes of 600 μm2, 700 μm2, 800 μm2, 900 μm2 and 1000 μm2 are loaded with external pressure. From this analysis, it was observed that SiC microphone with diaphragm width of 1000 μm2 produced optimal surface vibrations, with first-mode resonant frequency of approximately 36 kHz. The maximum deflection value at resonant frequency is less than the air gap thickness of 8 mu;m, thus eliminating the possibility of shortage between plates during operation. As summary, the designed SiC capacitive microphone has high potential and it is suitable to be applied in ultrasonic gas leaking detection in harsh environment.

  12. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such

  13. MEMS based digital transform spectrometers

    Science.gov (United States)

    Geller, Yariv; Ramani, Mouli

    2005-09-01

    Earlier this year, a new breed of Spectrometers based on Micro-Electro-Mechanical-System (MEMS) engines has been introduced to the commercial market. The use of these engines combined with transform mathematics, produces powerful spectrometers at unprecedented low cost in various spectral regions.

  14. Fabrication and performance analysis of MEMS-based Variable Emissivity Radiator for Space Applications

    International Nuclear Information System (INIS)

    Lee, Changwook; Oh, Hyung-Ung; Kim, Taegyu

    2014-01-01

    All Louver was typically representative as the thermal control device. The louver was not suitable to be applied to small satellite, because it has the disadvantage of increase in weight and volume. So MEMS-based variable radiator was developed to support the disadvantage of the louver MEMS-based variable emissivity radiator was designed for satellite thermal control. Because of its immediate response and low power consumption. Also MEMS- based variable emissivity radiator has been made smaller by using MEMS process, it could be solved the problem of the increase in weight and volume, and it has a high reliability and immediate response by using electrical control. In this study, operation validation of the MEMS radiator had been carried out, resulting that emissivity could be controlled. Numerical model was also designed to predict the thermal control performance of MEMS-based variable emissivity radiator

  15. 49 CFR 236.766 - Locking, movable bridge.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking, movable bridge. 236.766 Section 236.766... Locking, movable bridge. The rail locks, bridge locks, bolt locks, circuit controllers, and electric locks used in providing interlocking protection at a movable bridge. ...

  16. An implantable integrated low-power amplifier-microelectrode array for Brain-Machine Interfaces.

    Science.gov (United States)

    Patrick, Erin; Sankar, Viswanath; Rowe, William; Sanchez, Justin C; Nishida, Toshikazu

    2010-01-01

    One of the important challenges in designing Brain-Machine Interfaces (BMI) is to build implantable systems that have the ability to reliably process the activity of large ensembles of cortical neurons. In this paper, we report the design, fabrication, and testing of a polyimide-based microelectrode array integrated with a low-power amplifier as part of the Florida Wireless Integrated Recording Electrode (FWIRE) project at the University of Florida developing a fully implantable neural recording system for BMI applications. The electrode array was fabricated using planar micromachining MEMS processes and hybrid packaged with the amplifier die using a flip-chip bonding technique. The system was tested both on bench and in-vivo. Acute and chronic neural recordings were obtained from a rodent for a period of 42 days. The electrode-amplifier performance was analyzed over the chronic recording period with the observation of a noise floor of 4.5 microVrms, and an average signal-to-noise ratio of 3.8.

  17. Performance Improvement by Layout Designs of Conductive Polymer Microelectrode Based Impedimetric Biosensors

    DEFF Research Database (Denmark)

    Rosati, Giulio; Daprà, Johannes; Cherré, Solène

    2014-01-01

    In this work we present a theoretical, computational, and experimental evaluation of the performance of an impedimetric biosensor based on interdigitated conductive polymer (PEDOT:TsO) microelectrodes in a microfluidic system. The influence of the geometry of the electrodes and microchannels on t...

  18. Sputtered Encapsulation as Wafer Level Packaging for Isolatable MEMS Devices: A Technique Demonstrated on a Capacitive Accelerometer

    Directory of Open Access Journals (Sweden)

    Azrul Azlan Hamzah

    2008-11-01

    Full Text Available This paper discusses sputtered silicon encapsulation as a wafer level packaging approach for isolatable MEMS devices. Devices such as accelerometers, RF switches, inductors, and filters that do not require interaction with the surroundings to function, could thus be fully encapsulated at the wafer level after fabrication. A MEMSTech 50g capacitive accelerometer was used to demonstrate a sputtered encapsulation technique. Encapsulation with a very uniform surface profile was achieved using spin-on glass (SOG as a sacrificial layer, SU-8 as base layer, RF sputtered silicon as main structural layer, eutectic gold-silicon as seal layer, and liquid crystal polymer (LCP as outer encapsulant layer. SEM inspection and capacitance test indicated that the movable elements were released after encapsulation. Nanoindentation test confirmed that the encapsulated device is sufficiently robust to withstand a transfer molding process. Thus, an encapsulation technique that is robust, CMOS compatible, and economical has been successfully developed for packaging isolatable MEMS devices at the wafer level.

  19. UAV-borne lidar with MEMS mirror-based scanning capability

    Science.gov (United States)

    Kasturi, Abhishek; Milanovic, Veljko; Atwood, Bryan H.; Yang, James

    2016-05-01

    Firstly, we demonstrated a wirelessly controlled MEMS scan module with imaging and laser tracking capability which can be mounted and flown on a small UAV quadcopter. The MEMS scan module was reduced down to a small volume of smartphone via Bluetooth while flying on a drone, and could project vector content, text, and perform laser based tracking. Also, a "point-and-range" LiDAR module was developed for UAV applications based on low SWaP (Size, Weight and Power) gimbal-less MEMS mirror beam-steering technology and off-the-shelf OEM LRF modules. For demonstration purposes of an integrated laser range finder module, we used a simple off-the-shelf OEM laser range finder (LRF) with a 100m range, +/-1.5mm accuracy, and 4Hz ranging capability. The LRFs receiver optics were modified to accept 20° of angle, matching the transmitter's FoR. A relatively large (5.0mm) diameter MEMS mirror with +/-10° optical scanning angle was utilized in the demonstration to maintain the small beam divergence of the module. The complete LiDAR prototype can fit into a small volume of battery. The MEMS mirror based LiDAR system allows for ondemand ranging of points or areas within the FoR without altering the UAV's position. Increasing the LRF ranging frequency and stabilizing the pointing of the laser beam by utilizing the onboard inertial sensors and the camera are additional goals of the next design.

  20. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.

    Science.gov (United States)

    Lee, Sangmin; Ahn, Jae Hyun; Seo, Jong-Mo; Chung, Hum; Cho, Dong-Il Dan

    2015-06-17

    In order to provide high-quality visual information to patients who have implanted retinal prosthetic devices, the number of microelectrodes should be large. As the number of microelectrodes is increased, the dimensions of each microelectrode must be decreased, which in turn results in an increased microelectrode interface impedance and decreased injection current dynamic range. In order to improve the trade-off envelope between the number of microelectrodes and the current injection characteristics, a 3D microelectrode structure can be used as an alternative. In this paper, the electrical characteristics of 2D and 3D Au microelectrodes were investigated. In order to examine the effects of the structural difference, 2D and 3D Au microelectrodes with different base areas but similar effective surface areas were fabricated and evaluated. Interface impedances were measured and similar dynamic ranges were obtained for both 2D and 3D Au microelectrodes. These results indicate that more electrodes can be implemented in the same area if 3D designs are used. Furthermore, the 3D Au microelectrodes showed substantially enhanced electrical durability characteristics against over-injected stimulation currents, withstanding electrical currents that are much larger than the limit measured for 2D microelectrodes of similar area. This enhanced electrical durability property of 3D Au microelectrodes is a new finding in microelectrode research, and makes 3D microelectrodes very desirable devices.

  1. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses

    Directory of Open Access Journals (Sweden)

    Sangmin Lee

    2015-06-01

    Full Text Available In order to provide high-quality visual information to patients who have implanted retinal prosthetic devices, the number of microelectrodes should be large. As the number of microelectrodes is increased, the dimensions of each microelectrode must be decreased, which in turn results in an increased microelectrode interface impedance and decreased injection current dynamic range. In order to improve the trade-off envelope between the number of microelectrodes and the current injection characteristics, a 3D microelectrode structure can be used as an alternative. In this paper, the electrical characteristics of 2D and 3D Au microelectrodes were investigated. In order to examine the effects of the structural difference, 2D and 3D Au microelectrodes with different base areas but similar effective surface areas were fabricated and evaluated. Interface impedances were measured and similar dynamic ranges were obtained for both 2D and 3D Au microelectrodes. These results indicate that more electrodes can be implemented in the same area if 3D designs are used. Furthermore, the 3D Au microelectrodes showed substantially enhanced electrical durability characteristics against over-injected stimulation currents, withstanding electrical currents that are much larger than the limit measured for 2D microelectrodes of similar area. This enhanced electrical durability property of 3D Au microelectrodes is a new finding in microelectrode research, and makes 3D microelectrodes very desirable devices.

  2. Suspended 3D pyrolytic carbon microelectrodes for electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Keller, Stephan Sylvest

    2017-01-01

    with cyclic voltammetry (CV) and impedance spectroscopy (EIS) using potassium ferri-ferrocyanide redox probe in a custom made batch system with magnetic clamping. Different 3D pyrolytic carbon microelectrodes were compared and the optimal design displayed twice the peak current and half the charge transfer......Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. This work presents the fabrication and characterization of suspended pyrolytic carbon microstructures serving as three-dimensional (3D) carbon microelectrodes...... for electrochemical applications. A 3D polymer template in epoxy based photoresist (SU-8) was fabricated with multiple steps of UV photolithography and pyrolysed at 900 °C to obtain 3D carbon microelectrodes. The pyrolytic carbon microstructures were characterized by SEM, Raman spectroscopy and XPS to determine...

  3. Carbon Nanotube-based microelectrodes for enhanced detection of neurotransmitters

    Science.gov (United States)

    Jacobs, Christopher B.

    Fast-scan cyclic voltammetry (FSCV) is one of the common techniques used for rapid measurement of neurotransmitters in vivo. Carbon-fiber microelectrodes (CFMEs) are typically used for neurotransmitter detection because of sub-second measurement capabilities, ability to measure changes in neurotransmitter concentration during neurotransmission, and the small size electrode diameter, which limits the amount of damage caused to tissue. Cylinder CFMEs, typically 50 -- 100 microm long, are commonly used for in vivo experiments because the electrode sensitivity is directly related to the electrode surface area. However the length of the electrode can limit the spatial resolution of neurotransmitter detection, which can restrict experiments in Drosophila and other small model systems. In addition, the electrode sensitivity toward dopamine and serotonin detection drops significantly for measurements at rates faster than 10 Hz, limiting the temporal resolution of CFMEs. While the use of FSCV at carbon-fiber microelectrodes has led to substantial strides in our understanding of neurotransmission, techniques that expand the capabilities of CFMEs are crucial to fully maximize the potential uses of FSCV. This dissertation introduces new methods to integrate carbon nanotubes (CNT) into microelectrodes and discusses the electrochemical enhancements of these CNT-microelectrodes. The electrodes are specifically designed with simple fabrication procedures so that highly specialized equipment is not necessary, and they utilize commercially available materials so that the electrodes could be easily integrated into existing systems. The electrochemical properties of CNT modified CFMEs are characterized using FSCV and the effect of CNT functionalization on these properties is explored in Chapter 2. For example, CFME modification using carboxylic acid functionalized CNTs yield about a 6-fold increase in dopamine oxidation current, but modification with octadecylamine CNTs results in a

  4. Field-programmable lab-on-a-chip based on microelectrode dot array architecture.

    Science.gov (United States)

    Wang, Gary; Teng, Daniel; Lai, Yi-Tse; Lu, Yi-Wen; Ho, Yingchieh; Lee, Chen-Yi

    2014-09-01

    The fundamentals of electrowetting-on-dielectric (EWOD) digital microfluidics are very strong: advantageous capability in the manipulation of fluids, small test volumes, precise dynamic control and detection, and microscale systems. These advantages are very important for future biochip developments, but the development of EWOD microfluidics has been hindered by the absence of: integrated detector technology, standard commercial components, on-chip sample preparation, standard manufacturing technology and end-to-end system integration. A field-programmable lab-on-a-chip (FPLOC) system based on microelectrode dot array (MEDA) architecture is presented in this research. The MEDA architecture proposes a standard EWOD microfluidic component called 'microelectrode cell', which can be dynamically configured into microfluidic components to perform microfluidic operations of the biochip. A proof-of-concept prototype FPLOC, containing a 30 × 30 MEDA, was developed by using generic integrated circuits computer aided design tools, and it was manufactured with standard low-voltage complementary metal-oxide-semiconductor technology, which allows smooth on-chip integration of microfluidics and microelectronics. By integrating 900 droplet detection circuits into microelectrode cells, the FPLOC has achieved large-scale integration of microfluidics and microelectronics. Compared to the full-custom and bottom-up design methods, the FPLOC provides hierarchical top-down design approach, field-programmability and dynamic manipulations of droplets for advanced microfluidic operations.

  5. Batch fabrication of nanotubes suspended between microelectrodes

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Stöckli, T.; Knapp, H. F.

    2007-01-01

    be done with a simple lift-off process with standard photolithographic resist. An applied electric field is sustained between the microelectrodes during CVD to guide the nanotube growth. Comparison with simulations shows that the location and the orientation of the grown carbon nanotubes (CNT) correspond...... to the regions of maximum electric field, enabling accurate positioning of a nanotube by controlling the shape of the microelectrodes. The CNT bridges are deflected tens of nm when a DC voltage is applied between the nanotube and a gate microelectrode indicating that the clamping through the catalyst particles...... is not only mechanically stable but also electrical conducting. This method could be used to fabricate nanoelectromechanical systems based on suspended double clamped CNTs depending only on photolithography and standard Cleanroom processes....

  6. Designing Computer Systems with MEMS-Based Storage

    National Research Council Canada - National Science Library

    Schlosser, Steven

    2000-01-01

    .... An exciting new storage technology based on microelectromechanical systems (MEMS) is poised to fill a large portion of this performance gap, significantly reduce power consumption, and enable many new classes of applications...

  7. MEMS-based microspectrometer technologies for NIR and MIR wavelengths

    International Nuclear Information System (INIS)

    Schuler, Leo P; Milne, Jason S; Dell, John M; Faraone, Lorenzo

    2009-01-01

    Commercially manufactured near-infrared (NIR) instruments became available about 50 years ago. While they have been designed for laboratory use in a controlled environment and boast high performance, they are generally bulky, fragile and maintenance intensive, and therefore expensive to purchase and maintain. Micromachining is a powerful technique to fabricate micromechanical parts such as integrated circuits. It was perfected in the 1980s and led to the invention of micro electro mechanical systems (MEMSs). The three characteristic features of MEMS fabrication technologies are miniaturization, multiplicity and microelectronics. Combined, these features allow the batch production of compact and rugged devices with integrated intelligence. In order to build more compact, more rugged and less expensive NIR instruments, MEMS technology has been successfully integrated into a range of new devices. In the first part of this paper we discuss the UWA MEMS-based Fabry-Perot spectrometer, its design and issues to be solved. MEMS-based Fabry-Perot filters primarily isolate certain wavelengths by sweeping across an incident spectrum and the resulting monochromatic signal is detected by a broadband detector. In the second part, we discuss other microspectrometers including other Fabry-Perot spectrometer designs, time multiplexing devices and mixed time/space multiplexing devices. (topical review)

  8. Development of the micro pixel chamber based on MEMS technology

    Science.gov (United States)

    Takemura, T.; Takada, A.; Kishimoto, T.; Komura, S.; Kubo, H.; Matsuoka, Y.; Miuchi, K.; Miyamoto, S.; Mizumoto, T.; Mizumura, Y.; Motomura, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Ohta, K.; Parker, J. D.; Sawano, T.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K.

    2018-02-01

    Micro pixel chambers (μ-PIC) are gaseous two-dimensional imaging detectors originally manufactured using printed circuit board (PCB) technology. They are used in MeV gamma-ray astronomy, medicalimaging, neutron imaging, the search for dark matter, and dose monitoring. The position resolution of the present μ-PIC is approximately 120 μm (RMS), however some applications require a fine position resolution of less than 100 μm. To this end, we have started to develop a μ-PIC based on micro electro mechanical system (MEMS) technology, which provides better manufacturing accuracy than PCB technology. Our simulation predicted the gains of MEMS μ-PICs to be twice those of PCB μ-PICs at the same anode voltage. We manufactured two MEMS μ-PICs and tested them to study their behavior. In these experiments, we successfully operated the fabricatedMEMS μ-PICs and we achieved a maximum gain of approximately 7×103 and collected their energy spectra under irradiation of X-rays from 55Fe. However, the measured gains of the MEMS μ-PICs were less than half of the values predicted in the simulations. We postulated that the gains of the MEMS μ-PICs are diminished by the effect of the silicon used as a semiconducting substrate.

  9. A novel technique for die-level post-processing of released optical MEMS

    International Nuclear Information System (INIS)

    Elsayed, Mohannad Y; Beaulieu, Philippe-Olivier; Briere, Jonathan; Ménard, Michaël; Nabki, Frederic

    2016-01-01

    This work presents a novel die-level post-processing technique for dies including released movable structures. The procedure was applied to microelectromechanical systems (MEMS) chips that were fabricated in a commercial process, SOIMUMPs from MEMSCAP. It allows the performance of a clean DRIE etch of sidewalls on the diced chips enabling the optical testing of the pre-released MEMS mirrors through the chip edges. The etched patterns are defined by photolithography using photoresist spray coating. The photoresist thickness is tuned to create photoresist bridges over the pre-released gaps, protecting the released structures during subsequent wet processing steps. Then, the chips are subject to a sequence of wet and dry etching steps prior to dry photoresist removal in O 2 plasma. Processed micromirrors were tested and found to rotate similarly to devices without processing, demonstrating that the post-processing procedure does not affect the mechanical performance of the devices significantly. (technical note)

  10. Design and fabrication of a MEMS chevron-type thermal actuator

    Energy Technology Data Exchange (ETDEWEB)

    Baracu, Angela, E-mail: angela.baracu@imt.ro [Laboratory of Modeling, Simulation and CAD, National Institute for R and D in Microtechnologies - IMT Bucharest, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania and University Politehnica of Bucharest (Romania); Voicu, Rodica; Müller, Raluca; Avram, Andrei [Laboratory of Modeling, Simulation and CAD, National Institute for R and D in Microtechnologies - IMT Bucharest, 126A, Erou Iancu Nicolae Street, 077190, Bucharest (Romania); Pustan, Marius, E-mail: marius.pustan@omt.utcluj.ro; Chiorean, Radu, E-mail: marius.pustan@omt.utcluj.ro; Birleanu, Corina, E-mail: marius.pustan@omt.utcluj.ro; Dudescu, Cristian, E-mail: marius.pustan@omt.utcluj.ro [Laboratory of Micro and Nano Systems, Technical University of Cluj-Napoca, Bd. Muncii, no. 103-105, 400641 Cluj-Napoca (Romania)

    2015-02-17

    This paper presents the design and fabrication of a MEMS chevron-type thermal actuator. The device was designed for fabrication in the standard MEMS technology, where the topography of the upper layers depends on the patterns of structural and sacrificial layers underneath. The proposed actuator presents some advantages over usual thermal vertical chevron actuators by means of low operating voltages, high output force and linear movement without deformation of the shaft. The device simulations were done using COVENTOR software. The movement obtained by simulation was 12 μm, for a voltage of 0.2 V and the current intensity of 257 mA. The design optimizes the in-plane displacement by fixed anchors and beam inclination angle. Heating is provided by Joule dissipation. The material used for manufacture of chevron-based actuator was aluminum due to its thermal and mechanical properties. The release of the movable part was performed using isotropic dry etching by Reactive Ion Etching (RIE). A first inspection was achieved using Scanning Electron Microscope (SEM). In order to obtain the in-plane displacement we carried out electrical measurements. The thermal actuator can be used for a variety of optical and microassembling applications. This kind of thermal actuator could be integrated easily with other micro devices since its fabrication is compatible with the general semiconductor processes.

  11. MEMS-Based Waste Vibrational Energy Harvesters

    Science.gov (United States)

    2013-06-01

    MEMS energy- harvesting device. Although PZT is used more prevalently due to its higher piezoelectric coefficient and dielectric constant, AlN has...7 1. Lead Zirconium Titanate ( PZT ) .........................................................7 2. Aluminum...Laboratory PiezoMUMPS Piezoelectric Multi-User MEMS Processes PZT Lead Zirconate Titanate SEM Scanning Electron Microscopy SiO2 Silicon

  12. MEMS-based thick film PZT vibrational energy harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Thyssen, Anders

    2011-01-01

    We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using a mechan......We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using...... a mechanical front side protection of an SOI wafer with screen printed PZT thick film. The fabricated harvester device produces 14.0 μW with an optimal resistive load of 100 kΩ from 1g (g=9.81 m s-2) input acceleration at its resonant frequency of 235 Hz....

  13. Failure Mechanisms of a Gold Microelectrode in Bioelectronics Applications

    Directory of Open Access Journals (Sweden)

    Jonghun Kim

    2015-01-01

    Full Text Available The generation, growth, and collapse of tiny bubbles are inevitable for a microelectrode working in aqueous environment, thus resulting in physical damages on the microelectrode. The failure mechanisms of a microelectrode induced by tiny bubble collapsing are investigated by generating tiny hydrogen bubbles on a gold microelectrode through deionized water electrolysis. The surface of the microelectrode is modified with a thiol-functionalized arginine-glycine-aspartic acid peptide to generate perfectly spherical bubbles in proximity of the surface. The failure of an Au microelectrode is governed by two damage mechanisms, depending on the thickness of the microelectrode: a water-hammer pressure due to the violent collapse of a single large bubble, formed through merging of small bubbles, for ultrathin Au microelectrodes of 40–60 nm in thickness, and an energy accumulation resulting from the repetitive collapse of tiny bubbles for thick Au microelectrodes of 100–120 nm.

  14. Sonochemically Fabricated Microelectrode Arrays for Use as Sensing Platforms

    Directory of Open Access Journals (Sweden)

    Stuart D. Collyer

    2010-05-01

    Full Text Available The development, manufacture, modification and subsequent utilisation of sonochemically-formed microelectrode arrays is described for a range of applications. Initial fabrication of the sensing platform utilises ultrasonic ablation of electrochemically insulating polymers deposited upon conductive carbon substrates, forming an array of up to 70,000 microelectrode pores cm–2. Electrochemical and optical analyses using these arrays, their enhanced signal response and stir-independence area are all discussed. The growth of conducting polymeric “mushroom” protrusion arrays with entrapped biological entities, thereby forming biosensors is detailed. The simplicity and inexpensiveness of this approach, lending itself ideally to mass fabrication coupled with unrivalled sensitivity and stir independence makes commercial viability of this process a reality. Application of microelectrode arrays as functional components within sensors include devices for detection of chlorine, glucose, ethanol and pesticides. Immunosensors based on microelectrode arrays are described within this monograph for antigens associated with prostate cancer and transient ischemic attacks (strokes.

  15. Videometrics-based Detection of Vibration Linearity in MEMS Gyroscope

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2011-05-01

    Full Text Available MEMS gyroscope performs as a sort of sensor to detect angular velocity, with diverse applications in engineering including vehicle and intelligent traffic etc. A balanced vibration of driving module excited by electrostatic driving signal is the base MEMS gyroscope's performance. In order to analyze the linear property of vibration in MEMS Gyroscope, a method of computer vision measuring is applied with the help of high-speed vidicon to obtain video of linear vibration of driving module in gyroscope, under the driving voltage signal of inherent frequency and amplitude linearly increasing. By means of image processing, target identifying, and motion parameter extracting from the obtained video, vibration curve with time variation is acquired. And then, linearity of this vibration system can be analyzed by focusing on the amplitude value of vibration responding to the amplitude variation of driving voltage signal.

  16. 23 CFR 650.809 - Movable span bridges.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Movable span bridges. 650.809 Section 650.809 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS BRIDGES, STRUCTURES, AND HYDRAULICS Navigational Clearances for Bridges § 650.809 Movable span bridges. A fixed bridge...

  17. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Jonathan Lueke

    2011-01-01

    Full Text Available Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  18. MEMS-based power generation techniques for implantable biosensing applications.

    Science.gov (United States)

    Lueke, Jonathan; Moussa, Walied A

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  19. Simultaneous recording of brain extracellular glucose, spike and local field potential in real time using an implantable microelectrode array with nano-materials

    Science.gov (United States)

    Wei, Wenjing; Song, Yilin; Fan, Xinyi; Zhang, Song; Wang, Li; Xu, Shengwei; Wang, Mixia; Cai, Xinxia

    2016-03-01

    Glucose is the main substrate for neurons in the central nervous system. In order to efficiently characterize the brain glucose mechanism, it is desirable to determine the extracellular glucose dynamics as well as the corresponding neuroelectrical activity in vivo. In the present study, we fabricated an implantable microelectrode array (MEA) probe composed of platinum electrochemical and electrophysiology microelectrodes by standard micro electromechanical system (MEMS) processes. The MEA probe was modified with nano-materials and implanted in a urethane-anesthetized rat for simultaneous recording of striatal extracellular glucose, local field potential (LFP) and spike on the same spatiotemporal scale when the rat was in normoglycemia, hypoglycemia and hyperglycemia. During these dual-mode recordings, we observed that increase of extracellular glucose enhanced the LFP power and spike firing rate, while decrease of glucose had an opposite effect. This dual mode MEA probe is capable of examining specific spatiotemporal relationships between electrical and chemical signaling in the brain, which will contribute significantly to improve our understanding of the neuron physiology.

  20. Resonant Magnetic Field Sensors Based On MEMS Technology

    Directory of Open Access Journals (Sweden)

    Elías Manjarrez

    2009-09-01

    Full Text Available Microelectromechanical systems (MEMS technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  1. Resonant Magnetic Field Sensors Based On MEMS Technology

    Science.gov (United States)

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  2. The design and application of the movable limiter in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Lei Cao, E-mail: caolei@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Science, Shushanhu road 350, Hefei 230031 (China); Song Yuntao [Institute of Plasma Physics, Chinese Academy of Science, Shushanhu road 350, Hefei 230031 (China)

    2011-10-15

    There are two movable limiters that have been installed on EAST. The movable limiter consists of three parts that are blade, support components and drive components. The blade which consists of heat sink and graphite tiles has to face plasma during plasma discharge. The support components consist of a long shaft and a movable plate. The drive components consists of a screw shaft, a step motor, four guide shafts and two support plates. There is an extra support which has fit in Tokamak and a frame on the outside of the flange. The specific shape of the blade has been optimized so that the graphite tiles on the blade can withstand max 5 MW/m{sup 2} heat load with two long cooling channels. The long shaft of the transfer components connect with blade to make it can move along the axis of the limiter. The movable blade could adjust a wide variety of plasma major and minor diameters. The drive components provide motion from step motor which can be remote controlled in the control room far away from the scene. The rotation is translated to slide motion by a screw shaft. The screw shaft can push the slide which connected with the long shaft to at last move the blade. To introduce the motion from outside to the vacuum vessel, the limiter has a long bellow and special structure as dynamical seal. This seal structure proved very reliable. The remote control system has been also equipped the distance sensor to provide the information of the position of the limiter. The control system is based on PC so it can be easily operated. The two movable limiters have been installed on the EAST. During past twice discharges, the movable limiter proved to be a useful tool for EAST to control the plasma boundary.

  3. The design and application of the movable limiter in EAST

    International Nuclear Information System (INIS)

    Lei Cao; Song Yuntao

    2011-01-01

    There are two movable limiters that have been installed on EAST. The movable limiter consists of three parts that are blade, support components and drive components. The blade which consists of heat sink and graphite tiles has to face plasma during plasma discharge. The support components consist of a long shaft and a movable plate. The drive components consists of a screw shaft, a step motor, four guide shafts and two support plates. There is an extra support which has fit in Tokamak and a frame on the outside of the flange. The specific shape of the blade has been optimized so that the graphite tiles on the blade can withstand max 5 MW/m 2 heat load with two long cooling channels. The long shaft of the transfer components connect with blade to make it can move along the axis of the limiter. The movable blade could adjust a wide variety of plasma major and minor diameters. The drive components provide motion from step motor which can be remote controlled in the control room far away from the scene. The rotation is translated to slide motion by a screw shaft. The screw shaft can push the slide which connected with the long shaft to at last move the blade. To introduce the motion from outside to the vacuum vessel, the limiter has a long bellow and special structure as dynamical seal. This seal structure proved very reliable. The remote control system has been also equipped the distance sensor to provide the information of the position of the limiter. The control system is based on PC so it can be easily operated. The two movable limiters have been installed on the EAST. During past twice discharges, the movable limiter proved to be a useful tool for EAST to control the plasma boundary.

  4. Numerical Simulation of a Novel Electroosmotic Micropump for Bio-MEMS Applications

    Directory of Open Access Journals (Sweden)

    Alireza Alishahi

    2014-12-01

    Full Text Available High lamination in microchannel is one of the main challenges in Lab-On-a-Chip’s components like micro total analyzer systems and any miniaturization of fluid channels intensify the viscose effects. In chip-scale, the electroosmotic flow is more efficient. Therefore, this study presents a MEMS-based low-voltage micropump for low-conductive biological samples and solutions, where twelve narrow miniaturized microchannels designed in one unit to efficiently using the electroosmotic effects which generated near the walls. Four microelectrodes are mounted in lateral sides of the microchannel and excited by low-voltage potential to generate pumping process inside the channel. We sweep the voltage amplitude and a linear variation of fluid velocity achieved by Finite-Element-Method (FEM simulation. We obtain a net average velocity of 0.1 mm/s; by applying 2 V and -2 V to the electrodes. Therefore, the proposed low-voltage design is able to pumping the low-conductive biofluids for conventional lab-on-a-chip applications.

  5. Development of A MEMS Based Manometric Catheter for Diagnosis of Functional Swallowing Disorders

    International Nuclear Information System (INIS)

    Hsu, H Y; Hariz, A J; Omari, T; Teng, M F; Sii, D; Chan, S; Lau, L; Tan, S; Lin, G; Haskard, M; Mulcahy, D; Bakewell, M

    2006-01-01

    Silicon pressure sensors based on micro-electro-mechanical-systems (MEMS) technologies are gaining popularity for applications in bio-medical devices. In this study, a silicon piezo-resistive pressure sensor die is used in a feasibility study of developing a manometric catheter for functional swallowing disorders diagnosis. The function of a manometric catheter is to measure the peak and intrabolus pressures along the esophageal segment during the swallowing action. Previous manometric catheters used the water perfusion technique to measure the pressure changes. This type of catheter is reusable, large in size and the pressure reading is recorded by an external transducer. Current manometric catheters use a solid state pressure sensor on the catheter itself to measure the pressure changes. This type of catheter reduces the discomfort to the patient but it is reusable and is very expensive. We carried out several studies and experiments on the MEMS-based pressure sensor die, and the results show the MEMS-based pressure sensors have a good stability and a good linearity output response, together with the advantage of low excitation biasing voltage and extremely small size. The MEMS-based sensor is the best device to use in the new generation of manometric catheters. The concept of the new MEMS-based manometric catheter consists of a pressure sensing sensor, supporting ring, the catheter tube and a data connector. Laboratory testing shows that the new calibrated catheter is capable of measuring pressure in the range from 0 to 100mmHg and maintaining stable condition on the zero baseline setting when no pressure is applied. In-vivo tests are carried out to compare the new MEMS based catheter with the current version of catheters used in the hospital

  6. Influence of droplet coverage on the electrochemical response of planar microelectrodes and potential solving strategies based on nesting concept

    Directory of Open Access Journals (Sweden)

    Yue Yu

    2016-08-01

    Full Text Available Recently, biosensors have been widely used for the detection of bacteria, viruses and other toxins. Electrodes, as commonly used transducers, are a vital part of electrochemical biosensors. The coverage of the droplets can change significantly based on the hydrophobicity of the microelectrode surface materials. In the present research, screen-printed interdigitated microelectrodes (SPIMs, as one type of planar microelectrode, were applied to investigate the influence of droplet coverage on electrochemical response. Furthermore, three dimensional (3D printing technology was employed to print smart devices with different diameters based on the nesting concept. Theoretical explanations were proposed to elucidate the influence of the droplet coverage on the electrochemical response. 3D-printed ring devices were used to incubate the SPIMs and the analytical performances of the SPIMs were tested. According to the results obtained, our device successfully improved the stability of the signal responses and eliminated irregular signal changes to a large extent. Our proposed method based on the nesting concept provides a promising method for the fabrication of stable electrochemical biosensors. We also introduced two types of electrode bases to improve the signal stability.

  7. A Novel Microdialysis Glucose Sensor System Based on Co-immobilizing on AU Micro-Electrode by SOL-GEL Technique

    National Research Council Canada - National Science Library

    Yu, Ping

    2001-01-01

    .... The sensor is based on co_immobilizing glucose oxidase (COD) with the catalase by sol-gel technique on the surface of the silicon bases with two pattern of An microelectrodes. A graduated ("sandwich...

  8. Preparation of metal nanoband microelectrode on poly(dimethylsiloxane) for chip-based amperometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shaopeng; Wu Jian; Yu Xiaodong [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Xu Jingjuan, E-mail: xujj@nju.edu.cn [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen Hongyuan [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2010-04-30

    We proposed herein a novel approach for fabricating nanoband microelectrodes for electrochemical detection on an electrophoresis microchip. The metal films were first obtained via region-selective electroless deposition of gold or copper films on PDMS substrates by selective region plasma oxidation through shadow masking. Both metal films show uniform surfaces with the thickness at the level of 100 nm. By casting another PDMS layer on the metal films, the cross section of the sandwich structures can be used as nanoband microelectrodes, which can be renewed just by cutting. These nanoband microelectrodes are successfully used as electrochemical detectors in microchip electrophoresis for the detection of amino acids, proteins and neurotransmitter molecules. Moreover, integrating an Au-Cu double-metal detector with a double-channel electrophoresis system, we can easily distinguish electroactive amino acids from that of non-electroactive amino acids.

  9. Output-Feedback Control of a Chaotic MEMS Resonator for Oscillation Amplitude Enhancement

    Directory of Open Access Journals (Sweden)

    Alexander Jimenez-Triana

    2014-01-01

    Full Text Available The present work addresses the problem of chaos control in an electrostatic MEMS resonator by using an output-feedback control scheme. One of the unstable orbits immersed in the chaotic attractor is stabilized in order to produce a sustained oscillation of the movable plate composing the microstructure. The orbit is carefully chosen so as to produce a high amplitude oscillation. This approach allows the enhancement of oscillation amplitude of the resonator at a reduced control effort, since the unstable orbit already exists in the system and it is not necessary to spend energy to create it. Realistic operational conditions of the MEMS are considered including parametric uncertainties in the model and constraints due to the difficulty in measuring the speed of the plates of the microstructure. A control law is constructed recursively by using the technique of backstepping. Finally, numerical simulations are carried out to confirm the validity of the developed control scheme and to demonstrate the effect of controlling orbits immersed in the chaotic attractor.

  10. CMOS MEMS Fabrication Technologies and Devices

    Directory of Open Access Journals (Sweden)

    Hongwei Qu

    2016-01-01

    Full Text Available This paper reviews CMOS (complementary metal-oxide-semiconductor MEMS (micro-electro-mechanical systems fabrication technologies and enabled micro devices of various sensors and actuators. The technologies are classified based on the sequence of the fabrication of CMOS circuitry and MEMS elements, while SOI (silicon-on-insulator CMOS MEMS are introduced separately. Introduction of associated devices follows the description of the respective CMOS MEMS technologies. Due to the vast array of CMOS MEMS devices, this review focuses only on the most typical MEMS sensors and actuators including pressure sensors, inertial sensors, frequency reference devices and actuators utilizing different physics effects and the fabrication processes introduced. Moreover, the incorporation of MEMS and CMOS is limited to monolithic integration, meaning wafer-bonding-based stacking and other integration approaches, despite their advantages, are excluded from the discussion. Both competitive industrial products and state-of-the-art research results on CMOS MEMS are covered.

  11. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat

    Directory of Open Access Journals (Sweden)

    Jerome eBabauta

    2014-01-01

    Full Text Available Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode with tip size ~20 µm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode in the mat. Subsequently, to characterize the microelectrode-associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1-V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community.

  12. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat.

    Science.gov (United States)

    Babauta, Jerome T; Atci, Erhan; Ha, Phuc T; Lindemann, Stephen R; Ewing, Timothy; Call, Douglas R; Fredrickson, James K; Beyenal, Haluk

    2014-01-01

    Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH, and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode) with tip size ~20 μm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode at depth in the mat. Subsequently, to characterize the microelectrode-associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1-V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community.

  13. Applying a foil queue micro-electrode in micro-EDM to fabricate a 3D micro-structure

    Science.gov (United States)

    Xu, Bin; Guo, Kang; Wu, Xiao-yu; Lei, Jian-guo; Liang, Xiong; Guo, Deng-ji; Ma, Jiang; Cheng, Rong

    2018-05-01

    Applying a 3D micro-electrode in a micro electrical discharge machining (micro-EDM) can fabricate a 3D micro-structure with an up and down reciprocating method. However, this processing method has some shortcomings, such as a low success rate and a complex process for fabrication of 3D micro-electrodes. By focusing on these shortcomings, this paper proposed a novel 3D micro-EDM process based on the foil queue micro-electrode. Firstly, a 3D micro-electrode was discretized into several foil micro-electrodes and these foil micro-electrodes constituted a foil queue micro-electrode. Then, based on the planned process path, foil micro-electrodes were applied in micro-EDM sequentially and the micro-EDM results of each foil micro-electrode were able to superimpose the 3D micro-structure. However, the step effect will occur on the 3D micro-structure surface, which has an adverse effect on the 3D micro-structure. To tackle this problem, this paper proposes to reduce this adverse effect by rounded corner wear at the end of the foil micro-electrode and studies the impact of machining parameters on rounded corner wear and the step effect on the micro-structure surface. Finally, using a wire cutting voltage of 80 V, a current of 0.5 A and a pulse width modulation ratio of 1:4, the foil queue micro-electrode was fabricated by wire electrical discharge machining. Also, using a pulse width of 100 ns, a pulse interval of 200 ns, a voltage of 100 V and workpiece material of 304# stainless steel, the foil queue micro-electrode was applied in micro-EDM for processing of a 3D micro-structure with hemispherical features, which verified the feasibility of this process.

  14. Research on the attitude of small UAV based on MEMS devices

    Science.gov (United States)

    Shi, Xiaojie; Lu, Libin; Jin, Guodong; Tan, Lining

    2017-05-01

    This paper mainly introduces the research principle and implementation method of the small UAV navigation attitude system based on MEMS devices. The Gauss - Newton method based on least squares is used to calibrate the MEMS accelerometer and gyroscope for calibration. Improve the accuracy of the attitude by using the modified complementary filtering to correct the attitude angle error. The experimental data show that the design of the attitude and attitude system in this paper to meet the requirements of small UAV attitude accuracy to achieve a small, low cost.

  15. Novel SU-8 based vacuum wafer-level packaging for MEMS devices

    DEFF Research Database (Denmark)

    Murillo, Gonzalo; Davis, Zachary James; Keller, Stephan Urs

    2010-01-01

    This work presents a simple and low-cost SU-8 based wafer-level vacuum packaging method which is CMOS and MEMS compatible. Different approaches have been investigated by taking advantage of the properties of SU-8, such as chemical resistance, optical transparence, mechanical reliability and versa......This work presents a simple and low-cost SU-8 based wafer-level vacuum packaging method which is CMOS and MEMS compatible. Different approaches have been investigated by taking advantage of the properties of SU-8, such as chemical resistance, optical transparence, mechanical reliability...

  16. Single-crystal-silicon-based microinstrument to study friction and wear at MEMS sidewall interfaces

    International Nuclear Information System (INIS)

    Ansari, N; Ashurst, W R

    2012-01-01

    Since the advent of microelectromechanical systems (MEMS) technology, friction and wear are considered as key factors that determine the lifetime and reliability of MEMS devices that contain contacting interfaces. However, to date, our knowledge of the mechanisms that govern friction and wear in MEMS is insufficient. Therefore, systematically investigating friction and wear at MEMS scale is critical for the commercial success of many potential MEMS devices. Specifically, since many emerging MEMS devices contain more sidewall interfaces, which are topographically and chemically different from in-plane interfaces, studying the friction and wear characteristics of MEMS sidewall surfaces is important. The microinstruments that have been used to date to investigate the friction and wear characteristics of MEMS sidewall surfaces possess several limitations induced either by their design or the structural film used to fabricate them. Therefore, in this paper, we report on a single-crystal-silicon-based microinstrument to study the frictional and wear behavior of MEMS sidewalls, which not only addresses some of the limitations of other microinstruments but is also easy to fabricate. The design, modeling and fabrication of the microinstrument are described in this paper. Additionally, the coefficients of static and dynamic friction of octadecyltrichlorosilane-coated sidewall surfaces as well as sidewall surfaces with only native oxide on them are also reported in this paper. (paper)

  17. MEMS Gyroscopes Based on Acoustic Sagnac Effect

    Directory of Open Access Journals (Sweden)

    Yuanyuan Yu

    2016-12-01

    Full Text Available This paper reports on the design, fabrication and preliminary test results of a novel microelectromechanical systems (MEMS device—the acoustic gyroscope. The unique operating mechanism is based on the “acoustic version” of the Sagnac effect in fiber-optic gyros. The device measures the phase difference between two sound waves traveling in opposite directions, and correlates the signal to the angular velocity of the hosting frame. As sound travels significantly slower than light and develops a larger phase change within the same path length, the acoustic gyro can potentially outperform fiber-optic gyros in sensitivity and form factor. It also promises superior stability compared to vibratory MEMS gyros as the design contains no moving parts and is largely insensitive to mechanical stress or temperature. We have carried out systematic simulations and experiments, and developed a series of processes and design rules to implement the device.

  18. Movable Thomson scattering system based on optical fiber (TS-probe)

    International Nuclear Information System (INIS)

    Narihara, K.; Hayashi, H.

    2009-01-01

    This paper proposes a movable compact Thomson scattering (TS) system based on optical fibers (TS-probe). A TS-probe consists of a probe head, optical fiber, a laser-diode, polychromators and lock-in amplifiers. A laser beam optics and light collection optics are mounted rigidly on a probe head with a fixed scattering position. Laser light and scattered light are transmitted by flexible optical fibers, enabling us to move the TS-prove head freely during plasma discharge. The light signal scattered from an amplitude-modulated laser is detected against the plasma light based on the principle of the lock-in amplifier. With a modulated laser power of 300W, the scattered signal from a sheet plasma of 15 mm depth and n e -10 19 m -3 will be measured with 10% accuracy by setting the integrating time to 0.1 s. The TS-probe head is like a 1/20 model of the currently operating LHD-TS. (author)

  19. Effect of island shape on dielectrophoretic assembly of metal nanoparticle chains in a conductive-island-based microelectrode system

    International Nuclear Information System (INIS)

    Ding, Haitao; Shao, Jinyou; Ding, Yucheng; Liu, Weiyu; Li, Xiangming; Tian, Hongmiao; Zhou, Yaopei

    2015-01-01

    Highlights: • Conductive island shape influences the dynamic process occurring in DEP assembly of 10 nm gold nanoparticles in a conductive-island-based microelectrode system. • The DEP-assembled nanoparticle wires form a straighter conduction path with the increase in the geometric angle of conductive island tip. • The different island shapes distort the DEP force distribution and increase the local electrothermally induced fluid flow to different extents, which is important for the morphology and electrical conductance quality of the DEP-assembled metal nanoparticle chains. - Abstract: The electrical conduction quality of an electric circuit connection formed by dielectrophoretic (DEP)-assembled metal nanoparticle wires between small conductive elements plays a significant role in electronic devices. One of the major challenges for improving the electrical conductance of nanowires is optimizing their geometric morphology. So far, the electrical conduction quality has been enhanced by optimizing the AC frequency and conductivity of nanoparticle suspensions. Herein, the effect of the conductive island shapes on the dynamic process occurring in a DEP assembly of 10 nm gold nanoparticles was investigated in a conductive-island-based microelectrode system. The nanoparticle wires between the microelectrodes were assembled in situ from colloidal suspensions. The wires were grown in a much straighter route by increasing the geometric angle of the conductive-island tip. To validate the experiments, the effects of mutual DEP interactions and electrothermally induced fluid flow on the dynamic behavior of particle motion for different island geometric configurations in the conductive-island-based microelectrode system were determined by numerical simulations. The simulation results are consistent with those of experiments. This indicates that different conductive island shapes change the distribution of DEP force and increase the electrothermally induced fluid flow to

  20. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2015-03-10

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  1. A Fourier Transform Spectrometer Based on an Electrothermal MEMS Mirror with Improved Linear Scan Range

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-09-01

    Full Text Available A Fourier transform spectrometer (FTS that incorporates a closed-loop controlled, electrothermally actuated microelectromechanical systems (MEMS micromirror is proposed and experimentally verified. The scan range and the tilting angle of the mirror plate are the two critical parameters for MEMS-based FTS. In this work, the MEMS mirror with a footprint of 4.3 mm × 3.1 mm is based on a modified lateral-shift-free (LSF bimorph actuator design with large piston and reduced tilting. Combined with a position-sensitive device (PSD for tilt angle sensing, the feedback controlled MEMS mirror generates a 430 µm stable linear piston scan with the mirror plate tilting angle less than ±0.002°. The usable piston scan range is increased to 78% of the MEMS mirror’s full scan capability, and a spectral resolution of 0.55 nm at 531.9 nm wavelength, has been achieved. It is a significant improvement compared to the prior work.

  2. A nanoporous alumina microelectrode array for functional cell–chip coupling

    International Nuclear Information System (INIS)

    Wesche, Manuel; Hüske, Martin; Yakushenko, Alexey; Brüggemann, Dorothea; Mayer, Dirk; Offenhäusser, Andreas; Wolfrum, Bernhard

    2012-01-01

    The design of electrode interfaces has a strong impact on cell-based bioelectronic applications. We present a new type of microelectrode array chip featuring a nanoporous alumina interface. The chip is fabricated in a combination of top-down and bottom-up processes using state-of-the-art clean room technology and self-assembled generation of nanopores by aluminum anodization. The electrode characteristics are investigated in phosphate buffered saline as well as under cell culture conditions. We show that the modified microelectrodes exhibit decreased impedance compared to planar microelectrodes, which is caused by a nanostructuring effect of the underlying gold during anodization. The stability and biocompatibility of the device are demonstrated by measuring action potentials from cardiomyocyte-like cells growing on top of the chip. Cross sections of the cell–surface interface reveal that the cell membrane seals the nanoporous alumina layer without bending into the sub-50 nm apertures. The nanoporous microelectrode array device may be used as a platform for combining extracellular recording of cell activity with stimulating topographical cues. (paper)

  3. MEMS-based platforms for mechanical manipulation and characterization of cells

    Science.gov (United States)

    Pan, Peng; Wang, Wenhui; Ru, Changhai; Sun, Yu; Liu, Xinyu

    2017-12-01

    Mechanical manipulation and characterization of single cells are important experimental techniques in biological and medical research. Because of the microscale sizes and highly fragile structures of cells, conventional cell manipulation and characterization techniques are not accurate and/or efficient enough or even cannot meet the more and more demanding needs in different types of cell-based studies. To this end, novel microelectromechanical systems (MEMS)-based technologies have been developed to improve the accuracy, efficiency, and consistency of various cell manipulation and characterization tasks, and enable new types of cell research. This article summarizes existing MEMS-based platforms developed for cell mechanical manipulation and characterization, highlights their specific design considerations making them suitable for their designated tasks, and discuss their advantages and limitations. In closing, an outlook into future trends is also provided.

  4. Screening metal nanoparticles using boron-doped diamond microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ivandini, Tribidasari A., E-mail: ivandini.tri@sci.ui.ac.id; Rangkuti, Prasmita K. [Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Einaga, Yasuaki [Department of Chemistry, Faculty of Science and Technology, Keio University (Japan); JST ACCEL, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan)

    2016-04-19

    Boron-doped diamond (BDD) microelectrodes were used to observe the correlation between electrocatalytic currents caused by individual Pt nanoparticle (Pt-np) collisions at the electrode. The BDD microelectrodes, ∼20 µm diameter and ∼2 µm particle size, were fabricated at the surface of tungsten wires. Pt-np with a size of 1 to 5 nm with agglomerations up to 20 nm was used for observation. The electrolytic currents were observed via catalytic reaction of 15 mM hydrazine in 50 mM phosphate buffer solution at Pt-np at 0.4 V when it collides with the surface of the microelectrodes. The low current noise and wider potential window in the measurements using BDD microelectrode produced a better results, which represents a better correlation to the TEM result of the Pt-np, compared to when gold microelectrodes was used.

  5. Screening metal nanoparticles using boron-doped diamond microelectrodes

    International Nuclear Information System (INIS)

    Ivandini, Tribidasari A.; Rangkuti, Prasmita K.; Einaga, Yasuaki

    2016-01-01

    Boron-doped diamond (BDD) microelectrodes were used to observe the correlation between electrocatalytic currents caused by individual Pt nanoparticle (Pt-np) collisions at the electrode. The BDD microelectrodes, ∼20 µm diameter and ∼2 µm particle size, were fabricated at the surface of tungsten wires. Pt-np with a size of 1 to 5 nm with agglomerations up to 20 nm was used for observation. The electrolytic currents were observed via catalytic reaction of 15 mM hydrazine in 50 mM phosphate buffer solution at Pt-np at 0.4 V when it collides with the surface of the microelectrodes. The low current noise and wider potential window in the measurements using BDD microelectrode produced a better results, which represents a better correlation to the TEM result of the Pt-np, compared to when gold microelectrodes was used.

  6. A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors

    Directory of Open Access Journals (Sweden)

    Spiros Pagiatakis

    2009-10-01

    Full Text Available In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times. It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF. It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at −40 °C, −20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.

  7. A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors.

    Science.gov (United States)

    El-Diasty, Mohammed; Pagiatakis, Spiros

    2009-01-01

    In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM) models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times). It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF). It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at -40 °C, -20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.

  8. MEMS capacitive accelerometer-based middle ear microphone.

    Science.gov (United States)

    Young, Darrin J; Zurcher, Mark A; Semaan, Maroun; Megerian, Cliff A; Ko, Wen H

    2012-12-01

    The design, implementation, and characterization of a microelectromechanical systems (MEMS) capacitive accelerometer-based middle ear microphone are presented in this paper. The microphone is intended for middle ear hearing aids as well as future fully implantable cochlear prosthesis. Human temporal bones acoustic response characterization results are used to derive the accelerometer design requirements. The prototype accelerometer is fabricated in a commercial silicon-on-insulator (SOI) MEMS process. The sensor occupies a sensing area of 1 mm × 1 mm with a chip area of 2 mm × 2.4 mm and is interfaced with a custom-designed low-noise electronic IC chip over a flexible substrate. The packaged sensor unit occupies an area of 2.5 mm × 6.2 mm with a weight of 25 mg. The sensor unit attached to umbo can detect a sound pressure level (SPL) of 60 dB at 500 Hz, 35 dB at 2 kHz, and 57 dB at 8 kHz. An improved sound detection limit of 34-dB SPL at 150 Hz and 24-dB SPL at 500 Hz can be expected by employing start-of-the-art MEMS fabrication technology, which results in an articulation index of approximately 0.76. Further micro/nanofabrication technology advancement is needed to enhance the microphone sensitivity for improved understanding of normal conversational speech.

  9. Simultaneous recording of brain extracellular glucose, spike and local field potential in real time using an implantable microelectrode array with nano-materials

    International Nuclear Information System (INIS)

    Wei, Wenjing; Song, Yilin; Fan, Xinyi; Zhang, Song; Wang, Li; Xu, Shengwei; Wang, Mixia; Cai, Xinxia

    2016-01-01

    Glucose is the main substrate for neurons in the central nervous system. In order to efficiently characterize the brain glucose mechanism, it is desirable to determine the extracellular glucose dynamics as well as the corresponding neuroelectrical activity in vivo. In the present study, we fabricated an implantable microelectrode array (MEA) probe composed of platinum electrochemical and electrophysiology microelectrodes by standard micro electromechanical system (MEMS) processes. The MEA probe was modified with nano-materials and implanted in a urethane-anesthetized rat for simultaneous recording of striatal extracellular glucose, local field potential (LFP) and spike on the same spatiotemporal scale when the rat was in normoglycemia, hypoglycemia and hyperglycemia. During these dual-mode recordings, we observed that increase of extracellular glucose enhanced the LFP power and spike firing rate, while decrease of glucose had an opposite effect. This dual mode MEA probe is capable of examining specific spatiotemporal relationships between electrical and chemical signaling in the brain, which will contribute significantly to improve our understanding of the neuron physiology. (paper)

  10. Compact multichannel MEMS based spectrometer for FBG sensing

    DEFF Research Database (Denmark)

    Ganziy, Denis; Rose, Bjarke; Bang, Ole

    2017-01-01

    We propose a novel type of compact multichannel MEMS based spectrometer, where we replace the linear detector with a Digital Micromirror Device (DMD). The DMD is typically cheaper and has better pixel sampling than an InGaAs detector used in the 1550 nm range, which leads to cost reduction...

  11. Design and Fabrication of a Reconfigurable MEMS-Based Antenna

    KAUST Repository

    Martinez, Miguel Angel Galicia

    2011-06-22

    This thesis presents the design and fabrication of a customized in house Micro-Electro-Mechanical-Systems (MEMS) process based on-chip antenna that is both frequency and polarization reconfigurable. It is designed to work at both 60 GHz and 77 GHz through MEMS switches. This antenna can also work in both horizontal and vertical linear polarizations by utilizing a moveable plate. The design is intended for Wireless Personal Area Networks (WPAN) and automotive radar applications. Typical on-chip antennas are inefficient and difficult to reconfigure. Therefore, the focus of this work is to develop an efficient on-chip antenna solution, which is reconfigurable in frequency and in polarization. A fractal bowtie antenna is employed for this thesis, which achieves frequency reconfigurability through MEMS switches. The design is simulated in industry standard Electromagnetic (EM) simulator Ansoft HFSS. A novel concept for horizontal to vertical linear polarization agility is introduced which incorporates a moveable polymer plate. For this work, a microprobe is used to move the plate from the horizontal to vertical position. For testing purposes, a novel mechanism has been designed in order to feed the antenna with RF-probes in both horizontal and vertical positions. A simulated gain of approximately 0 dB is achieved at both target frequencies (60 and 77 GHz), in both horizontal and vertical positions. In all the cases mentioned above (both frequencies and positions), the antenna is well matched (< -10 dB) to the 50 Ω system impedance. Similarly, the radiation nulls are successfully shifted by changing the position of the antenna from horizontal to vertical. The complete design and fabrication of the reconfigurable MEMS antenna has been done at KAUST facilities. Some challenges have been encountered during its realization due to the immaturity of the customized MEMS fabrication process. Nonetheless, a first fabrication attempt has highlighted such shortcomings. According

  12. Design of the movable limiters for JT-60

    International Nuclear Information System (INIS)

    Takashima, Tetsuo; Yamamoto, Masahiro; Nakamura, Hiroo; Ohkubo, Minoru; Ohta, Mitsuru

    1976-07-01

    Two fast-acting movable rail limiters will be used in JT-60 to suppress skin effect of the plasma current with a large radius. They travel safely through a stroke of about 1 m for 0.1 sec in the build-up phase of plasma current. The movable limiter system consists of a driving mechanism, a vacuum seal, a bearing used at high temperatures in a vacuum, a molybdenum rail limiter weighing 200 kg and its auxiliary members. Many problems are involved in construction of the system because the design specifications exceed the present technology. Described are design of the movable limiter system for JT-60 and problems in the mechanical, electrical and vacuum aspects. (auth.)

  13. Size-dependent pull-in instability of electrostatically actuated microbeam-based MEMS

    International Nuclear Information System (INIS)

    Wang, Binglei; Zhou, Shenjie; Zhao, Junfeng; Chen, Xi

    2011-01-01

    We present a size-dependent model for electrostatically actuated microbeam-based MEMS using strain gradient elasticity theory. The normalized pull-in voltage is shown to increase nonlinearly with the decrease of the beam height, and the size effect becomes prominent if the beam thickness is on the order of microns or smaller (i.e. when the beam dimension is comparable to the material length scale parameter). Very good agreement is found between the present model and available experimental data. The study may be helpful to characterize the mechanical properties of small size MEMS, or guide the design of microbeam-based devices for a wide range of potential applications. (technical note)

  14. Integrated MEMS-based variable optical attenuator and 10Gb/s receiver

    Science.gov (United States)

    Aberson, James; Cusin, Pierre; Fettig, H.; Hickey, Ryan; Wylde, James

    2005-03-01

    MEMS devices can be successfully commercialized in favour of competing technologies only if they offer an advantage to the customer in terms of lower cost or increased functionality. There are limited markets where MEMS can be manufactured cheaper than similar technologies due to large volumes: automotive, printing technology, wireless communications, etc. However, success in the marketplace can also be realized by adding significant value to a system at minimal cost or leverging MEMS technology when other solutions simply will not work. This paper describes a thermally actuated, MEMS based, variable optical attenuator that is co-packaged with existing opto-electronic devices to develop an integrated 10Gb/s SONET/SDH receiver. The configuration of the receiver opto-electronics and relatively low voltage availability (12V max) in optical systems bar the use of LCD, EO, and electro-chromic style attenuators. The device was designed and fabricated using a silicon-on-insulator (SOI) starting material. The design and performance of the device (displacement, power consumption, reliability, physical geometry) was defined by the receiver parameters geometry. This paper will describe how these design parameters (hence final device geometry) were determined in light of both the MEMS device fabrication process and the receiver performance. Reference will be made to the design tools used and the design flow which was a joint effort between the MEMS vendor and the end customer. The SOI technology offered a robust, manufacturable solution that gave the required performance in a cost-effective process. However, the singulation of the devices required the development of a new singulation technique that allowed large volumes of silicon to be removed during fabrication yet still offer high singulation yields.

  15. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    Science.gov (United States)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  16. Movable geometry and eigenvalue search capability in the MC21 Monte Carlo code

    International Nuclear Information System (INIS)

    Gill, D. F.; Nease, B. R.; Griesheimer, D. P.

    2013-01-01

    A description of a robust and flexible movable geometry implementation in the Monte Carlo code MC21 is described along with a search algorithm that can be used in conjunction with the movable geometry capability to perform eigenvalue searches based on the position of some geometric component. The natural use of the combined movement and search capability is searching to critical through variation of control rod (or control drum) position. The movable geometry discussion provides the mathematical framework for moving surfaces in the MC21 combinatorial solid geometry description. A discussion of the interface between the movable geometry system and the user is also described, particularly the ability to create a hierarchy of movable groups. Combined with the hierarchical geometry description in MC21 the movable group framework provides a very powerful system for inline geometry modification. The eigenvalue search algorithm implemented in MC21 is also described. The foundations of this algorithm are a regula falsi search though several considerations are made in an effort to increase the efficiency of the algorithm for use with Monte Carlo. Specifically, criteria are developed to determine after each batch whether the Monte Carlo calculation should be continued, the search iteration can be rejected, or the search iteration has converged. These criteria seek to minimize the amount of time spent per iteration. Results for the regula falsi method are shown, illustrating that the method as implemented is indeed convergent and that the optimizations made ultimately reduce the total computational expense. (authors)

  17. Movable geometry and eigenvalue search capability in the MC21 Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D. F.; Nease, B. R.; Griesheimer, D. P. [Bettis Atomic Power Laboratory, PO Box 79, West Mifflin, PA 15122 (United States)

    2013-07-01

    A description of a robust and flexible movable geometry implementation in the Monte Carlo code MC21 is described along with a search algorithm that can be used in conjunction with the movable geometry capability to perform eigenvalue searches based on the position of some geometric component. The natural use of the combined movement and search capability is searching to critical through variation of control rod (or control drum) position. The movable geometry discussion provides the mathematical framework for moving surfaces in the MC21 combinatorial solid geometry description. A discussion of the interface between the movable geometry system and the user is also described, particularly the ability to create a hierarchy of movable groups. Combined with the hierarchical geometry description in MC21 the movable group framework provides a very powerful system for inline geometry modification. The eigenvalue search algorithm implemented in MC21 is also described. The foundations of this algorithm are a regula falsi search though several considerations are made in an effort to increase the efficiency of the algorithm for use with Monte Carlo. Specifically, criteria are developed to determine after each batch whether the Monte Carlo calculation should be continued, the search iteration can be rejected, or the search iteration has converged. These criteria seek to minimize the amount of time spent per iteration. Results for the regula falsi method are shown, illustrating that the method as implemented is indeed convergent and that the optimizations made ultimately reduce the total computational expense. (authors)

  18. A Teaching - Learning Framework for MEMS Education

    International Nuclear Information System (INIS)

    Sheeparamatti, B G; Angadi, S A; Sheeparamatti, R B; Kadadevaramath, J S

    2006-01-01

    Micro-Electro-Mechanical Systems (MEMS) technology has been identified as one of the most promising technologies in the 21st century. MEMS technology has opened up a wide array of unforeseen applications. Hence it is necessary to train the technocrats of tomorrow in this emerging field to meet the industrial/societal demands. The drive behind fostering of MEMS technology is the reduction in the cost, size, weight, and power consumption of the sensors, actuators, and associated electronics. MEMS is a multidisciplinary engineering and basic science area which includes electrical engineering, mechanical engineering, material science and biomedical engineering. Hence MEMS education needs a special approach to prepare the technocrats for a career in MEMS. The modern education methodology using computer based training systems (CBTS) with embedded modeling and simulation tools will help in this direction. The availability of computer based learning resources such as MATLAB, ANSYS/Multiphysics and rapid prototyping tools have contributed to proposition of an efficient teaching-learning framework for MEMS education presented in this paper. This paper proposes a conceptual framework for teaching/learning MEMS in the current technical education scenario

  19. MEMS-Based Fuel Reformer with Suspended Membrane Structure

    Science.gov (United States)

    Chang, Kuei-Sung; Tanaka, Shuji; Esashi, Masayoshi

    We report a MEMS-based fuel reformer for supplying hydrogen to micro-fuel cells for portable applications. A combustor and a reforming chamber are fabricated at either side of a suspended membrane structure. This design is used to improve the overall thermal efficiency, which is a critical issue to realize a micro-fuel reformer. The suspended membrane structure design provided good thermal isolation. The micro-heaters consumed 0.97W to maintain the reaction zone of the MEMS-based fuel reformer at 200°C, but further power saving is necessary by improving design and fabrication. The conversion rate of methanol to hydrogen was about 19% at 180°C by using evaporated copper as a reforming catalyst. The catalytic combustion of hydrogen started without any assistance of micro-heaters. By feeding the fuel mixture of an equivalence ratio of 0.35, the temperature of the suspended membrane structure was maintained stable at 100°C with a combustion efficiency of 30%. In future works, we will test a micro-fuel reformer by using a micro-combustor to supply heat.

  20. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia

    2016-01-01

    This work presents the fabrication and characterization of suspended three-dimensional (3D) pyrolytic carbon microelectrodes for electrochemical applications. For this purpose, an optimized process with multiple steps of UV photolithography with the negative tone photoresist SU-8 followed...... by pyrolysis at 900ºC for 1h was developed. With this process, microelectrode chips with a three electrode configuration were fabricated and characterized with cyclic voltammetry (CV) using a 10mM potassium ferri-ferrocyanide redox probe in a custom made batch system with magnetic clamping. The 3D pyrolytic...... carbon microelectrodes displayed twice the higher peak current compared to 2D....

  1. Concept Design of Movable Beam of Hydraulic Press

    Directory of Open Access Journals (Sweden)

    Li Yancong

    2017-01-01

    Full Text Available The hydraulic press movable beam is one of the key components of the hydraulic press; its design quality impacts the accuracy of the workpiece that the press suppressed. In this paper, first, with maximum deflection and material strength as constraints, mechanical model of the movable beam is established; next, the concept design model of the moveable beam structure is established; the relationship among the force of the side cylinder, the thickness of the inclined plate, outer plate is established also. Taking movable beam of the 100MN type THP10-10000 isothermal forging hydraulic press as an example, the conceptual design result is given. This concept design method mentoned in the paper has general meaning and can apply to other similar product design.

  2. SU-8 Based MEMS Process with Two Metal Layers using α-Si as a Sacrificial Material

    KAUST Repository

    Ramadan, Khaled S.

    2012-04-01

    Polymer based microelectromechanical systems (MEMS) micromachining is finding more interest in research and applications. This is due to its low cost and less time processing compared with silicon MEMS. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic devices. In addition to being processed with low cost, it is a biocompatible material with good mechanical properties. Also, amorphous silicon (α-Si) has found use as a sacrificial layer in silicon MEMS applications. α-Si can be deposited at large thicknesses for MEMS applications and also can be released in a dry method using XeF2 which can solve stiction problems related to MEMS applications. In this thesis, an SU-8 MEMS process is developed using amorphous silicon (α-Si) as a sacrificial layer. Electrostatic actuation and sensing is used in many MEMS applications. SU-8 is a dielectric material which limits its direct use in electrostatic actuation. This thesis provides a MEMS process with two conductive metal electrodes that can be used for out-of-plane electrostatic applications like MEMS switches and variable capacitors. The process provides the fabrication of dimples that can be conductive or non-conductive to facilitate more flexibility for MEMS designers. This SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were tuned for two sets of thicknesses which are thin (5-10μm) and thick (130μm). Chevron bent-beam structures and different suspended beams (cantilevers and bridges) were fabricated to characterize the SU-8 process through extracting the density, Young’s Modulus and the Coefficient of Thermal Expansion (CTE) of SU-8. Also, the process was tested and used as an educational tool through which different MEMS structures were fabricated including MEMS switches, variable capacitors and thermal actuators.

  3. A MEMS-based super fast dew point hygrometer—construction and medical applications

    International Nuclear Information System (INIS)

    Jachowicz, Ryszard S; Weremczuk, Jerzy; Paczesny, Daniel; Tarapata, Grzegorz

    2009-01-01

    The paper shows how MEMS (micro-electro-mechanical system) technology and a modified principle of fast temperature control (by heat injection instead of careful control of cooling) can considerably improve the dynamic parameters of dew point hygrometers. Some aspects of MEMS-type integrated sensor construction and technology, whole measurement system design, the control algorithm to run the system as well as empirical dynamic parameters from the tests are discussed too. The hygrometer can easily obtain five to six measurements per second with an uncertainty of less than 0.3 K. The meter range is between −10 °C and 40 °C dew point. In the second part of the paper (section 2), two different successful applications in medicine based on fast humidity measurements have been discussed. Some specific constructions of these super fast dew point hygrometers based on a MEMS sensor as well as limited empirical results from clinical tests have been reported too

  4. A MEMS-based super fast dew point hygrometer—construction and medical applications

    Science.gov (United States)

    Jachowicz, Ryszard S.; Weremczuk, Jerzy; Paczesny, Daniel; Tarapata, Grzegorz

    2009-12-01

    The paper shows how MEMS (micro-electro-mechanical system) technology and a modified principle of fast temperature control (by heat injection instead of careful control of cooling) can considerably improve the dynamic parameters of dew point hygrometers. Some aspects of MEMS-type integrated sensor construction and technology, whole measurement system design, the control algorithm to run the system as well as empirical dynamic parameters from the tests are discussed too. The hygrometer can easily obtain five to six measurements per second with an uncertainty of less than 0.3 K. The meter range is between -10 °C and 40 °C dew point. In the second part of the paper (section 2), two different successful applications in medicine based on fast humidity measurements have been discussed. Some specific constructions of these super fast dew point hygrometers based on a MEMS sensor as well as limited empirical results from clinical tests have been reported too.

  5. Automatic control of movable detectors

    International Nuclear Information System (INIS)

    Wassel, W.W.; Remley, G.W.

    1980-01-01

    An invention is described, relating to a microprocessor based control system for a plurality of movable detectors, e.g. a nuclear reactor flux mapping system, with new system architecture which increases system availability by preventing faults on any of the detection channels from disabling the remaining channels. The system has, say, four drive trains for a number of detectors. Functional separation is realized by having two channels control their associated two drive trains. Redundancy is provided by having dual channels for operator interface. Communications between the functionally separate channels is accomplished by employing two-ported memories in conjunction with multiple microprocessors. (author)

  6. Movable collimator for positron annihilation imaging device

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1981-01-01

    A positron annihilation imaging device having two circular arrays of detectors disposed in spaced apart parallel planes wherein axially movable annular collimator rings are generally disposed in a pair of opposite planes outside the associated planes of the collimators to each collimator being movable toward the opposite collimator and a central collimator of annular configuration generally disposed between the two rows of detectors but being split into two rings which may be separated, the outer and inner collimators serving to enhance data readout and imaging

  7. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    Science.gov (United States)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  8. Design of a MEMS-Based Oscillator Using 180nm CMOS Technology.

    Science.gov (United States)

    Roy, Sukanta; Ramiah, Harikrishnan; Reza, Ahmed Wasif; Lim, Chee Cheow; Ferrer, Eloi Marigo

    2016-01-01

    Micro-electro mechanical system (MEMS) based oscillators are revolutionizing the timing industry as a cost effective solution, enhanced with more features, superior performance and better reliability. The design of a sustaining amplifier was triggered primarily to replenish MEMS resonator's high motion losses due to the possibility of their 'system-on-chip' integrated circuit solution. The design of a sustaining amplifier observing high gain and adequate phase shift for an electrostatic clamp-clamp (C-C) beam MEMS resonator, involves the use of an 180nm CMOS process with an unloaded Q of 1000 in realizing a fixed frequency oscillator. A net 122dBΩ transimpedance gain with adequate phase shift has ensured 17.22MHz resonant frequency oscillation with a layout area consumption of 0.121 mm2 in the integrated chip solution, the sustaining amplifier draws 6.3mW with a respective phase noise of -84dBc/Hz at 1kHz offset is achieved within a noise floor of -103dBC/Hz. In this work, a comparison is drawn among similar design studies on the basis of a defined figure of merit (FOM). A low phase noise of 1kHz, high figure of merit and the smaller size of the chip has accredited to the design's applicability towards in the implementation of a clock generative integrated circuit. In addition to that, this complete silicon based MEMS oscillator in a monolithic solution has offered a cost effective solution for industrial or biomedical electronic applications.

  9. Design of a MEMS-Based Oscillator Using 180nm CMOS Technology.

    Directory of Open Access Journals (Sweden)

    Sukanta Roy

    Full Text Available Micro-electro mechanical system (MEMS based oscillators are revolutionizing the timing industry as a cost effective solution, enhanced with more features, superior performance and better reliability. The design of a sustaining amplifier was triggered primarily to replenish MEMS resonator's high motion losses due to the possibility of their 'system-on-chip' integrated circuit solution. The design of a sustaining amplifier observing high gain and adequate phase shift for an electrostatic clamp-clamp (C-C beam MEMS resonator, involves the use of an 180nm CMOS process with an unloaded Q of 1000 in realizing a fixed frequency oscillator. A net 122dBΩ transimpedance gain with adequate phase shift has ensured 17.22MHz resonant frequency oscillation with a layout area consumption of 0.121 mm2 in the integrated chip solution, the sustaining amplifier draws 6.3mW with a respective phase noise of -84dBc/Hz at 1kHz offset is achieved within a noise floor of -103dBC/Hz. In this work, a comparison is drawn among similar design studies on the basis of a defined figure of merit (FOM. A low phase noise of 1kHz, high figure of merit and the smaller size of the chip has accredited to the design's applicability towards in the implementation of a clock generative integrated circuit. In addition to that, this complete silicon based MEMS oscillator in a monolithic solution has offered a cost effective solution for industrial or biomedical electronic applications.

  10. Design, modeling and simulation of MEMS-based silicon Microneedles

    International Nuclear Information System (INIS)

    Amin, F; Ahmed, S

    2013-01-01

    The advancement in semiconductor process engineering and nano-scale fabrication technology has made it convenient to transport specific biological fluid into or out of human skin with minimum discomfort. Fluid transdermal delivery systems such as Microneedle arrays are one such emerging and exciting Micro-Electro Mechanical System (MEMS) application which could lead to a total painless fluid delivery into skin with controllability and desirable yield. In this study, we aimed to revisit the problem with modeling, design and simulations carried out for MEMS based silicon hollow out of plane microneedle arrays for biomedical applications particularly for transdermal drug delivery. An approximate 200 μm length of microneedle with 40 μm diameter of lumen has been successfully shown formed by isotropic and anisotropic etching techniques using MEMS Pro design tool. These microneedles are arranged in size of 2 × 4 matrix array with center to center spacing of 750 μm. Furthermore, comparisons for fluid flow characteristics through these microneedle channels have been modeled with and without the contribution of the gravitational forces using mathematical models derived from Bernoulli Equation. Physical Process simulations have also been performed on TCAD SILVACO to optimize the design of these microneedles aligned with the standard Si-Fabrication lines.

  11. Design, modeling and simulation of MEMS-based silicon Microneedles

    Science.gov (United States)

    Amin, F.; Ahmed, S.

    2013-06-01

    The advancement in semiconductor process engineering and nano-scale fabrication technology has made it convenient to transport specific biological fluid into or out of human skin with minimum discomfort. Fluid transdermal delivery systems such as Microneedle arrays are one such emerging and exciting Micro-Electro Mechanical System (MEMS) application which could lead to a total painless fluid delivery into skin with controllability and desirable yield. In this study, we aimed to revisit the problem with modeling, design and simulations carried out for MEMS based silicon hollow out of plane microneedle arrays for biomedical applications particularly for transdermal drug delivery. An approximate 200 μm length of microneedle with 40 μm diameter of lumen has been successfully shown formed by isotropic and anisotropic etching techniques using MEMS Pro design tool. These microneedles are arranged in size of 2 × 4 matrix array with center to center spacing of 750 μm. Furthermore, comparisons for fluid flow characteristics through these microneedle channels have been modeled with and without the contribution of the gravitational forces using mathematical models derived from Bernoulli Equation. Physical Process simulations have also been performed on TCAD SILVACO to optimize the design of these microneedles aligned with the standard Si-Fabrication lines.

  12. Modeling and Simulation of Microelectrode-Retina Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Beckerman, M

    2002-11-30

    The goal of the retinal prosthesis project is the development of an implantable microelectrode array that can be used to supply visually-driven electrical input to cells in the retina, bypassing nonfunctional rod and cone cells, thereby restoring vision to blind individuals. This goal will be achieved through the study of the fundamentals of electrical engineering, vision research, and biomedical engineering with the aim of acquiring the knowledge needed to engineer a high-density microelectrode-tissue hybrid sensor that will restore vision to millions of blind persons. The modeling and simulation task within this project is intended to address the question how best to stimulate, and communicate with, cells in the retina using implanted microelectrodes.

  13. Design, simulation and characterization of a MEMS inertia switch with flexible CNTs/Cu composite array layer between electrodes for prolonging contact time

    International Nuclear Information System (INIS)

    Wang, Yang; Yang, Zhuoqing; Xu, Qiu; Chen, Wenguo; Ding, Guifu; Zhao, Xiaolin

    2015-01-01

    This paper reports an inertia switch with a flexible carbon nanotubes/copper (CNTs/Cu) composite array layer between movable and fixed electrodes, which achieves a longer contact time compared to the traditional design using rigid-to-rigid impact between electrodes. The CNTs/Cu layer is fabricated using the composite electroplating method, and the whole device is completed by multi-layer metal electroplating based on the micro-electro-mechanical systems (MEMS) process. The dynamic responses of the designed inertia switch and the contact impact between a single CNT and a fixed electrode/another CNT have both been simulated by the ANSYS finite-element-method (FEM). It is shown that the contact time of the designed inertia switch is about 100 µs under the applied 80 g half-sine-shaped acceleration in the sensing direction. Finally, the fabricated MEMS inertia switch with the flexible CNTs/Cu composite array layer between electrodes has been evaluated by a dropping hammer system. The test contact time is about112 µs, which has a good agreement with the simulation and is much longer than that of the traditional design. (paper)

  14. AFM cantilever with in situ renewable mercury microelectrode

    NARCIS (Netherlands)

    Schön, Peter Manfred; Geerlings, J.; Tas, Niels Roelof; Sarajlic, Edin

    2013-01-01

    We report here first results obtained on a novel, in situ renewable mercury microelectrode integrated into an atomic force microscopy (AFM) cantilever. Our approach is based on a fountain pen probe with appropriate dimensions enabling reversible filling with(nonwetting) mercury under changing the

  15. Research on the Effects of the Movable Die and its Counter Force on Sheet Hydroforming

    International Nuclear Information System (INIS)

    Zhou, Li X.; Zhang, Shi H.; Wang, Ben X.

    2007-01-01

    An improved Sheet Hydro-forming process was proposed, which was investigated in Institute of Metal Research, Chinese Academy of Sciences. ASAME system and FEM are used to analyze the forming process to explain some results that were found in the experiment. In the simulation, the effect of the movable die on the maximum principal stress is investigated in detail by using the FEM code LS-DYNA. For this case, the movable die changes the distribution of the maximum principal stress. For the sheet hydroforming without the movable die, the principal stress near the shoulder of the movable die arrives to the maximum value when t=0.0033s suddenly. But for the sheet hydroforming with the movable die, the maximum principal stress still lies in the die radius. The principal stress near the shoulder of the movable die is smaller. At the last stage contacting with the die, for the case without the movable die, the maximum principal stress near the shoulder of movable die is larger than that of the sheet hydroforming with the movable die. Moreover, the stress distribution near the shoulder of movable die for the case without the movable die is complicated. It is instable and very easy to occur wrinkling. The movable die delays the maximum thickness strain to the contacting die stage. So the formability of sheet metal can be remarkably improved by adopting the movable die. On a certain extent, the uniform distribution of thickness can be realized by increasing the counterforce of movable die. The minimum thickness reduction moves outside which is very helpful for the uniform thickness distribution. In this paper, two kinds of materials, soft steel and stainless steel, were investigated

  16. Management of excessive movable tissue: a modified impression technique.

    Science.gov (United States)

    Shum, Michael H C; Pow, Edmond H N

    2014-08-01

    Excessive movable tissue is a challenge in complete denture prosthetics. A modified impression technique is presented with polyvinyl siloxane impression material and a custom tray with relief areas and perforations in the area of the excessive movable tissue. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. MEMS packaging

    CERN Document Server

    Hsu , Tai-Ran

    2004-01-01

    MEMS Packaging discusses the prevalent practices and enabling techniques in assembly, packaging and testing of microelectromechanical systems (MEMS). The entire spectrum of assembly, packaging and testing of MEMS and microsystems, from essential enabling technologies to applications in key industries of life sciences, telecommunications and aerospace engineering is covered. Other topics included are bonding and sealing of microcomponents, process flow of MEMS and microsystems packaging, automated microassembly, and testing and design for testing.The Institution of Engineering and Technology is

  18. PolyMEMS Actuator: A Polymer-Based Microelectromechanical (MEMS) Actuator with Macroscopic Action

    Science.gov (United States)

    2002-09-01

    DIRECTOR: MICHAEL L. TALBERT, Maj., USAF Technical Advisor , Information Technology Division Information Directorate...technologies meet even two of the four requirements, whereas PolyMEMS meets all four. Robo -Lobster Courtesy of Dr. Joseph Ayers, Northeastern

  19. Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program

    Science.gov (United States)

    Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.

    1995-01-01

    In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.

  20. Positron annihilation imaging device having movable collimator

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1981-01-01

    This patent application relates to a positron annihilation imaging device comprising two circular arrays of detectors disposed in spaced apart parallel planes and circumferentially offset by half the detector spacing, axially movable annular outer collimator rings, generally disposed in a pair of opposite planes outside the associated planes of the detectors, each collimator being movable toward the opposite collimator. An inner collimator of annular configuration is disposed between the two rows of detectors and is formed in two rings which may be separated axially. The outer and inner collimators serve to enhance data readout and imaging. (author)

  1. Miniaturized GPS/MEMS IMU integrated board

    Science.gov (United States)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  2. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  3. On Orbit Immuno-Based, Label-Free, White Blood Cell Counting System with MicroElectroMechanical Sensor (MEMS) Technology (OILWBCS-MEMS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences Corporation and partner, Draper Laboratory, propose to develop an on-orbit immuno-based label-free white blood cell counting system using MEMS...

  4. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions

    Science.gov (United States)

    Guo, Rui; Liu, Jing

    2017-10-01

    With significant advantages in rapidly restoring the nerve function, electrical stimulation of nervous tissue is a crucial treatment of peripheral nerve injuries leading to common movement disorder. However, the currently available stimulating electrodes generally based on rigid conductive materials would cause a potential mechanical mismatch with soft neural tissues which thus reduces long-term effects of electrical stimulation. Here, we proposed and fabricated a flexible neural microelectrode array system based on the liquid metal GaIn alloy (75.5% Ga and 24.5% In by weight) and via printing approach. Such an alloy with a unique low melting point (10.35 °C) owns excellent electrical conductivity and high compliance, which are beneficial to serve as implantable flexible neural electrodes. The flexible neural microelectrode array embeds four liquid metal electrodes and stretchable interconnects in a PDMS membrane (500 µm in thickness) that possess a lower elastic modulus (1.055 MPa), which is similar to neural tissues with elastic moduli in the 0.1-1.5 MPa range. The electrical experiments indicate that the liquid metal interconnects could sustain over 7000 mechanical stretch cycles with resistance approximately staying at 4 Ω. Over the conceptual experiments on animal sciatic nerve electrical stimulation, the dead bullfrog implanted with flexible neural microelectrode array could even rhythmically contract and move its lower limbs under the electrical stimulations from the implant. This demonstrates a highly efficient way for quickly recovering biological nerve functions. Further, the good biocompatibility of the liquid metal material was justified via a series of biological experiments. This liquid metal modality for neural stimulation is expected to play important roles as biologic electrodes to overcome the fundamental mismatch in mechanics between biological tissues and electronic devices in the coming time.

  5. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions

    International Nuclear Information System (INIS)

    Guo, Rui; Liu, Jing

    2017-01-01

    With significant advantages in rapidly restoring the nerve function, electrical stimulation of nervous tissue is a crucial treatment of peripheral nerve injuries leading to common movement disorder. However, the currently available stimulating electrodes generally based on rigid conductive materials would cause a potential mechanical mismatch with soft neural tissues which thus reduces long-term effects of electrical stimulation. Here, we proposed and fabricated a flexible neural microelectrode array system based on the liquid metal GaIn alloy (75.5% Ga and 24.5% In by weight) and via printing approach. Such an alloy with a unique low melting point (10.35 °C) owns excellent electrical conductivity and high compliance, which are beneficial to serve as implantable flexible neural electrodes. The flexible neural microelectrode array embeds four liquid metal electrodes and stretchable interconnects in a PDMS membrane (500 µ m in thickness) that possess a lower elastic modulus (1.055 MPa), which is similar to neural tissues with elastic moduli in the 0.1–1.5 MPa range. The electrical experiments indicate that the liquid metal interconnects could sustain over 7000 mechanical stretch cycles with resistance approximately staying at 4 Ω. Over the conceptual experiments on animal sciatic nerve electrical stimulation, the dead bullfrog implanted with flexible neural microelectrode array could even rhythmically contract and move its lower limbs under the electrical stimulations from the implant. This demonstrates a highly efficient way for quickly recovering biological nerve functions. Further, the good biocompatibility of the liquid metal material was justified via a series of biological experiments. This liquid metal modality for neural stimulation is expected to play important roles as biologic electrodes to overcome the fundamental mismatch in mechanics between biological tissues and electronic devices in the coming time. (paper)

  6. Optimization of Contact Force and Pull-in Voltage for Series based MEMS Switch

    Directory of Open Access Journals (Sweden)

    Abhijeet KSHIRSAGAR

    2010-04-01

    Full Text Available Cantilever based metal-to-metal contact type MEMS series switch has many applications namely in RF MEMS, Power MEMS etc. A typical MEMS switch consists of a cantilever as actuating element to make the contact between the two metal terminals of the switch. The cantilever is pulled down by applying a pull-in voltage to the control electrode that is located below the middle portion of the cantilever while only the tip portion of the cantilever makes contact between the two terminals. Detailed analysis of bending of the cantilever for different pull-in voltages reveals some interesting facts. At low pull-in voltage the cantilever tip barely touches the two terminals, thus resulting in very less contact area. To increase contact area a very high pull-in voltage is applied, but it lifts the tip from the free end due to concave curving of the cantilever in the middle region of the cantilever where the electrode is located. Again it results in less contact area. Furthermore, the high pull-in voltage produces large stress at the base of the cantilever close to the anchor. Therefore, an optimum, pull-in voltage must exist at which the concave curving is eliminated and contact area is maximum. In this paper authors report the finding of optimum contact force and pull-in voltage.

  7. Movable limiter experiment on TPE-1RM15 reversed field pinch machine

    International Nuclear Information System (INIS)

    Yagi, Yasuyuki; Shimada, Toshio; Hirota, Isao; Maejima, Yoshiki; Hirano, Yoichi; Ogawa, Kiyoshi

    1989-01-01

    Two movable limiters with a graphite head (35 mm Φ x 40 mm high) were installed in TPE-1RM15 reversed field pinch (RFP) machine. Measurement of the heat flux input to the movable limiters and the effect of the insertion of the limiter on plasma properties, as well as surface analyses of the graphite head after the exposure, were conducted. The heat flux input into the electron drift side of the limiter exceeded that from the ion drift side by factor of 4-6 at the maximum insertion of the limiters (10 mm inward from the shadow of the fixed limiters). This factor increased as the movable limiter protruded into the plasma, and this profile is attributed to the change of the pitch profile of the magnetic field line at the plasma periphery. At the maximum insertion of the two movable limiters, the energy input into a graphite head was about 10% of the joule input energy during the current sustainment phase. The one turn loop voltage and plasma resistance increased when the movable limiters were inserted beyond the shadow of the fixed limiters, and the increment of the joule input power roughly correlates with the increment of the loss power into the protruded movable limiters. Unbalanced position scanning showed that the relative distance of a movable limiter from the plasma column was not affected by another movable limiter installed 180 0 toroidally away from the former limiter. Fundamental surface analyses of the graphite head showed that deposition of metal impurities (Fe and Cr) was higher at the corner of the ion drift side than that of the electron shift side, and that the corner of the electron drift side was more roughened than the ion drift side. (orig.)

  8. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    Science.gov (United States)

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Martinez, CA; Upadhye, Ravindra S [Pleasanton, CA; Havstad, Mark A [Davis, CA

    2011-08-09

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  9. Impedance Immunsensor Based on Interdigitated Array Microelectrode and its Experiment Parameter Optimization

    Directory of Open Access Journals (Sweden)

    Wen Ping Zhao

    2014-05-01

    Full Text Available This article accounts for a novel impedance immunosensor based on the specificity reaction of the antigen-antibody and the sensitivity of the interdigitated array microelectrode (IDAM for the determination of chlorpyrifos residues. The basic knowledge of immunoassay was in relation to its IDAM electrode surface modification, antibody immobilization, bovine serum albumin (BSA blocking and sample detection. The SPA was dropped onto the surface of IDAM electrode, used for binding antibody Fc fragments. Next, antibody was immobilized on the SPA modified electrode. Finally, BSA was employed to block the possible remaining active sites avoiding any nonspecific adsorption. Target chlorpyrifos was then captured by the immobilized antibody, resulting in a change in the impedance of the IDAM microelectrode surface. The fabrication procedure of the immunosensor and the sample detection were characterized by electrochemical impedance spectroscopy (EIS. The influences of the experiment parameters were investigated. Under optimized conditions, an excellent biosensor was fabricated. Many of the antibodies, enzymes and other reagents integral to immunoassays were very expensive, often hundreds of dollars per milligram, therefore miniaturization reduces reagent costs drastically. In this article the volume of the reagents was micro upgrade, the antibodies, SPA and BSA were 30 mL, the chlorpyrifos sample and detection solution were 50mL. The advantages of the immunosensor were exhibited in its better specificity, stability, selectivity and regeneration. The proposed method was proven to be a feasible quantitative method for chlorpyrifos analysis in vegetables and fruits.

  10. Design and Optimization of AlN based RF MEMS Switches

    Science.gov (United States)

    Hasan Ziko, Mehadi; Koel, Ants

    2018-05-01

    Radio frequency microelectromechanical system (RF MEMS) switch technology might have potential to replace the semiconductor technology in future communication systems as well as communication satellites, wireless and mobile phones. This study is to explore the possibilities of RF MEMS switch design and optimization with aluminium nitride (AlN) thin film as the piezoelectric actuation material. Achieving low actuation voltage and high contact force with optimal geometry using the principle of piezoelectric effect is the main motivation for this research. Analytical and numerical modelling of single beam type RF MEMS switch used to analyse the design parameters and optimize them for the minimum actuation voltage and high contact force. An analytical model using isotropic AlN material properties used to obtain the optimal parameters. The optimized geometry of the device length, width and thickness are 2000 µm, 500 µm and 0.6 µm respectively obtained for the single beam RF MEMS switch. Low actuation voltage and high contact force with optimal geometry are less than 2 Vand 100 µN obtained by analytical analysis. Additionally, the single beam RF MEMS switch are optimized and validated by comparing the analytical and finite element modelling (FEM) analysis.

  11. Nanoporous gold microelectrode prepared from potential modulated electrochemical alloying–dealloying in ionic liquid

    International Nuclear Information System (INIS)

    Jiang, Junhua; Wang, Xinying; Zhang, Lei

    2013-01-01

    Highlights: • A green chemistry method for producing nanoporous gold microelectrode was studied. • An ionic liquid plating bath was utilized for electrochemical alloying–dealloying. • Nanostructures of gold surface layers can be tuned by modulating potential. • Nanoporous gold microelectrode has high surface area and merit of a microelectrode. • Nitrite oxidation and reduction on nanoporous gold microelectrode were studied. -- Abstract: Nanoporous gold (NPG) microelectrodes with high surface area and open pore network were successfully prepared by applying modulated potential to a polycrystalline Au-disk microelectrode in ionic liquid electrolyte containing ZnCl 2 at elevated temperature. During cathodic process, Zn is electrodeposited and interacted with Au microdisk substrate to form a AuZn alloy phase. During subsequent anodic process, Zn is selectively dissolved from the alloy phase, leading to the formation of a NPG layer which can grow with repetitive potential modulation. Scanning-electron microscope and energy dispersive X-ray microscope measurements show that the NPG microelectrodes possessing nanoporous structures can be tuned via potential modulation, and chemically contain a small amount of Zn whose presence has no obvious influence on electrochemical responses of the electrodes. Steady-state and cyclic voltammetric studies suggest that the NPG microelectrodes have high surface area and keep diffusional properties of a microelectrode. Electrochemical nitrite reduction and oxidation are studied as model reactions to demonstrate potential applications of the NPG microelectrodes in electrocatalysis and electroanalysis. These facts suggest that the potential-modulated electrochemical alloying/dealloying in ionic liquid electrolyte offers a convenient green-chemistry method for the preparation of nanoporous microelectrodes

  12. Biomaterials for MEMS

    CERN Document Server

    Chiao, Mu

    2011-01-01

    This book serves as a guide for practicing engineers, researchers, and students interested in MEMS devices that use biomaterials and biomedical applications. It is also suitable for engineers and researchers interested in MEMS and its applications but who do not have the necessary background in biomaterials.Biomaterials for MEMS highlights important features and issues of biomaterials that have been used in MEMS and biomedical areas. Hence this book is an essential guide for MEMS engineers or researchers who are trained in engineering institutes that do not provide the background or knowledge

  13. Scanning fiber microdisplay: design, implementation, and comparison to MEMS mirror-based scanning displays.

    Science.gov (United States)

    Khayatzadeh, Ramin; Civitci, Fehmi; Ferhanoglu, Onur; Urey, Hakan

    2018-03-05

    In this study, we propose a compact, lightweight scanning fiber microdisplay towards virtual and augmented reality applications. Our design that is tailored as a head-worn-display simply consists of a four-quadrant piezoelectric tube actuator through which a fiber optics cable is extended and actuated, and a reflective (or semi-reflective) ellipsoidal surface that relays the moving tip of the fiber onto the viewer's retina. The proposed display, offers significant advantages in terms of architectural simplicity, form-factor, fabrication complexity and cost over other fiber scanner and MEMS mirror counterparts towards practical realization. We demonstrate the display of various patterns with ∼VGA resolution and further provide analytical formulas for mechanical and optical constraints to compare the performance of the proposed scanning fiber microdisplay with that of MEMS mirror-based microdisplays. Also we discuss the road steps towards improving the performance of the proposed scanning fiber microdisplay to high-definition video formats (such as HD1440), which is beyond what has been achieved by MEMS mirror based laser scanning displays.

  14. A three-dimensional microelectrode array composed of vertically aligned ultra-dense carbon nanotube networks

    Science.gov (United States)

    Nick, C.; Yadav, S.; Joshi, R.; Schneider, J. J.; Thielemann, C.

    2015-07-01

    Electrodes based on carbon nanotubes are a promising approach to manufacture highly sensitive sensors with a low limit of signal detection and a high signal-to-noise ratio. This is achieved by dramatically increasing the electrochemical active surface area without increasing the overall geometrical dimensions. Typically, carbon nanotube electrodes are nearly planar and composed of randomly distributed carbon nanotube networks having a limited surface gain for a specific geometrical surface area. To overcome this limitation, we have introduced vertically aligned carbon nanotube (VACNT) networks as electrodes, which are arranged in a microelectrode pattern of 60 single electrodes. Each microelectrode features a very high aspect ratio of more than 300 and thus a dramatically increased surface area. These microelectrodes composed of VACNT networks display dramatically decreased impedance over the entire frequency range compared to planar microelectrodes caused by the enormous capacity increase. This is experimentally verified by electrochemical impedance spectroscopy and cyclic voltammetry.

  15. Entangling movable mirrors in a double cavity system

    DEFF Research Database (Denmark)

    Pinard, Michel; Dantan, Aurelien Romain; Vitali, David

    2005-01-01

    We propose a double-cavity set-up capable of generating a stationary entangled state of two movable mirrors at cryogenic temperatures. The scheme is based on the optimal transfer of squeezing of input optical fields to mechanical vibrational modes of the mirrors, realized by the radiation pressure...... of the intracavity light. We show that the presence of macroscopic entanglement can be demonstrated by an appropriate readout of the output light of the two cavities....

  16. Fabrication of three-dimensional carbon microelectrodes for electrochemical sensing

    DEFF Research Database (Denmark)

    Hemanth, Suhith

    Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. The aim of the research work carried out in this thesis was to develop three-dimensional (3D) carbon microelectrodes for electrochemical applications. Three different fabrica...

  17. Oxidative stress detection by MEMS cantilever sensor array based electronic nose

    Science.gov (United States)

    Gupta, Anurag; Singh, T. Sonamani; Singh, Priyanka; Yadava, R. D. S.

    2018-05-01

    This paper is concerned with analyzing the role of polymer swelling induced surface stress in MEMS chemical sensors. The objective is to determine the impact of surface stress on the chemical discrimination ability of MEMS resonator sensors. We considered a case study of hypoxia detection by MEMS sensor array and performed several types of simulation experiments for detection of oxidative stress volatile organic markers in human breath. Both types of sensor response models that account for the surface stress effect and that did not were considered for the analyses in comparison. It is found that the surface stress (hence the polymer swelling) provides better chemical discrimination ability to polymer coated MEMS sensors.

  18. MEMS tunable grating micro-spectrometer

    Science.gov (United States)

    Tormen, Maurizio; Lockhart, R.; Niedermann, P.; Overstolz, T.; Hoogerwerf, A.; Mayor, J.-M.; Pierer, J.; Bosshard, C.; Ischer, R.; Voirin, G.; Stanley, R. P.

    2017-11-01

    The interest in MEMS based Micro-Spectrometers is increasing due to their potential in terms of flexibility as well as cost, low mass, small volume and power savings. This interest, especially in the Near-Infrared and Mid- Infrared, ranges from planetary exploration missions to astronomy, e.g. the search for extra solar planets, as well as to many other terrestrial fields of application such as, industrial quality and surface control, chemical analysis of soil and water, detection of chemical pollutants, exhausted gas analysis, food quality control, process control in pharmaceuticals, to name a few. A compact MEMS-based Spectrometer for Near- Infrared and Mid-InfraRed operation have been conceived, designed and demonstrated. The design based on tunable MEMS blazed grating, developed in the past at CSEM [1], achieves state of the art results in terms of spectral resolution, operational wavelength range, light throughput, overall dimensions, and power consumption.

  19. MEMS-Based Micro Gas Chromatography: Design, Fabrication and Characterization

    OpenAIRE

    Zareian-Jahromi, Mohammad Amin

    2009-01-01

    This work is focused on the design, fabrication and characterization of high performance MEMS-based micro gas chromatography columns having wide range of applications in the pharmaceutical industry, environmental monitoring, petroleum distillation, clinical chemistry, and food processing. The first part of this work describes different approaches to achieve high-performance microfabricated silicon-glass separation columns for micro gas chromatographic (µGC) systems. The capillary width effec...

  20. RF MEMS

    Indian Academy of Sciences (India)

    At the bare die level the insertion loss, return loss and the isolation ... ing and packaging of a silicon on glass based RF MEMS switch fabricated using DRIE. ..... follows the power law based on the asperity deformation model given by Pattona & ... Surface mount style RF packages (SMX series 580465) from Startedge Corp.

  1. Internal Model-Based Robust Tracking Control Design for the MEMS Electromagnetic Micromirror.

    Science.gov (United States)

    Tan, Jiazheng; Sun, Weijie; Yeow, John T W

    2017-05-26

    The micromirror based on micro-electro-mechanical systems (MEMS) technology is widely employed in different areas, such as scanning, imaging and optical switching. This paper studies the MEMS electromagnetic micromirror for scanning or imaging application. In these application scenarios, the micromirror is required to track the command sinusoidal signal, which can be converted to an output regulation problem theoretically. In this paper, based on the internal model principle, the output regulation problem is solved by designing a robust controller that is able to force the micromirror to track the command signal accurately. The proposed controller relies little on the accuracy of the model. Further, the proposed controller is implemented, and its effectiveness is examined by experiments. The experimental results demonstrate that the performance of the proposed controller is satisfying.

  2. A Label-Free Microelectrode Array Based on One-Step Synthesis of Chitosan–Multi-Walled Carbon Nanotube–Thionine for Ultrasensitive Detection of Carcinoembryonic Antigen

    Directory of Open Access Journals (Sweden)

    Huiren Xu

    2016-07-01

    Full Text Available Carcinoembryonic antigen (CEA has been an extensively used tumor marker responsible for clinical early diagnosis of cervical carcinomas, and pancreatic, colorectal, gastric and lung cancer. Combined with micro-electro mechanical system (MEMS technology, it is important to develop a novel immune microelectrode array (MEA not only for rapid analysis of serum samples, but also for cell detection in vitro and in vivo. In this work, we depict a simple approach to modify chitosan–multi-walled carbon nanotubes–thionine (CS–MWCNTs–THI hybrid film through one-step electrochemical deposition and the CS-MWCNTs-THI hybrid films are successfully employed to immobilize anti-CEA for fabricating simple, label-free, and highly sensitive electro-chemical immune MEAs. The detection principle of immune MEA was based on the fact that the increasing formation of the antigen-antibody immunocomplex resulted in the decreased response currents and the relationship between the current reductions with the corresponding CEA concentrations was directly proportional. Experimental results indicated that the label-free MEA had good selectivity and the limit of detection for CEA is 0.5 pg/mL signal to noise ratio (SNR = 3. A linear calibration plot for the detection of CEA was obtained in a wide concentration range from 1 pg/mL to 100 ng/mL (r = 0.996. This novel MEA has potential applications for detecting CEA for the research on cancer cells and cancer tissue slices as well as for effective early diagnosis.

  3. Dynamic posturography using a new movable multidirectional platform driven by gravity.

    NARCIS (Netherlands)

    Commissaris, D.A.C.M.; Nieuwenhuijzen, P.H.J.A.; Overeem, S.; Vos, A. de; Duysens, J.E.J.; Bloem, B.R.

    2002-01-01

    Human upright balance control can be quantified using movable platforms driven by servo-controlled torque motors (dynamic posturography). We introduce a new movable platform driven by the force of gravity acting upon the platform and the subject standing on it. The platform consists of a 1 m2 metal

  4. Dynamic posturography using a new movable multidirectional platform driven by gravity

    NARCIS (Netherlands)

    Commissaris, D.A.C.M.; Nieuwenhuijzen, P.H.J.A.; Overeem, S.; Vos, A. de; Duysens, J.E.J.; Bloem, B.R.

    2002-01-01

    Human upright balance control can be quantified using movable platforms driven by servo-controlled torque motors (dynamic posturography). We introduce a new movable platform driven by the force of gravity acting upon the platform and the subject standing on it. The platform consists of a 1 m(2)

  5. A Widely-Accessible Distributed MEMS Processing Environment. The MEMS Exchange Program

    Science.gov (United States)

    2012-10-29

    all of these patterns in advance, we made a new cost model, called the Python Code cost model, which utilizes the power of a high level programming ...document entitled “The Beginners Guide to MEMS Processing” on the MEMSNet and MEMS Exchange The MEMS Exchange Program Final Technical Report October 29...from the Government is absolutely necessary. As said The MEMS Exchange Program Final Technical Report October 29, 2012 Page 57 of 58 before

  6. Piezoelectric translator. A simple and inexpensive device to move microelectrodes and micropipettes small distances rapidly.

    Science.gov (United States)

    Lederer, W J

    1983-09-01

    A device is described that is capable of rapidly moving microelectrodes and micropipettes over distances up to 15 mu. This piezoelectric transLator uses the diaphragm from virtually any available piezoelectric buzzer in combination with simple physical support and drive electronics. All of the necessary details for the construction of this small device are presented. Each finished unit is about 2 cm long with a diameter of 2 cm and can be readily adapted to existing manipulators. The translator has been found useful in aiding the independent penetration by one or more microelectrodes of single cells or of more complicated multicellular preparations (including those that lie behind a connective tissue layer). This new device offers fine control of microelectrode motion that cannot be obtained by the other methods used to aid microelectrode and micropipette penetration of cell membranes (e.g. capacitance overcompensation--"ringing in"' or "tickling"--or tapping the manipulator base). Finally, the device described in this paper is extremely simple and inexpensive to build.

  7. Design and characteristics of the drive mechanism for movable limiters of JT-60, (1)

    International Nuclear Information System (INIS)

    Takashima, Tetsuo; Morishita, Osamu; Yamamoto, Masahiro; Shimizu, Masatsugu; Ohta, Mitsuru

    1976-10-01

    Two fast-acting movable rail limiters will be installed in a large Tokamak JT-60 being designed in JAERI. The movable limiter consists of a drive mechanism, a vacuum seal, a bearing, and a molybdenum rail limiter. Design of the drive mechanism for the movable limiter and experimental results on the driving characteristics in full scale are described. (auth.)

  8. Waveguide-Integrated MEMS Concepts for Tunable Millimeter-Wave Systems

    OpenAIRE

    Baghchehsaraei, Zargham

    2014-01-01

    This thesis presents two families of novel waveguide-integrated components based on millimeter-wave microelectromechanical systems (MEMS) for reconfigurable systems. The first group comprises V-band (50–75 GHz) and W-band (75–110 GHz) waveguide switches and switchable irises, and their application as switchable cavity resonators, and tunable bandpass filters implemented by integration of novel MEMS-reconfigurable surfaces into a rectangular waveguide. The second category comprises MEMS-based ...

  9. Challenges in the Packaging of MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Malshe, A.P.; Singh, S.B.; Eaton, W.P.; O' Neal, C.; Brown, W.D.; Miller, W.M.

    1999-03-26

    The packaging of Micro-Electro-Mechanical Systems (MEMS) is a field of great importance to anyone using or manufacturing sensors, consumer products, or military applications. Currently much work has been done in the design and fabrication of MEMS devices but insufficient research and few publications have been completed on the packaging of these devices. This is despite the fact that packaging is a very large percentage of the total cost of MEMS devices. The main difference between IC packaging and MEMS packaging is that MEMS packaging is almost always application specific and greatly affected by its environment and packaging techniques such as die handling, die attach processes, and lid sealing. Many of these aspects are directly related to the materials used in the packaging processes. MEMS devices that are functional in wafer form can be rendered inoperable after packaging. MEMS dies must be handled only from the chip sides so features on the top surface are not damaged. This eliminates most current die pick-and-place fixtures. Die attach materials are key to MEMS packaging. Using hard die attach solders can create high stresses in the MEMS devices, which can affect their operation greatly. Low-stress epoxies can be high-outgassing, which can also affect device performance. Also, a low modulus die attach can allow the die to move during ultrasonic wirebonding resulting to low wirebond strength. Another source of residual stress is the lid sealing process. Most MEMS based sensors and devices require a hermetically sealed package. This can be done by parallel seam welding the package lid, but at the cost of further induced stress on the die. Another issue of MEMS packaging is the media compatibility of the packaged device. MEMS unlike ICS often interface with their environment, which could be high pressure or corrosive. The main conclusion we can draw about MEMS packaging is that the package affects the performance and reliability of the MEMS devices. There is a

  10. MEMS- and NEMS-based smart devices and systems

    Science.gov (United States)

    Varadan, Vijay K.

    2001-11-01

    structures and food and medical industries. This unique combination of technologies also results in novel conformal sensors that can be remotely sensed by an antenna system with the advantage of no power requirements at the sensor site. This paper provides a brief review of MEMS and NEMS based smart systems for various applications mentioned above. Carbon Nano Tubes (CNT) with their unique structure, have already proven to be valuable in their application as tips for scanning probe microscopy, field emission devices, nanoelectronics, H2-storage, electromagnetic absorbers, ESD, EMI films and coatings and structural composites. For many of these applications, highly purified and functionalized CNT which are compatible with many host polymers are needed. A novel microwave CVD processing technique to meet these requirements has been developed at Penn State Center for the engineering of Electronic and Acoustic Materials and Devices (CEEAMD). This method enables the production of highly purified carbon nano tubes with variable size (from 5-40 nm) at low cost (per gram) and high yield. Whereas, carbon nano tubes synthesized using the laser ablation or arc discharge evaporation method always include impurity due to catalyst or catalyst support. The Penn State research is based on the use of zeolites over other metal/metal oxides in the microwave field for a high production and uniformity of the product. An extended conventional purification method has been employed to purify our products in order to remove left over impurity. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross- linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composites will be presented.

  11. Torsion based universal MEMS logic device

    KAUST Repository

    Ilyas, Saad; Carreno, Armando Arpys Arevalo; Bayes, Ernesto; Foulds, Ian G.; Younis, Mohammad I.

    2015-01-01

    In this work we demonstrate torsion based complementary MEMS logic device, which is capable, of performing INVERTER, AND, NAND, NOR, and OR gates using one physical structure within an operating range of 0-10 volts. It can also perform XOR and XNOR with one access inverter using the same structure with different electrical interconnects. The paper presents modeling, fabrication and experimental calculations of various performance features of the device including lifetime, power consumption and resonance frequency. The fabricated device is 535 μm by 150 μm with a gap of 1.92 μm and a resonant frequency of 6.51 kHz. The device is capable of performing the switching operation with a frequency of 1 kHz.

  12. Torsion based universal MEMS logic device

    KAUST Repository

    Ilyas, Saad

    2015-10-28

    In this work we demonstrate torsion based complementary MEMS logic device, which is capable, of performing INVERTER, AND, NAND, NOR, and OR gates using one physical structure within an operating range of 0-10 volts. It can also perform XOR and XNOR with one access inverter using the same structure with different electrical interconnects. The paper presents modeling, fabrication and experimental calculations of various performance features of the device including lifetime, power consumption and resonance frequency. The fabricated device is 535 μm by 150 μm with a gap of 1.92 μm and a resonant frequency of 6.51 kHz. The device is capable of performing the switching operation with a frequency of 1 kHz.

  13. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    Science.gov (United States)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe

    2014-05-01

    worship. The waveforms recorded could be promptly used to determine ground-shaking parameters, like peak ground acceleration/velocity/displacement, Arias and Housner intensity, that could be all used to create, few seconds after a strong earthquakes, shaking maps at urban scale. These shaking maps could allow to quickly identify areas of the town center that have had the greatest earthquake resentment. When a strong seismic event occur, the beginning of the ground motion observed at the site could be used to predict the ensuing ground motion at the same site and so to realize a short term earthquake early warning system. The data acquired after a moderate magnitude earthquake, would provide valuable information for the detail seismic microzonation of the area based on direct earthquake shaking observations rather than from a model-based or indirect methods. In this work, we evaluate the feasibility and effectiveness of such seismic network taking in to account both technological, scientific and economic issues. For this purpose, we have simulated the creation of a MEMS based urban seismic network in a medium size city. For the selected town, taking into account the instrumental specifics, the array geometry and the environmental noise, we investigated the ability of the planned network to detect and measure earthquakes of different magnitude generated from realistic near seismogentic sources.

  14. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    Science.gov (United States)

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  15. Apparatus and method of inserting a microelectrode in body tissue or the like using vibration means

    Science.gov (United States)

    Feldstein, C.; Crawford, D. W.; Kanabus, E. W. (Inventor)

    1979-01-01

    An arrangement for and method of inserting a glass microelectrode having a tip in the micron range into body tissue is presented. The arrangement includes a microelectrode. The top of the microelectrode is attached to the diaphragm center of a first speaker. The microelectrode tip is brought into contact with the tissue by controlling a micromanipulator. Thereafter, an audio signal is applied to the speaker to cause the microelectrode to vibrate and thereby pierce the tissue surface without breaking the microelectrode tip. Thereafter, the tip is inserted into the tissue to the desired depth by operating the micromanipulator with the microelectrode in a vibratory or non-vibratory state.

  16. A multi-axis MEMS sensor with integrated carbon nanotube-based piezoresistors for nanonewton level force metrology

    International Nuclear Information System (INIS)

    Cullinan, Michael A; Panas, Robert M; Culpepper, Martin L

    2012-01-01

    This paper presents the design and fabrication of a multi-axis microelectromechanical system (MEMS) force sensor with integrated carbon nanotube (CNT)-based piezoresistive sensors. Through the use of proper CNT selection and sensor fabrication techniques, the performance of the CNT-based MEMS force sensor was increased by approximately two orders of magnitude as compared to current CNT-based sensor systems. The range and resolution of the force sensor were determined as 84 μN and 5.6 nN, respectively. The accuracy of the force sensor was measured to be better than 1% over the device’s full range. (paper)

  17. A Nonlinear Attitude Estimator for Attitude and Heading Reference Systems Based on MEMS Sensors

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    In this paper, a nonlinear attitude estimator is designed for an Attitude Heading and Reference System (AHRS) based on Micro Electro-Mechanical Systems (MEMS) sensors. The design process of the attitude estimator is stated with detail, and the equilibrium point of the estimator error model...... the problems in previous research works. Moreover, the estimation of MEMS gyroscope bias is also inclueded in this estimator. The designed nonlinear attitude estimator is firstly tested in simulation environment and then implemented in an AHRS hardware for further experiments. Finally, the attitude estimation...

  18. Feasibility of frequency-modulated wireless transmission for a multi-purpose MEMS-based accelerometer.

    Science.gov (United States)

    Sabato, Alessandro; Feng, Maria Q

    2014-09-05

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy--especially at very low frequencies--have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.

  19. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

    Science.gov (United States)

    Cai, Shengbing; Zhang, Yong; Duan, Zhemin

    2012-12-01

    We report the nanofabrication of a sulfur dioxide (SO2) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO2, CO, H2, SO2 and O2. Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature.

  20. A miniaturized reconfigurable broadband attenuator based on RF MEMS switches

    International Nuclear Information System (INIS)

    Guo, Xin; Gong, Zhuhao; Zhong, Qi; Liang, Xiaotong; Liu, Zewen

    2016-01-01

    Reconfigurable attenuators are widely used in microwave measurement instruments. Development of miniaturized attenuation devices with high precision and broadband performance is required for state-of-the-art applications. In this paper, a compact 3-bit microwave attenuator based on radio frequency micro-electro-mechanical system (RF MEMS) switches and polysilicon attenuation modules is presented. The device comprises 12 ohmic contact MEMS switches, π -type polysilicon resistive attenuation modules and microwave compensate structures. Special attention was paid to the design of the resistive network, compensate structures and system simulation. The device was fabricated using micromachining processes compatible with traditional integrated circuit fabrication processes. The reconfigurable attenuator integrated with RF MEMS switches and resistive attenuation modules was successfully fabricated with dimensions of 2.45  ×  4.34  ×  0.5 mm 3 , which is 1/1000th of the size of a conventional step attenuator. The measured RF performance revealed that the attenuator provides 10–70 dB attenuation at 10 dB intervals from 0.1–20 GHz with an accuracy better than  ±1.88 dB at 60 dB and an error of less than 2.22 dB at 10 dB. The return loss of each state of the 3-bit attenuator was better than 11.95 dB (VSWR  <  1.71) over the entire operating band. (paper)

  1. Scanning Micromirror Platform Based on MEMS Technology for Medical Application

    Directory of Open Access Journals (Sweden)

    Eakkachai Pengwang

    2016-02-01

    Full Text Available This topical review discusses recent development and trends on scanning micromirrors for biomedical applications. This also includes a biomedical micro robot for precise manipulations in a limited volume. The characteristics of medical scanning micromirror are explained in general with the fundamental of microelectromechanical systems (MEMS for fabrication processes. Along with the explanations of mechanism and design, the principle of actuation are provided for general readers. In this review, several testing methodology and examples are described based on many types of actuators, such as, electrothermal actuators, electrostatic actuators, electromagnetic actuators, pneumatic actuators, and shape memory alloy. Moreover, this review provides description of the key fabrication processes and common materials in order to be a basic guideline for selecting micro-actuators. With recent developments on scanning micromirrors, performances of biomedical application are enhanced for higher resolution, high accuracy, and high dexterity. With further developments on integrations and control schemes, MEMS-based scanning micromirrors would be able to achieve a better performance for medical applications due to small size, ease in microfabrication, mass production, high scanning speed, low power consumption, mechanical stable, and integration compatibility.

  2. Method of forming a package for MEMS-based fuel cell

    Science.gov (United States)

    Morse, Jeffrey D; Jankowski, Alan F

    2013-05-21

    A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.

  3. Design, modeling, fabrication and characterization of an electret-based MEMS electrostatic energy harvester

    NARCIS (Netherlands)

    Altena, G.; Hohlfeld, D.; Elfrink, R.; Goedbloed, M.H.; Schaijk, R. van

    2011-01-01

    This paper reports on the design, modelling, fabrication and characterization of an electret-based MEMS electrostatic energy harvester with an elegant and robust process flow. The fabrication is based on a SOI wafer with self-aligned electrodes of the variable capacitor. The output current of the

  4. Wavelength tunable MEMS VCSELs for OCT imaging

    DEFF Research Database (Denmark)

    Sahoo, Hitesh Kumar; Ansbæk, Thor; Ottaviano, Luisa

    2018-01-01

    MEMS VCSELs are one of the most promising swept source (SS) lasers for optical coherence tomography (OCT) and one of the best candidates for future integration with endoscopes, surgical probes and achieving an integrated OCT system. However, the current MEMS-based SS are processed on the III...

  5. Combined Reactor and Microelectrode Measurements in Laboratory Grown Biofilms

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    A combined biofilm reactor-/microelectrode experimental set-up has been constructed, allowing for simultaneous reactor mass balances and measurements of concentration profiles within the biofilm. The system consists of an annular biofilm reactor equipped with an oxygen microelectrode. Experiments...... were carried out with aerobic glucose and starch degrading biofilms. The well described aerobic glucose degradation biofilm system was used to test the combined reactor set-up. Results predicted from known biofilm kinetics were obtained. In the starch degrading biofilm, basic assumptions were tested...... with the microelectrode measurements. It was established, that even with a high molecular weight, non-diffusible substrate, degradation took place in the depths of the biofilm. Intrinsic enzymatic hydrolysis was not limiting and the volumetric removal rate of oxygen was zero order....

  6. A MEMS-based Adaptive AHRS for Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Hussain, Dil Muhammed Akbar; Soltani, Mohsen

    2015-01-01

    Satellite tracking is a challenging task for marine applications. An attitude determination system should estimate the wave disturbances on the ship body accurately. To achieve this, an Attitude Heading Reference System (AHRS) based on Micro-Electro-Mechanical Systems (MEMS) sensors, composed...... of three-axis gyroscope, accelerometer and magnetometer, is developed for Marine Satellite Tracking Antenna (MSTA). In this paper, the attitude determination algorithm is improved using an adaptive mechanism that tunes the attitude estimator parameters based on an estimation of ship motion frequency...

  7. Soldering of Nanotubes onto Microelectrodes

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing sold...... bonds were consistently found to be mechanically stronger than the carbon nanotubes.......Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing solder...... bonds were formed at the intersection of the nanotube and the electrodes. Current-voltage curves indicated metallic conduction of the nanotubes, with resistances in the range of 9-29 kOmega. Bridges made entirely of the soldering material exhibited resistances on the order of 100 Omega, and the solder...

  8. Design and measurement of a piezoresistive ultrasonic sensor based on MEMS

    International Nuclear Information System (INIS)

    Yu Jiaqi; He Changde; Yuan Kejing; Xue Chenyang; Zhang Wendong; Lian Deqin

    2013-01-01

    A kind of piezoresistive ultrasonic sensor based on MEMS is proposed, which is composed of a membrane and two side beams. A simplified mathematical model has been established to analyze the mechanical properties of the sensor. On the basis of the theoretical analysis, the structural size and layout location of the piezoresistors are determined by simulation analysis. The boron-implanted piezoresistors located on membrane and side beams form a Wheatstone bridge to detect acoustic signal. The membrane-beam microstructure is fabricated integrally by MEMS manufacturing technology. Finally, this paper presents the experimental characterization of the ultrasonic sensor, validating the theoretical model used and the simulated model. The sensitivity reaches −116.2 dB (0 dB reference = 1 V/μbar, 31 kHz), resonant frequency is 39.6 kHz, direction angle is 55°. (semiconductor devices)

  9. Adaptive Sliding Mode Control of MEMS Gyroscope Based on Neural Network Approximation

    Directory of Open Access Journals (Sweden)

    Yuzheng Yang

    2014-01-01

    Full Text Available An adaptive sliding controller using radial basis function (RBF network to approximate the unknown system dynamics microelectromechanical systems (MEMS gyroscope sensor is proposed. Neural controller is proposed to approximate the unknown system model and sliding controller is employed to eliminate the approximation error and attenuate the model uncertainties and external disturbances. Online neural network (NN weight tuning algorithms, including correction terms, are designed based on Lyapunov stability theory, which can guarantee bounded tracking errors as well as bounded NN weights. The tracking error bound can be made arbitrarily small by increasing a certain feedback gain. Numerical simulation for a MEMS angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive neural control scheme and demonstrate the satisfactory tracking performance and robustness.

  10. A capacitive CMOS-MEMS sensor designed by multi-physics simulation for integrated CMOS-MEMS technology

    Science.gov (United States)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi

    2014-01-01

    This paper reports the design and evaluation results of a capacitive CMOS-MEMS sensor that consists of the proposed sensor circuit and a capacitive MEMS device implemented on the circuit. To design a capacitive CMOS-MEMS sensor, a multi-physics simulation of the electromechanical behavior of both the MEMS structure and the sensing LSI was carried out simultaneously. In order to verify the validity of the design, we applied the capacitive CMOS-MEMS sensor to a MEMS accelerometer implemented by the post-CMOS process onto a 0.35-µm CMOS circuit. The experimental results of the CMOS-MEMS accelerometer exhibited good agreement with the simulation results within the input acceleration range between 0.5 and 6 G (1 G = 9.8 m/s2), corresponding to the output voltages between 908.6 and 915.4 mV, respectively. Therefore, we have confirmed that our capacitive CMOS-MEMS sensor and the multi-physics simulation will be beneficial method to realize integrated CMOS-MEMS technology.

  11. Feasibility of Frequency-Modulated Wireless Transmission for a Multi-Purpose MEMS-Based Accelerometer

    Directory of Open Access Journals (Sweden)

    Alessandro Sabato

    2014-09-01

    Full Text Available Recent advances in the Micro Electro-Mechanical System (MEMS technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM of civil engineering structures. To date, sensors’ low sensitivity and accuracy—especially at very low frequencies—have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor’s analog signals are converted to digital signals before radio-frequency (RF wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F instead of the conventional Analog to Digital Conversion (ADC. In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.

  12. EDITORIAL: International MEMS Conference 2006

    Science.gov (United States)

    Tay, Francis E. H.; Jianmin, Miao; Iliescu, Ciprian

    2006-04-01

    The International MEMS conference (iMEMS2006) organized by the Institute of Bioengineering and Nanotechnology and Nanyang Technological University aims to provide a platform for academicians, professionals and industrialists in various related fields from all over the world to share and learn from each other. Of great interest is the incorporation of the theme of life sciences application using MEMS. It is the desire of this conference to initiate collaboration and form network of cooperation. This has continued to be the objective of iMEMS since its inception in 1997. The technological advance of MEMS over the past few decades has been truly exciting in terms of development and applications. In order to participate in this rapid development, a conference involving delegates from within the MEMS community and outside the community is very meaningful and timely. With the receipt of over 200 articles, delegates related to MEMS field from all over the world will share their perspectives on topics such as MEMS/MST Design, MEMS Teaching and Education, MEMS/MST Packaging, MEMS/MST Fabrication, Microsystems Applications, System Integration, Wearable Devices, MEMSWear and BioMEMS. Invited speakers and delegates from outside the field have also been involved to provide challenges, especially in the life sciences field, for the MEMS community to potentially address. The proceedings of the conference will be published as an issue in the online Journal of Physics: Conference Series and this can reach a wider audience and will facilitate the reference and citation of the work presented in the conference. We wish to express our deep gratitude to the International Scientific Committee members and the organizing committee members for contributing to the success of this conference. We would like to thank all the delegates, speakers and sponsors from all over the world for presenting and sharing their perspectives on topics related to MEMS and the challenges that MEMS can

  13. Integrated Electromechanical Transduction Schemes for Polymer MEMS Sensors

    Directory of Open Access Journals (Sweden)

    Damien Thuau

    2018-04-01

    Full Text Available Polymer Micro ElectroMechanical Systems (MEMS have the potential to constitute a powerful alternative to silicon-based MEMS devices for sensing applications. Although the use of commercial photoresists as structural material in polymer MEMS has been widely reported, the integration of functional polymer materials as electromechanical transducers has not yet received the same amount of interest. In this context, we report on the design and fabrication of different electromechanical schemes based on polymeric materials ensuring different transduction functions. Piezoresistive transduction made of carbon nanotube-based nanocomposites with a gauge factor of 200 was embedded within U-shaped polymeric cantilevers operating either in static or dynamic modes. Flexible resonators with integrated piezoelectric transduction were also realized and used as efficient viscosity sensors. Finally, piezoelectric-based organic field effect transistor (OFET electromechanical transduction exhibiting a record sensitivity of over 600 was integrated into polymer cantilevers and used as highly sensitive strain and humidity sensors. Such advances in integrated electromechanical transduction schemes should favor the development of novel all-polymer MEMS devices for flexible and wearable applications in the future.

  14. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Jiaying Du

    2018-04-01

    Full Text Available Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.

  15. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review.

    Science.gov (United States)

    Du, Jiaying; Gerdtman, Christer; Lindén, Maria

    2018-04-06

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.

  16. Advanced Mechatronics and MEMS Devices

    CERN Document Server

    2013-01-01

    Advanced Mechatronics and MEMS Devicesdescribes state-of-the-art MEMS devices and introduces the latest technology in electrical and mechanical microsystems. The evolution of design in microfabrication, as well as emerging issues in nanomaterials, micromachining, micromanufacturing and microassembly are all discussed at length in this volume. Advanced Mechatronics also provides a reader with knowledge of MEMS sensors array, MEMS multidimensional accelerometer, artificial skin with imbedded tactile components, as well as other topics in MEMS sensors and transducers. The book also presents a number of topics in advanced robotics and an abundance of applications of MEMS in robotics, like reconfigurable modular snake robots, magnetic MEMS robots for drug delivery and flying robots with adjustable wings, to name a few. This book also: Covers the fundamentals of advanced mechatronics and MEMS devices while also presenting new state-of-the-art methodology and technology used in the application of these devices Prese...

  17. 49 CFR 236.312 - Movable bridge, interlocking of signal appliances with bridge devices.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movable bridge, interlocking of signal appliances with bridge devices. 236.312 Section 236.312 Transportation Other Regulations Relating to... SYSTEMS, DEVICES, AND APPLIANCES Interlocking Standards § 236.312 Movable bridge, interlocking of signal...

  18. Novel microelectrode-based online system for monitoring N2O gas emissions during wastewater treatment.

    Science.gov (United States)

    Marques, Ricardo; Oehmen, Adrian; Pijuan, Maite

    2014-11-04

    Clark-type nitrous oxide (N2O) microelectrodes are commonly used for measuring dissolved N2O levels, but have not previously been tested for gas-phase applications, where the N2O emitted from wastewater systems can be directly quantified. In this study, N2O microelectrodes were tested and validated for online gas measurements, and assessed with respect to their temperature, gas flow, composition dependence, gas pressure, and humidity. An exponential correlation between temperature and sensor signal was found, whereas gas flow, composition, pressure, and humidity did not have any influence on the signal. Two of the sensors were tested at different N2O concentration ranges (0-422.3, 0-50, 0-10, and 0-2 ppmv N2O) and exhibited a linear response over each range. The N2O emission dynamics from two laboratory scale sequencing batch reactors performing ammonia or nitrite oxidation were also monitored using one of the microsensors and results were compared with two other analytical methods. Results show that N2O emissions were accurately described with these microelectrodes and support their application for assessing gaseous N2O emissions from wastewater treatment systems. Advantages of the sensors as compared to conventional measurement techniques include a wider quantification range of N2O fluxes, and a single measurement system that can assess both liquid and gas-phase N2O dynamics.

  19. Design and simulation of MEMS vector hydrophone with reduced cross section based meander beams

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj; Dutta, S.; Pal, Ramjay; Jain, K. K.; Gupta, Sudha; Bhan, R. K. [Solid State Physics Laboratory, DRDO, Lucknow Road, Timarpur, Delhi, India 110054 (India)

    2016-04-13

    MEMS based vector hydrophone is being one of the key device in the underwater communications. In this paper, we presented a bio-inspired MEMS vector hydrophone. The hydrophone structure consists of a proof mass suspended by four meander type beams with reduced cross-section. Modal patterns of the structure were studied. First three modal frequencies of the hydrophone structure were found to be 420 Hz, 420 Hz and 1646 Hz respectively. The deflection and stress of the hydrophone is found have linear behavior in the 1 µPa – 1Pa pressure range.

  20. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    Directory of Open Access Journals (Sweden)

    Thi Dep Ha

    2016-04-01

    Full Text Available Phononic crystals (PnCs and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1 a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2 influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  1. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Thi Dep, E-mail: hathidep@yahoo.com [School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China); Faculty of Electronic Technology, Industrial University of Ho Chi Minh City, Hochiminh City (Viet Nam); Bao, JingFu, E-mail: baojingfu@uestc.edu.cn [School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China)

    2016-04-15

    Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  2. Optimization of biogas production using MEMS based near infrared inline-sensor

    Science.gov (United States)

    Saupe, Ray; Seider, Thomas; Stock, Volker; Kujawski, Olaf; Otto, Thomas; Gessner, Thomas

    2013-03-01

    Due to climate protection and increasing oil prices, renewable energy is becoming extremely important. Anaerobic digestion is a particular environmental and resource-saving way of heat and power production in biogas plants. These plants can be operated decentralized and independent of weather conditions and allow peak load operation. To maximize energy production, plants should be operated at a high efficiency. That means the entire installed power production capacity (e.g. CHP) and biogas production have to be used. However, current plant utilization in many areas is significantly lower, which is economically and environmentally inefficient, since the biochemical process responds to fluctuations in boundary conditions, e.g. mixing in the conditions and substrate composition. At present only a few easily accessible parameters such as fill level, flow rates and temperature are determined on-line. Monitoring of substrate composition occurs only sporadically with the help of laboratory methods. Direct acquisition of substrate composition combined with a smart control and regulation concept enables significant improvement in plant efficiency. This requires a compact, reliable and cost-efficient sensor. It is for this reason that a MEMS sensor system based on NIR spectroscopy has been developed. Requirements are high accuracy, which is the basic condition for exact chemometric evaluation of the sample as well as optimized MEMS design and packaging in order to work in poor environmental conditions. Another issue is sample presentation, which needs an exact adopted optical-mechanical system. In this paper, the development and application of a MEMS-based analyzer for biogas plants will be explained. The above mentioned problems and challenges will be discussed. Measurement results will be shown to demonstrate its performance.

  3. MEMS-based wavelength and orbital angular momentum demultiplexer for on-chip applications

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.

    2017-01-01

    Summary form only given. We demonstrate a new tunable MEMS-based WDM&OAM Fabry-Pérot filter for simultaneous wavelength (WDM) and Orbital Angular Momentum (OAM) (de)multiplexing. The WDM&OAM filter is suitable for dense on-chip integration and dedicated for the next generation of optical...

  4. Development of a three-dimensionally movable phantom system for dosimetric verifications

    International Nuclear Information System (INIS)

    Nakayama, Hiroshi; Mizowaki, Takashi; Narita, Yuichiro; Kawada, Noriyuki; Takahashi, Kunio; Mihara, Kazumasa; Hiraoka, Masahiro

    2008-01-01

    The authors developed a three-dimensionally movable phantom system (3D movable phantom system) which can reproduce three-dimensional movements to experimentally verify the impact of radiotherapy treatment-related movements on dose distribution. The phantom system consists of three integrated components: a three-dimensional driving mechanism (3D driving mechanism), computer control system, and phantoms for film dosimetry. The 3D driving mechanism is a quintessential part of this system. It is composed of three linear-motion tables (single-axis robots) which are joined orthogonally to each other. This mechanism has a motion range of 100 mm, with a maximum velocity of 200 mm/s in each dimension, and 3D motion ability of arbitrary patterns. These attributes are sufficient to reproduce almost all organ movements. The positional accuracy of this 3D movable phantom system in a state of geostationary is less than 0.1 mm. The maximum error in terms of the absolute position on movement was 0.56 mm. The positional reappearance error on movement was up to 0.23 mm. The observed fluctuation of time was 0.012 s in the cycle of 4.5 s of oscillation. These results suggested that the 3D movable phantom system exhibited a sufficient level of accuracy in terms of geometry and timing to reproduce interfractional organ movement or setup errors in order to assess the influence of these errors on high-precision radiotherapy such as stereotactic irradiation and intensity-modulated radiotherapy. In addition, the authors 3D movable phantom system will also be useful in evaluating the adequacy and efficacy of new treatment techniques such as gating or tracking radiotherapy

  5. Piezoelectric MEMS: Ferroelectric thin films for MEMS applications

    Science.gov (United States)

    Kanno, Isaku

    2018-04-01

    In recent years, piezoelectric microelectromechanical systems (MEMS) have attracted attention as next-generation functional microdevices. Typical applications of piezoelectric MEMS are micropumps for inkjet heads or micro-gyrosensors, which are composed of piezoelectric Pb(Zr,Ti)O3 (PZT) thin films and have already been commercialized. In addition, piezoelectric vibration energy harvesters (PVEHs), which are regarded as one of the key devices for Internet of Things (IoT)-related technologies, are promising future applications of piezoelectric MEMS. Significant features of piezoelectric MEMS are their simple structure and high energy conversion efficiency between mechanical and electrical domains even on the microscale. The device performance strongly depends on the function of the piezoelectric thin films, especially on their transverse piezoelectric properties, indicating that the deposition of high-quality piezoelectric thin films is a crucial technology for piezoelectric MEMS. On the other hand, although the difficulty in measuring the precise piezoelectric coefficients of thin films is a serious obstacle in the research and development of piezoelectric thin films, a simple unimorph cantilever measurement method has been proposed to obtain precise values of the direct or converse transverse piezoelectric coefficient of thin films, and recently this method has become to be the standardized testing method. In this article, I will introduce fundamental technologies of piezoelectric thin films and related microdevices, especially focusing on the deposition of PZT thin films and evaluation methods for their transverse piezoelectric properties.

  6. Acute human brain responses to intracortical microelectrode arrays: Challenges and future prospects

    Directory of Open Access Journals (Sweden)

    Eduardo eFernandez

    2014-07-01

    Full Text Available The emerging field of neuroprosthetics is focused on the development of new therapeutic interventions that will be able to restore some lost neural function by selective electrical stimulation or by harnessing activity recorded from populations of neurons. As more and more patients benefit from these approaches, the interest in neural interfaces has grown significantly and a new generation of penetrating microelectrode arrays are providing unprecedented access to the neurons of the CNS. These microelectrodes have active tip dimensions that are similar in size to neurons and because they penetrate the nervous system, they provide selective access to these cells (within a few microns. However, the very long-term viability of chronically implanted microelectrodes and the capability of recording the same spiking activity over long time periods still remain to be established and confirmed in human studies. Here we review the main responses to acute implantation of microelectrode arrays, and emphasize that it will become essential to control the neural tissue damage induced by these intracortical microelectrodes in order to achieve the high clinical potentials accompanying this technology.

  7. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

    International Nuclear Information System (INIS)

    Cai, Shengbing; Zhang, Yong; Duan, Zhemin

    2012-01-01

    We report the nanofabrication of a sulfur dioxide (SO 2 ) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO 2 , CO, H 2 , SO 2 and O 2 . Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of <∼0.5 ppm for SO 2 . More importantly, a tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature. (paper)

  8. RF Front End Based on MEMS Components for Miniaturized Digital EVA Radio, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, AlphaSense, Inc. and the Carnegie Mellon University propose to develop a RF receiver front end based on CMOS-MEMS components for miniaturized...

  9. Three dimensional MEMS supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei

    2011-10-15

    The overall objective of this research is to achieve compact supercapacitors with high capacitance, large power density, and long cycle life for using as micro power sources to drive low power devices and sensors. The main shortcoming of supercapacitors as a power source is that its energy density typically is about 1/10 of that of batteries. To achieve compact supercapacitors of large energy density, supercapacitors must be developed with high capacitance and power density which are mainly depended on the effective surface area of the electrodes of the supercapacitors. Many studies have been done to increase the effective surface area by modifying the electrode materials, however, much less investigations are focus on machining the electrodes. In my thesis work, micro- and nano-technologies are applied as technology approaches for machining the electrodes with three dimensional (3D) microstructures. More specific, Micro-electro-mechanical system (MEMS) fabrication process flow, which integrates the key process such as LIGA-like (German acronym for Lithographie, Galvanoformung, Abformung, which mean Lithography, Electroplating and Molding) technology or DRIE (deep reactive ion etching), has been developed to enable innovative designs of 3D MEMS supercapacitors which own the electrodes of significantly increased geometric area. Two types of 3D MEMS supercapcitors, based on LIGA-like and DRIE technology respectively, were designed and successfully created. The LIGA-like based 3D MEMS supercapacitor is with an interdigital 3D structure, and consists of silicon substrate, two electroplated nickel current collectors, two PPy (poly pyrrole) electrodes, and solid state electrolyte. The fabrication process flow developed includes the flowing key processes, SU-8 lithography, nickel electroplating, PPy polymerization and solid state electrolyte coating. Electrochemical tests showed that the single electrode of the supercapacitor has the specific capacitance of 0.058 F cm-2

  10. SU-8 Based MEMS Process with Two Metal Layers using α-Si as a Sacrificial Material

    KAUST Repository

    Ramadan, Khaled S.

    2012-01-01

    MEMS applications. α-Si can be deposited at large thicknesses for MEMS applications and also can be released in a dry method using XeF2 which can solve stiction problems related to MEMS applications. In this thesis, an SU-8 MEMS process is developed

  11. Planetary-Whigs: Optical MEMS-Based Seismometer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — During this Phase I, Michigan Aerospace Corporation will adapt the design of an optical MEMS seismometer for lunar and other planetary science instrumentation. The...

  12. Error and Performance Analysis of MEMS-based Inertial Sensors with a Low-cost GPS Receiver

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2008-03-01

    Full Text Available Global Navigation Satellite Systems (GNSS, such as the Global Positioning System (GPS, have been widely utilized and their applications are becoming popular, not only in military or commercial applications, but also for everyday life. Although GPS measurements are the essential information for currently developed land vehicle navigation systems (LVNS, GPS signals are often unavailable or unreliable due to signal blockages under certain environments such as urban canyons. This situation must be compensated in order to provide continuous navigation solutions. To overcome the problems of unavailability and unreliability using GPS and to be cost and size effective as well, Micro Electro Mechanical Systems (MEMS based inertial sensor technology has been pushing for the development of low-cost integrated navigation systems for land vehicle navigation and guidance applications. This paper will analyze the characterization of MEMS based inertial sensors and the performance of an integrated system prototype of MEMS based inertial sensors, a low-cost GPS receiver and a digital compass. The influence of the stochastic variation of sensors will be assessed and modeled by two different methods, namely Gauss-Markov (GM and AutoRegressive (AR models, with GPS signal blockage of different lengths. Numerical results from kinematic testing have been used to assess the performance of different modeling schemes.

  13. Converting MEMS technology into profits

    Science.gov (United States)

    Bryzek, Janusz

    1998-08-01

    This paper discusses issues related to transitioning a company from the advanced technology development phase (with a particular focus on MEMS) to a profitable business, with emphasis on start-up companies. It includes several case studies from (primarily) NovaSensor MEMS development history. These case studies illustrate strategic problems with which advanced MEMS technology developers have to be concerned. Conclusions from these case studies could be used as checkpoints for future MEMS developers to increase probability of profitable operations. The objective for this paper is to share the author's experience from multiple MEMS start-ups to accelerate development of the MEMS market by focusing state- of-the-art technologists on marketing issues.

  14. A microelectrode array electrodeposited with reduced graphene oxide and Pt nanoparticles for norepinephrine and electrophysiological recordings

    Science.gov (United States)

    Wang, Li; Song, Yilin; Zhang, Yu; Xu, Shengwei; Xu, Huiren; Wang, Mixia; Wang, Yang; Cai, Xinxia

    2017-11-01

    Norepinephrine (NE), a common neurotransmitter released by locus coeruleus neurons, plays an essential role in the communication mechanism of the mammalian nervous system. In this work, a microelectrode array (MEA) was fabricated by micro-electromechanical system (MEMS) technology to provide a rapid, sensitive and reliable method for the direct determination in NE dynamic secretion. To improve the electrical performance, the MEA was electrodeposited with the reduced graphene oxide and Pt nanoparticles (rGOPNps). rGOPNps-MEA was investigated using scanning electron microscopy, atomic force microscopy and electrochemical impedance spectroscopy, differential pulse voltammetry exhibited remarkably electrocatalytic properties towards NE. Calibration results showed a sensitivity of 1.03 nA µM-1 to NE with a detection limit of 0.08 µM. In Particular, the MEA was successfully used for measuring dynamic extracellular NE secretion from the locus coeruleus brain slice, as well as monitoring spike firing from the hippocampal brain slice. This fabricated device has potential in studies of spatially resolved delivery of trace neurochemicals and electrophysiological activities of a variety of biological tissues in vitro.

  15. Advantages of PZT thick film for MEMS sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Lou-Moller, R.; Hansen, K.

    2010-01-01

    For all MEMS devices a high coupling between the mechanical and electrical domain is desired. Figures of merit describing the coupling are important for comparing different piezoelectric materials. The existing figures of merit are discussed and a new figure of merit is introduced for a fair comp....... Improved figure of merit is reached in the piezoelectric PZT thick film, TF2100CIP, by using cold isostatic pressure in the PZT preparation process. The porosity of TF2100 is decreased 38%, hence, allowing an increase of charge sensitivity for MEMS sensors of 59%....... thin film and PZT thick film. It is shown that MEMS sensors with the PZT thick film TF2100 from InSensor A/S have potential for significant higher voltage sensitivities compared to PZT thin film base MEMS sensors when the total thickness of the MEMS cantilever, beam, bridge or membrane is high...

  16. Carbon-Ring Microelectrode Arrays for Electrochemical Imaging of Single Cell Exocytosis: Fabrication and Characterization

    Science.gov (United States)

    Lin, Yuqing; Trouillon, Raphaël; Svensson, Maria I.; Keighron, Jacqueline D.; Cans, Ann-Sofie; Ewing, Andrew G.

    2012-01-01

    Fabrication of carbon microelectrode arrays, with up to 15 electrodes in total tips as small as 10 to 50 μm, is presented. The support structures of microelectrodes were obtained by pulling multiple quartz capillaries together to form hollow capillary arrays before carbon deposition. Carbon ring microelectrodes were deposited by pyrolysis of acetylene in the lumen of these quartz capillary arrays. Each carbon deposited array tip was filled with epoxy, followed by beveling of the tip of the array to form a deposited carbon-ring microelectrode array (CRMA). Both the number of the microelectrodes in the array and the tip size are independently tunable. These CRMAs have been characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, and electrogenerated chemiluminescence. Additionally, the electrochemical properties were investigated with steady-state voltammetry. In order to demonstrate the utility of these fabricated microelectrodes in neurochemistry, CRMAs containing eight microring electrodes were used for electrochemical monitoring of exocytotic events from single PC12 cells. Subcellular temporal heterogeneities in exocytosis (ie. cold spots vs. hot spots) were successfully detected with the CRMAs. PMID:22339586

  17. Evaluation of the MEMS based portable respiratory training system with a tactile sensor for respiratory-gated radiotherapy

    Science.gov (United States)

    Moon, Sun Young; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2017-10-01

    In respiratory-gated radiotherapy, it is important to maintain the regular respiratory cycles of patients. If patients undergo respiration training, their regular breathing pattern is affected. Therefore, we developed a respiratory training system based on a micro electromechanical system (MEMS) and evaluated the feasibility of the MEMS in radiotherapy. By comparing the measured signal before and after radiation exposure, we confirmed the effects of radiation. By evaluating the period of the electric signal emitted by a tactile sensor and its constancy, the performance of the tactile sensor was confirmed. Moreover, by comparing the delay between the motion of the MEMS and the electric signal from the tactile sensor, we confirmed the reaction time of the tactile sensor. The results showed that a baseline shift occurred for an accumulated dose of 400 Gy in the sensor, and both the amplitude and period changed. The period of the signal released by the tactile sensor was 5.39 and its standard deviation was 0.06. Considering the errors from the motion phantom, a standard deviation of 0.06 was desirable. The delay time was within 0.5 s and not distinguishable by a patient. We confirmed the performance of the MEMS and concluded that MEMS could be applied to patients for respiratory-gated radiotherapy.

  18. Development, characterization and application of compact spectrometers based on MEMS with in-plane capacitive drives

    Science.gov (United States)

    Kenda, A.; Kraft, M.; Tortschanoff, A.; Scherf, Werner; Sandner, T.; Schenk, Harald; Luettjohann, Stephan; Simon, A.

    2014-05-01

    With a trend towards the use of spectroscopic systems in various fields of science and industry, there is an increasing demand for compact spectrometers. For UV/VIS to the shortwave near-infrared spectral range, compact hand-held polychromator type devices are widely used and have replaced larger conventional instruments in many applications. Still, for longer wavelengths this type of compact spectrometers is lacking suitable and affordable detector arrays. In perennial development Carinthian Tech Research AG together with the Fraunhofer Institute for Photonic Microsystems endeavor to close this gap by developing spectrometer systems based on photonic MEMS. Here, we review on two different spectrometer developments, a scanning grating spectrometer working in the NIR and a FT-spectrometer accessing the mid-IR range up to 14 μm. Both systems are using photonic MEMS devices actuated by in-plane comb drive structures. This principle allows for high mechanical amplitudes at low driving voltages but results in gratings respectively mirrors oscillating harmonically. Both systems feature special MEMS structures as well as aspects in terms of system integration which shall tease out the best possible overall performance on the basis of this technology. However, the advantages of MEMS as enabling technology for high scanning speed, miniaturization, energy efficiency, etc. are pointed out. Whereas the scanning grating spectrometer has already evolved to a product for the point of sale analysis of traditional Chinese medicine products, the purpose of the FT-spectrometer as presented is to demonstrate what is achievable in terms of performance. Current developments topics address MEMS packaging issues towards long term stability, further miniaturization and usability.

  19. Surface stress sensor based on MEMS Fabry-Perot interferometer with high wavelength selectivity for label-free biosensing

    Science.gov (United States)

    Takahashi, Toshiaki; Hizawa, Takeshi; Misawa, Nobuo; Taki, Miki; Sawada, Kazuaki; Takahashi, Kazuhiro

    2018-05-01

    We have developed a surface stress sensor based on a microelectromechanical Fabry-Perot interferometer with high wavelength selectivity by using Au half-mirrors, for highly sensitive label-free biosensing. When the target molecule is adsorbed by the antigen-antibody reaction onto a movable membrane with a thin Au film, which acts as an upper mirror of the optical interferometer, the amount of deflection of the movable membrane deflected by the change in surface stress can be detected with high sensitivity. To improve the signal at the small membrane deflection region of this biosensor resulting in detection of low concentration molecules, by integrating 50 nm-thick Au half-mirrors, the wavelength selectivity of the optical interferometer has been successfully improved 6.6 times. Furthermore, the peak shift in the reflection spectrum due to the adsorption of bovine serum albumin (BSA) antigen with a concentration of 10 ng ml-l by the antigen-antibody reaction was spectroscopically measured on the fabricated optical interferometer, and the deflection amount of the movable membrane after 10 min treatment was 2.4 times larger than that of nonspecific adsorption with the avidin molecules. This result indicated that the proposed sensor can be used for selective detection of low-concentration target antigen molecules.

  20. 3D simulation of friction stir welding based on movable cellular automaton method

    Science.gov (United States)

    Eremina, Galina M.

    2017-12-01

    The paper is devoted to a 3D computer simulation of the peculiarities of material flow taking place in friction stir welding (FSW). The simulation was performed by the movable cellular automaton (MCA) method, which is a representative of particle methods in mechanics. Commonly, the flow of material in FSW is simulated based on computational fluid mechanics, assuming the material as continuum and ignoring its structure. The MCA method considers a material as an ensemble of bonded particles. The rupture of interparticle bonds and the formation of new bonds enable simulations of crack nucleation and healing as well as mas mixing and microwelding. The simulation results showed that using pins of simple shape (cylinder, cone, and pyramid) without a shoulder results in small displacements of plasticized material in workpiece thickness directions. Nevertheless, the optimal ratio of longitudinal velocity to rotational speed makes it possible to transport the welded material around the pin several times and to produce a joint of good quality.

  1. Glass pipette-carbon fiber microelectrodes for evoked potential recordings

    Directory of Open Access Journals (Sweden)

    Moraes M.F.D.

    1997-01-01

    Full Text Available Current methods for recording field potentials with tungsten electrodes make it virtually impossible to use the same recording electrode also as a lesioning electrode, for example for histological confirmation of the recorded site, because the lesioning procedure usually wears off the tungsten tip. Therefore, the electrode would have to be replaced after each lesioning procedure, which is a very high cost solution to the problem. We present here a low cost, easy to make, high quality glass pipette-carbon fiber microelectrode that shows resistive, signal/noise and electrochemical coupling advantages over tungsten electrodes. Also, currently used carbon fiber microelectrodes often show problems with electrical continuity, especially regarding electrochemical applications using a carbon-powder/resin mixture, with consequent low performance, besides the inconvenience of handling such a mixture. We propose here a new method for manufacturing glass pipette-carbon fiber microelectrodes with several advantages when recording intracerebral field potentials

  2. Calibration of High Frequency MEMS Microphones

    Science.gov (United States)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to

  3. MEMS for automotive and aerospace applications

    CERN Document Server

    Kraft, Michael

    2013-01-01

    MEMS for automotive and aerospace applications reviews the use of Micro-Electro-Mechanical-Systems (MEMS) in developing solutions to the unique challenges presented by the automotive and aerospace industries.Part one explores MEMS for a variety of automotive applications. The role of MEMS in passenger safety and comfort, sensors for automotive vehicle stability control applications and automotive tire pressure monitoring systems are considered, along with pressure and flow sensors for engine management, and RF MEMS for automotive radar sensors. Part two then goes on to explore MEMS for

  4. Preliminary Performance Evaluation of MEMS-based Piezoelectric Energy Harvesters in Extended Temperature Range

    DEFF Research Database (Denmark)

    Xu, R.; Borregaard, L.M.; Lei, A.

    2012-01-01

    In this work a batch of MEMS-based vibration energy harvesters consisting of a silicon/PZT thick film ntilever with integrated proof mass is characterized. The purpose of a vibration energy harvester is to convert low grade vibrations to useful electrical power. Optimally, the natural frequency...

  5. A Generalized Polynomial Chaos-Based Approach to Analyze the Impacts of Process Deviations on MEMS Beams.

    Science.gov (United States)

    Gao, Lili; Zhou, Zai-Fa; Huang, Qing-An

    2017-11-08

    A microstructure beam is one of the fundamental elements in MEMS devices like cantilever sensors, RF/optical switches, varactors, resonators, etc. It is still difficult to precisely predict the performance of MEMS beams with the current available simulators due to the inevitable process deviations. Feasible numerical methods are required and can be used to improve the yield and profits of the MEMS devices. In this work, process deviations are considered to be stochastic variables, and a newly-developed numerical method, i.e., generalized polynomial chaos (GPC), is applied for the simulation of the MEMS beam. The doubly-clamped polybeam has been utilized to verify the accuracy of GPC, compared with our Monte Carlo (MC) approaches. Performance predictions have been made on the residual stress by achieving its distributions in GaAs Monolithic Microwave Integrated Circuit (MMIC)-based MEMS beams. The results show that errors are within 1% for the results of GPC approximations compared with the MC simulations. Appropriate choices of the 4-order GPC expansions with orthogonal terms have also succeeded in reducing the MC simulation labor. The mean value of the residual stress, concluded from experimental tests, shares an error about 1.1% with that of the 4-order GPC method. It takes a probability around 54.3% for the 4-order GPC approximation to attain the mean test value of the residual stress. The corresponding yield occupies over 90 percent around the mean within the twofold standard deviations.

  6. A Generalized Polynomial Chaos-Based Approach to Analyze the Impacts of Process Deviations on MEMS Beams

    Directory of Open Access Journals (Sweden)

    Lili Gao

    2017-11-01

    Full Text Available A microstructure beam is one of the fundamental elements in MEMS devices like cantilever sensors, RF/optical switches, varactors, resonators, etc. It is still difficult to precisely predict the performance of MEMS beams with the current available simulators due to the inevitable process deviations. Feasible numerical methods are required and can be used to improve the yield and profits of the MEMS devices. In this work, process deviations are considered to be stochastic variables, and a newly-developed numerical method, i.e., generalized polynomial chaos (GPC, is applied for the simulation of the MEMS beam. The doubly-clamped polybeam has been utilized to verify the accuracy of GPC, compared with our Monte Carlo (MC approaches. Performance predictions have been made on the residual stress by achieving its distributions in GaAs Monolithic Microwave Integrated Circuit (MMIC-based MEMS beams. The results show that errors are within 1% for the results of GPC approximations compared with the MC simulations. Appropriate choices of the 4-order GPC expansions with orthogonal terms have also succeeded in reducing the MC simulation labor. The mean value of the residual stress, concluded from experimental tests, shares an error about 1.1% with that of the 4-order GPC method. It takes a probability around 54.3% for the 4-order GPC approximation to attain the mean test value of the residual stress. The corresponding yield occupies over 90 percent around the mean within the twofold standard deviations.

  7. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    International Nuclear Information System (INIS)

    Cantwell, Cara T; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P

    2014-01-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management. (technical note)

  8. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    Science.gov (United States)

    Cantwell, Cara T.; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P.

    2014-11-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management.

  9. Development of a Multi-User Polyimide-MEMS Fabrication Process and its Application to MicroHotplates

    KAUST Repository

    Lizardo, Ernesto B.

    2013-01-01

    Micro-electro-mechanical systems (MEMS) became possible thanks to the silicon based technology used to fabricate integrated circuits. Originally, MEMS fabrication was limited to silicon based techniques and materials, but the expansion of MEMS

  10. DNA-barcode directed capture and electrochemical metabolic analysis of single mammalian cells on a microelectrode array.

    Science.gov (United States)

    Douglas, Erik S; Hsiao, Sonny C; Onoe, Hiroaki; Bertozzi, Carolyn R; Francis, Matthew B; Mathies, Richard A

    2009-07-21

    A microdevice is developed for DNA-barcode directed capture of single cells on an array of pH-sensitive microelectrodes for metabolic analysis. Cells are modified with membrane-bound single-stranded DNA, and specific single-cell capture is directed by the complementary strand bound in the sensor area of the iridium oxide pH microelectrodes within a microfluidic channel. This bifunctional microelectrode array is demonstrated for the pH monitoring and differentiation of primary T cells and Jurkat T lymphoma cells. Single Jurkat cells exhibited an extracellular acidification rate of 11 milli-pH min(-1), while primary T cells exhibited only 2 milli-pH min(-1). This system can be used to capture non-adherent cells specifically and to discriminate between visually similar healthy and cancerous cells in a heterogeneous ensemble based on their altered metabolic properties.

  11. Carbon nanotube network varactor

    International Nuclear Information System (INIS)

    Generalov, A A; Anoshkin, I V; Lioubtchenko, D V; Räisänen, A V; Erdmanis, M; Ovchinnikov, V; Nasibulin, A G

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling. (paper)

  12. Nondestructive surface profiling of hidden MEMS using an infrared low-coherence interferometric microscope

    Science.gov (United States)

    Krauter, Johann; Osten, Wolfgang

    2018-03-01

    There are a wide range of applications for micro-electro-mechanical systems (MEMS). The automotive and consumer market is the strongest driver for the growing MEMS industry. A 100 % test of MEMS is particularly necessary since these are often used for safety-related purposes such as the ESP (Electronic Stability Program) system. The production of MEMS is a fully automated process that generates 90 % of the costs during the packaging and dicing steps. Nowadays, an electrical test is carried out on each individual MEMS component before these steps. However, after encapsulation, MEMS are opaque to visible light and other defects cannot be detected. Therefore, we apply an infrared low-coherence interferometer for the topography measurement of those hidden structures. A lock-in algorithm-based method is shown to calculate the object height and to reduce ghost steps due to the 2π -unambiguity. Finally, measurements of different MEMS-based sensors are presented.

  13. Micro-Electromechanical-Systems (MEMS) technologies for aerospace applications in Canada

    International Nuclear Information System (INIS)

    Pimprikar, M.

    2001-01-01

    During the last decade, research and development of Micro-Electro-Mechanical Systems (MEMS) have shown significant promise for a variety of aerospace applications. The advantages of drastic size and weight reduction of MEMS enables consideration of developing low-cost, high-performance, ultra-portable, MEMS-based devices and systems for aircraft, space and defense requirements. 'Microelectromechanical Systems, or MEMS', are integrated microdevices or systems combining electrical and mechanical components, fabricated using integrated circuit compatible batch-processing techniques, and varying in size from micrometers to millimeters. In the 1990's, MEMS were used as laboratory curiosities with very low power, short lifetimes and few concrete applications. One decade later, MEMS have taken major roles in several industries, the total world market is expected to grow from $14 billion to over $40 billion by the year 2002. A typical device contains micromechanical structures that move by flexing (membranes, cantilevers, springs) and MEMS/MOEMS level where the integration of microelectronics, micromechanics and optics form a complete system (sensor, actuator, photonic device). (author)

  14. Multiscale Simulation of Porous Ceramics Based on Movable Cellular Automaton Method

    Science.gov (United States)

    Smolin, A.; Smolin, I.; Eremina, G.; Smolina, I.

    2017-10-01

    The paper presents a model for simulating mechanical behaviour of multiscale porous ceramics based on movable cellular automaton method, which is a novel particle method in computational mechanics of solid. The initial scale of the proposed approach corresponds to the characteristic size of the smallest pores in the ceramics. At this scale, we model uniaxial compression of several representative samples with an explicit account of pores of the same size but with the random unique position in space. As a result, we get the average values of Young’s modulus and strength, as well as the parameters of the Weibull distribution of these properties at the current scale level. These data allow us to describe the material behaviour at the next scale level were only the larger pores are considered explicitly, while the influence of small pores is included via the effective properties determined at the previous scale level. If the pore size distribution function of the material has N maxima we need to perform computations for N - 1 levels in order to get the properties from the lowest scale up to the macroscale step by step. The proposed approach was applied to modelling zirconia ceramics with bimodal pore size distribution. The obtained results show correct behaviour of the model sample at the macroscale.

  15. Internet MEMS design tools based on component technology

    Science.gov (United States)

    Brueck, Rainer; Schumer, Christian

    1999-03-01

    The micro electromechanical systems (MEMS) industry in Europe is characterized by small and medium sized enterprises specialized on products to solve problems in specific domains like medicine, automotive sensor technology, etc. In this field of business the technology driven design approach known from micro electronics is not appropriate. Instead each design problem aims at its own, specific technology to be used for the solution. The variety of technologies at hand, like Si-surface, Si-bulk, LIGA, laser, precision engineering requires a huge set of different design tools to be available. No single SME can afford to hold licenses for all these tools. This calls for a new and flexible way of designing, implementing and distributing design software. The Internet provides a flexible manner of offering software access along with methodologies of flexible licensing e.g. on a pay-per-use basis. New communication technologies like ADSL, TV cable of satellites as carriers promise to offer a bandwidth sufficient even for interactive tools with graphical interfaces in the near future. INTERLIDO is an experimental tool suite for process specification and layout verification for lithography based MEMS technologies to be accessed via the Internet. The first version provides a Java implementation even including a graphical editor for process specification. Currently, a new version is brought into operation that is based on JavaBeans component technology. JavaBeans offers the possibility to realize independent interactive design assistants, like a design rule checking assistants, a process consistency checking assistants, a technology definition assistants, a graphical editor assistants, etc. that may reside distributed over the Internet, communicating via Internet protocols. Each potential user thus is able to configure his own dedicated version of a design tool set dedicated to the requirements of the current problem to be solved.

  16. Design and Research of the Movable Hybrid Photovoltaic-Thermal (PVT System

    Directory of Open Access Journals (Sweden)

    Lian Zhang

    2017-04-01

    Full Text Available In recent years, with the development of photovoltaic system and photo-thermal system technology, hybrid photovoltaic-thermal (PVT technology has been a breakthrough in many aspects. This paper describes the movable hybrid PVT system from the aspects of appearance structure, energy flow, and control circuit. The system is equipped with rolling wheels and the simulated light sources also can be removed so that the system can be used in the outdoor conditions. The movable system is also suitable for the PVT system and its related applications without any external power supply. This system combines two technologies: photovoltaic power generation and photo-thermal utilization. The first part of the power supply is for the systems own output power supply, and the second part is for generating thermal energy. The two separate parts can be controlled and monitored respectively through the control circuits and the touch screens. The experimental results show that the system can generate 691 kWh electric energy and 3047.8 kWh thermal energy each year under normal working conditions. The efficiency of the proposed movable hybrid PVT system is calculated to be approximately 42.82% using the revised equations that are proposed in this paper. Therefore, the movable hybrid PVT system can meet the daily demands of hot water and electricity power in remote areas or islands and other non-grid areas. It also can be used to conduct experiment tests for the PVT system.

  17. Packaging of MEMS/MOEMS and nanodevices: reliability, testing, and characterization aspects

    Science.gov (United States)

    Tekin, Tolga; Ngo, Ha-Duong; Wittler, Olaf; Bouhlal, Bouchaib; Lang, Klaus-Dieter

    2011-02-01

    The last decade witnessed an explosive growth in research and development efforts devoted to MEMS devices and packaging. The successfully developed MEMS devices are, for example inkjet, pressure sensors, silicon microphones, accelerometers, gyroscopes, MOEMS, micro fuel cells and emerging MEMS. For the next decade, MEMS/MOEMS and nanodevice based products will penetrate into IT, telecommunications, automotive, defense, life sciences, medical and implantable applications. Forecasts say the MEMS market to be $14 billion by 2012. The packaging cost of MEMS/MOEMS products in general is about 70 percent. Unlike today's electronics IC packaging, their packaging are custom-built and difficult due to the moving structural elements. In order for the moving elements of a MEMS device to move effectively in a well-controlled atmosphere, hermetic sealing of the MEMS device in a cap is necessary. For some MEMS devices, such as resonators and gyroscopes, vacuum packaging is required. Usually, the cap is processed at the wafer level, and thus MEMS packaging is truly a wafer level packaging. In terms of MEMS/MOEMS and nanodevice packaging, there are still many critical issues need to be addressed due to the increasing integration density supported by 3D heterogeneous integration of multi-physic components/layers consisting of photonics, electronics, rf, plasmonics, and wireless. The infrastructure of MEMS/MOEMS and nanodevices and their packaging is not well established yet. Generic packaging platform technologies are not available. Some of critical issues have been studied intensively in the last years. In this paper we will discuss about processes, reliability, testing and characterization of MEMS/MOEMS and nanodevice packaging.

  18. Brain machine interfaces combining microelectrode arrays with nanostructured optical biochemical sensors

    Science.gov (United States)

    Hajj-Hassan, Mohamad; Gonzalez, Timothy; Ghafer-Zadeh, Ebrahim; Chodavarapu, Vamsy; Musallam, Sam; Andrews, Mark

    2009-02-01

    Neural microelectrodes are an important component of neural prosthetic systems which assist paralyzed patients by allowing them to operate computers or robots using their neural activity. These microelectrodes are also used in clinical settings to localize the locus of seizure initiation in epilepsy or to stimulate sub-cortical structures in patients with Parkinson's disease. In neural prosthetic systems, implanted microelectrodes record the electrical potential generated by specific thoughts and relay the signals to algorithms trained to interpret these thoughts. In this paper, we describe novel elongated multi-site neural electrodes that can record electrical signals and specific neural biomarkers and that can reach depths greater than 8mm in the sulcus of non-human primates (monkeys). We hypothesize that additional signals recorded by the multimodal probes will increase the information yield when compared to standard probes that record just electropotentials. We describe integration of optical biochemical sensors with neural microelectrodes. The sensors are made using sol-gel derived xerogel thin films that encapsulate specific biomarker responsive luminophores in their nanostructured pores. The desired neural biomarkers are O2, pH, K+, and Na+ ions. As a prototype, we demonstrate direct-write patterning to create oxygen-responsive xerogel waveguide structures on the neural microelectrodes. The recording of neural biomarkers along with electrical activity could help the development of intelligent and more userfriendly neural prosthesis/brain machine interfaces as well as aid in providing answers to complex brain diseases and disorders.

  19. Microelectrodes as novel research tools for environmental biofilm studies

    International Nuclear Information System (INIS)

    Yu, T.; Lu, R.; Bishop, L.

    2002-01-01

    Biofilm processes are widely utilized in environmental engineering for biodegradation of contaminated waters, gases and soils. It is important to understand the structure and functions of biofilms. Microelectrodes are novel experimental tools for environmental biofilm studies. The authors reviewed the techniques of oxygen, sulfide, redox potential and pH microelectrode. These microelectrodes have tip diameters of 3 to 20 μm, resulting a high spatial resolution. They enable us directly measure the chemical conditions as results of microbial activities in biofilms. The authors also reported the laboratory and field studies of wastewater biofilms using microelectrode techniques. The results of these studies provided experimental evidence on the stratification of microbial processes and the associated redox potential change in wastewater biofilms: (1) The oxygen penetration depth was only a fraction of the biofilm thickness. This observation, first made under laboratory conditions, has been confirmed under field conditions. (2) The biofilms with both aerobic oxidation and sulfate reduction had a clearly stratified structure. This was evidenced by a sharp decrease of redox potential near the interface between the aerobic zone and the sulfate reduction zone within the biofilm. In this type of biofilms, aerobic oxidation took place only in a shallow layer near the biofilm surface and sulfate reduction occurred in the deeper anoxic zone. (3) The redox potential changed with the shift of primary microbial process in biofilms, indicating that it is possible to use redox potential to help illustrate the structure and functions of biofilms. (author)

  20. Experiences and future plans of movable mask system for the high current collider KEK B-factory

    International Nuclear Information System (INIS)

    Suetsugu, Yusuke; Kageyama, Tatsuya; Takeuchi, Yasunao; Kanazawa, Ken-ichi; Satoh, Kotarou; Sanami, Toshiya; Hirayama, Hideo

    2002-01-01

    The movable mask is a special device for an accelerator that cuts off spent particles near the beam orbit and reduces background of the detector. For the KEKB, an electron/positron collider with two rings, sixteen movable masks had been installed for each ring. The originally designed masks, however, revealed severe troubles of heating, arcing and vacuum leaks at the stored beam currents of several hundreds mA. Several kinds of improved masks had been designed employing RF technologies and were installed to the ring step by step. The latest masks are working well except for the grooves on the mask head. Here the problems of movable masks so far are summarized and the structures of the latest movable masks and their status are presented. (author)

  1. Strong Motion Seismograph Based On MEMS Accelerometer

    Science.gov (United States)

    Teng, Y.; Hu, X.

    2013-12-01

    The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The

  2. Ball driven type MEMS SAD for artillery fuse

    International Nuclear Information System (INIS)

    Seok, Jin Oh; Jeong, Ji-hun; Eom, Junseong; Lee, Seung S; Lee, Chun Jae; Ryu, Sung Moon; Oh, Jong Soo

    2017-01-01

    The SAD (safety and arming device) is an indispensable fuse component that ensures safe and reliable performance during the use of ammunition. Because the application of electronic devices for smart munitions is increasing, miniaturization of the SAD has become one of the key issues for next-generation artillery fuses. Based on MEMS technology, various types of miniaturized SADs have been proposed and fabricated. However, none of them have been reported to have been used in actual munitions due to their lack of high impact endurance and complicated explosive train arrangements. In this research, a new MEMS SAD using a ball driven mechanism, is successfully demonstrated based on a UV LIGA (lithography, electroplating and molding) process. Unlike other MEMS SADs, both high impact endurance and simple structure were achieved by using a ball driven mechanism. The simple structural design also simplified the fabrication process and increased the processing yield. The ball driven type MEMS SAD performed successfully under the desired safe and arming conditions of a spin test and showed fine agreement with the FEM simulation result, conducted prior to its fabrication. A field test was also performed with a grenade launcher to evaluate the SAD performance in the firing environment. All 30 of the grenade samples equipped with the proposed MEMS SAD operated successfully under the high-G setback condition. (paper)

  3. Ball driven type MEMS SAD for artillery fuse

    Science.gov (United States)

    Seok, Jin Oh; Jeong, Ji-hun; Eom, Junseong; Lee, Seung S.; Lee, Chun Jae; Ryu, Sung Moon; Oh, Jong Soo

    2017-01-01

    The SAD (safety and arming device) is an indispensable fuse component that ensures safe and reliable performance during the use of ammunition. Because the application of electronic devices for smart munitions is increasing, miniaturization of the SAD has become one of the key issues for next-generation artillery fuses. Based on MEMS technology, various types of miniaturized SADs have been proposed and fabricated. However, none of them have been reported to have been used in actual munitions due to their lack of high impact endurance and complicated explosive train arrangements. In this research, a new MEMS SAD using a ball driven mechanism, is successfully demonstrated based on a UV LIGA (lithography, electroplating and molding) process. Unlike other MEMS SADs, both high impact endurance and simple structure were achieved by using a ball driven mechanism. The simple structural design also simplified the fabrication process and increased the processing yield. The ball driven type MEMS SAD performed successfully under the desired safe and arming conditions of a spin test and showed fine agreement with the FEM simulation result, conducted prior to its fabrication. A field test was also performed with a grenade launcher to evaluate the SAD performance in the firing environment. All 30 of the grenade samples equipped with the proposed MEMS SAD operated successfully under the high-G setback condition.

  4. Amperometric Self-Referencing Ceramic Based Microelectrode Arrays for D-Serine Detection.

    Science.gov (United States)

    Campos-Beltrán, Diana; Konradsson-Geuken, Åsa; Quintero, Jorge E; Marshall, Lisa

    2018-03-06

    D-serine is the major D-amino acid in the mammalian central nervous system. As the dominant co-agonist of the endogenous synaptic NMDA receptor, D-serine plays a role in synaptic plasticity, learning, and memory. Alterations in D-serine are linked to neuropsychiatric disorders including schizophrenia. Thus, it is of increasing interest to monitor the concentration of D-serine in vivo as a relevant player in dynamic neuron-glia network activity. Here we present a procedure for amperometric detection of D-serine with self-referencing ceramic-based microelectrode arrays (MEAs) coated with D-amino acid oxidase from the yeast Rhodotorula gracilis (RgDAAO). We demonstrate in vitro D-serine recordings with a mean sensitivity of 8.61 ± 0.83 pA/µM to D-serine, a limit of detection (LOD) of 0.17 ± 0.01 µM, and a selectivity ratio of 80:1 or greater for D-serine over ascorbic acid (mean ± SEM; n = 12) that can be used for freely moving studies.

  5. MEMS-Based Boiler Operation from Low Temperature Heat Transfer and Thermal Scavenging

    Directory of Open Access Journals (Sweden)

    Leland Weiss

    2012-04-01

    Full Text Available Increasing world-wide energy use and growing population growth presents a critical need for enhanced energy efficiency and sustainability. One method to address this issue is via waste heat scavenging. In this approach, thermal energy that is normally expelled to the environment is transferred to a secondary device to produce useful power output. This paper investigates a novel MEMS-based boiler designed to operate as part of a small-scale energy scavenging system. For the first time, fabrication and operation of the boiler is presented. Boiler operation is based on capillary action that drives working fluid from surrounding reservoirs across a heated surface. Pressure is generated as working fluid transitions from liquid to vapor in an integrated steamdome. In a full system application, the steam can be made available to other MEMS-based devices to drive final power output. Capillary channels are formed from silicon substrates with 100 µm widths. Varying depths are studied that range from 57 to 170 µm. Operation of the boiler shows increasing flow-rates with increasing capillary channel depths. Maximum fluid mass transfer rates are 12.26 mg/s from 170 µm channels, an increase of 28% over 57 µm channel devices. Maximum pressures achieved during operation are 229 Pa.

  6. A microfluidic cell culture device with integrated microelectrodes for barrier studies

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin; Dufva, Martin; Kutter, Jörg P.

    We present an eight cell culture microfluidic device fabricated using thiol-ene ‘click’ chemistry with embedded microelectrodes for evaluating barrier properties of human intestinal epithelial cells. The capability of the microelectrodes for trans-epithelial electrical resistance (TEER) measureme......) measurements was demonstrated by using confluent human colorectal epithelial cells (Caco-2) and rat fibroblast (CT 26) cells cultured in the microfluidic device....

  7. Design Issues for MEMS-Based Pedestrian Inertial Navigation Systems

    Directory of Open Access Journals (Sweden)

    P. S. Marinushkin

    2015-01-01

    Full Text Available The paper describes design issues for MEMS-based pedestrian inertial navigation systems. By now the algorithms to estimate navigation parameters for strap-down inertial navigation systems on the basis of plural observations have been already well developed. At the same time mathematical and software processing of information in the case of pedestrian inertial navigation systems has its specificity, due to the peculiarities of their functioning and exploitation. Therefore, there is an urgent task to enhance existing fusion algorithms for use in pedestrian navigation systems. For this purpose the article analyzes the characteristics of the hardware composition and configuration of existing systems of this class. The paper shows advantages of various technical solutions. Relying on their main features it justifies a choice of the navigation system architecture and hardware composition enabling improvement of the estimation accuracy of user position as compared to the systems using only inertial sensors. The next point concerns the development of algorithms for complex processing of heterogeneous information. To increase an accuracy of the free running pedestrian inertial navigation system we propose an adaptive algorithm for joint processing of heterogeneous information based on the fusion of inertial info rmation with magnetometer measurements using EKF approach. Modeling of the algorithm was carried out using a specially developed functional prototype of pedestrian inertial navigation system, implemented as a hardware/software complex in Matlab environment. The functional prototype tests of the developed system demonstrated an improvement of the navigation parameters estimation compared to the systems based on inertial sensors only. It enables to draw a conclusion that the synthesized algorithm provides satisfactory accuracy for calculating the trajectory of motion even when using low-grade inertial MEMS sensors. The developed algorithm can be

  8. Lessons learned from nanoscale specimens tested by MEMS-based apparatus

    Science.gov (United States)

    Elhebeary, Mohamed; Saif, M. Taher A.

    2017-06-01

    The last two decades were marked by the innovative synthesis of nanomaterials and devices. The success of these devices hinges on the mechanical properties of nanomaterials and an understanding of their deformation and failure mechanisms. Many novel testing techniques have been developed to test materials at small scale. This paper reviews the state-of-the-art microelectromechanical systems (MEMS) apparatus developed to characterize materials at nanoscale, and the key insights gained on structure-property relations of materials through these characterizations. Finally, new applications of MEMS in testing living materials, such as tissues and cells, for disease diagnosis and prognosis are discussed.

  9. Lessons learned from nanoscale specimens tested by MEMS-based apparatus

    International Nuclear Information System (INIS)

    Elhebeary, Mohamed; Saif, M Taher A

    2017-01-01

    The last two decades were marked by the innovative synthesis of nanomaterials and devices. The success of these devices hinges on the mechanical properties of nanomaterials and an understanding of their deformation and failure mechanisms. Many novel testing techniques have been developed to test materials at small scale. This paper reviews the state-of-the-art microelectromechanical systems (MEMS) apparatus developed to characterize materials at nanoscale, and the key insights gained on structure-property relations of materials through these characterizations. Finally, new applications of MEMS in testing living materials, such as tissues and cells, for disease diagnosis and prognosis are discussed. (topical review)

  10. Impedimetric microbial biosensor based on single wall carbon nanotube modified microelectrodes for trichloroethylene detection

    International Nuclear Information System (INIS)

    Hnaien, M.; Bourigua, S.; Bessueille, F.; Bausells, J.; Errachid, A.; Lagarde, F.; Jaffrezic-Renault, N.

    2011-01-01

    Highlights: ► We propose an impedimetric microbial biosensor for trichloroethylene detection. ► A new transducer modified with carbon nanotubes and Pseudomonas putida is evaluated. ► Functionalization steps are controlled by impedance spectroscopy and AFM. ► The biosensor offers good sensitivity, selectivity, linear range and stability. ► The biosensor is successfully applied to spiked natural water samples. - Abstract: Contamination of soils and groundwaters with persistent organic pollutants is a matter of increasing concern. The most common organic pollutants are chlorinated hydrocarbons such as perchloroethylene and trichloroethylene (TCE). In this study, we developed a bacterial impedimetric biosensor for TCE detection, based on the immobilization of Pseudomonas putida F1 strain on gold microelectrodes functionalized with single wall carbon nanotubes covalently linked to anti-Pseudomonas antibodies. The different steps of microelectrodes functionalization were characterized by electrochemical impedance and atomic force spectroscopies, and analytical performances of the developed microbial biosensor were determined. The impedimetric biosensor response was linear with TCE concentration up to 150 μg L −1 and a low limit of detection (20 μg L −1 ) was achieved. No significant loss of signal was observed after 4 weeks of storage at 4 °C in phosphate buffer saline pH 7 (three to four measurements a week). After 5 weeks, 90% of the initial value still remained. cis-1,2-Dichloroethylene and vinylchloride, the main TCE degradation products, did not significantly interfere with TCE. The microbial sensor was finally applied to the determination of TCE in natural water samples spiked at the 30, 50 and 75 μg L −1 levels. Recoveries were very good, ranging from 100 to 103%.

  11. A Novel Approach Based on MEMS-Gyro's Data Deep Coupling for Determining the Centroid of Star Spot

    Directory of Open Access Journals (Sweden)

    Xing Fei

    2012-01-01

    Full Text Available The traditional approach of star tracker for determining the centroid of spot requires enough energy and good shape, so a relatively long exposure time and stable three-axis state become necessary conditions to maintain high accuracy, these limit its update rate and dynamic performance. In view of these issues, this paper presents an approach for determining the centroid of star spot which based on MEMS-Gyro's data deep coupling, it achieves the deep fusion of the data of star tracker and MEMS-Gyro at star map level through the introduction of EKF. The trajectory predicted by using the angular velocity of three axes can be used to set the extraction window, this enhances the dynamic performance because of the accurate extraction when the satellite has angular speed. The optimal estimations of the centroid position and the drift in the output signal of MEMS-Gyro through this approach reduce the influence of noise of the detector on accuracy of the traditional approach for determining the centroid and effectively correct the output signal of MEMS-Gyro. At the end of this paper, feasibility of this approach is verified by simulation.

  12. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter.

    Science.gov (United States)

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-14

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the "Velocity and Attitude" matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.

  13. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter

    Directory of Open Access Journals (Sweden)

    Hairong Chu

    2017-01-01

    Full Text Available In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF algorithm is proposed. First, the model of SINS transfer alignment is defined based on the “Velocity and Attitude” matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.

  14. Shock reliability analysis and improvement of MEMS electret-based vibration energy harvesters

    International Nuclear Information System (INIS)

    Renaud, M; Goedbloed, M; De Nooijer, C; Van Schaijk, R; Fujita, T

    2015-01-01

    Vibration energy harvesters can serve as a replacement solution to batteries for powering tire pressure monitoring systems (TPMS). Autonomous wireless TPMS powered by microelectromechanical system (MEMS) electret-based vibration energy harvester have been demonstrated. The mechanical reliability of the MEMS harvester still has to be assessed in order to bring the harvester to the requirements of the consumer market. It should survive the mechanical shocks occurring in the tire environment. A testing procedure to quantify the shock resilience of harvesters is described in this article. Our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, the first important aspect is to understand the failure mechanism. Failure is found to occur in the form of fracture of the device’s springs. It results from impacts between the anchors of the springs when the harvester undergoes a shock. The shock resilience of the harvesters can be improved by redirecting these impacts to nonvital parts of the device. With this philosophy in mind, we design three types of shock absorbing structures and test their effect on the shock resilience of our MEMS harvesters. The solution leading to the best results consists of rigid silicon stoppers covered by a layer of Parylene. The shock resilience of the harvesters is brought above 2500 g. Results in the same range are also obtained with flexible silicon bumpers, which are simpler to manufacture. (paper)

  15. Shock reliability analysis and improvement of MEMS electret-based vibration energy harvesters

    Science.gov (United States)

    Renaud, M.; Fujita, T.; Goedbloed, M.; de Nooijer, C.; van Schaijk, R.

    2015-10-01

    Vibration energy harvesters can serve as a replacement solution to batteries for powering tire pressure monitoring systems (TPMS). Autonomous wireless TPMS powered by microelectromechanical system (MEMS) electret-based vibration energy harvester have been demonstrated. The mechanical reliability of the MEMS harvester still has to be assessed in order to bring the harvester to the requirements of the consumer market. It should survive the mechanical shocks occurring in the tire environment. A testing procedure to quantify the shock resilience of harvesters is described in this article. Our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, the first important aspect is to understand the failure mechanism. Failure is found to occur in the form of fracture of the device’s springs. It results from impacts between the anchors of the springs when the harvester undergoes a shock. The shock resilience of the harvesters can be improved by redirecting these impacts to nonvital parts of the device. With this philosophy in mind, we design three types of shock absorbing structures and test their effect on the shock resilience of our MEMS harvesters. The solution leading to the best results consists of rigid silicon stoppers covered by a layer of Parylene. The shock resilience of the harvesters is brought above 2500 g. Results in the same range are also obtained with flexible silicon bumpers, which are simpler to manufacture.

  16. Model-based design of MEMS resonant pressure sensors

    NARCIS (Netherlands)

    Suijlen, M.A.G.

    2011-01-01

    The massive integration of micromechanical structures on ICs to allow microsystems to sense and control the environment is expected to be one of the most important technological breakthroughs of the future. At present, cheap and small MEMS sensors are emerging in countless applications. Automotive

  17. Rapid Detection Technology for Pesticides Residues Based on Microelectrodes Impedance Immunosensor

    Directory of Open Access Journals (Sweden)

    Wen Ping Zhao

    2014-09-01

    Full Text Available Compared with conventional methods, electrochemical immunosensors have many advantages, such as low cost, high sensitivity, and rapid detection, and has certain prospects for realizing real-time-monitoring. In this paper, a design of portable pesticide residues detection instrument was presented based on an electrochemical impedance immunosensor. Firstly, we studied on an impedance immunosensor based on interdigitated array microelectrode (IDAM coupled with magnetic nanobeads-antibody conjugates (MNAC for the pesticide detection. Magnetic nanobeads (diameter 150 nm coated with anti-carbofuran antibodies were used for further amplification of the binding reaction between antibody and hapten (carbofuran. Secondly, in order to develop a portable pesticide residue apparatus, we designed the impedance detection electric circuit. Main work included designing and constructing of the system circuit, designing and debugging of the system software and so on. Thirdly, the apparatus was used for the standard pesticides solutions testing combined with immunosensor to test the reliability and stability. The pesticide added standard recovery was more than 70 % and the impedance test error was less than 5 %. The results showed that the proposed instrument had a good consistence compared with the traditional analytical methods. Thus, it would be a promising rapid detection instrument for pesticide residues in agricultural products.

  18. Miniaturization of components and systems for space using MEMS-technology

    Science.gov (United States)

    Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin

    2007-06-01

    Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty

  19. Impedance measurements on Au microelectrodes using controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Wu, Yuehua; Hansen, Karin Vels; Jacobsen, Torben

    2011-01-01

    High temperature impedance measurements on Au microelectrodes deposited on polished yttria stabilized zirconia (YSZ) pellets were demonstrated using a newly designed controlled atmosphere high temperature scanning probe microscope (CAHT-SPM). Probes based on Pt0.8Ir0.2 were fabricated and employed...

  20. Buffering Implications for the Design Space of Streaming MEMS Storage

    NARCIS (Netherlands)

    Khatib, M.G.; Abelmann, Leon; Preas, Kathy

    2011-01-01

    Emerging nanotechnology-based systems encounter new non-functional requirements. This work addresses MEMS storage, an emerging technology that promises ultrahigh density and energy-efficient storage devices. We study the buffering requirement of MEMS storage in streaming applications. We show that

  1. Planar potentiometric sensors based on Au and Ag microelectrodes and conducting polymers for flow-cell analysis

    International Nuclear Information System (INIS)

    ToczyIowska, Renata; Pokrop, RafaI; Dybko, Artur; Wroblewski, Wojciech

    2005-01-01

    Back-side contact Au and Ag microelectrodes were used as transducers to construct planar all-solid-state electrodes suitable for flow-through analysis. The microsensors were based on plasticized PVC potassium-selective membranes containing ion-electron conducting polymer-polypyrrole doped with di(2-ethylhexyl) sulfosuccinate. The proposed technique allowed simple construction of microsensors in one step, by membrane solution casting directly on the surface of the planar metallic transducers. The performance of the microsensors based on Au and Ag transducers were determined and compared with planar sensors based on internal electrolyte immobilized in polyHEMA. The addition of the polypyrrole to the membrane composition did not influence on the selectivity, reproducibility and long-term stability of the microsensors but improved their standard potential stability in time in comparison with coated-wire type sensors. Moreover, all-solid-state microsensors based on Au transducers exhibited better signal stability than Ag based sensors

  2. Design of Diaphragm Based MEMS Pressure Sensor with Sensitivity Analysis for Environmental Applications

    Directory of Open Access Journals (Sweden)

    A. Nallathambi

    2015-05-01

    Full Text Available In this paper Micro-electromechanical System (MEMS diaphragm based pressure sensor for environmental applications is discussed. The main focus of this paper is to design, simulate and analyze the sensitivity of MEMS based diaphragm using different structures to measure the low and high pressure values. The simulation is done through the finite element tool and specifications related the maximum convinced stress; deflection and sensitivity of the diaphragms have been analyzed using the software INTELLISUITE 8.7v. The change in pressure is to bending of the diaphragm that modifies the measured displacement between the substrate and the diaphragm. This change in displacement gives the measure of the pressure in that environment. The design of these studies can be used to improve the sensitivity of these devices. Here the diaphragm based pressure sensor produced better displacement, sensitivity and stress output responses are obtained from the square diaphragm. The pressure range from 0.6 MPa to 25 MPa and its maximum displacement is accordingly 59 mm over a pressure range of 0 to 2 MPa. Its sensitivity is therefore 2.35 [10E-12/Pa].

  3. Towards on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes

    Directory of Open Access Journals (Sweden)

    Anna eFendyur

    2012-08-01

    Full Text Available Cardiological research greatly rely on the use of cultured primary cardiomyocytes (CM. The prime methodology to assess CM network electrophysiology is based on the use of extracellular recordings by substrate-integrated planar Micro-Electrode Arrays (MEAs. Whereas this methodology permits simultaneous, long-term monitoring of the CM electrical activity, it limits the information to extracellular field potentials (FP. The alternative method of intracellular action potentials (AP recordings by sharp- or patch-microelectrodes is limited to a single cell at a time. Here, we began to merge the advantages of planar MEA and intracellular microelectrodes. To that end we cultured rat CM on micrometer size protruding gold mushroom-shaped microelectrode (gMµE arrays. Cultured CMs engulf the gMµE permitting FPs recordings from individual cells. Local electroporation of a CM converts the extracellular recording configuration to attenuated intracellular APs with shape and duration similar to those recorded intracellularly. The procedure enables to simultaneously record APs from an unlimited number of CMs. The electroporated membrane spontaneously recovers. This allows for repeated recordings from the same CM a number of times (>8 for over 10 days. The further development of CM-gMµE configuration opens up new venues for basic and applied biomedical research.

  4. A Labeling Model Based on the Region of Movability for Point-Feature Label Placement

    Directory of Open Access Journals (Sweden)

    Lin Li

    2016-09-01

    Full Text Available Automatic point-feature label placement (PFLP is a fundamental task for map visualization. As the dominant solutions to the PFLP problem, fixed-position and slider models have been widely studied in previous research. However, the candidate labels generated with these models are set to certain fixed positions or a specified track line for sliding. Thus, the whole surrounding space of a point feature is not sufficiently used for labeling. Hence, this paper proposes a novel label model based on the region of movability, which comes from plane collision detection theory. The model defines a complete conflict-free search space for label placement. On the premise of no conflict with the point, line, and area features, the proposed model utilizes the surrounding zone of the point feature to generate candidate label positions. By combining with heuristic search method, the model achieves high-quality label placement. In addition, the flexibility of the proposed model enables placing arbitrarily shaped labels.

  5. MEMS Reliability Assurance Activities at JPL

    Science.gov (United States)

    Kayali, S.; Lawton, R.; Stark, B.

    2000-01-01

    An overview of Microelectromechanical Systems (MEMS) reliability assurance and qualification activities at JPL is presented along with the a discussion of characterization of MEMS structures implemented on single crystal silicon, polycrystalline silicon, CMOS, and LIGA processes. Additionally, common failure modes and mechanisms affecting MEMS structures, including radiation effects, are discussed. Common reliability and qualification practices contained in the MEMS Reliability Assurance Guideline are also presented.

  6. Advanced MEMS systems for optical communication and imaging

    International Nuclear Information System (INIS)

    Horenstein, M N; Sumner, R; Freedman, D S; Datta, M; Kani, N; Miller, P; Stewart, J B; Cornelissen, S

    2011-01-01

    Optical communication and adaptive optics have emerged as two important uses of micro-electromechanical (MEMS) devices based on electrostatic actuation. Each application uses a mirror whose surface is altered by applying voltages of up to 300 V. Previous generations of adaptive-optic mirrors were large (∼1 m) and required the use of piezoelectric transducers. Beginning in the mid-1990s, a new class of small MEMS mirrors (∼1 cm) were developed. These mirrors are now a commercially available, mature technology. This paper describes three advanced applications of MEMS mirrors. The first is a mirror used for corona-graphic imaging, whereby an interferometric telescope blocks the direct light from a distant star so that nearby objects such as planets can be seen. We have developed a key component of the system: a 144-channel, fully-scalable, high-voltage multiplexer that reduces power consumption to only a few hundred milliwatts. In a second application, a MEMS mirror comprises part of a two-way optical communication system in which only one node emits a laser beam. The other node is passive, incorporating a retro-reflective, electrostatic MEMS mirror that digitally encodes the reflected beam. In a third application, the short (∼100-ns) pulses of a commercially-available laser rangefinder are returned by the MEMS mirror as a digital data stream. Suitable low-power drive systems comprise part of the system design.

  7. Gold ultra-microelectrode arrays: application to the steady-state voltammetry of hydroxide ion in aqueous solution.

    Science.gov (United States)

    Ordeig, Olga; Banks, Craig E; Davies, Trevor J; del Campo, F Javier; Muñoz, Francesc Xavier; Compton, Richard G

    2006-05-01

    Gold ultra-microelectrode arrays are used to explore the electrochemical oxidation of hydroxide ions and are shown to be analytical useful. Two types of ultra-microelectrode arrays are used; the first consist of 256 individual electrodes of 5 microm in radius, 170 of which are electrochemically active in a cubic arrangement which are separated from their nearest neighbour by a distance of 100 microm. The second array compromises 2597 electrodes of 2.5 microm in radius and of which 1550 of which are electrochemically active in a hexagonal arrangement separated by the nearest neighbour by 55 microm. Well defined voltammetric waves are found with peak currents proportional to the concentration of hydroxide ions in the range 50 microM to 1 mM. Detection limits of 20 microM using the 170 ultra-microelectrode and 10 microM with the 1550 ultra-microelectrode array are shown to be possible but with a higher sensitivity of 4 mA M(-1) observed using the 1550 ultra-microelectrode array compared to 1.2 mA M(-1) with the 170 ultra-microelectrode array.

  8. Experiments on pumping of liquids using arrays of microelectrodes subjected to travelling wave potentials

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, P; Ramos, A [Dpto. de Electronica y Electromagnetismo, Universidad de Sevilla, 41012 Sevilla (Spain); Green, Nicolas G; Morgan, H [School of Electronics and Computer Science, University of Southampton, SO17 1BJ Southampton (United Kingdom)], E-mail: pablogarcia@us.es

    2008-12-01

    Net fluid flow of electrolytes driven on an array of microelectrodes subjected to a travelling-wave potential is presented. Two sizes of platinum microelectrodes have been studied. In both arrays, at low voltages the liquid flows according to the prediction given by ac electroosmotic theory. At voltages above a threshold the fluid flow is reversed. Measurements of the electrical current when the microelectrode array is pumping the liquid are also reported. Transient behaviours in both electrical current and fluid velocity have been observed.

  9. Experiments on pumping of liquids using arrays of microelectrodes subjected to travelling wave potentials

    International Nuclear Information System (INIS)

    Garcia-Sanchez, P; Ramos, A; Green, Nicolas G; Morgan, H

    2008-01-01

    Net fluid flow of electrolytes driven on an array of microelectrodes subjected to a travelling-wave potential is presented. Two sizes of platinum microelectrodes have been studied. In both arrays, at low voltages the liquid flows according to the prediction given by ac electroosmotic theory. At voltages above a threshold the fluid flow is reversed. Measurements of the electrical current when the microelectrode array is pumping the liquid are also reported. Transient behaviours in both electrical current and fluid velocity have been observed.

  10. A low-noise MEMS accelerometer for unattended ground sensor applications

    Science.gov (United States)

    Speller, Kevin E.; Yu, Duli

    2004-09-01

    A low-noise micro-machined servo accelerometer has been developed for use in Unattended Ground Sensors (UGS). Compared to conventional coil-and-magnet based velocity transducers, this Micro-Electro-Mechanical System (MEMS) accelerometer offers several key benefits for battlefield monitoring. Many UGS require a compass to determine deployment orientation with respect to magnetic North. This orientation information is critical for determining the bearing of incoming signals. Conventional sensors with sensing technology based on a permanent magnet can cause interference with a compass when used in close proximity. This problem is solved with a MEMS accelerometer which does not require any magnetic materials. Frequency information below 10 Hz is valuable for identification of signal sources. Conventional seismometers used in UGS are typically limited in frequency response from 20 to 200 Hz. The MEMS accelerometer has a flat frequency response from DC to 5 kHz. The wider spectrum of signals received improves detection, classification and monitoring on the battlefield. The DC-coupled output of the MEMS accelerometer also has the added benefit of providing tilt orientation data for the deployed UGS. Other performance parameters of the MEMS accelerometer that are important to UGS such as size, weight, shock survivability, phase response, distortion, and cross-axis rejection will be discussed. Additionally, field test data from human footsteps recorded with the MEMS accelerometer will be presented.

  11. Movability or Autonomy for Humans

    KAUST Repository

    Schnapp, Jeffrey

    2018-01-18

    A human-centered approach to the design of smart robotic vehicles Contrary to the feverish promises of early 20th century futurists, the romance of the road has driven humanity down a dead end. The civilization of speed, acceleration, and motorized mobility has transformed the world into a perpetual traffic jam. Entire cities are being sacrificed on the altar of automobility. The landscape is being reduced to a flyover and drive-through zone, fissured by asphalt ribbons, fracked to extract fuels whose combustion is cooking the globe. Nearly 80% of urban areas are wrapped in dense blankets of smog. People arenメt moving more: they are moving less and with greater difficulty. And they are facing the health consequences of the sedentary life-styles they have been encouraged to adopt. If this is era of mobility, then I believe itメs time to shift gears: from mobility to movability. In this lecture, Jeffrey Schnapp will discuss how Movability unfolds on the far more intimate, intelligent, human-scale of the emerging 21st century cityscape. Itメs the scale of autonomous land drones threading their way down busy sidewalks; the scale of smart cargo carts invisibly coupled to workers making last mile deliveries in pedestrian-only zones; the scale of electric microcars platooning like trains while stopping off at individual destinations for pickups and dropoffs; and the scale of civic spaces animated by new kinds of vehicles that help the aging or the mobility-impaired to improve the quality of their lives and extend the range of their activities.

  12. Improved mechanical reliability of MEMS electret based vibration energy harvesters for automotive applications

    International Nuclear Information System (INIS)

    Renaud, M; Goedbloed, M; De Nooijer, C; Van Schaijk, R; Fujita, T

    2014-01-01

    Current commercial wireless tire pressure monitoring systems (TPMS) require a battery as electrical power source. The battery limits the lifetime of the TPMS. This limit can be circumvented by replacing the battery by a vibration energy harvester. Autonomous wireless TPMS powered by MEMS electret based vibration energy harvester have been demonstrated. A remaining technical challenge to attain the grade of commercial product with these autonomous TPMS is the mechanical reliability of the MEMS harvester. It should survive the harsh conditions imposed by the tire environment, particularly in terms of mechanical shocks. As shown in this article, our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, several types of shock absorbing structures are investigated. With the best proposed solution, the shock resilience of the harvesters is brought above 2500 g

  13. Design of a base station for MEMS CCR localization in an optical sensor network.

    Science.gov (United States)

    Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon

    2014-05-08

    This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR.

  14. Design of a Base Station for MEMS CCR Localization in an Optical Sensor Network

    Directory of Open Access Journals (Sweden)

    Chan Gook Park

    2014-05-01

    Full Text Available This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC. The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR is reflected to the base station, and the Time of Flight (ToF data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR.

  15. Optical inspection of hidden MEMS structures

    Science.gov (United States)

    Krauter, Johann; Gronle, Marc; Osten, Wolfgang

    2017-06-01

    Micro-electro-mechanical system's (MEMS) applications have greatly expanded over the recent years, and the MEMS industry has grown almost exponentially. One of the strongest drivers are the automotive and consumer markets. A 100% test is necessary especially in the production of automotive MEMS sensors since they are subject to safety relevant functions. This inspection should be carried out before dicing and packaging since more than 90% of the production costs are incurred during these steps. An electrical test is currently being carried out with each MEMS component. In the case of a malfunction, the defect can not be located on the wafer because the MEMS are no longer optically accessible due to the encapsulation. This paper presents a low coherence interferometer for the topography measurement of MEMS structures located within the wafer stack. Here, a high axial and lateral resolution is necessary to identify defects such as stuck or bent MEMS fingers. First, the boundary conditions for an optical inspection system will be discussed. The setup is then shown with some exemplary measurements.

  16. Modeling Open-Loop MEMS Tunneling Accelerometer Based on Circular Plate

    Directory of Open Access Journals (Sweden)

    Hossein Jodat Kordlar

    2007-04-01

    Full Text Available In this paper open-loop MEMS tunneling accelerometer was modeled based on a clamped micro circular plate with a tip tunneling at its centre. Mechanical behavior of the micro plate was studied deriving governing equation based on classic Kirchhoff thin plate theory and it was discretized using Galerkin method. Dynamic response of the proposed accelerometer due to step and harmonic external excitation was studied and the magnitude of the applied acceleration was identified by measuring of the changing of tunneling current. Obtained results show that the proposed tunneling accelerometer very sensitive and it can be measure acceleration with very high resolution but very small gap of tip tunneling limit the range of measurable acceleration.

  17. Analysis of movable bus stop boarding and alighting areas.

    Science.gov (United States)

    2013-05-01

    This study explored the feasibility of using movable and reusable boarding and alighting (B&A) pads at bus stops. : Potential design alternatives in terms of materials and structural support for these pads were evaluated. The review : focused on the ...

  18. Homogeneity Analysis of a MEMS-based PZT Thick Film Vibration Energy Harvester Manufacturing Process

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Borregaard, Louise M.

    2012-01-01

    This paper presents a homogeneity analysis of a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibration energy harvesters aimed towards vibration sources with peak vibrations in the range of around 300Hz. A wafer with a yield of 91% (41/45 devices) has been...

  19. Analysis of Heat Stress and the Indoor Climate Control Requirements for Movable Refuge Chambers.

    Science.gov (United States)

    Hao, Xiaoli; Guo, Chenxin; Lin, Yaolin; Wang, Haiqiao; Liu, Heqing

    2016-05-20

    Movable refuge chambers are a new kind of rescue device for underground mining, which is believed to have a potential positive impact on reducing the rate of fatalities. It is likely to be hot and humid inside a movable refuge chamber due to the metabolism of trapped miners, heat generated by equipment and heat transferred from outside. To investigate the heat stress experienced by miners trapped in a movable refuge chamber, the predicted heat strain (PHS) model was used to simulate the heat transfer process between the person and the thermal environment. The variations of heat stress with the temperature and humidity inside the refuge chamber were analyzed. The effects of air temperature outside the refuge chamber and the overall heat transfer coefficient of the refuge chamber shell on the heat stress inside the refuge chamber was also investigated. The relationship between the limit of exposure duration and the air temperature and humidity was numerically analyzed to determine the upper limits of temperature and humidity inside a refuge chamber. Air temperature of 32 °C and relative humidity of 70% are recommended as the design standard for internal thermal environment control of movable refuge chambers.

  20. Analysis of Heat Stress and the Indoor Climate Control Requirements for Movable Refuge Chambers

    Directory of Open Access Journals (Sweden)

    Xiaoli Hao

    2016-05-01

    Full Text Available Movable refuge chambers are a new kind of rescue device for underground mining, which is believed to have a potential positive impact on reducing the rate of fatalities. It is likely to be hot and humid inside a movable refuge chamber due to the metabolism of trapped miners, heat generated by equipment and heat transferred from outside. To investigate the heat stress experienced by miners trapped in a movable refuge chamber, the predicted heat strain (PHS model was used to simulate the heat transfer process between the person and the thermal environment. The variations of heat stress with the temperature and humidity inside the refuge chamber were analyzed. The effects of air temperature outside the refuge chamber and the overall heat transfer coefficient of the refuge chamber shell on the heat stress inside the refuge chamber was also investigated. The relationship between the limit of exposure duration and the air temperature and humidity was numerically analyzed to determine the upper limits of temperature and humidity inside a refuge chamber. Air temperature of 32 °C and relative humidity of 70% are recommended as the design standard for internal thermal environment control of movable refuge chambers.

  1. MEMS fluidic actuator

    Science.gov (United States)

    Kholwadwala, Deepesh K [Albuquerque, NM; Johnston, Gabriel A [Trophy Club, TX; Rohrer, Brandon R [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  2. MEMS cost analysis from laboratory to industry

    CERN Document Server

    Freng, Ron Lawes

    2016-01-01

    The World of MEMS; Chapter 2: Basic Fabrication Processes; Chapter 3: Surface Microengineering. High Aspect Ratio Microengineering; Chapter 5: MEMS Testing; Chapter 6: MEMS Packaging. Clean Rooms, Buildings and Plant; Chapter 8: The MEMSCOST Spreadsheet; Chapter 9: Product Costs - Accelerometers. Product Costs - Microphones. MEMS Foundries. Financial Reporting and Analysis. Conclusions.

  3. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    Directory of Open Access Journals (Sweden)

    Agustín Leobardo Herrera-May

    2016-08-01

    Full Text Available Microelectromechanical systems (MEMS resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases.

  4. Amorphous Diamond MEMS and Sensors

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, JOHN P.; FRIEDMANN, THOMAS A.; ASHBY, CAROL I.; DE BOER, MAARTEN P.; SCHUBERT, W. KENT; SHUL, RANDY J.; HOHLFELDER, ROBERT J.; LAVAN, D.A.

    2002-06-01

    This report describes a new microsystems technology for the creation of microsensors and microelectromechanical systems (MEMS) using stress-free amorphous diamond (aD) films. Stress-free aD is a new material that has mechanical properties close to that of crystalline diamond, and the material is particularly promising for the development of high sensitivity microsensors and rugged and reliable MEMS. Some of the unique properties of aD include the ability to easily tailor film stress from compressive to slightly tensile, hardness and stiffness 80-90% that of crystalline diamond, very high wear resistance, a hydrophobic surface, extreme chemical inertness, chemical compatibility with silicon, controllable electrical conductivity from insulating to conducting, and biocompatibility. A variety of MEMS structures were fabricated from this material and evaluated. These structures included electrostatically-actuated comb drives, micro-tensile test structures, singly- and doubly-clamped beams, and friction and wear test structures. It was found that surface micromachined MEMS could be fabricated in this material easily and that the hydrophobic surface of the film enabled the release of structures without the need for special drying procedures or the use of applied hydrophobic coatings. Measurements using these structures revealed that aD has a Young's modulus of {approx}650 GPa, a tensile fracture strength of 8 GPa, and a fracture toughness of 8 MPa{center_dot}m {sup 1/2}. These results suggest that this material may be suitable in applications where stiction or wear is an issue. Flexural plate wave (FPW) microsensors were also fabricated from aD. These devices use membranes of aD as thin as {approx}100 nm. The performance of the aD FPW sensors was evaluated for the detection of volatile organic compounds using ethyl cellulose as the sensor coating. For comparable membrane thicknesses, the aD sensors showed better performance than silicon nitride based sensors. Greater

  5. High Volume Manufacturing and Field Stability of MEMS Products

    Science.gov (United States)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are

  6. Comparison of microelectrode sensing configurations for impedimetric cell monitoring

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Heiskanen, Arto; Andresen, Thomas Lars

    2012-01-01

    interdigitated microelectrodes using a versatile custom-made monitoring platform including a 24-channel miniaturized potentiostat. As expected, characterization of bare microelectrodes in buffer and tracking experiments with HeLa cells over 16 hours demonstrate that the coplanar configuration provides a higher......A theoretical and experimental comparison between vertical and coplanar interdigitated sensing configurations for impedimetric cell growth tracking is presented. For the first time, these widely-adopted approaches are quantitatively compared on the same cell populations and on the same 10μm...... sensitivity to cell adhesion and spreading (Cell Index = 1.6 vs. 0.4) albeit at a higher frequency of maximum sensitivity (100kHz vs. 24 kHz)....

  7. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    International Nuclear Information System (INIS)

    Chang, Jiyoung; Lin, Liwei; Yoon, Sang-Hee; Mofrad, Mohammad R K

    2011-01-01

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm 2 and the separation gaps of 2 µm between them. An electrical voltage of −1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions

  8. Mass Tracking with a MEMS-based Gravity Sensor

    Science.gov (United States)

    Pike, W. T.; Mukherjee, A.; Warren, T.; Charalambous, C.; Calcutt, S. B.; Standley, I.

    2017-12-01

    We achieve the first demonstration of the dynamic location of a moving mass using a MEMS sensor to detect gravity. The sensor is based on a microseismometer developed for planetary geophysics. In an updated version of the original Cavendish experiment the noise floor of the sensor, at 0.25 µgal/rtHz, allows the determination of the dynamic gravitational field from the motion of the mass of an oscillating pendulum. Using the determined noise floor we show that this performance should be sufficient for practical subsurface gravity surveying, in particular detection of 50-cm diameter pipes up to 10 m below the surface. Beyond this specific application, this sensor with a mass of less than 250 g per axis represents a new technology that opens up the possibility of drone deloyments for gravity mapping.

  9. Micro electromechanical systems (MEMS) for mechanical engineers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. P., LLNL

    1996-11-18

    The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical

  10. European MEMS foundries

    Science.gov (United States)

    Salomon, Patric R.

    2003-01-01

    According to the latest release of the NEXUS market study, the market for MEMS or Microsystems Technology (MST) is predicted to grow to $68B by the year 2005, with systems containing these components generating even higher revenues and growth. The latest advances in MST/MEMS technology have enabled the design of a new generation of microsystems that are smaller, cheaper, more reliable, and consume less power. These integrated systems bring together numerous analog/mixed signal microelectronics blocks and MEMS functions on a single chip or on two or more chips assembled within an integrated package. In spite of all these advances in technology and manufacturing, a system manufacturer either faces a substantial up-front R&D investment to create his own infrastructure and expertise, or he can use design and foundry services to get the initial product into the marketplace fast and with an affordable investment. Once he has a viable product, he can still think about his own manufacturing efforts and investments to obtain an optimized high volume manufacturing for the specific product. One of the barriers to successful exploitation of MEMS/MST technology has been the lack of access to industrial foundries capable of producing certified microsystems devices in commercial quantities, including packaging and test. This paper discusses Multi-project wafer (MPW) runs, requirements for foundries and gives some examples of foundry business models. Furthermore, this paper will give an overview on MST/MEMS services that are available in Europe, including pure commercial activities, European project activities (e.g. Europractice), and some academic services.

  11. Operational characterization of CSFH MEMS technology based hinges

    Science.gov (United States)

    Crescenzi, Rocco; Balucani, Marco; Belfiore, Nicola Pio

    2018-05-01

    Progress in MEMS technology continuously stimulates new developments in the mechanical structure of micro systems, such as, for example, the concept of so-called CSFH (conjugate surfaces flexural hinge), which makes it possible, simultaneously, to minimize the internal stresses and to increase motion range and robustness. Such a hinge may be actuated by means of a rotary comb-drive, provided that a proper set of simulations and tests are capable to assess its feasibility. In this paper, a CSFH has been analyzed with both theoretical and finite element (FEM) methods, in order to obtain the relation between voltage and generated torque. The FEM model considers also the fringe effect on the comb drive finger. Electromechanical couple-field analysis is performed by means of both direct and load transfer methods. Experimental tests have been also performed on a CSFH embedded in a MEMS prototype, which has been fabricated starting from a SOI wafer and using D-RIE (deep reactive ion etching). Results showed that CSFH performs better than linear flexure hinges in terms of larger rotations and less stress for given applied voltage.

  12. MEMS-based non-rotatory circumferential scanning optical probe for endoscopic optical coherence tomography

    Science.gov (United States)

    Xu, Yingshun; Singh, Janak; Siang, Teo Hui; Ramakrishna, Kotlanka; Premchandran, C. S.; Sheng, Chen Wei; Kuan, Chuah Tong; Chen, Nanguang; Olivo, Malini C.; Sheppard, Colin J. R.

    2007-07-01

    In this paper, we present a non-rotatory circumferential scanning optical probe integrated with a MEMS scanner for in vivo endoscopic optical coherence tomography (OCT). OCT is an emerging optical imaging technique that allows high resolution cross-sectional imaging of tissue microstructure. To extend its usage to endoscopic applications, a miniaturized optical probe based on Microelectromechanical Systems (MEMS) fabrication techniques is currently desired. A 3D electrothermally actuated micromirror realized using micromachining single crystal silicon (SCS) process highlights its very large angular deflection, about 45 degree, with low driving voltage for safety consideration. The micromirror is integrated with a GRIN lens into a waterproof package which is compatible with requirements for minimally invasive endoscopic procedures. To implement circumferential scanning substantially for diagnosis on certain pathological conditions, such as Barret's esophagus, the micromirror is mounted on 90 degree to optical axis of GRIN lens. 4 Bimorph actuators that are connected to the mirror on one end via supporting beams and springs are selected in this micromirror design. When actuators of the micromirror are driven by 4 channels of sinusoidal waveforms with 90 degree phase differences, beam focused by a GRIN is redirected out of the endoscope by 45 degree tilting mirror plate and achieve circumferential scanning pattern. This novel driving method making full use of very large angular deflection capability of our micromirror is totally different from previously developed or developing micromotor-like rotatory MEMS device for circumferential scanning.

  13. Nanostructured gold microelectrodes for extracellular recording

    Energy Technology Data Exchange (ETDEWEB)

    Brueggemann, Dorothea; Wolfrum, Bernhard; Maybeck, Vanessa; Offenhaeusser, Andreas [CNI Center of Nanoelectronic Systems for Information Technology and Institute of Bio- and Nanosystems 2, Forschungszentrum Juelich (Germany)

    2010-07-01

    Electrophysiological activity of electrogenic cells is currently recorded with planar bioelectronic interfaces such as microelectrode arrays (MEAs). In this work, a novel concept of biocompatible nanostructured gold MEAs for extracellular signal recording is presented. MEAs were fabricated using clean room technologies, e.g. photolithography and metallization. Subsequently, they were modified with gold nanopillars of approximately 300 to 400 nm in height and 60 nm width. The nanostructuring process was carried out with a template-assisted approach using nanoporous aluminium oxide. Impedance spectroscopy of the resulting nanostructures showed higher capacitances compared to planar gold. This confirmed the expected increase of the surface area via nanostructuring. We used the nanostructured microelectrodes to record extracellular potentials from heart muscle cells (HL1), which were plated onto the chips. Good coupling between the HL1 cells and the nanostructured electrodes was observed. The resulting signal-to-noise ratio of nanopillar-MEAs was increased by a factor of 2 compared to planar MEAs. In future applications this nanopillar concept can be adopted for distinct interface materials and coupling to cellular and molecular sensing components.

  14. Wireless MEMs BioSensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Crossfield is proposing to develop a low cost, single chip plant bio-monitor using an embedded MEMs based infrared (IR) spectroscopy gas sensor for carbon dioxide...

  15. Physicochemical properties of peptide-coated microelectrode arrays and their in vitro effects on neuroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghane-Motlagh, Bahareh, E-mail: bahar.ghane@gmail.com [Polystim Neurotechnologies Laboratory, Department of Electrical Engineering, Polytechnique Montreal, QC H3C 3A7 (Canada); Javanbakht, Taraneh; Shoghi, Fatemeh; Wilkinson, Kevin J.; Martel, Richard [Department of Chemistry, University of Montreal, QC H3C 3J7 (Canada); Sawan, Mohamad [Polystim Neurotechnologies Laboratory, Department of Electrical Engineering, Polytechnique Montreal, QC H3C 3A7 (Canada)

    2016-11-01

    Silicon micromachined neural electrode arrays, which act as an interface between bioelectronic devices and neural tissues, play an important role in chronic implants, in vivo. The biological compatibility of chronic microelectrode arrays (MEA) is an essential factor that must be taken into account in their design and fabrication. In order to improve biocompatibility of the MEAs, the surface of the electrodes was coated with polyethylene glycol (PEG) and parylene-C, which are biocompatible polymers. An in vitro study was performed to test the capacity of poly-D-lysine (PDL) to improve neural-cell adhesion and proliferation. Increased proliferation of the neuroblast cells on the microelectrodes was observed in the presence of the PDL. The presence of the peptide on the electrode surface was confirmed using Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). The impedance of the electrodes was not changed significantly before and after PDL deposition. Mouse neuroblast cells were seeded and cultured on the PDL coated and uncoated neural MEAs with different tip-coatings such as platinum, molybdenum, gold, sputtered iridium oxide, and carbon nanotubes. The neuroblast cells grew preferentially on and around peptide coated-microelectrode tips, as compared to the uncoated microelectrodes. - Highlights: • A novel high-density microelectrode array (MEA) for intracortical 3D recording and stimulation was designed and fabricated. • In order to improve neural-cell adhesion and proliferation, the surface of the electrodes was coated with poly-D-lysine (PDL). • An in vitro study was performed to test the capacity of PDL to improve cell adhesion and proliferation. • The neuroblast cells grew preferentially on peptide-coated microelectrode tips compared to the uncoated microelectrodes.

  16. Sputtered highly oriented PZT thin films for MEMS applications

    Science.gov (United States)

    Kalpat, Sriram S.

    Recently there has been an explosion of interest in the field of micro-electro-mechanical systems (MEMS). MEMS device technology has become critical in the growth of various fields like medical, automotive, chemical, and space technology. Among the many applications of ferroelectric thin films in MEMS devices, microfluidics is a field that has drawn considerable amount of research from bio-technology industries as well as chemical and semiconductor manufacturing industries. PZT thin films have been identified as best suited materials for micro-actuators and micro-sensors used in MEMS devices. A promising application for piezoelectric thin film based MEMS devices is disposable drug delivery systems that are capable of sensing biological parameters, mixing and delivering minute and precise amounts of drugs using micro-pumps or micro mixers. These devices call for low driving voltages, so that they can be battery operated. Improving the performance of the actuator material is critical in achieving battery operated disposal drug delivery systems. The device geometry and power consumption in MEMS devices largely depends upon the piezoelectric constant of the films, since they are most commonly used to convert electrical energy into a mechanical response of a membrane or cantilever and vice versa. Phenomenological calculation on the crystal orientation dependence of piezoelectric coefficients for PZT single crystal have reported a significant enhancement of the piezoelectric d33 constant by more than 3 times along [001] in the rhombohedral phase as compared to the conventionally used orientation PZT(111) since [111] is the along the spontaneous polarization direction. This could mean considerable improvement in the MEMS device performance and help drive the operating voltages lower. The motivation of this study is to investigate the crystal orientation dependence of both dielectric and piezoelectric coefficients of PZT thin films in order to select the appropriate

  17. Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays.

    Science.gov (United States)

    Hiremath, Shivayogi V; Chen, Weidong; Wang, Wei; Foldes, Stephen; Yang, Ying; Tyler-Kabara, Elizabeth C; Collinger, Jennifer L; Boninger, Michael L

    2015-01-01

    A brain-computer interface (BCI) system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  18. MEMS linear and nonlinear statics and dynamics

    CERN Document Server

    Younis, Mohammad I

    2011-01-01

    MEMS Linear and Nonlinear Statics and Dynamics presents the necessary analytical and computational tools for MEMS designers to model and simulate most known MEMS devices, structures, and phenomena. This book also provides an in-depth analysis and treatment of the most common static and dynamic phenomena in MEMS that are encountered by engineers. Coverage also includes nonlinear modeling approaches to modeling various MEMS phenomena of a nonlinear nature, such as those due to electrostatic forces, squeeze-film damping, and large deflection of structures. The book also: Includes examples of nume

  19. Multilevel power distribution synthesis for a movable flux mapping system

    International Nuclear Information System (INIS)

    Bollacasa, D.; Terney, W.B.; Vincent, G.F.; Dziadosz, D.; Schleicher, T.

    1992-01-01

    A Computer Software package has been developed to support the synthesis of the 3-dimensional power distribution from detector signals from a movable flux mapping system. The power distribution synthesis is based on methodology developed for fixed incore detectors. The full core solution effectively couples all assemblies in the core whether they are instrumented or not. The solution is not subject to approximations for the treatment of assemblies where a measurement cannot be made and provides an accurate representation of axial variations which may be induced by axial blankets, burnable absorber cut back regions and axially zoned flux suppression rods

  20. Surface chemistry and tribology of MEMS.

    Science.gov (United States)

    Maboudian, Roya; Carraro, Carlo

    2004-01-01

    The microscopic length scale and high surface-to-volume ratio, characteristic of microelectro-mechanical systems (MEMS), dictate that surface properties are of paramount importance. This review deals with the effects of surface chemical treatments on tribological properties (adhesion, friction, and wear) of MEMS devices. After a brief review of materials and processes that are utilized in MEMS technology, the relevant tribological and chemical issues are discussed. Various MEMS microinstruments are discussed, which are commonly employed to perform adhesion, friction, and wear measurements. The effects of different surface treatments on the reported tribological properties are discussed.

  1. Electrochemical measurements on a droplet using gold microelectrodes

    Science.gov (United States)

    Jenabi, Amin; Souri, Asma; Rastkhadiv, Ali

    2016-03-01

    Facile methods of ion recognition are important for the fabrication of electronic tongue systems. In this work, we demonstrate performing pulsed conductometry on microliter electrolyte droplets dropped on gold microelectrodes vapor deposited on soda lime glass slides. A droplet is dropped between two microelectrodes when a voltage waveform from a preprogramed power supply is applied on them. The temporal variation of the electric current passing through the droplet is recorded, digitized and stored. The obtained data are compared with the database formed out of the previous experiences for the classification of the sample electrolytes. It is shown that the shape of the voltage waveform is the important parameter of the process. We devised a method for the optimization of the voltage waveform profile for obtaining the maximum of discriminating information from the recorded current variations.

  2. Design of Surface micromachined Compliant MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Joe Anthony [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMS, most have used comb-drive actuation methods and bulk micromachining processes. This research focuses on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  3. Design of Surface Micromachined Compliant MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Joe Anthony [Iowa State Univ., Ames, IA (United States)

    2002-12-31

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMs, most have used comb-drive actuation methods and bulk micromachining processes. This research focused on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  4. The Power of Collateral : How Problems in Securing Transections Limit Private Credit from Movable Property

    OpenAIRE

    Fleisig, Heywood

    1995-01-01

    In many developing countries, faulty laws and regulations make it hard to use livestock, machines, equipment, standing crops, and other movable property as collateral. The resulting constraints on access to credit hurt economies. In Bolivia, for example, a faulty legal and regulatory framework for the use of movable property as collateral has led to a loss in GDP estimated at between 5 and...

  5. Crickets as bio-inspiration for MEMS-based flow-sensing

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Droogendijk, H.; Dagamseh, A.M.K.; Jaganatharaja, R.K.; Casas, Jerome

    2014-01-01

    MEMS offers exciting possibilities for the fabrication of bio-inspired mechanosensors. Over the last few years, we have been working on cricket- inspired hair-sensor arrays for spatio-temporal flow-field observations (i.e. flow camera) and source localisation. Whereas making flow-sensors as energy

  6. Chronic, percutaneous connector for electrical recording and stimulation with microelectrode arrays.

    Science.gov (United States)

    Shah, Kedar G; Lee, Kye Young; Tolosa, Vanessa; Tooker, Angela; Felix, Sarah; Benett, William; Pannu, Satinderpall

    2014-01-01

    The translation of advances in neural stimulation and recording research into clinical practice hinges on the ability to perform chronic experiments in awake and behaving animal models. Advances in microelectrode array technology, most notably flexible polymer arrays, have significantly improved reliability of the neural interface. However, electrical connector technology has lagged and is prone to failure from non-biocompatibility, large size, contamination, corrosion, and difficulty of use. We present a novel chronic, percutaneous electrical connector system that is suitable for neural stimulation and recording. This system features biocompatible materials, low connect and disconnect forces, passive alignment, and a protective cap during non-use. We have successfully designed, assembled, and tested in vitro both a 16-channel system and a high density 64-channel system. Custom, polyimide, 16-channel, microelectrode arrays were electrically assembled with the connector system and tested using cyclic voltammetry and electrochemical impedance spectroscopy. This connector system is versatile and can be used with a variety of microelectrode array technologies for chronic studies.

  7. Electrostatic MEMS devices with high reliability

    Science.gov (United States)

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V; Mancini, Derrick C; Gudeman, Chris; Sampath, Suresh; Carlilse, John A; Carpick, Robert W; Hwang, James

    2015-02-24

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  8. Development of a CMOS MEMS pressure sensor with a mechanical force-displacement transduction structure

    International Nuclear Information System (INIS)

    Cheng, Chao-Lin; Chang, Heng-Chung; Fang, Weileun; Chang, Chun-I

    2015-01-01

    This study presents a capacitive pressure sensor with a mechanical force-displacement transduction structure based on the commercially available standard CMOS process (the TSMC 0.18 μm 1P6M CMOS process). The pressure sensor has a deformable diaphragm to support a movable plate with an embedded sensing electrode. As the diaphragm is deformed by the ambient pressure, the movable plate and its embedded sensing electrode are displaced. Thus, the pressure is detected from the capacitance change between the movable and fixed electrodes. The undeformed movable electrode will increase the effective sensing area between the sensing electrodes, thereby improving the sensitivity. Experimental results show that the proposed pressure sensor with a force-displacement transducer will increase the sensitivity by 126% within the 20 kPa–300 kPa absolute pressure range. Moreover, this study extends the design to add pillars inside the pressure sensor to further increase its sensing area as well as sensitivity. A sensitivity improvement of 117% is also demonstrated for a pressure sensor with an enlarged sensing electrode (the overlap area is increased two fold). (paper)

  9. Pencil lead microelectrode and the application on cell dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Bo-Chuan; Cheng, Tzong-Jih; Shih, Syuan-He [Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, 136 Chou-Shan Rd., Taipei City 106, Taiwan (China); Chen, Richie L.C., E-mail: rlcchen@ntu.edu.tw [Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, 136 Chou-Shan Rd., Taipei City 106, Taiwan (China)

    2011-11-30

    A microelectrode was fabricated by electrochemical etching of a pencil lead (0.5 mm in diameter) in 1.0 M NaOH aqueous solution. The pencil lead was dipped into the solution and then an ac voltage (3.0 V{sub rms} for 10 min) was imposed against a stainless plate under mild stirring (450 rpm). The electrochemically sharpened pencil tip was about 10 {mu}m in diameter (12 {+-} 3 {mu}m, n = 5), and the lateral part was insulated within a polypropylene micro-pipette tip (2-200 {mu}L volume range). The cyclic voltammograms conducted in 2.0 mM ferricyanide/ferrocyanide buffer solution (pH 7.0) are with low capacitive current and a typical sigmoidal signal of micro-sized electrodes. The microelectrode was used to perform dielectrophoresis of polystyrene latex microbeads (nominal diameter of 3 {mu}m) and human red blood cells. A conducting glass (indium tin oxide coated glass, 40 mm x 40 mm x 1 mm) served as the counter electrode (0.5 mm beneath the microelectrode) to generate the asymmetrical electric field and also as the window for microscopic observation. With the sinusoidal bias voltage (30 V{sub rms}) ranged from 20 Hz to 2 MHz, positive and negative dielectrophoretic phenomena were identified.

  10. Modeling and non-linear responses of MEMS capacitive accelerometer

    Directory of Open Access Journals (Sweden)

    Sri Harsha C.

    2014-01-01

    Full Text Available A theoretical investigation of an electrically actuated beam has been illustrated when the electrostatic-ally actuated micro-cantilever beam is separated from the electrode by a moderately large gap for two distinct types of geometric configurations of MEMS accelerometer. Higher order nonlinear terms have been taken into account for studying the pull in voltage analysis. A nonlinear model of gas film squeezing damping, another source of nonlinearity in MEMS devices is included in obtaining the dynamic responses. Moreover, in the present work, the possible source of nonlinearities while formulating the mathematical model of a MEMS accelerometer and their influences on the dynamic responses have been investigated. The theoretical results obtained by using MATLAB has been verified with the results obtained in FE software and has been found in good agreement. Criterion towards stable micro size accelerometer for each configuration has been investigated. This investigation clearly provides an understanding of nonlinear static and dynamics characteristics of electrostatically micro cantilever based device in MEMS.

  11. Integrated design of MEMS

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Brissaud, Daniel

    2007-01-01

    Emerging technologies of Micro-Electromechanical Systems (MEMS) are applications such as airbag accelerometers. Micro-products present many physical differences from macro-products. Moreover, there is a high level of integration in multiple fields of physics with strongly coupled effects...... industrial immersion to propose a socio-technological description of the design process and MEMS design tools....

  12. Nonlinear dynamic modeling of a V-shaped metal based thermally driven MEMS actuator for RF switches

    Science.gov (United States)

    Bakri-Kassem, Maher; Dhaouadi, Rached; Arabi, Mohamed; Estahbanati, Shahabeddin V.; Abdel-Rahman, Eihab

    2018-05-01

    In this paper, we propose a new dynamic model to describe the nonlinear characteristics of a V-shaped (chevron) metallic-based thermally driven MEMS actuator. We developed two models for the thermal actuator with two configurations. The first MEMS configuration has a small tip connected to the shuttle, while the second configuration has a folded spring and a wide beam attached to the shuttle. A detailed finite element model (FEM) and a lumped element model (LEM) are proposed for each configuration to completely characterize the electro-thermal and thermo-mechanical behaviors. The nonlinear resistivity of the polysilicon layer is extracted from the measured current-voltage (I-V) characteristics of the actuator and the simulated corresponding temperatures in the FEM model, knowing the resistivity of the polysilicon at room temperature from the manufacture’s handbook. Both developed models include the nonlinear temperature-dependent material properties. Numerical simulations in comparison with experimental data using a dedicated MEMS test apparatus verify the accuracy of the proposed LEM model to represent the complex dynamics of the thermal MEMS actuator. The LEM and FEM simulation results show an accuracy ranging from a maximum of 13% error down to a minimum of 1.4% error. The actuator with the lower thermal load to air that includes a folded spring (FS), also known as high surface area actuator is compared to the actuator without FS, also known as low surface area actuator, in terms of the I-V characteristics, power consumption, and experimental static and dynamic responses of the tip displacement.

  13. FPGA platform for MEMS Disc Resonance Gyroscope (DRG) control

    Science.gov (United States)

    Keymeulen, Didier; Peay, Chris; Foor, David; Trung, Tran; Bakhshi, Alireza; Withington, Phil; Yee, Karl; Terrile, Rich

    2008-04-01

    Inertial navigation systems based upon optical gyroscopes tend to be expensive, large, power consumptive, and are not long lived. Micro-Electromechanical Systems (MEMS) based gyros do not have these shortcomings; however, until recently, the performance of MEMS based gyros had been below navigation grade. Boeing and JPL have been cooperating since 1997 to develop high performance MEMS gyroscopes for miniature, low power space Inertial Reference Unit applications. The efforts resulted in demonstration of a Post Resonator Gyroscope (PRG). This experience led to the more compact Disc Resonator Gyroscope (DRG) for further reduced size and power with potentially increased performance. Currently, the mass, volume and power of the DRG are dominated by the size of the electronics. This paper will detail the FPGA based digital electronics architecture and its implementation for the DRG which will allow reduction of size and power and will increase performance through a reduction in electronics noise. Using the digital control based on FPGA, we can program and modify in real-time the control loop to adapt to the specificity of each particular gyro and the change of the mechanical characteristic of the gyro during its life time.

  14. Electrochemical measurements on a droplet using gold microelectrodes

    International Nuclear Information System (INIS)

    Jenabi, Amin; Souri, Asma; Rastkhadiv, Ali

    2016-01-01

    Facile methods of ion recognition are important for the fabrication of electronic tongue systems. In this work, we demonstrate performing pulsed conductometry on microliter electrolyte droplets dropped on gold microelectrodes vapor deposited on soda lime glass slides. A droplet is dropped between two microelectrodes when a voltage waveform from a preprogramed power supply is applied on them. The temporal variation of the electric current passing through the droplet is recorded, digitized and stored. The obtained data are compared with the database formed out of the previous experiences for the classification of the sample electrolytes. It is shown that the shape of the voltage waveform is the important parameter of the process. We devised a method for the optimization of the voltage waveform profile for obtaining the maximum of discriminating information from the recorded current variations. (paper)

  15. Piezoelectric MEMS resonators

    CERN Document Server

    Piazza, Gianluca

    2017-01-01

    This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associate...

  16. Movable chain jacks and winches: case study of PETROBRAS' P58/)62and ENI's Goliat

    Energy Technology Data Exchange (ETDEWEB)

    Grindheim, Reidar [Aker Pusnes AS, Arendal (Norway)

    2012-07-01

    Recently, Aker Solutions delivered a movable chain jack system to PETROBRAS's P58/P62 FPSOs and a movable windlass system to ENI's Goliat FPSO. This paper highlights the main differences between the two systems and when it is beneficial to employ movable systems. There are many parameters to consider in determining which system to use - also a traditional system involving a single winch or chain jack per mooring line may in many cases be preferred. The movable chain jack concept is designed to operate multiple mooring lines within the same cluster. A single chain jack is lifted by a skidding gantry and moved to the next mooring line and so forth. Installation and messenger chains are moved using a large sliding chain locker allowing for later offloading of the surplus chain. The movable windlass system is also designed to operate multiple mooring lines within the same cluster. However, in this case the winch is rotary and can operate via electric or hydraulic power. One of the main considerations is to move the windlass and keep the mooring lines intact without cutting them. (author)

  17. The research and development of inclination angle magnetic fluid detector with a movable sensing element based on permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lagutkina, D.Yu., E-mail: Lagutkina_D@mail.ru; Saikin, M.S., E-mail: saikinms@mail.ru

    2017-06-01

    The article presents an account on some new designs, which have been developed for the magnetic fluid sensor with a movable sensor based on permanent magnets with the support of Ivanovo State Power Engineering University. The research carried out is aimed at elucidating the influence of the detector sensing element on its operating performance. - Highlights: • In order to conduct a careful research of IAMFD designs operating performance the algorithm was applied to look into the SE suspension force dependencies on its spatial position. • According to this algorithm, the value of the sensitive element suspension force is obtained with use of the MF attraction force of the to the permanent magnet.

  18. Active mems microbeam device for gas detection

    KAUST Repository

    Bouchaala, Adam M.

    2017-10-05

    Sensors and active switches for applications in gas detection and other fields are described. The devices are based on the softening and hardening nonlinear response behaviors of microelectromechanical systems (MEMS) clamped-clamped microbeams. In that context, embodiments of gas-triggered MEMS microbeam sensors and switches are described. The microbeam devices can be coated with a Metal-Organic Framework to achieve high sensitivity. For gas sensing, an amplitude-based tracking algorithm can be used to quantify an amount of gas captured by the devices according to frequency shift. Noise analysis is also conducted according to the embodiments, which shows that the microbeam devices have high stability against thermal noise. The microbeam devices are also suitable for the generation of binary sensing information for alarming, for example.

  19. Adhesion aspects in MEMS/NEMS

    CERN Document Server

    Kim, Seong H; Mittal, Kash L

    2012-01-01

    Phenomena associated with the adhesion interaction of surfaces have been a critical aspect of micro- and nanosystem development and performance since the first MicroElectroMechanicalSystems(MEMS) were fabricated. These phenomena are ubiquitous in nature and are present in all systems, however MEMS devices are particularly sensitive to their effects owing to their small size and limited actuation force that can be generated. Extension of MEMS technology concepts to the nanoscale and development of NanoElectroMechanicalSystems(NEMS) will result in systems even more strongly influenced by surface

  20. Practical guide to RF-MEMS

    CERN Document Server

    Iannacci, Jacopo

    2013-01-01

    Closes the gap between hardcore-theoretical and purely experimental RF-MEMS books. The book covers, from a practical viewpoint, the most critical steps that have to be taken in order to develop novel RF-MEMS device concepts. Prototypical RF-MEMS devices, both including lumped components and complex networks, are presented at the beginning of the book as reference examples, and these are then discussed from different perspectives with regard to design, simulation, packaging, testing, and post-fabrication modeling. Theoretical concepts are introduced when necessary to complement the practical

  1. A Platform for Manufacturable Stretchable Micro-electrode Arrays

    NARCIS (Netherlands)

    Khoshfetrat Pakazad, S.; Savov, A.; Braam, S.R.; Dekker, R.

    2012-01-01

    A platform for the batch fabrication of pneumatically actuated Stretchable Micro-Electrode Arrays (SMEAs) by using state-of-the-art micro-fabrication techniques and materials is demonstrated. The proposed fabrication process avoids the problems normally associated with processing of thin film

  2. A Fast, Large-Stroke Electrothermal MEMS Mirror Based on Cu/W Bimorph

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhang

    2015-12-01

    Full Text Available This paper reports a large-range electrothermal bimorph microelectromechanical systems (MEMS mirror with fast thermal response. The actuator of the MEMS mirror is made of three segments of Cu/W bimorphs for lateral shift cancelation and two segments of multimorph beams for obtaining large vertical displacement from the angular motion of the bimorphs. The W layer is also used as the embedded heater. The silicon underneath the entire actuator is completely removed using a unique backside deep-reactive-ion-etching DRIE release process, leading to improved thermal response speed and front-side mirror surface protection. This MEMS mirror can perform both piston and tip-tilt motion. The mirror generates large pure vertical displacement up to 320 μm at only 3 V with a power consumption of 56 mW for each actuator. The maximum optical scan angle achieved is ±18° at 3 V. The measured thermal response time is 15.4 ms and the mechanical resonances of piston and tip-tilt modes are 550 Hz and 832 Hz, respectively.

  3. A six degrees of freedom mems manipulator

    NARCIS (Netherlands)

    de Jong, B.R.

    2006-01-01

    This thesis reports about a six degrees of freedom (DOF) precision manipulator in MEMS, concerning concept generation for the manipulator followed by design and fabrication (of parts) of the proposed manipulation concept in MEMS. Researching the abilities of 6 DOF precision manipulation in MEMS is

  4. Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection

    KAUST Repository

    Bouchaala, Adam M.; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.

    2016-01-01

    The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming.

  5. Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection

    KAUST Repository

    Bouchaala, Adam M.

    2016-05-25

    The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming.

  6. Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection.

    Science.gov (United States)

    Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I

    2016-05-25

    The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming.

  7. A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2014-02-01

    Full Text Available This paper presents a micro-electro-mechanical system (MEMS piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,TiO3 (PZT cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3 and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm−3∙g−2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads.

  8. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.

    Science.gov (United States)

    Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu

    2014-02-19

    This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm-3∙g-2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads.

  9. MEMS for Tunable Photonic Metamaterial Applications

    Science.gov (United States)

    Stark, Thomas

    Photonic metamaterials are materials whose optical properties are derived from artificially-structured sub-wavelength unit cells, rather than from the bulk properties of the constituent materials. Examples of metamaterials include plasmonic materials, negative index materials, and electromagnetic cloaks. While advances in simulation tools and nanofabrication methods have allowed this field to grow over the past several decades, many challenges still exist. This thesis addresses two of these challenges: fabrication of photonic metamaterials with tunable responses and high-throughput nanofabrication methods for these materials. The design, fabrication, and optical characterization of a microelectromechanical systems (MEMS) tunable plasmonic spectrometer are presented. An array of holes in a gold film, with plasmon resonance in the mid-infrared, is suspended above a gold reflector, forming a Fabry-Perot interferometer of tunable length. The spectra exhibit the convolution of extraordinary optical transmission through the holes and Fabry-Perot resonances. Using MEMS, the interferometer length is modulated from 1.7 mum to 21.67 mum , thereby tuning the free spectral range from about 2900 wavenumbers to 230.7 wavenumbers and shifting the reflection minima and maxima across the infrared. Due to its broad spectral tunability in the fingerprint region of the mid-infrared, this device shows promise as a tunable biological sensing device. To address the issue of high-throughput, high-resolution fabrication of optical metamaterials, atomic calligraphy, a MEMS-based dynamic stencil lithography technique for resist-free fabrication of photonic metamaterials on unconventional substrates, has been developed. The MEMS consists of a moveable stencil, which can be actuated with nanometer precision using electrostatic comb drive actuators. A fabrication method and flip chip method have been developed, enabling evaporation of metals through the device handle for fabrication on an

  10. Movable shark scales act as a passive dynamic micro-roughness to control flow separation

    International Nuclear Information System (INIS)

    Lang, Amy W; Bradshaw, Michael T; Smith, Jonathon A; Wheelus, Jennifer N; Motta, Philip J; Habegger, Maria L; Hueter, Robert E

    2014-01-01

    Shark scales on fast-swimming sharks have been shown to be movable to angles in excess of 50°, and we hypothesize that this characteristic gives this shark skin a preferred flow direction. During the onset of separation, flow reversal is initiated close to the surface. However, the movable scales would be actuated by the reversed flow thereby causing a greater resistance to any further flow reversal and this mechanism would disrupt the process leading to eventual flow separation. Here we report for the first time experimental evidence of the separation control capability of real shark skin through water tunnel testing. Using skin samples from a shortfin mako Isurus oxyrinchus, we tested a pectoral fin and flank skin attached to a NACA 4412 hydrofoil and separation control was observed in the presence of movable shark scales under certain conditions in both cases. We hypothesize that the scales provide a passive, flow-actuated mechanism acting as a dynamic micro-roughness to control flow separation. (paper)

  11. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  12. Design and Fabrication of a Reconfigurable MEMS-Based Antenna

    KAUST Repository

    Martinez, Miguel Angel Galicia

    2011-01-01

    According to the high gain obtained in a lossy silicon substrate and the compatibility of the custom MEMS process with the state of the art standard CMOS process, it is believed that the design of this antenna can lead to efficient and low cost reconfigurable millimeter-wave System-on-Chip (SoC) solution.

  13. Capacitive MEMS-based sensors : thermo-mechanical stability and charge trapping

    NARCIS (Netherlands)

    van Essen, M.C.

    2009-01-01

    Micro-Electro Mechanical Systems (MEMS) are generally characterized as miniaturized systems with electrostatically driven moving parts. In many cases, the electrodes are capacitively coupled. This basic scheme allows for a plethora of specifications and functionality. This technology has presently

  14. Going Fabless with MEMS

    Directory of Open Access Journals (Sweden)

    Bhaskar CHOUBEY

    2011-04-01

    Full Text Available The Microelectromechanical sensors are finding increasing applications in everyday life. However, each MEMS sensor is generally fabricated on its own individual process. This leads to high cost per sensor. It has been suggested the MEMS should and would follow the path of integrated circuits industry, wherein fabless firms could concentrate on design leading pure-foundries to perfect the manufacturing process. With several designs being manufactured on the same process, the installation cost of fabrication would be evenly shared. Simultaneously, multiple project wafer runs are being offered for MEMS processes to encourage design activity in universities as well as startups. This paper reviews the present state of this transition through an experience of designing and manufacturing microelectromechanical resonators on different processes.

  15. MEMS based impedimetric sensing of phthalates

    KAUST Repository

    Zia, Asif I.

    2013-05-01

    Phthalate esters are known ubiquitous teratogenic and carcinogenic environmental and food pollutants. Their detection and quantification is strictly laboratory based, time consuming, expensive and professionally handled procedure. Presented research work describes a real time non-invasive detection technique for phthalates detection in ethanol, water and drinks. The new type of inter-digital sensor design incorporating multiple sensing gold electrodes were fabricated on silicon substrate based on thin film micro-electromechanical system (MEMS) using semiconductor device fabrication technology. A passivation layer of Silicon Nitride (Si3N4) was used to functionalize the sensor. Various concentrations (0.1 to 20ppm) of DINP (di-isononyl phthalates) in ethanol and di (2-ethylhexyl) phthalate (DEHP) in deionized MilliQ water were subjected to the testing system by dip testing method. Electrochemical impedance spectroscopy (EIS) technique was used to obtain impedance spectra in order to determine sample conductance for evaluation of its dielectric properties. The impedance spectra so obtained showed that the sensor was able to detect the presence of phthalates in the samples distinctively. Electrochemical Spectrum Analyser was used to model the experimentally obtained impedance spectra by curve fitting technique to figure out Constant Phase Element (CPE) equivalent circuit. Locally available energy drink and juice was added with phthalates in concentrations of 2, 6 and 10ppm to observe the performance of the sensor in such products. Experimental results showed that the new sensor was able to detect different concentrations of phthalates in energy drinks. © 2013 IEEE.

  16. Integration of Polymer Micro-Electrodes for Bio-Sensing

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Larsen, Simon Tylsgaard; Tanzi, Simone

    We present the fabrication of PEDOT and pyrolyzed micro-electrodes for the detection of neurotransmitter exocytosis from single cells. The patterns of the electrodes are defined with photolithography. The micro-electro-fluidic-chips were fabricated by bonding two injection molded TOPAS parts. Pol...

  17. Structured synthesis of MEMS using evolutionary approaches

    DEFF Research Database (Denmark)

    Fan, Zhun; Wang, Jiachuan; Achiche, Sofiane

    2008-01-01

    In this paper, we discuss the hierarchy that is involved in a typical MEMS design and how evolutionary approaches can be used to automate the hierarchical synthesis process for MEMS. The paper first introduces the flow of a structured MEMS design process and emphasizes that system-level lumped...

  18. Piezoelectric Zinc Oxide Based MEMS Acoustic Sensor

    Directory of Open Access Journals (Sweden)

    Aarti Arora

    2008-04-01

    Full Text Available An acoustic sensors exhibiting good sensitivity was fabricated using MEMS technology having piezoelectric zinc oxide as a dielectric between two plates of capacitor. Thin film zinc oxide has structural, piezoelectric and optical properties for surface acoustic wave (SAW and bulk acoustic wave (BAW devices. Oxygen effficient films are transparent and insulating having wide applications for sensors and transducers. A rf sputtered piezoelectric ZnO layer transforms the mechanical deflection of a thin etched silicon diaphragm into a piezoelectric charge. For 25-micron thin diaphragm Si was etched in tetramethylammonium hydroxide solution using bulk micromachining. This was followed by deposition of sandwiched structure composed of bottom aluminum electrode, sputtered 3 micron ZnO film and top aluminum electrode. A glass having 1 mm diameter hole was bonded on backside of device to compensate sound pressure in side the cavity. The measured value of central capacitance and dissipation factor of the fabricated MEMS acoustic sensor was found to be 82.4pF and 0.115 respectively, where as the value of ~176 pF was obtained for the rim capacitance with a dissipation factor of 0.138. The response of the acoustic sensors was reproducible for the devices prepared under similar processing conditions under different batches. The acoustic sensor was found to be working from 30Hz to 8KHz with a sensitivity of 139µV/Pa under varying acoustic pressure.

  19. Study of the Behavior of the Mercury on Diverse Microelectrodes with Cell of Continuous Flow

    International Nuclear Information System (INIS)

    Cruz Valldeperas, F

    2001-01-01

    A comparative study of six types of microelectrodes in two different support electrolytes was developed using a new analytic technique for analysis of mercury in liquid samples in the ambit of parts by million. For it, a new system of cell of continuous flow and platinum microelectrodes and of platinum with gold film was implemented using volt-amperemetry of anodized spoil with square wave. In a preliminary study, some parameters that characterize the analysis with this new cell were optimized, for example the sample's speed flow and the time of electrodeposition. The calibration curves were made for the different types of microelectrode that were used in an ambit of concentrations of 1-10 ppm. According to the obtained results, the microelectrode that better works is the platinum disk for possessing bigger superficial area exposed to the dissolution, which increases the analite's currents of pick. And as a support electrolyte, potassium tiocianato is recommended because of its effectiveness to solve the analytic sign of the mercury. Studies of answer of the current of mercury regarding the quantity of the placed sample and studies of interferences of the analysis with this type of microelectrode were also carried out. With regard to the study of the quantity of sample, it was obtained that the electrochemical answer of the cell is directly proportional to the concentration of the analite placed in it. In the study of interference, it was found that the copper, lead, and zinc ions affect the analysis of mercury in concentrations of 0.1 ppm and on in the case of the microelectrode of platinum disk. And in case that the same microelectrode is used recovered with gold, it only affects the copper in concentrations over 5 ppm, for what is necessary to take into account a previous treatment of the sample in the event of containing some of the interfering ions [es

  20. Research and Analysis of MEMS Switches in Different Frequency Bands

    Directory of Open Access Journals (Sweden)

    Wenchao Tian

    2018-04-01

    Full Text Available Due to their high isolation, low insertion loss, high linearity, and low power consumption, microelectromechanical systems (MEMS switches have drawn much attention from researchers in recent years. In this paper, we introduce the research status of MEMS switches in different bands and several reliability issues, such as dielectric charging, contact failure, and temperature instability. In this paper, some of the following methods to improve the performance of MEMS switches in high frequency are summarized: (1 utilizing combinations of several switches in series; (2 covering a float metal layer on the dielectric layer; (3 using dielectric layer materials with high dielectric constants and conductor materials with low resistance; (4 developing MEMS switches using T-match and π-match; (5 designing MEMS switches based on bipolar complementary metal–oxide–semiconductor (BiCMOS technology and reconfigurable MEMS’ surfaces; (6 employing thermal compensation structures, circularly symmetric structures, thermal buckle-beam actuators, molybdenum membrane, and thin-film packaging; (7 selecting Ultra-NanoCrystalline diamond or aluminum nitride dielectric materials and applying a bipolar driving voltage, stoppers, and a double-dielectric-layer structure; and (8 adopting gold alloying with carbon nanotubes (CNTs, hermetic and reliable packaging, and mN-level contact.

  1. Modeling of biaxial gimbal-less MEMS scanning mirrors

    Science.gov (United States)

    von Wantoch, Thomas; Gu-Stoppel, Shanshan; Senger, Frank; Mallas, Christian; Hofmann, Ulrich; Meurer, Thomas; Benecke, Wolfgang

    2016-03-01

    One- and two-dimensional MEMS scanning mirrors for resonant or quasi-stationary beam deflection are primarily known as tiny micromirror devices with aperture sizes up to a few Millimeters and usually address low power applications in high volume markets, e.g. laser beam scanning pico-projectors or gesture recognition systems. In contrast, recently reported vacuum packaged MEMS scanners feature mirror diameters up to 20 mm and integrated high-reflectivity dielectric coatings. These mirrors enable MEMS based scanning for applications that require large apertures due to optical constraints like 3D sensing or microscopy as well as for high power laser applications like laser phosphor displays, automotive lighting and displays, 3D printing and general laser material processing. This work presents modelling, control design and experimental characterization of gimbal-less MEMS mirrors with large aperture size. As an example a resonant biaxial Quadpod scanner with 7 mm mirror diameter and four integrated PZT (lead zirconate titanate) actuators is analyzed. The finite element method (FEM) model developed and computed in COMSOL Multiphysics is used for calculating the eigenmodes of the mirror as well as for extracting a high order (n system inputs and scanner displacement as system output. By applying model order reduction techniques using MATLABR a compact state space system approximation of order n = 6 is computed. Based on this reduced order model feedforward control inputs for different, properly chosen scanner displacement trajectories are derived and tested using the original FEM model as well as the micromirror.

  2. Interdigitated microelectrode based impedance biosensor for detection of salmonella enteritidis in food samples

    International Nuclear Information System (INIS)

    Kim, G; Morgan, M; Hahm, B K; Bhunia, A; Mun, J H; Om, A S

    2008-01-01

    Salmonella enteritidis outbreaks continue to occur, and S. enteritidis-related outbreaks from various food sources have increased public awareness of this pathogen. Conventional methods for pathogens detection and identification are labor-intensive and take days to complete. Some immunological rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown great potential for the rapid detection of foodborne pathogens. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on avidin-biotin binding on the surface of the IME to form an active sensing layer. To increase the sensitivity of the sensor, three types of sensors that have different electrode gap sizes (2 μm, 5 μm, 10 μm) were fabricated and tested. The impedimetric biosensor could detect 10 3 CFU/mL of Salmonella in pork meat extract with an incubation time of 5 minutes. This method may provide a simple, rapid and sensitive method to detect foodborne pathogens

  3. Brain Computer Interface Learning for Systems Based on Electrocorticography and Intracortical Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Shivayogi V Hiremath

    2015-06-01

    Full Text Available A brain-computer interface (BCI system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  4. Interdigitated microelectrode based impedance biosensor for detection of salmonella enteritidis in food samples

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G [National Institute of Agricultural Engineering, 249 Seodun-dong, Suwon, Republic of Korea, 441-100 (Korea, Republic of); Morgan, M; Hahm, B K; Bhunia, A [Department of Food Science, Purdue University, West Lafayette, IN 47907 (United States); Mun, J H; Om, A S [Department of Food and Nutrient, Hanyang University, 17 Haengdang-dong, Seoul, Republic of Korea, 133-791 (Korea, Republic of)], E-mail: giyoungkim@rda.go.kr

    2008-03-15

    Salmonella enteritidis outbreaks continue to occur, and S. enteritidis-related outbreaks from various food sources have increased public awareness of this pathogen. Conventional methods for pathogens detection and identification are labor-intensive and take days to complete. Some immunological rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown great potential for the rapid detection of foodborne pathogens. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on avidin-biotin binding on the surface of the IME to form an active sensing layer. To increase the sensitivity of the sensor, three types of sensors that have different electrode gap sizes (2 {mu}m, 5 {mu}m, 10 {mu}m) were fabricated and tested. The impedimetric biosensor could detect 10{sup 3} CFU/mL of Salmonella in pork meat extract with an incubation time of 5 minutes. This method may provide a simple, rapid and sensitive method to detect foodborne pathogens.

  5. Active mems microbeam device for gas detection

    KAUST Repository

    Bouchaala, Adam M.; Jaber, Nizar; Younis, Mohammad I.

    2017-01-01

    Sensors and active switches for applications in gas detection and other fields are described. The devices are based on the softening and hardening nonlinear response behaviors of microelectromechanical systems (MEMS) clamped-clamped microbeams

  6. Topology optimized RF MEMS switches

    DEFF Research Database (Denmark)

    Philippine, M. A.; Zareie, H.; Sigmund, Ole

    2013-01-01

    Topology optimization is a rigorous and powerful method that should become a standard MEMS design tool - it can produce unique and non-intuitive designs that meet complex objectives and can dramatically improve the performance and reliability of MEMS devices. We present successful uses of topology...

  7. Modeling of MEMS Mirrors Actuated by Phase-Change Mechanism

    Directory of Open Access Journals (Sweden)

    David Torres

    2017-04-01

    Full Text Available Given the multiple applications for micro-electro-mechanical system (MEMS mirror devices, most of the research efforts are focused on improving device performance in terms of tilting angles, speed, and their integration into larger arrays or systems. The modeling of these devices is crucial for enabling a platform, in particular, by allowing for the future control of such devices. In this paper, we present the modeling of a MEMS mirror structure with four actuators driven by the phase-change of a thin film. The complexity of the device structure and the nonlinear behavior of the actuation mechanism allow for a comprehensive study that encompasses simpler electrothermal designs, thus presenting a general approach that can be adapted to most MEMS mirror designs based on this operation principle. The MEMS mirrors presented in this work are actuated by Joule heating and tested using optical techniques. Mechanical and thermal models including both pitch and roll displacements are developed by combining theoretical analysis (using both numerical and analytical tools with experimental data and subsequently verifying with quasi-static and dynamic experiments.

  8. Chronic in vivo stability assessment of carbon fiber microelectrode arrays

    Science.gov (United States)

    Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.

    2016-12-01

    Objective. Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach. Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results. Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance. This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.

  9. Aprendizado e memória Learning and memory

    Directory of Open Access Journals (Sweden)

    Paul Lombroso

    2004-09-01

    Full Text Available A memória é dividida de duas grandes formas: explícita e implícita. O hipocampo é necessário para a formação das memórias explícitas, ao passo que várias outras regiões do cérebro, incluindo o estriado, a amígdala e o nucleus accumbens, estão envolvidos na formação das memórias implícitas. A formação de todas as memórias requer alterações morfológicas nas sinapses: novas sinapses devem ser formadas ou antigas precisam ser fortalecidas. Considera-se que essas alterações reflitam a base celular subjacente das memórias persistentes. Consideráveis avanços têm ocorrido na última década em relação a nossa compreensão sobre as bases moleculares da formação dessas memórias. Um regulador-chave da plasticidade sináptica é uma via de sinalização que inclui a proteína-quinase ativada por mitógenos (MAP. Como essa via é necessária para a memória e o aprendizado normais, não é surpreendente que as mutações nos membros dessa via levem a prejuízos no aprendizado. A neurofibromatose, a síndrome de Coffin-Lowry e a de Rubinstein-Taybi são três exemplos de transtornos de desenvolvimento que apresentam mutações em componentes-chave na via de sinalização da proteína-quinase MAP.Memory is broadly divided into declarative and nondeclarative forms of memory. The hippocampus is required for the formation of declarative memories, while a number of other brain regions including the striatum, amygdala and nucleus accumbens are involved in the formation of nondeclarative memories. The formation of all memories require morphological changes of synapses: new ones must be formed or old ones strengthened. These changes are thought to reflect the underlying cellular basis for persistent memories. Considerable advances have occurred over the last decade in our understanding of the molecular bases of how these memories are formed. A key regulator of synaptic plasticity is a signaling pathway that includes the mitogen

  10. Microelectrode for energy and current control of nanotip field electron emitters

    International Nuclear Information System (INIS)

    Lüneburg, S.; Müller, M.; Paarmann, A.; Ernstorfer, R.

    2013-01-01

    Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10–30 μm. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations

  11. Vertically aligned carbon nanotube-sheathed carbon fibers as pristine microelectrodes for selective monitoring of ascorbate in vivo.

    Science.gov (United States)

    Xiang, Ling; Yu, Ping; Hao, Jie; Zhang, Meining; Zhu, Lin; Dai, Liming; Mao, Lanqun

    2014-04-15

    Using as-synthesized vertically aligned carbon nanotube-sheathed carbon fibers (VACNT-CFs) as microelectrodes without any postsynthesis functionalization, we have developed in this study a new method for in vivo monitoring of ascorbate with high selectivity and reproducibility. The VACNT-CFs are formed via pyrolysis of iron phthalocyanine (FePc) on the carbon fiber support. After electrochemical pretreatment in 1.0 M NaOH solution, the pristine VACNT-CF microelectrodes exhibit typical microelectrode behavior with fast electron transfer kinetics for electrochemical oxidation of ascorbate and are useful for selective ascorbate monitoring even with other electroactive species (e.g., dopamine, uric acid, and 5-hydroxytryptamine) coexisting in rat brain. Pristine VACNT-CFs are further demonstrated to be a reliable and stable microelectrode for in vivo recording of the dynamic increase of ascorbate evoked by intracerebral infusion of glutamate. Use of a pristine VACNT-CF microelectrode can effectively avoid any manual electrode modification and is free from person-to-person and/or electrode-to-electrode deviations intrinsically associated with conventional CF electrode fabrication, which often involves electrode surface modification with randomly distributed CNTs or other pretreatments, and hence allows easy fabrication of highly selective, reproducible, and stable microelectrodes even by nonelectrochemists. Thus, this study offers a new and reliable platform for in vivo monitoring of neurochemicals (e.g., ascorbate) to largely facilitate future studies on the neurochemical processes involved in various physiological events.

  12. MEMS-based thermally-actuated image stabilizer for cellular phone camera

    International Nuclear Information System (INIS)

    Lin, Chun-Ying; Chiou, Jin-Chern

    2012-01-01

    This work develops an image stabilizer (IS) that is fabricated using micro-electro-mechanical system (MEMS) technology and is designed to counteract the vibrations when human using cellular phone cameras. The proposed IS has dimensions of 8.8 × 8.8 × 0.3 mm 3 and is strong enough to suspend an image sensor. The processes that is utilized to fabricate the IS includes inductive coupled plasma (ICP) processes, reactive ion etching (RIE) processes and the flip-chip bonding method. The IS is designed to enable the electrical signals from the suspended image sensor to be successfully emitted out using signal output beams, and the maximum actuating distance of the stage exceeds 24.835 µm when the driving current is 155 mA. Depending on integration of MEMS device and designed controller, the proposed IS can decrease the hand tremor by 72.5%. (paper)

  13. MEMS reliability: coming of age

    Science.gov (United States)

    Douglass, Michael R.

    2008-02-01

    In today's high-volume semiconductor world, one could easily take reliability for granted. As the MOEMS/MEMS industry continues to establish itself as a viable alternative to conventional manufacturing in the macro world, reliability can be of high concern. Currently, there are several emerging market opportunities in which MOEMS/MEMS is gaining a foothold. Markets such as mobile media, consumer electronics, biomedical devices, and homeland security are all showing great interest in microfabricated products. At the same time, these markets are among the most demanding when it comes to reliability assurance. To be successful, each company developing a MOEMS/MEMS device must consider reliability on an equal footing with cost, performance and manufacturability. What can this maturing industry learn from the successful development of DLP technology, air bag accelerometers and inkjet printheads? This paper discusses some basic reliability principles which any MOEMS/MEMS device development must use. Examples from the commercially successful and highly reliable Digital Micromirror Device complement the discussion.

  14. Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection

    Directory of Open Access Journals (Sweden)

    Adam Bouchaala

    2016-05-01

    Full Text Available The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF, namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming.

  15. Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection

    Science.gov (United States)

    Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.

    2016-01-01

    The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming. PMID:27231914

  16. Development of a Multi-User Polyimide-MEMS Fabrication Process and its Application to MicroHotplates

    KAUST Repository

    Lizardo, Ernesto B.

    2013-05-08

    Micro-electro-mechanical systems (MEMS) became possible thanks to the silicon based technology used to fabricate integrated circuits. Originally, MEMS fabrication was limited to silicon based techniques and materials, but the expansion of MEMS applications brought the need of a wider catalog of materials, including polymers, now being used to fabricate MEMS. Polyimide is a very attractive polymer for MEMS fabrication due to its high temperature stability compared to other polymers, low coefficient of thermal expansion, low film stress and low cost. The goal of this thesis is to expand the Polyimide usage as structural material for MEMS by the development of a multi-user fabrication process for the integration of this polymer along with multiple metal layers on a silicon substrate. The process also integrates amorphous silicon as sacrificial layer to create free-standing structures. Dry etching is used to release the devices and avoid stiction phenomena. The developed process is used to fabricate platforms for micro-hotplate gas sensors. The fabrication steps for the platforms are described in detail, explaining the process specifics and capabilities. An initial testing of the micro-hotplate is presented. As the process was also used as educational tool, some designs made by students and fabricated with the Polyimide-MEMS process are also presented.

  17. Fast prototyping of conducting polymer microelectrodes using resistance-controlled high precision drilling

    DEFF Research Database (Denmark)

    Kafka, Jan Robert; Geschke, Oliver; Skaarup, Steen

    2011-01-01

    We present a straightforward method for fast prototyping of microelectrode arrays in the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Microelectrode arrays were produced by electrical resistance-controlled microdrilling through an insulating polymer layer (TOPAS® 5013...... approach the steady state currents predicted from modeling, but at a much slower rate than expected. This is shown to be caused by the use of electroactive PEDOT electrodes. Subtraction of the latter contribution gives approach to steady state currents within a few seconds, which is in very good agreement...

  18. Ultra-compact MEMS FTIR spectrometer

    Science.gov (United States)

    Sabry, Yasser M.; Hassan, Khaled; Anwar, Momen; Alharon, Mohamed H.; Medhat, Mostafa; Adib, George A.; Dumont, Rich; Saadany, Bassam; Khalil, Diaa

    2017-05-01

    Portable and handheld spectrometers are being developed and commercialized in the late few years leveraging the rapidly-progressing technology and triggering new markets in the field of on-site spectroscopic analysis. Although handheld devices were commercialized for the near-infrared spectroscopy (NIRS), their size and cost stand as an obstacle against the deployment of the spectrometer as spectral sensing components needed for the smart phone industry and the IoT applications. In this work we report a chip-sized microelectromechanical system (MEMS)-based FTIR spectrometer. The core optical engine of the solution is built using a passive-alignment integration technique for a selfaligned MEMS chip; self-aligned microoptics and a single detector in a tiny package sized about 1 cm3. The MEMS chip is a monolithic, high-throughput scanning Michelson interferometer fabricated using deep reactive ion etching technology of silicon-on-insulator substrate. The micro-optical part is used for conditioning the input/output light to/from the MEMS and for further light direction to the detector. Thanks to the all-reflective design of the conditioning microoptics, the performance is free of chromatic aberration. Complemented by the excellent transmission properties of the silicon in the infrared region, the integrated solution allows very wide spectral range of operation. The reported sensor's spectral resolution is about 33 cm-1 and working in the range of 1270 nm to 2700 nm; upper limited by the extended InGaAs detector. The presented solution provides a low cost, low power, tiny size, wide wavelength range NIR spectral sensor that can be manufactured with extremely high volumes. All these features promise the compatibility of this technology with the forthcoming demand of smart portable and IoT devices.

  19. Electromagnetic actuation in MEMS switches

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Mátéfi-Tempfli, Mária; Chemnitz, Steffen

    . Electromagnetic actuation is a very promising approach to operate such MEMS and Power MEMS devices, due to the long range, reproducible and strong forces generated by this method, among other advantages. However, the use of electromagnetic actuation in such devices requires the use of thick magnetic films, which...

  20. Development of movable mask system to cope with high beam current

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Shibata, K.; Sanami, T.; Kageyama, T.; Takeuchi, Y.

    2003-01-01

    The KEK B factory (KEKB), a high current electron-positron collider, has a movable mask (or collimator) system to reduce the background noise in the BELLE detector coming from spent particles. The early movable masks, however, had severe problems of heating, arcing, and vacuum leaks over the stored beam current of several hundred mA. The cause is intense trapped higher order modes (HOMs) excited at the mask head, where the cross section of the beam chamber changed drastically. The mask head, made of copper-tungsten alloy or pure copper, was frequently damaged by hitting of the high energy beam at the same time. Since the problems of the mask were revealed, several kinds of improved masks have been designed employing rf technologies in dealing with the HOM and installed to the ring step by step. Much progress has come from adopting a trapped-mode free structure, where the mask was a bent chamber itself. Recently the further improved mask with a reduced HOM design or HOM dampers was developed to suppress the heating of vacuum components near the mask due to the HOM traveling from the mask. To avoid damage to the mask head, on the other hand, a titanium mask head was tried. The latest masks are working as expected now at the stored beam current of 1.5 A. Presented are the problems and experiences on the movable mask system for the KEKB, which are characteristic of and common in a high intensity accelerator

  1. MEMS based monolithic Phased array using 3-bit Switched-line Phase Shifter

    Directory of Open Access Journals (Sweden)

    A. Karmakr

    2017-10-01

    Full Text Available This article details the design of an electronically scanning phased array antenna with proposed fabrication process steps. Structure is based upon RF micro-electromechanical system (MEMS technology. Capacitive type shunt switches have been implemented here to cater high frequency operation. The architecture, which is deigned at 30 GHz, consists of 3-bit (11.25º, 22.5º and 45º integrated Switched-line phase shifter and a linearly polarized microstrip patch antenna. Detailed design tricks of the Ka-band phase shifter is outlined here. The whole design is targeted for future monolithic integration. So, the substrate of choice is High Resistive Silicon (ρ > 8kΩ-cm, tan δ =0.01 and ϵr =11.8. The overall circuit occupies an cross-sectional area of 20 × 5 mm2. The simulated results show that the phase shifter can provide nearly 11.25º/22.5º/45º phase shifts and their combinations at the expense of 1dB average insertion loss at 30 GHz for eight combinations. Practical fabrication process flow using surface micromachining is proposed here. Critical dimensions of the phased array structure is governed by the deign rules of the standard CMOS/MEMS foundry.

  2. Enhancement of Frequency Stability Using Synchronization of a Cantilever Array for MEMS-Based Sensors

    Directory of Open Access Journals (Sweden)

    Francesc Torres

    2016-10-01

    Full Text Available Micro and nano electromechanical resonators have been widely used as single or multiple-mass detection sensors. Smaller devices with higher resonance frequencies and lower masses offer higher mass responsivities but suffer from lower frequency stability. Synchronization phenomena in multiple MEMS resonators have become an important issue because they allow frequency stability improvement, thereby preserving mass responsivity. The authors present an array of five cantilevers (CMOS-MEMS system that are forced to vibrate synchronously to enhance their frequency stability. The frequency stability has been determined in closed-loop configuration for long periods of time by calculating the Allan deviation. An Allan deviation of 0.013 ppm (@ 1 s averaging time for a 1 MHz cantilever array MEMS system was obtained at the synchronized mode, which represents a 23-fold improvement in comparison with the non-synchronized operation mode (0.3 ppm.

  3. Optimization and simulation of MEMS rectilinear ion trap

    Directory of Open Access Journals (Sweden)

    Huang Gang

    2015-04-01

    Full Text Available In this paper, the design of a MEMS rectilinear ion trap was optimized under simulated conditions. The size range of the MEMS rectilinear ion trap’s electrodes studied in this paper is measured at micron scale. SIMION software was used to simulate the MEMS rectilinear ion trap with different sizes and different radio-frequency signals. The ion-trapping efficiencies of the ion trap under these different simulation conditions were obtained. The ion-trapping efficiencies were compared to determine the performance of the MEMS rectilinear ion trap in different conditions and to find the optimum conditions. The simulation results show that for the ion trap at micron scale or smaller, the optimized length–width ratio was 0.8, and a higher frequency of radio-frequency signal is necessary to obtain a higher ion-trapping efficiency. These results have a guiding role in the process of developing MEMS rectilinear ion traps, and great application prospects in the research fields of the MEMS rectilinear ion trap and the MEMS mass spectrometer.

  4. MEMS-based sensors for post-earthquake damage assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, M; Zonta, D; Trapani, D [DIMS, University of Trento, Via Mesiano 77, 38123, Trento (Italy); Athanasopoulos, N; Garetsos, A; Stratakos, Y E [Advanced Microwave Systems Ltd, 2, 25th Martiou Street, 17778 Athens (Greece); Amditis, A J; Bimpas, M [ICCS, National Technical University of Athens, 9 Iroon Polytechniou Street, 15773 Zografou (Greece); Ulieru, D, E-mail: daniele.zonta@unitn.it [SITEX 45 SRL, 114 Ghica Tei Blvd, 72235 Bucharest (Romania)

    2011-07-19

    The evaluation of seismic damage is today almost exclusively based on visual inspection, as building owners are generally reluctant to install permanent sensing systems, due to their high installation, management and maintenance costs. To overcome this limitation, the EU-funded MEMSCON project aims to produce small size sensing nodes for measurement of strain and acceleration, integrating Micro-Electro-Mechanical Systems (MEMS) based sensors and Radio Frequency Identification (RFID) tags in a single package that will be attached to reinforced concrete buildings and will transmit data using a wireless interface. During the first phase of the project completed so far, sensor prototypes were produced by assembling preexisting components. This paper outlines the device operating principles, production scheme and operation at both unit and network levels. It also reports on validation campaigns conducted in the laboratory to assess system performance. Accelerometer sensors were tested on a reduced scale metal frame mounted on a shaking table, while strain sensors were embedded in both reduced and full-scale reinforced concrete specimens undergoing increasing deformation cycles up to extensive damage and collapse. The performance of the sensors developed for the project and their applicability to long-term seismic monitoring are discussed.

  5. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex

    Science.gov (United States)

    McCreery, Douglas; Cogan, Stuart; Kane, Sheryl; Pikov, Victor

    2016-06-01

    Objective. To quantify relations between the neuronal activity recorded with chronically-implanted intracortical microelectrodes and the histology of the surrounding tissue, using radial distance from the tip sites and time after array implantation as parameters. Approach. ‘Utah’-type intracortical microelectrode arrays were implanted into cats’ sensorimotor cortex for 275-364 days. The brain tissue around the implants was immuno-stained for the neuronal marker NeuN and for the astrocyte marker GFAP. Pearson’s product-moment correlations were used to quantify the relations between these markers and the amplitudes of the recorded neuronal action potentials (APs) and their signal-to-noise ratios (S/N). Main results. S/N was more stable over post-implant time than was AP amplitude, but its increased correlation with neuronal density after many months indicates ongoing loss of neurons around the microelectrodes. S/N was correlated with neuron density out to at least 140 μm from the microelectrodes, while AP amplitude was correlated with neuron density and GFAP density within ˜80 μm. Correlations between AP amplitude and histology markers (GFAP and NeuN density) were strongest immediately after implantation, while correlation between the neuron density and S/N was strongest near the time the animals were sacrificed. Unlike AP amplitude, there was no significant correlation between S/N and density of GFAP around the tip sites. Significance. Our findings indicate an evolving interaction between changes in the tissue surrounding the microelectrodes and the microelectrode’s electrical properties. Ongoing loss of neurons around recording microelectrodes, and the interactions between their delayed electrical deterioration and early tissue scarring around the tips appear to pose the greatest threats to the microelectrodes’ long-term functionality.

  6. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells.

    Science.gov (United States)

    Zhang, Yan; Xiao, Jian; Sun, Yimin; Wang, Lu; Dong, Xulin; Ren, Jinghua; He, Wenshan; Xiao, Fei

    2018-02-15

    The rapidly growing demand for in situ real-time monitoring of chemical information in vitro and in vivo has attracted tremendous research efforts into the design and construction of high-performance biosensor devices. Herein, we develop a new type of flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen-doped carbon nanotube arrays, and explore its practical application in in situ electrochemical detection of cancer biomarker H 2 O 2 secreted from live cancer cells. Our results demonstrate that carbon fiber material with microscale size and fascinating mechanical properties can be used as a robust and flexible microelectrode substrate in the electrochemical biosensor system. And the highly ordered nitrogen-doped carbon nanotube arrays that grown on carbon fiber possess high surface area-to-volume ratio and abundant active sites, which facilitate the loading of high-density and uniformly dispersed gold nanoparticles on it. Benefited from the unique microstructure and excellent electrocatalytic properties of different components in the nanohybrid fiber microelectrode, an effective electrochemical sensing platform based on it has been built up for the sensitive and selective detection of H 2 O 2 , the detection limit is calculated to be 50nM when the signal-to-noise ratio is 3:1, and the linear dynamic range is up to 4.3mM, with a high sensitivity of 142µAcm -2 mM -1 . These good sensing performances, coupled with its intrinsic mechanical flexibility and biocompatibility, allow for its use in in situ real-time tracking H 2 O 2 secreted from breast cancer cell lines MCF-7 and MBA-MD-231, and evaluating the sensitivity of different cancer cells to chemotherapy or radiotherapy treatments, which hold great promise for clinic application in cancer diagnose and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Olhar do cronista, registro da memória

    Directory of Open Access Journals (Sweden)

    Angela Maria Dutra da Silva Senra

    2016-09-01

    Full Text Available Propomos apresentar a pesquisa “Rastros da memória literária em crônicas dos jornais marianenses dos séculos XIX e XX” (PERPÉTUA, 2015, que tem como fonte um acervo de periódicos da cidade de Mariana (MG, hoje sob a guarda do Centro de Pesquisas Linguagem, Memória e Tradução do ICHS-UFOP. Dada a evidente relação desse acervo com a memória sociocultural da cidade, nossa pesquisa, em andamento, volta-se objetivamente para identificar e selecionar crônicas literárias publicadas nos periódicos, com a subsequente análise em sua correlação com a memória da região, sob as bases de um significativo material teórico sobre esse gênero. Assim, com vistas a adentrar no passado memorial da cidade de Mariana, apresentaremos o resultado parcial da nossa investigação, que tem proporcionado o conhecimento acerca da crônica; e do registro memorial dessa cidade em razão de sua importância no cenário histórico, social e cultural de Minas Gerais.

  8. Mechanical and electromechanical properties of graphene and their potential application in MEMS

    International Nuclear Information System (INIS)

    Khan, Zulfiqar H; Kermany, Atieh R; Iacopi, Francesca; Öchsner, Andreas

    2017-01-01

    Graphene-based micro-electromechanical systems (MEMS) are very promising candidates for next generation miniaturized, lightweight, and ultra-sensitive devices. In this review, we review the progress to date of the assessment of the mechanical, electromechanical, and thermomechanical properties of graphene for application in graphene-based MEMS. Graphene possesses a plethora of outstanding properties—such as a 1 TPa Young’s modulus, exceptionally high 2D failure strength that stems from its sp 2 hybridization, and strong sigma bonding between carbon atoms. Such exceptional mechanical properties can enable, for example, graphene-based sound sources capable of generating sound beyond the audible range. The recently engineered piezoelectric properties of atomic force microscope tip-pressed graphene membranes or supported graphene on SiO 2 substrates, have paved the way in fabricating graphene-based nano-generators and actuators. On the other hand, graphene’s piezoresistive properties have enabled miniaturized pressure and strain sensors. 2D graphene nano-mechanical resonators can potentially measure ultralow forces, charges and potentially detect single atomic masses. The exceptional tribology of graphene can play a significant role in achieving superlubricity. In addition, the highest reported thermal conductivity of graphene is amenable for use in chips and providing better performing MEMS, as heat is efficiently dissipated. On top of that, graphene membranes could be nano-perforated to realize specialized applications like DNA translocation and desalination. Finally, to ensure stability and reliability of the graphene-based MEMS, adhesion is an important mechanical property that should be considered. In general, graphene could be used as a structural material in resonators, sensors, actuators and nano-generators with better performance and sensitivity than conventional MEMS. (topical review)

  9. MEMS Actuators for Improved Performance and Durability

    Science.gov (United States)

    Yearsley, James M.

    Micro-ElectroMechanical Systems (MEMS) devices take advantage of force-scaling at length scales smaller than a millimeter to sense and interact with directly with phenomena and targets at the microscale. MEMS sensors found in everyday devices like cell-phones and cars include accelerometers, gyros, pressure sensors, and magnetic sensors. MEMS actuators generally serve more application specific roles including micro- and nano-tweezers used for single cell manipulation, optical switching and alignment components, and micro combustion engines for high energy density power generation. MEMS rotary motors are actuators that translate an electric drive signal into rotational motion and can serve as rate calibration inputs for gyros, stages for optical components, mixing devices for micro-fluidics, etc. Existing rotary micromotors suffer from friction and wear issues that affect lifetime and performance. Attempts to alleviate friction effects include surface treatment, magnetic and electrostatic levitation, pressurized gas bearings, and micro-ball bearings. The present work demonstrates a droplet based liquid bearing supporting a rotary micromotor that improves the operating characteristics of MEMS rotary motors. The liquid bearing provides wear-free, low-friction, passive alignment between the rotor and stator. Droplets are positioned relative to the rotor and stator through patterned superhydrophobic and hydrophilic surface coatings. The liquid bearing consists of a central droplet that acts as the motor shaft, providing axial alignment between rotor and stator, and satellite droplets, analogous to ball-bearings, that provide tip and tilt stable operation. The liquid bearing friction performance is characterized through measurement of the rotational drag coefficient and minimum starting torque due to stiction and geometric effects. Bearing operational performance is further characterized by modeling and measuring stiffness, environmental survivability, and high

  10. Enhanced polymeric encapsulation for MEMS based multi sensors for fisheries research

    DEFF Research Database (Denmark)

    Birkelund, Karen; Nørgaard, Lars; Thomsen, Erik Vilain

    2011-01-01

    light intensity, temperature, pressure and conductivity. For precise and fast measurements a direct exposure of the sensor to the water is desirable. A potted tube encapsulation concept has shown to be promising for accurate and fast measurements in harsh environment, provided a tight sealing......This paper presents the challenges of a packaged MEMS-based multi sensor system that allow for direct exposure of the sensing part to sea water. The system is part of a data storage tag used on fish to provide the researcher with information on fish behaviour and migration. The sensor measures...... compared to low pressure chemical vapor deposited (LPCVD) silicon nitride and untreated silicon dioxide....

  11. A novel method for the fabrication of a high-density carbon nanotube microelectrode array

    Directory of Open Access Journals (Sweden)

    Adam Khalifa

    2015-09-01

    Full Text Available We present a novel method for fabricating a high-density carbon nanotube microelectrode array (MEA chip. Vertically aligned carbon nanotubes (VACNTs were synthesized by microwave plasma-enhanced chemical vapor deposition and thermal chemical vapor deposition. The device was characterized using electrochemical experiments such as cyclic voltammetry, impedance spectroscopy and potential transient measurements. Through-silicon vias (TSVs were fabricated and partially filled with polycrystalline silicon to allow electrical connection from the high-density electrodes to a stimulator microchip. In response to the demand for higher resolution implants, we have developed a unique process to obtain a high-density electrode array by making the microelectrodes smaller in size and designing new ways of routing the electrodes to current sources. Keywords: Microelectrode array, Neural implant, Carbon nanotubes, Through-silicon via interconnects, Microfabrication

  12. Inhibition of the cluster of differentiation 14 innate immunity pathway with IAXO-101 improves chronic microelectrode performance

    Science.gov (United States)

    Hermann, John K.; Ravikumar, Madhumitha; Shoffstall, Andrew J.; Ereifej, Evon S.; Kovach, Kyle M.; Chang, Jeremy; Soffer, Arielle; Wong, Chun; Srivastava, Vishnupriya; Smith, Patrick; Protasiewicz, Grace; Jiang, Jingle; Selkirk, Stephen M.; Miller, Robert H.; Sidik, Steven; Ziats, Nicholas P.; Taylor, Dawn M.; Capadona, Jeffrey R.

    2018-04-01

    Objective. Neuroinflammatory mechanisms are hypothesized to contribute to intracortical microelectrode failures. The cluster of differentiation 14 (CD14) molecule is an innate immunity receptor involved in the recognition of pathogens and tissue damage to promote inflammation. The goal of the study was to investigate the effect of CD14 inhibition on intracortical microelectrode recording performance and tissue integration. Approach. Mice implanted with intracortical microelectrodes in the motor cortex underwent electrophysiological characterization for 16 weeks, followed by endpoint histology. Three conditions were examined: (1) wildtype control mice, (2) knockout mice lacking CD14, and (3) wildtype control mice administered a small molecule inhibitor to CD14 called IAXO-101. Main results. The CD14 knockout mice exhibited acute but not chronic improvements in intracortical microelectrode performance without significant differences in endpoint histology. Mice receiving IAXO-101 exhibited significant improvements in recording performance over the entire 16 week duration without significant differences in endpoint histology. Significance. Full removal of CD14 is beneficial at acute time ranges, but limited CD14 signaling is beneficial at chronic time ranges. Innate immunity receptor inhibition strategies have the potential to improve long-term intracortical microelectrode performance.

  13. The link between Movability Number and Incipient Motion in river ...

    African Journals Online (AJOL)

    This allowed for a firmer definition of Incipient Motion as well as a new bedload transportation equation. Additional laboratory experimentation for Particle Reynolds number over the range 0.12-486 facilitated the improved prediction of Incipient Motion from a plot of the critical Movability Number vs. Particle Reynolds number ...

  14. Mems-based pzt/pzt bimorph thick film vibration energy harvester

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2011-01-01

    We describe fabrication and characterization of a significantly improved version of a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical...... support materials since only PZT is strained, and thus it has a potential for significantly higher output power. An improved process scheme for the energy harvester resulted in a robust fabrication process with a record high fabrication yield of 98.6%. Moreover, the robust fabrication process allowed...... a high pressure treatment of the screen printed PZT thick films prior to sintering, improving the PZT thick film performance and harvester power output reaches 37.1 μW at 1 g....

  15. Finite element modeling of micromachined MEMS photon devices

    Science.gov (United States)

    Evans, Boyd M., III; Schonberger, D. W.; Datskos, Panos G.

    1999-09-01

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.

  16. Finite Element Modeling of Micromachined MEMS Photon Devices

    International Nuclear Information System (INIS)

    Datskos, P.G.; Evans, B.M.; Schonberger, D.

    1999-01-01

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness

  17. Using MEMS Capacitive Switches in Tunable RF Amplifiers

    Directory of Open Access Journals (Sweden)

    Danson John

    2006-01-01

    Full Text Available A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA operating at GHz and GHz, and a tunable power amplifier (PA at GHz are simulated in m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining dB of gain and sub- dB noise figure. MEMS switches are used to implement a variable matching network that allows the PA to realize up to 37% PAE improvement at low input powers.

  18. MemBrain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction

    Science.gov (United States)

    Yin, Xi; Yang, Jing; Xiao, Feng; Yang, Yang; Shen, Hong-Bin

    2018-03-01

    Membrane proteins are an important kind of proteins embedded in the membranes of cells and play crucial roles in living organisms, such as ion channels, transporters, receptors. Because it is difficult to determinate the membrane protein's structure by wet-lab experiments, accurate and fast amino acid sequence-based computational methods are highly desired. In this paper, we report an online prediction tool called MemBrain, whose input is the amino acid sequence. MemBrain consists of specialized modules for predicting transmembrane helices, residue-residue contacts and relative accessible surface area of α-helical membrane proteins. MemBrain achieves a prediction accuracy of 97.9% of A TMH, 87.1% of A P, 3.2 ± 3.0 of N-score, 3.1 ± 2.8 of C-score. MemBrain-Contact obtains 62%/64.1% prediction accuracy on training and independent dataset on top L/5 contact prediction, respectively. And MemBrain-Rasa achieves Pearson correlation coefficient of 0.733 and its mean absolute error of 13.593. These prediction results provide valuable hints for revealing the structure and function of membrane proteins. MemBrain web server is free for academic use and available at www.csbio.sjtu.edu.cn/bioinf/MemBrain/. [Figure not available: see fulltext.

  19. MEMS/MOEMS foundry services at INO

    Science.gov (United States)

    García-Blanco, Sonia; Ilias, Samir; Williamson, Fraser; Généreux, Francis; Le Noc, Loïc; Poirier, Michel; Proulx, Christian; Tremblay, Bruno; Provençal, Francis; Desroches, Yan; Caron, Jean-Sol; Larouche, Carl; Beaupré, Patrick; Fortin, Benoit; Topart, Patrice; Picard, Francis; Alain, Christine; Pope, Timothy; Jerominek, Hubert

    2010-06-01

    In the MEMS manufacturing world, the "fabless" model is getting increasing importance in recent years as a way for MEMS manufactures and startups to minimize equipment costs and initial capital investment. In order for this model to be successful, the fabless company needs to work closely with a MEMS foundry service provider. Due to the lack of standardization in MEMS processes, as opposed to CMOS microfabrication, the experience in MEMS development processes and the flexibility of the MEMS foundry are of vital importance. A multidisciplinary team together with a complete microfabrication toolset allows INO to offer unique MEMS foundry services to fabless companies looking for low to mid-volume production. Companies that benefit from their own microfabrication facilities can also be interested in INO's assistance in conducting their research and development work during periods where production runs keep their whole staff busy. Services include design, prototyping, fabrication, packaging, and testing of various MEMS and MOEMS devices on wafers fully compatible with CMOS integration. Wafer diameters ranging typically from 1 inch to 6 inches can be accepted while 8-inch wafers can be processed in some instances. Standard microfabrication techniques such as metal, dielectric, and semiconductor film deposition and etching as well as photolithographic pattern transfer are available. A stepper permits reduction of the critical dimension to around 0.4 μm. Metals deposited by vacuum deposition methods include Au, Ag, Al, Al alloys, Ti, Cr, Cu, Mo, MoCr, Ni, Pt, and V with thickness varying from 5 nm to 2 μm. Electroplating of several materials including Ni, Au and In is also available. In addition, INO has developed and built a gold black deposition facility to answer customer's needs for broadband microbolometric detectors. The gold black deposited presents specular reflectance of less than 10% in the wavelength range from 0.2 μm to 100 μm with thickness ranging from

  20. Multi-microelectrode devices for intrafascicular use in peripheral nerve

    NARCIS (Netherlands)

    Rutten, Wim

    1996-01-01

    This minisymposium paper gives an overview of experimental, modeling, design and microfabrication steps which lead towards the University of Twente three-dimensional 128-fold silicon microelectrode device. The device is meant for implantation in peripheral nerve for neuromuscular control purposes

  1. Advanced mechatronics and MEMS devices II

    CERN Document Server

    Wei, Bin

    2017-01-01

    This book introduces the state-of-the-art technologies in mechatronics, robotics, and MEMS devices in order to improve their methodologies. It provides a follow-up to "Advanced Mechatronics and MEMS Devices" (2013) with an exploration of the most up-to-date technologies and their applications, shown through examples that give readers insights and lessons learned from actual projects. Researchers on mechatronics, robotics, and MEMS as well as graduate students in mechanical engineering will find chapters on: Fundamental design and working principles on MEMS accelerometers Innovative mobile technologies Force/tactile sensors development Control schemes for reconfigurable robotic systems Inertial microfluidics Piezoelectric force sensors and dynamic calibration techniques ...And more. Authors explore applications in the areas of agriculture, biomedicine, advanced manufacturing, and space. Micro-assembly for current and future industries is also considered, as well as the design and development of micro and intel...

  2. RF MEMS: status of the industry and roadmaps

    Science.gov (United States)

    Bouchaud, Jeremie; Wicht, Henning

    2005-01-01

    Microsystems for Radio Frequency applications, known as RF MEMS, have entered the commercialization phase in 2003. Bulk Acoustic Wave filters are already produced in series and first commercial samples of switches are available. On the other hand, reliability and packaging problems are still a major hurdle especially for switches and tunable capacitors. Will RF MEMS hold their promise to be one of the future major businesses for MEMS? The presentation will give an overview on RF MEMS applications and market players. WTC will highlight technical challenges that still have to be solved to open mass markets such as mobile telephony and WLAN. WTC will also present applications of RF MEMS and opportunities in niche markets with high added value like military and space applications. WTC will provide a regional analysis and compare R&D focus and public funding situation in North America, Europe and Asia. Finally, WTC will present an updated product roadmap market forecast for RF MEMS devices for the 2004-2008 time period.

  3. Estimation of neural energy in microelectrode signals

    Science.gov (United States)

    Gaumond, R. P.; Clement, R.; Silva, R.; Sander, D.

    2004-09-01

    We considered the problem of determining the neural contribution to the signal recorded by an intracortical electrode. We developed a linear least-squares approach to determine the energy fraction of a signal attributable to an arbitrary number of autocorrelation-defined signals buried in noise. Application of the method requires estimation of autocorrelation functions Rap(tgr) characterizing the action potential (AP) waveforms and Rn(tgr) characterizing background noise. This method was applied to the analysis of chronically implanted microelectrode signals from motor cortex of rat. We found that neural (AP) energy consisted of a large-signal component which grows linearly with the number of threshold-detected neural events and a small-signal component unrelated to the count of threshold-detected AP signals. The addition of pseudorandom noise to electrode signals demonstrated the algorithm's effectiveness for a wide range of noise-to-signal energy ratios (0.08 to 39). We suggest, therefore, that the method could be of use in providing a measure of neural response in situations where clearly identified spike waveforms cannot be isolated, or in providing an additional 'background' measure of microelectrode neural activity to supplement the traditional AP spike count.

  4. A Study on the Performance of Low Cost MEMS Sensors in Strong Motion Studies

    Science.gov (United States)

    Tanırcan, Gulum; Alçık, Hakan; Kaya, Yavuz; Beyen, Kemal

    2017-04-01

    Recent advances in sensors have helped the growth of local networks. In recent years, many Micro Electro Mechanical System (MEMS)-based accelerometers have been successfully used in seismology and earthquake engineering projects. This is basically due to the increased precision obtained in these downsized instruments. Moreover, they are cheaper alternatives to force-balance type accelerometers. In Turkey, though MEMS-based accelerometers have been used in various individual applications such as magnitude and location determination of earthquakes, structural health monitoring, earthquake early warning systems, MEMS-based strong motion networks are not currently available in other populated areas of the country. Motivation of this study comes from the fact that, if MEMS sensors are qualified to record strong motion parameters of large earthquakes, a dense network can be formed in an affordable price at highly populated areas. The goals of this study are 1) to test the performance of MEMS sensors, which are available in the inventory of the Institute through shake table tests, and 2) to setup a small scale network for observing online data transfer speed to a trusted in-house routine. In order to evaluate the suitability of sensors in strong motion related studies, MEMS sensors and a reference sensor are tested under excitations of sweeping waves as well as scaled earthquake recordings. Amplitude response and correlation coefficients versus frequencies are compared. As for earthquake recordings, comparisons are carried out in terms of strong motion(SM) parameters (PGA, PGV, AI, CAV) and elastic response of structures (Sa). Furthermore, this paper also focuses on sensitivity and selectivity for sensor performances in time-frequency domain to compare different sensing characteristics and analyzes the basic strong motion parameters that influence the design majors. Results show that the cheapest MEMS sensors under investigation are able to record the mid

  5. A Virtual Pivot Point MEMS Actuator with Externally Mounted Mirror: Design, Fabrication and Characterization

    Directory of Open Access Journals (Sweden)

    T. M. Fahim AMIN

    2014-12-01

    Full Text Available In this paper, the design, fabrication, and characterization of a virtual pivot point micro electromechanical systems (MEMS electrostatic actuator with externally mounted mirror is presented. The point of rotation of the movable arm of the actuator is distant from the physical actuator. This is a requirement for certain applications, such as an external cavity laser in Littman configuration. A maximum rotational radius of 5 mm from the virtual pivot point was achieved. A detailed analytical analysis for the displacement of the structure is presented. The dynamic characterization of the device with a finite element analysis simulation shows that the resonance frequency of the in-plane rotational mode is well separated from that of the out-of-plane bending mode, confirming high in-plane stability. The devices were fabricated on a silicon-on-insulator wafer with device layer thickness of 100 µm. Thin mirrors were fabricated by dicing a 100 µm thick silicon wafer. A resonance frequency of about 5.9 ´ 102 Hz for the maximum sized mounted mirror (1.7 mm ´ 100 µm ´ 1.0 mm was determined by optical characterization.

  6. The Micronium-A Musical MEMS instrument

    NARCIS (Netherlands)

    Engelen, Johannes Bernardus Charles; de Boer, Hans L.; de Boer, Hylco; Beekman, Jethro G.; Fortgens, Laurens C.; de Graaf, Derk B.; Vocke, Sander; Abelmann, Leon

    The Micronium is a musical instrument fabricated from silicon using microelectromechanical system (MEMS) technology. It is—to the best of our knowledge—the first musical micro-instrument fabricated using MEMS technology, where the actual sound is generated by mechanical microstructures. The

  7. Implications of chronic daily anti-oxidant administration on the inflammatory response to intracortical microelectrodes

    Science.gov (United States)

    Potter-Baker, Kelsey A.; Stewart, Wade G.; Tomaszewski, William H.; Wong, Chun T.; Meador, William D.; Ziats, Nicholas P.; Capadona, Jeffrey R.

    2015-08-01

    Objective. Oxidative stress events have been implicated to occur and facilitate multiple failure modes of intracortical microelectrodes. The goal of the present study was to evaluate the ability of a sustained concentration of an anti-oxidant and to reduce oxidative stress-mediated neurodegeneration for the application of intracortical microelectrodes. Approach. Non-functional microelectrodes were implanted into the cortex of male Sprague Dawley rats for up to sixteen weeks. Half of the animals received a daily intraperitoneal injection of the natural anti-oxidant resveratrol, at 30 mg kg-1. The study was designed to investigate the biodistribution of the resveratrol, and the effects on neuroinflammation/neuroprotection following device implantation. Main results. Daily maintenance of a sustained range of resveratrol throughout the implantation period resulted in fewer degenerating neurons in comparison to control animals at both two and sixteen weeks post implantation. Initial and chronic improvements in neuronal viability in resveratrol-dosed animals were correlated with significant reductions in local superoxide anion accumulation around the implanted device at two weeks after implantation. Controls, receiving only saline injections, were also found to have reduced amounts of accumulated superoxide anion locally and less neurodegeneration than controls at sixteen weeks post-implantation. Despite observed benefits, thread-like adhesions were found between the liver and diaphragm in resveratrol-dosed animals. Significance. Overall, our chronic daily anti-oxidant dosing scheme resulted in improvements in neuronal viability surrounding implanted microelectrodes, which could result in improved device performance. However, due to the discovery of thread-like adhesions, further work is still required to optimize a chronic anti-oxidant dosing regime for the application of intracortical microelectrodes.

  8. A MEMS sensor for microscale force measurements

    International Nuclear Information System (INIS)

    Majcherek, S; Aman, A; Fochtmann, J

    2016-01-01

    This paper describes the development and testing of a new MEMS-based sensor device for microscale contact force measurements. A special MEMS cell was developed to reach higher lateral resolution than common steel-based load cells with foil-type strain gauges as mechanical-electrical converters. The design provided more than one normal force measurement point with spatial resolution in submillimeter range. Specific geometric adaption of the MEMS-device allowed adjustability of its measurement range between 0.5 and 5 N. The thin film nickel-chromium piezo resistors were used to achieve a mechanical-electrical conversion. The production process was realized by established silicon processing technologies such as deep reactive ion etching and vapor deposition (sputtering). The sensor was tested in two steps. Firstly, the sensor characteristics were carried out by application of defined loads at the measurement points by a push-pull tester. As a result, the sensor showed linear behavior. A measurement system analysis (MSA1) was performed to define the reliability of the measurement system. The measured force values had the maximal relative deviation of 1% to average value of 1.97 N. Secondly, the sensor was tested under near-industrial conditions. In this context, the thermal induced relaxation behavior of the electrical connector contact springs was investigated. The handling of emerging problems during the characterization process of the sensor is also described. (paper)

  9. Chronic microelectrode investigations of normal human brain physiology using a hybrid depth electrode.

    Science.gov (United States)

    Howard, M A; Volkov, I O; Noh, M D; Granner, M A; Mirsky, R; Garell, P C

    1997-01-01

    Neurosurgeons have unique access to in vivo human brain tissue, and in the course of clinical treatment important scientific advances have been made that further our understanding of normal brain physiology. In the modern era, microelectrode recordings have been used to systematically investigate the cellular properties of lateral temporal cerebral cortex. The current report describes a hybrid depth electrode (HDE) recording technique that was developed to enable neurosurgeons to simultaneously investigate normal cellular physiology during chronic intracranial EEG recordings. The HDE combines microelectrode and EEG recordings sites on a single shaft. Multiple microelectrode recordings are obtained from MRI defined brain sites and single-unit activity is discriminated from these data. To date, over 60 HDEs have been placed in 20 epilepsy surgery patients. Unique physiologic data have been gathered from neurons in numerous brain regions, including amygdala, hippocampus, frontal lobe, insula and Heschl's gyrus. Functional activation studies were carried out without risking patient safety or comfort.

  10. MEMS-based, RF-driven, compact accelerators

    Science.gov (United States)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Breinyn, I.; Waldron, W. L.; Schenkel, T.; Vinayakumar, K. B.; Ni, D.; Lal, A.

    2017-10-01

    Shrinking existing accelerators in size can reduce their cost by orders of magnitude. Furthermore, by using radio frequency (RF) technology and accelerating ions in several stages, the applied voltages can be kept low paving the way to new ion beam applications. We make use of the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and have previously shown the implementation of its basic components using printed circuit boards, thereby reducing the size of earlier MEQALACs by an order of magnitude. We now demonstrate the combined integration of these components to form a basic accelerator structure, including an initial beam-matching section. In this presentation, we will discuss the results from the integrated multi-beam ion accelerator and also ion acceleration using RF voltages generated on-board. Furthermore, we will show results from Micro-Electro-Mechanical Systems (MEMS) fabricated focusing wafers, which can shrink the dimension of the system to the sub-mm regime and lead to cheaper fabrication. Based on these proof-of-concept results we outline a scaling path to high beam power for applications in plasma heating in magnetized target fusion and in neutral beam injectors for future Tokamaks. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC02-05CH11231.

  11. Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos

    International Nuclear Information System (INIS)

    Ozel, Rifat Emrah; Wallace, Kenneth N.; Andreescu, Silvana

    2011-01-01

    Graphical abstract: Chitosan coated fiber electrodes are sensitive to serotonin detection while rejecting physiological levels of ascorbic acid interferences. - Abstract: We report the development of a chitosan modified carbon fiber microelectrode for in vivo detection of serotonin. We find that chitosan has the ability to reject physiological levels of ascorbic acid interferences and facilitate selective and sensitive detection of in vivo levels of serotonin, a common catecholamine neurotransmitter. Presence of chitosan on the microelectrode surface was investigated using scanning electron microscopy (SEM) and cyclic voltammetry (CV). The electrode was characterized using differential pulse voltammetry (DPV). A detection limit of 1.6 nM serotonin with a sensitivity of 5.12 nA/μM, a linear range from 2 to 100 nM and a reproducibility of 6.5% for n = 6 electrodes were obtained. Chitosan modified microelectrodes selectively measure serotonin in presence of physiological levels of ascorbic acid. In vivo measurements were performed to measure concentration of serotonin in the live embryonic zebrafish intestine. The sensor quantifies in vivo intestinal levels of serotonin while successfully rejecting ascorbic acid interferences. We demonstrate that chitosan can be used as an effective coating to reject ascorbic acid interferences at carbon fiber microelectrodes, as an alternative to Nafion, and that chitosan modified microelectrodes are reliable tools for in vivo monitoring of changes in neurotransmitter levels.

  12. Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Ozel, Rifat Emrah [Department of Chemistry and Biomolecular Science, 8 Clarkson Ave, Potsdam, NY 136995810 (United States); Wallace, Kenneth N. [Department of Biology, Clarkson University, Potsdam, NY 136995810 (United States); Andreescu, Silvana, E-mail: eandrees@clarkson.edu [Department of Chemistry and Biomolecular Science, 8 Clarkson Ave, Potsdam, NY 136995810 (United States)

    2011-06-10

    Graphical abstract: Chitosan coated fiber electrodes are sensitive to serotonin detection while rejecting physiological levels of ascorbic acid interferences. - Abstract: We report the development of a chitosan modified carbon fiber microelectrode for in vivo detection of serotonin. We find that chitosan has the ability to reject physiological levels of ascorbic acid interferences and facilitate selective and sensitive detection of in vivo levels of serotonin, a common catecholamine neurotransmitter. Presence of chitosan on the microelectrode surface was investigated using scanning electron microscopy (SEM) and cyclic voltammetry (CV). The electrode was characterized using differential pulse voltammetry (DPV). A detection limit of 1.6 nM serotonin with a sensitivity of 5.12 nA/{mu}M, a linear range from 2 to 100 nM and a reproducibility of 6.5% for n = 6 electrodes were obtained. Chitosan modified microelectrodes selectively measure serotonin in presence of physiological levels of ascorbic acid. In vivo measurements were performed to measure concentration of serotonin in the live embryonic zebrafish intestine. The sensor quantifies in vivo intestinal levels of serotonin while successfully rejecting ascorbic acid interferences. We demonstrate that chitosan can be used as an effective coating to reject ascorbic acid interferences at carbon fiber microelectrodes, as an alternative to Nafion, and that chitosan modified microelectrodes are reliable tools for in vivo monitoring of changes in neurotransmitter levels.

  13. Lability criteria for metal complexes in micro-electrode voltammetry

    NARCIS (Netherlands)

    Leeuwen, van H.P.; Pinheiro, J.P.

    1999-01-01

    Theoretical expressions are derived for the voltammetric lability criteria of metal complexes in the micro-electrode regime. The treatment includes three limiting situations: (i) the macro-electrode limit, where both the diffusion layer and the dissociation reaction layer are linear; (ii) an

  14. Integration of GPS precise point positioning and MEMS-based INS using unscented particle filter.

    Science.gov (United States)

    Abd Rabbou, Mahmoud; El-Rabbany, Ahmed

    2015-03-25

    Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) integrated system involves nonlinear motion state and measurement models. However, the extended Kalman filter (EKF) is commonly used as the estimation filter, which might lead to solution divergence. This is usually encountered during GPS outages, when low-cost micro-electro-mechanical sensors (MEMS) inertial sensors are used. To enhance the navigation system performance, alternatives to the standard EKF should be considered. Particle filtering (PF) is commonly considered as a nonlinear estimation technique to accommodate severe MEMS inertial sensor biases and noise behavior. However, the computation burden of PF limits its use. In this study, an improved version of PF, the unscented particle filter (UPF), is utilized, which combines the unscented Kalman filter (UKF) and PF for the integration of GPS precise point positioning and MEMS-based inertial systems. The proposed filter is examined and compared with traditional estimation filters, namely EKF, UKF and PF. Tightly coupled mechanization is adopted, which is developed in the raw GPS and INS measurement domain. Un-differenced ionosphere-free linear combinations of pseudorange and carrier-phase measurements are used for PPP. The performance of the UPF is analyzed using a real test scenario in downtown Kingston, Ontario. It is shown that the use of UPF reduces the number of samples needed to produce an accurate solution, in comparison with the traditional PF, which in turn reduces the processing time. In addition, UPF enhances the positioning accuracy by up to 15% during GPS outages, in comparison with EKF. However, all filters produce comparable results when the GPS measurement updates are available.

  15. An Evolutionary Approach for Robust Layout Synthesis of MEMS

    DEFF Research Database (Denmark)

    Fan, Zhun; Wang, Jiachuan; Goodman, Erik

    2005-01-01

    The paper introduces a robust design method for layout synthesis of MEM resonators subject to inherent geometric uncertainties such as the fabrication error on the sidewall of the structure. The robust design problem is formulated as a multi-objective constrained optimisation problem after certain...... assumptions and treated with multiobjective genetic algorithm (MOGA), a special type of evolutionary computing approaches. Case study based on layout synthesis of a comb-driven MEM resonator shows that the approach proposed in this paper can lead to design results that meet the target performance and are less...

  16. Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju-Hyun; Choi, Yang-Kyu [Nano-Oriented Bio-Electronics Lab, Department of Electrical Engineering, College of Information Science and Technology, KAIST, Daejeon 305-701 (Korea, Republic of); Kang, Gyumin; Nam, Yoonkey, E-mail: ynam@kaist.ac.kr, E-mail: ykchoi@ee.kaist.ac.kr [Department of Bio and Brain Engineering, KAIST, KAIST Institute for Nano-Century, Daejeon 305-701 (Korea, Republic of)

    2010-02-26

    A novel microelectrode modification method is reported for neural electrode engineering with a flake nanostructure (nanoflake). The nanoflake-modified electrodes are fabricated by combining conventional lithography and electrochemical deposition to implement a microelectrode array (MEA) on a glass substrate. The unique geometrical properties of nanoflake sharp tips and valleys are studied by optical, electrochemical and electrical methods in order to verify the advantages of using nanoflakes for neural recording devices. The in vitro recording and stimulation of cultured hippocampal neurons are demonstrated on the nanoflake-modified MEA and the clear action potentials are observed due to the nanoflake impedance reduction effect.

  17. Using MEMS Capacitive Switches in Tunable RF Amplifiers

    OpenAIRE

    Danson John; Plett Calvin; Tait Niall

    2006-01-01

    A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA) operating at GHz and GHz, and a tunable power amplifier (PA) at GHz are simulated in m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining dB of gain and sub- dB no...

  18. Rotor for processing liquids using movable capillary tubes

    Science.gov (United States)

    Johnson, W.F.; Burtis, C.A.; Walker, W.A.

    1987-07-17

    A rotor assembly for processing liquids, especially whole blood samples, is disclosed. The assembly includes apparatus for separating non-liquid components of whole blood samples from liquid components, apparatus for diluting the separated liquid component with a diluent and apparatus for transferring the diluted sample to an external apparatus for analysis. The rotor assembly employs several movable capillary tubes to handle the sample and diluents. A method for using the rotor assembly to process liquids is also described. 5 figs.

  19. U.S. Army Corrosion Office's storage and quality requirements for military MEMS program

    Science.gov (United States)

    Zunino, J. L., III; Skelton, D. R.

    2007-04-01

    As the Army transforms into a more lethal, lighter and agile force, the technologies that support these systems must decrease in size while increasing in intelligence. Micro-electromechanical systems (MEMS) are one such technology that the Army and DOD will rely on heavily to accomplish these objectives. Conditions for utilization of MEMS by the military are unique. Operational and storage environments for the military are significantly different than those found in the commercial sector. Issues unique to the military include; high G-forces during gun launch, extreme temperature and humidity ranges, extended periods of inactivity (20 years plus) and interaction with explosives and propellants. The military operational environments in which MEMS will be stored or required to function are extreme and far surpass any commercial operating conditions. Security and encryption are a must for all MEMS communication, tracking, or data reporting devices employed by the military. Current and future military applications of MEMS devices include safety and arming devices, fuzing devices, various guidance systems, sensors/detectors, inertial measurement units, tracking devices, radio frequency devices, wireless Radio Frequency Identifications (RFIDs) and network systems, GPS's, radar systems, mobile base systems and information technology. MEMS embedded into these weapons systems will provide the military with new levels of speed, awareness, lethality, and information dissemination. The system capabilities enhanced by MEMS will translate directly into tactical and strategic military advantages.

  20. Design and Fabrication of a Miniaturized GMI Magnetic Sensor Based on Amorphous Wire by MEMS Technology

    Directory of Open Access Journals (Sweden)

    Jiawen Chen

    2018-03-01

    Full Text Available A miniaturized Co-based amorphous wire GMI (Giant magneto-impedance magnetic sensor was designed and fabricated in this paper. The Co-based amorphous wire was used as the sense element due to its high sensitivity to the magnetic field. A three-dimensional micro coil surrounding the Co-based amorphous wire was fabricated by MEMS (Micro-Electro-Mechanical System technology, which was used to extract the electrical signal. The three-dimensional micro pick-up coil was designed and simulated with HFSS (High Frequency Structure Simulator software to determine the key parameters. Surface micro machining MEMS (Micro-Electro-Mechanical System technology was employed to fabricate the three-dimensional coil. The size of the developed amorphous wire magnetic sensor is 5.6 × 1.5 × 1.1 mm3. Helmholtz coil was used to characterize the performance of the device. The test results of the sensor sample show that the voltage change is 130 mV/Oe and the linearity error is 4.83% in the range of 0~45,000 nT. The results indicate that the developed miniaturized magnetic sensor has high sensitivity. By testing the electrical resistance of the samples, the results also showed high uniformity of each device.

  1. MEMS-based clamp with a passive hold function for precision position retaining of micro manipulators

    International Nuclear Information System (INIS)

    Brouwer, D M; Van Dijk, J; Soemers, H M J R; De Jong, B R; De Boer, M J; Jansen, H V; Krijnen, G J M

    2009-01-01

    In this paper the design, modeling and fabrication of a precision MEMS-based clamp with a relatively large clamping force are presented. The purpose of the clamp is to mechanically fix a six-degree-of-freedom (DOF) MEMS-based sample manipulator (Brouwer et al J. Int. Soc. Precis. Eng. Nanotechnol. submitted) once the sample has been positioned in all DOFs. The clamping force is generated by a rotational electrostatic comb-drive actuator and can be latched passively by a parallel plate type electrostatically driven locking device. The clamp design is based on the principles of exact constraint design, resulting in a high actuation compliance (flexibility) combined with a high suspension stiffness. Therefore, a relatively large blocking force of 1.4 mN in relation to the used area of 1.8 mm 2 is obtained. The fabrication is based on silicon bulk micromachining technology and combines a high-aspect-ratio deep reactive ion etching (DRIE), conformal deposition of low-pressure chemical vapor deposition (LPCVD) silicon nitride and an anisotropic potassium hydroxide (KOH) backside etching technology. Special attention is given to void reduction of Si x N y trench isolation and reduction of heating phenomena during front-side release etching. Guidelines are given for the applied process. Measurements showed that the clamp was able to fix, hold and release a test actuator. The dynamic behavior was in good agreement with the modal analysis

  2. A MEMS-based high frequency x-ray chopper

    Energy Technology Data Exchange (ETDEWEB)

    Siria, A; Schwartz, W; Chevrier, J [Institut Neel, CNRS-Universite Joseph Fourier Grenoble, BP 166, F-38042 Grenoble Cedex 9 (France); Dhez, O; Comin, F [ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex 9 (France); Torricelli, G [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  3. Stretchable microelectrode array using room-temperature liquid alloy interconnects

    International Nuclear Information System (INIS)

    Wei, P; Ziaie, B; Taylor, R; Chung, C; Higgs, G; Pruitt, B L; Ding, Z; Abilez, O J

    2011-01-01

    In this paper, we present a stretchable microelectrode array for studying cell behavior under mechanical strain. The electrode array consists of gold-plated nail-head pins (250 µm tip diameter) or tungsten micro-wires (25.4 µm in diameter) inserted into a polydimethylsiloxane (PDMS) platform (25.4 × 25.4 mm 2 ). Stretchable interconnects to the outside were provided by fusible indium-alloy-filled microchannels. The alloy is liquid at room temperature, thus providing the necessary stretchability and electrical conductivity. The electrode platform can withstand strains of up to 40% and repeated (100 times) strains of up to 35% did not cause any failure in the electrodes or the PDMS substrate. We confirmed biocompatibility of short-term culture, and using the gold pin device, we demonstrated electric field pacing of adult murine heart cells. Further, using the tungsten microelectrode device, we successfully measured depolarizations of differentiated murine heart cells from embryoid body clusters

  4. A Simple Model for Complex Fabrication of MEMS based Pressure Sensor: A Challenging Approach

    Directory of Open Access Journals (Sweden)

    Himani SHARMA

    2010-08-01

    Full Text Available In this paper we have presented the simple model for complex fabrication of MEMS based absolute micro pressure sensor. This kind of modeling is extremely useful for determining its complexity in fabrication steps and provides complete information about process sequence to be followed during manufacturing. Therefore, the need for test iteration decreases and cost, time can be reduced significantly. By using DevEdit tool (part of SILVACO tool, a behavioral model of pressure sensor have been presented and implemented.

  5. Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices

    International Nuclear Information System (INIS)

    Singh, R A; Satyanarayana, N; Sinha, S K; Kustandi, T S

    2011-01-01

    Micro/nano-electro-mechanical-systems (MEMS/NEMS) are miniaturized devices built at micro/nanoscales. At these scales, the surface/interfacial forces are extremely strong and they adversely affect the smooth operation and the useful operating lifetimes of such devices. When these forces manifest in severe forms, they lead to material removal and thereby reduce the wear durability of the devices. In this paper, we present a simple, yet robust, two-step surface modification method to significantly enhance the tribological performance of MEMS/NEMS materials. The two-step method involves oxygen plasma treatment of polymeric films and the application of a nanolubricant, namely perfluoropolyether. We apply the two-step method to the two most important MEMS/NEMS structural materials, namely silicon and SU8 polymer. On applying surface modification to these materials, their initial coefficient of friction reduces by ∼4-7 times and the steady-state coefficient of friction reduces by ∼2.5-3.5 times. Simultaneously, the wear durability of both the materials increases by >1000 times. The two-step method is time effective as each of the steps takes the time duration of approximately 1 min. It is also cost effective as the oxygen plasma treatment is a part of the MEMS/NEMS fabrication process. The two-step method can be readily and easily integrated into MEMS/NEMS fabrication processes. It is anticipated that this method will work for any kind of structural material from which MEMS/NEMS are or can be made.

  6. Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices

    Science.gov (United States)

    Singh, R. A.; Satyanarayana, N.; Kustandi, T. S.; Sinha, S. K.

    2011-01-01

    Micro/nano-electro-mechanical-systems (MEMS/NEMS) are miniaturized devices built at micro/nanoscales. At these scales, the surface/interfacial forces are extremely strong and they adversely affect the smooth operation and the useful operating lifetimes of such devices. When these forces manifest in severe forms, they lead to material removal and thereby reduce the wear durability of the devices. In this paper, we present a simple, yet robust, two-step surface modification method to significantly enhance the tribological performance of MEMS/NEMS materials. The two-step method involves oxygen plasma treatment of polymeric films and the application of a nanolubricant, namely perfluoropolyether. We apply the two-step method to the two most important MEMS/NEMS structural materials, namely silicon and SU8 polymer. On applying surface modification to these materials, their initial coefficient of friction reduces by ~4-7 times and the steady-state coefficient of friction reduces by ~2.5-3.5 times. Simultaneously, the wear durability of both the materials increases by >1000 times. The two-step method is time effective as each of the steps takes the time duration of approximately 1 min. It is also cost effective as the oxygen plasma treatment is a part of the MEMS/NEMS fabrication process. The two-step method can be readily and easily integrated into MEMS/NEMS fabrication processes. It is anticipated that this method will work for any kind of structural material from which MEMS/NEMS are or can be made.

  7. Low Actuating Voltage Spring-Free RF MEMS SPDT Switch

    Directory of Open Access Journals (Sweden)

    Deepak Bansal

    2016-01-01

    Full Text Available RF MEMS devices are known to be superior to their solid state counterparts in terms of power consumption and electromagnetic response. Major limitations of MEMS devices are their low switching speed, high actuation voltage, larger size, and reliability. In the present paper, a see-saw single pole double throw (SPDT RF MEMS switch based on anchor-free mechanism is proposed which eliminates the above-mentioned disadvantages. The proposed switch has a switching time of 394 nsec with actuation voltage of 5 V. Size of the SPDT switch is reduced by utilizing a single series capacitive switch compared to conventional switches with capacitive and series combinations. Reliability of the switch is improved by adding floating metal and reducing stiction between the actuating bridge and transmission line. Insertion loss and isolation are better than −0.6 dB and −20 dB, respectively, for 1 GHz to 20 GHz applications.

  8. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    Directory of Open Access Journals (Sweden)

    Di Chen

    2007-05-01

    Full Text Available Electrostatic micro-electro-mechanical system (MEMS is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  9. Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program

    Energy Technology Data Exchange (ETDEWEB)

    Schriner, H.; Davies, B.; Sniegowski, J.; Rodgers, M.S.; Allen, J.; Shepard, C.

    1998-05-01

    Research and development in the design and manufacture of Microelectromechanical Systems (MEMS) is growing at an enormous rate. Advances in MEMS design tools and fabrication processes at Sandia National Laboratories` Microelectronics Development Laboratory (MDL) have broadened the scope of MEMS applications that can be designed and manufactured for both military and commercial use. As improvements in micromachining fabrication technologies continue to be made, MEMS designs can become more complex, thus opening the door to an even broader set of MEMS applications. In an effort to further research and development in MEMS design, fabrication, and application, Sandia National Laboratories has launched the Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program or SAMPLES program. The SAMPLES program offers potential partners interested in MEMS the opportunity to prototype an idea and produce hardware that can be used to sell a concept. The SAMPLES program provides education and training on Sandia`s design tools, analysis tools and fabrication process. New designers can participate in the SAMPLES program and design MEMS devices using Sandia`s design and analysis tools. As part of the SAMPLES program, participants` designs are fabricated using Sandia`s 4 level polycrystalline silicon surface micromachine technology fabrication process known as SUMMiT (Sandia Ultra-planar, Multi-level MEMS Technology). Furthermore, SAMPLES participants can also opt to obtain state of the art, post-fabrication services provided at Sandia such as release, packaging, reliability characterization, and failure analysis. This paper discusses the components of the SAMPLES program.

  10. A Nuclear Microbattery for MEMS Devices

    International Nuclear Information System (INIS)

    Blanchard, James; Henderson, Douglass; Lal, Amit

    2002-01-01

    This project was designed to demonstrate the feasibility of producing on-board power for MEMS devices using radioisotopes. MEMS is a fast growing field, with hopes for producing a wide variety of revolutionary applications, including ''labs on a chip,'' micromachined scanning tunneling microscopes, microscopic detectors for biological agents, microsystems for DNA identification, etc. Currently, these applications are limited by the lack of an on-board power source. Research is ongoing to study approaches such as fuel cells, fossil fuels, and chemical batteries, but all these concepts have limitations. For long-lived, high energy density applications, on-board radioisotope power offers the best choice. We have succeeded in producing such devices using a variety of isotopes, incorporation methods, and device geometries. These experiments have demonstrated the feasibility of using radioisotope power and that there are a variety of options available for MEMS designers. As an example of an integrated, self-powered application, we have created an oscillating cantilever beam that is capable of consistent, periodic oscillations over very long time periods without the need for refueling. Ongoing work will demonstrate that this cantilever is capable of radio frequency transmission, allowing MEMS devices to communicate with one another wirelessly. Thus, this will be the first self-powered wireless transmitter available for use in MEMS devices, permitting such applications as sensors embedded in buildings for continuous monitoring of the building performance and integrity

  11. Standard semiconductor packaging for high-reliability low-cost MEMS applications

    Science.gov (United States)

    Harney, Kieran P.

    2005-01-01

    Microelectronic packaging technology has evolved over the years in response to the needs of IC technology. The fundamental purpose of the package is to provide protection for the silicon chip and to provide electrical connection to the circuit board. Major change has been witnessed in packaging and today wafer level packaging technology has further revolutionized the industry. MEMS (Micro Electro Mechanical Systems) technology has created new challenges for packaging that do not exist in standard ICs. However, the fundamental objective of MEMS packaging is the same as traditional ICs, the low cost and reliable presentation of the MEMS chip to the next level interconnect. Inertial MEMS is one of the best examples of the successful commercialization of MEMS technology. The adoption of MEMS accelerometers for automotive airbag applications has created a high volume market that demands the highest reliability at low cost. The suppliers to these markets have responded by exploiting standard semiconductor packaging infrastructures. However, there are special packaging needs for MEMS that cannot be ignored. New applications for inertial MEMS devices are emerging in the consumer space that adds the imperative of small size to the need for reliability and low cost. These trends are not unique to MEMS accelerometers. For any MEMS technology to be successful the packaging must provide the basic reliability and interconnection functions, adding the least possible cost to the product. This paper will discuss the evolution of MEMS packaging in the accelerometer industry and identify the main issues that needed to be addressed to enable the successful commercialization of the technology in the automotive and consumer markets.

  12. Quantum theory of shuttling instability in a movable quantum dot array

    DEFF Research Database (Denmark)

    Donarini, Andrea; Novotny, Tomas; Jauho, Antti-Pekka

    2004-01-01

    We study the shuttling instability in an array of three quantum dots the central one of which is movable. We extend the results by Armour and MacKinnon on this problem to a broader parameter regime. The results obtained by an efficient numerical method are interpreted directly using the Wigner...

  13. Investigating ESD sensitivity in electrostatic SiGe MEMS

    International Nuclear Information System (INIS)

    Sangameswaran, Sandeep; De Coster, Jeroen; Linten, Dimitri; Scholz, Mirko; Thijs, Steven; Groeseneken, Guido; De Wolf, Ingrid

    2010-01-01

    The sensitivity of electrostatically actuated SiGe microelectromechanical systems to electrostatic discharge events has been investigated in this paper. Torsional micromirrors and RF microelectromechanical systems (MEMS) actuators have been used as two case studies to perform this study. On-wafer electrostatic discharge (ESD) measurement methods, such as the human body model (HBM) and machine model (MM), are discussed. The impact of HBM ESD zap tests on the functionality and behavior of MEMS is explained and the ESD failure levels of MEMS have been verified by failure analysis. It is demonstrated that electrostatic MEMS devices have a high sensitivity to ESD and that it is essential to protect them.

  14. MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes

    Energy Technology Data Exchange (ETDEWEB)

    TANNER,DANELLE M.; SMITH,NORMAN F.; IRWIN,LLOYD W.; EATON,WILLIAM P.; HELGESEN,KAREN SUE; CLEMENT,J. JOSEPH; MILLER,WILLIAM M.; MILLER,SAMUEL L.; DUGGER,MICHAEL T.; WALRAVEN,JEREMY A.; PETERSON,KENNETH A.

    2000-01-01

    The burgeoning new technology of Micro-Electro-Mechanical Systems (MEMS) shows great promise in the weapons arena. We can now conceive of micro-gyros, micro-surety systems, and micro-navigators that are extremely small and inexpensive. Do we want to use this new technology in critical applications such as nuclear weapons? This question drove us to understand the reliability and failure mechanisms of silicon surface-micromachined MEMS. Development of a testing infrastructure was a crucial step to perform reliability experiments on MEMS devices and will be reported here. In addition, reliability test structures have been designed and characterized. Many experiments were performed to investigate failure modes and specifically those in different environments (humidity, temperature, shock, vibration, and storage). A predictive reliability model for wear of rubbing surfaces in microengines was developed. The root causes of failure for operating and non-operating MEMS are discussed. The major failure mechanism for operating MEMS was wear of the polysilicon rubbing surfaces. Reliability design rules for future MEMS devices are established.

  15. MEMS - Munich Energy Management System. FIA Project: Exchange of research information; MEMS - Muenchner Energiemanagement-System. FIA-Projekt - Forschungs-Informations-Austausch

    Energy Technology Data Exchange (ETDEWEB)

    Funk, H.; Fries, W.

    2001-10-01

    The City of Munich developed the project 'Munich Energy-Management-Systems (MEMS)' with financial support from the Federal Ministry of Economy and Technology. The project is based on a system of building automation using as many standard elements of hardware and software as possible. This will guarantee a high degree of independence from suppliers and subcontractors. The project has led to a reliable working base for the evaluation, measuring and control for ca. 150 municipal buildings. (orig.) [German] Mit dem Projekt 'Muenchner Energie-Management-System (MEMS)' erstellte die Landeshauptstadt Muenchen mit finanzieller Unterstuetzung des Bundesministeriums fuer Wirtschaft und Technologie ein auf der Leitzentrale Haustechnik (LZH) basierendes zentrales Energiemanagementsystem. Die Verwendung moeglichst vieler Standards in Hard- und Software ist dabei ein wesentlicher Gesichtspunkt. Dadurch wurde eine weitgehende Unabhaengigkeit von einem einzelnen Hersteller erreicht. Damit wurde ein Erfassungs-, Auswerte- und Steuerungssystem fuer derzeit rund 150 staedtische Gebaeude geschaffen. (orig.)

  16. Spatial variability of the wave bottom boundary layer over movable rippled beds

    NARCIS (Netherlands)

    Rodriguez-Abudo, S.; Foster, D.L.; Henriquez, M.

    2013-01-01

    Observations of the spatially dependent velocity field over movable bed forms subjected to slightly skewed and asymmetric regular wave forcing were collected. The dynamics between the ripple elements is dominated by coherent vortices, characterized by the swirling strength, and evidenced in the

  17. [A micro-silicon multi-slit spectrophotometer based on MEMS technology].

    Science.gov (United States)

    Hao, Peng; Wu, Yi-Hui; Zhang, Ping; Liu, Yong-Shun; Zhang, Ke; Li, Hai-Wen

    2009-06-01

    A new mini-spectrophotometer was developed by adopting micro-silicon slit and pixel segmentation technology, and this spectrophotometer used photoelectron diode array as the detector by the back-dividing-light way. At first, the effect of the spectral bandwidth on the tested absorbance linear correlation was analyzed. A theory for the design of spectrophotometer's slit was brought forward after discussing the relationships between spectrophotometer spectrum band width and pre-and post-slits width. Then, the integrative micro-silicon-slit, which features small volume, high precision, and thin thickness, was manufactured based on the MEMS technology. Finally, a test was carried on linear absorbance solution by this spectrophotometer. The final result showed that the correlation coefficients were larger than 0.999, which means that the new mini-spectrophotometer with micro-silicon slit pixel segmentation has an obvious linear correlation.

  18. A novel piezoresistive polymer nanocomposite MEMS accelerometer

    International Nuclear Information System (INIS)

    Seena, V; Hari, K; Prajakta, S; Ramgopal Rao, V; Pratap, Rudra

    2017-01-01

    A novel polymer MEMS (micro electro mechanical systems) accelerometer with photo-patternable polymer nanocomposite as a piezoresistor is presented in this work. Polymer MEMS Accelerometer with beam thicknesses of 3.3 µ m and embedded nanocomposite piezoresistive layer having a gauge factor of 90 were fabricated. The photosensitive nanocomposite samples were prepared and characterized for analyzing the mechanical and electrical properties and thereby ensuring proper process parameters for incorporating the piezoresistive layer into the polymer MEMS accelerometer. The microfabrication process flow and unit processes followed are extremely low cost with process temperatures below 100 °C. This also opens up a new possibility for easy integration of such polymer MEMS with CMOS (complementary metal oxide semiconductor) devices and circuits. The fabricated devices were characterized using laser Doppler vibrometer (LDV) and the devices exhibited a resonant frequency of 10.8 kHz and a response sensitivity of 280 nm g −1 at resonance. The main focus of this paper is on the SU-8/CB nanocomposite piezoresistive MEMS accelerometer technology development which covers the material and the fabrication aspects of these devices. CoventorWare FEA analysis performed using the extracted material properties from the experimental characterization which are in close agreement to performance parameters of the fabricated devices is also discussed. The simulated piezoresistive polymer MEMS devices showed an acceleration sensitivity of 126 nm g −1 and 82 ppm of Δ R / R per 1 g of acceleration. (paper)

  19. Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation

    International Nuclear Information System (INIS)

    Gutruf, Philipp; Walia, Sumeet; Nur Ali, Md; Sriram, Sharath; Bhaskaran, Madhu

    2014-01-01

    The functionality of flexible electronics relies on stable performance of thin film micro-electrodes. This letter investigates the behavior of gold thin films on polyimide, a prevalent combination in flexible devices. The dynamic behavior of gold micro-electrodes has been studied by subjecting them to stress while monitoring their resistance in situ. The shape of the electrodes was systematically varied to examine resistive strain sensitivity, while an additional encapsulation was applied to characterize multilayer behavior. The realized designs show remarkable tolerance to repetitive strain, demonstrating that curvature and encapsulation are excellent approaches for minimizing resistive strain sensitivity to enable durable flexible electronics

  20. Automatic synthesis of MEMS devices using self-adaptive hybrid metaheuristics

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Fan, Zhun

    2011-01-01

    - multaneous minimization of size and power input of a MEMS device, while investigating optimum geometrical conguration as the main concern. The major contribution of this paper is the application of self-adaptive memetic computing in MEMS design. An evolutionary multi-objective optimization (EMO) technique......, in particular non-dominated sorting genetic algorithm (NSGA-II), has been applied to- gether with a pattern recognition statistical tool, i.e. Principal Component Analysis (PCA), to nd multiple trade-o solutions in an ecient manner. Following this, a gradient- based local search, i.e. sequential quadratic...

  1. Experimental study on the scram of electromagnetic movable coil control rod drive mechanism

    International Nuclear Information System (INIS)

    Sun Changlong; Bo Hanliang; Jiang Shengyao; Zhang Hongchao; Ma Cang; Wang Jinhua; Qin Benke

    2006-01-01

    Electromagnetic movable coil control rod drive mechanism is a new type drive mechanism. The drive mechanism is experimentally studied to gain the characteristic of scram time. Further more, the reason of the different scram phenomena is analyzed and the disciplinarian of scram is also summarized. On the base of series experiments it can be concluded that scram time of AC break is longer than that of DC break and the residual current of coil's can distinctly influence the scram time. The scram time of AC break is 300-700 ms longer than that of DC break. (authors)

  2. Poly-SiGe for MEMS-above-CMOS sensors

    CERN Document Server

    Gonzalez Ruiz, Pilar; Witvrouw, Ann

    2014-01-01

    Polycrystalline SiGe has emerged as a promising MEMS (Microelectromechanical Systems) structural material since it provides the desired mechanical properties at lower temperatures compared to poly-Si, allowing the direct post-processing on top of CMOS. This CMOS-MEMS monolithic integration can lead to more compact MEMS with improved performance. The potential of poly-SiGe for MEMS above-aluminum-backend CMOS integration has already been demonstrated. However, aggressive interconnect scaling has led to the replacement of the traditional aluminum metallization by copper (Cu) metallization, due to its lower resistivity and improved reliability. Poly-SiGe for MEMS-above-CMOS sensors demonstrates the compatibility of poly-SiGe with post-processing above the advanced CMOS technology nodes through the successful fabrication of an integrated poly-SiGe piezoresistive pressure sensor, directly fabricated above 0.13 m Cu-backend CMOS. Furthermore, this book presents the first detailed investigation on the influence o...

  3. Scanning laser beam displays based on a 2D MEMS

    Science.gov (United States)

    Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason

    2010-05-01

    The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.

  4. A Compact and Low-Cost MEMS Loudspeaker for Digital Hearing Aids.

    Science.gov (United States)

    Sang-Soo Je; Rivas, F; Diaz, R E; Jiuk Kwon; Jeonghwan Kim; Bakkaloglu, B; Kiaei, S; Junseok Chae

    2009-10-01

    A microelectromechanical-systems (MEMS)-based electromagnetically actuated loudspeaker to reduce form factor, cost, and power consumption, and increase energy efficiency in hearing-aid applications is presented. The MEMS loudspeaker has multilayer copper coils, an NiFe soft magnet on a thin polyimide diaphragm, and an NdFeB permanent magnet on the perimeter. The coil impedance is measured at 1.5 Omega, and the resonant frequency of the diaphragm is located far from the audio frequency range. The device is driven by a power-scalable, 0.25-mum complementary metal-oxide semiconductor class-D SigmaDelta amplifier stage. The class-D amplifier is formed by a differential H-bridge driven by a single bit, pulse-density-modulated SigmaDelta bitstream at a 1.2-MHz clock rate. The fabricated MEMS loudspeaker generates more than 0.8-mum displacement, equivalent to 106-dB sound pressure level (SPL), with 0.13-mW power consumption. Driven by the SigmaDelta class-D amplifier, the MEMS loudspeaker achieves measured 65-dB total harmonic distortion (THD) with a measurement uncertainty of less than 10%. Energy-efficient and cost-effective advanced hearing aids would benefit from further miniaturization via MEMS technology. The results from this study appear very promising for developing a compact, mass-producible, low-power loudspeaker with sufficient sound generation for hearing-aid applications.

  5. Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates

    NARCIS (Netherlands)

    Beer, de D.; Heuvel, van den J.C.; Ottengraf, S.P.P.

    1993-01-01

    Microelectrodes for ammonium, oxygen, nitrate, and pH were used to study nitrifying aggregates grown in a fluidized-bed reactor. Local reactant fluxes and distribution of microbial activity could be detd. from the microprofiles. The interfacial fluxes of the reactants closely reflected the

  6. CONTROL OF BOUNCING IN RF MEMS SWITCHES USING DOUBLE ELECTRODE

    KAUST Repository

    Abdul Rahim, Farhan

    2014-01-01

    MEMS based mechanical switches are seen to be the likely replacements for CMOS based switches due to the several advantages that these mechanical switches have over CMOS switches. Mechanical switches can be used in systems under extreme conditions

  7. MEMS based shock pulse detection sensor for improved rotary Stirling cooler end of life prediction

    Science.gov (United States)

    Hübner, M.; Münzberg, M.

    2018-05-01

    The widespread use of rotary Stirling coolers in high performance thermal imagers used for critical 24/7 surveillance tasks justifies any effort to significantly enhance the reliability and predictable uptime of those coolers. Typically the lifetime of the whole imaging device is limited due to continuous wear and finally failure of the rotary compressor of the Stirling cooler, especially due to failure of the comprised bearings. MTTF based lifetime predictions, even based on refined MTTF models taking operational scenario dependent scaling factors into account, still lack in precision to forecast accurately the end of life (EOL) of individual coolers. Consequently preventive maintenance of individual coolers to avoid failures of the main sensor in critical operational scenarios are very costly or even useless. We have developed an integrated test method based on `Micro Electromechanical Systems', so called MEMS sensors, which significantly improves the cooler EOL prediction. The recently commercially available MEMS acceleration sensors have mechanical resonance frequencies up to 50 kHz. They are able to detect solid borne shock pulses in the cooler structure, originating from e.g. metal on metal impacts driven by periodical forces acting on moving inner parts of the rotary compressor within wear dependent slack and play. The impact driven transient shock pulse analyses uses only the high frequency signal <10kHz and differs therefore from the commonly used broadband low frequencies vibrational analysis of reciprocating machines. It offers a direct indicator of the individual state of wear. The predictive cooler lifetime model based on the shock pulse analysis is presented and results are discussed.

  8. Theoretical and experimental comparison of microelectrode sensing configurations for impedimetric cell monitoring

    DEFF Research Database (Denmark)

    Carminati, M.; Caviglia, Claudia; Heiskanen, Arto

    2013-01-01

    microelectrodes using a versatile custom-made monitoring platform including a 24-channel miniaturized potentiostat. The characterization of bare microelectrodes in buffer and tracking experiments with HeLa cells over 16 hours demonstrate that the coplanar configuration provides a higher sensitivity to cell......A theoretical and experimental comparison between vertical and coplanar interdigitated sensing configurations for impedimetric cell growth tracking is presented. These widely-adopted approaches are quantitatively compared on the same cell populations and on the same 10 μm interdigitated...... adhesion and spreading (Cell Index = 1.6 vs. 0.4) albeit at a higher frequency of maximum sensitivity (100 kHz vs. 24 kHz) shifting over time. © 2014 Taylor & Francis Group....

  9. CMOS based capacitance to digital converter circuit for MEMS sensor

    Science.gov (United States)

    Rotake, D. R.; Darji, A. D.

    2018-02-01

    Most of the MEMS cantilever based system required costly instruments for characterization, processing and also has large experimental setups which led to non-portable device. So there is a need of low cost, highly sensitive, high speed and portable digital system. The proposed Capacitance to Digital Converter (CDC) interfacing circuit converts capacitance to digital domain which can be easily processed. Recent demand microcantilever deflection is part per trillion ranges which change the capacitance in 1-10 femto farad (fF) range. The entire CDC circuit is designed using CMOS 250nm technology. Design of CDC circuit consists of a D-latch and two oscillators, namely Sensor controlled oscillator (SCO) and digitally controlled oscillator (DCO). The D-latch is designed using transmission gate based MUX for power optimization. A CDC design of 7-stage, 9-stage and 11-stage tested for 1-18 fF and simulated using mentor graphics Eldo tool with parasitic. Since the proposed design does not use resistance component, the total power dissipation is reduced to 2.3621 mW for CDC designed using 9-stage SCO and DCO.

  10. 10–25 GHz frequency reconfigurable MEMS 5-bit phase shifter using push–pull actuator based toggle mechanism

    International Nuclear Information System (INIS)

    Dey, Sukomal; Koul, Shiban K

    2015-01-01

    This paper presents a frequency tunable 5-bit true-time-delay digital phase shifter using radio frequency microelectromechanical system (RF MEMS) technology. The phase shifter is based on the distributed MEMS transmission line (DMTL) concept utilizing a MEMS varactor. The main source of frequency tuning in this work is a bridge actuation mechanism followed by capacitance variation. Two stages of actuation mechanisms (push and pull) are used to achieve a 2:1 tuning ratio. Accurate control of the actuation voltage between the pull to push stages contributes differential phase shift over the band of interest. The functional behavior of the push–pull actuation over the phase shifter application is theoretically established, experimentally investigated and validated with simulation. The phase shifter is fabricated monolithically using a gold based surface micromachining process on an alumina substrate. The individual primary phase-bits (11.25°/22.5°/45°/90°/180°) that are the fundamental building blocks of the complete 5-bit phase shifter are designed, fabricated and experimentally characterized from 10–25 GHz for specific applications. Finally, the complete 5-bit phase shifter demonstrates an average phase error of 4.32°, 2.8°, 1° and 1.58°, an average insertion loss of 3.76, 4.1, 4.2 and 4.84 dB and an average return loss of 11.7, 12, 14 and 11.8 dB at 10, 12, 17.2 and 25 GHz, respectively. To the best of the authors’ knowledge, this is the first reported band tunable stand alone 5-bit phase shifter in the literature which can work over the large spectrum for different applications. The total area of the 5-bit phase shifter is 15.6 mm 2 . Furthermore, the cold-switched reliability of the unit cell and the complete 5-bit MEMS phase shifter are extensively investigated and presented. (paper)

  11. Evolution of a MEMS Photoacoustic Chemical Sensor

    National Research Council Canada - National Science Library

    Pellegrino, Paul M; Polcawich, Ronald G

    2003-01-01

    .... Initial MEMS work is centered on fabrication of a lead zirconate titanate (PZT) microphone subsystem to be incorporated in the full photoacoustic device. Preliminary results were very positive for the macro-photoacoustic cell, PZT membrane microphones design / fabrication and elementary monolithic MEMS photoacoustic cavity.

  12. Design and analysis of a MEMS-based bifurcate-shape piezoelectric energy harvester

    Directory of Open Access Journals (Sweden)

    Yuan Luo

    2016-04-01

    Full Text Available This paper presents a novel piezoelectric energy harvester, which is a MEMS-based device. This piezoelectric energy harvester uses a bifurcate-shape. The derivation of the mathematical modeling is based on the Euler-Bernoulli beam theory, and the main mechanical and electrical parameters of this energy harvester are analyzed and simulated. The experiment result shows that the maximum output voltage can achieve 3.3V under an acceleration of 1g at 292.11Hz of frequency, and the output power can be up to 0.155mW under the load of 0.4MΩ. The power density is calculated as 496.79μWmm−3. Besides that, it is demonstrated efficiently at output power and voltage and adaptively in practical vibration circumstance. This energy harvester could be used for low-power electronic devices.

  13. Design and analysis of a MEMS-based bifurcate-shape piezoelectric energy harvester

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yuan; Gan, Ruyi, E-mail: 2471390146@qq.com; Wan, Shalang; Xu, Ruilin; Zhou, Hanxing [Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, Chongqing University of Posts and Telecommunications, 400065, Chongqing, Chongqing Municipality (China)

    2016-04-15

    This paper presents a novel piezoelectric energy harvester, which is a MEMS-based device. This piezoelectric energy harvester uses a bifurcate-shape. The derivation of the mathematical modeling is based on the Euler-Bernoulli beam theory, and the main mechanical and electrical parameters of this energy harvester are analyzed and simulated. The experiment result shows that the maximum output voltage can achieve 3.3 V under an acceleration of 1 g at 292.11 Hz of frequency, and the output power can be up to 0.155 mW under the load of 0.4 MΩ. The power density is calculated as 496.79 μWmm{sup −3}. Besides that, it is demonstrated efficiently at output power and voltage and adaptively in practical vibration circumstance. This energy harvester could be used for low-power electronic devices.

  14. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells.

    Science.gov (United States)

    Brüggemann, D; Wolfrum, B; Maybeck, V; Mourzina, Y; Jansen, M; Offenhäusser, A

    2011-07-01

    We present a new biocompatible nanostructured microelectrode array for extracellular signal recording from electrogenic cells. Microfabrication techniques were combined with a template-assisted approach using nanoporous aluminum oxide to develop gold nanopillar electrodes. The nanopillars were approximately 300-400 nm high and had a diameter of 60 nm. Thus, they yielded a higher surface area of the electrodes resulting in a decreased impedance compared to planar electrodes. The interaction between the large-scale gold nanopillar arrays and cardiac muscle cells (HL-1) was investigated via focused ion beam milling. In the resulting cross-sections we observed a tight coupling between the HL-1 cells and the gold nanostructures. However, the cell membranes did not bend into the cleft between adjacent nanopillars due to the high pillar density. We performed extracellular potential recordings from HL-1 cells with the nanostructured microelectrode arrays. The maximal amplitudes recorded with the nanopillar electrodes were up to 100% higher than those recorded with planar gold electrodes. Increasing the aspect ratio of the gold nanopillars and changing the geometrical layout can further enhance the signal quality in the future.

  15. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Brueggemann, D; Wolfrum, B; Maybeck, V; Mourzina, Y; Jansen, M; Offenhaeusser, A, E-mail: a.offenhaeusser@fz-juelich.de [Institute of Complex Systems and Peter Gruenberg Institute: Bioelectronics (ICS8/PGI8), Forschungszentrum Juelich GmbH, Leo-Brandt-Strasse, 52428 Juelich (Germany); Juelich-Aachen Research Alliance-Fundamental of Future Information Technology (JARA-FIT) (Germany)

    2011-07-01

    We present a new biocompatible nanostructured microelectrode array for extracellular signal recording from electrogenic cells. Microfabrication techniques were combined with a template-assisted approach using nanoporous aluminum oxide to develop gold nanopillar electrodes. The nanopillars were approximately 300-400 nm high and had a diameter of 60 nm. Thus, they yielded a higher surface area of the electrodes resulting in a decreased impedance compared to planar electrodes. The interaction between the large-scale gold nanopillar arrays and cardiac muscle cells (HL-1) was investigated via focused ion beam milling. In the resulting cross-sections we observed a tight coupling between the HL-1 cells and the gold nanostructures. However, the cell membranes did not bend into the cleft between adjacent nanopillars due to the high pillar density. We performed extracellular potential recordings from HL-1 cells with the nanostructured microelectrode arrays. The maximal amplitudes recorded with the nanopillar electrodes were up to 100% higher than those recorded with planar gold electrodes. Increasing the aspect ratio of the gold nanopillars and changing the geometrical layout can further enhance the signal quality in the future.

  16. Performance Enhancement MEMS Based INS/GPS Integrated System Implemented on a FPGA for Terrestrial Applications

    OpenAIRE

    Garcia Quinchia, Alex

    2014-01-01

    Hoy en día con el desarrollo de sensores inerciales basados en Sistemas Micro\\-electromecánicos (MEMS), podemos encontrar acelerómetros y giróscopos embebidos en diferentes dispositivos y plataformas, teniéndolos en relojes, teléfonos inteligentes, consolas de video juego hasta sistemas de navegación terrestre y vehículos aéreos no tripulados (UAVs), {\\em etc}. A pesar del amplio rango de aplicaciones donde están siendo utilizados, los sensores inerciales de bajo costo (grado MEMs) son afecta...

  17. 3D simulation of Heat transfer in MEMS-based microchannel

    International Nuclear Information System (INIS)

    Choi, Chi Woong; Huh, Cheol; Kim, Dong Eok; Kim, Moo Hwan

    2007-01-01

    The microchannel heat sink is promising heat dissipation method for high heat flux source. Contrary to conventional circular channel, MEMS based microchannel had rectangular or trapezoidal cross-sectional shape. In our study, we conducted three dimensional conjugate heat transfer calculation for rectangular shape microchannel. First, we simulated that channel was completely drained with known heating power. As a result we obtained calibration line, which indicates heat loss was function of temperature. Second, we simulated single phase heat transfer with various mass flux, 100-400 kg/m 2 s. In conclusion, the single phase test verified that the present heat loss evaluation method is applicable to micro scale heat transfer devices. Heat fluxes from each side wall shows difference due to non-uniform heating. However those ratios were correlated with supplied total heat. Finally, we proposed effective area correction factor to evaluate appropriate heat flux

  18. Cell Deformation in Cancer Metastasis: a BioMEMS Based Approach

    Energy Technology Data Exchange (ETDEWEB)

    Manimaran, M [Department of Medical Devices, Institute of Bioengineering and Nanotechnology (IBN) - A-STAR, 31 Biopolis Way, Nanos 04-01, Singapore 138669 (Singapore); Tay, Francis E H [Department of Medical Devices, Institute of Bioengineering and Nanotechnology (IBN) - A-STAR, 31 Biopolis Way, Nanos 04-01, Singapore 138669 (Singapore); NUS - Department of Mechanical Engineering, Singapore 117576., Department of Medical Devices, Institute of Bioengineering and Nanotechnology, 31 Biopolis way, 04-01 Nanos, Singapore 138669 (Singapore); Chaw, K C [Department of Medical Devices, Institute of Bioengineering and Nanotechnology (IBN) - A-STAR, 31 Biopolis Way, Nanos 04-01, Singapore 138669 (Singapore)

    2006-04-01

    Here we report a BioMEMS based microfluidic device as a deformation assay to study the deformability and growth capability of cells through microgaps. The micro-gaps are ranging from 3{mu}m to 30{mu}m with three microchannels parallel to each other to mimic the blood vessel bio-microenvironment. Flow conditions in the device can be controlled to have an environment as similar to that in vivo as possible. We used osteoblast cells with approximate size of 30 {mu}m as a model cell to study the deformation ability of this cell to migrate through the 3 {mu}m gap. Such a device enabled us, for the first time to measure the cell deformation with ease. More importantly, we are able to observe the cellular responses to gaps present in the device and understand the mechanics behind the morphological change of the cells.

  19. Construction and Initial Validation of the Multiracial Experiences Measure (MEM)

    Science.gov (United States)

    Yoo, Hyung Chol; Jackson, Kelly; Guevarra, Rudy P.; Miller, Matthew J.; Harrington, Blair

    2015-01-01

    This article describes the development and validation of the Multiracial Experiences Measure (MEM): a new measure that assesses uniquely racialized risks and resiliencies experienced by individuals of mixed racial heritage. Across two studies, there was evidence for the validation of the 25-item MEM with 5 subscales including Shifting Expressions, Perceived Racial Ambiguity, Creating Third Space, Multicultural Engagement, and Multiracial Discrimination. The 5-subscale structure of the MEM was supported by a combination of exploratory and confirmatory factor analyses. Evidence of criterion-related validity was partially supported with MEM subscales correlating with measures of racial diversity in one’s social network, color-blind racial attitude, psychological distress, and identity conflict. Evidence of discriminant validity was supported with MEM subscales not correlating with impression management. Implications for future research and suggestions for utilization of the MEM in clinical practice with multiracial adults are discussed. PMID:26460977

  20. Research of a smart cutting tool based on MEMS strain gauge

    Science.gov (United States)

    Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.

    2018-03-01

    Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.

  1. Spatial and temporal characteristics of V1 microstimulation during chronic implantation of a microelectrode array in a behaving macaque

    Science.gov (United States)

    Davis, T. S.; Parker, R. A.; House, P. A.; Bagley, E.; Wendelken, S.; Normann, R. A.; Greger, B.

    2012-12-01

    Objective. It has been hypothesized that a vision prosthesis capable of evoking useful visual percepts can be based upon electrically stimulating the primary visual cortex (V1) of a blind human subject via penetrating microelectrode arrays. As a continuation of earlier work, we examined several spatial and temporal characteristics of V1 microstimulation. Approach. An array of 100 penetrating microelectrodes was chronically implanted in V1 of a behaving macaque monkey. Microstimulation thresholds were measured using a two-alternative forced choice detection task. Relative locations of electrically-evoked percepts were measured using a memory saccade-to-target task. Main results. The principal finding was that two years after implantation we were able to evoke behavioural responses to electric stimulation across the spatial extent of the array using groups of contiguous electrodes. Consistent responses to stimulation were evoked at an average threshold current per electrode of 204 ± 49 µA (mean ± std) for groups of four electrodes and 91 ± 25 µA for groups of nine electrodes. Saccades to electrically-evoked percepts using groups of nine electrodes showed that the animal could discriminate spatially distinct percepts with groups having an average separation of 1.6 ± 0.3 mm (mean ± std) in cortex and 1.0° ± 0.2° in visual space. Significance. These results demonstrate chronic perceptual functionality and provide evidence for the feasibility of a cortically-based vision prosthesis for the blind using penetrating microelectrodes.

  2. Research on High-Precision, Low Cost Piezoresistive MEMS-Array Pressure Transmitters Based on Genetic Wavelet Neural Networks for Meteorological Measurements

    Directory of Open Access Journals (Sweden)

    Jiahong Zhang

    2015-05-01

    Full Text Available This paper provides a novel and effective compensation method by improving the hardware design and software algorithm to achieve optimization of piezoresistive pressure sensors and corresponding measurement systems in order to measure pressure more accurately and stably, as well as to meet the application requirements of the meteorological industry. Specifically, GE NovaSensor MEMS piezoresistive pressure sensors within a thousandth of accuracy are selected to constitute an array. In the versatile compensation method, the hardware utilizes the array of MEMS pressure sensors to reduce random error caused by sensor creep, and the software adopts the data fusion technique based on the wavelet neural network (WNN which is improved by genetic algorithm (GA to analyze the data of sensors for the sake of obtaining accurate and complete information over the wide temperature and pressure ranges. The GA-WNN model is implemented in hardware by using the 32-bit STMicroelectronics (STM32 microcontroller combined with an embedded real-time operating system µC/OS-II to make the output of the array of MEMS sensors be a direct digital readout. The results of calibration and test experiments clearly show that the GA-WNN technique can be effectively applied to minimize the sensor errors due to the temperature drift, the hysteresis effect and the long-term drift because of aging and environmental changes. The maximum error of the low cost piezoresistive MEMS-array pressure transmitter proposed by us is within 0.04% of its full-scale value, and it can satisfy the meteorological pressure measurement.

  3. Modeling and Compensation of Random Drift of MEMS Gyroscopes Based on Least Squares Support Vector Machine Optimized by Chaotic Particle Swarm Optimization.

    Science.gov (United States)

    Xing, Haifeng; Hou, Bo; Lin, Zhihui; Guo, Meifeng

    2017-10-13

    MEMS (Micro Electro Mechanical System) gyroscopes have been widely applied to various fields, but MEMS gyroscope random drift has nonlinear and non-stationary characteristics. It has attracted much attention to model and compensate the random drift because it can improve the precision of inertial devices. This paper has proposed to use wavelet filtering to reduce noise in the original data of MEMS gyroscopes, then reconstruct the random drift data with PSR (phase space reconstruction), and establish the model for the reconstructed data by LSSVM (least squares support vector machine), of which the parameters were optimized using CPSO (chaotic particle swarm optimization). Comparing the effect of modeling the MEMS gyroscope random drift with BP-ANN (back propagation artificial neural network) and the proposed method, the results showed that the latter had a better prediction accuracy. Using the compensation of three groups of MEMS gyroscope random drift data, the standard deviation of three groups of experimental data dropped from 0.00354°/s, 0.00412°/s, and 0.00328°/s to 0.00065°/s, 0.00072°/s and 0.00061°/s, respectively, which demonstrated that the proposed method can reduce the influence of MEMS gyroscope random drift and verified the effectiveness of this method for modeling MEMS gyroscope random drift.

  4. Recent Progress in Silicon Mems Oscillators

    Science.gov (United States)

    2008-12-01

    MEMS oscillator. As shown, a MEMS resonator is connected to an IC. The reference oscillator, which is basically a transimpedance amplifier ...small size), and (3) DC bias voltage required to operate the resonators. As a result, instead of Colpitts or Pierce architecture, a transimpedence ... amplifier is typically used for sustain the oscillation. The frequency of the resonators is determined by both material properties and geometry of

  5. On-Line Monitoring the Growth of E. coli or HeLa Cells Using an Annular Microelectrode Piezoelectric Biosensor

    Directory of Open Access Journals (Sweden)

    Feifei Tong

    2016-12-01

    Full Text Available Biological information is obtained from the interaction between the series detection electrode and the organism or the physical field of biological cultures in the non-mass responsive piezoelectric biosensor. Therefore, electric parameter of the electrode will affect the biosensor signal. The electric field distribution of the microelectrode used in this study was simulated using the COMSOL Multiphysics analytical tool. This process showed that the electric field spatial distribution is affected by the width of the electrode finger or the space between the electrodes. In addition, the characteristic response of the piezoelectric sensor constructed serially with an annular microelectrode was tested and applied for the continuous detection of Escherichia coli culture or HeLa cell culture. Results indicated that the piezoelectric biosensor with an annular microelectrode meets the requirements for the real-time detection of E. coli or HeLa cells in culture. Moreover, this kind of piezoelectric biosensor is more sensitive than the sensor with an interdigital microelectrode. Thus, the piezoelectric biosensor acts as an effective analysis tool for acquiring online cell or microbial culture information.

  6. On-Line Monitoring the Growth of E. coli or HeLa Cells Using an Annular Microelectrode Piezoelectric Biosensor.

    Science.gov (United States)

    Tong, Feifei; Lian, Yan; Han, Junliang

    2016-12-18

    Biological information is obtained from the interaction between the series detection electrode and the organism or the physical field of biological cultures in the non-mass responsive piezoelectric biosensor. Therefore, electric parameter of the electrode will affect the biosensor signal. The electric field distribution of the microelectrode used in this study was simulated using the COMSOL Multiphysics analytical tool. This process showed that the electric field spatial distribution is affected by the width of the electrode finger or the space between the electrodes. In addition, the characteristic response of the piezoelectric sensor constructed serially with an annular microelectrode was tested and applied for the continuous detection of Escherichia coli culture or HeLa cell culture. Results indicated that the piezoelectric biosensor with an annular microelectrode meets the requirements for the real-time detection of E. coli or HeLa cells in culture. Moreover, this kind of piezoelectric biosensor is more sensitive than the sensor with an interdigital microelectrode. Thus, the piezoelectric biosensor acts as an effective analysis tool for acquiring online cell or microbial culture information.

  7. MEMS mass-spring-damper systems using an out-of-plane suspension scheme

    KAUST Repository

    Abdel Aziz, Ahmed Kamal Said; Sharaf, Abdel Hameed; Serry, Mohamed Yousef; Sedky, Sherif Salah

    2014-01-01

    MEMS mass-spring-damper systems (including MEMS gyroscopes and accelerometers) using an out-of-plane (or vertical) suspension scheme, wherein the suspensions are normal to the proof mass, are disclosed. Such out-of-plane suspension scheme helps such MEMS mass-spring-damper systems achieve inertial grade performance. Methods of fabricating out-of-plane suspensions in MEMS mass-spring-damper systems (including MEMS gyroscopes and accelerometers) are also disclosed.

  8. MEMS mass-spring-damper systems using an out-of-plane suspension scheme

    KAUST Repository

    Abdel Aziz, Ahmed Kamal Said

    2014-02-04

    MEMS mass-spring-damper systems (including MEMS gyroscopes and accelerometers) using an out-of-plane (or vertical) suspension scheme, wherein the suspensions are normal to the proof mass, are disclosed. Such out-of-plane suspension scheme helps such MEMS mass-spring-damper systems achieve inertial grade performance. Methods of fabricating out-of-plane suspensions in MEMS mass-spring-damper systems (including MEMS gyroscopes and accelerometers) are also disclosed.

  9. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    Science.gov (United States)

    Hong, Zhiling; Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  10. New dynamic silicon photonic components enabled by MEMS technology

    Science.gov (United States)

    Errando-Herranz, Carlos; Edinger, Pierre; Colangelo, Marco; Björk, Joel; Ahmed, Samy; Stemme, Göran; Niklaus, Frank; Gylfason, Kristinn B.

    2018-02-01

    Silicon photonics is the study and application of integrated optical systems which use silicon as an optical medium, usually by confining light in optical waveguides etched into the surface of silicon-on-insulator (SOI) wafers. The term microelectromechanical systems (MEMS) refers to the technology of mechanics on the microscale actuated by electrostatic actuators. Due to the low power requirements of electrostatic actuation, MEMS components are very power efficient, making them well suited for dense integration and mobile operation. MEMS components are conventionally also implemented in silicon, and MEMS sensors such as accelerometers, gyros, and microphones are now standard in every smartphone. By combining these two successful technologies, new active photonic components with extremely low power consumption can be made. We discuss our recent experimental work on tunable filters, tunable fiber-to-chip couplers, and dynamic waveguide dispersion tuning, enabled by the marriage of silicon MEMS and silicon photonics.

  11. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    Science.gov (United States)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high

  12. Micro-electro-mechanical systems (MEMS: Technology for the 21st century

    Directory of Open Access Journals (Sweden)

    Đakov Tatjana A.

    2014-01-01

    Full Text Available Micro-electro-mechanical systems (MEMS are miniturized devices that can sense the environment, process and analyze information, and respond with a variety of mechanical and electrical actuators. MEMS consists of mechanical elements, sensors, actuators, electrical and electronics devices on a common silicon substrate. Micro-electro-mechanical systems are becoming a vital technology for modern society. Some of the advantages of MEMS devices are: very small size, very low power consumption, low cost, easy to integrate into systems or modify, small thermal constant, high resistance to vibration, shock and radiation, batch fabricated in large arrays, improved thermal expansion tolerance. MEMS technology is increasingly penetrating into our lives and improving quality of life, similar to what we experienced in the microelectronics revolution. Commercial opportunities for MEMS are rapidly growing in broad application areas, including biomedical, telecommunication, security, entertainment, aerospace, and more in both the consumer and industrial sectors on a global scale. As a breakthrough technology, MEMS is building synergy between previously unrelated fields such as biology and microelectronics. Many new MEMS and nanotechnology applications will emerge, expanding beyond that which is currently identified or known. MEMS are definitely technology for 21st century.

  13. RF-MEMS capacitive switches with high reliability

    Science.gov (United States)

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  14. Fast tunable blazed MEMS grating for external cavity lasers

    Science.gov (United States)

    Tormen, Maurizio; Niedermann, Philippe; Hoogerwerf, Arno; Shea, Herbert; Stanley, Ross

    2017-11-01

    Diffractive MEMS are interesting for a wide range of applications, including displays, scanners or switching elements. Their advantages are compactness, potentially high actuation speed and in the ability to deflect light at large angles. We have designed and fabricated deformable diffractive MEMS grating to be used as tuning elements for external cavity lasers. The resulting device is compact, has wide tunability and a high operating speed. The initial design is a planar grating where the beams are free-standing and attached to each other using leaf springs. Actuation is achieved through two electrostatic comb drives at either end of the grating. To prevent deformation of the free-standing grating, the device is 10 μm thick made from a Silicon on Insulator (SOI) wafer in a single mask process. At 100V a periodicity tuning of 3% has been measured. The first resonant mode of the grating is measured at 13.8 kHz, allowing high speed actuation. This combination of wide tunability and high operating speed represents state of the art in the domain of tunable MEMS filters. In order to improve diffraction efficiency and to expand the usable wavelength range, a blazed version of the deformable MEMS grating has been designed. A key issue is maintaining the mechanical properties of the original device while providing optically smooth blazed beams. Using a process based on anisotropic KOH etching, blazed gratings have been obtained and preliminary characterization is promising.

  15. Development of electrochemical impedance spectroscopy based sensing system for DEHP detection

    KAUST Repository

    Zia, Asif I.

    2011-11-01

    This research work presents a real time and non invasive technique to detect Di(2-ethylhexyl) phthalate (DEHP)content in purified water and quantify its concentration by Electrochemical Impedance Spectroscopy(E.I.S.). Planar Inter-digital capacitive sensor is employed to evaluate conductivity, permeability and dielectric properties of material under test. This sensor, consisting of inter-digitated microelectrodes, is fabricated on silicon substrate using thin-film Microelectromechanical system (MEMS) based semiconductor device fabrication technology. Impedance spectrums are obtained with various concentrations of DEHP in purified water by using an electric circuit in order to extract sample conductance. Relationship of sample conductance with DEHP concentration is studied in this research work which enables us to show the ability of E.I.S. to detect DEHP concentration in water and hence can be applied in water treatment process for contamination quantification. © 2011 IEEE.

  16. 78 FR 13747 - Safety Advisory 2013-01; Passing Stop Signals Protecting Movable Bridges

    Science.gov (United States)

    2013-02-28

    ... Association Manual for Railway Engineering. 2. Evaluate operating rules and procedures that permit the...: (1) Evaluate the design and construction of existing movable bridges to determine if effective span... perform these duties. FOR FURTHER INFORMATION CONTACT: Carlo M. Patrick, Staff Director, Rail and...

  17. Fabrication of integrated metallic MEMS devices

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Ravnkilde, Jan Tue; Hansen, Ole

    2002-01-01

    A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators are characteri......A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators...

  18. Development of thin film encapsulation process for piezoresistive MEMS gyroscope with wide gaps

    Science.gov (United States)

    Ayanoor-Vitikkate, Vipin

    The gyroscope is an inertial sensor used to measure the angular rate of a rotating object. This helps to determine the pitch and yaw rate of any moving body. A number of applications have been developed for consumer and automotive markets, for e.g. vehicle stability control, navigation assist, roll over detection. These are primarily used in high-end cars, where cost is not a major factor. Other areas where a MEMS Gyro can be used are robotics, camcorder stabilization, virtual reality, and more. Primarily due to cost and the size most of these applications have not reached any significant volume. One reason for this is the relatively high cost of MEMS gyros compared to other MEMS sensors like accelerometers or pressure sensors. Generally the cost of packaging a MEMS sensor is about 85-90% of the total cost. Currently most MEMS based gyroscopes are made using bulk or surface micromachining, after which they are packaged using wafer bonding. This unfortunately leads to wastage of silicon and increase in the package size, thus reducing the yield. One way to reduce the cost of packaging is by wafer scale thin film encapsulation of MEMS gyroscopes. The goal of the present work is to fabricate a rate grade MEMS gyroscope and encapsulate it by modifying an existing thin-film encapsulation technique. Packaging is an important step towards commercialization of the device and we plan to use thin wafer scale encapsulation technique developed previously in our group to package these devices. The silicon micro machined gyroscope will be fabricated on SOI (Silicon-on-Insulator) wafers using Bosch DRIE etching techniques. The encapsulation of the device is carried out using epitaxial polysilicon in order to provide a high vacuum inside the device chamber. The advantages offered by this technique are the reduction in area of the die and thus less silicon surface is wasted. In addition to this the encapsulation technique helps in creating a vacuum inside the micro device, which

  19. Hollow MEMS

    DEFF Research Database (Denmark)

    Larsen, Peter Emil

    Miniaturization of electro mechanical sensor systems to the micro range and beyond has shown impressive sensitivities measuring sample properties like mass, viscosity, acceleration, pressure and force just to name a few applications. In order to enable these kinds of measurements on liquid samples...... a hollow MEMS sensor has been designed, fabricated and tested. Combined density, viscosity, buoyant mass spectrometry and IR absorption spectroscopy are possible on liquid samples and micron sized suspended particles (e.g. single cells). Measurements are based on changes in the resonant behavior...... of these sensors. Optimization of the microfabrication process has led to a process yield of almost 100% .This is achieved despite the fact, that the process still offers a high degree of flexibility. By simple modifications the Sensor shape can be optimized for different size ranges and sensitivities...

  20. Accounting for Uncertainties in Strengths of SiC MEMS Parts

    Science.gov (United States)

    Nemeth, Noel; Evans, Laura; Beheim, Glen; Trapp, Mark; Jadaan, Osama; Sharpe, William N., Jr.

    2007-01-01

    A methodology has been devised for accounting for uncertainties in the strengths of silicon carbide structural components of microelectromechanical systems (MEMS). The methodology enables prediction of the probabilistic strengths of complexly shaped MEMS parts using data from tests of simple specimens. This methodology is intended to serve as a part of a rational basis for designing SiC MEMS, supplementing methodologies that have been borrowed from the art of designing macroscopic brittle material structures. The need for this or a similar methodology arises as a consequence of the fundamental nature of MEMS and the brittle silicon-based materials of which they are typically fabricated. When tested to fracture, MEMS and structural components thereof show wide part-to-part scatter in strength. The methodology involves the use of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) software in conjunction with the ANSYS Probabilistic Design System (PDS) software to simulate or predict the strength responses of brittle material components while simultaneously accounting for the effects of variability of geometrical features on the strength responses. As such, the methodology involves the use of an extended version of the ANSYS/CARES/PDS software system described in Probabilistic Prediction of Lifetimes of Ceramic Parts (LEW-17682-1/4-1), Software Tech Briefs supplement to NASA Tech Briefs, Vol. 30, No. 9 (September 2006), page 10. The ANSYS PDS software enables the ANSYS finite-element-analysis program to account for uncertainty in the design-and analysis process. The ANSYS PDS software accounts for uncertainty in material properties, dimensions, and loading by assigning probabilistic distributions to user-specified model parameters and performing simulations using various sampling techniques.

  1. Nonlinear Adaptive Filter for MEMS Gyro Error Cancellation

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal biases are the dominate error in low-cost low-power small MEMS gyros. CubeSats often can't afford the power/mass to put a heater on their MEMS gyros and...

  2. Micro packaged MEMS pressure sensor for intracranial pressure measurement

    International Nuclear Information System (INIS)

    Liu Xiong; Yao Yan; Ma Jiahao; Zhang Zhaohua; Zhang Yanhang; Wang Qian; Ren Tianling

    2015-01-01

    This paper presents a micro packaged MEMS pressure sensor for intracranial pressure measurement which belongs to BioMEMS. It can be used in lumbar puncture surgery to measure intracranial pressure. Miniaturization is key for lumbar puncture surgery because the sensor must be small enough to allow it be placed in the reagent chamber of the lumbar puncture needle. The size of the sensor is decided by the size of the sensor chip and package. Our sensor chip is based on silicon piezoresistive effect and the size is 400 × 400 μm 2 . It is much smaller than the reported polymer intracranial pressure sensors such as liquid crystal polymer sensors. In terms of package, the traditional dual in-line package obviously could not match the size need, the minimal size of recently reported MEMS-based intracranial pressure sensors after packaging is 10 × 10 mm 2 . In this work, we are the first to introduce a quad flat no-lead package as the package form of piezoresistive intracranial pressure sensors, the whole size of the sensor is minimized to only 3 × 3 mm 2 . Considering the liquid measurement environment, the sensor is gummed and waterproof performance is tested; the sensitivity of the sensor is 0.9 × 10 −2 mV/kPa. (paper)

  3. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    Science.gov (United States)

    Balpande, Suresh S.; Pande, Rajesh S.

    2016-04-01

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of harvester and

  4. MEMS Tunneling Micro Thermometer Based onTip Deflection of Bimetallic Cantilever Beam

    Directory of Open Access Journals (Sweden)

    Samrand K. Nezhadian

    2007-10-01

    Full Text Available Micro-electro-mechanical (MEM technology promises to significantly reduce the size, weight and cost of a variety of sensor systems. In this article has been described a highly sensitive novel type of thermometer based on deflection of a “bimetallic” microbeam. The proposed thermometer converts the thermal changes of a cantilevered bimetallic beam of submillimeter size into an electrical signal through tunneling-current modulation. The governing thermo-mechanical equation of a bimetallic cantilever beam has been derived and solved analytically. The obtained results show that the proposed tunneling micro thermometer is very sensitive to temperature changes due to exponential increasing of tunneling current but because of small gap between metallic electrodes, measurable range of temperature changes is small.

  5. A method for manufacturing a hollow mems structure

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to a method for manufacturing an at least partly hollow MEMS structure. In a first step one or more through-going openings is/are provided in core material. The one or more through-going openings is/are then covered by an etch-stop layer. After this step, a bottom...... further comprises the step of creating bottom and top conductors in the respective bottom and top layers. Finally, excess core material is removed in order to create the at least partly hollow MEMS structure which may include a MEMS inductor....

  6. MEMS Bragg grating force sensor

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    We present modeling, design, fabrication and characterization of a new type of all-optical frequency modulated MEMS force sensor based on a mechanically amplified double clamped waveguide beam structure with integrated Bragg grating. The sensor is ideally suited for force measurements in harsh...... environments and for remote and distributed sensing and has a measured sensitivity of -14 nm/N, which is several times higher than what is obtained in conventional fiber Bragg grating force sensors. © 2011 Optical Society of America....

  7. MEMS (Micro-Electro-Mechanical Systems) for Automotive and Consumer Electronics

    Science.gov (United States)

    Marek, Jiri; Gómez, Udo-Martin

    MEMS sensors gained over the last two decades an impressive width of applications: (a) ESP: A car is skidding and stabilizes itself without driver intervention (b) Free-fall detection: A laptop falls to the floor and protects the hard drive by parking the read/write drive head automatically before impact. (c) Airbag: An airbag fires before the driver/occupant involved in an impending automotive crash impacts the steering wheel, thereby significantly reducing physical injury risk. MEMS sensors are sensing the environmental conditions and are giving input to electronic control systems. These crucial MEMS sensors are making system reactions to human needs more intelligent, precise, and at much faster reaction rates than humanly possible. Important prerequisites for the success of sensors are their size, functionality, power consumption, and costs. This technical progress in sensor development is realized by micro-machining. The development of these processes was the breakthrough to industrial mass-production for micro-electro-mechanical systems (MEMS). Besides leading-edge micromechanical processes, innovative and robust ASIC designs, thorough simulations of the electrical and mechanical behaviour, a deep understanding of the interactions (mainly over temperature and lifetime) of the package and the mechanical structures are needed. This was achieved over the last 20 years by intense and successful development activities combined with the experience of volume production of billions of sensors. This chapter gives an overview of current MEMS technology, its applications and the market share. The MEMS processes are described, and the challenges of MEMS, compared to standard IC fabrication, are discussed. The evolution of MEMS requirements is presented, and a short survey of MEMS applications is shown. Concepts of newest inertial sensors for ESP-systems are given with an emphasis on the design concepts of the sensing element and the evaluation circuit for achieving

  8. Simultaneous wavelength and orbital angular momentum demultiplexing using tunable MEMS-based Fabry-Perot filter

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.

    2017-01-01

    In this paper, we experimentally demonstrate simultaneous wavelength and orbital angular momentum (OAM) multiplexing/demultiplexing of 10 Gbit/s data streams using a new on-chip micro-component-tunable MEMS-based Fabry-Perot filter integrated with a spiral phase plate. In the experiment, two......, maximum power penalties at the HD-FEC BER threshold relative to the 0.8 nm wavelength spacing read 0.83, 0.84 and 1.15 dB when multiplexing a Gaussian beam and OAM beams of 1st, 2nd and 3rd orders respectively. The novelty and impact of the proposed filter design is in providing practical, integrable...

  9. Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material

    KAUST Repository

    Ramadan, Khaled S.

    2013-02-08

    This work presents an SU-8 surface micromachining process using amorphous silicon as a sacrificial material, which also incorporates two metal layers for electrical excitation. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic applications due to its mechanical properties, biocompatibility and low cost. Amorphous silicon is used as a sacrificial layer in MEMS applications because it can be deposited in large thicknesses, and can be released in a dry method using XeF2, which alleviates release-based stiction problems related to MEMS applications. In this work, an SU-8 MEMS process was developed using ;-Si as a sacrificial layer. Two conductive metal electrodes were integrated in this process to allow out-of-plane electrostatic actuation for applications like MEMS switches and variable capacitors. In order to facilitate more flexibility for MEMS designers, the process can fabricate dimples that can be conductive or nonconductive. Additionally, this SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were optimized for two sets of thicknesses: thin (5-10 m) and thick (130 m). The process was tested fabricating MEMS switches, capacitors and thermal actuators. © 2013 IOP Publishing Ltd.

  10. On the feasibility to integrate low-cost MEMS accelerometers and GNSS receivers

    Science.gov (United States)

    Benedetti, Elisa; Dermanis, Athanasios; Crespi, Mattia

    2017-06-01

    The aim of this research was to investigate the feasibility of merging the benefits offered by low-cost GNSS and MEMS accelerometers technology, in order to promote the diffusion of low-cost monitoring solutions. A merging approach was set up at the level of the combination of kinematic results (velocities and displacements) coming from the two kinds of sensors, whose observations were separately processed, following to the so called loose integration, which sounds much more simple and flexible thinking about the possibility of an easy change of the combined sensors. At first, the issues related to the difference in reference systems, time systems and measurement rate and epochs for the two sensors were faced with. An approach was designed and tested to transform into unique reference and time systems the outcomes from GPS and MEMS and to interpolate the usually (much) more dense MEMS observation to common (GPS) epochs. The proposed approach was limited to time-independent (constant) orientation of the MEMS reference system with respect to the GPS one. Then, a data fusion approach based on the use of Discrete Fourier Transform and cubic splines interpolation was proposed both for velocities and displacements: MEMS and GPS derived solutions are firstly separated by a rectangular filter in spectral domain, and secondly back-transformed and combined through a cubic spline interpolation. Accuracies around 5 mm for slow and fast displacements and better than 2 mm/s for velocities were assessed. The obtained solution paves the way to a powerful and appealing use of low-cost single frequency GNSS receivers and MEMS accelerometers for structural and ground monitoring applications. Some additional remarks and prospects for future investigations complete the paper.

  11. Modularly Integrated MEMS Technology

    National Research Council Canada - National Science Library

    Eyoum, Marie-Angie N

    2006-01-01

    Process design, development and integration to fabricate reliable MEMS devices on top of VLSI-CMOS electronics without damaging the underlying circuitry have been investigated throughout this dissertation...

  12. MEMS for pico- to micro-satellites

    OpenAIRE

    Shea, Herbert

    2009-01-01

    MEMS sensors, actuators, and sub-systems can enable an important reduction in the size and mass of spacecrafts, first by replacing larger and heavier components, then by replacing entire subsystems, and finally by enabling the microfabrication of highly integrated picosats. Very small satellites (1 to 100 kg) stand to benefit the most from MEMS technologies. These small satellites are typically used for science or technology demonstration missions, with higher risk tolerance than multi-ton te...

  13. PERFORMANCE CHARACTERISTIC MEMS-BASED IMUs FOR UAVs NAVIGATION

    Directory of Open Access Journals (Sweden)

    H. A. Mohamed

    2015-08-01

    Full Text Available Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK, and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS signal outage.

  14. Performance Characteristic Mems-Based IMUs for UAVs Navigation

    Science.gov (United States)

    Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B.

    2015-08-01

    Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

  15. Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors.

    Science.gov (United States)

    Kim, Sung-Kon; Koo, Hyung-Jun; Lee, Aeri; Braun, Paul V

    2014-08-13

    Selective wetting-induced micro-electrode patterning is used to fabricate flexible micro-supercapacitors (mSCs). The resulting mSCs exhibit high performance, mechanical stability, stable cycle life, and hold great promise for facile integration into flexible devices requiring on-chip energy storage. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Single Platinum Microelectrode for Identifying Soft Drink Samples

    Directory of Open Access Journals (Sweden)

    Lígia Bueno

    2012-01-01

    Full Text Available Cyclic voltammograms recorded with a single platinum microelectrode were used along with a non-supervised pattern recognition, namely, Principal Component Analysis, to conduct a qualitative analysis of sixteen different brands of carbonated soft drinks (Kuat, Soda Antarctica, H2OH!, Sprite 2.0, Guarana Antarctica, Guarana Antarctica Zero, Coca-Cola, Coca-Cola Zero, Coca-Cola Plus, Pepsi, Pepsi Light, Pepsi Twist, Pepsi Twist Light, Pepsi Twist 3, Schin Cola, and Classic Dillar’s. In this analysis, soft drink samples were not subjected to pre-treatment. Good differentiation among all the analysed soft drinks was achieved using the voltammetric data. An analysis of the loading plots shows that the potentials of −0.65 V, −0.4 V, 0.4 V, and 0.750 V facilitated the discrimination process. The electrochemical processes related to this potential are the reduction of hydrogen ions and inhibition of the platinum oxidation by the caffeine adsorption on the electrode surface. Additionally, the single platinum microelectrode was useful for the quality control of the soft drink samples, as it helped to identify the time at which the beverage was opened.

  17. Computational fluid dynamic (CFD) investigation of thermal uniformity in a thermal cycling based calibration chamber for MEMS

    Science.gov (United States)

    Gui, Xulong; Luo, Xiaobing; Wang, Xiaoping; Liu, Sheng

    2015-12-01

    Micro-electrical-mechanical system (MEMS) has become important for many industries such as automotive, home appliance, portable electronics, especially with the emergence of Internet of Things. Volume testing with temperature compensation has been essential in order to provide MEMS based sensors with repeatability, consistency, reliability, and durability, but low cost. Particularly, in the temperature calibration test, temperature uniformity of thermal cycling based calibration chamber becomes more important for obtaining precision sensors, as each sensor is different before the calibration. When sensor samples are loaded into the chamber, we usually open the door of the chamber, then place fixtures into chamber and mount the samples on the fixtures. These operations may affect temperature uniformity in the chamber. In order to study the influencing factors of sample-loading on the temperature uniformity in the chamber during calibration testing, numerical simulation work was conducted first. Temperature field and flow field were simulated in empty chamber, chamber with open door, chamber with samples, and chamber with fixtures, respectively. By simulation, it was found that opening chamber door, sample size and number of fixture layers all have effects on flow field and temperature field. By experimental validation, it was found that the measured temperature value was consistent with the simulated temperature value.

  18. Fatigue Design and Prevention in Movable Scaffolding Systems

    Directory of Open Access Journals (Sweden)

    Coelho Hugo

    2017-06-01

    Full Text Available The Movable Scaffolding System (MSS is a heavy construction equipment used for casting situ of concrete bridge decks. In the past decades, MSSs have become increasingly complex and industrialized, enlarging its span ranges, incorporating auxiliary elevation machinery and increasing productivity. The tendency nowadays is for strong reutilization and the notion of MSS as a disposable or temporary structure is somehow reductive. The main structure of MSSs may be potentially exposed to fatigue, usually characterized by low number of cycles with significant stress amplitude. Fatigue may be prevented through adequate design; judicious selection of materials; demanding quality control and implementation of robust inspection and maintenance plans.

  19. Fatigue Design and Prevention in Movable Scaffolding Systems

    Science.gov (United States)

    Coelho, Hugo; Torres, Alberto; Pacheco, Pedro; Moreira, Cristiano; Silva, Rute; Soares, José M.; Pinto, Dânia

    2017-06-01

    The Movable Scaffolding System (MSS) is a heavy construction equipment used for casting situ of concrete bridge decks. In the past decades, MSSs have become increasingly complex and industrialized, enlarging its span ranges, incorporating auxiliary elevation machinery and increasing productivity. The tendency nowadays is for strong reutilization and the notion of MSS as a disposable or temporary structure is somehow reductive. The main structure of MSSs may be potentially exposed to fatigue, usually characterized by low number of cycles with significant stress amplitude. Fatigue may be prevented through adequate design; judicious selection of materials; demanding quality control and implementation of robust inspection and maintenance plans.

  20. Electric potential microelectrode for studies of electrobiogeophysics

    DEFF Research Database (Denmark)

    Damgaard, Lars Riis; Risgaard-Petersen, Nils; Nielsen, Lars Peter

    2014-01-01

    were needle-shaped, shielded Ag/AgCl half-cells that were rendered insensitive to redox-active species in the environment. Tip diameters of 40 to 100 μm and signal resolution of approximately 10 μV were achieved. A test in marine sediments with active cable bacteria showed an electric potential......Spatially separated electron donors and acceptors in sediment can be exploited by the so-called “cable bacteria.” Electric potential microelectrodes (EPMs) were constructed to measure the electric fields that should appear when cable bacteria conduct electrons over centimeter distances. The EPMs...

  1. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing

    Energy Technology Data Exchange (ETDEWEB)

    Hébert, Clément, E-mail: clement.hebert@cea.fr [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Warnking, Jan; Depaulis, Antoine [INSERM, U836, Grenoble Institut des Neurosciences, Grenoble (France); Garçon, Laurie Amandine [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); CEA/INAC/SPrAM/CREAB, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Mermoux, Michel [Université Grenoble Alpes, LEPMI, F-38000 Grenoble (France); CNRS, LEPMI, F-38000 Grenoble (France); Eon, David [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Mailley, Pascal [CEA-LETI-DTBS Minatec, 17 rue des Martyres, 38054 Grenoble (France); Omnès, Franck [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France)

    2015-01-01

    Neural interfacing still requires highly stable and biocompatible materials, in particular for in vivo applications. Indeed, most of the currently used materials are degraded and/or encapsulated by the proximal tissue leading to a loss of efficiency. Here, we considered boron doped diamond microelectrodes to address this issue and we evaluated the performances of a diamond microelectrode array. We described the microfabrication process of the device and discuss its functionalities. We characterized its electrochemical performances by cyclic voltammetry and impedance spectroscopy in saline buffer and observed the typical diamond electrode electrochemical properties, wide potential window and low background current, allowing efficient electrochemical detection. The charge storage capacitance and the modulus of the electrochemical impedance were found to remain in the same range as platinum electrodes used for standard commercial devices. Finally we observed a reduced Magnetic Resonance Imaging artifact when the device was implanted on a rat cortex, suggesting that boron doped-diamond is a very promising electrode material allowing functional imaging. - Highlights: • Microfabrication of all-diamond microelectrode array • Evaluation of as-grown nanocrystalline boron-doped diamond for electrical neural interfacing • MRI compatibility of nanocrystalline boron-doped diamond.

  2. In-plane deeply-etched optical MEMS notch filter with high-speed tunability

    International Nuclear Information System (INIS)

    Sabry, Yasser M; Eltagoury, Yomna M; Shebl, Ahmed; Khalil, Diaa; Soliman, Mostafa; Sadek, Mohamed

    2015-01-01

    Notch filters are used in spectroscopy, multi-photon microscopy, fluorescence instrumentation, optical sensors and other life science applications. One type of notch filter is based on a fiber-coupled Fabry–Pérot cavity, which is formed by a reflector (external mirror) facing a dielectric-coated end of an optical fiber. Tailoring this kind of optical filter for different applications is possible because the external mirror has fewer mechanical and optical constraints. In this paper we present optical modeling and implementation of a fiber-coupled Fabry–Pérot filter based on dielectric-coated optical fiber inserted into a micromachined fiber groove facing a metallized micromirror, which is driven by a high-speed MEMS actuator. The optical MEMS chip is fabricated using deep reactive ion etching (DRIE) technology on a silicon on insulator wafer, where the optical axis is parallel to the substrate (in-plane) and the optical/mechanical components are self-aligned by the photolithographic process. The DRIE etching depth is 150 μm, chosen to increase the micromirror optical throughput and improving the out-of-plane stiffness of the MEMS actuator. The MEMS actuator type is closing-gap, while its quality factor is almost doubled by slotting the fixed plate. A low-finesse Fabry–Pérot interferometer is formed by the metallized surface of the micromirror and a cleaved end of a standard single-mode fiber, for characterization of the MEMS actuator stroke and resonance frequency. The actuator achieves a travel distance of 800 nm at a resonance frequency of 89.9 kHz. The notch filter characteristics were measured using an optical spectrum analyzer, and the filter exhibits a free spectral range up to 100 nm and a notch rejection ratio up to 20 dB around a wavelength of 1300 nm. The presented device provides batch processing and low-cost production of the filter. (paper)

  3. MEMS Solar Generators

    OpenAIRE

    Grbovic, Dragoslav; Osswald, Sebastian

    2011-01-01

    Approved for public release; distribution is unlimited Using MEMS bimaterial structures to build highly efficient solar energy generators. This is a novel approach that utilizes developments in the area of bimaterial sensors and applies them in the field of solar energy harvesting.

  4. Moving Towards the Use of New Micro Technology (MEMS) in Greenhouse Climate Related Sensing

    DEFF Research Database (Denmark)

    Andreassen, A.U.; Hyldgaard, Anders; Petersen, Søren D.

    2006-01-01

    Climatic control of plant growth based on almost static set points in the greenhouse industry is slowly but surely about to be replaced by more advanced control based on models describing biological processes in the plants. The use of various sensors in relation to the climate control system...... is also developing towards new techniques and technologies. A prototype Micro-Electro-Mechanical System (MEMS) dual temperature and light sensor has been compared in experiments with conventional sensors to analyse the reliability, repeatability and usability of both the MEMS dual sensor and the resulting...

  5. Uncertainty quantification in capacitive RF MEMS switches

    Science.gov (United States)

    Pax, Benjamin J.

    Development of radio frequency micro electrical-mechanical systems (RF MEMS) has led to novel approaches to implement electrical circuitry. The introduction of capacitive MEMS switches, in particular, has shown promise in low-loss, low-power devices. However, the promise of MEMS switches has not yet been completely realized. RF-MEMS switches are known to fail after only a few months of operation, and nominally similar designs show wide variability in lifetime. Modeling switch operation using nominal or as-designed parameters cannot predict the statistical spread in the number of cycles to failure, and probabilistic methods are necessary. A Bayesian framework for calibration, validation and prediction offers an integrated approach to quantifying the uncertainty in predictions of MEMS switch performance. The objective of this thesis is to use the Bayesian framework to predict the creep-related deflection of the PRISM RF-MEMS switch over several thousand hours of operation. The PRISM switch used in this thesis is the focus of research at Purdue's PRISM center, and is a capacitive contacting RF-MEMS switch. It employs a fixed-fixed nickel membrane which is electrostatically actuated by applying voltage between the membrane and a pull-down electrode. Creep plays a central role in the reliability of this switch. The focus of this thesis is on the creep model, which is calibrated against experimental data measured for a frog-leg varactor fabricated and characterized at Purdue University. Creep plasticity is modeled using plate element theory with electrostatic forces being generated using either parallel plate approximations where appropriate, or solving for the full 3D potential field. For the latter, structure-electrostatics interaction is determined through immersed boundary method. A probabilistic framework using generalized polynomial chaos (gPC) is used to create surrogate models to mitigate the costly full physics simulations, and Bayesian calibration and forward

  6. A capacitive membrane MEMS microwave power sensor in the X-band based on GaAs MMIC technology

    International Nuclear Information System (INIS)

    Su Shi; Liao Xiaoping

    2009-01-01

    This paper presents the modeling, fabrication, and measurement of a capacitive membrane MEMS microwave power sensor. The sensor measures microwave power coupled from coplanar waveguide (CPW) transmission lines by a MEMS membrane and then converts it into a DC voltage output by using thermopiles. Since the fabrication process is fully compatible with the GaAs monolithic microwave integrated circuit (MMIC) process, this sensor could be conveniently embedded into MMIC. From the measured DC voltage output and S-parameters, the average sensitivity in the X-band is 225.43 μV/mW, while the reflection loss is below -14 dB. The MEMS microwave power sensor has good linearity with a voltage standing wave ration of less than 1.513 in the whole X-band. In addition, the measurements using amplitude modulation signals prove that the modulation index directly influences the output DC voltage.

  7. ViLLaGEs: opto-mechanical design of an on-sky visible-light MEMS-based AO system

    Science.gov (United States)

    Grigsby, Bryant; Lockwood, Chris; Baumann, Brian; Gavel, Don; Johnson, Jess; Ammons, S. Mark; Dillon, Daren; Morzinski, Katie; Reinig, Marc; Palmer, Dave; Severson, Scott; Gates, Elinor

    2008-07-01

    Visible Light Laser Guidestar Experiments (ViLLaGEs) is a new Micro-Electro Mechanical Systems (MEMS) based visible-wavelength adaptive optics (AO) testbed on the Nickel 1-meter telescope at Lick Observatory. Closed loop Natural Guide Star (NGS) experiments were successfully carried out during engineering during the fall of 2007. This is a major evolutionary step, signaling the movement of AO technologies into visible light with a MEMS mirror. With on-sky Strehls in I-band of greater than 20% during second light tests, the science possibilities have become evident. Described here is the advanced engineering used in the design and construction of the ViLLaGEs system, comparing it to the LickAO infrared system, and a discussion of Nickel dome infrastructural improvements necessary for this system. A significant portion of the engineering discussion revolves around the sizable effort that went towards eliminating flexure. Then, we detail upgrades to ViLLaGEs to make it a facility class instrument. These upgrades will focus on Nyquist sampling the diffraction limited point spread function during open loop operations, motorization and automation for technician level alignments, adding dithering capabilities and changes for near infrared science.

  8. Measurement of the Earth tides with a MEMS gravimeter.

    Science.gov (United States)

    Middlemiss, R P; Samarelli, A; Paul, D J; Hough, J; Rowan, S; Hammond, G D

    2016-03-31

    The ability to measure tiny variations in the local gravitational acceleration allows, besides other applications, the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required for such applications (tens of microgal per hertz(1/2)): free-fall gravimeters, spring-based gravimeters, superconducting gravimeters, and atom interferometers. All of these devices can observe the Earth tides: the elastic deformation of the Earth's crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of high cost (more than 100,000 US dollars) and high mass (more than 8 kilograms). Here we present a microelectromechanical system (MEMS) device with a sensitivity of 40 microgal per hertz(1/2) only a few cubic centimetres in size. We use it to measure the Earth tides, revealing the long-term stability of our instrument compared to any other MEMS device. MEMS accelerometers--found in most smart phones--can be mass-produced remarkably cheaply, but none are stable enough to be called a gravimeter. Our device has thus made the transition from accelerometer to gravimeter. The small size and low cost of this MEMS gravimeter suggests many applications in gravity mapping. For example, it could be mounted on a drone instead of low-flying aircraft for distributed land surveying and exploration, deployed to monitor volcanoes, or built into multi-pixel density-contrast imaging arrays.

  9. Optical MEMS for earth observation payloads

    Science.gov (United States)

    Rodrigues, B.; Lobb, D. R.; Freire, M.

    2017-11-01

    An ESA study has been taken by Lusospace Ltd and Surrey Satellite Techonoly Ltd (SSTL) into the use of optical Micro Eletro-Mechanical Systems (MEMS) for earth Observation. A review and analysis was undertaken of the Micro-Optical Electro-Mechanical Systems (MOEMS) available in the market with potential application in systems for Earth Observation. A summary of this review will be presented. Following the review two space-instrument design concepts were selected for more detailed analysis. The first was the use of a MEMS device to remove cloud from Earth images. The concept is potentially of interest for any mission using imaging spectrometers. A spectrometer concept was selected and detailed design aspects and benefits evaluated. The second concept developed uses MEMS devices to control the width of entrance slits of spectrometers, to provide variable spectral resolution. This paper will present a summary of the results of the study.

  10. MEMS applications in space exploration

    Science.gov (United States)

    Tang, William C.

    1997-09-01

    Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. MEMS is one of the key enabling technology to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.

  11. Virtual velocity loop based on MEMS accelerometers for optical stabilization control system

    Science.gov (United States)

    Ren, Wei; Deng, Chao; Mao, Yao; Ren, Ge

    2017-08-01

    In the optical stabilization control system (OSCS) control system based on a charge-coupled device (CCD), stabilization performance of the line-of-sight is severely limited by the mechanical resonance and the low sampling rate of the CCD. An approach to improve the stabilization performance of the OSCS control system with load restriction based on three loops, including an acceleration loop, a virtual velocity loop, and a position loop, by using MEMS accelerometers and a CCD is proposed. The velocity signal is obtained by accelerators instead of gyro sensors. Its advantages are low power, low cost, small size, and wide measuring range. A detailed analysis is provided to show how to design the virtual velocity loop and correct virtual velocity loop drift. Experimental results show that the proposed multiloop feedback control method with virtual velocity loop in which the disturbance suppression performance is better than that of the dual loop control with only an acceleration loop and a position loop at low frequency.

  12. Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material

    KAUST Repository

    Ramadan, Khaled S.; Nasr, Tarek Adel Hosny; Foulds, Ian G.

    2013-01-01

    method using XeF2, which alleviates release-based stiction problems related to MEMS applications. In this work, an SU-8 MEMS process was developed using ;-Si as a sacrificial layer. Two conductive metal electrodes were integrated in this process to allow

  13. MEMS: A new approach to micro-optics

    Energy Technology Data Exchange (ETDEWEB)

    Sniegowski, J.J.

    1997-12-31

    MicroElectroMechanical Systems (MEMS) and their fabrication technologies provide great opportunities for application to micro-optical systems (MOEMS). Implementing MOEMS technology ranges from simple, passive components to complicated, active systems. Here, an overview of polysilicon surface micromachining MEMS combined with optics is presented. Recent advancements to the technology, which may enhance its appeal for micro-optics applications are emphasized. Of all the MEMS fabrication technologies, polysilicon surface micromachining technology has the greatest basis in and leverages the most the infrastructure for silicon integrated circuit fabrication. In that respect, it provides the potential for very large volume, inexpensive production of MOEMS. This paper highlights polysilicon surface micromachining technology in regards to its capability to provide both passive and active mechanical elements with quality optical elements.

  14. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.

    Science.gov (United States)

    Cesewski, Ellen; Haring, Alexander P; Tong, Yuxin; Singh, Manjot; Thakur, Rajan; Laheri, Sahil; Read, Kaitlin A; Powell, Michael D; Oestreich, Kenneth J; Johnson, Blake N

    2018-06-13

    Three-dimensional (3D) printing now enables the fabrication of 3D structural electronics and microfluidics. Further, conventional subtractive manufacturing processes for microelectromechanical systems (MEMS) relatively limit device structure to two dimensions and require post-processing steps for interface with microfluidics. Thus, the objective of this work is to create an additive manufacturing approach for fabrication of 3D microfluidic-based MEMS devices that enables 3D configurations of electromechanical systems and simultaneous integration of microfluidics. Here, we demonstrate the ability to fabricate microfluidic-based acoustofluidic devices that contain orthogonal out-of-plane piezoelectric sensors and actuators using additive manufacturing. The devices were fabricated using a microextrusion 3D printing system that contained integrated pick-and-place functionality. Additively assembled materials and components included 3D printed epoxy, polydimethylsiloxane (PDMS), silver nanoparticles, and eutectic gallium-indium as well as robotically embedded piezoelectric chips (lead zirconate titanate (PZT)). Electrical impedance spectroscopy and finite element modeling studies showed the embedded PZT chips exhibited multiple resonant modes of varying mode shape over the 0-20 MHz frequency range. Flow visualization studies using neutrally buoyant particles (diameter = 0.8-70 μm) confirmed the 3D printed devices generated bulk acoustic waves (BAWs) capable of size-selective manipulation, trapping, and separation of suspended particles in droplets and microchannels. Flow visualization studies in a continuous flow format showed suspended particles could be moved toward or away from the walls of microfluidic channels based on selective actuation of in-plane or out-of-plane PZT chips. This work suggests additive manufacturing potentially provides new opportunities for the design and fabrication of acoustofluidic and microfluidic devices.

  15. A novel design and analysis of a MEMS ceramic hot-wire anemometer for high temperature applications

    International Nuclear Information System (INIS)

    Nagaiah, N R; Sleiti, A K; Rodriguez, S; Kapat, J S; An, L; Chow, L

    2006-01-01

    This paper attempts to prove the feasibility of high temperature MEMS hot-wire anemometer for gas turbine environment. No such sensor exists at present. Based on the latest improvement in a new type of Polymer-Derived Ceramic (PDC) material, the authors present a Novel design, structural and thermal analysis of MEMS hot-wire anemometer (HWA) based on PDC material, and show that such a sensor is indeed feasible. This MEMS Sensor is microfabricated by using three types of PDC materials such as SiAlCN, SiCN (lightly doped) and SiCN (heavily doped) for sensing element (hot-wire), support prongs and connecting leads respectively. This novel hot wire anemometer can perform better than a conventional HWA in which the hot wire is made of tungsten or platinum-iridium. This type of PDC-HWA can be used in harsh environment due to its high temperature resistance, tensile strength and resistance to oxidation. This HWA is fabricated using microstereolithography as a novel microfabrication technique to manufacture the proposed MEMS Sensor

  16. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    Directory of Open Access Journals (Sweden)

    Zhiling Hong

    Full Text Available Based on the traditional Fast Retina Keypoint (FREAK feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  17. Quantum theory of shuttling instability in a movable quantum dot array

    Science.gov (United States)

    Donarini, Andrea; Novotný, Tomás; Jauho, Antti-Pekka

    2004-04-01

    We study the shuttling instability in an array of three quantum dots the central one of which is movable. We extend the results by Armour and MacKinnon on this problem to a broader parameter regime. The results obtained by an efficient numerical method are interpreted directly using the Wigner distributions. We emphasize that the instability should be viewed as a crossover phenomenon rather than a clear-cut transition.

  18. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  19. Nano-tribology and materials in MEMS

    CERN Document Server

    Satyanarayana, N; Lim, Seh

    2013-01-01

    This book brings together recent developments in the areas of MEMS tribology, novel lubricants and coatings for nanotechnological applications, biomimetics in tribology and fundamentals of micro/nano-tribology. Tribology plays important roles in the functioning and durability of machines at small length scales because of the problems associated with strong surface adhesion, friction, wear etc. Recently, a number of studies have been conducted to understand tribological phenomena at nano/micro scales and many new tribological solutions for MEMS have been proposed.

  20. Review of Automated Design and Optimization of MEMS

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Fan, Zhun; Bolognini, Francesca

    2007-01-01

    carried out. This paper presents a review of these techniques. The design task of MEMS is usually divided into four main stages: System Level, Device Level, Physical Level and the Process Level. The state of the art o automated MEMS design in each of these levels is investigated....

  1. A Movable Phantom Design for Quantitative Evaluation of Motion Correction Studies on High Resolution PET Scanners

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Svarer, C.; Sibomana, M.

    2010-01-01

    maximization algorithm with modeling of the point spread function (3DOSEM-PSF), and they were corrected for motions based on external tracking information using the Polaris Vicra real-time stereo motion-tracking system. The new automatic, movable phantom has a robust design and is a potential quality......Head movements during brain imaging using high resolution positron emission tomography (PET) impair the image quality which, along with the improvement of the spatial resolution of PET scanners, in general, raises the importance of motion correction. Here, we present a new design for an automatic...

  2. MEMS Micro-Valve for Space Applications

    Science.gov (United States)

    Chakraborty, I.; Tang, W. C.; Bame, D. P.; Tang, T. K.

    1998-01-01

    We report on the development of a Micro-ElectroMechanical Systems (MEMS) valve that is designed to meet the rigorous performance requirements for a variety of space applications, such as micropropulsion, in-situ chemical analysis of other planets, or micro-fluidics experiments in micro-gravity. These systems often require very small yet reliable silicon valves with extremely low leak rates and long shelf lives. Also, they must survive the perils of space travel, which include unstoppable radiation, monumental shock and vibration forces, as well as extreme variations in temperature. Currently, no commercial MEMS valve meets these requirements. We at JPL are developing a piezoelectric MEMS valve that attempts to address the unique problem of space. We begin with proven configurations that may seem familiar. However, we have implemented some major design innovations that should produce a superior valve. The JPL micro-valve is expected to have an extremely low leak rate, limited susceptibility to particulates, vibration or radiation, as well as a wide operational temperature range.

  3. Radioisotope Power Sources for MEMS Devices,

    International Nuclear Information System (INIS)

    Blanchard, J.P.

    2001-01-01

    Microelectromechanical systems (MEMS) comprise a rapidly expanding research field with potential applications varying from sensors in airbags to more recent optical applications. Depending on the application, these devices often require an on-board power source for remote operation, especially in cases requiring operation for an extended period of time. Previously suggested power sources include fossil fuels and solar energy, but nuclear power sources may provide significant advantages for certain applications. Hence, the objective of this study is to establish the viability of using radioisotopes to power realistic MEMS devices. A junction-type battery was constructed using silicon and a 63 Ni liquid source. A source volume containing 64 microCi provided a power of ∼0.07 nW. A more novel application of nuclear sources for MEMS applications involves the creation of a resonator that is driven by charge collection in a cantilever beam. Preliminary results have established the feasibility of this concept, and future work will optimize the design for various applications

  4. Carbon fiber on polyimide ultra-microelectrodes

    Science.gov (United States)

    Gillis, Winthrop F.; Lissandrello, Charles A.; Shen, Jun; Pearre, Ben W.; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J.; Chew, Daniel J.; White, Alice E.; Otchy, Timothy M.; Gardner, Timothy J.

    2018-02-01

    Objective. Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Approach. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Main results. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR  >10 and  >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Significance. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated

  5. Os fios da memória tecem a resistência

    Directory of Open Access Journals (Sweden)

    Andréa Monteiro da Costa

    2011-12-01

    Full Text Available O presente artigo aponta como a memória individual é a base para a resistência e a constituição de uma identidade social positiva. A análise tem como referência mulheres negras de uma comunidade quilombola, localizada no município de Parnamirim (RN. Essas mulheres criaram uma pequena empresa familiar com o objetivo de executar a sua tradicional atividade de lavagem de roupas. O texto articula tradições teóricas e metodológicas distintas para indicar o processo de constituição de sujeitos dessas mulheres. São mobilizadas, em especial, as categorias de espaço, tempo e memória.

  6. Design of a Bionic Cilia MEMS three-dimensional vibration sensor

    International Nuclear Information System (INIS)

    Li Zhen; Zhang Guojun; Xue Chenyang; Wu Shujuan

    2013-01-01

    A biomimetic three-dimensional piezoresistive vibration sensor based on MEMS technology is reported. The mechanical properties of the sensor are analyzed and the static and dynamic characteristics of the sensor are simulated by ANSYS Workbench 12.0. The structure was made by MEMS processes including lithography, ion implantation, PECVD, etching, etc. Finally, the sensor is tested by using a TV5220 sensor auto calibration system. The results show that the lowest sensitivity of the sensor is 394.7 μV/g and can reach up to 460.2 μV/g, and the dimension coupling is less than 0.6152%, and the working frequency range is 0–1000 Hz. (semiconductor devices)

  7. Mathematical analysis of partial differential equations modeling electrostatic MEMS

    CERN Document Server

    Esposito, Pierpaolo; Guo, Yujin

    2010-01-01

    Micro- and nanoelectromechanical systems (MEMS and NEMS), which combine electronics with miniature-size mechanical devices, are essential components of modern technology. It is the mathematical model describing "electrostatically actuated" MEMS that is addressed in this monograph. Even the simplified models that the authors deal with still lead to very interesting second- and fourth-order nonlinear elliptic equations (in the stationary case) and to nonlinear parabolic equations (in the dynamic case). While nonlinear eigenvalue problems-where the stationary MEMS models fit-are a well-developed

  8. Additive direct-write microfabrication for MEMS: A review

    Science.gov (United States)

    Teh, Kwok Siong

    2017-12-01

    Direct-write additive manufacturing refers to a rich and growing repertoire of well-established fabrication techniques that builds solid objects directly from computer- generated solid models without elaborate intermediate fabrication steps. At the macroscale, direct-write techniques such as stereolithography, selective laser sintering, fused deposition modeling ink-jet printing, and laminated object manufacturing have significantly reduced concept-to-product lead time, enabled complex geometries, and importantly, has led to the renaissance in fabrication known as the maker movement. The technological premises of all direct-write additive manufacturing are identical—converting computer generated three-dimensional models into layers of two-dimensional planes or slices, which are then reconstructed sequentially into threedimensional solid objects in a layer-by-layer format. The key differences between the various additive manufacturing techniques are the means of creating the finished layers and the ancillary processes that accompany them. While still at its infancy, direct-write additive manufacturing techniques at the microscale have the potential to significantly lower the barrier-of-entry—in terms of cost, time and training—for the prototyping and fabrication of MEMS parts that have larger dimensions, high aspect ratios, and complex shapes. In recent years, significant advancements in materials chemistry, laser technology, heat and fluid modeling, and control systems have enabled additive manufacturing to achieve higher resolutions at the micrometer and nanometer length scales to be a viable technology for MEMS fabrication. Compared to traditional MEMS processes that rely heavily on expensive equipment and time-consuming steps, direct-write additive manufacturing techniques allow for rapid design-to-prototype realization by limiting or circumventing the need for cleanrooms, photolithography and extensive training. With current direct-write additive

  9. Investigation of parameters controlling the dielectrophoretic assembly of carbon nanotubes on microelectrodes

    DEFF Research Database (Denmark)

    Dimaki, Maria; Bøggild, Peter

    2008-01-01

    Networks of single-walled carbon nanotubes were assembled onto microelectrodes by dielectrophoresis. The dependence of the obtained networks on several assembly parameters such as bias voltage, field application time, frequency, electrode geometry and the nanotube solvent were investigated both s...

  10. A review: aluminum nitride MEMS contour-mode resonator

    Science.gov (United States)

    Yunhong, Hou; Meng, Zhang; Guowei, Han; Chaowei, Si; Yongmei, Zhao; Jin, Ning

    2016-10-01

    Over the past several decades, the technology of micro-electromechanical system (MEMS) has advanced. A clear need of miniaturization and integration of electronics components has had new solutions for the next generation of wireless communications. The aluminum nitride (AlN) MEMS contour-mode resonator (CMR) has emerged and become promising and competitive due to the advantages of the small size, high quality factor and frequency, low resistance, compatibility with integrated circuit (IC) technology, and the ability of integrating multi-frequency devices on a single chip. In this article, a comprehensive review of AlN MEMS CMR technology will be presented, including its basic working principle, main structures, fabrication processes, and methods of performance optimization. Among these, the deposition and etching process of the AlN film will be specially emphasized and recent advances in various performance optimization methods of the CMR will be given through specific examples which are mainly focused on temperature compensation and reducing anchor losses. This review will conclude with an assessment of the challenges and future trends of the CMR. Project supported by National Natural Science Foundation (Nos. 61274001, 61234007, 61504130), the Nurturing and Development Special Projects of Beijing Science and Technology Innovation Base's Financial Support (No. Z131103002813070), and the National Defense Science and Technology Innovation Fund of CAS (No. CXJJ-14-M32).

  11. Biogeography-inspired multiobjective optimization for helping MEMS synthesis

    Directory of Open Access Journals (Sweden)

    Di Barba Paolo

    2017-09-01

    Full Text Available The aim of the paper is to assess the applicability of a multi-objective biogeography-based optimisation algorithm in MEMS synthesis. In order to test the performances of the proposed method in this research field, the optimal shape design of an electrostatic micromotor, and two different electro-thermo-elastic microactuators are considered as the case studies.

  12. Microelectromechanical Systems (MEMS)

    Indian Academy of Sciences (India)

    As a field, Microelectromechanical Systems (MEMS) has matured over the last two decades to have several scientific journals dedicated to it. These journals are instrumental in bringing out the interdisciplinary nature of research that the field demands. In the beginning, most papers were process centric where realization of ...

  13. RF MEMS theory, design, and technology

    CERN Document Server

    Rebeiz, Gabriel M

    2003-01-01

    Ultrasmall Radio Frequency and Micro-wave Microelectromechanical systems (RF MEMs), such as switches, varactors, and phase shifters, exhibit nearly zero power consumption or loss. For this reason, they are being developed intensively by corporations worldwide for use in telecommunications equipment. This book acquaints readers with the basics of RF MEMs and describes how to design practical circuits and devices with them. The author, an acknowledged expert in the field, presents a range of real-world applications and shares many valuable tricks of the trade.

  14. Enabling technology for MEMS and nanodevices

    CERN Document Server

    Baltes, Henry; Fedder, Gary K; Hierold, Christofer; Korvink, Jan G; Tabata, Osamu

    2013-01-01

    This softcover edition of the eponymous volume from the successful ""Advanced Micro & Nanosystems"" series covers all aspects of fabrication of MEMS under CMOS-compatible conditions from design to implementation.It examines the various routes and methods to combine electronics generated by the CMOS technology with novel micromechanical parts into one-chip solutions. Various approaches, fundamental and technological aspects as well as strategies leading to different types of functionalities and presented in detail.For the practicing engineer as well as MSc and PhD students on MEMS cours

  15. Bimetallic nanoparticles for surface modification and lubrication of MEMS switch contacts

    International Nuclear Information System (INIS)

    Patton, Steven T; Hu Jianjun; Slocik, Joseph M; Campbell, Angela; Naik, Rajesh R; Voevodin, Andrey A

    2008-01-01

    Reliability continues to be a critical issue in microelectromechanical systems (MEMS) switches. Failure mechanisms include high contact resistance (R), high adhesion, melting/shorting, and contact erosion. Little previous work has addressed the lubrication of MEMS switches. In this study, bimetallic nanoparticles (NPs) are synthesized using a biotemplated approach and deposited on Au MEMS switch contacts as a nanoparticle-based lubricant. Bimetallic nanoparticles are comprised of a metallic core (∼10 nm diameter gold nanoparticle) with smaller metallic nanoparticles (∼2-3 nm diameter Pd nanoparticles) populating the core surface. Adhesion and resistance (R) were measured during hot switching experiments at low (10 μA) and high (1 mA) current. The Au/Pd NP coated contacts led to reduced adhesion as compared to pure Au contacts with a compromise of slightly higher R. For switches held in the closed position at low current, R gradually decreased over tens of seconds due to increased van der Waals force and growth of the real area of contact with temporal effects being dominant over load effects. Contact behavior transitioned from 'Pd-like' to 'Au-like' during low current cycling experiments. Melting at high current resulted in rapid formation of large real contact area, low and stable R, and minimal effect of load on R. Durability at high current was excellent with no failure through 10 6 hot switching cycles. Improvement at high current is due to controlled nanoscale surface roughness that spreads current through multiple nanocontacts, which restricts the size of melting regions and causes termination of nanowire growth (prevents shorting) during contact opening. Based on these results, bimetallic NPs show excellent potential as surface modifiers/lubricants for MEMS switch contacts

  16. From MEMS to nanomachine

    International Nuclear Information System (INIS)

    Esashi, Masayoshi; Ono, Takahito

    2005-01-01

    Practically applicable microelectromechanical systems (MEMS) and nanomachines have been developed by applying dry processes. Deep reactive ion etching (RIE) of silicon and its applications to an electrostatically levitated rotational gyroscope, a fibre optic blood pressure sensor and in micro-actuated probes are described. High density electrical feedthrough in glass is made using deep RIE of glass and electroplating of metal. Multi-probe data storage system has been developed using the high density electrical feedthrough in glass. Chemical vapour deposition (CVD) of different materials have been developed for MEMS applications; trench-refill using SiO 2 CVD, microstructures using Silicon carbide CVD for glass mold press and selective CVD of carbon nanotube for electron field emitter. Multi-column electron beam lithography system has been developed using the electron field emitter. (topical review)

  17. The Registration of Special Notarial Bonds under the Security by Means of Movable Property Act and the Publicity Principle: Lessons from Developments in Belgium

    Directory of Open Access Journals (Sweden)

    Lefa

    2018-01-01

    Full Text Available Many people do not own immovable property to offer as security but do have movable property which can be offered as security for the repayment of a debt. In today's world, where the costs of a motor car can exceed that of a house, the increasing value of movable things makes them popular and appropriate security objects. Under the common law pledge, delivery of the movable property from the pledgor (the debtor to the pledgee (the creditor has to take place in order for the pledgee to acquire a real security right in the property. Delivery of the property is aimed at ensuring compliance with the publicity principle. The principle of publicity entails that the existence of a real security must be known to the public. With the aim of promoting commerce, certain countries have taken the initiative in reforming their laws on pledge to allow the debtor to retain possession of the movable property that serves as security. Furthermore, technology has advanced to a level where national registration systems which can be accessed easily and at minimal cost can be established. The South African legislature enacted the Security by Means of Movable Property Act 57 of 1993 which makes provision for a pledge without possession. This Act deemed a duly registered notarial bond over specified movable property to have been delivered as if delivery had in fact taken place, thereby substituting the common law delivery requirement with registration in the Deeds Office. On 30 May 2013 the Belgian House of Representatives adopted a Belgian Pledge Act which allows for a non-possessory pledge on movable property subject to registration in a newly created public register called the Electronic Pledge Register. This article therefore examines the efficacy of the registration system of special notarial bonds in South African law and whether this form of registration complies with the publicity principle looking at the developments of a computerised registration system taking

  18. MEMS- and NEMS-based complex adaptive smart devices and systems

    Science.gov (United States)

    Varadan, Vijay K.

    2001-10-01

    The microelectronics industry has seen explosive growth during the last thirty years. Extremely large markets for logic and memory devices have driven the development of new materials, and technologies for the fabrication of even more complex devices with feature sizes now down at the sub micron and nanometer level. Recent interest has arisen in employing these materials, tools and technologies for the fabrication of miniature sensors and actuators and their integration with electronic circuits to produce smart devices and systems. This effort offers the promise of: 1) increasing the performance and manufacturability of both sensors and actuators by exploiting new batch fabrication processes developed including micro stereo lithographic and micro molding techniques; 2) developing novel classes of materials and mechanical structures not possible previously, such as diamond like carbon, silicon carbide and carbon nanotubes, micro-turbines and micro-engines; 3) development of technologies for the system level and wafer level integration of micro components at the nanometer precision, such as self-assembly techniques and robotic manipulation; 4) development of control and communication systems for MEMS devices, such as optical and RF wireless, and power delivery systems, etc. A novel composite structure can be tailored by functionalizing carbon nanotubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and mechanical-MEMS devices derived from this hybrid composite provide a new avenue for future smart systems.

  19. Characterization of Early Cortical Neural Network Development in Multiwell Microelectrode Array Plates

    Science.gov (United States)

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentiall...

  20. A versatile multi-user polyimide surface micromachinning process for MEMS applications

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2015-04-01

    This paper reports a versatile multi-user micro-fabrication process for MEMS devices, the \\'Polyimide MEMS Multi-User Process\\' (PiMMPs). The reported process uses polyimide as the structural material and three separate metallization layers that can be interconnected depending on the desired application. This process enables for the first time the development of out-of-plane compliant mechanisms that can be designed using six different physical principles for actuation and sensing on a wafer from a single fabrication run. These principles are electrostatic motion, thermal bimorph actuation, capacitive sensing, magnetic sensing, thermocouple-based sensing and radio frequency transmission and reception. © 2015 IEEE.