WorldWideScience

Sample records for membrane stress controllers

  1. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling.

    Science.gov (United States)

    Pottosin, Igor; Shabala, Sergey

    2014-01-01

    Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.

  2. Erythrocyte Membrane Failure by Electromechanical Stress

    Directory of Open Access Journals (Sweden)

    E Du

    2018-01-01

    Full Text Available We envision that electrodeformation of biological cells through dielectrophoresis as a new technique to elucidate the mechanistic details underlying membrane failure by electrical and mechanical stresses. Here we demonstrate the full control of cellular uniaxial deformation and tensile recovery in biological cells via amplitude-modified electric field at radio frequency by an interdigitated electrode array in microfluidics. Transient creep and cyclic experiments were performed on individually tracked human erythrocytes. Observations of the viscoelastic-to-viscoplastic deformation behavior and the localized plastic deformations in erythrocyte membranes suggest that electromechanical stress results in irreversible membrane failure. Examples of membrane failure can be separated into different groups according to the loading scenarios: mechanical stiffening, physical damage, morphological transformation from discocyte to echinocyte, and whole cell lysis. These results show that this technique can be potentially utilized to explore membrane failure in erythrocytes affected by other pathophysiological processes.

  3. Stress-Matched RF and Thermal Control Coatings for Membrane Antennas, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of multi-meter diameter radiofrequency (RF) antennas for NASA and DoD will have a significant impact of future space programs. Polymer membrane...

  4. Small RNAs controlling outer membrane porins

    DEFF Research Database (Denmark)

    Valentin-Hansen, Poul; Johansen, Jesper; Rasmussen, Anders A

    2007-01-01

    are key regulators of environmental stress. Recent work has revealed an intimate interplay between small RNA regulation of outer membrane proteins and the stress-induced sigmaE-signalling system, which has an essential role in the maintenance of the integrity of the outer membrane.......Gene regulation by small non-coding RNAs has been recognized as an important post-transcriptional regulatory mechanism for several years. In Gram-negative bacteria such as Escherichia coli and Salmonella, these RNAs control stress response and translation of outer membrane proteins and therefore...

  5. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed bBarley1[C][W

    DEFF Research Database (Denmark)

    Chen, Zhonghua; Pottosin, Igor I.; Cuin, Tracey A.

    2007-01-01

    are well combined to withstand saline conditions. These mechanisms include: (1) better control of membrane voltage so retaining a more negative membrane potential; (2) intrinsically higher H1 pump activity; (3) better ability of root cells to pump Na1 from the cytosol to the external medium; and (4) higher......Plant salinity tolerance is a polygenic trait with contributions from genetic, developmental, and physiological interactions, in addition to interactions between the plant and its environment. In this study, we show that in salt-tolerant genotypes of barley (Hordeum vulgare), multiple mechanisms...... of the cytosolic K1-to-Na1 ratio being a key determinant of plant salinity tolerance, and suggest multiple pathways of controlling that important feature in salt-tolerant plants....

  6. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  7. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jü rgen; Khashab, Niveen M.; Zaher, Amir

    2013-01-01

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  8. Salt stress induced ion accumulation, ion homeostasis, membrane ...

    African Journals Online (AJOL)

    Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice ( Oryza sativa L. spp. indica ) roots under isoosmotic conditions. ... The accumulation of sugars in PT1 roots may be a primary salt-defense mechanism and may function as an osmotic control. Key words: ...

  9. Nanoengineered membranes for controlled transport

    Science.gov (United States)

    Doktycz, Mitchel J [Oak Ridge, TN; Simpson, Michael L [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Melechko, Anatoli V [Oak Ridge, TN; Lowndes, Douglas H [Knoxville, TN; Guillorn, Michael A [Knoxville, TN; Merkulov, Vladimir I [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  10. Quality control of Photosystem II: the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids

    Directory of Open Access Journals (Sweden)

    Yasusi Yamamoto

    2016-08-01

    Full Text Available When oxygenic photosynthetic organisms are exposed to excessive light and/or heat, Photosystem II is damaged and electron transport is blocked. In these events, reactive oxygen species, endogenous radicals and lipid peroxidation products generated by photochemical reaction and/or heat cause the damage. Regarding light stress, plants first dissipate excessive light energy captured by light-harvesting chlorophyll protein complexes as heat to avoid the hazards, but once light stress is unavoidable, they tolerate the stress by concentrating damage in a particular protein in photosystem II, i.e. the reaction-center binding D1 protein of Photosystem II. The damaged D1 is removed by specific proteases and replaced with a new copy produced through de novo synthesis (reversible photoinhibition. When light intensity becomes extremely high, irreversible aggregation of D1 occurs and thereby D1 turnover is prevented. Once the aggregated products accumulate in Photosystem II complexes, removal of them by proteases is difficult, and irreversible inhibition of Photosystem II takes place (irreversible photoinhibition. Important is that various aspects of both the reversible and irreversible photoinhibition are highly dependent on the membrane fluidity of the thylakoids. Heat stress-induced inactivation of photosystem II is an irreversible process, which may be also affected by the fluidity of the thylakoid membranes. Here I describe why the membrane fluidity is a key to regulate the avoidance and tolerance of Photosystem II on environmental stresses.

  11. Membrane Stored Curvature Elastic Stress Modulates Recruitment of Maintenance Proteins PspA and Vipp1.

    Science.gov (United States)

    McDonald, Christopher; Jovanovic, Goran; Ces, Oscar; Buck, Martin

    2015-09-01

    Phage shock protein A (PspA), which is responsible for maintaining inner membrane integrity under stress in enterobacteria, and vesicle-inducting protein in plastids 1 (Vipp1), which functions for membrane maintenance and thylakoid biogenesis in cyanobacteria and plants, are similar peripheral membrane-binding proteins. Their homologous N-terminal amphipathic helices are required for membrane binding; however, the membrane features recognized and required for expressing their functionalities have remained largely uncharacterized. Rigorously controlled, in vitro methodologies with lipid vesicles and purified proteins were used in this study and provided the first biochemical and biophysical characterizations of membrane binding by PspA and Vipp1. Both proteins are found to sense stored curvature elastic (SCE) stress and anionic lipids within the membrane. PspA has an enhanced sensitivity for SCE stress and a higher affinity for the membrane than Vipp1. These variations in binding may be crucial for some of the proteins' differing roles in vivo. Assays probing the transcriptional regulatory function of PspA in the presence of vesicles showed that a relief of transcription inhibition occurs in an SCE stress-specific manner. This in vitro recapitulation of membrane stress-dependent transcription control suggests that the Psp response may be mounted in vivo when a cell's inner membrane experiences increased SCE stress. All cell types maintain the integrity of their membrane systems. One widely distributed membrane stress response system in bacteria is the phage shock protein (Psp) system. The central component, peripheral membrane protein PspA, which mitigates inner membrane stress in bacteria, has a counterpart, Vipp1, which functions for membrane maintenance and thylakoid biogenesis in plants and photosynthetic bacteria. Membrane association of both these proteins is accepted as playing a pivotal role in their functions. Here we show that direct membrane binding by

  12. Water stress induced changes in antioxidant enzymes, membrane ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... membrane stability index occurred under water stress. Accession 320 ... yielding wheat varieties for areas affected by water stress. (Mujtaba ...... Peroxidase activity in golden delicious apples as a ... Food Chem. 24: 200-201.

  13. design of ceramic membrane supports: permeability, tensile strength and stress

    NARCIS (Netherlands)

    Biesheuvel, Pieter Maarten; Biesheuvel, P.M.; Verweij, H.

    1999-01-01

    A membrane support provides mechanical strength to a membrane top layer to withstand the stress induced by the pressure difference applied over the entire membrane and must simultaneously have a low resistance to the filtrate flow. In this paper an experimental and a theoretical approach toward the

  14. Lactobacillus casei combats acid stress by maintaining cell membrane functionality.

    Science.gov (United States)

    Wu, Chongde; Zhang, Juan; Wang, Miao; Du, Guocheng; Chen, Jian

    2012-07-01

    Lactobacillus casei strains have traditionally been recognized as probiotics and frequently used as adjunct culture in fermented dairy products where lactic acid stress is a frequently encountered environmental condition. We have investigated the effect of lactic acid stress on the cell membrane of L. casei Zhang [wild type (WT)] and its acid-resistant mutant Lbz-2. Both strains were grown under glucose-limiting conditions in chemostats; following challenge by low pH, the cell membrane stress responses were investigated. In response to acid stress, cell membrane fluidity decreased and its fatty acid composition changed to reduce the damage caused by lactic acid. Compared with the WT, the acid-resistant mutant exhibited numerous survival advantages, such as higher membrane fluidity, higher proportions of unsaturated fatty acids, and higher mean chain length. In addition, cell integrity analysis showed that the mutant maintained a more intact cellular structure and lower membrane permeability after environmental acidification. These results indicate that alteration in membrane fluidity, fatty acid distribution, and cell integrity are common mechanisms utilized by L. casei to withstand severe acidification and to reduce the deleterious effect of lactic acid on the cell membrane. This detailed comparison of cell membrane responses between the WT and mutant add to our knowledge of the acid stress adaptation and thus enable new strategies to be developed aimed at improving the industrial performance of this species under acid stress.

  15. Effect of saline stress on plasma membrane structure and function of barley roots

    International Nuclear Information System (INIS)

    Rahmani, F. H.

    2000-01-01

    Barely (Hordeum vulgare L. c v. Black Local) plants were grown hydroponic ally under different saline stresses (50, 100, 150 And 200 mm NaCI. The adverse effect of each saline stress on the structure and function of root cells plasma membrane was studied in terms of root surface ATPase activation by NaCI in the reaction mixture. Was 0, 50, 100. 150 and 200mM. ATPase activity was found to be increased gradually at certain concentrations of NaCI. For control and 50mM stressed plants, the increase in root surface ATPase activity was started at 150mM NaCI. For 100mM stressed plants it was started at 100mM NaCI. For 150 and 200mM stressed plants it was stated at 50mM NaCI Results indicated that the adverse effect of the growth medium saline stresses on the integrity of the plasma membrane was started at 100mM saline stress. Accordingly the role of plasma membrane bound ATPase in active ion transport was disturbed at 100mM saline stress and may be impaired at 150 and 200mM saline stresses. It was suggested that the lipid environment of the plasma membrane surrounding ATPase was modified by the saline stresses 100-200mM. (author). 38 refs., 2 figs., 2 tabs

  16. Anionic lipids and the cytoskeletal proteins MreB and RodZ define the spatio-temporal distribution and function of membrane stress controller PspA in Escherichia coli.

    Science.gov (United States)

    Jovanovic, Goran; Mehta, Parul; Ying, Liming; Buck, Martin

    2014-11-01

    All cell types must maintain the integrity of their membranes. The conserved bacterial membrane-associated protein PspA is a major effector acting upon extracytoplasmic stress and is implicated in protection of the inner membrane of pathogens, formation of biofilms and multi-drug-resistant persister cells. PspA and its homologues in Gram-positive bacteria and archaea protect the cell envelope whilst also supporting thylakoid biogenesis in cyanobacteria and higher plants. In enterobacteria, PspA is a dual function protein negatively regulating the Psp system in the absence of stress and acting as an effector of membrane integrity upon stress. We show that in Escherichia coli the low-order oligomeric PspA regulatory complex associates with cardiolipin-rich, curved polar inner membrane regions. There, cardiolipin and the flotillin 1 homologue YqiK support the PspBC sensors in transducing a membrane stress signal to the PspA-PspF inhibitory complex. After stress perception, PspA high-order oligomeric effector complexes initially assemble in polar membrane regions. Subsequently, the discrete spatial distribution and dynamics of PspA effector(s) in lateral membrane regions depend on the actin homologue MreB and the peptidoglycan machinery protein RodZ. The consequences of loss of cytoplasmic membrane anionic lipids, MreB, RodZ and/or YqiK suggest that the mode of action of the PspA effector is closely associated with cell envelope organization. © 2014 The Authors.

  17. Performance Improvement of Membrane Stress Measurement Equipment through Evaluation of Added Mass of Membrane and Error Correction

    Directory of Open Access Journals (Sweden)

    Sang-Wook Jin

    2017-01-01

    Full Text Available One of the most important issues in keeping membrane structures in stable condition is to maintain the proper stress distribution over the membrane. However, it is difficult to determine the quantitative real stress level in the membrane after the completion of the structure. The stress relaxation phenomenon of the membrane and the fluttering effect due to strong wind or ponding caused by precipitation may cause severe damage to the membrane structure itself. Therefore, it is very important to know the magnitude of the existing stress in membrane structures for their maintenance. The authors have proposed a new method for separately estimating the membrane stress in two different directions using sound waves instead of directly measuring the membrane stress. The new method utilizes the resonance phenomenon of the membrane, which is induced by sound excitations given through an audio speaker. During such experiment, the effect of the surrounding air on the vibrating membrane cannot be overlooked in order to assure high measurement precision. In this paper, an evaluation scheme for the added mass of membrane with the effect of air on the vibrating membrane and the correction of measurement error is discussed. In addition, three types of membrane materials are used in the experiment in order to verify the expandability and accuracy of the membrane measurement equipment.

  18. Controlling the shape of membrane protein polyhedra

    Science.gov (United States)

    Li, Di; Kahraman, Osman; Haselwandter, Christoph A.

    2017-03-01

    Membrane proteins and lipids can self-assemble into membrane protein polyhedral nanoparticles (MPPNs). MPPNs have a closed spherical surface and a polyhedral protein arrangement, and may offer a new route for structure determination of membrane proteins and targeted drug delivery. We develop here a general analytic model of how MPPN self-assembly depends on bilayer-protein interactions and lipid bilayer mechanical properties. We find that the bilayer-protein hydrophobic thickness mismatch is a key molecular control parameter for MPPN shape that can be used to bias MPPN self-assembly towards highly symmetric and uniform MPPN shapes. Our results suggest strategies for optimizing MPPN shape for structural studies of membrane proteins and targeted drug delivery.

  19. Water stress induced changes in antioxidant enzymes, membrane ...

    African Journals Online (AJOL)

    Water stress induced changes in antioxidant enzymes membrane stablity index and seed protein profiling of four different wheat (Triticum aestivum L.) accessions (011251, 011417, 011320 and 011393) were determined in a pot study under natural condition during the wheat-growing season 2005 and 2006. Sampling was ...

  20. Mechanisms of ER Stress-Mediated Mitochondrial Membrane Permeabilization.

    LENUS (Irish Health Repository)

    Gupta, Sanjeev

    2010-01-01

    During apoptosis, the process of mitochondrial outer membrane permeabilization (MOMP) represents a point-of-no-return as it commits the cell to death. Here we have assessed the role of caspases, Bcl-2 family members and the mitochondrial permeability transition pore on ER stress-induced MOMP and subsequent cell death. Induction of ER stress leads to upregulation of several genes such as Grp78, Edem1, Erp72, Atf4, Wars, Herp, p58ipk, and ERdj4 and leads to caspase activation, release of mitochondrial intermembrane proteins and dissipation of mitochondrial transmembrane potential (DeltaPsim). Mouse embryonic fibroblasts (MEFs) from caspase-9, -2 and, -3 knock-out mice were resistant to ER stress-induced apoptosis which correlated with decreased processing of pro-caspase-3 and -9. Furthermore, pretreatment of cells with caspase inhibitors (Boc-D.fmk and DEVD.fmk) attenuated ER stress-induced loss of DeltaPsim. However, only deficiency of caspase-9 and -2 could prevent ER stress-mediated loss of DeltaPsim. Bcl-2 overexpression or pretreatment of cells with the cell permeable BH4 domain (BH4-Tat) or the mitochondrial permeability transition pore inhibitors, bongkrekic acid or cyclosporine A, attenuated the ER stress-induced loss of DeltaPsim. These data suggest a role for caspase-9 and -2, Bcl-2 family members and the mitochondrial permeability transition pore in loss of mitochondrial membrane potential during ER stress-induced apoptosis.

  1. Control of distributed heat transfer mechanisms in membrane distillation plants

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Eleiwi, Fadi; Karam, Ayman M.

    2017-01-01

    Various examples are provided that are related to boundary control in membrane distillation (MD) processes. In one example, a system includes a membrane distillation (MD) process comprising a feed side and a permeate side separated by a membrane

  2. SAXS investigations on lipid membranes under osmotic stress

    Energy Technology Data Exchange (ETDEWEB)

    Rubim, R.L.; Vieira, V.; Gerbelli, B.B.; Teixeira da Silva, E.R.; Oliveira, C.L.P.; Oliveira, E.A. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil)

    2012-07-01

    Full text: In this work we, experimentally, investigate the interactions between lipid bilayers. A structural characterization is performed by small angle x-ray scattering (SAXS) on multilamellar systems under known osmotic pressure. Changes in the composition of membranes can modify their mechanical properties and structural parameters, like the flexibility of these membranes, which plays a key role on the determination of the tridimensional organization of bilayers. The membranes are composed of soya lecithin, where the major component is DPPC (Dipalmitoylphosphatidylcholine), and fatty acids are incorporated to the membrane in different concentrations, in order to turn the membrane more fluid. The membranes are inserted in a solution of PVP [poly(vinyl-pyrrolidone) - 40000] and the polymer will apply an osmotic pressure on them. The osmotic pressure is controlled by preparing PVP solutions of desired composition and, as we know the concentration of polymer in solution, we can obtain the intensity of the osmotic pressure. SAXS experiments were done in order to determine the distance between the bilayer. From the position of the Bragg peaks, the lamellar periodicity (the thickness of the membranes plus their distance of separation) was determined. Using theoretical model for the form and structure factors we fitted those experimental data and determined the thickness of the membranes. The distance between the membranes was controlled by the osmotic pressure (P) applied to the membranes and, for a given pressure, we determine the distance between the bilayers (a) on equilibrium. The experimental curve P(a) is theoretically described by the different contributions from van der Waals, hydration and fluctuation forces. From the fitting of experimental curves, relevant parameters characterizing the strength of the different interactions are obtained, such as Hamaker and rigidity constant [2, 3]. We observe that the separation between the bilayers on equilibrium is

  3. Thermal stability of nafion membranes under mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Quintilii, M; Struis, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The feasibility of adequately modified fluoro-ionomer membranes (NAFION{sup R}) is demonstrated for the selective separation of methanol synthesis products from the raw reactor gas at temperatures around 200{sup o}C. For an economically relevant application of this concept on a technical scale the Nafion membranes should be thin ({approx_equal}10 {mu}m) and thermally stable over a long period of time (1-2 years). In cooperation with industry (Methanol Casale SA, Lugano (CH)), we test the thermal stability of Nafion hollow fibers and supported Nafion thin sheet membranes at temperatures between 160 and 200{sup o}C under mechanical stress by applying a gas pressure difference over the membrane surface ({Delta}P{<=} 40 bar). Tests with the hollow fibers revealed that Nafion has visco-elastic properties. Tests with 50 {mu}m thin Nafion sheets supported by a porous metal carrier at 200{sup o}C and {Delta}P=39 bar showed no mechanical defects over a period of 92 days. (author) 5 figs., 4 refs.

  4. Aberrant accumulation of the diabetes autoantigen GAD65 in Golgi membranes in conditions of ER stress and autoimmunity

    DEFF Research Database (Denmark)

    Phelps, Edward A; Cianciaruso, Chiara; Michael, Iacovos P

    2016-01-01

    Pancreatic islet beta cells are particularly susceptible to endoplasmic reticulum (ER) stress, which is implicated in beta cell dysfunction and loss during the pathogenesis of type 1 diabetes (T1D). The peripheral membrane protein GAD65 is an autoantigen in human T1D. GAD65 synthesizes GABA......, an important autocrine and paracrine signaling molecule and a survival factor in islets. We show that ER stress in primary beta cells perturbs the palmitoylation cycle controlling GAD65 endomembrane distribution, resulting in aberrant accumulation of the palmitoylated form in trans-Golgi membranes...... release from stressed and/or damaged beta cells, triggering autoimmunity....

  5. Analysis of Shear Stress and Energy Consumption in a Tubular Airlift Membrane System

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Chan, C.C.V.; Berube, P.R.

    2011-01-01

    of fouling by imposing high shear stress near the surface of the membrane. Previously, shear stress histograms (SSH) have been introduced to summarize results from an experimental setup developed to investigate the shear stress imposed on the surface of a membrane under different two-phase flow conditions...

  6. The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network.

    Science.gov (United States)

    Thibault, Guillaume; Shui, Guanghou; Kim, Woong; McAlister, Graeme C; Ismail, Nurzian; Gygi, Steven P; Wenk, Markus R; Ng, Davis T W

    2012-10-12

    Lipid composition can differ widely among organelles and even between leaflets of a membrane. Lipid homeostasis is critical because disequilibrium can have disease outcomes. Despite their importance, mechanisms maintaining lipid homeostasis remain poorly understood. Here, we establish a model system to study the global effects of lipid imbalance. Quantitative lipid profiling was integral to monitor changes to lipid composition and for system validation. Applying global transcriptional and proteomic analyses, a dramatically altered biochemical landscape was revealed from adaptive cells. The resulting composite regulation we term the "membrane stress response" (MSR) confers compensation, not through restoration of lipid composition, but by remodeling the protein homeostasis network. To validate its physiological significance, we analyzed the unfolded protein response (UPR), one facet of the MSR and a key regulator of protein homeostasis. We demonstrate that the UPR maintains protein biogenesis, quality control, and membrane integrity-functions otherwise lethally compromised in lipid dysregulated cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Membrane curvature stress and antibacterial activity of lactoferricin derivatives.

    Science.gov (United States)

    Zweytick, Dagmar; Tumer, Sabine; Blondelle, Sylvie E; Lohner, Karl

    2008-05-02

    We have studied correlation of non-lamellar phase formation and antimicrobial activity of two cationic amphipathic peptides, termed VS1-13 and VS1-24 derived from a fragment (LF11) of human lactoferricin on Escherichia coli total lipid extracts. Compared to LF11, VS1-13 exhibits minor, but VS1-24 significantly higher antimicrobial activity. X-ray experiments demonstrated that only VS1-24 decreased the onset of cubic phase formation of dispersions of E. coli lipid extracts, significantly, down to physiological relevant temperatures. Cubic structures were identified to belong to the space groups Pn3m and Im3m. Formation of latter is enhanced in the presence of VS1-24. Additionally, the presence of this peptide caused membrane thinning in the fluid phase, which may promote cubic phase formation. VS1-24 containing a larger hydrophobic volume at the N-terminus than its less active counterpart VS1-13 seems to increase curvature stress in the bilayer and alter the behaviour of the membrane significantly enhancing disruption.

  8. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    DEFF Research Database (Denmark)

    La Rocca, Rosanna; Tallerico, Rossana; Hassan, Almosawy Talib

    2014-01-01

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were...... treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells...... between 700–1800 cm-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased...

  9. Control of distributed heat transfer mechanisms in membrane distillation plants

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-01-05

    Various examples are provided that are related to boundary control in membrane distillation (MD) processes. In one example, a system includes a membrane distillation (MD) process comprising a feed side and a permeate side separated by a membrane boundary layer; and processing circuitry configured to control a water production rate of the MD process based at least in part upon a distributed heat transfer across the membrane boundary layer. In another example, a method includes determining a plurality of estimated temperature states of a membrane boundary layer separating a feed side and a permeate side of a membrane distillation (MD) process; and adjusting inlet flow rate or inlet temperature of at least one of the feed side or the permeate side to maintain a difference temperature along the membrane boundary layer about a defined reference temperature based at least in part upon the plurality of estimated temperature states.

  10. Membrane morphology and topology for fouling control in Reverse Osmosis filtration systems

    Science.gov (United States)

    Ling, Bowen; Battiato, Ilenia

    2017-11-01

    Reverse Osmosis Membrane (ROM) filtration systems are widely utilized in waste-water recovery, seawater desalination, landfill water treatment, etc. During filtration, the system performance is dramatically affected by membrane fouling which causes a significant decrease in permeate flux as well as an increase in the energy input required to operate the system. Design and optimization of ROM filtration systems aim at reducing membrane fouling by studying the coupling between membrane structure, local flow field and foulant adsorption patterns. Yet, current studies focus exclusively on oversimplified steady-state models that ignore any dynamic coupling between fluid flow and transport through the membrane. In this work, we develop a customized solver (SUMembraneFoam) under OpenFOAM to solve the transient equations. The simulation results not only predict macroscopic quantities (e.g. permeate flux, pressure drop, etc.) but also show an excellent agreement with the fouling patterns observed in experiments. It is observed that foulant deposition is strongly controlled by the local shear stress on the membrane, and channel morphology or membrane topology can be modified to control the shear stress distribution and reduce fouling. Finally, we identify optimal regimes for design.

  11. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L

    2009-01-01

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch...... was not affected by membrane stretch. The results indicate that (1) activation of BK channels by local membrane stretch is not mimicked by membrane stress induced by cell swelling, and (2) activation of KCNQ1 channels by cell volume increase is not mediated by local tension in the cell membrane. We conclude....... To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current...

  12. Does Chlorination of Seawater Reverse Osmosis Membranes Control Biofouling?

    KAUST Repository

    Khan, Muhammad Tariq; Hong, Pei-Ying; Nada, Nabil; Croue, Jean Philippe

    2015-01-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full–scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.

  13. Does Chlorination of Seawater Reverse Osmosis Membranes Control Biofouling?

    KAUST Repository

    Khan, Muhammad Tariq

    2015-04-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full–scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.

  14. Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells

    NARCIS (Netherlands)

    Silveira, da M.G.; Golovina, E.A.; Hoekstra, F.A.; Rombouts, F.M.; Abee, T.

    2003-01-01

    The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells.

  15. Effects of drought stress on growth, solute accumulation and membrane stability of leafy vegetable, huckleberry (Solanum scabrum Mill.).

    Science.gov (United States)

    Assaha, Dekoum Vincent Marius; Liu, Liyun; Ueda, Akihiro; Nagaoka, Toshinori; Saneoka, Hirofumi

    2016-01-01

    The present study sought to investigate the factors implicated in growth impairment of huckleberry (a leafy vegetable) under water stress conditions. To achieve this, seedlings of plant were subjected to control, mild stress and severe stress conditions for 30 days. Plant growth, plant water relation, gas exchange, oxidative stress damage, electrolyte leakage rate, mineral content and osmolyte accumulation were measured. Water deficit markedly decreased leaf, stem and root growth. Leaf photosynthetic rate was tremendously reduced by decrease in stomatal conductance under stress conditions. Malondialdehyde (MDA) content markedly increased under mild (82%) and severe (131%) stress conditions, while electrolyte leakage rate (ELR) increased by 59% under mild stress and 3-fold under severe stress. Mineral content in leafwas high in stressed plants, while proline content markedly increased under mild stress (12-fold) and severe stress (15-fold), with corresponding decrease in osmotic potential at full turgor and an increase in osmotic adjustment. These results suggest that maintenance of high mineral content and osmotic adjustment constitute important adaptations in huckleberry under water deficit conditions and that growth depression under drought stress would be mainly caused by increased electrolyte leakage resulting from membrane damage induced by oxidative stress.

  16. In Vivo Perturbation of Membrane-Associated Calcium by Freeze-Thaw Stress in Onion Bulb Cells 1

    Science.gov (United States)

    Arora, Rajeev; Palta, Jiwan P.

    1988-01-01

    Incipient freeze-thaw stress in onion bulb scale tissue is known to cause enhanced efflux of K+, along with small but significant loss of cellular Ca2+. During the post-thaw period, irreversibly injured cells undergo a cytological aberration, namely, `protoplasmic swelling.' This cellular symptom is thought to be caused by replacement of Ca2+ from membrane by extracellular K+ and subsequent perturbation of K+ transport properties of plasma membrane. In the present study, onion (Allium cepa L. cv Sweet Sandwich) bulbs were slowly frozen to either −8.5°C or −11.5°C and thawed over ice. Inner epidermal peels from bulb scales were treated with fluorescein diacetate for assessing viability. In these cells, membrane-associated calcium was determined using chlorotetracycline fluorescence microscopy combined with image analysis. Increased freezing stress and tissue infiltration (visual water-soaking) were paralleled by increased ion leakage. Freezing injury (−11.5°C; irreversible) caused a specific and substantial loss of membrane-associated Ca2+ compared to control. Loss of membrane-associated Ca2+ caused by moderate stress (−8.5°C; reversible) was much less relative to −11.5°C treatment. Ion efflux and Ca2+-chlorotetracycline fluorescence showed a negative relationship. Extracellular KCl treatment simulated freeze-thaw stress by causing a similar loss of membrane-associated calcium. This loss was dramatically reduced by presence of extracellular CaCl2. Our results suggest that the loss of membrane-associated Ca2+, in part, plays a role in initiation and progression of freezing injury. Images Fig. 1 Fig. 2 PMID:16666196

  17. Vitamin E supplementation protects erythrocyte membranes from oxidative stress in healthy Chinese middle-aged and elderly people.

    Science.gov (United States)

    Sun, Yongye; Ma, Aiguo; Li, Yong; Han, Xiuxia; Wang, Qiuzhen; Liang, Hui

    2012-05-01

    Elderly people are subject to higher levels of oxidative stress than are young people. Vitamin E, as a powerful antioxidant residing mainly in biomembranes, may provide effective protection against oxidative membrane damage and resultant age-related deterioration, especially in the elderly. We hypothesized that appropriate levels of vitamin E supplementation would protect erythrocyte membranes from oxidative stress and thus improve membrane fluidity in healthy middle-aged and elderly people. To test this, we conducted a 4-month double-blind, randomized trial in which 180 healthy subjects (55-70 years old) were randomly divided into 4 groups: group C (control), and 3 treatment groups in which daily doses of 100 mg (VE1), 200 mg (VE2), and 300 mg (VE3) dl-α-tocopheryl acetate were administered. We measured plasma α-tocopherol concentration, malondialdehyde, and superoxide dismutase levels, erythrocyte hemolysis, and erythrocyte membrane fluidity at the beginning and end of the trial. After 4 months supplementation, plasma α-tocopherol concentrations in the 3 treatment groups had increased by 71%, 78%, and 95%, respectively (all P stress in healthy middle-aged to elderly people, at least in part by improving erythrocyte membrane fluidity and reducing erythrocyte hemolysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Controlled release of curcumin from poly(HEMA-MAPA) membrane.

    Science.gov (United States)

    Caka, Müşerref; Türkcan, Ceren; Aktaş Uygun, Deniz; Uygun, Murat; Akgöl, Sinan; Denizli, Adil

    2017-05-01

    In this work, poly(HEMA-MAPA) membranes were prepared by UV-polymerization technique. These membranes were characterized by SEM, FTIR, and swelling studies. Synthesized membranes had high porous structure. These membranes were used for controlled release of curcumin which is already used as folk remedy and used as drug for some certain diseases and cancers. Curcumin release was investigated for various pHs and temperatures. Optimum drug release yield was found to be as 70% at pH 7.4 and 37 °C within 2 h period. Time-depended release of curcumin was also investigated and its slow release from the membrane demonstrated within 48 h.

  19. Stress analysis and fail-safe design of bilayered tubular supported ceramic membranes

    DEFF Research Database (Denmark)

    Kwok, Kawai; Frandsen, Henrik Lund; Søgaard, Martin

    2014-01-01

    . Stress distributions in two membrane systems have been analyzed and routes to minimize stress are proposed. For a Ba0.5Sr0.5Co0.8Fe0.2O3−δBa0.5Sr0.5Co0.8Fe0.2O3−δ membrane supported on a porous substrate of the same material under pressure-vacuum operation, the optimal configuration in terms...... for both membrane systems at operating conditions in the range of practical interest....

  20. Chemically triggered ejection of membrane tubules controlled by intermonolayer friction.

    Science.gov (United States)

    Fournier, J-B; Khalifat, N; Puff, N; Angelova, M I

    2009-01-09

    We report a chemically driven membrane shape instability that triggers the ejection of a tubule growing exponentially toward a chemical source. The instability is initiated by a dilation of the exposed monolayer, which is coupled to the membrane spontaneous curvature and slowed down by intermonolayer friction. Our experiments are performed by local delivery of a basic pH solution to a giant vesicle. Quantitative fits of the data give an intermonolayer friction coefficient b approximately 2x10;{9} J s/m;{4}. The exponential growth of the tubule may be explained by a Marangoni stress yielding a pulling force proportional to its length.

  1. Biofilm formation on membranes used for membrane aerated biological reactors, under different stress conditions

    International Nuclear Information System (INIS)

    Andrade-Molinar, C.; Ballinas-Casarrubias, M. L.; Solis-Martinez, F. J.; Rivera-Chavira, B. E.; Cuevas-Rodirguez, G.; Nevarez-Moorillon, G. V.

    2009-01-01

    Bacterial biofilm play an important role in wastewater treatment processes, and have been optimized in the membrane aerated biofilm reactors (MABR). In MABR, a hydrophobic membrane is used as support for the formation of biofilm, and supplements enough aeration to assure an aerobic process. (Author)

  2. Nanomaterials for membrane fouling control: accomplishments and challenges.

    Science.gov (United States)

    Yang, Qian; Mi, Baoxia

    2013-11-01

    We report a review of recent research efforts on incorporating nanomaterials-including metal/metal oxide nanoparticles, carbon-based nanomaterials, and polymeric nanomaterials-into/onto membranes to improve membrane antifouling properties in biomedical or potentially medical-related applications. In general, nanomaterials can be incorporated into/onto a membrane by blending them into membrane fabricating materials or by attaching them to membrane surfaces via physical or chemical approaches. Overall, the fascinating, multifaceted properties (eg, high hydrophilicity, superparamagnetic properties, antibacterial properties, amenable functionality, strong hydration capability) of nanomaterials provide numerous novel strategies and unprecedented opportunities to fully mitigate membrane fouling. However, there are still challenges in achieving a broader adoption of nanomaterials in the membrane processes used for biomedical applications. Most of these challenges arise from the concerns over their long-term antifouling performance, hemocompatibility, and toxicity toward humans. Therefore, rigorous investigation is still needed before the adoption of some of these nanomaterials in biomedical applications, especially for those nanomaterials proposed to be used in the human body or in contact with living tissue/body fluids for a long period of time. Nevertheless, it is reasonable to predict that the service lifetime of membrane-based biomedical devices and implants will be prolonged significantly with the adoption of appropriate fouling control strategies. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  3. Features of heat stress control

    International Nuclear Information System (INIS)

    Bernard, T.E.

    1989-01-01

    Heat stress is caused by hot environments and physical demands of work. It is further complicated by protective clothing requirements commonly found in the nuclear power industry. The resulting physiological strain is reflected in increased sweating, heart rate and body temperature. Uncontrolled exposures to heat stress will lead to decreased personnel performance and increased risk of accidents and heat disorders. The article describes major heat disorders, a method of heat stress evaluation, and some basic interventions to reduce the stress and strain of working in the heat

  4. Hydrogen concentration control utilizing a hydrogen permeable membrane

    International Nuclear Information System (INIS)

    Keating, S.J. Jr.

    1976-01-01

    The concentration of hydrogen in a fluid mixture is controlled to a desired concentration by flowing the fluid through one chamber of a diffusion cell separated into two chambers by a hydrogen permeable membrane. A gradient of hydrogen partial pressure is maintained across the membrane to cause diffusion of hydrogen through the membrane to maintain the concentration of hydrogen in the fluid mixture at the predetermined level. The invention has particular utility for the purpose of injecting into and/or separating hydrogen from the reactor coolant of a nuclear reactor system

  5. Minimizing stress in large-area surface micromachined perforated membranes with slits

    International Nuclear Information System (INIS)

    Ghaderi, M; Ayerden, N P; De Graaf, G; Wolffenbuttel, R F

    2015-01-01

    This paper presents the effectiveness of both design and fabrication techniques for avoiding the rupturing or excessive bending of perforated membranes after release in surface micromachining. Special lateral designs of arrays of slits in the membrane were investigated for a maximum yield at a given level of residual stress. Process parameters were investigated and optimized for minimum residual stress in multilayer thin-film membranes. A 2 µm thick sacrificial TEOS layer and a structural membrane that is composed of silicon nitride and polysilicon layers in the stack is the basis of this study. The effect of sharp corners on the local stress in membranes was investigated, and structures are proposed that reduce these effects, maximizing the yield at a given level of residual stress. The effects of perforation and slits were studied both theoretically and using finite element analysis. While the overall effect of perforation is negligible in typical MEMS structures, an optimum design for the slits reduces the von Mises stress considerably as compared to sharp corners. The fabrication process was also investigated and optimized for the minimum residual stress of both the layers within the stack and the complete layer stack. The main emphasis of this work is on placing a stress-compensating layer on the wafer backside and simultaneously removing it during the surface micromachining, as this has been found to be the most effective method to reduce the overall stress in a stack of layers after sacrificial etching. Implementation of a stress compensating layer reduced the total residual stress from 200 MPa compressive into almost 60 MPa, tensile. Even though a particular structure was studied here, the employed methods are expected to be applicable to similar MEMS design problems. (paper)

  6. Thermal stress mitigation by Active Thermal Control

    DEFF Research Database (Denmark)

    Soldati, Alessandro; Dossena, Fabrizio; Pietrini, Giorgio

    2017-01-01

    This work proposes an Active Thermal Control (ATC) of power switches. Leveraging on the fact that thermal stress has wide impact on the system reliability, controlling thermal transients is supposed to lengthen the lifetime of electronic conversion systems. Indeed in some environments...... results of control schemes are presented, together with evaluation of the proposed loss models. Experimental proof of the ability of the proposed control to reduce thermal swing and related stress on the device is presented, too....

  7. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Rütgers, Mark; Muranaka, Ligia Segatto; Schulz-Raffelt, Miriam; Thoms, Sylvia; Schurig, Juliane; Willmund, Felix; Schroda, Michael

    2017-12-01

    A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat-stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat-induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat-induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered. © 2017 John Wiley & Sons Ltd.

  8. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    KAUST Repository

    La Rocca, Rosanna

    2014-12-26

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700–1800 cm−1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.

  9. Mechanical stress downregulates MHC class I expression on human cancer cell membrane.

    Directory of Open Access Journals (Sweden)

    Rosanna La Rocca

    Full Text Available In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal, depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700-1800 cm(-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK cells cytotoxic recognition.

  10. Assessments of lysosomal membrane responses to stresses with ...

    African Journals Online (AJOL)

    In marine bivalves, it has been demonstrated that their lysosomal membrane stability are very susceptible to many internal and external environmental changes and this physiological response can be quantified by the neutral red retention (NRR) assay. This assay has been applied in many recent studies in the areas of ...

  11. Glass Membrane For Controlled Diffusion Of Gases

    Science.gov (United States)

    Shelby, James E.; Kenyon, Brian E.

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  12. Ultrasonic control of ceramic membrane fouling: Effect of particle characteristics.

    Science.gov (United States)

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-02-01

    In this study, the effect of particle characteristics on the ultrasonic control of membrane fouling was investigated. Ultrasound at 20 kHz was applied to a cross-flow filtration system with gamma-alumina membranes in the presence of colloidal silica particles. Experimental results indicated that particle concentration affected the ability of ultrasound to control membrane fouling, with less effective control of fouling at higher particle concentrations. Measurements of sound wave intensity and images of the cavitation region indicated that particles induced additional cavitation bubbles near the ultrasonic source, which resulted in less turbulence reaching the membrane surface and subsequently less effective control of fouling. When silica particles were modified to be hydrophobic, greater inducement of cavitation bubbles near the ultrasonic source occurred for a fixed concentration, also resulting in less effective control of fouling. Particle size influenced the cleaning ability of ultrasound, with better permeate recovery observed with larger particles. Particle size did not affect sound wave intensity, suggesting that the more effective control of fouling by large particles was due to greater lift and cross-flow drag forces on larger particles compared to smaller particles.

  13. Role for ribosome-associated complex and stress-seventy subfamily B (RAC-Ssb) in integral membrane protein translation.

    Science.gov (United States)

    Acosta-Sampson, Ligia; Döring, Kristina; Lin, Yuping; Yu, Vivian Y; Bukau, Bernd; Kramer, Günter; Cate, Jamie H D

    2017-12-01

    Targeting of most integral membrane proteins to the endoplasmic reticulum is controlled by the signal recognition particle, which recognizes a hydrophobic signal sequence near the protein N terminus. Proper folding of these proteins is monitored by the unfolded protein response and involves protein degradation pathways to ensure quality control. Here, we identify a new pathway for quality control of major facilitator superfamily transporters that occurs before the first transmembrane helix, the signal sequence recognized by the signal recognition particle, is made by the ribosome. Increased rates of translation elongation of the N-terminal sequence of these integral membrane proteins can divert the nascent protein chains to the ribosome-associated complex and stress-seventy subfamily B chaperones. We also show that quality control of integral membrane proteins by ribosome-associated complex-stress-seventy subfamily B couples translation rate to the unfolded protein response, which has implications for understanding mechanisms underlying human disease and protein production in biotechnology. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells.

    Directory of Open Access Journals (Sweden)

    Gábor Balogh

    Full Text Available Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy.

  15. Microfabrication of large-area circular high-stress silicon nitride membranes for optomechanical applications

    Directory of Open Access Journals (Sweden)

    E. Serra

    2016-06-01

    Full Text Available In view of the integration of membrane resonators with more complex MEMS structures, we developed a general fabrication procedure for circular shape SiNx membranes using Deep Reactive Ion Etching (DRIE. Large area and high-stress SiNx membranes were fabricated and used as optomechanical resonators in a Michelson interferometer, where Q values up to 1.3 × 106 were measured at cryogenic temperatures, and in a Fabry-Pérot cavity, where an optical finesse up to 50000 has been observed.

  16. Managing Stress to Control High Blood Pressure

    Science.gov (United States)

    ... Aortic Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 29,2018 The importance of stress ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  17. Subcellular membrane fluidity of Lactobacillus delbrueckii subsp. bulgaricus under cold and osmotic stress.

    Science.gov (United States)

    Meneghel, Julie; Passot, Stéphanie; Cenard, Stéphanie; Réfrégiers, Matthieu; Jamme, Frédéric; Fonseca, Fernanda

    2017-09-01

    Cryopreservation of lactic acid bacteria may lead to undesirable cell death and functionality losses. The membrane is the first target for cell injury and plays a key role in bacterial cryotolerance. This work aimed at investigating at a subcellular resolution the membrane fluidity of two populations of Lactobacillus delbrueckii subsp. bulgaricus when subjected to cold and osmotic stresses associated to freezing. Cells were cultivated at 42 °C in mild whey medium, and they were exposed to sucrose solutions of different osmolarities (300 and 1800 mOsm L -1 ) after harvest. Synchrotron fluorescence microscopy was used to measure membrane fluidity of cells labeled with the cytoplasmic membrane probe 1-[4 (trimethylamino) phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). Images were acquired at 25 and 0 °C, and more than a thousand cells were individually analyzed. Results revealed that a bacterial population characterized by high membrane fluidity and a homogeneous distribution of fluidity values appeared to be positively related to freeze-thaw resistance. Furthermore, rigid domains with different anisotropy values were observed and the occurrence of these domains was more important in the freeze-sensitive bacterial population. The freeze-sensitive cells exhibited a broadening of existing highly rigid lipid domains with osmotic stress. The enlargement of domains might be ascribed to the interaction of sucrose with membrane phospholipids, leading to membrane disorganization and cell degradation.

  18. Periplasmic quality control in biogenesis of outer membrane proteins.

    Science.gov (United States)

    Lyu, Zhi Xin; Zhao, Xin Sheng

    2015-04-01

    The β-barrel outer membrane proteins (OMPs) are integral membrane proteins that reside in the outer membrane of Gram-negative bacteria and perform a diverse range of biological functions. Synthesized in the cytoplasm, OMPs must be transported across the inner membrane and through the periplasmic space before they are assembled in the outer membrane. In Escherichia coli, Skp, SurA and DegP are the most prominent factors identified to guide OMPs across the periplasm and to play the role of quality control. Although extensive genetic and biochemical analyses have revealed many basic functions of these periplasmic proteins, the mechanism of their collaboration in assisting the folding and insertion of OMPs is much less understood. Recently, biophysical approaches have shed light on the identification of the intricate network. In the present review, we summarize recent advances in the characterization of these key factors, with a special emphasis on the multifunctional protein DegP. In addition, we present our proposed model on the periplasmic quality control in biogenesis of OMPs.

  19. PH-triggered micellar membrane for controlled release microchips

    KAUST Repository

    Yang, Xiaoqiang; Moosa, Basem; Deng, Lin; Zhao, Lan; Khashab, Niveen M.

    2011-01-01

    A pH-responsive membrane based on polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer was developed on a model glass microchip as a promising controlled polymer delivery system. The PS-b-P4VP copolymer assembles into spherical and

  20. Neurokinin 1 Receptor Mediates Membrane Blebbing and Sheer Stress-Induced Microparticle Formation in HEK293 Cells

    Science.gov (United States)

    Chen, Panpan; Douglas, Steven D.; Meshki, John; Tuluc, Florin

    2012-01-01

    Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R) is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP). We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2–10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing. PMID:23024816

  1. Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Panpan Chen

    Full Text Available Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP. We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2-10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing.

  2. Heat-And-Mass Transfer Relationship to Determine Shear Stress in Tubular Membrane Systems

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Nopens, Ingmar

    2012-01-01

    The main drawback of Membrane Bioreactors (MBRs) is the fouling of the membrane. One way to reduce this fouling is through controlling the hydrodynamics of the two-phase slug flow near the membrane surface. It has been proven in literature that the slug flow pattern has a higher scouring effect...... to remove particulates due to the high shear rates and high mass transfer between the membrane surface and the bulk region. However, to calculate the mass transfer coefficient in an efficient and accurate way is not straightforward. Indeed, for accurate determination, numerous complex experimental...

  3. Biological control of biofilms on membranes by metazoans.

    Science.gov (United States)

    Klein, Theresa; Zihlmann, David; Derlon, Nicolas; Isaacson, Carl; Szivak, Ilona; Weissbrodt, David G; Pronk, Wouter

    2016-01-01

    Traditionally, chemical and physical methods have been used to control biofouling on membranes by inactivating and removing the biofouling layer. Alternatively, the permeability can be increased using biological methods while accepting the presence of the biofouling layer. We have investigated two different types of metazoans for this purpose, the oligochaete Aelosoma hemprichi and the nematode Plectus aquatilis. The addition of these grazing metazoans in biofilm-controlled membrane systems resulted in a flux increase of 50% in presence of the oligochaetes (Aelosoma hemprichi), and a flux increase of 119-164% in presence of the nematodes (Plectus aquatilis) in comparison to the control system operated without metazoans. The change in flux resulted from (1) a change in the biofilm structure, from a homogeneous, cake-like biofilm to a more heterogeneous, porous structure and (2) a significant reduction in the thickness of the basal layer. Pyrosequencing data showed that due to the addition of the predators, also the community composition of the biofilm in terms of protists and bacteria was strongly affected. The results have implications for a range of membrane processes, including ultrafiltration for potable water production, membrane bioreactors and reverse osmosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Energy Consumption Related to Shear Stress for Membrane Bioreactors Used for Wastewater Treatment

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Bérube, P.R.

    2011-01-01

    . A linear empirical correlation between the average shear stress and the blower power per unit of permeate was made. This work uses an empirical relationship to determine the shear stress based on the ratio of aeration blower power to tank volume. This relationship is used in bubble column reactors...... stress measurements and CFD simulation were made. It was found that the average shear stress over the membrane surface from the CFD model is similar compared to experimental data (error less than 8 %). However, some differences in the distribution of shear stress throughout the submerged MBR system were...... observed. It was found that the CFD and experimental data was similar in terms of shear stress. On the other hand, for the HS MBR experimental measurements were not made. Nevertheless, as a proper validation was attained with the HF MBR, it was inferred that the CFD results for the HS MBR were accurate...

  5. The molecular mechanisms of plant plasma membrane intrinsic proteins trafficking and stress response.

    Science.gov (United States)

    Wang, Xing; Zhang, Ji-long; Feng, Xiu-xiu; Li, Hong-jie; Zhang, Gen-fa

    2017-04-20

    Plasma membrane intrinsic proteins (PIPs) are plant channel proteins located on the plasma membrane. PIPs transfer water, CO 2 and small uncharged solutes through the plasma membrane. PIPs have high selectivity to substrates, suggestive of a central role in maintaining cellular water balance. The expression, activity and localization of PIPs are regulated at the transcriptional and post-translational levels, and also affected by environmental factors. Numerous studies indicate that the expression patterns and localizations of PIPs can change in response to abiotic stresses. In this review, we summarize the mechanisms of PIP trafficking, transcriptional and post-translational regulations, and abiotic stress responses. Moreover, we also discuss the current research trends and future directions on PIPs.

  6. Vesicle fusion with bilayer lipid membrane controlled by electrostatic interaction

    Directory of Open Access Journals (Sweden)

    Azusa Oshima

    2017-09-01

    Full Text Available The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs to control the fusion process. We combined large unilamellar vesicles (LUVs containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.

  7. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.

    Science.gov (United States)

    Smith, Alyson S; Nowak, Roberta B; Zhou, Sitong; Giannetto, Michael; Gokhin, David S; Papoin, Julien; Ghiran, Ionita C; Blanc, Lionel; Wan, Jiandi; Fowler, Velia M

    2018-05-08

    The biconcave disk shape and deformability of mammalian RBCs rely on the membrane skeleton, a viscoelastic network of short, membrane-associated actin filaments (F-actin) cross-linked by long, flexible spectrin tetramers. Nonmuscle myosin II (NMII) motors exert force on diverse F-actin networks to control cell shapes, but a function for NMII contractility in the 2D spectrin-F-actin network of RBCs has not been tested. Here, we show that RBCs contain membrane skeleton-associated NMIIA puncta, identified as bipolar filaments by superresolution fluorescence microscopy. MgATP disrupts NMIIA association with the membrane skeleton, consistent with NMIIA motor domains binding to membrane skeleton F-actin and contributing to membrane mechanical properties. In addition, the phosphorylation of the RBC NMIIA heavy and light chains in vivo indicates active regulation of NMIIA motor activity and filament assembly, while reduced heavy chain phosphorylation of membrane skeleton-associated NMIIA indicates assembly of stable filaments at the membrane. Treatment of RBCs with blebbistatin, an inhibitor of NMII motor activity, decreases the number of NMIIA filaments associated with the membrane and enhances local, nanoscale membrane oscillations, suggesting decreased membrane tension. Blebbistatin-treated RBCs also exhibit elongated shapes, loss of membrane curvature, and enhanced deformability, indicating a role for NMIIA contractility in promoting membrane stiffness and maintaining RBC biconcave disk cell shape. As structures similar to the RBC membrane skeleton exist in many metazoan cell types, these data demonstrate a general function for NMII in controlling specialized membrane morphology and mechanical properties through contractile interactions with short F-actin in spectrin-F-actin networks.

  8. Alternative Splicing Control of Abiotic Stress Responses.

    Science.gov (United States)

    Laloum, Tom; Martín, Guiomar; Duque, Paula

    2018-02-01

    Alternative splicing, which generates multiple transcripts from the same gene, is an important modulator of gene expression that can increase proteome diversity and regulate mRNA levels. In plants, this post-transcriptional mechanism is markedly induced in response to environmental stress, and recent studies have identified alternative splicing events that allow rapid adjustment of the abundance and function of key stress-response components. In agreement, plant mutants defective in splicing factors are severely impaired in their response to abiotic stress. Notably, mounting evidence indicates that alternative splicing regulates stress responses largely by targeting the abscisic acid (ABA) pathway. We review here current understanding of post-transcriptional control of plant stress tolerance via alternative splicing and discuss research challenges for the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Control of membrane fouling during hyperhaline municipal wastewater treatment using a pilot-scale anoxic/aerobic-membrane bioreactor system

    Institute of Scientific and Technical Information of China (English)

    Jingmei Sun; Jiangxiu Rong; Lifeng Dai; Baoshan Liu; Wenting Zhu

    2011-01-01

    Membrane fouling limits the effects of long-term stable operation of membrane bioreactor (MBR).Control of membrane foulin can extend the membrane life and reduce water treatment cost effectively.A pilot scale anoxic/aerobic-membrane bioreactor (A/O MBR,40 L/hr) was used to treat the hyperhaline municipal sewage from a processing zone of Tianjin,China.Impact factors including mixed liquid sludge suspension (MLSS),sludge viscosity (μ),microorganisms,extracellular polymeric substances (EPS),aeration intensity and suction/suspended time on membrane fouling and pollution control were studied.The relationships among various factors associated with membrane fouling were analyzed.Results showed that there was a positive correlation among MLSS,sludge viscosity and trans-membrane pressure (TMP).Considering water treatment efficiency and stable operation of the membrane module,MLSS of 5 g/L was suggested for the process.There was a same trend among EPS,sludge viscosity and TMP.Numbers and species of microorganisms affected membrane fouling.Either too high or too low aeration intensity was not conducive to membrane fouling control.Aeration intensity of 1.0 m3/hr (gas/water ratio of 25:1) is suggested for the process.A long suction time caused a rapid increase in membrane resistance.However,long suspended time cannot prevent the increase of membrane resistance effectively even though a suspended time was necessary for scale off particles from the membrane surface.The suction/suspended time of 12 min/3 min was selected for the process.The interaction of various environmental factors and operation conditions must be considered synthetically.

  10. Stress, performance, and control room operations

    International Nuclear Information System (INIS)

    Fontaine, C.W.

    1990-01-01

    The notion of control room operator performance being detrimentally affected by stress has long been the focus of considerable conjecture. It is important to gain a better understanding of the validity of this concern for the development of effective severe-accident management approaches. This paper illustrates the undeniable negative impact of stress on a wide variety of tasks. A computer-controlled simulated work environment was designed in which both male and female operators were closely monitored during the course of the study for both stress level (using the excretion of the urine catecholamines epinephrine and norepinephrine as an index) and job performance. The experimental parameters employed by the study when coupled with the subsequent statistical analyses of the results allow one to make some rather striking comments with respect to how a given operator might respond to a situation that he or she perceives to be psychologically stressful (whether the stress be externally or internally generated). The findings of this study clearly indicated that stress does impact operator performance on tasks similar in nature to those conducted by control room operators and hence should be seriously considered in the development of severe-accident management strategies

  11. Evaluation of micro fatigue crack growth under equi-biaxial stress by membranous pressure fatigue test

    International Nuclear Information System (INIS)

    Iida, Satoshi; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki

    2014-01-01

    For preventing nuclear power plant (NPP) accidents, NPPs are required to ensure system safety in long term safe operation under aging degradation. Now, fatigue accumulation is one of major ageing phenomena and are evaluated to ensure safety by design fatigue curve that are based on the results of uniaxial fatigue tests. On the other hand, thermal stress that occurs in piping of actual components is not uniaxial but equi-biaxial. For accurate evaluation, it is required to conform real circumstance. In this study, membranous pressure fatigue test was conducted to simulated equi-biaxial stress. Crack initiation and crack growth were examined by replica investigation. Calculation result of equivalent stress intensity factor shows crack growth under equi-biaxial stress is faster than under uniaxial stress. It is concluded that equi-biaxial fatigue behavior should be considered in the evaluation of fatigue crack initiation and crack growth. (author)

  12. PH-triggered micellar membrane for controlled release microchips

    KAUST Repository

    Yang, Xiaoqiang

    2011-01-01

    A pH-responsive membrane based on polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer was developed on a model glass microchip as a promising controlled polymer delivery system. The PS-b-P4VP copolymer assembles into spherical and/or worm-like micelles with styrene block cores and pyridine coronas in selective solvents. The self-assembled worm-like morphology exhibited pH-responsive behaviour due to the protonation of the P4VP block at low pH and it\\'s deprotonation at high pH and thus constituting a switchable "off/on" system. Doxorubicin (Dox) was used as cargo to test the PS-b-P4VP membrane. Luminescence experiments indicated that the membrane was able to store Dox molecules within its micellar structure at neutral pH and then release them as soon as the pH was raised to 8.0. The performance of the cast membrane was predictable and most importantly reproducible. The physiochemical and biological properties were also investigated carefully in terms of morphology, cell viability and cell uptake. This journal is © The Royal Society of Chemistry.

  13. Correlations of the glycemic variability with oxidative stress and erythrocytes membrane stability in patients with type 1 diabetes under intensive treatment.

    Science.gov (United States)

    Rodrigues, Ricardo; Alves de Medeiros, Luciana; Moreira Cunha, Lucas; da Silva Garrote-Filho, Mario; Bernardino Neto, Morun; Tannus Jorge, Paulo; Santos Resende, Elmiro; Penha-Silva, Nilson

    2018-02-07

    This study aimed to evaluate the correlations of glycemic variability with erythrocyte membrane stability parameters and oxidative stress markers in patients with DM1 under intensive treatment. 90 patients with DM1 and under intensive treatment of the disease were evaluated in relation to anthropometric indices, records of glycemic averages and parameters of glycemic variability, biochemical dosages (glucose, uric acid, lipidogram, glycated hemoglobin, microalbuminuria, creatinine and iron) reticulocyte count, erythrocyte membrane stability parameters and oxidative stress markers (thiobarbituric acid reactive substances, TBARS, and glutathione reductase, GR). Indicators of glycemic variability in the short and long term showed correlations with parameters of membrane stability and markers of oxidative stress (GR). In addition, the comparison of these same parameters between the subgroups consisting of quartiles of GV or glycemic control also showed significant differences. In the DM1 patients studied here, glycemic variability showed correlations with oxidative stress and erythrocyte membrane stability variables. This corroborates the hypothesis that glycemic fluctuations interfere with lipid peroxidation and cell membrane behavior, emphasizing its participation in mechanisms related to the development of chronic complications of diabetes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Efficient Overproduction of Membrane Proteins in Lactococcus lactis Requires the Cell Envelope Stress Sensor/Regulator Couple CesSR

    Science.gov (United States)

    Pinto, Joao P. C.; Kuipers, Oscar P.; Marreddy, Ravi K. R.; Poolman, Bert; Kok, Jan

    2011-01-01

    Background Membrane proteins comprise an important class of molecules whose study is largely frustrated by several intrinsic constraints, such as their hydrophobicity and added requirements for correct folding. Additionally, the complexity of the cellular mechanisms that are required to insert membrane proteins functionally in the membrane and to monitor their folding state makes it difficult to foresee the yields at which one can obtain them or to predict which would be the optimal production host for a given protein. Methods and Findings We describe a rational design approach to improve the lactic acid bacterium Lactococcus lactis as a producer of membrane proteins. Our transcriptome data shows that the two-component system CesSR, which senses cell envelope stresses of different origins, is one of the major players when L. lactis is forced to overproduce the endogenous membrane protein BcaP, a branched-chain amino acid permease. Growth of the BcaP-producing L. lactis strain and its capability to produce membrane proteins are severely hampered when the CesSR system itself or particular members of the CesSR regulon are knocked out, notably the genes ftsH, oxaA2, llmg_2163 and rmaB. Overexpressing cesSR reduced the growth defect, thus directly improving the production yield of BcaP. Applying this rationale to eukaryotic proteins, some of which are notoriously more difficult to produce, such as the medically-important presenilin complex, we were able to significantly diminish the growth defect seen in the wild-type strain and improve the production yield of the presenilin variant PS1Δ9-H6 more than 4-fold. Conclusions The results shed light into a key, and perhaps central, membrane protein quality control mechanism in L. lactis. Modulating the expression of CesSR benefited the production yields of membrane proteins from different origins. These findings reinforce L. lactis as a legitimate alternative host for the production of membrane proteins. PMID:21818275

  15. Attosecond control of electron beams at dielectric and absorbing membranes

    Science.gov (United States)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Ultrashort electron pulses are crucial for time-resolved electron diffraction and microscopy of the fundamental light-matter interaction. In this work, we study experimentally and theoretically the generation and characterization of attosecond electron pulses by optical-field-driven compression and streaking at dielectric or absorbing interaction elements. The achievable acceleration and deflection gradient depends on the laser-electron angle, the laser's electric and magnetic field directions, and the foil orientation. Electric and magnetic fields have similar contributions to the final effect and both need to be considered. Experiments and theory agree well and reveal the optimum conditions for highly efficient, velocity-matched electron-field interactions in the longitudinal or transverse direction. We find that metallic membranes are optimum for light-electron control at mid-infrared or terahertz wavelengths, but dielectric membranes are excellent in the visible and near-infrared regimes and are therefore ideal for the formation of attosecond electron pulses.

  16. Membrane damage and solute leakage from germinating pea seed under cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Rahoui, Sondes, E-mail: rahoui.sondes@yahoo.fr [Bio-Physiologie Cellulaires, Departement des Sciences de la Vie, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Chaoui, Abdelilah, E-mail: cabdelilah1@yahoo.fr [Bio-Physiologie Cellulaires, Departement des Sciences de la Vie, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); El Ferjani, Ezzeddine, E-mail: ezzferjani2002@yahoo.fr [Bio-Physiologie Cellulaires, Departement des Sciences de la Vie, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia)

    2010-06-15

    Seed germination represents a limiting stage of plant life cycle under heavy metal stress situation. Delay in germination can be associated with disorders in the event chain of germinative metabolism which is a highly complex multistage process, but one of underlying metabolic activities following imbibition of seed is the storage mobilization. The influence of cadmium on carbohydrates and aminoacids export from cotyledon to embryonic axis during germination of pea seed was investigated. Compared to the control, Cd caused a restriction in reserve mobilization as evidenced by the pronounced increase in cotyledon/embryo ratios of total soluble sugars, glucose, fructose and aminoacids. Moreover, the nutrient concentrations, as well as the electrical conductivity of germination medium were determined to quantify the extent of solute leakage. Such nutrients were lost into the imbibition medium at the expense of suitable mobilization to the growing embryonic axis. This was concomitant with an over-accumulation of lipid peroxidation products in Cd-poisoned embryonic tissues. However, the impairment of membrane integrity cannot be due to a stimulation in lipoxygenase activity, since the later was markedly inhibited after Cd exposure.

  17. Membrane damage and solute leakage from germinating pea seed under cadmium stress

    International Nuclear Information System (INIS)

    Rahoui, Sondes; Chaoui, Abdelilah; El Ferjani, Ezzeddine

    2010-01-01

    Seed germination represents a limiting stage of plant life cycle under heavy metal stress situation. Delay in germination can be associated with disorders in the event chain of germinative metabolism which is a highly complex multistage process, but one of underlying metabolic activities following imbibition of seed is the storage mobilization. The influence of cadmium on carbohydrates and aminoacids export from cotyledon to embryonic axis during germination of pea seed was investigated. Compared to the control, Cd caused a restriction in reserve mobilization as evidenced by the pronounced increase in cotyledon/embryo ratios of total soluble sugars, glucose, fructose and aminoacids. Moreover, the nutrient concentrations, as well as the electrical conductivity of germination medium were determined to quantify the extent of solute leakage. Such nutrients were lost into the imbibition medium at the expense of suitable mobilization to the growing embryonic axis. This was concomitant with an over-accumulation of lipid peroxidation products in Cd-poisoned embryonic tissues. However, the impairment of membrane integrity cannot be due to a stimulation in lipoxygenase activity, since the later was markedly inhibited after Cd exposure.

  18. Cell-Based Phenotyping Reveals QTL for Membrane Potential Maintenance Associated with Hypoxia and Salinity Stress Tolerance in Barley

    Directory of Open Access Journals (Sweden)

    Muhammad B. Gill

    2017-11-01

    Full Text Available Waterlogging and salinity are two major abiotic stresses that hamper crop production world-wide resulting in multibillion losses. Plant abiotic stress tolerance is conferred by many interrelated mechanisms. Amongst these, the cell’s ability to maintain membrane potential (MP is considered to be amongst the most crucial traits, a positive relationship between the ability of plants to maintain highly negative MP and its tolerance to both salinity and waterlogging stress. However, no attempts have been made to identify quantitative trait loci (QTL conferring this trait. In this study, the microelectrode MIFE technique was used to measure the plasma membrane potential of epidermal root cells of 150 double haploid (DH lines of barley (Hordeum vulgare L. from a cross between a Chinese landrace TX9425 and Japanese malting cultivar Naso Nijo under hypoxic conditions. A major QTL for the MP in the epidermal root cells in hypoxia-exposed plants was identified. This QTL was located on 2H, at a similar position to the QTL for waterlogging and salinity tolerance reported in previous studies. Further analysis confirmed that MP showed a significant contribution to both waterlogging and salinity tolerance. The fact that the QTL for MP was controlled by a single major QTL illustrates the power of the single-cell phenotyping approach and opens prospects for fine mapping this QTL and thus being more effective in marker assisted selection.

  19. Assay of Plasma Membrane H+-ATPase in Plant Tissues under Abiotic Stresses.

    Science.gov (United States)

    Janicka, Małgorzata; Wdowikowska, Anna; Kłobus, Grażyna

    2018-01-01

    Plasma membrane (PM) H + -ATPase, which generates the proton gradient across the outer membrane of plant cells, plays a fundamental role in the regulation of many physiological processes fundamental for growth and development of plants. It is involved in the uptake of nutrients from external solutions, their loading into phloem and long-distance transport, stomata aperture and gas exchange, pH homeostasis in cytosol, cell wall loosening, and cell expansion. The crucial role of the enzyme in resistance of plants to abiotic and biotic stress factors has also been well documented. Such great diversity of physiological functions linked to the activity of one enzyme requires a suitable and complex regulation of H + -ATPase. This regulation comprises the transcriptional as well as post-transcriptional levels. Herein, we describe the techniques that can be useful for the analysis of the plasma membrane proton pump modifications at genetic and protein levels under environmental factors.

  20. Effect of washing on the plasma membrane and on stress reactions of cultured rose cells

    International Nuclear Information System (INIS)

    Qian, Y.C.; Nguyen, T.; Murphy, T.M.

    1993-01-01

    Cultured cells of Rosa damascena have been used as a model for studies of responses of plant cells to various stresses, including UV radiation, protein-synthesis inhibitors, and elicitors from pathogens. Many of the responses involve reactions at the plasma membrane: efflux of K + , changes in the acid balance between cytoplasm and external medium, synthesis of H 2 O 2 , and inhibition of ferricyanide reduction. In previous studies, the cells have typically been washed with a solution of low ionic strength. We now show that this washing procedure results in changes in the protein composition of the plasma membrane, in the labeling of the proteins in the plasma membrane, and in the specific activity of ATPase in purified plasma membrane vesicles. Also, compared to the unwashed cells, the washed cells show less net K + efflux after UV-C and Phytophthora elicitor treatments; more synthesis of H 2 O 2 after UV-C and a pattern of accumulation of H 2 O 2 after elicitor treatment that shows a delayed but higher peak; and more inhibition of ferricyanide reduction after UV-C, but not after elicitor treatment. The results suggest that washing has differential effects on the mechanisms by which cultured plant cells perceive or respond to two stresses, UV-C and elicitor

  1. Controlled change of transport properties of poly(ethylene terephthalate) track membranes by plasma method

    International Nuclear Information System (INIS)

    Kravets, L I; Dmitriev, S N; Drachev, A I; Gilman, A B; Lazea, A; Dinescu, G

    2007-01-01

    A process of plasma polymerization of dimethylaniline and acrylic acid vapours on the surface of poly(ethylene terephthalate) track membranes has been investigated. The surface and hydrodynamic properties of the composite membranes produced in this case have been studied. It is shown that the water permeability of the obtained polymeric membranes can be controlled by changing the filtrate pH. Membranes with such properties can be used for controllable drug delivery and in sensor control

  2. Overexpression of BAX INHIBITOR-1 Links Plasma Membrane Microdomain Proteins to Stress.

    Science.gov (United States)

    Ishikawa, Toshiki; Aki, Toshihiko; Yanagisawa, Shuichi; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2015-10-01

    BAX INHIBITOR-1 (BI-1) is a cell death suppressor widely conserved in plants and animals. Overexpression of BI-1 enhances tolerance to stress-induced cell death in plant cells, although the molecular mechanism behind this enhancement is unclear. We recently found that Arabidopsis (Arabidopsis thaliana) BI-1 is involved in the metabolism of sphingolipids, such as the synthesis of 2-hydroxy fatty acids, suggesting the involvement of sphingolipids in the cell death regulatory mechanism downstream of BI-1. Here, we show that BI-1 affects cell death-associated components localized in sphingolipid-enriched microdomains of the plasma membrane in rice (Oryza sativa) cells. The amount of 2-hydroxy fatty acid-containing glucosylceramide increased in the detergent-resistant membrane (DRM; a biochemical counterpart of plasma membrane microdomains) fraction obtained from BI-1-overexpressing rice cells. Comparative proteomics analysis showed quantitative changes of DRM proteins in BI-1-overexpressing cells. In particular, the protein abundance of FLOTILLIN HOMOLOG (FLOT) and HYPERSENSITIVE-INDUCED REACTION PROTEIN3 (HIR3) markedly decreased in DRM of BI-1-overexpressing cells. Loss-of-function analysis demonstrated that FLOT and HIR3 are required for cell death by oxidative stress and salicylic acid, suggesting that the decreased levels of these proteins directly contribute to the stress-tolerant phenotypes in BI-1-overexpressing rice cells. These findings provide a novel biological implication of plant membrane microdomains in stress-induced cell death, which is negatively modulated by BI-1 overexpression via decreasing the abundance of a set of key proteins involved in cell death. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. LINEAR AND NONLINEAR VISCOELASTIC CHARACTERIZATION OF PROTON EXCHANGE MEMBRANES AND STRESS MODELING FOR FUEL CELL APPLICATIONS

    OpenAIRE

    Patankar, Kshitish A

    2009-01-01

    In this dissertation, the effect of temperature and humidity on the viscoelastic and fracture properties of proton exchange membranes (PEM) used in fuel cell applications was studied. Understanding and accurately modeling the linear and nonlinear viscoelastic constitutive properties of a PEM are important for making hygrothermal stress predictions in the cyclic temperature and humidity environment of operating fuel cells. In this study, Nafion® NRE 211, Gore-Select® 57, and Ion Power® N111...

  4. Combination of Electrochemical Processes with Membrane Bioreactors for Wastewater Treatment and Fouling Control: A Review

    OpenAIRE

    Ensano, Benny M. B.; Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo; de Luna, Mark D. G.; Ballesteros, Florencio C.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  5. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    OpenAIRE

    Benny Marie B. Ensano; Laura Borea; Vincenzo Naddeo; Vincenzo Belgiorno; Mark Daniel G. de Luna; Mark Daniel G. de Luna; Florencio C. Ballesteros, Jr.; Florencio C. Ballesteros, Jr.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  6. Cell-substrate interaction with cell-membrane-stress dependent adhesion.

    Science.gov (United States)

    Jiang, H; Yang, B

    2012-01-10

    Cell-substrate interaction is examined in a two-dimensional mechanics model. The cell and substrate are treated as a shell and an elastic solid, respectively. Their interaction through adhesion is treated using nonlinear springs. Compared to previous cell mechanics models, the present model introduces a cohesive force law that is dependent not only on cell-substrate distance but also on internal cell-membrane stress. It is postulated that a living cell would establish focal adhesion sites with density dependent on the cell-membrane stress. The formulated mechanics problem is numerically solved using coupled finite elements and boundary elements for the cell and the substrate, respectively. The nodes in the adhesion zone from either side are linked by the cohesive springs. The specific cases of a cell adhering to a homogeneous substrate and a heterogeneous bimaterial substrate are examined. The analyses show that the substrate stiffness affects the adhesion behavior significantly and regulates the direction of cell adhesion, in good agreement with the experimental results in the literature. By introducing a reactive parameter (i.e., cell-membrane stress) linking biological responses of a living cell to a mechanical environment, the present model offers a unified mechanistic vehicle for characterization and prediction of living cell responses to various kinds of mechanical stimuli including local extracellular matrix and neighboring cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Evaluation of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage

    Directory of Open Access Journals (Sweden)

    R Sunil Kumar

    2017-01-01

    Full Text Available Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy.

  8. Geometrically Nonlinear Shell Analysis of Wrinkled Thin-Film Membranes with Stress Concentrations

    Science.gov (United States)

    Tessler, Alexander; Sleight, David W.

    2006-01-01

    Geometrically nonlinear shell finite element analysis has recently been applied to solar-sail membrane problems in order to model the out-of-plane deformations due to structural wrinkling. Whereas certain problems lend themselves to achieving converged nonlinear solutions that compare favorably with experimental observations, solutions to tensioned membranes exhibiting high stress concentrations have been difficult to obtain even with the best nonlinear finite element codes and advanced shell element technology. In this paper, two numerical studies are presented that pave the way to improving the modeling of this class of nonlinear problems. The studies address the issues of mesh refinement and stress-concentration alleviation, and the effects of these modeling strategies on the ability to attain converged nonlinear deformations due to wrinkling. The numerical studies demonstrate that excessive mesh refinement in the regions of stress concentration may be disadvantageous to achieving wrinkled equilibrium states, causing the nonlinear solution to lock in the membrane response mode, while totally discarding the very low-energy bending response that is necessary to cause wrinkling deformation patterns.

  9. The protective effect of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes

    OpenAIRE

    Mohamed, Jamaludin; Shing, Saw Wuan; Idris, Muhd Hanis Md; Budin, Siti Balkis; Zainalabidin, Satirah

    2013-01-01

    OBJECTIVES: The aim of this study was to investigate the protective effects of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell (RBC) membrane oxidative stress in rats with streptozotocin-induced diabetes. METHODS: Forty male Sprague-Dawley rats weighing 230-250 g were randomly divided into four groups (n = 10 rats each): control group (N), roselle-treated control group, diabetic group, and roselle-treated diabetic group. Roselle was administered by force-f...

  10. Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor.

    Science.gov (United States)

    Mei, Xiaojie; Quek, Pei Jun; Wang, Zhiwei; Ng, How Yong

    2017-09-01

    In this study, a chemically enhanced backflush (CEB) cleaning method using NaOH solution was proposed for fouling mitigation in anaerobic membrane bioreactors (AnMBRs). Ex-situ cleaning tests revealed that NaOH dosages ranging from 0.05 to 1.30mmol/L had positive impacts on anaerobic biomass, while higher dosages (>1.30mmol/L) showed inhibition and/or toxic impacts. In-situ cleaning tests showed that anaerobic biomass could tolerate much higher NaOH concentrations due to the alkali consumption by anaerobic process and/or the buffering role of mixed liquor. More importantly, 10-20mmol-NaOH/L could significantly reduce membrane fouling rates (4-5.5 times over the AnMBR with deionized water backflush) and slightly improve methanogenic activities. COD removal efficiencies were over 87% and peaked at 20mmol-NaOH/L. However, extremely high NaOH concentration had adverse effects on filtration and treatment performance. Economic analysis indicated that 12mmol/L of NaOH was the cost-efficient and optimal fouling-control dosage for the CEB cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Aprediction study for the behaviour of fuel cell membrane subjected to hygro and thermal stresses in running PEM fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2016-01-01

    A three-dimensional, multi–phase, non-isothermal computational fluid dynamics model of a proton exchange membrane fuel cell has been used and developed to investigate the hygro and thermal stresses in polymer membrane, which developed during the cell operation due to the changes of temperature and relative humidity. The behaviour of the membrane during operation of a unit cell has been studied and investigated under real cell operating conditions. The results show that the non-uniform distrib...

  12. Energy Consumption in Terms of Shear Stress for Two Types of Membrane Bioreactors Used for Municipal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Bérube, P.R.

    2011-01-01

    Two types of submerged membrane bioreactors (MBR): Hollow Fiber (HF) and Hollow Sheet (HS), have been studied and compared in terms of energy consumption and average shear stress over the membrane wall. The analysis of energy consumption was made using the correlation to determine the blower power...

  13. Biophysical characterization of the Lactobacillus delbrueckii subsp. bulgaricus membrane during cold and osmotic stress and its relevance for cryopreservation.

    Science.gov (United States)

    Meneghel, Julie; Passot, Stéphanie; Dupont, Sébastien; Fonseca, Fernanda

    2017-02-01

    Freezing lactic acid bacteria often leads to cell death and loss of technological properties. Our objective was to provide an in-depth characterization of the biophysical properties of the Lactobacillus delbrueckii subsp. bulgaricus membrane in relation to its freeze resistance. Freezing was represented as a combination of cold and osmotic stress. This work investigated the relative incidence of increasing sucrose concentrations coupled or not with subzero temperatures without ice nucleation on the biological and biophysical responses of two strains with different membrane fatty acid compositions and freeze resistances. Following exposure of bacterial cells to the highest sucrose concentration, the sensitive strain exhibited a survival rate of less than 10 % and 5 h of acidifying activity loss. Similar biological activity losses were observed upon freeze-thawing and after osmotic treatment for each strain thus highlighting osmotic stress as the main source of cryoinjury. The direct measurement of membrane fluidity by fluorescence anisotropy was linked to membrane lipid organization characterized by FTIR spectroscopy. Both approaches made it possible to investigate the specific contributions of the membrane core and the bilayer external surface to cell degradation caused by cold and osmotic stress. Cold-induced membrane rigidification had no significant implication on bacterial freeze-thaw resistance. Interactions between extracellular sucrose and membrane phospholipid headgroups under osmotic stress were also observed. Such interactions were more evident in the sensitive strain and when increasing sucrose concentration, thus suggesting membrane permeabilization. The relevance of biophysical properties for elucidating mechanisms of cryoinjury and cryoprotection is discussed.

  14. Filtration behavior of casein glycomacropeptide (CGMP) in an enzymatic membrane reactor: fouling control by membrane selection and threshold flux operation

    DEFF Research Database (Denmark)

    Luo, Jianquan; Morthensen, Sofie Thage; Meyer, Anne S.

    2014-01-01

    . In this study, the filtration performance and fouling behavior during ultrafiltration (UF) of CGMP for the enzymatic production of 3′-sialyllactose were investigated. A 5kDa regenerated cellulose membrane with high anti-fouling performance, could retain CGMP well, permeate 3′-sialyllactose, and was found...... to be the most suitable membrane for this application. Low pH increased CGMP retention but produced more fouling. Higher agitation and lower CGMP concentration induced larger permeate flux and higher CGMP retention. Adsorption fouling and pore blocking by CGMP in/on membranes could be controlled by selecting...... a highly hydrophilic membrane with appropriate pore size. Operating under threshold flux could minimize the concentration polarization and cake/gel/scaling layers, but might not avoid irreversible fouling caused by adsorption and pore blocking. The effects of membrane properties, pH, agitation and CGMP...

  15. Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro.

    Science.gov (United States)

    Menon, Ramkumar; Boldogh, Istvan; Hawkins, Hal K; Woodson, Michael; Polettini, Jossimara; Syed, Tariq Ali; Fortunato, Stephen J; Saade, George R; Papaconstantinou, John; Taylor, Robert N

    2014-06-01

    Preterm prelabor rupture of the membranes (pPROM) may lead to preterm births (PTBs). We investigated premature senescence of fetal membranes in women with pPROM and spontaneous PTB with intact membranes (PTBs, and term births. Term fetal membranes were exposed to cigarette smoke extract to induce oxidative stress. Western blots documented p-p53 and p-p38 MAPK. Transmission electron microscopy assessed cellular morphologic features in clinical and cigarette smoke extract-treated membranes. A total of 80% of pPROM cells and >60% of term cells were positive for all three senescence phenotype markers, and concentrations were higher than in PTBs (P PTBs. Histologic and biochemical resemblance of pPROM and term membranes suggests premature senescence of the membranes is a mechanistic feature in pPROM, and this can be phenocopied in an in vitro model. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Highly Reflecting, Broadband Deformable Membrane Mirror for Wavefront Control Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I STTR project will develop a highly reflecting, broadband, radiation resistant, low-stress and lightweight, membrane integrated into an electrostatically...

  17. Stress regulated members of the plant organic cation transporter family are localized to the vacuolar membrane

    Directory of Open Access Journals (Sweden)

    Koch Wolfgang

    2008-07-01

    Full Text Available Abstract Background In Arabidopsis six genes group into the gene family of the organic cation transporters (OCTs. In animals the members of the OCT-family are mostly characterized as polyspecific transporters involved in the homeostasis of solutes, the transport of monoamine neurotransmitters and the transport of choline and carnitine. In plants little is known about function, localisation and regulation of this gene family. Only one protein has been characterized as a carnitine transporter at the plasma membrane so far. Findings We localized the five uncharacterized members of the Arabidopsis OCT family, designated OCT2-OCT6, via GFP fusions and protoplast transformation to the tonoplast. Expression analysis with RNA Gel Blots showed a distinct, organ-specific expression pattern of the individual genes. With reporter gene fusion of four members we analyzed the tissue specific distribution of OCT2, 3, 4, and 6. In experiments with salt, drought and cold stress, we could show that AtOCT4, 5 and 6 are up-regulated during drought stress, AtOCT3 and 5 during cold stress and AtOCT 5 and 6 during salt stress treatments. Conclusion Localisation of the proteins at the tonoplast and regulation of the gene expression under stress conditions suggests a specific role for the transporters in plant adaptation to environmental stress.

  18. Low-stress photosensitive polyimide suspended membrane for improved thermal isolation performance

    Science.gov (United States)

    Fan, J.; Xing, R. Y.; Wu, W. J.; Liu, H. F.; Liu, J. Q.; Tu, L. C.

    2017-11-01

    In this paper, we introduce a method of isolating thermal conduction from silicon substrate for accommodating thermal-sensitive micro-devices. This method lies in fabrication of a low-stress photosensitive polyimide (PSPI) suspension structure which has lower thermal conductivity than silicon. First, a PSPI layer was patterned on a silicon wafer and hard baked. Then, a cavity was etched from the backside of the silicon substrate to form a membrane or a bridge-shape PSPI structure. After releasing, a slight deformation of about 20 nm was observed in the suspended structures, suggesting ultralow residual stress which is essential for accommodating micro-devices. In order to investigate the thermal isolation performance of the suspended PSPI structures, micro Pirani vacuum gauges, which are thermal-sensitive, had been fabricated on the PSPI structures. The measurement results illustrated that the Pirani gauges worked as expected in the range from 1- 470 Pa. Moreover, the results of the Pirani gauges based on the membrane and bridge structures were comparable, indicating that the commonly used bridge-shape structure for further reducing thermal conduction was unnecessary. Due to the excellent thermal isolation performance of PSPI, the suspended PSPI membrane is promising to be an outstanding candidate for thermal isolation applications.

  19. The role of internal limiting membrane peeling in epiretinal membrane surgery: a randomised controlled trial.

    Science.gov (United States)

    Tranos, Paris; Koukoula, Stavrenia; Charteris, Davic G; Perganda, Georgia; Vakalis, Athanasios; Asteriadis, Solon; Georgalas, Ilias; Petrou, Petros

    2017-06-01

    To compare the anatomical and functional outcomes after primary idiopathic epiretinal membrane (ERM) peeling with or without internal limiting membrane (ILM) peeling. A two-centre randomised, controlled clinical trial with 12 months of follow-up. One hundred and two eyes of 102 patients were included in the analysis and were randomised into two groups (ILM peeling (P) and non-ILM peeling (NP) group). Inclusion criteria were: Idiopathic ERM confirmed on optical coherence tomography, age ≥18 years, binocular distortion, best-corrected visual acuity (BCVA) ≤90 ETDRS letters, intraocular pressure ≤23 mm Hg and informed consent. The primary outcome measure was the mean change in the ETDRS distance BCVA at 12 months' follow-up for each group. The mean change in distance BCVA at 12 months was 0.30±0.24 logMAR (15 ETDRS letters) in the P group and 0.31±0.23 logMAR (14 ETDRS letters) in the NP group, a change that was not statistically significant (p=0.84). No statistically significant differences were observed when comparing the changes in distance BCVA, the changes in metamorphopsia (Amsler grid) and the changes in central retinal thickness between the two groups at any of the time points studied. Our analysis suggests that ILM peeling in idiopathic ERM surgery does not result in better visual improvement. The more frequent presence of an uninterrupted interdigitation zone in the P group did not result in a better functional outcome of our patients. No recurrent ERMs were noted in either group. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Hydrodynamic Study of a Hollow Fiber Membrane System Using Experimental and Numerical Derived Surface Shear Stresses

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Hunze, M.; Nopens, I.

    2012-01-01

    .39 – 0.69 Pa) were in good agreement, with an error less that 15 %. Based on comparison of the cumulative frequency distribution of shear stresses from experiments and simulation: (i) moderate shear stresses (i.e. 50th percentile) were found to be accurately predicted (model: 0.24 – 0.45 Pa; experimental......Computational Fluids Dynamics (CFD) models can be used to gain insight into the shear stresses induced by air sparging on submerged hollow fiber Membrane BioReactor (MBR) systems. It was found that the average range of shear stresses obtained by the CFD model (0.30 – 0.60 Pa) and experimentally (0......: 0.25 – 0.49 Pa) with an error of less than 5 %; (ii) high shear stresses (i.e. 90th percentile) predictions were much less accurate (model: 0.60 – 1.23 Pa; experimental: 1.04 – 1.90 Pa) with an error up to 38 %. This was attributed to the fact that the CFD model only considers the two-phase flow (50...

  1. Increased oxidative stress in human fetal membranes overlying the cervix from term non-labouring and post labour deliveries.

    Science.gov (United States)

    Chai, M; Barker, G; Menon, R; Lappas, M

    2012-08-01

    Enzymatic breakdown of the collagen-rich extracellular matrix (ECM) that connects the amnion and chorion layers of the fetal membranes is one of the key events leading to rupture of membranes. Oxidant stress caused by increased formation of reactive oxygen species and/or reduced antioxidant capacity may predispose to membrane rupture, a major cause of preterm birth. The aim of this study was to determine the effect of human labour and supracervical (SC) apposition on antioxidant enzymes and 8-isoprostane (a marker of lipid peroxidation). To determine the effect of human labour on oxidative stress status, fetal membranes from the SC site (SCS) were collected from women at term Caesarean section (no labour), and from the site of membrane rupture (SOR) after spontaneous labour onset and delivery (post labour). To determine the effect of SC apposition on oxidative stress status, amnion was collected from the SCS and a distal site (DS) in women at term Caesarean section in the absence of labour. The release of 8-isoprostane was significantly higher in amnion from the SCS compared to DS, and in fetal membranes from the SOR compared to the SCS. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity were lower in amnion from the SC compared to DS. SOD gene expression and enzyme activity were lower in fetal membranes after labour. There was no difference in expression or activity in catalase, GPx and glutathione reductase (GSR) between no labour and post labour fetal membranes. In primary amnion cells, SOD supplementation significantly augmented IL-1β induced MMP-9 expression and activity. In summary, non-labouring SC fetal membranes are characterised by reduced antioxidant enzyme activity when compared to distal membranes, and, as such, may be more susceptible to oxidative damage and thus membrane rupture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Investigation of humidity control via membrane separation for advanced Extravehicular Mobility Unit (EMU) application

    Science.gov (United States)

    Newbold, D. D.; Ray, R. J.; Pledger, W. A.; Mccray, S. B.; Brown, M. F.

    1989-01-01

    This paper describes the development of a membrane-based process for dehumidifying the Extravehicular Mobility Unit (EMU). The membrane process promises to be smaller, lighter, and more energy efficient than the other technologies for dehumidification. The dehydration membranes were tested for 90 days at conditions expected to be present in the EMU. The results of these tests indicate that membrane-based technology can effectively control humidity in the EMU.

  3. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses.

    Science.gov (United States)

    Sreedharan, Shareena; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2013-10-01

    Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause-effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse-maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress-inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons

  4. Energy Consumption in Terms of Shear Stress for Two Types of Membrane Bioreactors used for Municipal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Rasmussen, Michael R.

    2012-01-01

    Two types of submerged membrane bioreactors (MBR): hollow fiber (HF) and hollow sheet (HS), have been studied and compared in terms of energy consumption and average shear stress over the membrane wall. The analysis of energy consumption was made using the correlation to determine the blower power...... of shear stress over the membrane surface was made using computational fluid dynamics (CFD) modelling. Experimental measurements for the HF MBR were compared with the CFD model and an error less that 8% was obtained. For the HS MBR, experimental measurements of velocity profiles were made and an error...... of 11% was found. This work uses an empirical relationship to determine the shear stress based on the ratio of aeration blower power to tank volume. This relationship is used in bubble column reactors and it is extrapolate to determine shear stress on MBR systems. This relationship proved...

  5. Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Sergio; Rosas, Irene; González, Elena; Gutierrez-Lavin, Antonio; Diaz, Mario, E-mail: mariodiaz@uniovi.es

    2014-02-01

    Highlights: • MBR under feed-induced stress conditions: starvation and changing feeding conditions. • High capacity of MBR to withstand high variations in feed loads. • Slow biofilm formation under starvation conditions during the first days. • Observed growth of P. putida for substrate to microorganism ratio higher than 0.6 g/g. • Maximum specific growth rate and growth yield values of around 37.5 h{sup −1} and 0.5 g/g. - Abstract: Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100–1100 mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15 mg/g h were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum Y{sub X/S} of 0.5 g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16 g/m{sup 2}.

  6. Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions

    International Nuclear Information System (INIS)

    Collado, Sergio; Rosas, Irene; González, Elena; Gutierrez-Lavin, Antonio; Diaz, Mario

    2014-01-01

    Highlights: • MBR under feed-induced stress conditions: starvation and changing feeding conditions. • High capacity of MBR to withstand high variations in feed loads. • Slow biofilm formation under starvation conditions during the first days. • Observed growth of P. putida for substrate to microorganism ratio higher than 0.6 g/g. • Maximum specific growth rate and growth yield values of around 37.5 h −1 and 0.5 g/g. - Abstract: Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100–1100 mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15 mg/g h were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum Y X/S of 0.5 g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16 g/m 2

  7. The protective effect of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes

    Science.gov (United States)

    Mohamed, Jamaludin; Shing, Saw Wuan; Md Idris, Muhd Hanis; Budin, Siti Balkis; Zainalabidin, Satirah

    2013-01-01

    OBJECTIVES: The aim of this study was to investigate the protective effects of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell (RBC) membrane oxidative stress in rats with streptozotocin-induced diabetes. METHODS: Forty male Sprague-Dawley rats weighing 230-250 g were randomly divided into four groups (n = 10 rats each): control group (N), roselle-treated control group, diabetic group, and roselle-treated diabetic group. Roselle was administered by force-feeding with aqueous extracts of roselle (100 mg/kg body weight) for 28 days. RESULTS: The results demonstrated that the malondialdehyde levels of the red blood cell membranes in the diabetic group were significantly higher than the levels in the roselle-treated control and roselle-treated diabetic groups. The protein carbonyl level was significantly higher in the roselle-treated diabetic group than in the roselle-treated control group but lower than that in the diabetic group. A significant increase in the red blood cell membrane superoxide dismutase enzyme was found in roselle-treated diabetic rats compared with roselle-treated control rats and diabetic rats. The total protein level of the red blood cell membrane, osmotic fragility, and red blood cell morphology were maintained. CONCLUSION: The present study demonstrates that aqueous extracts of roselle possess a protective effect against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes. These data suggest that roselle can be used as a natural antioxidative supplement in the prevention of oxidative damage in diabetic patients. PMID:24212844

  8. The protective effect of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2 against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes

    Directory of Open Access Journals (Sweden)

    Jamaludin Mohamed

    2013-10-01

    Full Text Available OBJECTIVES: The aim of this study was to investigate the protective effects of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2 against red blood cell (RBC membrane oxidative stress in rats with streptozotocin-induced diabetes. METHODS: Forty male Sprague-Dawley rats weighing 230-250 g were randomly divided into four groups (n = 10 rats each: control group (N, roselle-treated control group, diabetic group, and roselle-treated diabetic group. Roselle was administered by force-feeding with aqueous extracts of roselle (100 mg/kg body weight for 28 days. RESULTS: The results demonstrated that the malondialdehyde levels of the red blood cell membranes in the diabetic group were significantly higher than the levels in the roselle-treated control and roselle-treated diabetic groups. The protein carbonyl level was significantly higher in the roselle-treated diabetic group than in the roselle-treated control group but lower than that in the diabetic group. A significant increase in the red blood cell membrane superoxide dismutase enzyme was found in roselle-treated diabetic rats compared with roselle-treated control rats and diabetic rats. The total protein level of the red blood cell membrane, osmotic fragility, and red blood cell morphology were maintained. CONCLUSION: The present study demonstrates that aqueous extracts of roselle possess a protective effect against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes. These data suggest that roselle can be used as a natural antioxidative supplement in the prevention of oxidative damage in diabetic patients.

  9. The protective effect of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Mohamed, Jamaludin; Shing, Saw Wuan; Idris, Muhd Hanis Md; Budin, Siti Balkis; Zainalabidin, Satirah

    2013-10-01

    The aim of this study was to investigate the protective effects of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell (RBC) membrane oxidative stress in rats with streptozotocin-induced diabetes. Forty male Sprague-Dawley rats weighing 230-250 g were randomly divided into four groups (n = 10 rats each): control group (N), roselle-treated control group, diabetic group, and roselle-treated diabetic group. Roselle was administered by force-feeding with aqueous extracts of roselle (100 mg/kg body weight) for 28 days. The results demonstrated that the malondialdehyde levels of the red blood cell membranes in the diabetic group were significantly higher than the levels in the roselle-treated control and roselle-treated diabetic groups. The protein carbonyl level was significantly higher in the roselle-treated diabetic group than in the roselle-treated control group but lower than that in the diabetic group. A significant increase in the red blood cell membrane superoxide dismutase enzyme was found in roselle-treated diabetic rats compared with roselle-treated control rats and diabetic rats. The total protein level of the red blood cell membrane, osmotic fragility, and red blood cell morphology were maintained. The present study demonstrates that aqueous extracts of roselle possess a protective effect against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes. These data suggest that roselle can be used as a natural antioxidative supplement in the prevention of oxidative damage in diabetic patients.

  10. Determination of glucose exchange rates and permeability of erythrocyte membrane in preeclampsia and subsequent oxidative stress-related protein damage using dynamic-{sup 19}F-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, Elizabeth, E-mail: elizabeth.dickinson@york.ac.uk [University of York, Department of Chemistry (United Kingdom); Arnold, John R. P. [Selby College (United Kingdom); Fisher, Julie [University of Leeds, School of Chemistry (United Kingdom)

    2017-02-15

    The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using {sup 19}F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane.

  11. Determination of glucose exchange rates and permeability of erythrocyte membrane in preeclampsia and subsequent oxidative stress-related protein damage using dynamic-"1"9F-NMR

    International Nuclear Information System (INIS)

    Dickinson, Elizabeth; Arnold, John R. P.; Fisher, Julie

    2017-01-01

    The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using "1"9F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane.

  12. Ion Transport through Diffusion Layer Controlled by Charge Mosaic Membrane

    Directory of Open Access Journals (Sweden)

    Akira Yamauchi

    2012-01-01

    Full Text Available The kinetic transport behaviors in near interface of the membranes were studied using commercial anion and cation exchange membrane and charge mosaic membrane. Current-voltage curve gave the limiting current density that indicates the ceiling of conventional flux. From chronopotentiometry above the limiting current density, the transition time was estimated. The thickness of boundary layer was derived with conjunction with the conventional limiting current density and the transition time from steady state flux. On the other hand, the charge mosaic membrane was introduced in order to examine the ion transport on the membrane surface in detail. The concentration profile was discussed by the kinetic transport number with regard to the water dissociation (splitting on the membrane surface.

  13. Tank waste remediation system heat stress control program report, 1995

    International Nuclear Information System (INIS)

    Carls, D.R.

    1995-01-01

    Protecting employees from heat stress within tank farms during the summer months is challenging. Work constraints typically experienced in tank farms complicate the measures taken to protect employees from heat stress. TWRS-Industrial Hygiene (IH) has endeavored to control heat stress injuries by anticipating, recognizing, evaluating and controlling the factors which lead or contribute to heat stress in Tank Farms. The TWRS Heat Stress Control Program covers such areas as: employee and PIC training, communication of daily heat stress alerts to tank farm personnel, setting work/rest regimens, and the use of engineering and personal protective controls when applicable. The program has increased worker awareness of heat stress and prevention, established provisions for worker rest periods, increased drinking water availability to help ensure worker hydration, and allowed for the increased use of other protective controls to combat heat stress. The TWRS Heat Stress Control Program is the cornerstone for controlling heat stress among tank farm employees. The program has made great strides since it's inception during the summer of 1994. Some improvements can still be made to enhance the program for the summer of 1996, such as: (1) procurement and use of personal heat stress monitoring equipment to ensure appropriate application of administrative controls, (2) decrease the need for use of containment tents and anti-contamination clothing, and (3) providing a wider variety of engineering and personal protective controls for heat stress prevention

  14. Overexpression of a Plasma Membrane-Localized SbSRP-Like Protein Enhances Salinity and Osmotic Stress Tolerance in Transgenic Tobacco

    Directory of Open Access Journals (Sweden)

    Avinash Mishra

    2017-04-01

    Full Text Available An obligate halophyte, Salicornia brachiata grows in salt marshes and is considered to be a potential resource of salt- and drought-responsive genes. It is important to develop an understanding of the mechanisms behind enhanced salt tolerance. To increase this understanding, a novel SbSRP gene was cloned, characterized, over-expressed, and functionally validated in the model plant Nicotiana tabacum. The genome of the halophyte S. brachiata contains two homologs of an intronless SbSRP gene of 1,262 bp in length that encodes for a stress-related protein. An in vivo localization study confirmed that SbSRP is localized on the plasma membrane. Transgenic tobacco plants (T1 that constitutively over-express the SbSRP gene showed improved salinity and osmotic stress tolerance. In comparison to Wild Type (WT and Vector Control (VC plants, transgenic lines showed elevated relative water and chlorophyll content, lower malondialdehyde content, lower electrolyte leakage and higher accumulation of proline, free amino acids, sugars, polyphenols, and starch under abiotic stress treatments. Furthermore, a lower build-up of H2O2 content and superoxide-radicals was found in transgenic lines compared to WT and VC plants under stress conditions. Transcript expression of Nt-APX (ascorbate peroxidase, Nt-CAT (catalase, Nt-SOD (superoxide dismutase, Nt-DREB (dehydration responsive element binding factor, and Nt-AP2 (apetala2 genes was higher in transgenic lines under stress compared to WT and VC plants. The results suggested that overexpression of membrane-localized SbSRP mitigates salt and osmotic stress in the transgenic tobacco plant. It was hypothesized that SbSRP can be a transporter protein to transmit the environmental stimuli downward through the plasma membrane. However, a detailed study is required to ascertain its exact role in the abiotic stress tolerance mechanism. Overall, SbSRP is a potential candidate to be used for engineering salt and osmotic

  15. G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes.

    Science.gov (United States)

    O'Neill, Patrick R; Karunarathne, W K Ajith; Kalyanaraman, Vani; Silvius, John R; Gautam, N

    2012-12-18

    Activation of G-protein heterotrimers by receptors at the plasma membrane stimulates βγ-complex dissociation from the α-subunit and translocation to internal membranes. This intermembrane movement of lipid-modified proteins is a fundamental but poorly understood feature of cell signaling. The differential translocation of G-protein βγ-subunit types provides a valuable experimental model to examine the movement of signaling proteins between membranes in a living cell. We used live cell imaging, mathematical modeling, and in vitro measurements of lipidated fluorescent peptide dissociation from vesicles to determine the mechanistic basis of the intermembrane movement and identify the interactions responsible for differential translocation kinetics in this family of evolutionarily conserved proteins. We found that the reversible translocation is mediated by the limited affinity of the βγ-subunits for membranes. The differential kinetics of the βγ-subunit types are determined by variations among a set of basic and hydrophobic residues in the γ-subunit types. G-protein signaling thus leverages the wide variation in membrane dissociation rates among different γ-subunit types to differentially control βγ-translocation kinetics in response to receptor activation. The conservation of primary structures of γ-subunits across mammalian species suggests that there can be evolutionary selection for primary structures that confer specific membrane-binding affinities and consequent rates of intermembrane movement.

  16. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes.

    Science.gov (United States)

    Dutta, Eryn H; Behnia, Faranak; Boldogh, Istvan; Saade, George R; Taylor, Brandie D; Kacerovský, Marian; Menon, Ramkumar

    2016-02-01

    In women with preterm premature rupture of the membranes (PPROM), increased oxidative stress may accelerate premature cellular senescence, senescence-associated inflammation and proteolysis, which may predispose them to rupture. We demonstrate mechanistic differences between preterm birth (PTB) and PPROM by revealing differences in fetal membrane redox status, oxidative stress-induced damage, distinct signaling pathways and senescence activation. Oxidative stress-associated fetal membrane damage and cell cycle arrest determine adverse pregnancy outcomes, such as spontaneous PTB and PPROM. Fetal membranes and amniotic fluid samples were collected from women with PTB and PPROM. Molecular, biochemical and histologic markers were used to document differences in oxidative stress and antioxidant enzyme status, DNA damage, secondary signaling activation by Ras-GTPase and mitogen-activated protein kinases, and activation of senescence between membranes from the two groups. Oxidative stress was higher and antioxidant enzymes were lower in PPROM compared with PTB. PTB membranes had minimal DNA damage and showed activation of Ras-GTPase and ERK/JNK signaling pathway with minimal signs of senescence. PPROM had higher numbers of cells with DNA damage, prosenescence stress kinase (p38 MAPK) activation and signs of senescence. Samples were obtained retrospectively after delivery. The markers of senescence that we tested are specific but are not sufficient to confirm senescence as the pathology in PPROM. Oxidative stress-induced DNA damage and senescence are characteristics of fetal membranes from PPROM, compared with PTB with intact membranes. PTB and PPROM arise from distinct pathophysiologic pathways. Oxidative stress and oxidative stress-induced cellular damages are likely determinants of the mechanistic signaling pathways and phenotypic outcome. This study is supported by developmental funds to Dr R. Menon from the Department of Obstetrics and Gynecology at The University of

  17. When does stress help or harm? The effects of stress controllability and subjective stress response on Stroop performance.

    OpenAIRE

    Roselinde Kaiser Henderson; Hannah R. Snyder; Tina eGupta; Marie T. Banich; Marie T. Banich

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing to clinical therapy. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding ...

  18. When Does Stress Help or Harm? The Effects of Stress Controllability and Subjective Stress Response on Stroop Performance

    OpenAIRE

    Henderson, Roselinde K.; Snyder, Hannah R.; Gupta, Tina; Banich, Marie T.

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, r...

  19. Cognitive control moderates parenting stress effects on children's diurnal cortisol

    OpenAIRE

    Raffington, Laurel; Schmiedek, Florian; Heim, Christine; Shing, Yee Lee

    2018-01-01

    This study investigated associations between parenting stress in parents and self-reported stress in children with children's diurnal cortisol secretion and whether these associations are moderated by known stress-regulating capacities, namely child cognitive control. Salivary cortisol concentrations were assessed from awakening to evening on two weekend days from 53 6-to-7-year-old children. Children completed a cognitive control task and a self-report stress questionnaire with an experiment...

  20. Coating of reverse osmosis membranes with amphiphilic copolymers for biofouling control

    KAUST Repository

    Bucs, Szilard

    2017-05-30

    Surface coating of membranes may be a promising option to control biofilm development and biofouling impact on membrane performance of spiral-wound reverse osmosis (RO) systems. The objective of this study was to investigate the impact of an amphiphilic copolymer coating on biofilm formation and biofouling control. The coating was composed of both hydrophilic and hydrophobic monomers hydroxyethyl methacrylate (HEMA) and perfluorodecyl acrylate (PFA), respectively. Commercial RO membranes were coated with HEMA-PFA copolymer film. Long and short term biofouling studies with coated and uncoated membranes and feed spacer were performed using membrane fouling simulators (MFSs) operated in parallel, fed with water containing nutrients. For the long-term studies pressure drop development in time was monitored and after eight days the MFSs were opened and the accumulated biofilm on the membrane and spacer sheets was quantified and characterized. The presence of the membrane coating was determined using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Results showed that the amphiphilic coating (i) delayed biofouling (a lower pressure drop increase by a factor of 3 and a lower accumulated active biomass amount by a factor of 6), (ii) influenced the biofilm composition (23% lower polysaccharides and 132% higher protein content) and (iii) was still completely present on the membrane at the end of the biofouling study, showing that the coating was strongly attached to the membrane surface. Using coated membranes and feed spacers in combination with advanced cleaning strategies may be a suitable way to control biofouling.

  1. Coating of reverse osmosis membranes with amphiphilic copolymers for biofouling control

    KAUST Repository

    Bucs, Szilard; Valladares Linares, Rodrigo; Siddiqui, Amber; Matin, Asif; Khan, Zafarullah; van Loosdrecht, Mark C.M.; Yang, Rong; Wang, Minghui; Gleason, Karen K.; Kruithof, Joop C.; Vrouwenvelder, Johannes S.

    2017-01-01

    Surface coating of membranes may be a promising option to control biofilm development and biofouling impact on membrane performance of spiral-wound reverse osmosis (RO) systems. The objective of this study was to investigate the impact of an amphiphilic copolymer coating on biofilm formation and biofouling control. The coating was composed of both hydrophilic and hydrophobic monomers hydroxyethyl methacrylate (HEMA) and perfluorodecyl acrylate (PFA), respectively. Commercial RO membranes were coated with HEMA-PFA copolymer film. Long and short term biofouling studies with coated and uncoated membranes and feed spacer were performed using membrane fouling simulators (MFSs) operated in parallel, fed with water containing nutrients. For the long-term studies pressure drop development in time was monitored and after eight days the MFSs were opened and the accumulated biofilm on the membrane and spacer sheets was quantified and characterized. The presence of the membrane coating was determined using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Results showed that the amphiphilic coating (i) delayed biofouling (a lower pressure drop increase by a factor of 3 and a lower accumulated active biomass amount by a factor of 6), (ii) influenced the biofilm composition (23% lower polysaccharides and 132% higher protein content) and (iii) was still completely present on the membrane at the end of the biofouling study, showing that the coating was strongly attached to the membrane surface. Using coated membranes and feed spacers in combination with advanced cleaning strategies may be a suitable way to control biofouling.

  2. Internal stress control of boron thin film

    International Nuclear Information System (INIS)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M.

    1998-01-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s -1 and substrate temperature of 300 C. (orig.)

  3. Internal stress control of boron thin film

    Energy Technology Data Exchange (ETDEWEB)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M. [Osaka Univ., Suita (Japan). Graduate Sch. of Eng.

    1998-09-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s{sup -1} and substrate temperature of 300 C. (orig.) 12 refs.

  4. Effect of chronic psychogenic stress on characteristics of some rat brain synaptic membrane receptors

    International Nuclear Information System (INIS)

    Nikuradze, V.O.; Kozlovskaya, M.M.; Rozhanets, V.V.; Val'dman, A.V.

    1986-01-01

    This paper studies characteristics of alpha- and beta-adrenoreceptors, and imipramine and bensodiazepine receptors in brain synaptic membranes of rats after exposure to combined stress for 15 days by a modified Hecht's method. Before the experiment the suspension was thawed and centrifuged. Specific binding of tritium-WB-4101 (30 Ci/mmole), tritium-dihydroalprenolol, tritium-flunitrazepam, and tritium-imipramine was carried out by known methods with certain modifications. The results suggest that pathology of behavior in rats observed in the model may be classed as a depressive-like state rather than a neurosis-like state, and the model itself may be more appropriate for the study of the mechanisms of action of compounds with marked tranquilizing activity

  5. Effect of chronic psychogenic stress on characteristics of some rat brain synaptic membrane receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nikuradze, V.O.; Kozlovskaya, M.M.; Rozhanets, V.V.; Val' dman, A.V.

    1986-02-01

    This paper studies characteristics of alpha- and beta-adrenoreceptors, and imipramine and bensodiazepine receptors in brain synaptic membranes of rats after exposure to combined stress for 15 days by a modified Hecht's method. Before the experiment the suspension was thawed and centrifuged. Specific binding of tritium-WB-4101 (30 Ci/mmole), tritium-dihydroalprenolol, tritium-flunitrazepam, and tritium-imipramine was carried out by known methods with certain modifications. The results suggest that pathology of behavior in rats observed in the model may be classed as a depressive-like state rather than a neurosis-like state, and the model itself may be more appropriate for the study of the mechanisms of action of compounds with marked tranquilizing activity.

  6. Smell identification of spices using nanomechanical membrane-type surface stress sensors

    Science.gov (United States)

    Imamura, Gaku; Shiba, Kota; Yoshikawa, Genki

    2016-11-01

    Artificial olfaction, that is, a chemical sensor system that identifies samples by smell, has not been fully achieved because of the complex perceptional mechanism of olfaction. To realize an artificial olfactory system, not only an array of chemical sensors but also a valid feature extraction method is required. In this study, we achieved the identification of spices by smell using nanomechanical membrane-type surface stress sensors (MSS). Features were extracted from the sensing signals obtained from four MSS coated with different types of polymers, focusing on the chemical interactions between polymers and odor molecules. The principal component analysis (PCA) of the dataset consisting of the extracted parameters demonstrated the separation of each spice on the scatter plot. We discuss the strategy for improving odor identification based on the relationship between the results of PCA and the chemical species in the odors.

  7. Design and simulation of the surface shape control system for membrane mirror

    Science.gov (United States)

    Zhang, Gengsheng; Tang, Minxue

    2009-11-01

    The surface shape control is one of the key technologies for the manufacture of membrane mirror. This paper presents a design of membrane mirror's surface shape control system on the basis of fuzzy logic control. The system contains such function modules as surface shape design, surface shape control, surface shape analysis, and etc. The system functions are realized by using hybrid programming technology of Visual C# and MATLAB. The finite element method is adopted to simulate the surface shape control of membrane mirror. The finite element analysis model is established through ANSYS Parametric Design Language (APDL). ANSYS software kernel is called by the system in background running mode when doing the simulation. The controller is designed by means of controlling the sag of the mirror's central crosssection. The surface shape of the membrane mirror and its optical aberration are obtained by applying Zernike polynomial fitting. The analysis of surface shape control and the simulation of disturbance response are performed for a membrane mirror with 300mm aperture and F/2.7. The result of the simulation shows that by using the designed control system, the RMS wavefront error of the mirror can reach to 142λ (λ=632.8nm), which is consistent to the surface accuracy of the membrane mirror obtained by the large deformation theory of membrane under the same condition.

  8. How membrane lipids control the 3D structure and function of receptors

    Directory of Open Access Journals (Sweden)

    Jacques Fantini

    2018-02-01

    Full Text Available The cohabitation of lipids and proteins in the plasma membrane of mammalian cells is controlled by specific biochemical and biophysical rules. Lipids may be either constitutively tightly bound to cell-surface receptors (non-annular lipids or less tightly attached to the external surface of the protein (annular lipids. The latter are exchangeable with surrounding bulk membrane lipids on a faster time scale than that of non-annular lipids. Not only do non-annular lipids bind to membrane proteins through stereoselective mechanisms, they can also help membrane receptors acquire (or maintain a functional 3D structure. Cholesterol is the prototype of membrane lipids that finely controls the 3D structure and function of receptors. However, several other lipids such as sphingolipids may also modulate the function of membrane proteins though conformational adjustments. All these concepts are discussed in this review in the light of representative examples taken from the literature.

  9.  Oxidative stress modulates the organization of erythrocyte membrane cytoskeleton

    Directory of Open Access Journals (Sweden)

    Maria Olszewska

    2012-07-01

    Full Text Available  Background:Apart from their main role in transporting oxygen and carbon dioxide, erythrocytes play also an important role in organism antioxidative defence. Direct exposure to reactive oxygen species (ROS results in shortening of their half-life, even by 50�20The presence of glucose, being the substrate in pentose phosphate pathway (PPP cycle, is one of the factors that can have influence on the level of oxidative stress. The activity of PPP increases during oxidative stress. Glucose guarantees normal PPP functioning with the production of reductive equivalents in the amounts necessary to reproduction of glutathione – nonenzymatic free radical scavenger. In available literature there are no reports regarding the changes in protein contents of erythrocyte cytoskeleton exposed to t-butyl hydroperoxide in relation to glucose presence in incubation medium.Material/methods:Erythrocytes taken from 10 healthy subjects were used to assess the influence of generated free radicals on erythrocyte proteins and chosen parameters of oxidative stress. Erythrocytes were incubated in the solutions containing deferent concentrations of t-butyl hydroperoxide and glucose. Electrophoresis was performed on polyacrylamide gel in denaturating conditions. The contents of tryptophan in membranes was evaluated spectrofluorometrically.Results/conclusions:In vitro conditions oxidative stress leads to protein damage in erythrocyte cytoskeleton, both in proteins inside the cell as well as having contact with extracellular environment. In consequence, the amount of low-molecular proteins – mainly globin, which bind to cytoskeleton, increases. This process takes place independently of glucose presence in incubation medium. One of the element of protein cytoskeleton, tryptophan, also undergoes degradation. The decrease of its contents is higher during erythrocyte exposure to t-BOOH in environment containing glucose, what can suggest prooxidative influence of glucose in

  10. Biofouling Control in Spiral-Wound Membrane Systems: Impact of Feed Spacer Modification and Biocides

    KAUST Repository

    Siddiqui, Amber

    2016-12-01

    High-quality drinking water can be produced with membrane-based filtration processes like reverse osmosis and nanofiltration. One of the major problems in these membrane systems is biofouling that reduces the membrane performance, increasing operational costs. Current biofouling control strategies such as pre-treatment, membrane modification, and chemical cleaning are not sufficient in all cases. Feed spacers are thin (0.8 mm), complex geometry meshes that separate membranes in a module. The main objective of this research was to evaluate whether feed spacer modification is a suitable strategy to control biofouling. Membrane fouling simulator studies with six feed spacers showed differences in biofouled spacer performance, concluding that (i) spacer geometry influences biofouling impact and (ii) biofouling studies are essential for evaluation of spacer biofouling impact. Computed tomography (CT) was found as a suitable technique to obtain three-dimensional (3D) measurements of spacers, enabling more representative mathematical modeling of hydraulic behavior of spacers in membrane systems. A strategy for developing, characterizing, and testing of spacers by numerical modeling, 3D printing of spacers and experimental membrane fouling simulator studies was developed. The combination of modeling and experimental testing of 3D printed spacers is a promising strategy to develop advanced spacers aiming to reduce the impact of biofilm formation on membrane performance and to improve the cleanability of spiral-wound membrane systems.

  11. How membrane lipids control the 3D structure and function of receptors

    OpenAIRE

    Jacques Fantini; Francisco J. Barrantes

    2018-01-01

    The cohabitation of lipids and proteins in the plasma membrane of mammalian cells is controlled by specific biochemical and biophysical rules. Lipids may be either constitutively tightly bound to cell-surface receptors (non-annular lipids) or less tightly attached to the external surface of the protein (annular lipids). The latter are exchangeable with surrounding bulk membrane lipids on a faster time scale than that of non-annular lipids. Not only do non-annular lipids bind to membrane prote...

  12. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  13. Nondestructive control of residual stresses during welding and recharge processes

    International Nuclear Information System (INIS)

    Suarez, J.C.; Fernandez, L.M.; Cruz, C.; Merino, F.; Aragon, B.

    1993-01-01

    In this work, the stress state of material during welding and recharge processes is controlled with the help of Barkhausen effect. The changes, occurred in the longitudinal and transversal stress profile are show during deposition of welding rings. It is proved that the stress state of the base-material depends on the amount of recharge layers, deposited on it

  14. The Zinc-Finger Thylakoid-Membrane Protein FIP Is Involved With Abiotic Stress Response in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Karina L. Lopes

    2018-04-01

    Full Text Available Many plant genes have their expression modulated by stress conditions. Here, we used Arabidopsis FtsH5 protease, which expression is regulated by light stress, as bait in a yeast two-hybrid screen to search for new proteins involved in the stress response. As a result, we found FIP (FtsH5 Interacting Protein, which possesses an amino proximal cleavable transit peptide, a hydrophobic membrane-anchoring region, and a carboxyl proximal C4-type zinc-finger domain. In vivo experiments using FIP fused to green fluorescent protein (GFP showed a plastid localization. This finding was corroborated by chloroplast import assays that showed FIP inserted in the thylakoid membrane. FIP expression was down-regulated in plants exposed to high light intensity, oxidative, salt, and osmotic stresses, whereas mutant plants expressing low levels of FIP were more tolerant to these abiotic stresses. Our data shows a new thylakoid-membrane protein involved with abiotic stress response in Arabidopsis thaliana.

  15. Changes in markers of oxidative stress and membrane properties in synaptosomes from rats exposed prenatally to toluene

    DEFF Research Database (Denmark)

    Edelfors, Sven; Hass, Ulla; Hougaard, Karin S.

    2002-01-01

    for the experiments, Synaptosomes from rats exposed prenatally to toluene exhibited an increased level of oxidative stress when incubated with toluene in vitro compared to synaptosomes from unexposed offspring. Also the cell membrane was affected, as the calcium leakage was more increased from exposed synaptosomes...

  16. The effect of acid rain stress on membrane protective system of spinach and the conservation of rare earth elements

    International Nuclear Information System (INIS)

    Chongling, Y; Yetang, H.

    1998-01-01

    Full text: Based on pot experiments, the effect of acid rain stress on membrane protective system of spinach and the effect of rare earth elements has been studied. The results showed, stress of acid rain resulted in decrease of over all level of superoxide dismutase activity, catalase activity and increase of peroxidase (POD) activity. After being treated by rare earth elements, the overall level of superoxide dismutase activity and catalase activity were increased and the peak value of activity variation curve moved toward to the direction of higher acidity. POD activity increased slightly, comparing with the plants that hadn't been treated by rare earth elements under same acid rain condition; the three important enzymes of membrane protective system could be kept on a relatively stable level. It was clear that in relative lower acidity condition, rare earth elements can reduce the impact of acid rain on the membrane protective system

  17. Inefficacy of osmotic backwash induced by sodium chloride salt solution in controlling SWRO membrane fouling

    Science.gov (United States)

    Farooque, A. Mohammed; Al-Jeshi, Subhi; Saeed, Mohamed O.; Alreweli, Ali

    2014-12-01

    A study was conducted to evaluate the efficacy of osmotic backwash induced by high salt (NaCl) concentration solution on feed side of seawater reverse osmosis (SWRO) membranes, online and offline, in controlling membrane fouling and therefore minimizing/eliminating the need for chemical cleaning. SWRO membranes were deliberately fouled by feeding seawater from an open intake located on the Arabian Gulf Coast without dosing chemicals. The fouled membranes were subjected to offline cleaning with the salt solution of up to 25 % concentration. Despite the partial removal of foulants from the membrane surface, SWRO membrane performance could not be restored, indicating the ineffectiveness of osmotic backwash in aiding offline salt cleaning. Similarly, online osmotic backwash was found to be not only ineffective in removing foulants from membrane surfaces but actually increased the fouling rate, as indicated by faster fouling rates compared to other cases. Although the driving force required for the osmotic backwash existed, the generated back flow proved to be insufficient to detach foulants from membrane surfaces. During the study period, the average SWRO membrane flux was maintained between 19 and 23 LMH, whereas the average generated back flow flux by high salt concentration solution was only 11 LMH, which was not adequate to remove foulants from membrane surfaces. Moreover, it seems that the membrane configuration as well as inherent microstructure of SWRO membrane places certain constraints on the osmotic backwash process and renders osmotic backwash ineffective in tackling SWRO membrane fouling. Hence, chemical cleaning is essential to restore SWRO membrane performance whenever fouling occurs, and the use of highly concentrated salt solution does not have any significant benefit. Membrane autopsy revealed only an insignificant accumulation of biofouling layer despite the absence of disinfection. However, it was shown that culturable biofilm bacteria species

  18. Folding DNA into a Lipid-Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins.

    Science.gov (United States)

    Dong, Yuanchen; Chen, Shuobing; Zhang, Shijian; Sodroski, Joseph; Yang, Zhongqiang; Liu, Dongsheng; Mao, Youdong

    2018-02-19

    Building upon DNA origami technology, we introduce a method to reconstitute a single membrane protein into a self-assembled DNA nanobarrel that scaffolds a nanodisc-like lipid environment. Compared with the membrane-scaffolding-protein nanodisc technique, our approach gives rise to defined stoichiometry, controlled sizes, as well as enhanced stability and homogeneity in membrane protein reconstitution. We further demonstrate potential applications of the DNA nanobarrels in the structural analysis of membrane proteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Feed gas contaminant control in ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis [Allentown, PA; Minford, Eric [Laurys Station, PA; Waldron, William Emil [Whitehall, PA

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  20. When does stress help or harm? The effects of stress controllability and subjective stress response on stroop performance.

    Science.gov (United States)

    Henderson, Roselinde K; Snyder, Hannah R; Gupta, Tina; Banich, Marie T

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual's response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest Stroop

  1. When does stress help or harm? The effects of stress controllability and subjective stress response on Stroop performance.

    Directory of Open Access Journals (Sweden)

    Roselinde Kaiser Henderson

    2012-06-01

    Full Text Available The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing to clinical therapy. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual’s response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low responses can lead to impaired performance. The present studies tested the hypothesis that 1 learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that 2 this improvement emerges specifically for people who report moderate (subjective responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n=109. People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n=90, we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress

  2. Overaccumulation of glycine betaine makes the function of the thylakoid membrane better in wheat under salt stress

    Directory of Open Access Journals (Sweden)

    Fengxia Tian

    2017-02-01

    Full Text Available Wheat (Triticum aestivum L. lines T1, T4, and T6 were genetically modified to increase glycine betaine (GB synthesis by introduction of the BADH (betaine aldehyde dehydrogenase, BADH gene from mountain spinach (Atriplex hortensis L.. These transgenic lines and WT of wheat (T. aestivum L. were used to study the effect of increased GB synthesis on wheat tolerance to salt stress. Salt stress due to 200 mmol L−1 NaCl impaired the photosynthesis of the four wheat lines, as indicated by declines in net photosynthetic rate (Pn, stomatal conductance (Gs, maximum photochemical efficiency of PSII (Fv/Fm, and actual photochemical efficiency of PSII (ФPSII and an increase in intercellular CO2 concentration (Ci. In comparison with WT, the effect of salinity on the three transgenic lines was mild. Salt stress caused disadvantageous changes in lipids and their fatty acid compositions in the thylakoid membrane of the transgenic lines and WT. Under salt stress, the three transgenic lines showed slightly higher chlorophyll and carotenoid contents and higher Hill reaction activities and Ca2+-ATPase activity than WT. All the results suggest that overaccumulation of GB resulting from introduction of the BADH gene can enhance the salt tolerance of transgenic plants, especially in the protection of the components and function of thylakoid membranes, thereby making photosynthesis better. Changes in lipids and fatty acid compositions in the thylakoid membrane may be involved in the increased salt stress tolerance of the transgenic lines.

  3. Acetyl salicylic acid and 24-epibrassinolide attenuate decline in photosynthesis, chlorophyll contents and membrane thermo- stability in tomato (lycopersicon esculentum mill.) under heat stress

    International Nuclear Information System (INIS)

    Khan, A.R.; Hui, C.Z.; Ghazanfar, B.

    2015-01-01

    The effect of exogenous application of varying levels of 24-epibrassinolide (0.75, 1.5 and 3 micro M) and acetyl salicylic acid (0.25, 0.75 and 1.25 micro M) for induction of heat tolerance in terms of their effect on photosynthesis, chlorophyll content, membrane integrity and survival in four weeks old tomato (cultivar: Mei Jie Lo) seedlings under high temperature stress (46 degree C/4 h daily) for 21 days was investigated. The daily heat stress treatment had deleterious effects on seedlings but chemical treatments significantly reduced the magnitude of losses to different extents. 24-epibrassinolide (3 micro M) was over all the best treatment to improve survival (86.11%), photosynthesis (39.4%) and chlorophyll contents (26.12%) accompanied with initiation of flower buds and improved vegetative growth. Whereas acetyl salicylic acid (1.25 mM) best improved photosynthetic activity (40.6%) as compared to the untreated heat stressed control seedlings. Moreover, 3 micro M 24-epibrassinolide and 0.75 micro M acetyl salicylic acid reduced cell membrane injury to 8.3 and 6.9% respectively as compared with 22.4% in heat stressed control seedlings. However lower doses of acetyl salicylic acid (0.25 and 0.75 micro M) had slight (5.6 and 12.8%) inhibition effect on the photosynthesis than the heat stressed controls. Overall both acetyl salicylic acid and 24-epibrassinolide up regulated basal heat tolerance in tomato seedlings and studied concentrations demonstrated signature affect upon different parameters. Thus both chemical agents can be potential candidates for further investigations for exogenous application aiming at extension of tomato growth season in summer. (author)

  4. Nutritional Supplement of Hatchery Eggshell Membrane Improves Poultry Performance and Provides Resistance against Endotoxin Stress.

    Directory of Open Access Journals (Sweden)

    S K Makkar

    Full Text Available Eggshells are significant part of hatchery waste which consist of calcium carbonate crust, membranes, and proteins and peptides of embryonic origins along with other entrapped contaminants including microbes. We hypothesized that using this product as a nutritional additive in poultry diet may confer better immunity to the chickens in the paradigm of mammalian milk that enhances immunity. Therefore, we investigated the effect of hatchery eggshell membranes (HESM as a short term feed supplement on growth performance and immunity of chickens under bacterial lipopolysaccharide (LPS challenged condition. Three studies were conducted to find the effect of HESM supplement on post hatch chickens. In the first study, the chickens were fed either a control diet or diets containing 0.5% whey protein or HESM as supplement and evaluated at 5 weeks of age using growth, hematology, clinical chemistry, plasma immunoglobulins, and corticosterone as variables. The second and third studies were done to compare the effects of LPS on control and HESM fed birds at 5 weeks of age following at 4 and 24 h of treatment where the HESM was also sterilized with ethanol to deplete bacterial factors. HESM supplement caused weight gain in 2 experiments and decreased blood corticosterone concentrations. While LPS caused a significant loss in body weight at 24 h following its administration, the HESM supplemented birds showed significantly less body weight loss compared with the control fed birds. The WBC, heterophil/lymphocyte ratio, and the levels of IgG were low in chickens fed diets with HESM supplement compared with control diet group. LPS challenge increased the expression of pro-inflammatory cytokine gene IL-6 but the HESM fed birds showed its effect curtailed, also, which also, favored the up-regulation of anti-inflammatory genes compared with control diet fed chickens. Post hatch supplementation of HESM appears to improve performance, modulate immunity, and increase

  5. Nutritional Supplement of Hatchery Eggshell Membrane Improves Poultry Performance and Provides Resistance against Endotoxin Stress.

    Science.gov (United States)

    Makkar, S K; Rath, N C; Packialakshmi, B; Zhou, Z Y; Huff, G R; Donoghue, A M

    2016-01-01

    Eggshells are significant part of hatchery waste which consist of calcium carbonate crust, membranes, and proteins and peptides of embryonic origins along with other entrapped contaminants including microbes. We hypothesized that using this product as a nutritional additive in poultry diet may confer better immunity to the chickens in the paradigm of mammalian milk that enhances immunity. Therefore, we investigated the effect of hatchery eggshell membranes (HESM) as a short term feed supplement on growth performance and immunity of chickens under bacterial lipopolysaccharide (LPS) challenged condition. Three studies were conducted to find the effect of HESM supplement on post hatch chickens. In the first study, the chickens were fed either a control diet or diets containing 0.5% whey protein or HESM as supplement and evaluated at 5 weeks of age using growth, hematology, clinical chemistry, plasma immunoglobulins, and corticosterone as variables. The second and third studies were done to compare the effects of LPS on control and HESM fed birds at 5 weeks of age following at 4 and 24 h of treatment where the HESM was also sterilized with ethanol to deplete bacterial factors. HESM supplement caused weight gain in 2 experiments and decreased blood corticosterone concentrations. While LPS caused a significant loss in body weight at 24 h following its administration, the HESM supplemented birds showed significantly less body weight loss compared with the control fed birds. The WBC, heterophil/lymphocyte ratio, and the levels of IgG were low in chickens fed diets with HESM supplement compared with control diet group. LPS challenge increased the expression of pro-inflammatory cytokine gene IL-6 but the HESM fed birds showed its effect curtailed, also, which also, favored the up-regulation of anti-inflammatory genes compared with control diet fed chickens. Post hatch supplementation of HESM appears to improve performance, modulate immunity, and increase resistance of

  6. Current research and development of controlling membrane fouling ...

    African Journals Online (AJOL)

    Fouling is a major problem influencing the operational performance, stability and cost of a membrane bioreactor (MBR). The composition of wastewater and biomass grown in the MBR are directly related to fouling. Many factors including operational parameters can affect the fouling process. The extent of fouling can be ...

  7. Impact of osmotic stress on seedling growth observations, membrane characteristics and antioxidant defense system of different wheat genotypes

    Directory of Open Access Journals (Sweden)

    Bardees M. Mickky

    2017-03-01

    Full Text Available The objective of the present study was to find out a straightforward technique for screening the tolerance of ten wheat genotypes to two levels of osmotic stress at early seedling stage. Data revealed that polyethylene glycol-induced drought had general negative effect on seedling morphological characters indicated by plumule and radicle length, number of adventitious roots as well as seedling biomass and water content. Water deficit could also suppress membrane integrity by stimulating lipid peroxidation with marked increase in membrane leakage and subsequent decrease in its stability index. For all the addressed germination parameters and seedling membrane features, the impact of severe drought was more pronounced than that of moderate drought. Simultaneously, moderate stress could activate peroxidase, polyphenol oxidase and ascorbic peroxidase of the studied genotypes; but these enzymes were inhibited by severe stress. The activity of catalase, superoxide dismutase and glutathione reductase was conversely retarded by drought whether at moderate or severe level. More interestingly, a novel function “Stress Impact Index; SII” was introduced to rank the estimated morpho-physiological traits (SIItrait as well as the considered genotypes (SIIgenotype according to their sensitivity to stress. Values of SIItrait implied that germination parameters were generally affected by drought more intensively than membrane characteristics and finally came the antioxidant enzymes with the least degree of suppression when applying stress. Based on the magnitudes of SIIgenotype, Sids 13 seemed to be the most drought-tolerant wheat cultivar while Shandawel 1 could be the most sensitive one at their juvenile growth stage.

  8. The Young and the Stressed: Stress, Impulse Control, and Health in College Students.

    Science.gov (United States)

    Leppink, Eric W; Odlaug, Brian L; Lust, Katherine; Christenson, Gary; Grant, Jon E

    2016-12-01

    High levels of stress are common among young adults, particularly those enrolled in college. These degrees of stress have shown numerous deleterious effects across both academic and health variables. Findings regarding the role of stress in the presentation of impulse control disorders, particular among college students, are limited. This study examined potential associations between perceived stress, academic achievement, physical/mental health, and impulse control disorders in young adults. A total of 1805 students completed an online survey and were included in the analysis. Responders were grouped by their overall score on the Perceived Stress Scale into mild, moderate, or severe. Severe perceived stress was associated with worse academic achievement and worse physical health, as well as higher rates of psychiatric and impulsive disorders. These findings may suggest associations between stress and numerous aspects of mental/physical health in young adults, which could be an important consideration for individuals working with college students.

  9. Effect of membrane and through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity

    International Nuclear Information System (INIS)

    Yoo, Yeon-Sik

    2003-11-01

    This study clarified the effect of a membrane and a through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity due to irregularity of crack surface. Each stress component relates to fatigue crack growth behavior directly in general and thus the wild-used K I solutions are anticipated to give good evaluation results on it. Meanwhile, it is necessary to notify that surface irregularity for coolant leakage assessment is made by stress history in nature. Surface irregularity is known to be largely classified into the following two aspects: surface roughness due to continuous crack opening and closure behavior and surface turnover due to cyclic bending stress dominance. Therefore, the deterministic parameters on resistance of coolant leakage by surface irregularity are considered to be not only stress history but crack opening behavior. (author)

  10. Nonlinear Lyapunov-based boundary control of distributed heat transfer mechanisms in membrane distillation plant

    KAUST Repository

    Eleiwi, Fadi; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This paper presents a nonlinear Lyapunov-based boundary control for the temperature difference of a membrane distillation boundary layers. The heat transfer mechanisms inside the process are modeled with a 2D advection-diffusion equation. The model

  11. Application of electrochemical processes to membrane bioreactors for improving nutrient removal and fouling control.

    Science.gov (United States)

    Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo

    2017-01-01

    Membrane bioreactor (MBR) technology is becoming increasingly popular as wastewater treatment due to the unique advantages it offers. However, membrane fouling is being given a great deal of attention so as to improve the performance of this type of technology. Recent studies have proven that the application of electrochemical processes to MBR represents a promising technological approach for membrane fouling control. In this work, two intermittent voltage gradients of 1 and 3 V/cm were applied between two cylindrical perforated electrodes, immersed around a membrane module, at laboratory scale with the aim of investigating the treatment performance and membrane fouling formation. For comparison purposes, the reactor also operated as a conventional MBR. Mechanisms of nutrient removal were studied and membrane fouling formation evaluated in terms of transmembrane pressure variation over time and sludge relative hydrophobicity. Furthermore, the impact of electrochemical processes on transparent exopolymeric particles (TEP), proposed as a new membrane fouling precursor, was investigated in addition to conventional fouling precursors such as bound extracellular polymeric substances (bEPS) and soluble microbial products (SMP). All the results indicate that the integration of electrochemical processes into a MBR has the advantage of improving the treatment performance especially in terms of nutrient removal, with an enhancement of orthophosphate (PO 4 -P) and ammonia nitrogen (NH 4 -N) removal efficiencies up to 96.06 and 69.34 %, respectively. A reduction of membrane fouling was also observed with an increase of floc hydrophobicity to 71.72 %, a decrease of membrane fouling precursor concentrations, and, thus, of membrane fouling rates up to 54.33 %. The relationship found between TEP concentration and membrane fouling rate after the application of electrochemical processes confirms the applicability of this parameter as a new membrane fouling indicator.

  12. Reproductive organ and vascular specific promoter of the rice plasma membrane Ca2+ATPase mediates environmental stress responses in plants.

    Science.gov (United States)

    Huda, Kazi Md Kamrul; Banu, Mst Sufara Akhter; Pathi, Krishna Mohan; Tuteja, Narendra

    2013-01-01

    Plasma membrane Ca(2+)ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca(2+)) from the cell, hence regulating Ca(2+) level within cells. Though plant Ca(2+)ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied. The 1478 bp promoter sequence of rice plasma membrane Ca(2+)ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca(2+)ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The -1478 to -886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for -1210 and -886 bp flanking region. The -1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The -1210 and -886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the -886 bp and -519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs. The rice plasma membrane Ca(2+)ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the tissue-specificity and inducible nature of this

  13. Structural Changes of PVDF Membranes by Phase Separation Control

    International Nuclear Information System (INIS)

    Lee, Semin; Kim, Sung Soo

    2016-01-01

    Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure

  14. Controlled growth of CNT in mesoporous AAO through optimized conditions for membrane preparation and CVD operation

    Energy Technology Data Exchange (ETDEWEB)

    Ciambelli, P; Sarno, M; Leone, C; Sannino, D [Department of Chemical and Food Engineering, University of Salerno, I-84084 Fisciano (Italy); Arurault, L; Fontorbes, S; Datas, L; Lenormand, P; Le Blond Du Plouy, S, E-mail: msarno@unisa.it, E-mail: arurault@chimie.ups-tlse.fr [Universite de Toulouse, CIRIMAT, UPS/INPT/CNRS, LCMIE, F-31062 Toulouse Cedex 9 (France)

    2011-07-01

    Anodic aluminium oxide (RAAO) membranes with a mesoporous structure were prepared under strictly controlling experimental process conditions, and physically and chemically characterized by a wide range of experimental techniques. Commercial anodic aluminium oxide (CAAO) membranes were also investigated for comparison. We demonstrated that RAAO membranes have lower content of both water and phosphorus and showed better porosity shape than CAAO. The RAAO membranes were used for template growth of carbon nanotubes (CNT) inside its pores by ethylene chemical vapour deposition (CVD) in the absence of a catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and an external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity and quality of CNTs in terms of diameter, length and arrangement (i.e. number of tubes for each channel) were optimized by investigating the effect of changing the experimental conditions for the CVD process. We showed that upon thermal treatment RAAO membranes were made up of crystallized allotropic alumina phases, which govern the subsequent CNT growth, because of their catalytic activity, likely due to their Lewis acidity. The strict control of experimental conditions for membrane preparation and CNT growth allowed us to enhance the carbon structural order, which is a critical requisite for CNT application as a substitute for copper in novel nano-interconnects.

  15. Control of welding residual stress for ensuring integrity against fatigue and stress-corrosion cracking

    International Nuclear Information System (INIS)

    Mochizuki, Masahito

    2007-01-01

    The availability of several techniques for residual stress control is discussed in this paper. The effectiveness of these techniques in protecting from fatigue and stress-corrosion cracking is verified by numerical analysis and actual experiment. In-process control during welding for residual stress reduction is easier to apply than using post-weld treatment. As an example, control of the welding pass sequence for multi-pass welding is applied to cruciform joints and butt-joints with an X-shaped groove. However, residual stress improvement is confirmed for post-weld processes. Water jet peening is useful for obtaining a compressive residual stress on the surface, and the tolerance against both fatigue and stress-corrosion cracking is verified. Because cladding with a corrosion-resistant material is also effective for preventing stress-corrosion cracking from a metallurgical perspective, the residual stress at the interface of the base metal is carefully considered. The residual stress of the base metal near the clad edge is confirmed to be within the tolerance of crack generation. Controlling methods both during and after welding processes are found to be effective for ensuring the integrity of welded components

  16. Adjusting membrane lipids under salt stress: the case of the moderate halophilic organism Halobacillus halophilus.

    Science.gov (United States)

    Lopalco, Patrizia; Angelini, Roberto; Lobasso, Simona; Köcher, Saskia; Thompson, Melanie; Müller, Volker; Corcelli, Angela

    2013-04-01

    The lipid composition of Halobacillus halophilus was investigated by combined thin-layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analyses of the total lipid extract. Main polar lipids were found to be sulfoquinovosyldiacylglycerol and phosphatidylglycerol, while cardiolipin was a minor lipid together with phosphatidic acid, alanyl-phosphatidylglycerol and two not yet fully identified lipid components. In addition the analyses of residual lipids, associated with denatured proteins after the lipid extraction, revealed the presence of significant amounts of cardiolipin, indicating that it is a not readily extractable phospholipid. Post decay source mass spectrometry analyses allowed the determination of acyl chains of main lipid components. On increasing the culture medium salinity, an increase in the shorter chains and the presence of chain unsaturations were observed. These changes in the lipid core structures might compensate for the increase in packing and rigidity of phospholipid and sulfoglycolipid polar heads in high-salt medium, therefore contributing to the homeostasis of membrane fluidity and permeability in salt stress conditions. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS with Improved Sensitivity

    Directory of Open Access Journals (Sweden)

    Nico F. de Rooij

    2012-11-01

    Full Text Available We present a new generation of piezoresistive nanomechanical Membrane-type Surface stress Sensor (MSS chips, which consist of a two dimensional array of MSS on a single chip. The implementation of several optimization techniques in the design and microfabrication improved the piezoresistive sensitivity by 3~4 times compared to the first generation MSS chip, resulting in a sensitivity about ~100 times better than a standard cantilever-type sensor and a few times better than optical read-out methods in terms of experimental signal-to-noise ratio. Since the integrated piezoresistive read-out of the MSS can meet practical requirements, such as compactness and not requiring bulky and expensive peripheral devices, the MSS is a promising transducer for nanomechanical sensing in the rapidly growing application fields in medicine, biology, security, and the environment. Specifically, its system compactness due to the integrated piezoresistive sensing makes the MSS concept attractive for the instruments used in mobile applications. In addition, the MSS can operate in opaque liquids, such as blood, where optical read-out techniques cannot be applied.

  18. Air dehumidification by membrane with cold water for manned spacecraft environmental control

    Directory of Open Access Journals (Sweden)

    Shang Yonghong

    2017-01-01

    Full Text Available The traditional condensation dehumidification method requires additional gas-liquid separation and water recovery process in the manned spacecraft humidity control system, which would increase weight and complexity of systems. A new membrane dehumidification with cold water is proposed, which uses water vapor partial pressure difference to promote water vapor transmembrane mass transfer for dehumidification. The permeability of the membrane was measured and the experimental results agree well with the theoretical calculations. Based on the simulation of dehumidification process of cold water-membrane, the influence of module structure and working condition on dehumidification performance was analyzed, which provided reference for the design of membrane module construct. It can be seen from the simulation and experiments that the cold water-membrane dehumidification can effectively reduce the thermal load of the manned spacecraft.

  19. Mass transfer rate through liquid membranes: interfacial chemical reactions and diffusion as simultaneous permeability controlling factors

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Vandegrift, G.F.; Chiarizia, R.

    1981-01-01

    Equations describing the permeability of a liquid membrane to metal cations have been derived taking into account aqueous diffusion, membrane diffusion, and interfacial chemical reactions as simultaneous permeability controlling factors. Diffusion and chemical reactions have been coupled by a simple model analogous to the one previously described by us to represent liquid-liquid extraction kinetics. The derived equations, which make use of experimentally determined interfacial reaction mechanisms, qualitatively fit unexplained literature data regarding Cu 2+ transfer through liquid membranes. Their use to predict and optimize membrane permeability in practical separation processes by setting the appropriate concentration of the membrane carrier [LIX 64 (General Mills), a commercial β-hydroxy-oxime] and the pH of the aqueous copper feed solution is briefly discussed. 4 figures

  20. Membrane tension controls adhesion positioning at the leading edge of cells.

    Science.gov (United States)

    Pontes, Bruno; Monzo, Pascale; Gole, Laurent; Le Roux, Anabel-Lise; Kosmalska, Anita Joanna; Tam, Zhi Yang; Luo, Weiwei; Kan, Sophie; Viasnoff, Virgile; Roca-Cusachs, Pere; Tucker-Kellogg, Lisa; Gauthier, Nils C

    2017-09-04

    Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II-independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells. © 2017 Pontes et al.

  1. Oxidative Stress Control by Apicomplexan Parasites

    Directory of Open Access Journals (Sweden)

    Soraya S. Bosch

    2015-01-01

    Full Text Available Apicomplexan parasites cause infectious diseases that are either a severe public health problem or an economic burden. In this paper we will shed light on how oxidative stress can influence the host-pathogen relationship by focusing on three major diseases: babesiosis, coccidiosis, and toxoplasmosis.

  2. Mechanical Characterization of Anion Exchange Membranes Under Controlled Environmental Conditions

    Science.gov (United States)

    2015-05-11

    little market penetration has been achieved. Proton exchange membrane fuel cells ( PEMFC ) have struggled primarily due to high cost, driven by the use...and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , Appl. Catal. B Environ. 56 (2005) 9–35. doi:10.1016/j.apcatb...resins for PEMFCs , Electrochim. Acta. 50 (2004) 571–575. doi:10.1016/j.electacta.2004.01.133. [89] S. Bhadra, N.H. Kim, J.S. Choi, K.Y. Rhee, J.H. Lee

  3. Deposition of low stress, high transmittance SiC as an x-ray mask membrane using ECR plasma CVD

    CERN Document Server

    Lee, S Y; Lim, S T; Ahn, J H

    1998-01-01

    SiC for x-ray mask membrane is deposited by Electron Cyclotron Resonance plasma Chemical Vapor Deposition from SiH sub 4 /CH sub 4 Ar mixtures. Stoichiometric SiC is deposited at SiH sub 4 /CH sub 4 ratio of 0.4, deposition temperature of 600.deg.C and microwave power of 500 W with +- 5% thickness uniformity, As-deposited film has compressive residual stress, very smooth surface (31 A rms) and high optical transmittance of 90% at 633 nm wavelength. The microstructure of this film consists of the nanocrystalline particle (100 A approx 200A) embedded in amorphous matrix. Residual stress can be turned to tensile stress via Rapid Thermal Annealing in N sub 2 atmosphere, while suppressing structural change during annealing, As a result, smooth (37 A rms) SiC film with moderate tensile stress and high optical transmittance (85% at 633 nm wavelength) is obtained.

  4. Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control

    KAUST Repository

    Araújo, Paula A.

    2012-06-01

    The influence of polydopamine- and polydopamine-. graft-poly(ethylene glycol)-coated feed spacers and membranes, copper-coated feed spacers, and commercially-available biostatic feed spacers on biofouling has been studied in membrane fouling simulators. Feed spacers and membranes applied in practical membrane filtration systems were used; biofouling development was monitored by feed channel pressure drop increase and biomass accumulation. Polydopamine and polydopamine-. g-PEG are hydrophilic surface modification agents expected to resist protein and bacterial adhesion, while copper feed spacer coatings and biocides infused in feed spacers are expected to restrict biological growth. Our studies showed that polydopamine and polydopamine-. g-PEG coatings on feed spacers and membranes, copper coatings on feed spacers, and a commercial biostatic feed spacer did not have a significant impact on feed channel pressure drop increase and biofilm accumulation as measured by ATP and TOC content. The studied spacer and membrane modifications were not effective for biofouling control; it is doubtful that feed spacer and membrane modification, in general, may be effective for biofouling control regardless of the type of applied coating. © 2012 Elsevier B.V.

  5. Exact boundary controllability for a series of membranes elastically connected

    Directory of Open Access Journals (Sweden)

    Waldemar D. Bastos

    2017-01-01

    Full Text Available In this article we study the exact controllability with Neumann boundary controls for a system of linear wave equations coupled in parallel by lower order terms on piecewise smooth domains of the plane. We obtain square integrable controls for initial state with finite energy and time of controllability near the optimal value.

  6. A 3' UTR-Derived Small RNA Provides the Regulatory Noncoding Arm of the Inner Membrane Stress Response.

    Science.gov (United States)

    Chao, Yanjie; Vogel, Jörg

    2016-02-04

    Small RNAs (sRNAs) from conserved noncoding genes are crucial regulators in bacterial signaling pathways but have remained elusive in the Cpx response to inner membrane stress. Here we report that an alternative biogenesis pathway releasing the conserved mRNA 3' UTR of stress chaperone CpxP as an ∼60-nt sRNA provides the noncoding arm of the Cpx response. This so-called CpxQ sRNA, generated by general mRNA decay through RNase E, acts as an Hfq-dependent repressor of multiple mRNAs encoding extracytoplasmic proteins. Both CpxQ and the Cpx pathway are required for cell survival under conditions of dissipation of membrane potential. Our discovery of CpxQ illustrates how the conversion of a transcribed 3' UTR into an sRNA doubles the output of a single mRNA to produce two factors with spatially segregated functions during inner membrane stress: a chaperone that targets problematic proteins in the periplasm and a regulatory RNA that dampens their synthesis in the cytosol. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Nanoporous gold membranes: From morphological control to fuel cell catalysis

    Science.gov (United States)

    Ding, Yi

    Porous noble metals are particularly attractive for scientific research and industrial applications such as catalysis, sensing, and filtration. In this thesis, I will discuss the fabrication, characterization, and application of a new class of porous metals, called nanoporous metals (NPM). NPM is made during selective dissolution (also called dealloying) of reactive components (e.g., silver) from multi-component alloys (e.g., Ag/Au alloy). Commercially available white gold leaf (Ag65Au35) can, for example, be etched into nanoporous gold (NPG) membrane by simply floating the leaf on concentrated nitric acid for periods of a few minutes. NPG leaf adopts a single crystal porous structure within individual grains. The microstructure of NPG, such as the pore size, is tunable between a few nanometers to sub-micron length scale by either thermal annealing or post-treatment in nitric acid for extended period of time. A new gas-liquid-solid interface electroless plating technique is developed to uniformly cover the NPG surface with other metals, such as silver and platinum. This technique allows new opportunities of making functionalized nanostructures. We show that a combination of silver plating and dealloying can be used to make multimodal porous metals, which are expected to have application in sensing field. Electroless platinum plating onto NPG shows very usual growth mode. TEM observation indicates that the platinum layer on NPG surface takes a novel form of layer-islanding growth (Stranski-Krastanov growth). Annealing the Pt/NPG composite smoothens the Pt islands and forms a 1 nm coherent Pt layer on the NPG backbone, possibly with dislocation formation at the Pt/Au interface. Furthermore, it was found that we could dissolve the gold away in aqueous gold etchant, leaving behind the 1 nm-thick Pt shell, a structure we call nanotubular mesoporous platinum (NMP). Pt plated NPG has a series of unique structural properties, such as high active surface area, thermally

  8. Graphene oxide enrichment of collagen membranes improves DPSCs differentiation and controls inflammation occurrence.

    Science.gov (United States)

    Radunovic, Milena; De Colli, Marianna; De Marco, Patrizia; Di Nisio, Chiara; Fontana, Antonella; Piattelli, Adriano; Cataldi, Amelia; Zara, Susi

    2017-08-01

    Collagen membranes are used in oral surgery for bone defects treatment acting as a barrier that does not allow the invasion of soft tissue into the growing bone. To improve biocompatibility collagen membranes were coated with graphene oxide (GO), a graphene derivative. The aim of this study was to investigate the biocompatibility of GO coated collagen membranes on human dental pulp stem cells (DPSCs) focusing on biomaterial cytotoxicity, ability to promote DPSCs differentiation process and to control inflammation event induction. DPSCs were cultured on uncoated membranes and on both 2 and 10 μg mL -1 GO coated membranes up to 28 days. Alamar blue and LDH cytotocicity assay, PGE2 ELISA assay, real time RT-PCR for RUNX2, BMP2, SP7, TNFα and COX2 genes expression were performed. Proliferation is higher on GO coated membranes at days 14 and 28. LDH assay evidences no cytotoxicity. BMP2 and RUNX2 expression is higher on coated membranes, BMP2 at early and RUNX2 and SP7 at late experimental times. PGE2 levels are lower on GO coated membranes at days 14 and 28, both TNFα and COX2 expression is significantly decreased when GO is applied. GO coated membranes are not toxic for DPSCs, induce a faster DPSCs differentiation into odontoblasts/osteoblasts and may represent good alternative to conventional membranes thus ensuring more efficient bone formation and improving the clinical performance. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2312-2320, 2017. © 2017 Wiley Periodicals, Inc.

  9. Biofouling of Water Treatment Membranes: A Review of the Underlying Causes, Monitoring Techniques and Control Measures

    Directory of Open Access Journals (Sweden)

    Felicity A. Roddick

    2012-11-01

    Full Text Available Biofouling is a critical issue in membrane water and wastewater treatment as it greatly compromises the efficiency of the treatment processes. It is difficult to control, and significant economic resources have been dedicated to the development of effective biofouling monitoring and control strategies. This paper highlights the underlying causes of membrane biofouling and provides a review on recent developments of potential monitoring and control methods in water and wastewater treatment with the aim of identifying the remaining issues and challenges in this area.

  10. Effect of perfluorosulfonic acid membrane equivalent weight on degradation under accelerated stress conditions

    International Nuclear Information System (INIS)

    Rodgers, Marianne P.; Pearman, Benjamin P.; Mohajeri, Nahid; Bonville, Leonard J.; Slattery, Darlene K.

    2013-01-01

    The equivalent weight of proton exchange membranes has a large effect on their properties and can impact performance and durability in hydrogen fuel cells. For example, increasing the EW increases the crystallinity of perfluorosulfonic acid membranes, while water content and glass transition temperature decrease. The length of the sulfonic acid side chain also impacts membrane properties. Perfluorosulfonic acid membranes with shorter sulfonic acid side chains, though they exhibit similar gas permeability, have been shown to have higher crystallinity, higher glass transition temperature, slightly lower water content, and lower proton conductivity than membranes with longer sulfonic acid side chains for a given EW. Although many reports have investigated cell performance for membranes as a function of low EW and side chains length, their impact on cell durability is not well understood. Because side chain attack by radicals formed during fuel cell operation is a major source of membrane degradation, it is reasonable to hypothesize that membranes with lower EW and, therefore, more sulfonic acid side chains, would have lower durability. This study evaluates membrane degradation for cells containing PFSA membranes with 750 EW, 950 EW, and 1100 EW. The 750 EW membrane contained short sulfonic acid side-chains while the 950 EW and 1100 EW membranes were Nafion ® -based with long sulfonic acid side-chains. Membranes were tested in fuel cells for 100 h under open circuit voltage, at 90 °C and 30% relative humidity. Diagnostic tests conducted on the cells included hydrogen crossover, fluoride emission, catalyst electrochemical surface area, posttest membrane scanning electron microscopy/transmission electron microscopy evaluation, and defect identification in membranes. The 950 EW cell had the highest decay metrics including fluoride emission, voltage decay, loss in ECA, and loss in cell performance. In all cases, the 1100 EW cell showed the lowest degradation. This has

  11. Controlling social stress in virtual reality environments

    NARCIS (Netherlands)

    Hartanto, D.; Kampmann, I.L.; Morina, N.; Emmelkamp, P.G.M.; Neerincx, M.A.; Brinkman, W.P.

    2014-01-01

    Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study:

  12. The role of brassinosteroids in the regulation of the plasma membrane H+-ATPase and NADPH oxidase under cadmium stress.

    Science.gov (United States)

    Jakubowska, Dagmara; Janicka, Małgorzata

    2017-11-01

    The present research aim was to define the role of brassinosteroids (BRs) in plant adaptation to cadmium stress. We observed a stimulating effect of exogenous BR on the activity of two plasma membrane enzymes which play a key role in plants adaptation to cadmium stress, H + -ATPase (EC 3.6.3.14) and NADPH oxidase (EC 1.6.3.1). Using anti-phosphothreonine antibody we showed that modification of PM H + -ATPase activity under BR action could result from phosphorylation of the enzyme protein. Also the relative expression of genes encoding both PM H + -ATPase and NADPH oxidase was affected by BR. To confirm the role of BR in the cadmium stimulating effect on activity of both studied plasma membrane enzymes, an assay in the presence of a BR biosynthesis inhibitor (propiconazole) was performed. Moreover, as a tool in our work we used commercially available plant mutants unable to BR biosynthesis or with dysfunctional BR signaling pathway, to further confirm participation of BR in plant adaptation to heavy metal stress. Presented results demonstrate some elements of the brassinosteroid-induced pathway activated under cadmium stress, wherein H + -ATPase and NADPH oxidase are key factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of assembly error of bipolar plate on the contact pressure distribution and stress failure of membrane electrode assembly in proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong' an; Peng, Linfa; Lai, Xinmin [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-07-01

    In practice, the assembly error of the bipolar plate (BPP) in a PEM fuel cell stack is unavoidable based on the current assembly process. However its effect on the performance of the PEM fuel cell stack is not reported yet. In this study, a methodology based on FEA model, ''least squares-support vector machine (LS-SVM)'' simulation and statistical analysis is developed to investigate the effect of the assembly error of the BPP on the pressure distribution and stress failure of membrane electrode assembly (MEA). At first, a parameterized FEA model of a metallic BPP/MEA assembly is established. Then, the LS-SVM simulation process is conducted based on the FEA model, and datasets for the pressure distribution and Von Mises stress of MEA are obtained, respectively for each assembly error. At last, the effect of the assembly error is obtained by applying the statistical analysis to the LS-SVM results. A regression equation between the stress failure and the assembly error is also built, and the allowed maximum assembly error is calculated based on the equation. The methodology in this study is beneficial to understand the mechanism of the assembly error and can be applied to guide the assembly process for the PEM fuel cell stack. (author)

  14. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    Directory of Open Access Journals (Sweden)

    Benny Marie B. Ensano

    2016-08-01

    Full Text Available This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs combine biodegradation, electrochemical and membrane filtration processes into one system providing higher effluent quality as compared to conventional MBRs and activated sludge plants. Furthermore, electrochemical processes, such as electrocoagulation, electrophoresis and electroosmosis, help to mitigate deposition of foulants into the membrane and enhance sludge dewaterability by controlling the morphological properties and mobility of the colloidal particles and bulk liquid. Intermittent application of minute electric field has proven to reduce energy consumption and operational cost as well as minimize the negative effect of direct current field on microbial activity which are some of the main concerns in eMBR technology. The present review discusses important design considerations of eMBR, its advantages as well as its applications to different types of wastewater. It also presents several challenges that need to be addressed for future development of this hybrid technology which include treatment of high strength industrial wastewater and removal of emerging contaminants, optimization study, cost benefit analysis and the possible combination with microbial electrolysis cell for biohydrogen production.

  15. Preparation of wheat root plasma membrane vesicles and effect of water stress on 45Ca2+ transport activity

    International Nuclear Information System (INIS)

    Lu Jinyin; Gao Junfeng; Cao Cuiling

    1998-01-01

    The wheat roots plasma membrane (PM) vesicles were obtained by sucrose gradient centrifugation. The experiment results shows that the wheat roots of Zhengyin No.1 PM H + -ATPase latent activity was 24%, and PM inside-out vesicle (IOV) accounts for 76%. With -1.0 MPa stress of 24h, PM Ca 2+ -ATPase activity of both orientation wheat roots were increased. Under normal water condition and PEG stress, 62% and 53% of the enzyme activity was inhibited respectively by EGTA, radioactive calcium-45 transport amount was 22.09 nmol/mg pro and 4.17 nmol/mg pro. respectively with PM-IOV.PEG stress results in a decrease of 45 Ca 2+ transport amount of wheat roots PM-IOV by 81%

  16. On controllability of an integrated bioreactor and periodically operated membrane separation process

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    the influence of membrane fouling. Previously, the REED and fermentation processes have been modeled and investigated separately (Prado- Rubio et al., 2011a; Boonmee, 2003). Additionally, a simple quasi-sequential strategy for integrated process design and control structure development has been proposed (Prado...... to understand the controlled operation of the integrated process, it is convenient to use a model based approach supported by experimental evidence. Recently, an integrated bioreactor and electrically driven membrane separation process (Reverse Electro- Enhanced Dialysis - REED) has been proposed as a method...... at a certain lactate concentration level. Hence, productivity can be enhanced by the in situ lactate removal from the cultivation broth during pH controlled fermentation. This can be done by means of ion exchange membranes and electrical potential gradients. The novelty of the integrated process lies...

  17. Finite element method (FEM) model of the mechanical stress on phospholipid membranes from shock waves produced in nanosecond electric pulses (nsEP)

    Science.gov (United States)

    Barnes, Ronald; Roth, Caleb C.; Shadaram, Mehdi; Beier, Hope; Ibey, Bennett L.

    2015-03-01

    The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.

  18. High levels of retinal membrane docosahexaenoic acid increase susceptibility to stress-induced degenerations⃞

    Science.gov (United States)

    Tanito, Masaki; Brush, Richard S.; Elliott, Michael H.; Wicker, Lea D.; Henry, Kimberly R.; Anderson, Robert E.

    2009-01-01

    The fat-1 gene cloned from C. elegans encodes an n-3 fatty acid desaturase that converts n-6 to n-3 PUFA. Mice carrying the fat-1 transgene and wild-type controls were fed an n-3-deficient/n-6-enriched diet [fat-1- safflower oil (SFO) and wt-SFO, respectively]. Fatty acid profiles of rod outer segments (ROS), cerebellum, plasma, and liver demonstrated significantly lower n-6/n-3 ratios and higher docosahexaenoic acid (DHA) levels in fat-1-SFO compared with wt-SFO. When mice were exposed to light stress: 1) the outer nuclear layer (ONL) thickness was reduced; 2) amplitudes of the electroretinogram (ERG) were lower; 3) the number of apoptotic photoreceptor cells was greater; and 4) modification of retinal proteins by 4-hydroxyhexenal (4-HHE), an end-product of n-3 PUFA oxidation was increased in both fat-1-SFO and wt mice fed a regular lab chow diet compared with wt-SFO. The results indicate a positive correlation between the level of DHA, the degree of n-3 PUFA lipid peroxidation, and the vulnerability of the retina to photooxidative stress. In mice not exposed to intense light, the reduction in DHA resulted in reduced efficacy in phototransduction gain steps, while no differences in the retinal morphology or retinal biochemistry. These results highlight the dual roles of DHA in cellular physiology and pathology. PMID:19023138

  19. Reproductive organ and vascular specific promoter of the rice plasma membrane Ca2+ATPase mediates environmental stress responses in plants.

    Directory of Open Access Journals (Sweden)

    Kazi Md Kamrul Huda

    Full Text Available Plasma membrane Ca(2+ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca(2+ from the cell, hence regulating Ca(2+ level within cells. Though plant Ca(2+ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied.The 1478 bp promoter sequence of rice plasma membrane Ca(2+ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca(2+ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The -1478 to -886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for -1210 and -886 bp flanking region. The -1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The -1210 and -886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the -886 bp and -519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs.The rice plasma membrane Ca(2+ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the tissue-specificity and inducible

  20. Stunted PFC activity during neuromuscular control under stress with obesity.

    Science.gov (United States)

    Mehta, Ranjana K

    2016-02-01

    Obesity is an established risk factor for impaired cognition, which is primarily regulated by the prefrontal cortex (PFC). However, very little is known about the neural pathways that underlie obesity-related declines in neuromuscular control, particularly under stress. The purpose of this study was to determine the role of the PFC on neuromuscular control during handgrip exertions under stress with obesity. Twenty non-obese and obese young adults performed submaximal handgrip exertions in the absence and presence of a concurrent stressful task. Primary dependent measures included oxygenated hemoglobin (HbO2: a measure of PFC activity) and force fluctuations (an indicator of neuromuscular control). Higher HbO2 levels in the PFC were observed in the non-obese compared to the obese group (P = 0.009). In addition, higher HbO2 levels were observed in the stress compared to the control condition in the non-obese group; however, this trend was reversed in the obese group (P = 0.043). In general, force fluctuations increased by 26% in the stress when compared to the control condition (P = 0.001) and obesity was associated with 39% greater force fluctuation (P = 0.024). Finally, while not significant, obesity-related decrements in force fluctuations were magnified under stress (P = 0.063). The current study provides the first evidence that neuromuscular decrements with obesity were associated with impaired PFC activity and this relationship was augmented in stress conditions. These findings are important because they provide new information on obesity-specific changes in brain function associated with neuromuscular control since the knowledge previously focused largely on obesity-specific changes in peripheral muscle capacity.

  1. Erosion critical stress of a matter surface deposit on a micro filtration membrane; Contrainte critique d`erosion d`un depot superficiel de matiere sur membrane de microfiltration

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, M C

    1995-05-11

    During the tangential micro filtration and ultrafiltration processes a membranes fouling in surface and inside the pores often appears. This fouling has the effect of a permeation flow decrease in terms of the filtration time. In order to keep this flow constant (to improve the rentability) the transfer pressure gradient is frequently increased and leads to solid matter surface deposit on the porous wall. The fouling can then be irreversible and requires the stopping of the facilities. The fouling and more particularly the fouling by solid deposit seems to be an abatement to the micro filtration technology development. It is then necessary to search the carrying away conditions of these solid deposits and thus to control the fouling process. An ultrafiltration or micro filtration appliance has been realized and allows to calculate experimentally the erosion critical stress on a porous wall : this is the minimum stress to apply in order to lead in the principal flow a solid particles deposit and the parietal stress to be imposed to lead by an erosion process a solid particles deposit. (O.L.). 122 refs., 73 figs., 25 tabs.

  2. Control-oriented model of a membrane humidifier for fuel cell applications

    International Nuclear Information System (INIS)

    Solsona, Miguel; Kunusch, Cristian; Ocampo-Martinez, Carlos

    2017-01-01

    Highlights: • A control-oriented model of a Nafion® membrane gas humidifier has been developed. • The control-oriented model has been experimentally validated. • A non-linear control strategy has been used to test its suitability for control purposes. - Abstract: Improving the humidification of polymer electrolyte membrane fuel-cells (PEMFC) is essential to optimize its performance and stability. Therefore, this paper presents an experimentally validated model of a low temperature PEMFC cathode humidifier for control/observation design purposes. A multi-input/multi-output non-linear fourth order model is derived, based on the mass and heat dynamics of circulating air. In order to validate the proposed model and methodology, experimental results are provided. Finally, a non-linear control strategy based on second order sliding mode is designed and analyzed in order to show suitability and usefulness of the approach.

  3. Nonlinear Lyapunov-based boundary control of distributed heat transfer mechanisms in membrane distillation plant

    KAUST Repository

    Eleiwi, Fadi

    2015-07-01

    This paper presents a nonlinear Lyapunov-based boundary control for the temperature difference of a membrane distillation boundary layers. The heat transfer mechanisms inside the process are modeled with a 2D advection-diffusion equation. The model is semi-descretized in space, and a nonlinear state-space representation is provided. The control is designed to force the temperature difference along the membrane sides to track a desired reference asymptotically, and hence a desired flux would be generated. Certain constraints are put on the control law inputs to be within an economic range of energy supplies. The effect of the controller gain is discussed. Simulations with real process parameters for the model, and the controller are provided. © 2015 American Automatic Control Council.

  4. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Hu Y

    2017-11-01

    Full Text Available Yan Hu,1 Lei Ke,2 Hao Chen,1 Ma Zhuo,1 Xinzhou Yang,1 Dan Zhao,1 Suying Zeng,1 Xincai Xiao1 1Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities, 2Department of Medicinal Chemistry, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China Abstract: To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs, which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. Keywords: multifunctional, membrane-controlled, natural materials, mesoporous silica nanoparticles, targeted drug delivery

  5. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  6. Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes

    KAUST Repository

    Rahaman, Md. Saifur

    2014-01-01

    Thin-film composite (TFC) polyamide reverse osmosis (RO) membranes are prone to biofouling due to their inherent physicochemical surface properties. In order to address the biofouling problem, we have developed novel surface coatings functionalized with biocidal silver nanoparticles (AgNPs) and antifouling polymer brushes via polyelectrolyte layer-by-layer (LBL) self-assembly. The novel surface coating was prepared with polyelectrolyte LBL films containing poly(acrylic acid) (PAA) and poly(ethylene imine) (PEI), with the latter being either pure PEI or silver nanoparticles coated with PEI (Ag-PEI). The coatings were further functionalized by grafting of polymer brushes, using either hydrophilic poly(sulfobetaine) or low surface energy poly(dimethylsiloxane) (PDMS). The presence of both LBL films and sulfobetaine polymer brushes at the interface significantly increased the hydrophilicity of the membrane surface, while PDMS brushes lowered the membrane surface energy. Overall, all surface modifications resulted in significant reduction of irreversible bacterial cell adhesion. In microbial adhesion tests with E. coli bacteria, a normalized cell adhesion in the range of only 4 to 16% on the modified membrane surfaces was observed. Modified surfaces containing silver nanoparticles also exhibited strong antimicrobial activity. Membranes coated with LBL films of PAA/Ag-PEI achieved over 95% inactivation of bacteria attached to the surface within 1 hour of contact time. Both the antifouling and antimicrobial results suggest the potential of using these novel surface coatings in controlling the fouling of RO membranes. © The Royal Society of Chemistry 2014.

  7. A link between mitotic entry and membrane growth suggests a novel model for cell size control.

    Science.gov (United States)

    Anastasia, Steph D; Nguyen, Duy Linh; Thai, Vu; Meloy, Melissa; MacDonough, Tracy; Kellogg, Douglas R

    2012-04-02

    Addition of new membrane to the cell surface by membrane trafficking is necessary for cell growth. In this paper, we report that blocking membrane traffic causes a mitotic checkpoint arrest via Wee1-dependent inhibitory phosphorylation of Cdk1. Checkpoint signals are relayed by the Rho1 GTPase, protein kinase C (Pkc1), and a specific form of protein phosphatase 2A (PP2A(Cdc55)). Signaling via this pathway is dependent on membrane traffic and appears to increase gradually during polar bud growth. We hypothesize that delivery of vesicles to the site of bud growth generates a signal that is proportional to the extent of polarized membrane growth and that the strength of the signal is read by downstream components to determine when sufficient growth has occurred for initiation of mitosis. Growth-dependent signaling could explain how membrane growth is integrated with cell cycle progression. It could also control both cell size and morphogenesis, thereby reconciling divergent models for mitotic checkpoint function.

  8. Dimensional and Structural Control of Silica Aerogel Membranes for Miniaturized Motionless Gas Pumps.

    Science.gov (United States)

    Zhao, Shanyu; Jiang, Bo; Maeder, Thomas; Muralt, Paul; Kim, Nayoung; Matam, Santhosh Kumar; Jeong, Eunho; Han, Yen-Lin; Koebel, Matthias M

    2015-08-26

    With growing public interest in portable electronics such as micro fuel cells, micro gas total analysis systems, and portable medical devices, the need for miniaturized air pumps with minimal electrical power consumption is on the rise. Thus, the development and downsizing of next-generation thermal transpiration gas pumps has been investigated intensively during the last decades. Such a system relies on a mesoporous membrane that generates a thermomolecular pressure gradient under the action of an applied temperature bias. However, the development of highly miniaturized active membrane materials with tailored porosity and optimized pumping performance remains a major challenge. Here we report a systematic study on the manufacturing of aerogel membranes using an optimized, minimal-shrinkage sol-gel process, leading to low thermal conductivity and high air conductance. This combination of properties results in superior performance for miniaturized thermomolecular air pump applications. The engineering of such aerogel membranes, which implies pore structure control and chemical surface modification, requires both chemical processing know-how and a detailed understanding of the influence of the material properties on the spatial flow rate density. Optimal pumping performance was found for devices with integrated membranes with a density of 0.062 g cm(-3) and an average pore size of 142.0 nm. Benchmarking of such low-density hydrophobic active aerogel membranes gave an air flow rate density of 3.85 sccm·cm(-2) at an operating temperature of 400 °C. Such a silica aerogel membrane based system has shown more than 50% higher pumping performance when compared to conventional transpiration pump membrane materials as well as the ability to withstand higher operating temperatures (up to 440 °C). This study highlights new perspectives for the development of miniaturized thermal transpiration air pumps while offering insights into the fundamentals of molecular pumping in

  9. Electrospun Gelatin/poly(Glycerol Sebacate Membrane with Controlled Release of Antibiotics for Wound Dressing

    Directory of Open Access Journals (Sweden)

    Parisa Shirazaki

    2017-01-01

    Full Text Available Background: The most important risk that threatens the skin wounds is infections. Therefore, fabrication of a membrane as a wound dressing with the ability of antibiotic delivery in a proper delivery rate is especially important. Materials and Methods: Poly(glycerol sebacate (PGS was prepared from sebacic acid and glycerol with 1:1 ratio; then, it was added to gelatin in the 1:3 ratio and was dissolved in 80% (v/v acetic acid, and finally, ciprofloxacin was added in 10% (w/v of polymer solution. The gelatin/PGS membrane was fabricated using an electrospinning method. The membrane was cross-linked using ethyl-3-(3-dimethylaminopropyl carbodiimide ethyl-3-(3-dimethylaminopropylcarbodiim (EDC and N-hydroxysuccinimide (NHS in different time periods to achieve a proper drug release rate. Fourier-transform infrared (FTIR spectroscopy was being used to manifest the peaks of polymers and drug in the membrane. Scanning electron microscopy (SEM was used to evaluate the morphology, fibers diameter, pore size, and porosity before and after crosslinking process. Ultraviolet (UV-visible spectrophotometry was used to show the ciprofloxacin release from the cross-linked membrane. Results: FTIR analysis showed the characteristic peaks of gelatin, PGS, and ciprofloxacin without any added peaks after the crosslinking process. SEM images revealed that nanofibers' size increased during the crosslinking process and porosity was higher than 80% before and after crosslinking process. UV-visible spectrophotometry showed the proper rate of ciprofloxacin release occurred from cross-linked membrane that remaining in EDC/NHS ethanol solution for 120 min. Conclusion: The obtained results suggest that this recently developed gelatin/PGS membrane with controlled release of ciprofloxacin could be a promising biodegradable membrane for wound dressing.

  10. The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity.

    Science.gov (United States)

    Raivio, Tracy L; Leblanc, Shannon K D; Price, Nancy L

    2013-06-01

    The Cpx envelope stress response mediates adaptation to stresses that cause envelope protein misfolding. Adaptation is partly conferred through increased expression of protein folding and degradation factors. The Cpx response also plays a conserved role in the regulation of virulence determinant expression and impacts antibiotic resistance. We sought to identify adaptive mechanisms that may be involved in these important functions by characterizing changes in the transcriptome of two different Escherichia coli strains when the Cpx response is induced. We show that, while there is considerable strain- and condition-specific variability in the Cpx response, the regulon is enriched for proteins and functions that are inner membrane associated under all conditions. Genes that were changed by Cpx pathway induction under all conditions were involved in a number of cellular functions and included several intergenic regions, suggesting that posttranscriptional regulation is important during Cpx-mediated adaptation. Some Cpx-regulated genes are centrally involved in energetics and play a role in antibiotic resistance. We show that a number of small, uncharacterized envelope proteins are Cpx regulated and at least two of these affect phenotypes associated with membrane integrity. Altogether, our work suggests new mechanisms of Cpx-mediated envelope stress adaptation and antibiotic resistance.

  11. Durability and degradation analysis of hydrocarbon ionomer membranes in polymer electrolyte fuel cells accelerated stress evaluation

    Science.gov (United States)

    Shimizu, Ryo; Tsuji, Junichi; Sato, Nobuyuki; Takano, Jun; Itami, Shunsuke; Kusakabe, Masato; Miyatake, Kenji; Iiyama, Akihiro; Uchida, Makoto

    2017-11-01

    The chemical durabilities of two proton-conducting hydrocarbon polymer electrolyte membranes, sulfonated benzophenone poly(arylene ether ketone) (SPK) semiblock copolymer and sulfonated phenylene poly(arylene ether ketone) (SPP) semiblock copolymer are evaluated under accelerated open circuit voltage (OCV) conditions in a polymer electrolyte fuel cell (PEFC). Post-test characterization of the membrane electrodes assemblies (MEAs) is carried out via gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. These results are compared with those of the initial MEAs. The SPP cell shows the highest OCV at 1000 h, and, in the post-test analysis, the SPP membrane retains up to 80% of the original molecular weight, based on the GPC results, and 90% of the hydrophilic structure, based on the NMR results. The hydrophilic structure of the SPP membrane is more stable after the durability evaluation than that of the SPK. From these results, the SPP membrane, with its simple hydrophilic structure, which does not include ketone groups, is seen to be significantly more resistant to radical attack. This structure leads to high chemical durability and thus impedes the chemical decomposition of the membrane.

  12. Nitric oxide treatment for the control of reverse osmosis membrane biofouling.

    Science.gov (United States)

    Barnes, Robert J; Low, Jiun Hui; Bandi, Ratnaharika R; Tay, Martin; Chua, Felicia; Aung, Theingi; Fane, Anthony G; Kjelleberg, Staffan; Rice, Scott A

    2015-04-01

    Biofouling remains a key challenge for membrane-based water treatment systems. This study investigated the dispersal potential of the nitric oxide (NO) donor compound, PROLI NONOate, on single- and mixed-species biofilms formed by bacteria isolated from industrial membrane bioreactor and reverse osmosis (RO) membranes. The potential of PROLI NONOate to control RO membrane biofouling was also examined. Confocal microscopy revealed that PROLI NONOate exposure induced biofilm dispersal in all but two of the bacteria tested and successfully dispersed mixed-species biofilms. The addition of 40 μM PROLI NONOate at 24-h intervals to a laboratory-scale RO system led to a 92% reduction in the rate of biofouling (pressure rise over a given period) by a bacterial community cultured from an industrial RO membrane. Confocal microscopy and extracellular polymeric substances (EPS) extraction revealed that PROLI NONOate treatment led to a 48% reduction in polysaccharides, a 66% reduction in proteins, and a 29% reduction in microbial cells compared to the untreated control. A reduction in biofilm surface coverage (59% compared to 98%, treated compared to control) and average thickness (20 μm compared to 26 μm, treated compared to control) was also observed. The addition of PROLI NONOate led to a 22% increase in the time required for the RO module to reach its maximum transmembrane pressure (TMP), further indicating that NO treatment delayed fouling. Pyrosequencing analysis revealed that the NO treatment did not significantly alter the microbial community composition of the membrane biofilm. These results present strong evidence for the application of PROLI NONOate for prevention of RO biofouling. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing

    Science.gov (United States)

    Chen, Liang; Shi, Guosheng; Shen, Jie; Peng, Bingquan; Zhang, Bowu; Wang, Yuzhu; Bian, Fenggang; Wang, Jiajun; Li, Deyuan; Qian, Zhe; Xu, Gang; Liu, Gongping; Zeng, Jianrong; Zhang, Lijuan; Yang, Yizhou; Zhou, Guoquan; Wu, Minghong; Jin, Wanqin; Li, Jingye; Fang, Haiping

    2017-10-01

    Graphene oxide membranes—partially oxidized, stacked sheets of graphene—can provide ultrathin, high-flux and energy-efficient membranes for precise ionic and molecular sieving in aqueous solution. These materials have shown potential in a variety of applications, including water desalination and purification, gas and ion separation, biosensors, proton conductors, lithium-based batteries and super-capacitors. Unlike the pores of carbon nanotube membranes, which have fixed sizes, the pores of graphene oxide membranes—that is, the interlayer spacing between graphene oxide sheets (a sheet is a single flake inside the membrane)—are of variable size. Furthermore, it is difficult to reduce the interlayer spacing sufficiently to exclude small ions and to maintain this spacing against the tendency of graphene oxide membranes to swell when immersed in aqueous solution. These challenges hinder the potential ion filtration applications of graphene oxide membranes. Here we demonstrate cationic control of the interlayer spacing of graphene oxide membranes with ångström precision using K+, Na+, Ca2+, Li+ or Mg2+ ions. Moreover, membrane spacings controlled by one type of cation can efficiently and selectively exclude other cations that have larger hydrated volumes. First-principles calculations and ultraviolet absorption spectroscopy reveal that the location of the most stable cation adsorption is where oxide groups and aromatic rings coexist. Previous density functional theory computations show that other cations (Fe2+, Co2+, Cu2+, Cd2+, Cr2+ and Pb2+) should have a much stronger cation-π interaction with the graphene sheet than Na+ has, suggesting that other ions could be used to produce a wider range of interlayer spacings.

  14. The Drosophila inner-membrane protein PMI controls crista biogenesis and mitochondrial diameter.

    Science.gov (United States)

    Macchi, Marc; El Fissi, Najla; Tufi, Roberta; Bentobji, Mélanie; Liévens, Jean-Charles; Martins, L Miguel; Royet, Julien; Rival, Thomas

    2013-02-01

    Cristae are mitochondrial inner-membrane structures that concentrate respiratory chain complexes and hence regulate ATP production. Mechanisms controlling crista morphogenesis are poorly understood and few crista determinants have been identified. Among them are the Mitofilins that are required to establish crista junctions and ATP-synthase subunits that bend the membrane at the tips of the cristae. We report here the phenotypic consequences associated with the in vivo inactivation of the inner-membrane protein Pantagruelian Mitochondrion I (PMI) both at the scale of the whole organism, and at the level of mitochondrial ultrastructure and function. We show that flies in which PMI is genetically inactivated experience synaptic defects and have a reduced life span. Electron microscopy analysis of the inner-membrane morphology demonstrates that loss of PMI function increases the average length of mitochondrial cristae in embryonic cells. This phenotype is exacerbated in adult neurons in which cristae form a dense tangle of elongated membranes. Conversely, we show that PMI overexpression is sufficient to reduce crista length in vivo. Finally, these crista defects are associated with impaired respiratory chain activity and increases in the level of reactive oxygen species. Since PMI and its human orthologue TMEM11 are regulators of mitochondrial morphology, our data suggest that, by controlling crista length, PMI influences mitochondrial diameter and tubular shape.

  15. Controlling Social Stress in Virtual Reality Environments

    Science.gov (United States)

    Hartanto, Dwi; Kampmann, Isabel L.; Morina, Nexhmedin; Emmelkamp, Paul G. M.; Neerincx, Mark A.; Brinkman, Willem-Paul

    2014-01-01

    Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive) between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6) = 0.91, p = 0.002; r(6) = 0.76, p = 0.028 and r(6) = −0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes. PMID:24671006

  16. Controlling social stress in virtual reality environments.

    Directory of Open Access Journals (Sweden)

    Dwi Hartanto

    Full Text Available Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6 = 0.91, p = 0.002; r(6 = 0.76, p = 0.028 and r(6 = -0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes.

  17. Controlling social stress in virtual reality environments.

    Science.gov (United States)

    Hartanto, Dwi; Kampmann, Isabel L; Morina, Nexhmedin; Emmelkamp, Paul G M; Neerincx, Mark A; Brinkman, Willem-Paul

    2014-01-01

    Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive) between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6) = 0.91, p = 0.002; r(6) = 0.76, p = 0.028 and r(6) = -0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes.

  18. On the Unusual Homeoviscous Adaptation of the Membrane Fatty Acyl Components against the Thermal Stress in RhiΖobium meliloti

    International Nuclear Information System (INIS)

    Kang, Seb Yung; Jung, Seun Ho; Choi, Yong Hoon; Yang, Chul Hak; Kim, Hyun Won

    1999-01-01

    In order to maintain the optimal fluidity in membrane, microorganism genetically regulates the ratio of the unsaturated fatty acids (Ufos) to saturated ones of its biological membrane in response to external perturbing condition such as the change of temperature. The remodelling of fatty acyl chain composition is the most frequently observed response to altered growth temperature. It is reflected in the elevated proportions of unsaturated fatty acid (UFAs) at low temperature. Because cis double bonds, normally positioned at the middle of fatty acyl chains, introduce a kink of approximately 30 .deg. into acyl chain, UFAs pack less compactly and exhibit lower melting points than their saturated homologues. Thus, enrichment of membranes with UFAs offsets, to a significant degree, the increase in membrane order caused by a drop in temperature. This is so called homeoviscous adaptation of the membrane fatty acyl chains against thermal stress. Membrane maintains the optimal viscosity using homeoviscous adaptation.

  19. New design deforming controlling system of the active stressed lap

    Science.gov (United States)

    Ying, Li; Wang, Daxing

    2008-07-01

    A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.

  20. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Patricia Hingston

    Full Text Available The human pathogen Listeria monocytogenes continues to pose a challenge in the food industry, where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. Increased knowledge of the cold-stress response of this pathogen will enhance the ability to control it in the food-supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA profiling to characterize the bacterium's cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more genes (1.3× were suppressed than induced at 4°C. Late stationary-phase cells exhibited the greatest number (n = 1,431 and magnitude (>1,000-fold of differentially expressed genes (>2-fold, p<0.05 in response to cold. A core set of 22 genes was upregulated at all growth phases, including nine genes required for branched-chain fatty acid (BCFA synthesis, the osmolyte transporter genes opuCBCD, and the internalin A and D genes. Genes suppressed at 4°C were largely associated with cobalamin (B12 biosynthesis or the production/export of cell wall components. Antisense transcription accounted for up to 1.6% of total mapped reads with higher levels (2.5× observed at 4°C than 20°C. The greatest number of upregulated antisense transcripts at 4°C occurred in early lag phase, however, at both temperatures, antisense expression levels were highest in late stationary-phase cells. Cold-induced FA membrane changes included a 15% increase in the proportion of BCFAs and a 15% transient increase in unsaturated FAs between lag and exponential phase. These increases probably reduced the membrane phase transition temperature until optimal levels of BCFAs could be produced. Collectively, this research provides new information regarding cold-induced membrane composition changes in L. monocytogenes, the growth-phase dependency of its cold-stress

  1. Ultra-thin and strong formvar-based membranes with controlled porosity for micro- and nano-scale systems

    Science.gov (United States)

    Auchter, Eric; Marquez, Justin; Stevens, Garrison; Silva, Rebecca; Mcculloch, Quinn; Guengerich, Quintessa; Blair, Andrew; Litchfield, Sebastian; Li, Nan; Sheehan, Chris; Chamberlin, Rebecca; Yarbro, Stephen L.; Dervishi, Enkeleda

    2018-05-01

    We present a methodology for developing ultra-thin and strong formvar-based membranes with controlled morphologies. Formvar is a thin hydrophilic and oleophilic polymer inert to most chemicals and resistant to radiation. The formvar-based membranes are viable materials as support structures in micro- and macro-scale systems depending on thinness and porosity control. Tunable sub-micron thick porous membranes with 20%–65% porosity were synthesized by controlling the ratios of formvar, glycerol, and chloroform. This synthesis process does not require complex separation or handling methods and allows for the production of strong, thin, and porous formvar-based membranes. An expansive array of these membrane characterizations including chemical compatibility, mechanical responses, wettability, as well as the mathematical simulations as a function of porosity has been presented. The wide range of chemical compatibility allows for membrane applications in various environments, where other polymers would not be suitable. Our formvar-based membranes were found to have an elastic modulus of 7.8 GPa, a surface free energy of 50 mN m‑1 and an average thickness of 125 nm. Stochastic model simulations indicate that formvar with the porosity of ∼50% is the optimal membrane formulation, allowing the most material transfer across the membrane while also withstanding the highest simulated pressure loadings before tearing. Development of novel, resilient and versatile membranes with controlled porosity offers a wide range of exciting applications in the fields of nanoscience, microfluidics, and MEMS.

  2. The application of nitric oxide to control biofouling of membrane bioreactors.

    Science.gov (United States)

    Luo, Jinxue; Zhang, Jinsong; Barnes, Robert J; Tan, Xiaohui; McDougald, Diane; Fane, Anthony G; Zhuang, Guoqiang; Kjelleberg, Staffan; Cohen, Yehuda; Rice, Scott A

    2015-05-01

    A novel strategy to control membrane bioreactor (MBR) biofouling using the nitric oxide (NO) donor compound PROLI NONOate was examined. When the biofilm was pre-established on membranes at transmembrane pressure (TMP) of 88-90 kPa, backwashing of the membrane module with 80 μM PROLI NONOate for 45 min once daily for 37 days reduced the fouling resistance (Rf ) by 56%. Similarly, a daily, 1 h exposure of the membrane to 80 μM PROLI NONOate from the commencement of MBR operation for 85 days resulted in reduction of the TMP and Rf by 32.3% and 28.2%. The microbial community in the control MBR was observed to change from days 71 to 85, which correlates with the rapid TMP increase. Interestingly, NO-treated biofilms at 85 days had a higher similarity with the control biofilms at 71 days relative to the control biofilms at 85 days, indicating that the NO treatment delayed the development of biofilm bacterial community. Despite this difference, sequence analysis indicated that NO treatment did not result in a significant shift in the dominant fouling species. Confocal microscopy revealed that the biomass of biopolymers and microorganisms in biofilms were all reduced on the PROLI NONOate-treated membranes, where there were reductions of 37.7% for proteins and 66.7% for microbial cells, which correlates with the reduction in TMP. These results suggest that NO treatment could be a promising strategy to control biofouling in MBRs. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. GASICA: Generic Automated Stress Induction and Control ApplicationDesign of an application for controlling the stress state

    Directory of Open Access Journals (Sweden)

    Benny Van Der Vijgh

    2014-12-01

    Full Text Available 1.In a multitude of research and therapy paradigms it is relevant to know, and desirably to control, the stress state of a patient or participant. Examples include research paradigms in which the stress state is the dependent or independent variable, or therapy paradigms where this state indicates the boundaries of the therapy. To our knowledge, no application currently exists that focuses specifically on the automated control of the stress state while at the same time being generic enough to be used in various therapy and research purposes. Therefore, we introduce GASICA, an application aimed at the automated control of the stress state in a multitude of therapy and research paradigms. The application consists of three components: a digital stressor game, a set of measurement devices and a feedback model. These three components form a closed loop (called a biocybernetic loop by Pope, Bogart, & Bartolome, 1995 and Fairclough, 2009 that continuously presents an acute psychological stressor, measures several physiological responses to this stressor, and adjusts the stressor intensity based on these measurements by means of the feedback model, hereby aiming to control the stress state. In this manner GASICA presents multidimensional and ecological valid stressors, whilst continuously in control of the form and intensity of the presented stressors, aiming at the automated control of the stress state. Furthermore, the application is designed as a modular open-source application to easily implement different therapy and research tasks using a high-level programming interface and configuration file, and allows for the addition of (existing measurement equipment, making it usable for various paradigms.

  4. GASICA: generic automated stress induction and control application design of an application for controlling the stress state.

    Science.gov (United States)

    van der Vijgh, Benny; Beun, Robbert J; van Rood, Maarten; Werkhoven, Peter

    2014-01-01

    In a multitude of research and therapy paradigms it is relevant to know, and desirably to control, the stress state of a patient or participant. Examples include research paradigms in which the stress state is the dependent or independent variable, or therapy paradigms where this state indicates the boundaries of the therapy. To our knowledge, no application currently exists that focuses specifically on the automated control of the stress state while at the same time being generic enough to be used in various therapy and research purposes. Therefore, we introduce GASICA, an application aimed at the automated control of the stress state in a multitude of therapy and research paradigms. The application consists of three components: a digital stressor game, a set of measurement devices, and a feedback model. These three components form a closed loop (called a biocybernetic loop by Pope et al. (1995) and Fairclough (2009) that continuously presents an acute psychological stressor, measures several physiological responses to this stressor, and adjusts the stressor intensity based on these measurements by means of the feedback model, hereby aiming to control the stress state. In this manner GASICA presents multidimensional and ecological valid stressors, whilst continuously in control of the form and intensity of the presented stressors, aiming at the automated control of the stress state. Furthermore, the application is designed as a modular open-source application to easily implement different therapy and research tasks using a high-level programming interface and configuration file, and allows for the addition of (existing) measurement equipment, making it usable for various paradigms.

  5. Dynamic water management of polymer electrolyte membrane fuel cells using intermittent RH control

    KAUST Repository

    Hussaini, I.S.

    2010-06-01

    A novel method of water management of polymer electrolyte membrane (PEM) fuel cells using intermittent humidification is presented in this study. The goal is to maintain the membrane close to full humidification, while eliminating channel flooding. The entire cycle is divided into four stages: saturation and de-saturation of the gas diffusion layer followed by de-hydration and hydration of membrane. By controlling the duration of dry and humid flows, it is shown that the cell voltage can be maintained within a narrow band. The technique is applied on experimental test cells using both plain and hydrophobic materials for the gas diffusion layer and an improvement in performance as compared to steady humidification is demonstrated. Duration of dry and humid flows is determined experimentally for several operating conditions. © 2010 Elsevier B.V. All rights reserved.

  6. Control of directed cell migration in vivo by membrane-to-cortex attachment.

    Directory of Open Access Journals (Sweden)

    Alba Diz-Muñoz

    2010-11-01

    Full Text Available Cell shape and motility are primarily controlled by cellular mechanics. The attachment of the plasma membrane to the underlying actomyosin cortex has been proposed to be important for cellular processes involving membrane deformation. However, little is known about the actual function of membrane-to-cortex attachment (MCA in cell protrusion formation and migration, in particular in the context of the developing embryo. Here, we use a multidisciplinary approach to study MCA in zebrafish mesoderm and endoderm (mesendoderm germ layer progenitor cells, which migrate using a combination of different protrusion types, namely, lamellipodia, filopodia, and blebs, during zebrafish gastrulation. By interfering with the activity of molecules linking the cortex to the membrane and measuring resulting changes in MCA by atomic force microscopy, we show that reducing MCA in mesendoderm progenitors increases the proportion of cellular blebs and reduces the directionality of cell migration. We propose that MCA is a key parameter controlling the relative proportions of different cell protrusion types in mesendoderm progenitors, and thus is key in controlling directed migration during gastrulation.

  7. Controllable synthesis of single-walled carbon nanotube framework membranes and capsules.

    Science.gov (United States)

    Song, Changsik; Kwon, Taeyun; Han, Jae-Hee; Shandell, Mia; Strano, Michael S

    2009-12-01

    Controlling the morphology of membrane components at the nanometer scale is central to many next-generation technologies in water purification, gas separation, fuel cell, and nanofiltration applications. Toward this end, we report the covalent assembly of single-walled carbon nanotubes (SWNTs) into three-dimensional framework materials with intertube pores controllable by adjusting the size of organic linker molecules. The frameworks are fashioned into multilayer membranes possessing linker spacings from 1.7 to 3.0 nm, and the resulting framework films were characterized, including transport properties. Nanoindentation measurements by atomic force microscopy show that the spring constant of the SWNT framework film (22.6 +/- 1.2 N/m) increased by a factor of 2 from the control value (10.4 +/- 0.1 N/m). The flux ratio comparison in a membrane-permeation experiment showed that larger spacer sizes resulted in larger pore structures. This synthetic method was equally efficient on silica microspheres, which could then be etched to create all-SWNT framework, hollow capsules approximately 5 mum in diameter. These hollow capsules are permeable to organic and inorganic reagents, allowing one to form inorganic nanoparticles, for example, that become entrapped within the capsule. The ability to encapsulate functional nanomaterials inside perm-selective SWNT cages and membranes may find applications in new adsorbents, novel catalysts, and drug delivery vehicles.

  8. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase

    Science.gov (United States)

    Shiva, Sruti; Brookes, Paul S.; Patel, Rakesh P.; Anderson, Peter G.; Darley-Usmar, Victor M.

    2001-06-01

    An emerging and important site of action for nitric oxide (NO) within cells is the mitochondrial inner membrane, where NO binds to and inhibits members of the electron transport chain, complex III and cytochrome c oxidase. Although it is known that inhibition of cytochrome c oxidase by NO is competitive with O2, the mechanisms that underlie this phenomenon remain unclear, and the impact of both NO and O2 partitioning into biological membranes has not been considered. These properties are particularly interesting because physiological O2 tensions can vary widely, with NO having a greater inhibitory effect at low O2 tensions (mitochondrial membranes in the absence of substrate, in a nonsaturable process that is O2 dependent. This consumption modulates inhibition of cytochrome c oxidase by NO and is enhanced by the addition of exogenous membranes. From these data, it is evident that the partition of NO into mitochondrial membranes has a major impact on the ability of NO to control mitochondrial respiration. The implications of this conclusion are discussed in the context of mitochondrial lipid:protein ratios and the importance of NO as a regulator of respiration in pathophysiology.

  9. Detection and quantification through a lipid membrane using the molecularly controlled semiconductor resistor.

    Science.gov (United States)

    Bavli, Danny; Tkachev, Maria; Piwonski, Hubert; Capua, Eyal; de Albuquerque, Ian; Bensimon, David; Haran, Gilad; Naaman, Ron

    2012-01-10

    The detection of covalent and noncovalent binding events between molecules and biomembranes is a fundamental goal of contemporary biochemistry and analytical chemistry. Currently, such studies are performed routinely using fluorescence methods, surface-plasmon resonance spectroscopy, and electrochemical methods. However, there is still a need for novel sensitive miniaturizable detection methods where the sample does not have to be transferred to the sensor, but the sensor can be brought into contact with the sample studied. We present a novel approach for detection and quantification of processes occurring on the surface of a lipid bilayer membrane, by monitoring the current change through the n-type GaAs-based molecularly controlled semiconductor resistor (MOCSER), on which the membrane is adsorbed. Since GaAs is susceptible to etching in an aqueous environment, a protective thin film of methoxysilane was deposited on the device. The system was found to be sensitive enough to allow monitoring changes in pH and in the concentration of amino acids in aqueous solution on top of the membrane. When biotinylated lipids were incorporated into the membrane, it was possible to monitor the binding of streptavidin or avidin. The device modified with biotin-streptavidin complex was capable of detecting the binding of streptavidin antibodies to immobilized streptavidin with high sensitivity and selectivity. The response depends on the charge on the analyte. These results open the way to facile electrical detection of protein-membrane interactions.

  10. Fluorescent in situ folding control for rapid optimization of cell-free membrane protein synthesis.

    Directory of Open Access Journals (Sweden)

    Annika Müller-Lucks

    Full Text Available Cell-free synthesis is an open and powerful tool for high-yield protein production in small reaction volumes predestined for high-throughput structural and functional analysis. Membrane proteins require addition of detergents for solubilization, liposomes, or nanodiscs. Hence, the number of parameters to be tested is significantly higher than with soluble proteins. Optimization is commonly done with respect to protein yield, yet without knowledge of the protein folding status. This approach contains a large inherent risk of ending up with non-functional protein. We show that fluorophore formation in C-terminal fusions with green fluorescent protein (GFP indicates the folding state of a membrane protein in situ, i.e. within the cell-free reaction mixture, as confirmed by circular dichroism (CD, proteoliposome reconstitution and functional assays. Quantification of protein yield and in-gel fluorescence intensity imply suitability of the method for membrane proteins of bacterial, protozoan, plant, and mammalian origin, representing vacuolar and plasma membrane localization, as well as intra- and extracellular positioning of the C-terminus. We conclude that GFP-fusions provide an extension to cell-free protein synthesis systems eliminating the need for experimental folding control and, thus, enabling rapid optimization towards membrane protein quality.

  11. Nonlinear observer-based Lyapunov boundary control of distributed heat transfer mechanisms for membrane distillation plant

    KAUST Repository

    Eleiwi, Fadi

    2016-09-19

    This paper presents a nonlinear observer-based Lyapunov control for a membrane distillation (MD) process. The control considers the inlet temperatures of the feed and the permeate solutions as inputs, transforming it to boundary control process, and seeks to maintain the temperature difference along the membrane boundaries around a sufficient level to promote water production. MD process is modeled with advection diffusion equation model in two dimensions, where the diffusion and convection heat transfer mechanisms are best described. Model analysis, effective order reduction and parameters physical interpretation, are provided. Moreover, a nonlinear observer has been designed to provide the control with estimates of the temperature evolution at each time instant. In addition, physical constraints are imposed on the control to have an acceptable range of feasible inputs, and consequently, better energy consumption. Numerical simulations for the complete process with real membrane parameter values are provided, in addition to detailed explanations for the role of the controller and the observer. (C) 2016 Elsevier Ltd. All rights reserved.

  12. Optimal design and control of solar driven air gap membrane distillation desalination systems

    International Nuclear Information System (INIS)

    Chen, Yih-Hang; Li, Yu-Wei; Chang, Hsuan

    2012-01-01

    Highlights: ► Air gap membrane distillation unit was used in the desalination plants. ► Aspen Custom Molder was used to simulate each unit of desalination plants. ► Design parameters were investigated to obtain the minimum total annual cost. ► The control structure was proposed to operate desalination plants all day long. -- Abstract: A solar heated membrane distillation desalination system is constructed of solar collectors and membrane distillation devices for increasing pure water productivity. This technically and economically feasible system is designed to use indirect solar heat to drive membrane distillation processes to overcome the unstable supply of solar radiation from sunrise to sunset. The solar heated membrane distillation desalination system in the present study consisted of hot water storage devices, heat exchangers, air gap membrane distillation units, and solar collectors. Aspen Custom Molder (ACM) software was used to model and simulate each unit and establish the cost function of a desalination plant. From Design degree of freedom (DOF) analysis, ten design parameters were investigated to obtain the minimum total annual cost (TAC) with fixed pure water production rate. For a given solar energy density profile of typical summer weather, the minimal TAC per 1 m 3 pure water production can be found at 500 W/m 2 by varying the solar energy intensity. Therefore, we proposed two modes for controlling the optimal design condition of the desalination plant; day and night. In order to widen the operability range of the plant, the sensitivity analysis was used to retrofit the original design point to lower the effluent temperature from the solar collector by increasing the hot water recycled stream. The simulation results show that the pure water production can be maintained at a very stable level whether in sunny or cloudy weather.

  13. Ion-Exchanged SAPO-34 Membranes for Krypton-Xenon Separation: Control of Permeation Properties and Fabrication of Hollow Fiber Membranes.

    Science.gov (United States)

    Kwon, Yeon Hye; Min, Byunghyun; Yang, Shaowei; Koh, Dong-Yeun; Bhave, Ramesh R; Nair, Sankar

    2018-02-21

    Separation of radioisotope 85 Kr from 136 Xe is of importance in used nuclear fuel reprocessing. Membrane separation based on zeolite molecular sieves such as chabazite SAPO-34 is an attractive alternative to energy-intensive cryogenic distillation. We report the synthesis of SAPO-34 membranes with considerably enhanced performance via thickness reduction based upon control of a steam-assisted vapor-solid conversion technique followed by ion exchange with alkali metal cations. The reduction of membrane thickness leads to a large increase in Kr permeance from 7.5 to 26.3 gas permeation units (GPU) with ideal Kr/Xe selectivities >20 at 298 K. Cation-exchanged membranes show large (>50%) increases in selectivity at ambient or slight subambient conditions. The adsorption, diffusion, and permeation characteristics of ion-exchanged SAPO-34 materials and membranes are investigated in detail, with potassium-exchanged SAPO-34 membranes showing particularly attractive performance. We then demonstrate the fabrication of selective SAPO-34 membranes on α-alumina hollow fibers.

  14. Impact of polyethylene glycol on proline and membrane stability index for water stress regime in tomato (Solanum lycopersicum)

    International Nuclear Information System (INIS)

    George, S.; Jatoi, S.A.; Siddiqui, S.U.

    2015-01-01

    Drought is one of the most important constraints worldwide for crop growth including tomato. It adversely affects germination and seedling that ultimately reduces crop development and economic yield. Polyethylene glycol (PEG) gives an indication to abiotic stresses and has been used throughout world in various crops for successful screening and breeding against stresses. Contrarily proline protects plant tissues against stress through preventing molecular denaturation, scavenges reactive oxygen species and interacts with phospholipids. Present paper presents the results on PEG and proline estimation in tomato. The PEG screening reduced the experimental material and finally 20 genotypes (6232, 6233, 6234, 10584, 10587, 17889, 17902, 17904, 19288, 19289, 19290, 19291, 19893, Avinash-2, Feston, Nagina, Punjab Chohara, Ratan and T-4) from diverse origin were investigated for proline estimation, chlorophyll contents and membrane stability index that gave a clear reference for drought tolerance in tomato. All the techniques (PEG, Proline, MSI) related to drought screening were employed and their interactive interpretation will enable us to design future breeding strategies for tomato development under drought that is still a dream for man. Among 20 genotypes, 19291 possessed the highest proline contents hence was tolerant to drought conditions, although needs verification under actual drought for adaptability and yield potential. High MSI under stress was observed for Punjab Chuhara, Chuhara, Avinash-2, Ratan, 19893, 19291 and 6233. (author)

  15. The influence of ventilation tube design on the magnitude of stress imposed at the implant/tympanic membrane interface.

    LENUS (Irish Health Repository)

    Vard, John P

    2008-03-01

    The design of ventilation tubes or grommets is thought to have a considerable influence on their performance. A computational model (finite element method) was used to investigate the significance of four design parameters of a commonly used design of ventilation tube. The design parameters were: the length of the shaft, the diameter of the flanges, the thickness of the flanges, and the material type. A statistical analysis technique, known as a factorial analysis of variance, was used to examine the importance of the four design parameters on the dynamical behaviour of the middle ear with the implant in situ and on the magnitude of stress induced at the implant\\/tympanic membrane interface. We predicted that the ventilation tube alters the frequency response of the middle ear; specifically the shaft length and the thickness of the flanges were found to have a significant effect upon the vibratory pattern at the umbo. A reduced length of tube and an increased size of flange were also found to be significant for minimising membrane stress (both with P<0.001). Thus, design parameters of critical influence on optimising performance were identified.

  16. Effect of Graphene and Fullerene Nanofillers on Controlling the Pore Size and Physicochemical Properties of Chitosan Nanocomposite Mesoporous Membranes

    Directory of Open Access Journals (Sweden)

    Irene S. Fahim

    2015-01-01

    Full Text Available Chitosan (CS nanocomposite mesoporous membranes were fabricated by mixing CS with graphene (G and fullerene (F nanofillers, and the diffusion properties through CS membranes were studied. In addition, in order to enhance the binding between the internal CS chains, physical cross-linking of CS by sodium tripolyphosphate (TPP was carried out. F and G with different weight percentages (0.1, 0.5, and 1 wt.% were added on physically cross-linked chitosan (CLCS and non-cross-linked chitosan (NCLCS membranes by wet mixing. Permeability and diffusion time of CLCS and NCLCS membranes at different temperatures were investigated. The results revealed that the pore size of all fabricated CS membranes is in the mesoporous range (i.e., 2–50 nm. Moreover, the addition of G and F nanofillers to CLCS and NCLCS solutions aided in controlling the CS membranes’ pore size and was found to enhance the barrier effect of the CS membranes either by blocking the internal pores or decreasing the pore size. These results illustrate the significant possibility of controlling the pore size of CS membranes by cross-linking and more importantly the careful selection of nanofillers and their percentage within the CS membranes. Controlling the pore size of CS membranes is a fundamental factor in packaging applications and membrane technology.

  17. Salt stress in Plantago - The role of membranes, channels and pumps

    NARCIS (Netherlands)

    Prins, HBA

    1995-01-01

    In the present article the cellular mechanism of Na+ transport across the plasma membrane and tonoplast of root cells of Plantago media (salt sensitive) and Plantago maritima (salt tolerant) is discussed based on findings obtained mainly by patch clamp technique. It is conluded that the combination

  18. Apoptotic Bax at Oxidatively Stressed Mitochondrial Membranes: Lipid Dynamics and Permeabilization

    Czech Academy of Sciences Publication Activity Database

    Dilgendein, A. P.; Pokorná, Šárka; Lidman, M.; Sparrman, T.; Šachl, Radek; Hof, Martin; Gröbner, G.

    2017-01-01

    Roč. 112, č. 10 (2017), s. 2147-2158 ISSN 0006-3495 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388955 Keywords : LOW-FREQUENCY MOTION * OXIDIZED PHOSPHOLIPIDS * BILAYER-MEMBRANES Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.656, year: 2016

  19. Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in Drosophila

    NARCIS (Netherlands)

    Aguilera-Gomez, Angelica; Rabouille, Catherine

    2017-01-01

    Classically, we think of cell compartmentalization as being achieved by membrane-bound organelles. It has nevertheless emerged that membrane-less assemblies also largely contribute to this compartmentalization. Here, we compare the characteristics of both types of compartmentalization in term of

  20. Estimation of the controlling stress in creep fracture

    International Nuclear Information System (INIS)

    Henderson, J.; Ferguson, F.R.

    1975-01-01

    The implementation of correct criterion in creep design, has been shown to be of fundamental significance in the assessment of component life. The present report considers the problem of the means whereby the criterion may be derived for a particular metal without the availability of sophisticated complex-stress testing equipment and procedures such as the combined tension and torsion tests on thin walled tubular specimens employed in the earlier fundamental researches on the subject. By investigating a wide spectrum of engineering metals it was established that for homogeneous stress conditions two criteria appeared to be sufficient to cover all the metals studied for complex-stress creep fracture, either the maximum principal stress or the octahedral shear stress criterion. Further, it was found that those metals which developed random and continuous cracking during creep were controlled with respect to fracture time by the maximum principal stress, while metals which showed virtually no cracking were governed by the octahedral shear stress or second order invariant. The physical nature of the final fracture (transcrystalline or inter-crystalline), contrary to considerable current concepts, was found to be unrelated to which criterion was operative. Having reduced the possible fracture criteria to two, it only remained to develop a simple test method exploiting this finding to achieve the precise identification for a particular metal. Seven metals including aluminium, copper, titanium, cast iron and three steels have been investigated in the present report at temperatures where creep conditions are operative. The results have shown that the method leads to sufficiently accurate prediction of the complex stress creep fracture criterion for the metals studied

  1. Zeta potential control in decontamination with inorganic membranes and inorganic adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Andalaft, E; Vega, R; Correa, M; Araya, R; Loyola, P [Comision Chilena de Energia Nuclear, Santiago (Chile)

    1997-02-01

    The application of some advanced separation processes such as microfiltration and ultrafiltration, electroosmosis and electrodialysis for treating nuclear waste from different aqueous streams is under examination at the Chilean Commission for Nuclear Energy. The application of these techniques can be extended to regular industrial wastes when economically advisable. This report deals mainly with electrodialysis, electroosmosis and adsorption with inorganic materials. Special attention is paid to zeta potential control as a driving factor to electroosmosis. For radioactive contaminants that are present in the form of cations, anions, non-ionic solutions, colloids and suspended matter, appropriate combination of the processes may considerably increase the efficiency of processes used. As an example, colloids and suspended particles may be retained in porous ceramic membranes by nanofiltration, ultrafiltration or microfiltration depending on the particle size of the particles. The control of zeta potential by acting in the solid phase or else on the liquid phase has been studied; a mathematical model to predict electrodialysis data has been developed, and finally, the use of a home-made inorganic adsorbent illustrated. The effect of gamma irradiation on the membranes has also been studied. Properties such as salt retention, water flux and pore size diameter determined on both organic and inorganic membranes before and after irradiation indicate deterioration of the organic membrane. (author). 13 refs, 15 figs, 2 tabs.

  2. Light-activated control of protein channel assembly mediated by membrane mechanics

    Science.gov (United States)

    Miller, David M.; Findlay, Heather E.; Ces, Oscar; Templer, Richard H.; Booth, Paula J.

    2016-12-01

    Photochemical processes provide versatile triggers of chemical reactions. Here, we use a photoactivated lipid switch to modulate the folding and assembly of a protein channel within a model biological membrane. In contrast to the information rich field of water-soluble protein folding, there is only a limited understanding of the assembly of proteins that are integral to biological membranes. It is however possible to exploit the foreboding hydrophobic lipid environment and control membrane protein folding via lipid bilayer mechanics. Mechanical properties such as lipid chain lateral pressure influence the insertion and folding of proteins in membranes, with different stages of folding having contrasting sensitivities to the bilayer properties. Studies to date have relied on altering bilayer properties through lipid compositional changes made at equilibrium, and thus can only be made before or after folding. We show that light-activation of photoisomerisable di-(5-[[4-(4-butylphenyl)azo]phenoxy]pentyl)phosphate (4-Azo-5P) lipids influences the folding and assembly of the pentameric bacterial mechanosensitive channel MscL. The use of a photochemical reaction enables the bilayer properties to be altered during folding, which is unprecedented. This mechanical manipulation during folding, allows for optimisation of different stages of the component insertion, folding and assembly steps within the same lipid system. The photochemical approach offers the potential to control channel assembly when generating synthetic devices that exploit the mechanosensitive protein as a nanovalve.

  3. BSM-MBR: a benchmark simulation model to compare control and operational strategies for membrane bioreactors.

    Science.gov (United States)

    Maere, Thomas; Verrecht, Bart; Moerenhout, Stefanie; Judd, Simon; Nopens, Ingmar

    2011-03-01

    A benchmark simulation model for membrane bioreactors (BSM-MBR) was developed to evaluate operational and control strategies in terms of effluent quality and operational costs. The configuration of the existing BSM1 for conventional wastewater treatment plants was adapted using reactor volumes, pumped sludge flows and membrane filtration for the water-sludge separation. The BSM1 performance criteria were extended for an MBR taking into account additional pumping requirements for permeate production and aeration requirements for membrane fouling prevention. To incorporate the effects of elevated sludge concentrations on aeration efficiency and costs a dedicated aeration model was adopted. Steady-state and dynamic simulations revealed BSM-MBR, as expected, to out-perform BSM1 for effluent quality, mainly due to complete retention of solids and improved ammonium removal from extensive aeration combined with higher biomass levels. However, this was at the expense of significantly higher operational costs. A comparison with three large-scale MBRs showed BSM-MBR energy costs to be realistic. The membrane aeration costs for the open loop simulations were rather high, attributed to non-optimization of BSM-MBR. As proof of concept two closed loop simulations were run to demonstrate the usefulness of BSM-MBR for identifying control strategies to lower operational costs without compromising effluent quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Zeta potential control in decontamination with inorganic membranes and inorganic adsorbents

    International Nuclear Information System (INIS)

    Andalaft, E.; Vega, R.; Correa, M.; Araya, R.; Loyola, P.

    1997-01-01

    The application of some advanced separation processes such as microfiltration and ultrafiltration, electroosmosis and electrodialysis for treating nuclear waste from different aqueous streams is under examination at the Chilean Commission for Nuclear Energy. The application of these techniques can be extended to regular industrial wastes when economically advisable. This report deals mainly with electrodialysis, electroosmosis and adsorption with inorganic materials. Special attention is paid to zeta potential control as a driving factor to electroosmosis. For radioactive contaminants that are present in the form of cations, anions, non-ionic solutions, colloids and suspended matter, appropriate combination of the processes may considerably increase the efficiency of processes used. As an example, colloids and suspended particles may be retained in porous ceramic membranes by nanofiltration, ultrafiltration or microfiltration depending on the particle size of the particles. The control of zeta potential by acting in the solid phase or else on the liquid phase has been studied; a mathematical model to predict electrodialysis data has been developed, and finally, the use of a home-made inorganic adsorbent illustrated. The effect of gamma irradiation on the membranes has also been studied. Properties such as salt retention, water flux and pore size diameter determined on both organic and inorganic membranes before and after irradiation indicate deterioration of the organic membrane. (author). 13 refs, 15 figs, 2 tabs

  5. Micromechanical studies of cyclic creep fracture under stress controlled loading

    DEFF Research Database (Denmark)

    van der Giessen, Erik; Tvergaard, Viggo

    1996-01-01

    is based on numerical unit cell analyses for a planar polycrystal model with the grains and grain boundaries modeled individually, in order to investigate the interactions between the mechanisms involved and to account for the build-up of residual stress fields during cycling. The behaviour of a limiting......This paper deals with a study of intergranular failure by creep cavitation under stress-controlled cyclic loading conditions. Loading is assumed to be slow enough that diffusion and creep mechanisms (including grain boundary sliding) dominate, leading to intergranular creep fracture. This study...

  6. Superhydrophilic Thin-Film Composite Forward Osmosis Membranes for Organic Fouling Control: Fouling Behavior and Antifouling Mechanisms

    KAUST Repository

    Tiraferri, Alberto

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes. © 2012 American Chemical Society.

  7. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms.

    Science.gov (United States)

    Tiraferri, Alberto; Kang, Yan; Giannelis, Emmanuel P; Elimelech, Menachem

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes.

  8. Enterovirus Control of Translation and RNA Granule Stress Responses.

    Science.gov (United States)

    Lloyd, Richard E

    2016-03-30

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.

  9. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes

    KAUST Repository

    Zaher, A.

    2015-09-29

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices\\' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.

  10. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes

    KAUST Repository

    Zaher, Amir; Li, S.; Wolf, K. T.; Pirmoradi, F. N.; Yassine, Omar; Lin, L.; Khashab, Niveen M.; Kosel, Jü rgen

    2015-01-01

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.

  11. Temperature-dependence of stress and elasticity in wet-transferred graphene membranes

    Science.gov (United States)

    De Alba, Roberto; Abhilash, T. S.; Hui, Aaron; Storch, Isaac R.; Craighead, Harold G.; Parpia, Jeevak M.

    2018-03-01

    We report measurements of the mechanical properties of two suspended graphene membranes in the temperature range of 80 K to 550 K. For this entire range, the resonant frequency and quality factor of each device were monitored continuously during cooling and heating. Below 300 K, we have additionally measured the resonant frequency's tunability via electrostatic force, and modeled this data to determine graphene's tension and elastic modulus; both of these parameters are found to be strongly temperature-dependent in this range. Above 300 K, we observe a resonant frequency (and therefore tension) minimum near room temperature. This suggests that the thermal expansion coefficient is positive for temperatures below roughly 315 K, and negative for higher temperatures. Lastly, we observe a large, reproducible hysteresis in the resonant frequency as our graphene devices are cycled between 300 K and 550 K. After returning to 300 K, the measured frequency evolves exponentially in time with a time constant of ˜24 h. Our results clash with expectations for pristine graphene membranes, but are consistent with expectations for composite membranes composed of graphene coated by a thin layer of polymer residue.

  12. Performance of diagonal control structures at different operating conditions for polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Maria; Husar, Attila; Feroldi, Diego; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya, Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2006-08-25

    This work is focused on the selection of operating conditions in polymer electrolyte membrane fuel cells. It analyses efficiency and controllability aspects, which change from one operating point to another. Specifically, several operating points that deliver the same amount of net power are compared, and the comparison is done at different net power levels. The study is based on a complex non-linear model, which has been linearised at the selected operating points. Different linear analysis tools are applied to the linear models and results show important controllability differences between operating points. The performance of diagonal control structures with PI controllers at different operating points is also studied. A method for the tuning of the controllers is proposed and applied. The behaviour of the controlled system is simulated with the non-linear model. Conclusions indicate a possible trade-off between controllability and optimisation of hydrogen consumption. (author)

  13. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xiang Wang

    2013-01-01

    Full Text Available We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  14. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    KAUST Repository

    Wang, Xiang; Li, Shunbo; Wang, Limu; Yi, Xin; Hui, Yu Sanna; Qin, Jianhua; Wen, Weijia

    2013-01-01

    We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  15. Self-ordered, controlled structure nanoporous membranes using constant current anodization.

    Science.gov (United States)

    Lee, Kwan; Tang, Yun; Ouyang, Min

    2008-12-01

    We report a constant current (CC) based anodization technique to fabricate and control structure of mechanically stable anodic aluminum oxide (AAO) membranes with a long-range ordered hexagonal nanopore pattern. For the first time we show that interpore distance (Dint) of a self-ordered nanopore feature can be continuously tuned over a broad range with CC anodization and is uniquely defined by the conductivity of sulfuric acid as electrolyte. We further demonstrate that this technique can offer new degrees of freedom for engineering planar nanopore structures by fine tailoring the CC based anodization process. Our results not only facilitate further understanding of self-ordering mechanism of alumina membranes but also provide a fast, simple (without requirement of prepatterning or preoxide layer), and flexible methodology for controlling complex nanoporous structures, thus offering promising practical applications in nanotechnology.

  16. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    KAUST Repository

    Wang, Xiang

    2013-01-01

    We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  17. Flow restrictor silicon membrane microvalve actuated by optically controlled paraffin phase transition

    International Nuclear Information System (INIS)

    Kolari, K; Havia, T; Stuns, I; Hjort, K

    2014-01-01

    Restrictor valves allow proportional control of fluid flow but are rarely integrated in microfluidic systems. In this study, an optically actuated silicon membrane restrictor microvalve is demonstrated. Its actuation is based on the phase transition of paraffin, using a paraffin wax mixed with a suitable concentration of optically absorbing nanographite particles. Backing up the membrane with oil (the melted paraffin) allows for a compliant yet strong contact to the valve seat, which enables handling of high pressures. At flow rates up to 30 µL min −1 and at a pressure of 2 bars, the valve can successfully be closed and control the flow level by restriction. The use of this paraffin composite as an adhesive layer sandwiched between the silicon valve and glass eases fabrication. This type of restrictor valve is best suited for high pressure, low volume flow silicon-based nanofluidic systems. (paper)

  18. Ginseng and the hypothalamic-pituitary control of stress.

    Science.gov (United States)

    Fulder, S J

    1981-01-01

    There are a group of so-called tonic remedies in Far Eastern medicine which are traditionally viewed as harmonizing or adjustive. Ginseng and eleutherococcus are the best known, and there is evidence that they increase arousal, stamina and stress resistance. We have attempted to explore the relationship between the behavioral and the stress effects, and to relate this to traditional concepts. In one series of experiments mice were given ginseng throughout their lifespan. At intervals their behavior response to mild stress was examined and found to be exaggerated compared to controls without ginseng. However, normal ambulatory behavior in the absence of stress was unaffected. A second series of experiments indicated that the binding of corticosteroid to certain brain regions was increased in adrenalectomized rats given ginseng saponin, compared to saline treated controls. This can be interpreted as a result of an increase in hypothalamic-pituitary-adrenal sensitivity caused by ginseng saponin. This is in accord with traditional concepts of the use of these remedies.

  19. [Characteristics of nitrogen and phosphorus removal and control of membrane fouling in MBR and SMBR].

    Science.gov (United States)

    Guo, Xiao-Ma; Zhao, Yan; Wang, Kai-Yan; Zhao Yang-Guo

    2015-03-01

    To improve the efficiency and running stability of wastewater advanced treatment, a sequencing membrane bioreactor (SMBR) and a traditional membrane bioreactor (MBR) were used to investigate the characteristics of nitrogen and phosphorus removal, and the effect of anoxic time on treatment systems and membrane fouling. Simultaneously, molecular biology techniques were applied to analyze the composition of microbial community and the structure of suspended sludge. The results showed that SMBR had higher efficiency in removing TN than MBR, which indicated that intermittent aeration could enhance the ability of nitrogen removal. SMBR and MBR had a similar removal efficiency of NH4(+)-N, TP, COD, and turbidity with the removal rates of 94%, 78%, 80%, and 97%, respectively. Extension of SMBR anoxic time had no effect on COD, NH4(+) -N removal but decreased TN and TP removal rate, dropping from 61% and 74% to 46% and 52%, respectively. Intermittent aeration and powder activated carbon (PAC) could both mitigate membrane fouling. The analysis on microbial community indicated that there was no difference in the composition and structure of microbial community between SMBR and MBR. Nitrospira and Dechloromonas were both highly abundant functional groups, which provided the basis for highly efficient control of bioreactors.

  20. Integrated Wireless Monitoring and Control System in Reverse Osmosis Membrane Desalination Plants

    Directory of Open Access Journals (Sweden)

    Al Haji Ahmad

    2015-01-01

    Full Text Available The operational processes of the Reverse Osmosis (RO membrane desalination plants require continuous monitoring through the constant attendance of operators to ensure proper productivity and minimize downtime and prevent membrane failure. Therefore, the plant must be equipped with a control system that monitors and controls the operational variables. Monitoring and controlling the affecting parameters are critical to the evaluation of the performance of the desalination plant, which will help the operator find and resolve problems immediately. Therefore, this paper was aimed at developing an RO unit by utilizing a wireless sensor network (WSN system. Hence, an RO pilot plant with a feed capacity of 1.2 m3/h was utilized, commissioned, and tested in Kuwait to assess and verify the performance of the integrated WSN in RO membrane desalination system. The investigated system allowed the operators to remotely monitor the operational process of the RO system. The operational data were smoothly recorded and monitored. Furthermore, the technical problems were immediately determined, which reduced the time and effort in rectifying the technical problems relevant to the RO performance. The manpower requirements of such treatment system were dramatically reduced by about 50%. Based on a comparison between manual and wireless monitoring operational processes, the availability of the integrated RO unit with a wireless monitoring was increased by 10%

  1. Cortisol responses to naturalistic and laboratory stress in student teachers: comparison with a non-stress control day.

    Science.gov (United States)

    Wolfram, Maren; Bellingrath, Silja; Feuerhahn, Nicolas; Kudielka, Brigitte M

    2013-04-01

    Ambulatory assessments of hypothalamus-pituitary-adrenal axis responses to acute natural stressors yield evidence on stress regulation with high ecological validity. Sampling of salivary cortisol is a standard technique in this field. In 21 healthy student teachers, we assessed cortisol responses to a demonstration lesson. On a control day, sampling was repeated at analogous times. Additionally, the cortisol awakening response (CAR) was assessed on both days. Participants were also exposed to a laboratory stressor, the Trier Social Stress Test, and rated their individual levels of chronic work stress. In pre-to-post-stress assessment, cortisol levels declined after the lesson. However, post-stress cortisol levels were significantly higher compared with those on the control day. Also, the Trier Social Stress Test yielded higher cortisol responses when using the control day as reference baseline. Associations between the CAR and chronic stress measures were observed solely on the control day. There were no significant associations between cortisol responses to the natural and laboratory stressors. Our results indicate that a control day might be an important complement in laboratory but especially in ambulatory stress research. Furthermore, associations between chronic stress measures and the CAR might be obscured by acute stress exposure. Finally, responses to the laboratory stressor do not seem to mirror natural stress responses. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Cell cytoskeletal changes effected by static compressive stress lead to changes in the contractile properties of tissue regenerative collagen membranes

    Directory of Open Access Journals (Sweden)

    K Gellynck

    2013-06-01

    Full Text Available Static compressive stress can influence the matrix, which subsequently affects cell behaviour and the cell’s ability to further transform the matrix. This study aimed to assess response to static compressive stress at different stages of osteoblast differentiation and assess the cell cytoskeleton’s role as a conduit of matrix-derived stimuli. Mouse bone marrow mesenchymal stem cells (MSCs (D1 ORL UVA, osteoblastic cells (MC3T3-E1 and post-osteoblast/pre-osteocyte-like cells (MLO-A5 were seeded in hydrated and compressed collagen gels. Contraction was quantified macroscopically, and cell morphology, survival, differentiation and mineralisation assessed using confocal microscopy, alamarBlue® assay, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR and histological stains, respectively. Confocal microscopy demonstrated cell shape changes and favourable microfilament organisation with static compressive stress of the collagen matrix; furthermore, cell survival was greater compared to the hydrated gels. The stage of osteoblast differentiation determined the degree of matrix contraction, with MSCs demonstrating the greatest amount. Introduction of microfilament disrupting inhibitors confirmed that pre-stress and tensegrity forces were under the influence of gel density, and there was increased survival and differentiation of the cells within the compressed collagen compared to the hydrated collagen. There was also relative stiffening and differentiation with time of the compressed cell-seeded collagen, allowing for greater manipulation. In conclusion, the combined collagen chemistry and increased density of the microenvironment can promote upregulation of osteogenic genes and mineralisation; MSCs can facilitate matrix contraction to form an engineered membrane with the potential to serve as a ‘pseudo-periosteum’ in the regeneration of bone defects.

  3. Stress proteins in lymphocytes: Membrane stabilization does not affect the heat shock response

    International Nuclear Information System (INIS)

    Hughes, C.S.; Repasky, E.A.; Subjeck, J.R.

    1987-01-01

    Temperatures which have been used to induce heat shock proteins (hsps) have been at the upper physiologic limit or well above this limit. In addition, little attention has been given to the effects of physiologic heat exposures on hsp induction in lymphocytes. The author examined temperatures between 39 0 C and 41 0 C on protein synthesis in the following lymphoid cell lines and cells: BDK, EL-4, JM, DO.11, and in dispersed lymph nodes and thymic tissues. In these studies, 39.5 0 appears to be the threshold for hsp induction (as distinguished by gel electrophoresis). At this temperature the induction of the major hsps at 70 and 89 kDa are observed. Hsp 89 appears to be the most strongly induced in all cells examined. In JM cells, a human cell line, heat shock also induces hsp 68, the non-constitutive hsp at this size. These temperatures do not depress normal levels of protein synthesis. When stearic acid or cholesterol was added to lymphocyte cultures prior to heating (which stabilize membranes), hsp induction appears to occur in a manner indistinguishable from cells heated in normal media. This suggests that membrane fluidity (as influenced by these agents) does not affect or depress the heat shock response in these cells. Finally, the authors observed that 2-deoxyglucose and other inducers of glucose regulated proteins in fibroblasts also induce the major glucose regulated proteins in lymphocytes

  4. Feedback control for distributed heat transfer mechanisms in direct-contact membrane distillation system

    KAUST Repository

    Eleiwi, Fadi; N'Doye, Ibrahima; Laleg-Kirati, Taous-Meriem

    2015-01-01

    In this paper, the problem of stabilization and production rate reference tracking for a Direct-Contact Membrane Distillation (DCMD) system is addressed. Sufficient conditions for the asymptotic and exponential stabilization for DCMD system are presented using the Gronwall-Bellman lemma and Linear Matrix Inequalities (LMIs) approaches, respectively. A nonlinear observer is then proposed to estimate the temperature distribution among the DCMD domain. This contributes to propose a reference production rate control design for the DCMD process via observer-based output control approach. Finally, numerical simulations are given to show the effectiveness of the proposed methods.

  5. Feedback control for distributed heat transfer mechanisms in direct-contact membrane distillation system

    KAUST Repository

    Eleiwi, Fadi

    2015-09-21

    In this paper, the problem of stabilization and production rate reference tracking for a Direct-Contact Membrane Distillation (DCMD) system is addressed. Sufficient conditions for the asymptotic and exponential stabilization for DCMD system are presented using the Gronwall-Bellman lemma and Linear Matrix Inequalities (LMIs) approaches, respectively. A nonlinear observer is then proposed to estimate the temperature distribution among the DCMD domain. This contributes to propose a reference production rate control design for the DCMD process via observer-based output control approach. Finally, numerical simulations are given to show the effectiveness of the proposed methods.

  6. Development and Optimization of Osmotically Controlled Asymmetric Membrane Capsules for Delivery of Solid Dispersion of Lycopene

    Directory of Open Access Journals (Sweden)

    Nitin Jain

    2014-01-01

    Full Text Available The aim of the present investigation is to develop and statistically optimize the osmotically controlled asymmetric membrane capsules of solid dispersion of lycopene. Solid dispersions of lycopene with β-cyclodextrin in different ratios were prepared using solvent evaporation method. Solubility studies showed that the solid dispersion with 1 : 5 (lycopene : β-cyclodextrin exhibited optimum solubility (56.25 mg/mL for osmotic controlled delivery. Asymmetric membrane capsules (AMCs were prepared on glass mold pins via dip coating method. Membrane characterization by scanning electron microscopy showed inner porous region and outer dense region. Central composite design response surface methodology was applied for the optimization of AMCs. The independent variables were ethyl cellulose (X1, glycerol (X2, and NaCl (X3 which were varied at different levels to analyze the effect on dependent variables (percentage of cumulative drug release (Y1 and correlation coefficient of drug release (Y2. The effect of independent variables on the response was significantly influential. The F18 was selected as optimized formulation based on percentage of CDR (cumulative drug release of 85.63% and correlation coefficient of 0.9994. The optimized formulation was subjected to analyze the effect of osmotic pressure and agitational intensity on percentage of CDR. The drug release was independent of agitational intensity but was dependent on osmotic pressure of dissolution medium.

  7. Controlled in meso phase crystallization--a method for the structural investigation of membrane proteins.

    Directory of Open Access Journals (Sweden)

    Jan Kubicek

    Full Text Available We investigated in meso crystallization of membrane proteins to develop a fast screening technology which combines features of the well established classical vapor diffusion experiment with the batch meso phase crystallization, but without premixing of protein and monoolein. It inherits the advantages of both methods, namely (i the stabilization of membrane proteins in the meso phase, (ii the control of hydration level and additive concentration by vapor diffusion. The new technology (iii significantly simplifies in meso crystallization experiments and allows the use of standard liquid handling robots suitable for 96 well formats. CIMP crystallization furthermore allows (iv direct monitoring of phase transformation and crystallization events. Bacteriorhodopsin (BR crystals of high quality and diffraction up to 1.3 Å resolution have been obtained in this approach. CIMP and the developed consumables and protocols have been successfully applied to obtain crystals of sensory rhodopsin II (SRII from Halobacterium salinarum for the first time.

  8. Improved performance of single-chamber microbial fuel cells through control of membrane deformation

    KAUST Repository

    Zhang, Xiaoyuan; Cheng, Shaoan; Huang, Xia; Logan, Bruce E.

    2010-01-01

    , but in initial experiments we observed the opposite using a membrane electrode assembly MFC. The reason was identified to be membrane deformation, which resulted in water and gas trapped between the membrane and cathode. To correct this, stainless steel mesh

  9. Yeast Tok1p channel is a major contributor to membrane potential maintenance under chemical stress

    Czech Academy of Sciences Publication Activity Database

    Zahumenský, J.; Jančíková, I.; Drietomská, A.; Švenkrtová, Andrea; Hlaváček, Otakar; Hendrych, T.; Plášek, J.; Sigler, Karel; Gášková, D.

    2017-01-01

    Roč. 1859, č. 10 (2017), s. 1974-1985 ISSN 0005-2736 R&D Projects: GA ČR(CZ) GA15-08225S; GA MŠk LH13049; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Chemical stress * Depolarization * Fluorescent probe diS-C-3(3) Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.498, year: 2016

  10. Reinforced concrete membrane elements subjected to reversed cyclic in-plane shear stress

    International Nuclear Information System (INIS)

    Ohmori, N.; Tsubota, H.; Inoue, N.; Watanabe, S.; Kurihara, K.

    1987-01-01

    The response of reinforced concrete elements subjected to reversed cyclic in-plane shear stresses can be predicted by an analytical model, which considers equilibrium, compatibility and stress-strain relationships including hysteresis loop of unloading and reloading stages all expressed in terms of average stresses and average strains. The analytical results show that the dominant hysteretic behaviours in regard to decrease of stiffness during unloading, successive slip phenomena and restoration of compressive stiffness at the reloading stages are well simulated analytically. The results agree quite well with the observed behaviours. As for the envelope curve of the hysteretic response there remain the discrepancies that the stiffness and ultimate strength are a bit larger than the observed results, especially in the case of a panel with a large reinforcement ratio. Such descrepancies are also found in the predicted results of monotonic loading and more precise studies are necessary to evaluate more accurate envelope curves under not only reversed cyclic loading but also monotonic loading. (orig./HP)

  11. The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in rice subjected to heavy metal cadmium stress

    Science.gov (United States)

    The heavy metal cadmium is a common environmental contaminant in soils and has adverse effects on crop growth and development. The signaling processes in plants that initiate cellular responses to environmental stress have been shown to be located in the plasma membrane (PM). A better understanding ...

  12. DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress

    Czech Academy of Sciences Publication Activity Database

    Seydlová, G.; Halada, Petr; Fišer, R.; Toman, O.; Ulrych, Aleš; Svobodová, J.

    2012-01-01

    Roč. 112, č. 4 (2012), s. 765-774 ISSN 1364-5072 R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50200510 Keywords : Bacillus subtilis * ethanol stress * membrane Subject RIV: EE - Microbiology, Virology Impact factor: 2.196, year: 2012

  13. Mechanical stress-controlled tunable active frequency-selective surface

    Science.gov (United States)

    Huang, Bo-Cin; Hong, Jian-Wei; Lo, Cheng-Yao

    2017-01-01

    This study proposes a tunable active frequency-selective surface (AFSS) realized by mechanically expanding or contracting a split-ring resonator (SRR) array. The proposed AFSS transfers mechanical stress from its elastic substrate to the top of the SRR, thereby achieving electromagnetic (EM) modulation without the need for an additional external power supply, meeting the requirements for the target application: the invisibility cloak. The operating mechanism of the proposed AFSS differs from those of other AFSSs, supporting modulations in arbitrary frequencies in the target range. The proposed stress-controlled or strain-induced EM modulation proves the existence of an identical and linear relationship between the strain gradient and the frequency shift, implying its suitability for other EM modulation ranges and applications.

  14. Changes in stress and coping from a randomized controlled trial of a three-month stress management intervention

    DEFF Research Database (Denmark)

    Willert, M.V.; Thulstrup, A.M.; Hertz, J.

    2009-01-01

    Objectives The aim of this study was to investigate whether it group-based stress management intervention, based on principles from cognitive behavior therapy, call reduce stress and alter coping strategies in an occupationally diverse population with extensive symptoms of work-related stress....... Methods Using a randomized wait list control design, 102 participants were divided into two groups: intervention and wait list control. The intervention was a three-month group-based stress management program. Outcomes measures were the Perceived Stress Scale (PSS-10, range 0-40 points) and five......% Cl -0.89-0.07) favouring the intervention. The gains achieved during treatment were maintained when followed up three months later. Conclusions Treatment is Superior to the control condition in positively affecting perceived stress and positive reframing. When followed up, the gains achieved...

  15. A strain-controlled C2N monolayer membrane for gas separation in PEMFC application

    Science.gov (United States)

    Deng, Shengwei; Hu, Hui; Zhuang, Guilin; Zhong, Xing; Wang, Jianguo

    2018-05-01

    Ultrathin membranes with controllable pore sizes have great potential to realize high-selectivity gas separation at low energy cost, especially for those mixtures with narrow size distributions. Using a combination of van der Waals-corrected density functional theory (DFT) calculations and molecular dynamics (MD) simulation, we examine the separation ability of biaxial stretched monolayer C2N nanosheets which is applied to the O2 separation from CO/CO2/O2 mixtures in the cathode of proton exchange membrane fuel cells (PEMFC). The DFT calculations show that the diffusion energy barrier for molecules passing through the membrane followed by CO, CO2 and O2 in descending order, and an overall decrease of energy barriers due to the widen the pore size is observed with the increase of applied strains. Furthermore, MD results show that the nanosheet can effectively purify O2 from CO2 and CO with a strain from 8% to 10%. It confirms that the selectivity is determined by the electronic structure related interaction in addition to the kinetic diameter of individual molecules. The O2 permeability is improved progressively with further increase of strain, and small amount of CO2 begins to permeate through the nanosheet at relatively large strain, while the excellent CO isolation is not compromised until the theoretical maximum strain.

  16. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress

    International Nuclear Information System (INIS)

    Rand, R.P.; Fuller, N.L.; Gruner, S.M.; Parsegian, V.A.

    1990-01-01

    Amphiphiles respond both to polar and to nonpolar solvents. In this paper X-ray diffraction and osmotic stress have been used to examine the phase behavior, the structural dimensions, and the work of deforming the monolayer-lined aqueous cavities formed by mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) as a function of the concentration of two solvents, water and tetradecane (td). In the absence of td, most PE/PC mixtures show only lamellar phases in excess water; all of these become single reverse hexagonal (H II ) phases with addition of excess td. The spontaneous radius of curvature R 0 of lipid monolayers, as expressed in these H II phases, is allowed by the relief of hydrocarbon chain stress by td; R 0 increases with the ratio DOPC/DOPE. Single H II phases stressed by limited water or td show several responses. (a) the molecular area is compressed at the polar end of the molecule and expanded at the hydrocarbon ends. (b) For circularly symmetrical water cylinders, the degrees of hydrocarbon chain splaying and polar group compression are different for molecules aligned in different directions around the water cylinder. (c) A pivotal position exists along the length of the phospholipid molecule where little area change occurs as the monolayer is bent to increasing curvatures. (d) By defining R 0 at the pivotal position, the authors find that measured energies are well fit by a quadratic bending energy. (e) For lipid mixtures, enforced deviation of the H II monolayer from R 0 is sufficiently powerful to cause demixing of the phospholipids in a way suggesting that the DOPE/DOPC ratio self-adjusts so that its R 0 matches the amount of td or water available, i.e., that curvature energy is minimized

  17. Analysis of plasma membrane Ca(2+)-ATPase expression in control and SV40-transformed human fibroblasts.

    Science.gov (United States)

    Reisner, P D; Brandt, P C; Vanaman, T C

    1997-01-01

    It has been long known that neoplastic transformation is accompanied by a lowered requirement for extracellular Ca2+ for growth. The studies presented here demonstrate that human fibroblastic cell lines produce the two commonly found 'housekeeping' isoforms of the plasma membrane Ca(2+)-ATPase (PMCA), PMCA1b and 4b, and at the expression of both is demonstrably lower in cell lines neoplastically transformed by SV40 than in the corresponding parental cell lines. Western blot analyses of lysates from control (GM00037) and SV40-transformed (GM00637) skin fibroblasts revealed a 138 kDa PMCA whose level was significantly lower in the SV40-transformed cells relative to either total cellular protein or alpha-tubulin. Similar analyses of plasma membrane preparations from control WI-38) and SV40-transformed (WI-38VA13) lung fibroblasts revealed 3-4-fold lower levels of PMCA in the SV40-transformed cells. Competitive ELISAs performed on detergent solubilized plasma membrane preparations indicated at least 3-4-fold lower levels of PMCA in the SV40-transformed cell lines compared to controls. Reverse transcriptase coupled-PCR analyses showed that PMCA1b and PMCA4b were the only isoforms expressed in all four cell lines. The PMCA4b mRNA level detected by Northern analysis also was substantially lower in SV40 transformed skin fibroblasts than in non-transformed fibroblasts. Quantitative RT-PCR analyses showed levels of PMCA1b and 4b mRNAs to be 5 and 10-fold lower, respectively, in GM00637 than in GM00037 when the levels of PCR products were normalized to glyceraldehyde-3-phosphate dehydrogenase (G3PDH) mRNA. These results demonstrate that the expression of these distinct PMCA genes is substantially lower in SV40 transformed human skin and lung fibroblasts and may be coordinately regulated in these cells.

  18. Stress field control during large caldera-forming eruptions

    Directory of Open Access Journals (Sweden)

    Antonio Costa

    2016-10-01

    Full Text Available Crustal stress field can have a significant influence on the way magma is channelled through the crust and erupted explosively at the surface. Large Caldera Forming Eruptions (LCFEs can erupt hundreds to thousands of cubic kilometres of magma in a relatively short time along fissures under the control of a far-field extensional stress. The associated eruption intensities are estimated in the range 109 - 1011 kg/s. We analyse syn-eruptive dynamics of LCFEs, by simulating numerically explosive flow of magma through a shallow dyke conduit connected to a magma chamber that in turn is fed by a deeper magma reservoir, both under the action of an extensional far-field stress. Results indicate that huge amounts of high viscosity silicic magma can be erupted over timescales of a few to several hours. Our study provides answers to outstanding questions relating to the intensity and duration of catastrophic volcanic eruptions in the past. In addition, it presents far-reaching implications for the understanding of dynamics and intensity of large-magnitude volcanic eruptions on Earth and to highlight the necessity of a future research to advance our knowledge of these rare catastrophic events.

  19. Dynamic Modeling and Control of Distributed Heat Transfer Mechanisms: Application to a Membrane Distillation Module

    KAUST Repository

    Eleiwi, Fadi

    2015-12-01

    Sustainable desalination technologies are the smart solution for producing fresh water and preserve the environment and energy by using sustainable renewable energy sources. Membrane distillation (MD) is an emerging technology which can be driven by renewable energy. It is an innovative method for desalinating seawater and brackish water with high quality production, and the gratitude is to its interesting potentials. MD includes a transfer of water vapor from a feed solution to a permeate solution through a micro-porous hydrophobic membrane, rejecting other non-volatile constituents present in the influent water. The process is driven by the temperature difference along the membrane boundaries. Different control applications and supervision techniques would improve the performance and the efficiency of the MD process, however controlling the MD process requires comprehensive mathematical model for the distributed heat transfer mechanisms inside the process. Our objective is to propose a dynamic mathematical model that accounts for the time evolution of the involved heat transfer mechanisms in the process, and to be capable of hosting intermittent energy supplies, besides managing the production rate of the process, and optimizing its energy consumption. Therefore, we propose the 2D Advection-Diffusion Equation model to account for the heat diffusion and the heat convection mechanisms inside the process. Furthermore, experimental validations have proved high agreement between model simulations and experiments with less than 5% relative error. Enhancing the MD production is an anticipated goal, therefore, two main control strategies are proposed. Consequently, we propose a nonlinear controller for a semi-discretized version of the dynamic model to achieve an asymptotic tracking for a desired temperature difference. Similarly, an observer-based feedback control is used to track sufficient temperature difference for better productivity. The second control strategy

  20. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants.

    Science.gov (United States)

    Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Marquès-Bueno, Maria Mar; Armengot, Laia; Stanislas, Thomas; Bayle, Vincent; Caillaud, Marie-Cécile; Jaillais, Yvon

    2016-06-20

    Many signalling proteins permanently or transiently localize to specific organelles. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PtdIns(4)P). Our results further reveal that, contrarily to other eukaryotes, PtdIns(4)P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATOR (MAKR) family, which are involved in brassinosteroid and receptor-like kinase signalling. We anticipate that this PtdIns(4)P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition.

  1. Electrically-controlled permeation of vapors through carbon nanotube network-based membranes

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Olejník, R.

    2018-01-01

    Roč. 17, č. 2 (2018), s. 332-337 ISSN 1536-125X R&D Projects: GA MŠk ED2.1.00/19.0409 Grant - others:Ministerstvo školství, mládeže a tělovýchovy (MŠMT)(CZ) LO1504 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotubes * electrically controlled membranes * permeation of chemical vapors Impact factor: 2.485, year: 2016

  2. Comparison of Four Types of Membrane Bioreactor Systems in Terms of Shear Stress over the Membrane Surface using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby

    2013-01-01

    Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment to solve the perennial problem of effective solids–liquid separation. A common problem with MBR systems is clogging of the modules and fouling of the membrane, resulting in frequent cleaning and replacement...... and requires knowledge of the membrane fouling, hydrodynamics and biokinetics. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the two-phase flow in an MBR. Four cases of different MBR configurations are presented in this work, using CFD as a tool to develop...

  3. New type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane for gallic acid encapsulation and controlled release.

    Science.gov (United States)

    Paun, Gabriela; Neagu, Elena; Tache, Andreia; Radu, G L

    2014-01-01

    A new type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane have been developed for the encapsulation and controlled release of gallic acid. The morphology of the composite membrane was investigated by infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM), whereas swelling gallic acid and release properties were investigated by UV-visible spectroscopy. The release behavior with pH changes was also explored. The composite membrane based on chitosan/2-hydroxypropyl-β-cyclodextrin with gallic acid included showed improved antioxidant capacities compared to plain chitosan membrane. The information obtained in this study will facilitate the design and preparation of composite membrane based on chitosan and could open a wide range of applications, particularly its use as an antioxidant in food, food packaging, biomedical (biodegradable soft porous scaffolds for enhance the surrounding tissue regeneration), pharmaceutical and cosmetics industries.

  4. Interaction between bacterial outer membrane proteins and periplasmic quality control factors: a kinetic partitioning mechanism.

    Science.gov (United States)

    Wu, Si; Ge, Xi; Lv, Zhixin; Zhi, Zeyong; Chang, Zengyi; Zhao, Xin Sheng

    2011-09-15

    The OMPs (outer membrane proteins) of Gram-negative bacteria have to be translocated through the periplasmic space before reaching their final destination. The aqueous environment of the periplasmic space and high permeability of the outer membrane engender such a translocation process inevitably challenging. In Escherichia coli, although SurA, Skp and DegP have been identified to function in translocating OMPs across the periplasm, their precise roles and their relationship remain to be elucidated. In the present paper, by using fluorescence resonance energy transfer and single-molecule detection, we have studied the interaction between the OMP OmpC and these periplasmic quality control factors. The results of the present study reveal that the binding rate of OmpC to SurA or Skp is much faster than that to DegP, which may lead to sequential interaction between OMPs and different quality control factors. Such a kinetic partitioning mechanism for the chaperone-substrate interaction may be essential for the quality control of the biogenesis of OMPs.

  5. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    Science.gov (United States)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  6. Trans-membrane area asymmetry controls the shape of cellular organelles

    NARCIS (Netherlands)

    Beznoussenko, Galina V; Pilyugin, Sergei S; Geerts, Willie J C; Kozlov, Michael M; Burger, Koert N J; Luini, Alberto; Derganc, Jure; Mironov, Alexander A

    2015-01-01

    Membrane organelles often have complicated shapes and differ in their volume, surface area and membrane curvature. The ratio between the surface area of the cytosolic and luminal leaflets (trans-membrane area asymmetry (TAA)) determines the membrane curvature within different sites of the organelle.

  7. Preliminary analysis of a membrane-based atmosphere-control subsystem

    Science.gov (United States)

    Mccray, Scott B.; Newbold, David D.; Ray, Rod; Ogle, Kathryn

    1993-01-01

    Controlled ecological life supprot systems will require subsystems for maintaining the consentrations of atmospheric gases within acceptable ranges in human habitat chambers and plant growth chambers. The goal of this work was to develop a membrane-based atmosphere comntrol (MBAC) subsystem that allows the controlled exchange of atmospheric componets (e.g., oxygen, carbon dioxide, and water vapor) between these chambers. The MBAC subsystem promises to offer a simple, nonenergy intensive method to separate, store and exchange atmospheric components, producing optimal concentrations of components in each chamber. In this paper, the results of a preliminary analysis of the MBAC subsystem for control of oxygen and nitrogen are presented. Additionally, the MBAC subsystem and its operation are described.

  8. Study of Hydrogen Consumption by Control System in Proton Exchange Membrane Fuel Cell

    International Nuclear Information System (INIS)

    Ros Emilia Rosli; Edy Herianto Majlan; Siti Afiqah Abd Hamid; Wan Ramli Wan Daud; Ramizi Mohamed; Dedi Rohendi

    2016-01-01

    Efficient operation results from a proper control strategy. In the operation and performance of a Proton Exchange Membrane Fuel Cell (PEMFC), the hydrogen gas flow rate is one of the most essential control parameter in addition to operating pressure, water management, temperature and humidity. This is because of the high cost and amount of energy are required to produce the purity hydrogen gas. In this paper, a Proportional Integral Derivative (PID) feedback control system is used to control the hydrogen flow rate. A strategy is adapted to balance the hydrogen use based on the loading requirements, especially during start-ups and sudden power demands. This system is implemented using National Instrument (NI) devices powered by the LabVIEW program. This is due to its simplicity and customization flexibility for measuring, processing and recording data. Designed structure allows the real-time implementation of a robust control law that is able to address the related nonlinearities and uncertainties without incurring a heavy computational load for the controller algorithm. While it facilitating a fast sampling rate according to the needs of the power system. Test results from the controller show that the new fuel control system provides good performance by reducing the amount of wasted hydrogen gas compared with that of the previous open loop system by 30 % to over 80 % saved by the varied load. This improvement is beneficial for any PEMFC that experiences fluctuating power demand, especially for vehicle applications. (author)

  9. Superpermeable membrane for particle control in divertor: the effect of impurity deposition

    International Nuclear Information System (INIS)

    Nakahara, Y.; Nakamura, Y.; Ohyabu, N.; Suzuki, H.; Busnyuk, A.; Alimov, V.

    2000-01-01

    The effect of impurity (stainless steel (SS) components, carbon) deposition onto niobium membrane surface on the membrane permeability to hydrogen particles is investigated with a plasma device. The deposition of SS components onto the upstream surface of the membrane at the membrane temperature (T M ) M M ≥800 deg. C. It appears to be due to the dissolution of the impurities deposited onto the upstream surface into the membrane bulk within the measurements

  10. Effects of Yoga on Stress, Stress Adaption, and Heart Rate Variability Among Mental Health Professionals--A Randomized Controlled Trial.

    Science.gov (United States)

    Lin, Shu-Ling; Huang, Ching-Ya; Shiu, Shau-Ping; Yeh, Shu-Hui

    2015-08-01

    Mental health professionals experiencing work-related stress may experience burn out, leading to a negative impact on their organization and patients. The aim of this study was to examine the effects of yoga classes on work-related stress, stress adaptation, and autonomic nerve activity among mental health professionals. A randomized controlled trial was used, which compared the outcomes between the experimental (e.g., yoga program) and the control groups (e.g., no yoga exercise) for 12 weeks. Work-related stress and stress adaptation were assessed before and after the program. Heart rate variability (HRV) was measured at baseline, midpoint through the weekly yoga classes (6 weeks), and postintervention (after 12 weeks of yoga classes). The results showed that the mental health professionals in the yoga group experienced a significant reduction in work-related stress (t = -6.225, p control group revealed no significant changes. Comparing the mean differences in pre- and posttest scores between yoga and control groups, we found the yoga group significantly decreased work-related stress (t = -3.216, p = .002), but there was no significant change in stress adaptation (p = .084). While controlling for the pretest scores of work-related stress, participants in yoga, but not the control group, revealed a significant increase in autonomic nerve activity at midpoint (6 weeks) test (t = -2.799, p = .007), and at posttest (12 weeks; t = -2.099, p = .040). Because mental health professionals experienced a reduction in work-related stress and an increase in autonomic nerve activity in a weekly yoga program for 12 weeks, clinicians, administrators, and educators should offer yoga classes as a strategy to help health professionals reduce their work-related stress and balance autonomic nerve activities. © 2015 The Authors. Worldviews on Evidence-Based Nursing published by Wiley Periodicals, Inc. on behalf of Society for Worldviews on Evidence-Based Nursing.

  11. Replicative stress and alterations in cell cycle checkpoint controls following acetaminophen hepatotoxicity restrict liver regeneration.

    Science.gov (United States)

    Viswanathan, Preeti; Sharma, Yogeshwar; Gupta, Priya; Gupta, Sanjeev

    2018-03-05

    Acetaminophen hepatotoxicity is a leading cause of hepatic failure with impairments in liver regeneration producing significant mortality. Multiple intracellular events, including oxidative stress, mitochondrial damage, inflammation, etc., signify acetaminophen toxicity, although how these may alter cell cycle controls has been unknown and was studied for its significance in liver regeneration. Assays were performed in HuH-7 human hepatocellular carcinoma cells, primary human hepatocytes and tissue samples from people with acetaminophen-induced acute liver failure. Cellular oxidative stress, DNA damage and cell proliferation events were investigated by mitochondrial membrane potential assays, flow cytometry, fluorescence staining, comet assays and spotted arrays for protein expression after acetaminophen exposures. In experimental groups with acetaminophen toxicity, impaired mitochondrial viability and substantial DNA damage were observed with rapid loss of cells in S and G2/M and cell cycle restrictions or even exit in the remainder. This resulted from altered expression of the DNA damage regulator, ATM and downstream transducers, which imposed G1/S checkpoint arrest, delayed entry into S and restricted G2 transit. Tissues from people with acute liver failure confirmed hepatic DNA damage and cell cycle-related lesions, including restrictions of hepatocytes in aneuploid states. Remarkably, treatment of cells with a cytoprotective cytokine reversed acetaminophen-induced restrictions to restore cycling. Cell cycle lesions following mitochondrial and DNA damage led to failure of hepatic regeneration in acetaminophen toxicity but their reversibility offers molecular targets for treating acute liver failure. © 2018 John Wiley & Sons Ltd.

  12. Imagery Scripts and a Computerized Subtraction Stress Task Both Induce Stress in Methamphetamine Users: A Controlled Laboratory Study

    Directory of Open Access Journals (Sweden)

    Kathleen J. Garrison

    2010-01-01

    Full Text Available Patients treated for methamphetamine (MA dependence have a high rate of relapse, and stress is thought to play a key role. We sought to develop a computerized procedure for experimentally inducing stress in MA users. In a within-subjects design, we compared a computerized subtraction stress task (SST to personalized stress-imagery scripts and a control condition (neutral imagery in 9 former MA users, recruited in San Francisco in 2006–2007. We assessed blood hormone levels, anxiety and craving for MA on visual analog scales, and the Positive and Negative Affect Schedule and made linear mixed-effects models to analyze the results. Both the SST and stress scripts were effective in inducing self-report markers of stress in MA users. Because the SST is easily reproducible and requires less time of staff and participants, it may be a useful alternative for measuring stress reactivity in drug users.

  13. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice

    Directory of Open Access Journals (Sweden)

    Frances E. Jones

    2016-02-01

    Full Text Available Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies.

  14. Integrated pyrolucite fluidized bed-membrane hybrid process for improved iron and manganese control in drinking water.

    Science.gov (United States)

    Dashtban Kenari, Seyedeh Laleh; Barbeau, Benoit

    2017-04-15

    Newly developed ceramic membrane technologies offer numerous advantages over the conventional polymeric membranes. This work proposes a new configuration, an integrated pyrolucite fluidized bed (PFB)-ceramic MF/UF hybrid process, for improved iron and manganese control in drinking water. A pilot-scale study was undertaken to evaluate the performance of this process with respect to iron and manganese control as well as membrane fouling. In addition, the fouling of commercially available ceramic membranes in conventional preoxidation-MF/UF process was compared with the hybrid process configuration. In this regard, a series of experiments were conducted under different influent water quality and operating conditions. Fouling mechanisms and reversibility were analyzed using blocking law and resistance-in-series models. The results evidenced that the flux rate and the concentration of calcium and humic acids in the feed water have a substantial impact on the filtration behavior of both membranes. The model for constant flux compressible cake formation well described the rise in transmembrane pressure. The compressibility of the filter cake substantially increased in the presence of 2 mg/L humic acids. The presence of calcium ions caused significant aggregation of manganese dioxide and humic acid which severely impacted the extent of membrane fouling. The PFB pretreatment properly alleviated membrane fouling by removing more than 75% and 95% of iron and manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Roentgenographic findings in hyaline membrane disease treated with exogenous surfactant: comparison with control group

    International Nuclear Information System (INIS)

    Lee, Sun Kyoung; Lim, Chae Ha; Lim, Woo Young; Kim, Young Sook; Byen, Ju Nam; Oh, Jae Hee; Kim, Young Chul

    1997-01-01

    To compare, with the use of chest radiographic findings, improvement and complications in newborns treated with exogenous surfactant for hyaline membrane disease (HMD), and an untreated control group. Thirty-six patients with HMD were randomly assigned to a control group (n=18) or surfactant treated group (n=18). As part of an initial evaluation of their pulmonary status, we then performed a retrospective statistical analysis of chest radiographic findings obtained in exogenous surfactant treated and untreated infants within the first 90 minutes of life. Subsequent examinations were performed at less than 24 hours of age. Chest radiograph before treatment showed no significant differences between the two groups, but significant improvement was noted in the surfactant treated group, in contrast to the control group. The most common chest radiographic finding after surfactant administration was uniform (n=15) or disproportionate (n=2) improvement of pulmonary aeration. Patent ductus arteriosus developed in three treated neonates and in four cases in the control group. Air leak occurred in three cases in the treated group and in five cases in the control group. In one treated patient pulmonary hemorrhage developed and intracranial hemorrhage occurred in three treated neonates and in four cases in the control group. Bronchopulmonary dysplasia was developed in 6 cases of treated group and 3 cases of control group. A chest radiograph is considered to be helpful in the evaluation of improvement and complications of HMD in infants treated with surfactant

  16. MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module.

    Science.gov (United States)

    Arur, Swathi; Ohmachi, Mitsue; Berkseth, Matt; Nayak, Sudhir; Hansen, David; Zarkower, David; Schedl, Tim

    2011-05-17

    Tissues that generate specialized cell types in a production line must coordinate developmental mechanisms with physiological demand, although how this occurs is largely unknown. In the Caenorhabditis elegans hermaphrodite, the developmental sex-determination cascade specifies gamete sex in the distal germline, while physiological sperm signaling activates MPK-1/ERK in the proximal germline to control plasma membrane biogenesis and organization during oogenesis. We discovered repeated utilization of a self-contained negative regulatory module, consisting of NOS-3 translational repressor, FEM-CUL-2 (E3 ubiquitin ligase), and TRA-1 (Gli transcriptional repressor), which acts both in sex determination and in physiological demand control of oogenesis, coordinating these processes. In the distal germline, where MPK-1 is not activated, TRA-1 represses the male fate as NOS-3 functions in translational repression leading to inactivation of the FEM-CUL-2 ubiquitin ligase. In the proximal germline, sperm-dependent physiological MPK-1 activation results in phosphorylation-based inactivation of NOS-3, FEM-CUL-2-mediated degradation of TRA-1 and the promotion of membrane organization during oogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Shipment of a photodynamic therapy agent into model membrane and its controlled release: A photophysical approach.

    Science.gov (United States)

    Karar, Monaj; Paul, Suvendu; Mallick, Arabinda; Majumdar, Tapas

    2018-01-01

    Harmine, an efficient cancer cell photosensitizer (PS), emits intense violet color when it is incorporated in well established self assembly based drug carrier formed by cationic surfactants of identical positive charge of head group but varying chain length, namely, dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB). Micelle entrapped drug emits in the UV region when it interacts with non-toxic β-cyclodextrin (β-CD). Inspired by these unique fluorescence/structural switching properties of the anticancer drug, in the present work we have monitored the interplay of the drug between micelles and non-toxic β-CDs. We have observed that the model membranes formed by micelles differing in their hydrophobic chain length interact with the drug differently. Variation in the surfactant chain length plays an important role for structural switching i.e. in choosing a particular structural form of the drug that will be finally presented to their targets. The present study shows that in case of necessity, the bound drug molecule can be removed from its binding site in a controlled manner by the use of non-toxic β-CD and it is exploited to serve a significant purpose for the removal of excess/unused adsorbed drugs from the model cell membranes. We believe this kind of β-CD driven translocation of drugs monitored by fluorescence switching may find possible applications in controlled release of the drug inside cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Control and experimental characterization of a methanol reformer for a 350W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    suited for reformer systems, where high CO tolerance is required. This enables the use fuels based on e.g. liquid alcohols. This work presents the control strategies of a methanol refoermer for a 350W HTPEM FC system. The system examined is the Serenergy H3-350 Mobile Battery Charger, an integrated......High temperature polymer electrolyte membrane(HTPEM) fuel cells offer many advantages due to their increased operating tempera-tures compared to similar Nafion-based membrane tech-nologies, that rely on the conductive abilities of liquid water. The polybenzimidazole (PBI) membranes are especially...

  19. Major Tom to Ground Control: How Lipoproteins Communicate Extracytoplasmic Stress to the Decision Center of the Cell.

    Science.gov (United States)

    Laloux, Géraldine; Collet, Jean-François

    2017-11-01

    The envelope of bacteria is a complex multilayered shield that ensures multiple essential functions, including protecting the cell from external assaults. Hence, bacterial cells have evolved intricate mechanisms called envelope stress response systems (ESRS) to monitor all kinds of perturbations affecting the integrity of their envelope and to mount an appropriate response to contain or repair the damage. In the model bacterium Escherichia coli , several ESRS are built around a two-component system, in which envelope stress triggers a phosphotransfer between a sensor protein in the inner membrane of the envelope and a response regulator in the cytoplasm. In this review, we focus on two major ESRS in E. coli , the Rcs and Cpx pathways, in which additional proteins not directly involved in the phosphotransfer modulate signal transduction. Both the Rcs and Cpx systems can be turned on by a lipoprotein anchored in the outer membrane, RcsF and NlpE, respectively, providing a molecular connection between the most exterior layer of the envelope and the ground control center in the cytoplasm. Here, we review how these two lipoproteins, which share a striking set of features while being distinct in several aspects, act as sentinels at the front line of the bacterium by sensing and transducing stress to the downstream components of the Rcs and Cpx systems. Copyright © 2017 American Society for Microbiology.

  20. Controlling BWR pipe cracking by residual stress modification

    International Nuclear Information System (INIS)

    Gilman, J.D.; Giannuzzi, A.J.; Childs, W.J.

    1983-01-01

    Intergranular stress corrosion cracking may occur in the weld heat-affected zone of susceptible stainless steel materials which have been used in some boiling water reactor piping systems. One of the prerequisite conditions for stress corrosion attack is a high tensile stress in the exposed, locally sensitized material near the weld root. Several processes have been developed which can deter stress corrosion attack by altering the residual stress distributions near the welds to ensure that low stresses prevail in critical locations. These residual stress modification remedies and their qualification testing are described in this paper. (author)

  1. The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in rice subjected to heavy metal cadmium stress

    Directory of Open Access Journals (Sweden)

    Liming eYang

    2016-02-01

    Full Text Available The heavy metal cadmium is a common environmental contaminant in soils and has adverse effects on crop growth and development. The signaling processes in plants that initiate cellular responses to environmental stress have been shown to be located in the plasma membrane (PM. A better understanding of the PM proteome in response to environmental stress might provide new insights for improving stress-tolerant crops. Nitric oxide (NO is reported to be involved in the plant response to cadmium (Cd stress. To further investigate how NO modulates protein changes in the plasma membrane during Cd stress, a quantitative proteomics approach based on isobaric tags for relative and absolute quantification (iTRAQ was used to identify differentially regulated proteins from the rice plasma membrane after Cd or Cd and NO treatment. Sixty-six differentially expressed proteins were identified, of which, many function as transporters, ATPases, kinases, metabolic enzymes, phosphatases and phospholipases. Among these, the abundance of phospholipase D (PLD was altered substantially after the treatment of both Cd and Cd and NO. Transient expression of the PLD fused with green fluorescent peptide (GFP in rice protoplasts showed that the Cd and NO treatment promoted the accumulation of PLD in the plasma membrane. Addition of NO also enhanced Cd-induced PLD activity and the accumulation of phosphatidic acid (PA produced through PLD activity. Meanwhile, NO elevated the activities of antioxidant enzymes and caused the accumulation of glutathione both which function to reduce Cd-induced H2O2 accumulation. Taken together, we suggest that NO signaling is associated with the accumulation of antioxidant enzymes, glutathione and PA which increases cadmium tolerance in rice via the antioxidant defense system.

  2. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    International Nuclear Information System (INIS)

    Wibowo,; Zakaria,; Lambang, Lullus; Triyono,; Muhayat, Nurul

    2016-01-01

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  3. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    Energy Technology Data Exchange (ETDEWEB)

    Wibowo,, E-mail: wibowo-uns@yahoo.com; Zakaria,, E-mail: zakaaria27@gmail.com; Lambang, Lullus, E-mail: lulus-l@yahoo.com; Triyono,, E-mail: tyon-bila@yahoo.co.id; Muhayat, Nurul, E-mail: nurulmuhayat@ymail.com [Mechanical Engineering Department, Sebelas Maret University, Surakarta 57128 (Indonesia)

    2016-03-29

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  4. Controlled Patterning of Plasmonic Dimers by Using an Ultrathin Nanoporous Alumina Membrane as a Shadow Mask.

    Science.gov (United States)

    Hao, Qi; Huang, Hao; Fan, Xingce; Yin, Yin; Wang, Jiawei; Li, Wan; Qiu, Teng; Ma, Libo; Chu, Paul K; Schmidt, Oliver G

    2017-10-18

    We report on design and fabrication of patterned plasmonic dimer arrays by using an ultrathin anodic aluminum oxide (AAO) membrane as a shadow mask. This strategy allows for controllable fabrication of plasmonic dimers where the location, size, and orientation of each particle in the dimer pairs can be independently tuned. Particularly, plasmonic dimers with ultrasmall nanogaps down to the sub-10 nm scale as well as a large dimer density up to 1.0 × 10 10 cm -2 are fabricated over a centimeter-sized area. The plasmonic dimers exhibit significant surface-enhanced Raman scattering (SERS) enhancement with a polarization-dependent behavior, which is well interpreted by finite-difference time-domain (FDTD) simulations. Our results reveal a facile approach for controllable fabrication of large-area dimer arrays, which is of fundamental interest for plasmon-based applications in surface-enhanced spectroscopy, biochemical sensing, and optoelectronics.

  5. Mitochondrial control of cell death induced by hyperosmotic stress.

    Science.gov (United States)

    Criollo, Alfredo; Galluzzi, Lorenzo; Maiuri, M Chiara; Tasdemir, Ezgi; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-X(L) sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control.

  6. Thermal stress control using waste steel fibers in massive concretes

    Science.gov (United States)

    Sarabi, Sahar; Bakhshi, Hossein; Sarkardeh, Hamed; Nikoo, Hamed Safaye

    2017-11-01

    One of the important subjects in massive concrete structures is the control of the generated heat of hydration and consequently the potential of cracking due to the thermal stress expansion. In the present study, using the waste turnery steel fibers in the massive concretes, the amount of used cement was reduced without changing the compressive strength. By substituting a part of the cement with waste steel fibers, the costs and the generated hydration heat were reduced and the tensile strength was increased. The results showed that by using 0.5% turnery waste steel fibers and consequently, reducing to 32% the cement content, the hydration heat reduced to 23.4% without changing the compressive strength. Moreover, the maximum heat gradient reduced from 18.5% in the plain concrete sample to 12% in the fiber-reinforced concrete sample.

  7. Visceral obesity and psychosocial stress: a generalised control theory model

    Science.gov (United States)

    Wallace, Rodrick

    2016-07-01

    The linking of control theory and information theory via the Data Rate Theorem and its generalisations allows for construction of necessary conditions statistical models of body mass regulation in the context of interaction with a complex dynamic environment. By focusing on the stress-related induction of central obesity via failure of HPA axis regulation, we explore implications for strategies of prevention and treatment. It rapidly becomes evident that individual-centred biomedical reductionism is an inadequate paradigm. Without mitigation of HPA axis or related dysfunctions arising from social pathologies of power imbalance, economic insecurity, and so on, it is unlikely that permanent changes in visceral obesity for individuals can be maintained without constant therapeutic effort, an expensive - and likely unsustainable - public policy.

  8. Rapid evaporation at the superheat limit of methanol, ethanol, butanol and n-heptane on platinum films supported by low-stress SiN membranes.

    Science.gov (United States)

    Ching, Eric J; Avedisian, C Thomas; Cavicchi, Richard C; Chung, Do Hyun; Rah, Jeff; Carrier, Michael J

    2016-10-01

    The bubble nucleation temperatures of several organic liquids (methanol, ethanol, butanol, n-heptane) on stress-minimized platinum (Pt) films supported by SiN membranes is examined by pulse-heating the membranes for times ranging from 1 µs to 10 µs. The results show that the nucleation temperatures increase as the heating rates of the Pt films increase. Measured nucleation temperatures approach predicted superheat limits for the smallest pulse times which correspond to heating rates over 10 8 K/s, while nucleation temperatures are significantly lower for the longest pulse times. The microheater membranes were found to be robust for millions of pulse cycles, which suggests their potential in applications for moving fluids on the microscale and for more fundamental studies of phase transitions of metastable liquids.

  9. Dynamic water management of polymer electrolyte membrane fuel cells using intermittent RH control

    KAUST Repository

    Hussaini, I.S.; Wang, C.Y.

    2010-01-01

    A novel method of water management of polymer electrolyte membrane (PEM) fuel cells using intermittent humidification is presented in this study. The goal is to maintain the membrane close to full humidification, while eliminating channel flooding

  10. Control of Target Molecular Recognition in a Small Pore Space with Biomolecule-Recognition Gating Membrane.

    Science.gov (United States)

    Okuyama, Hiroto; Oshiba, Yuhei; Ohashi, Hidenori; Yamaguchi, Takeo

    2018-05-01

    A biomolecule-recognition gating membrane, which introduces thermosensitive graft polymer including molecular recognition receptor into porous membrane substrate, can close its pores by recognizing target biomolecule. The present study reports strategies for improving both versatility and sensitivity of the gating membrane. First, the membrane is fabricated by introducing the receptor via a selectively reactive click reaction improving the versatility. Second, the sensitivity of the membrane is enhanced via an active delivering method of the target molecules into the pores. In the method, the tiny signal of the target biomolecule is amplified as obvious pressure change. Furthermore, this offers 15 times higher sensitivity compared to the previously reported passive delivering method (membrane immersion to sample solution) with significantly shorter recognition time. The improvement will aid in applying the gating membrane to membrane sensors in medical fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Application of DBNPA dosage for biofouling control in spiral wound membrane systems

    KAUST Repository

    Siddiqui, Amber

    2017-05-30

    Biocides may be used to control biofouling in spiral-wound reverse osmosis (RO) and nanofiltration (NF) systems. The objective of this study was to investigate the effect of biocide 2,2-dibromo-3-ni-trilopropionamide (DBNPA) dosage on biofouling control. Preventive biofouling control was studied applying a continuous dosage of substrate (0.5 mg/L) and DBNPA (1 mg/L). Curative biofouling control was studied on pre-grown biofilms, once again applying a continuous dosage of substrate (0.5 mg acetate C/L) and DBNPA (1 and 20 mg/L). Biofouling studies were performed in membrane fouling simulators (MFSs) supplied with biodegradable substrate and DBNPA. The pressure drop was monitored in time and at the end of the study, the accumulated biomass in MFS was quantified by adenosine triphosphate (ATP) and total organic carbon (TOC) analysis. Continuous dosage of DBNPA (1 mg/L) prevented pressure drop increase and biofilm accumulation in the MFSs during a run time of 7 d, showing that biofouling can be managed by preventive DBNPA dosage. For biofouled systems, continuous dosage of DBNPA (1 and 20 mg/L) inactivated the accumulated biomass but did not restore the original pressure drop and did not remove the accumulated inactive cells and extracellular polymeric substances (EPS), indicating DBNPA dosage is not suitable for curative biofouling control.

  12. True stress control asymmetric cyclic plastic behavior in SA333 C-Mn steel

    International Nuclear Information System (INIS)

    Paul, Surajit Kumar; Sivaprasad, S.; Dhar, S.; Tarafder, S.

    2010-01-01

    Asymmetric cyclic loading in the plastic region can leads to progressive accumulation of permanent strain. True stress controlled uniaxial asymmetric cycling on SA333 steel is conducted at various combinations of mean stress and stress amplitude in laboratory environment. It is investigated that fatigue life increases in the presence of mean stress. Plastic strain amplitude and hysteresis loop area are found to decrease with increasing mean stress. A huge difference of life and ratcheting strain accumulation is found in engineering and true stress controlled tests.

  13. Apical membrane P2Y4 purinergic receptor controls K+ secretion by strial marginal cell epithelium

    Directory of Open Access Journals (Sweden)

    Scofield Margaret A

    2005-11-01

    Full Text Available Abstract Background It was previously shown that K+ secretion by strial marginal cell epithelium is under the control of G-protein coupled receptors of the P2Y family in the apical membrane. Receptor activation by uracil nucleotides (P2Y2, P2Y4 or P2Y6 leads to a decrease in the electrogenic K+ secretion. The present study was conducted to determine the subtype of the functional purinergic receptor in gerbil stria vascularis, to test if receptor activation leads to elevation of intracellular [Ca2+] and to test if the response to these receptors undergoes desensitization. Results The transepithelial short circuit current (Isc represents electrogenic K+ secretion and was found to be decreased by uridine 5'-triphosphate (UTP, adenosine 5'-triphosphate (ATP and diadenosine tetraphosphate (Ap4A but not uridine 5'-diphosphate (UDP at the apical membrane of marginal cells of the gerbil stria vascularis. The potencies of these agonists were consistent with rodent P2Y4 and P2Y2 but not P2Y6 receptors. Activation caused a biphasic increase in intracellular [Ca2+] that could be partially blocked by 2-aminoethoxy-diphenyl borate (2-APB, an inhibitor of the IP3 receptor and store-operated channels. Suramin (100 μM did not inhibit the effect of UTP (1 μM. The ineffectiveness of suramin at the concentration used was consistent with P2Y4 but not P2Y2. Transcripts for both P2Y2 and P2Y4 were found in the stria vascularis. Sustained exposure to ATP or UTP for 15 min caused a depression of Isc that appeared to have two components but with apparently no chronic desensitization. Conclusion The results support the conclusion that regulation of K+ secretion across strial marginal cell epithelium occurs by P2Y4 receptors at the apical membrane. The apparent lack of desensitization of the response is consistent with two processes: a rapid-onset phosphorylation of KCNE1 channel subunit and a slower-onset of regulation by depletion of plasma membrane PIP2.

  14. Continued Advancement of Supported Liquid Membranes for Carbon Dioxide Control in Extravehicular Activity Applications

    Science.gov (United States)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda

    2015-01-01

    The Development of a new, robust, portable life support system (PLSS) is currently a high NASA priority in order to support longer and safer extravehicular activity (EVA) missions that will be necessary as space travel extends to near-Earth asteroids and eventually Mars. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. The Metal Oxide (MetOx) canister has a finite CO2 adsorption capacity and therefore in order to extend mission times, the unit would have to be larger and heavier, which is undesirable; therefore new CO2 control technologies must be developed. While recent work has centered on the use of alternating sorbent beds that can be regenerated during the EVA, this strategy increases the system complexity and power consumption. A simpler approach is to use a membrane that vents CO2 to space but retains oxygen(O2). A membrane has many advantages over current technology: it is a continuous system with no theoretical capacity limit, it requires no consumables, and it requires no hardware for switching beds between absorption and regeneration. Conventional gas separation membranes do not have adequate selectivity for use in the PLSS, but the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous film filled with a liquid that selectively reacts with CO2 over oxygen (O2). In a recently completed Phase II Small Business Innovative Research project, Reaction Systems developed a new reactive liquid that has effectively zero vapor pressure, making it an ideal candidate for use in an SLM. Results obtained with the SLM in a flat sheet configuration with representative pressures of CO2, O2, and water (H2O) have shown that the CO2 permeation rate and CO2/O2 selectivity requirements have been met. In addition, the SLM vents moisture to space very effectively. The SLM has also been prepared and tested in a hollow fiber form, which will be

  15. Electrostatic control by lipids upon the membrane-bound (Na+ + K+)-ATPase.

    Science.gov (United States)

    Ahrens, M L

    1981-04-06

    In this paper, the membrane-bound (Na+ + K+)-ATPase from bovine brain is shown to be controlled by electrostatic alterations of the charged lipids surrounding the enzyme. The properties under investigation are the enzymatic activity, activation energy and the response of the enzymatic system to temperature. Arrhenius plots of the ATPase activity are biphasic with a break at temperature Ti. The temperature Ti, the activation energies at temperatures above and below Ti, and the enzymatic activity at any constant temperature have been shown to depend upon the concentrations of alkali and alkaline-earth metal ions in the solution. These electrolyte dependencies are ascribed to changes of electrostatic conditions at the lipids surrounding the ATPase. If the higher electrostatic screening ability of divalent ions is taken into account, the results in the presence of mono- and divalent ions become virtually the same. As a result of this work, it is concluded that electrostatic alterations are transmitted to the ATPase from the lipids of the membrane in which the enzyme is embedded. Inhibition and activation of the enzyme by mono-and divalent metal ions may thus be explained without any auxiliary hypothesis, particularly without postulating specific binding sites for the different ionic species at the protein. In addition, the specific lipid requirement of the ATPase may be understood better in the light of this interpretation.

  16. Surfactant-controlled etching of ion track nanopores and its practical applications in membrane technology

    International Nuclear Information System (INIS)

    Apel, P.Yu.; Blonskaya, I.V.; Dmitriev, S.N.; Mamonova, T.I.; Orelovitch, O.L.; Sartowska, B.; Yamauchi, Yu.

    2008-01-01

    The effect of surfactants on chemical development of ion tracks in polymers has been studied. It has been shown that surface-active agents added to an alkaline etching solution adsorb on the polymer surface at the pore entrances. This reduces the etch rate, which leads to the formation of pores tapered toward the surface. Self-assembly of surfactant molecules at the pore entrance creates a barrier for their penetration into the etched-out nanopores, whereas hydroxide ions diffuse freely. Due to this, the internal pore volume grows faster than the pore surface diameter. The ability to control pore shape is demonstrated with the fabrication of profiled nano- and micropores in polyethylene terephthalate, polycarbonate. Some earlier published data on small track-etched pores in polycarbonate (in particular, the pore diameter vs. etching time curves measured conductometrically) have been revised in light of the above findings. Adding surfactants to chemical etchants makes it possible to optimize the structure of track membranes, thus improving their retention and permeation properties. Asymmetric membranes with thin skin retention layers have been produced and their performance studied

  17. Controlling the porosity of a polyethersulfone membrane surface with an XeCl laser

    International Nuclear Information System (INIS)

    Pazokian, Hedieh; Mehrabadi, Adeleh H P; Mollabashi, Mahmoud; Barzin, Jalal

    2016-01-01

    Pure and polyvinyl pyrrolidone blend polyethersulfone (PES) membranes were irradiated by an XeCl laser with various numbers of pulses at different fluences to investigate the changes in the surface morphology and the porosity. The results show that the membrane pore size and distribution on the surface can be modified following irradiation dependent on the laser fluence, the number of pulses and the membrane composition. These changes are very attractive for improving the membrane surface in filtration processes and biological applications. (paper)

  18. Stress

    Science.gov (United States)

    ... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...

  19. The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses.

    Science.gov (United States)

    Ramakrishna, Chopperla; Singh, Sonam; Raghavendrarao, Sangala; Padaria, Jasdeep C; Mohanty, Sasmita; Sharma, Tilak Raj; Solanke, Amolkumar U

    2018-02-01

    The occurrence of various stresses, as the outcome of global climate change, results in the yield losses of crop plants. Prospecting of genes in stress tolerant plant species may help to protect and improve their agronomic performance. Finger millet (Eleusine coracana L.) is a valuable source of superior genes and alleles for stress tolerance. In this study, we isolated a novel endoplasmic reticulum (ER) membrane tethered bZIP transcription factor from finger millet, EcbZIP17. Transgenic tobacco plants overexpressing this gene showed better vegetative growth and seed yield compared with wild type (WT) plants under optimal growth conditions and confirmed upregulation of brassinosteroid signalling genes. Under various abiotic stresses, such as 250 mM NaCl, 10% PEG6000, 400 mM mannitol, water withdrawal, and heat stress, the transgenic plants showed higher germination rate, biomass, primary and secondary root formation, and recovery rate, compared with WT plants. The transgenic plants exposed to an ER stress inducer resulted in greater leaf diameter and plant height as well as higher expression of the ER stress-responsive genes BiP, PDIL, and CRT1. Overall, our results indicated that EcbZIP17 improves plant growth at optimal conditions through brassinosteroid signalling and provide tolerance to various environmental stresses via ER signalling pathways.

  20. A Coincidence Detection Mechanism Controls PX-BAR Domain-Mediated Endocytic Membrane Remodeling via an Allosteric Structural Switch.

    Science.gov (United States)

    Lo, Wen-Ting; Vujičić Žagar, Andreja; Gerth, Fabian; Lehmann, Martin; Puchkov, Dymtro; Krylova, Oxana; Freund, Christian; Scapozza, Leonardo; Vadas, Oscar; Haucke, Volker

    2017-11-20

    Clathrin-mediated endocytosis occurs by bending and remodeling of the membrane underneath the coat. Bin-amphiphysin-rvs (BAR) domain proteins are crucial for endocytic membrane remodeling, but how their activity is spatiotemporally controlled is largely unknown. We demonstrate that the membrane remodeling activity of sorting nexin 9 (SNX9), a late-acting endocytic PX-BAR domain protein required for constriction of U-shaped endocytic intermediates, is controlled by an allosteric structural switch involving coincident detection of the clathrin adaptor AP2 and phosphatidylinositol-3,4-bisphosphate (PI(3,4)P 2 ) at endocytic sites. Structural, biochemical, and cell biological data show that SNX9 is autoinhibited in solution. Binding to PI(3,4)P 2 via its PX-BAR domain, and concomitant association with AP2 via sequences in the linker region, releases SNX9 autoinhibitory contacts to enable membrane constriction. Our results reveal a mechanism for restricting the latent membrane remodeling activity of BAR domain proteins to allow spatiotemporal coupling of membrane constriction to the progression of the endocytic pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Potentiometric determination of trypsin using a polymeric membrane polycation-sensitive electrode based on current-controlled reagent delivery.

    Science.gov (United States)

    Chen, Yan; Ding, Jiawang; Qin, Wei

    2012-12-01

    A potentiometric biosensor for the determination of trypsin is described based on current-controlled reagent delivery. A polymeric membrane protamine-sensitive electrode with dinonylnaphthalene sulfonate as cation exchanger is used for in situ generation of protamine. Diffusion of protamine across the polymeric membrane can be controlled precisely by applying an external current. The hydrolysis catalyzed with trypsin in sample solution decreases the concentration of free protamine released at the sample-membrane interface and facilitates the stripping of protamine out of the membrane surface via the ion-exchange process with sodium ions from the sample solution, thus decreasing the membrane potential, by which the protease can be sensed potentiometrically. The influences of anodic current amplitude, current pulse duration and protamine concentration in the inner filling solution on the membrane potential response have been studied. Under optimum conditions, the proposed protamine-sensitive electrode is useful for continuous and reversible detection of trypsin over the concentration range of 0.5-5UmL(-1) with a detection limit of 0.3UmL(-1). The proposed detection strategy provides a rapid and reagentless way for the detection of protease activities and offers great potential in the homogeneous immunoassays using proteases as labels. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Control and experimental characterization of a methanol reformer for a 350 W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system......This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature....... The experimental system consists of a fuel evaporator utilizing the high temperature waste gas from the cathode air cooled 45 cell HTPEM fuel cell stack. The fuel cells used are BASF P1000 MEAs which use phosphoric acid doped polybenzimidazole membranes. The resulting reformate gas output of the reformer system...

  3. A simple model to understand the role of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow

    Science.gov (United States)

    Viallat, Annie; Abkarian, Manouk; Dupire, Jules

    2015-11-01

    The analytical model presented by Keller and Skalak on the dynamics of red blood cells in shear flow described the cell as a fluid ellipsoid of fixed shape. It was extended to introduce shear elasticity of the cell membrane. We further extend the model when the cell discoid physiological shape is not a stress-free shape. We show that spheroid stress-free shapes enables fitting experimental data with values of shear elasticity typical to that found with micropipettes and optical tweezers. For moderate shear rates (when RBCs keep their discoid shape) this model enables to quantitatively determine an effective cell viscosity, that combines membrane and hemoglobin viscosities and an effective shear modulus of the membrane that combines shear modulus and stress-free shape. This model allows determining RBC mechanical parameters both in the tanktreading regime for cells suspended in a high viscosity medium, and in the tumbling regime for cells suspended in a low viscosity medium. In this regime,a transition is predicted between a rigid-like tumbling motion and a fluid-like tumbling motion above a critical shear rate, which is directly related to the mechanical parameters of the cell. A*MIDEX (n ANR-11-IDEX-0001-02) funded by the ''Investissements d'Avenir'', Region Languedoc-Roussillon, Labex NUMEV (ANR-10-LABX-20), BPI France project DataDiag.

  4. A review of fault tolerant control strategies applied to proton exchange membrane fuel cell systems

    Science.gov (United States)

    Dijoux, Etienne; Steiner, Nadia Yousfi; Benne, Michel; Péra, Marie-Cécile; Pérez, Brigitte Grondin

    2017-08-01

    Fuel cells are powerful systems for power generation. They have a good efficiency and do not generate greenhouse gases. This technology involves a lot of scientific fields, which leads to the appearance of strongly inter-dependent parameters. This makes the system particularly hard to control and increases fault's occurrence frequency. These two issues call for the necessity to maintain the system performance at the expected level, even in faulty operating conditions. It is called "fault tolerant control" (FTC). The present paper aims to give the state of the art of FTC applied to the proton exchange membrane fuel cell (PEMFC). The FTC approach is composed of two parts. First, a diagnosis part allows the identification and the isolation of a fault; it requires a good a priori knowledge of all the possible faults. Then, a control part allows an optimal control strategy to find the best operating point to recover/mitigate the fault; it requires the knowledge of the degradation phenomena and their mitigation strategies.

  5. Photocuring of stimulus responsive membranes for controlled-release of drugs having different molecular weights

    International Nuclear Information System (INIS)

    Ng, Loo-Teck; Nakayama, Hiroshi; Kaetsu, Isao; Uchida, Kumao

    2005-01-01

    Intelligent drug delivery membranes were prepared by photocuring poly(acrylic acid) coatings onto poly(2-hydroxyethyl methacrylate) membranes each with model drugs of different molecular weights being incorporated. pH-responsive release behaviours of the model drugs which included sodium salicylate, nicotinamide, nicotinic acid, methylene blue, brilliant green and crystal violet were investigated. Only the membrane with methylene blue incorporated showed a clear pH-responsive release and other drug-incorporated membranes showed no intelligent behaviour. These phenomena were explained in terms of the difference in diffusivity of drugs through polymer matrices of the membranes attributable to the difference in the molecular weights of drugs

  6. Photocuring of stimulus responsive membranes for controlled-release of drugs having different molecular weights

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Loo-Teck [School of Science, Food and Horticulture, University of Western Sydney, Locked bag 1797, Penrith South DC, NSW 1797 (Australia)]. E-mail: l.ng@uws.edu.au; Nakayama, Hiroshi [Department of Nuclear Engineering, Faculty of Science and technology, Kinki University, Kowakae, 3-4-1, Higashi-Osaka 577-8502 (Japan); Kaetsu, Isao [Department of Nuclear Engineering, Faculty of Science and technology, Kinki University, Kowakae, 3-4-1, Higashi-Osaka 577-8502 (Japan)]. E-mail: kaetsu@ned.kindai.ac.jp; Uchida, Kumao [Department of Nuclear Engineering, Faculty of Science and technology, Kinki University, Kowakae, 3-4-1, Higashi-Osaka 577-8502 (Japan)

    2005-06-01

    Intelligent drug delivery membranes were prepared by photocuring poly(acrylic acid) coatings onto poly(2-hydroxyethyl methacrylate) membranes each with model drugs of different molecular weights being incorporated. pH-responsive release behaviours of the model drugs which included sodium salicylate, nicotinamide, nicotinic acid, methylene blue, brilliant green and crystal violet were investigated. Only the membrane with methylene blue incorporated showed a clear pH-responsive release and other drug-incorporated membranes showed no intelligent behaviour. These phenomena were explained in terms of the difference in diffusivity of drugs through polymer matrices of the membranes attributable to the difference in the molecular weights of drugs.

  7. Carbohydrate intake improves cognitive performance of stress-prone individuals under controllable laboratory stress

    NARCIS (Netherlands)

    Markus, C.R.; Panhuysen, G.; Jonkman, L.M.; Bachman, M.

    1999-01-01

    Cognitive performance has been found to decline after exposure to stress, particularly in stress-prone subjects. The present study investigated whether a carbohydrate-rich, protein-poor (CR/PP) diet, which may enhance cerebral serotonin function in stress-prone subjects due to increases in the

  8. Implant prostheses for convertibility, stress control, esthetics, and hygiene.

    Science.gov (United States)

    Garfield, R E

    1988-07-01

    A method of connecting "fixed partial denture" prostheses to osseointegrated implant fixtures has been described. The advantages of this system of restoration for partially and fully edentulous mouths are that it is more effective in addressing the problems of (1) stress-control on abutments, (2) a back-up system for abutment failures, (3) esthetics, and (4) control of bacterial plaques around abutments. To accomplish this procedure, the application of convertible periodontal prosthesis techniques with modifications to some existing implant systems is undertaken. The disadvantages of this method seem insignificant when one considers the complexities and risks involved with the present array of implant prosthesis alternatives. Some patients and dentists might consider the necessity of the prosthesis being detachable as one disadvantage. In reality, the prosthesis can be used as a fixed restoration until the patient has fully adapted to the new proprioception and appearance. A large percentage of patients feel uncomfortable with the word "removable" because it immediately creates a perception of unsightly metallic clasp display, palatal coverage, tongue interference, and negative body image. The use of the term "detachable" coupled with the doctor's offer to perform this task for the patient "whenever necessary" will usually relieve the patient's anxiety and allow the treatment to proceed. Once neuromuscular and esthetic adaptation have occurred and the patient has accepted the prosthesis, daily detaching and home-care hygiene by the patient will follow without incident. Esthetic improvement is obvious (Fig. 3).

  9. Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: architecture, elasticity and remodeling under stress.

    Science.gov (United States)

    Osidak, M S; Osidak, E O; Akhmanova, M A; Domogatsky, S P; Domogatskaya, A S

    2015-01-01

    The ability of a human artery to pass through 150 million liters of blood sustaining 2 billion pulsations of blood pressure with minor deterioration depends on unique construction of the arterial wall. Viscoelastic properties of this construction enable to re-seal the occuring damages apparently without direct immediate participance of the constituent cells. Collagen structures are considered to be the elements that determine the mechanoelastic properties of the wall in parallel with elastin responsible for elasticity and resilience. Collagen scaffold architecture is the function-dependent dynamic arrangement of a dozen different collagen types composing three distinct interacting forms inside the extracellular matrix of the wall. Tightly packed molecules of collagen types I, III, V provide high tensile strength along collagen fibrils but toughness of the collagen scaffold as a whole depends on molecular bonds between distinct fibrils. Apart of other macromolecules in the extracellular matrix (ECM), collagen-specific interlinks involve microfilaments of collagen type VI, meshwork-organized collagen type VIII, and FACIT collagen type XIV. Basement membrane collagen types IV, XV, XVIII and cell-associated collagen XIII enable transmission of mechanical signals between cells and whole artery matrix. Collagen scaffold undergoes continuous remodeling by decomposition promoted with MMPs and reconstitution from newly produced collagen molecules. Pulsatile stress-strain load modulates both collagen synthesis and MMP-dependent collagen degradation. In this way the ECM structure becomes adoptive to mechanical challenges. The mechanoelastic properties of the arterial wall are changed in atherosclerosis concomitantly with collagen turnover both type-specific and dependent on the structure. Improving the feedback could be another approach to restore sufficient blood circulation.

  10. Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization.

    Science.gov (United States)

    Chen, Sheng-Han; Chang, Yung; Lee, Kueir-Rarn; Wei, Ta-Chin; Higuchi, Akon; Ho, Feng-Ming; Tsou, Chia-Chun; Ho, Hsin-Tsung; Lai, Juin-Yih

    2012-12-21

    In this work, the hemocompatibility of zwitterionic polypropylene (PP) fibrous membranes with varying grafting coverage of poly(sulfobetaine methacrylate) (PSBMA) via plasma-induced surface polymerization was studied. Charge neutrality of PSBMA-grafted layers on PP membrane surfaces was controlled by the low-pressure and atmospheric plasma treatment in this study. The effects of grafting composition, surface hydrophilicity, and hydration capability on blood compatibility of the membranes were determined. Protein adsorption onto the different PSBMA-grafted PP membranes from human fibrinogen solutions was measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Blood platelet adhesion and plasma clotting time measurements from a recalcified platelet-rich plasma solution were used to determine if platelet activation depends on the charge bias of the grafted PSBMA layer. The charge bias of PSBMA layer deviated from the electrical balance of positively and negatively charged moieties can be well-controlled via atmospheric plasma-induced interfacial zwitterionization and was further tested with human whole blood. The optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and keeps its original blood-inert property of antifouling, anticoagulant, and antithrmbogenic activities when it comes into contact with human blood. This work suggests that the hemocompatible nature of grafted PSBMA polymers by controlling grafting quality via atmospheric plasma treatment gives a great potential in the surface zwitterionization of hydrophobic membranes for use in human whole blood.

  11. College Students Coping with Interpersonal Stress: Examining a Control-Based Model of Coping

    Science.gov (United States)

    Coiro, Mary Jo; Bettis, Alexandra H.; Compas, Bruce E.

    2017-01-01

    Objective: The ways that college students cope with stress, particularly interpersonal stress, may be a critical factor in determining which students are at risk for impairing mental health disorders. Using a control-based model of coping, the present study examined associations between interpersonal stress, coping strategies, and symptoms.…

  12. Effects of food on cortisol and mood in vulnerable subjects under controllable and uncontrollable stress

    NARCIS (Netherlands)

    Markus, R.; Panhuysen, G.; Tuiten, A.; Koppeschaar, H.

    2000-01-01

    The aim of this study was to investigate whether in stress-prone subjects, carbohydrate-rich, protein-poor food (CR/PP) diminished depressive mood and a cortisol response under controllable as well as uncontrollable laboratory stress. Twenty-two subjects with high stress proneness (HS) and 23

  13. Removal versus retention of cerclage in preterm premature rupture of membranes: a randomized controlled trial.

    Science.gov (United States)

    Galyean, Anna; Garite, Thomas J; Maurel, Kimberly; Abril, Diana; Adair, Charles D; Browne, Paul; Combs, C Andrew; How, Helen; Iriye, Brian K; Kominiarek, Michelle; Lu, George; Luthy, David; Miller, Hugh; Nageotte, Michael; Ozcan, Tulin; Porto, Manuel; Ramirez, Mildred; Sawai, Shirley; Sorokin, Yoram

    2014-10-01

    The decision of whether to retain or remove a previously placed cervical cerclage in women who subsequently rupture fetal membranes in a premature gestation is controversial and all studies to date are retrospective. We performed a multicenter randomized controlled trial of removal vs retention of cerclage in these patients to determine whether leaving the cerclage in place prolonged gestation and/or increased the risk of maternal or fetal infection. A prospective randomized multicenter trial of 27 hospitals was performed. Patients included were those with cerclage placement at ≤23 weeks 6 days in singleton or twin pregnancies, with subsequent spontaneous rupture of membranes between 22 weeks 0 days and 32 weeks 6 days. Patients were randomized to retention or removal of cerclage. Patients were then expectantly managed and delivered only for evidence of labor, chorioamnionitis, fetal distress, or other medical or obstetrical indications. Management after 34 weeks was at the clinician's discretion. The initial sample size calculation determined that a total of 142 patients should be included but after a second interim analysis, futility calculations determined that the conditional power for showing statistical significance after randomizing 142 patients for the primary outcome of prolonging pregnancy was 22.8%. Thus the study was terminated after a total of 56 subjects were randomized with complete data available for analysis, 32 to removal and 24 to retention of cerclage. There was no statistical significance in primary outcome of prolonging pregnancy by 1 week comparing the 2 groups (removal 18/32, 56.3%; retention 11/24, 45.8%) P = .59; or chorioamnionitis (removal 8/32, 25.0%; retention 10/24, 41.7%) P = .25, respectively. There was no statistical difference in composite neonatal outcomes (removal 16/33, 50%; retention 17/30, 56%), fetal/neonatal death (removal 4/33, 12%; retention 5/30, 16%); or gestational age at delivery (removal mean 200 days; retention

  14. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission

    Science.gov (United States)

    Du, Xiaona; Hao, Han; Gigout, Sylvain; Huang, Dongyang; Yang, Yuehui; Li, Li; Wang, Caixue; Sundt, Danielle; Jaffe, David B.; Zhang, Hailin; Gamper, Nikita

    2014-01-01

    Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na+, and T-type Ca2+ channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron. PMID:25168672

  15. Use of cation selective membrane and acid addition for PH control in two-dimensional electrokinetic remediation of copper

    Energy Technology Data Exchange (ETDEWEB)

    Chan, M.S.M.; Lynch, R.J. [Cambridge Univ., Engineering Dept. (United Kingdom); Ilett, D.J. [AEA Technology, Harwell, Oxfordshire (United Kingdom)

    2001-07-01

    The feasibility of using a combination of a cation selective membrane and acid addition for pH control in electrokinetic remediation to toxic and heavy metals from low-permeability soil has been investigated. The high pH generated during the remediation process, as a result of surplus OH{sup -} ions, may cause metal ions to precipitate as hydroxides at or near the cathodes. This region of high pH is known to be associated with high electrical resistance, which limits the remediation efficiency by inhibiting current flow through the soil. One way to control pH is by adding acid to neutralize the OH{sup -} ions. However, preliminary work showed that addition of acid to the cathodic region was not effective in preventing the spread of the alkaline zone from cathodes toward anodes. Precipitates were formed before metal ions reached the cathodic region. Therefore, another method of pH control was investigated, using a cation selective membrane to enhance the electrokinetic process. The membrane was placed in front of the cathodes to contain the OH{sup -} ions generated, and confine the precipitates of metal hydroxide to a small cathodic region. The clean-up of a contaminated site was modelled in a rectangular tank, using silt as the low permeability soul and copper to simulate the contamination. The objective was to redistribute the contaminant so as to concentrate it into a small area. Three experiments were performed with the following methods of pH control: (1) acid addition, (2) use of a cation selective membrane and (3) a combination of acid addition and a cation selective membrane. Using the combined approach, it was found that 75% of the target clean-up section (bounded by the cation selective membrane and the anodes) had more than 40% of the initial copper removed. The general efficiency of remediation increased in the following order. (orig.)

  16. Development of nano-structure controlled polymer electrolyte fuel-cell membranes by high-energy heavy ion irradiation

    International Nuclear Information System (INIS)

    Yamaki, Tetsuya; Asano, Masaharu; Maekawa, Yasunari; Yoshida, Masaru; Kobayashi, Misaki; Nomura, Kumiko; Takagi, Shigeharu

    2008-01-01

    There is increasing interest in polymer electrolyte fuel cells (PEFCs) together with recent worldwide energy demand and environmental issues. In order to develop proton-conductive membranes for PEFCs, we have been using high-energy heavy ion beams from the cyclotron accelerator of Takasaki Ion Accelerators for Advanced Radiation Application (TIARA), JAEA. Our strategic focus is centered on using nano-scale controllability of the ion-beam processing; the membrane preparation involves (1) the irradiation of commercially-available base polymer films with MeV ions, (2) graft polymerization of vinyl monomers into electronically-excited parts along the ion trajectory, called latent tracks, and (3) sulfonation of the graft polymers. Interestingly, the resulting membranes exhibited anisotropic proton transport, i.e., higher conductivity in the thickness direction. According to microscopic observations, this is probably because the columnar electrolyte phase extended, with a width of tens-to-hundreds nanometers, through the membrane. Other excellent membrane properties, e.g., sufficient mechanical strength, high dimensional stability, and low gas permeability should be due to such a controlled structure. (author)

  17. Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction

    KAUST Repository

    Pendergast, Mary Theresa M.; Nygaard, Jodie M.; Ghosh, Asim K.; Hoek, Eric M.V.

    2010-01-01

    Composite reverse osmosis (RO) membranes were formed by interfacial polymerization of polyamide thin films over pure polysulfone and nanocomposite-polysulfone support membranes. Nanocomposite support membranes were formed from amorphous non-porous silica and crystalline microporous zeolite nanoparticles. For each hand-cast membrane, water flux and NaCl rejection were monitored over time at two different applied pressures. Nanocomposite-polysulfone supported RO membranes generally had higher initial permeability and experienced less flux decline due to compaction than pure polysulfone supported membranes. In addition, observed salt rejection tended to increase as flux declined from compaction. Crosssectional SEM images verified significant reduction in thickness of pure polysulfone supports, whereas nanocomposites better resisted compaction due to enhanced mechanical stability imparted by the nanoparticles. A conceptual model was proposed to explain the mechanistic relationship between support membrane compaction and observed changes in water flux and salt rejection. As the support membrane compacts, skin layer pore constriction increased the effective path length for diffusion through the composite membranes, which reduced both water and salt permeability identically. However, experimental salt permeability tended to decline to a greater extent than water permeability; hence, the observed changes in flux and rejection might also be related to structural changes in the polyamide thin film. © 2010 Elsevier B.V. All rights reserved.

  18. Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction

    KAUST Repository

    Pendergast, Mary Theresa M.

    2010-10-01

    Composite reverse osmosis (RO) membranes were formed by interfacial polymerization of polyamide thin films over pure polysulfone and nanocomposite-polysulfone support membranes. Nanocomposite support membranes were formed from amorphous non-porous silica and crystalline microporous zeolite nanoparticles. For each hand-cast membrane, water flux and NaCl rejection were monitored over time at two different applied pressures. Nanocomposite-polysulfone supported RO membranes generally had higher initial permeability and experienced less flux decline due to compaction than pure polysulfone supported membranes. In addition, observed salt rejection tended to increase as flux declined from compaction. Crosssectional SEM images verified significant reduction in thickness of pure polysulfone supports, whereas nanocomposites better resisted compaction due to enhanced mechanical stability imparted by the nanoparticles. A conceptual model was proposed to explain the mechanistic relationship between support membrane compaction and observed changes in water flux and salt rejection. As the support membrane compacts, skin layer pore constriction increased the effective path length for diffusion through the composite membranes, which reduced both water and salt permeability identically. However, experimental salt permeability tended to decline to a greater extent than water permeability; hence, the observed changes in flux and rejection might also be related to structural changes in the polyamide thin film. © 2010 Elsevier B.V. All rights reserved.

  19. Control of recoil losses in nanomechanical SiN membrane resonators

    Science.gov (United States)

    Borrielli, A.; Marconi, L.; Marin, F.; Marino, F.; Morana, B.; Pandraud, G.; Pontin, A.; Prodi, G. A.; Sarro, P. M.; Serra, E.; Bonaldi, M.

    2016-09-01

    In the context of a recoil damping analysis, we have designed and produced a membrane resonator equipped with a specific on-chip structure working as a "loss shield" for a circular membrane. In this device the vibrations of the membrane, with a quality factor of 107, reach the limit set by the intrinsic dissipation in silicon nitride, for all the modes and regardless of the modal shape, also at low frequency. Guided by our theoretical model of the loss shield, we describe the design rationale of the device, which can be used as effective replacement of commercial membrane resonators in advanced optomechanical setups, also at cryogenic temperatures.

  20. Transabdominal amnioinfusion in preterm premature rupture of membranes: a randomised controlled trial.

    Science.gov (United States)

    Tranquilli, Andrea Luigi; Giannubilo, Stefano Raffaele; Bezzeccheri, Valeria; Scagnoli, Caterina

    2005-06-01

    To evaluate the role of transabdominal amnioinfusion in improving the perinatal outcomes of pregnancies complicated by preterm premature rupture of membranes (pPROM). A randomised controlled trial. A teaching hospital in Italy, obstetric unit. Population Women with singleton pregnancies complicated by pPROM, between 24 + 0 and 32 + 6 weeks of gestation. Patients were randomised 24 hours after admission to our referral hospital, to expectant management with transabdominal amnioinfusion or expectant management only. The effects of transabdominal amnioinfusion on pPROM-delivery interval and on perinatal outcomes. Of the 65 women with pPROM 34 met the inclusion criteria. Seventeen women were assigned to amnioinfusion (the amnioinfusion group) and the other 17 to expectant management. Compared with the control group (median: 8 days; range: 3-14), the pPROM-delivery period was significantly longer in women who underwent amnioinfusion (median: 21 days; range: 15-29) (P amnioinfusion were less likely to deliver within seven days since pPROM (RR: 0.18; range: 0.04-0.69 95% CI) or within two weeks (RR: 0.46; range: 0.21-1.02 95% CI). In the amnioinfusion group the neonatal survival was significantly higher at each gestational age (P amnioinfusion after pPROM resulted in significant prolongation of pregnancy and better neonatal outcomes.

  1. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control

    Science.gov (United States)

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature. PMID:27571209

  2. Fuzzy control of the removal of estrogen in a membrane bioreactor

    International Nuclear Information System (INIS)

    Antonio Jose de Sucre (Venezuela, Bolivarian Republic of))" data-affiliation=" (Universidad Politecnica Salesiana Ecuador (Ecuador), E-mail: lsanchezb@ups.edu.ec); Torres Cruz, Ennodio (Universidad Experimental Politecnica Antonio Jose de Sucre (Venezuela, Bolivarian Republic of))" >Sanchez Barboza, Leadina

    2017-01-01

    The Membrane Bioreactor (MBR) has recently emerged as an important technology product for the treatment of wastewater containing estrogens and contaminants and is capable of transforming a residual water in a high quality effluent. Because of the recalcitrant nature of both natural and synthetic estrogens, one of the parameters that has been determined as influential to the removal of these substances is the Solids Retention Time (SRT), as this allows more time spent in the biomass in the reactor. The influence of the SRT in estrogen removal was simulated in the MATLAB Fuzzy Logic Toolbox using fuzzy control. For this purpose, the values measured or obtained by experts in laboratory scale experiments were fuzzified, and the fuzzy inference process was made on the basis of the previously designed inference rules. Finally the output is again desfuzzified for crisp value. The designed fuzzy control system produced very good results, with very small percentages of error for most cases, except for the removal of ethinylestradiol (EE2) in the reactor with long SRT. The performance of the simulation allows us to conclude that the Fuzzy Logic Toolbox is a good tool to get close to the results obtained by an actual experimental system. (author) [es

  3. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control.

    Science.gov (United States)

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature.

  4. Cycle-time determination and process control of sequencing batch membrane bioreactors.

    Science.gov (United States)

    Krampe, J

    2013-01-01

    In this paper a method to determine the cycle time for sequencing batch membrane bioreactors (SBMBRs) is introduced. One of the advantages of SBMBRs is the simplicity of adapting them to varying wastewater composition. The benefit of this flexibility can only be fully utilised if the cycle times are optimised for the specific inlet load conditions. This requires either proactive and ongoing operator adjustment or active predictive instrument-based control. Determination of the cycle times for conventional sequencing batch reactor (SBR) plants is usually based on experience. Due to the higher mixed liquor suspended solids concentrations in SBMBRs and the limited experience with their application, a new approach to calculate the cycle time had to be developed. Based on results from a semi-technical pilot plant, the paper presents an approach for calculating the cycle time in relation to the influent concentration according to the Activated Sludge Model No. 1 and the German HSG (Hochschulgruppe) Approach. The approach presented in this paper considers the increased solid contents in the reactor and the resultant shortened reaction times. This allows for an exact calculation of the nitrification and denitrification cycles with a tolerance of only a few minutes. Ultimately the same approach can be used for a predictive control strategy and for conventional SBR plants.

  5. A knowledge-based control system for air-scour optimisation in membrane bioreactors.

    Science.gov (United States)

    Ferrero, G; Monclús, H; Sancho, L; Garrido, J M; Comas, J; Rodríguez-Roda, I

    2011-01-01

    Although membrane bioreactors (MBRs) technology is still a growing sector, its progressive implementation all over the world, together with great technical achievements, has allowed it to reach a mature degree, just comparable to other more conventional wastewater treatment technologies. With current energy requirements around 0.6-1.1 kWh/m3 of treated wastewater and investment costs similar to conventional treatment plants, main market niche for MBRs can be areas with very high restrictive discharge limits, where treatment plants have to be compact or where water reuse is necessary. Operational costs are higher than for conventional treatments; consequently there is still a need and possibilities for energy saving and optimisation. This paper presents the development of a knowledge-based decision support system (DSS) for the integrated operation and remote control of the biological and physical (filtration and backwashing or relaxation) processes in MBRs. The core of the DSS is a knowledge-based control module for air-scour consumption automation and energy consumption minimisation.

  6. Performa Inhibitory Control dengan Induksi Sing-a-Song Stress Test pada Dewasa Awal

    Directory of Open Access Journals (Sweden)

    Akhmad Kurniawan

    2018-04-01

    Full Text Available Inhibitory control is able to control attention by inhibiting internal tendencies and external influences. Inhibitory control is controlled by dorsolateral prefrontal cortex and anterior cingulate cortex, that can be affected by stress variable. Sing-a-Song Stress Test (SSST is a current method to induce stress that has never been practiced in study of inhibitory control. This study aimed to determine the effect of SSST against inhibitory control in early adult. Between subjects design was applied in this study. A number of 35 participants with age range from 17 to 21 years old were randomly assigned into experimental group (n = 17 and control group (n = 18. Inhibitory control was measured using Computerized Stroop Color-Word Test (CSCWT. Positive Affect and Negative Affect Schedule (PANAS was used to conduct a manipulation check. Independent-Samples T Test explained no significant effect of stress on inhibitory control (t = -0,117; p > 0,05.

  7. Enhanced ferro-actuator with a porosity-controlled membrane using the sol-gel process and the HF etching method

    International Nuclear Information System (INIS)

    Kim, KiSu; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2016-01-01

    In this paper, we propose a ferro-actuator using a porous polyvinylidene difluoride (PVDF) membrane. In detail, we fabricated the silica-embedded PVDF membrane using a sol-gel process with PVDF solution and tetraethyl orthosilicate (TEOS) solution, where the size of the silica was determined by the ratio of the PVDF and TEOS solutions. Using hydrofluoric acid (HF) etching, the silica were removed from the silica-embedded PVDF membrane, and porous PVDF membranes with different porosities were obtained. Finally, through absorption of a ferrofluid on the porous PVDF membrane, the proposed ferro-actuator using porous PVDF membranes with different porosities was fabricated. We executed the characterization and actuation test as follows. First, the silica size of the silica-embedded PVDF membrane and the pore size of the porous PVDF membrane were analyzed using scanning electron microscopy (SEM) imaging. Second, energy-dispersive x-ray spectroscopy analysis showed that the silica had clearly been removed from the silica-embedded PVDF membrane by HF etching. Third, through x-ray photoelectron spectroscopy and vibrating sample magnetometer (VSM) of the ferro-actuators, we found that more ferrofluids were absorbed by the porous PVDF membrane when the pore of the membrane was smaller and uniformly distributed. Finally, we executed tip displacement and a blocking force test of the proposed ferro-actuator using the porous PVDF membrane. Similar to the VSM result, the ferro-actuator that used a porous PVDF membrane with smaller pores exhibited better actuation performance. The ferro-actuator that used a porous PVDF membrane displayed a tip displacement that was about 7.2-fold better and a blocking force that was about 6.5-fold better than the ferro-actuator that used a pure PVDF membrane. Thus, we controlled the pore size of the porous PVDF membrane and enhanced the actuation performance of the ferro-actuator using a porous PVDF membrane. (technical note)

  8. Model-Based Control of a Continuous Coating Line for Proton Exchange Membrane Fuel Cell Electrode Assembly

    Directory of Open Access Journals (Sweden)

    Vikram Devaraj

    2015-01-01

    Full Text Available The most expensive component of a fuel cell is the membrane electrode assembly (MEA, which consists of an ionomer membrane coated with catalyst material. Best-performing MEAs are currently fabricated by depositing and drying liquid catalyst ink on the membrane; however, this process is limited to individual preparation by hand due to the membrane’s rapid water absorption that leads to shape deformation and coating defects. A continuous coating line can reduce the cost and time needed to fabricate the MEA, incentivizing the commercialization and widespread adoption of fuel cells. A pilot-scale membrane coating line was designed for such a task and is described in this paper. Accurate process control is necessary to prevent manufacturing defects from occurring in the coating line. A linear-quadratic-Gaussian (LQG controller was developed based on a physics-based model of the coating process to optimally control the temperature and humidity of the drying zones. The process controller was implemented in the pilot-scale coating line proving effective in preventing defects.

  9. Work stress and emotional exhaustion in nurses: the mediating role of internal locus of control.

    Science.gov (United States)

    Partlak Günüşen, Neslihan; Ustün, Besti; Erdem, Sabri

    2014-01-01

    Burnout is a major problem for nursing. There is a strong relationship between work stress and emotional exhaustion. Although studies report a negative correlation between the internal locus of control and emotional exhaustion and work stress, the number of studies available on the subject is limited. This study intends to examine the extent to which the relationship between work stress and emotional exhaustion is mediated by nurses' internal locus of control. The study adopted a cross-sectional survey design. The data were analyzed using structural equation modeling techniques. The study sample consisted of 347 nurses who worked in a university hospital in Izmir, Turkey and who agreed to participate in the study. The Work-Related Strain Inventory was used to evaluate the nurses' work stress level, Maslach Burnout Inventory was used to evaluate their emotional exhaustion levels, and the Locus of Control Scale was used to evaluate the internal locus of control. The variables of the study were based on the Neuman Systems Model. Work stress was positively related to internal locus of control (β3 = .21, p 0.1). Internal locus of control was negatively related to emotional exhaustion (β = -.14, p Work stress is directly (β = .87, p Work stress is directly (β = .87, p work stress was mediated, the impact of internal locus of control was limited. It is recommended that different variables be included in future studies so that they can mediate the relationship between work stress and emotional exhaustion.

  10. [Function of transport H+-ATPases in plant cell plasma and vacuolar membranes of maize under salt stress conditions and effect of adaptogenic preparations].

    Science.gov (United States)

    Rybchenko, Zh I; Palladina, T O

    2011-01-01

    Participations of electrogenic H+-pumps of plasma and vacuolar membranes represented by E1-E2 and V-type H+-ATPases in plant cell adaptation to salt stress conditions has been studied by determination of their transport activities. Experiments were carried out on corn seedlings exposed during 1 or 10 days at 0.1 M NaCl. Preparations Methyure and Ivine were used by seed soaking at 10(-7) M. Plasma and vacuolar membrane fractions were isolated from corn seedling roots. In variants without NaCl a hydrolytical activity of plasma membrane H+-ATPase was increased with seedling age and its transport one was changed insignificantly, wherease the response of the weaker vacuolar H+-ATPase was opposite. NaCl exposition decreased hydrolytical activities of both H+-ATPases and increased their transport ones. These results demonstrated amplification of H+-pumps function especially represented by vacuolar H+-ATPase. Both preparations, Methyure mainly, caused a further increase of transport activity which was more expressed in NaCl variants. Obtained results showed the important role of these H+-pumps in plant adaptation under salt stress conditions realized by energetical maintenance of the secondary active Na+/H+ -antiporters which remove Na+ from cytoplasm.

  11. Operational Stress Control and Readiness (OSCAR): The United States Marine Corps Initiative to Deliver Mental Health Services to Operating Forces

    National Research Council Canada - National Science Library

    Nash, William P

    2006-01-01

    Combat/operational stress control, defined as programs and policies to prevent, identify, and manage adverse combat/operational stress reactions, is the primary responsibility of military commanders...

  12. Accurate control of oxygen level in cells during culture on silicone rubber membranes with application to stem cell differentiation.

    Science.gov (United States)

    Powers, Daryl E; Millman, Jeffrey R; Bonner-Weir, Susan; Rappel, Michael J; Colton, Clark K

    2010-01-01

    Oxygen level in mammalian cell culture is often controlled by placing culture vessels in humidified incubators with a defined gas phase partial pressure of oxygen (pO(2gas)). Because the cells are consuming oxygen supplied by diffusion, a difference between pO(2gas) and that experienced by the cells (pO(2cell)) arises, which is maximal when cells are cultured in vessels with little or no oxygen permeability. Here, we demonstrate theoretically that highly oxygen-permeable silicone rubber membranes can be used to control pO(2cell) during culture of cells in monolayers and aggregates much more accurately and can achieve more rapid transient response following a disturbance than on polystyrene and fluorinated ethylene-propylene copolymer membranes. Cell attachment on silicone rubber was achieved by physical adsorption of fibronectin or Matrigel. We use these membranes for the differentiation of mouse embryonic stem cells to cardiomyocytes and compare the results with culture on polystyrene or on silicone rubber on top of polystyrene. The fraction of cells that are cardiomyocyte-like increases with decreasing pO(2) only when using oxygen-permeable silicone membrane-based dishs, which contract on silicone rubber but not polystyrene. The high permeability of silicone rubber results in pO(2cell) being equal to pO(2gas) at the tissue-membrane interface. This, together with geometric information from histological sections, facilitates development of a model from which the pO(2) distribution within the resulting aggregates is computed. Silicone rubber membranes have significant advantages over polystyrene in controlling pO(2cell), and these results suggest they are a valuable tool for investigating pO(2) effects in many applications, such as stem cell differentiation. Copyright 2009 American Institute of Chemical Engineers

  13. Stress.

    Science.gov (United States)

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.

  14. Effects of Hypoxia on Erythrocyte Membrane Properties—Implications for Intravascular Hemolysis and Purinergic Control of Blood Flow

    Directory of Open Access Journals (Sweden)

    Ryszard Grygorczyk

    2017-12-01

    Full Text Available Intravascular hemolysis occurs in hereditary, acquired, and iatrogenic hemolytic conditions but it could be also a normal physiological process contributing to intercellular signaling. New evidence suggests that intravascular hemolysis and the associated release of adenosine triphosphate (ATP may be an important mechanism for in vivo local purinergic signaling and blood flow regulation during exercise and hypoxia. However, the mechanisms that modulate hypoxia-induced RBC membrane fragility remain unclear. Here, we provide an overview of the role of RBC ATP release in the regulation of vascular tone and prevailing assumptions on the putative release mechanisms. We show importance of intravascular hemolysis as a source of ATP for local purinergic regulation of blood flow and discuss processes that regulate membrane propensity to rupture under stress and hypoxia.

  15. Mechanical stress regulates insulin sensitivity through integrin-dependent control of insulin receptor localization.

    Science.gov (United States)

    Kim, Jung; Bilder, David; Neufeld, Thomas P

    2018-01-15

    Insulin resistance, the failure to activate insulin signaling in the presence of ligand, leads to metabolic diseases, including type 2 diabetes. Physical activity and mechanical stress have been shown to protect against insulin resistance, but the molecular mechanisms remain unclear. Here, we address this relationship in the Drosophila larval fat body, an insulin-sensitive organ analogous to vertebrate adipose tissue and livers. We found that insulin signaling in Drosophila fat body cells is abolished in the absence of physical activity and mechanical stress even when excess insulin is present. Physical movement is required for insulin sensitivity in both intact larvae and fat bodies cultured ex vivo. Interestingly, the insulin receptor and other downstream components are recruited to the plasma membrane in response to mechanical stress, and this membrane localization is rapidly lost upon disruption of larval or tissue movement. Sensing of mechanical stimuli is mediated in part by integrins, whose activation is necessary and sufficient for mechanical stress-dependent insulin signaling. Insulin resistance develops naturally during the transition from the active larval stage to the immotile pupal stage, suggesting that regulation of insulin sensitivity by mechanical stress may help coordinate developmental programming with metabolism. © 2018 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Improved performance of single-chamber microbial fuel cells through control of membrane deformation.

    Science.gov (United States)

    Zhang, Xiaoyuan; Cheng, Shaoan; Huang, Xia; Logan, Bruce E

    2010-03-15

    Cation (CEMs) and anion exchange membrane (AEMs) are commonly used in microbial fuel cells (MFCs) to enhance Coulombic efficiencies (CEs) by reducing the flux of oxygen through the cathode to bacteria on the anode. AEMs typically work better than CEMs, but in initial experiments we observed the opposite using a membrane electrode assembly MFC. The reason was identified to be membrane deformation, which resulted in water and gas trapped between the membrane and cathode. To correct this, stainless steel mesh was used to press the membrane flat against the cathode. With the steel mesh, AEM performance increased to 46+/-4 W/m(3) in a single cathode MFC, and 98+/-14 W/m(3) in a double-cathode MFC. These power densities were higher than those using a CEM of 32+/-2 W/m(3) (single cathode) and 63+/-6 W/m(3) (double cathode). Higher pH gradients across the membrane and salt precipitation on the cathode were responsible for the reduced performance of the CEM compared to the AEM. CEs reached over 90% for both membranes at >2A/m(2). These results demonstrate the importance of avoiding water accumulation in thin films between membranes and electrodes, and explain additional reasons for poorer performance of CEMs compared to AEMs. (c) 2009 Elsevier B.V. All rights reserved.

  17. Improved performance of single-chamber microbial fuel cells through control of membrane deformation

    KAUST Repository

    Zhang, Xiaoyuan

    2010-03-01

    Cation (CEMs) and anion exchange membrane (AEMs) are commonly used in microbial fuel cells (MFCs) to enhance Coulombic efficiencies (CEs) by reducing thefluxof oxygen through the cathode to bacteriaonthe anode. AEMs typically work better than CEMs, but in initial experiments we observed the opposite using a membrane electrode assembly MFC. The reason was identified to be membrane deformation, which resulted in water and gas trapped between the membrane and cathode. To correct this, stainless steel mesh was used to press the membrane flat against the cathode. With the steel mesh, AEM performance increased to 46±4W/m3 in a single cathode MFC, and 98±14W/m3 in a double-cathode MFC. These power densities were higher than those using a CEM of 32±2W/m3 (single cathode) and 63±6W/m3 (double cathode). Higher pH gradients across the membrane and salt precipitation on the cathode were responsible for the reduced performance of the CEM compared to the AEM. CEs reached over 90% for both membranes at >2A/m2. These results demonstrate the importance of avoiding water accumulation in thin films between membranes and electrodes, and explain additional reasons for poorer performance of CEMs compared to AEMs. © 2009 Elsevier B.V.

  18. [Relationship between work locus of control and occupational stress in oil workers].

    Science.gov (United States)

    Meng, Xian-Hai; He, Ya-Hui; Yu, Shan-Fa; Qi, Xiu-Ying

    2008-12-01

    To investigate general states of the work locus of control and explore the relationship between work locus of control and occupational stress in oil workers. 582 oil workers were investigated by using the General Questionnaire and Occupational Stress Measure Inventory. There were significant differences in WCLS score between two age groups (= 30 years old group and locus of control; values of role ambiguity, working prospect, depression and social support were higher in the group of external locus of control (P locus of control had positive relation with role ambiguity, working prospect, depression, and social support, and negative with interpersonal relationship, promotion, participation, task consistency, challenge, job satisfaction, mental health, self-esteem and coping strategies. In the regression analysis, work locus of control was the major predictive factor of work satisfaction. Work locus of control is associated with many occupational stress factors. The group of extrinsic work locus of control experience more stress in oil workers.

  19. Controlled release of mitomycin C from PHEMAH-Cu(II) cryogel membranes.

    Science.gov (United States)

    Bakhshpour, Monireh; Yavuz, Handan; Denizli, Adil

    2018-02-19

    Molecular imprinting technique was used for the preparation of antibiotic and anti-neoplastic chemotherapy drug (mitomycin C) imprinted cryogel membranes (MMC-ICM). The membranes were synthezied by using metal ion coordination interactions with N-methacryloyl-(l)-histidine methyl ester (MAH) functional monomer and template molecules (i.e. MMC). The 2-hydroxyethyl methacrylate (HEMA) monomer and methylene bisacrylamide (MBAAm) crosslinker were used for the preparation of mitomycin C imprinted cryogel membranes by radical suspension polymerization technique. The imprinted cryogel membranes were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and swelling degree measurements. Cytotoxicity of MMC-ICMs was investigated using mouse fibroblast cell line L929. Time-dependent release of MMC was demonstrated within 150 h from cryogel membranes. Cryogels demonstrated very high MMC loading efficiency (70-80%) and sustained MMC release over hours.

  20. EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls.

    Science.gov (United States)

    Block, Robert C; Harris, William S; Reid, Kimberly J; Sands, Scott A; Spertus, John A

    2008-04-01

    Increased blood levels of the omega-3 fatty acids (FA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been inversely associated with risk for sudden cardiac death, but their relationship with acute coronary syndromes (ACS) is unclear. We hypothesized that the EPA+DHA content of blood cell membranes, as a percent of total FAs, is reduced in ACS patients relative to matched controls. We measured the content of EPA+DHA in 768 ACS patients and 768 age-, sex- and race-matched controls. The association with ACS case status of blood cell EPA+DHA [both by a 1 unit change and by category (low, or =8%)] was assessed using multivariate conditional logistic regression models adjusting for matching variables and smoking status, alcohol use, diabetes, body mass index, serum lipids, education, family history of coronary artery disease, personal histories of myocardial infarction and hypertension, and statin, aspirin, and other antiplatelet drug use. The combined groups had a mean age of 61+/-12 years, 66% were male, and 92% were Caucasian. The EPA+DHA content was 20% lower in cases than controls (3.4+/-1.6 vs. 4.25+/-2.0%, pACS event was 0.58 (95% CI 0.42-0.80), in the intermediate EPA+DHA group and was 0.31 (95% CI 0.14-0.67; p for trend ACS case status increased incrementally as the EPA+DHA content decreased suggesting that low EPA+DHA may be associated with increased risk for ACS.

  1. Design and implementation of fixed-order robust controllers for a proton exchange membrane fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fu-Cheng; Chen, Hsuan-Tsung [Department of Mechanical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, 10617 Taipei (China)

    2009-03-15

    This paper applies fixed-order multivariable robust control strategies to a proton exchange membrane fuel cell (PEMFC) system, and implements the designed controllers on a microchip for system miniaturization. In previous studies, robust control was applied to guarantee system stability and to reduce hydrogen consumption for a PEMFC system. It was noted that for standard robust control design, the order of resulting H{sub {infinity}} controllers is dictated by the plants and weighting functions. However, for hardware implementation, controllers with lower orders are preferable in terms of computing efforts and cost. Therefore, in this paper the PEMFC is modeled as multivariable transfer matrices, then three fixed-order robust control algorithms are applied to design controllers with specified orders for a PEMFC. Finally, the designed controllers are implemented on a microchip to regulate the air and hydrogen flow rates. From the experimental results, fixed-order robust control is deemed effective in supplying steady power and reducing fuel consumption. (author)

  2. CCM proteins control endothelial β1 integrin dependent response to shear stress

    Directory of Open Access Journals (Sweden)

    Zuzana Macek Jilkova

    2014-11-01

    Full Text Available Hemodynamic shear stress from blood flow on the endothelium critically regulates vascular function in many physiological and pathological situations. Endothelial cells adapt to shear stress by remodeling their cytoskeletal components and subsequently by changing their shape and orientation. We demonstrate that β1 integrin activation is critically controlled during the mechanoresponse of endothelial cells to shear stress. Indeed, we show that overexpression of the CCM complex, an inhibitor of β1 integrin activation, blocks endothelial actin rearrangement and cell reorientation in response to shear stress similarly to β1 integrin silencing. Conversely, depletion of CCM2 protein leads to an elongated “shear-stress-like” phenotype even in the absence of flow. Taken together, our findings reveal the existence of a balance between positive extracellular and negative intracellular signals, i.e. shear stress and CCM complex, for the control of β1 integrin activation and subsequent adaptation of vascular endothelial cells to mechanostimulation by fluid shear stress.

  3. Control of free-edge interlaminar stresses in composite laminates using piezoelectric actuators

    International Nuclear Information System (INIS)

    Huang, Bin; Soo Kim, Heung

    2014-01-01

    The control of free-edge interlaminar stresses in laminated composite structures using a stress function-based approach is proposed. The assumed stress fields satisfy pointwise traction and free boundary conditions at surfaces. Governing equations are derived using the principle of complementary virtual work. A general eigenvalue solution procedure was adopted to obtain accurate stress states of the laminated composite structure. The results obtained from the proposed method were compared with those obtained by three-dimensional finite element analyses. It was found that interlaminar stresses generated by mechanical loadings could be significantly reduced by applying proper electric fields to piezoelectric actuators, which were surface bonded or embedded in composite laminates. Locations of piezoelectric actuators also influenced the distributions of interlaminar stresses. The results provided that piezoelectric actuators have potential in the application to actively control interlaminar stresses in composite laminates. (paper)

  4. Service employee adaptiveness : exploring the impact of role-stress and managerial control approaches

    OpenAIRE

    Sahadev, S; Purani, K; Panda, T

    2017-01-01

    The research aims to explore the relationships between managerial control strategies, role stress and employee adaptiveness among call center employees.\\ud Based on a conceptual model, a questionnaire based survey methodology is adopted. Data was collected from call center employees in India and the data was analysed through PLS methodology.\\ud The study finds that Outcome control and activity control increase role stress while capability control does not have a significant impact. The intera...

  5. The establishment and application of direct coupled electrostatic-structural field model in electrostatically controlled deployable membrane antenna

    Science.gov (United States)

    Gu, Yongzhen; Duan, Baoyan; Du, Jingli

    2018-05-01

    The electrostatically controlled deployable membrane antenna (ECDMA) is a promising space structure due to its low weight, large aperture and high precision characteristics. However, it is an extreme challenge to describe the coupled field between electrostatic and membrane structure accurately. A direct coupled method is applied to solve the coupled problem in this paper. Firstly, the membrane structure and electrostatic field are uniformly described by energy, considering the coupled problem is an energy conservation phenomenon. Then the direct coupled electrostatic-structural field governing equilibrium equations are obtained by energy variation approach. Numerical results show that the direct coupled method improves the computing efficiency by 36% compared with the traditional indirect coupled method with the same level accuracy. Finally, the prototype has been manufactured and tested and the ECDMA finite element simulations show good agreement with the experiment results as the maximum surface error difference is 6%.

  6. Efficient overproduction of membrane proteins in Lactococcus lactis requires the cell envelope stress sensor/regulator couple CesSR

    NARCIS (Netherlands)

    Pinto, Joao P C; Kuipers, Oscar P; Marreddy, Ravi K R; Poolman, Bert; Kok, Jan

    2011-01-01

    BACKGROUND: Membrane proteins comprise an important class of molecules whose study is largely frustrated by several intrinsic constraints, such as their hydrophobicity and added requirements for correct folding. Additionally, the complexity of the cellular mechanisms that are required to insert

  7. Recovery from work-related stress: a randomized controlled trial of a stress management intervention in a clinical sample.

    Science.gov (United States)

    Glasscock, David J; Carstensen, Ole; Dalgaard, Vita Ligaya

    2018-05-28

    Randomized controlled trials (RCTs) of interventions aimed at reducing work-related stress indicate that cognitive behavioural therapy (CBT) is more effective than other interventions. However, definitions of study populations are often unclear and there is a lack of interventions targeting both the individual and the workplace. The aim of this study was to determine whether a stress management intervention combining individual CBT and a workplace focus is superior to no treatment in the reduction of perceived stress and stress symptoms and time to lasting return to work (RTW) in a clinical sample. Patients with work-related stress reactions or adjustment disorders were randomly assigned to an intervention group (n = 57, 84.2% female) or a control group (n = 80, 83.8% female). Subjects were followed via questionnaires and register data. The intervention contained individual CBT and the offer of a workplace meeting. We examined intervention effects by analysing group differences in score changes on the Perceived Stress Scale (PSS-10) and the General Health Questionnaire (GHQ-30). We also tested if intervention led to faster lasting RTW. Mean baseline values of PSS were 24.79 in the intervention group and 23.26 in the control group while the corresponding values for GHQ were 21.3 and 20.27, respectively. There was a significant effect of time. 10 months after baseline, both groups reported less perceived stress and improved mental health. 4 months after baseline, we found significant treatment effects for both perceived stress and mental health. The difference in mean change in PSS after 4 months was - 3.09 (- 5.47, - 0.72), while for GHQ it was - 3.91 (- 7.15, - 0.68). There were no group differences in RTW. The intervention led to faster reductions in perceived stress and stress symptoms amongst patients with work-related stress reactions and adjustment disorders. 6 months after the intervention ended there were no longer differences between

  8. Elevated hydrostatic pressures induce apoptosis and oxidative stress through mitochondrial membrane depolarization in PC12 neuronal cells: A cell culture model of glaucoma.

    Science.gov (United States)

    Tök, Levent; Nazıroğlu, Mustafa; Uğuz, Abdülhadi Cihangir; Tök, Ozlem

    2014-10-01

    Despite the importance of oxidative stress and apoptosis through mitochondrial depolarization in neurodegenerative diseases, their roles in etiology of glaucoma are poorly understood. We aimed to investigate whether oxidative stress and apoptosis formation are altered in rat pheochromocytoma-derived cell line-12 (PC12) neuronal cell cultures exposed to elevated different hydrostatic pressures as a cell culture model of glaucoma. Cultured PC12 cells were subjected to 0, 15 and 70 mmHg hydrostatic pressure for 1 and 24 h. Then, the following values were analyzed: (a) cell viability; (b) lipid peroxidation and intracellular reactive oxygen species production; (c) mitochondrial membrane depolarization; (d) cell apoptosis; (e) caspase-3 and caspase-9 activities; (f) reduced glutathione (GSH) and glutathione peroxidase (GSH-Px). The hydrostatic pressures (15 and 70 mmHg) increased oxidative cell damage through a decrease of GSH and GSH-Px values, and increasing mitochondrial membrane potential. Additionally, 70 mmHg hydrostatic pressure for 24 h indicated highest apoptotic effects, as demonstrated by plate reader analyses of apoptosis, caspase-3 and -9 values. The present data indicated oxidative stress, apoptosis and mitochondrial changes in PC12 cell line during different hydrostatic pressure as a cell culture model of glaucoma. This findings support the view that mitochondrial oxidative injury contributes early to glaucomatous optic neuropathy.

  9. Controlling the Release of Indomethacin from Glass Solutions Layered with a Rate Controlling Membrane Using Fluid-Bed Processing. Part 1: Surface and Cross-Sectional Chemical Analysis.

    Science.gov (United States)

    Dereymaker, Aswin; Scurr, David J; Steer, Elisabeth D; Roberts, Clive J; Van den Mooter, Guy

    2017-04-03

    Fluid bed coating has been shown to be a suitable manufacturing technique to formulate poorly soluble drugs in glass solutions. Layering inert carriers with a drug-polymer mixture enables these beads to be immediately filled into capsules, thus avoiding additional, potentially destabilizing, downstream processing. In this study, fluid bed coating is proposed for the production of controlled release dosage forms of glass solutions by applying a second, rate controlling membrane on top of the glass solution. Adding a second coating layer adds to the physical and chemical complexity of the drug delivery system, so a thorough understanding of the physical structure and phase behavior of the different coating layers is needed. This study aimed to investigate the surface and cross-sectional characteristics (employing scanning electron microscopy (SEM) and time of flight secondary ion mass spectrometry (ToF-SIMS)) of an indomethacin-polyvinylpyrrolidone (PVP) glass solution, top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) were also considered. In addition, polymer miscibility and the phase analysis of the underlying glass solution were investigated. Significant differences in surface and cross-sectional topography of the different rate controlling membranes or the way they are applied (solution vs dispersion) were observed. These observations can be linked to the polymer miscibility differences. The presence of PVP was observed in all rate controlling membranes, even if it is not part of the coating solution. This could be attributed to residual powder presence in the coating chamber. The distribution of PVP among the sample surfaces depends on the concentration and the rate controlling polymer used. Differences can again be linked to polymer miscibility. Finally, it was shown that the underlying glass solution layer

  10. Progestogens in singleton gestations with preterm prelabor rupture of membranes: a systematic review and metaanalysis of randomized controlled trials.

    Science.gov (United States)

    Quist-Nelson, Johanna; Parker, Pamela; Mokhtari, Neggin; Di Sarno, Rossana; Saccone, Gabriele; Berghella, Vincenzo

    2018-03-31

    Preterm prelabor rupture of membranes occurs in 3% of all pregnancies. Neonatal benefit is seen in uninfected women who do not deliver immediately after preterm prelabor rupture of membranes. The purpose of this study was to evaluate whether the administration of progestogens in singleton pregnancies prolongs pregnancy after preterm prelabor rupture of membranes. Searches were performed in MEDLINE, OVID, Scopus, EMBASE, ClinicalTrials.gov, and the Cochrane Central Register of Controlled Trials with the use of a combination of keywords and text words related to "progesterone," "progestogen," "prematurity," and "preterm premature rupture of membranes" from the inception of the databases until January 2018. We included all randomized controlled trials of singleton gestations after preterm prelabor rupture of membranes that were randomized to either progestogens or control (either placebo or no treatment). Exclusion criteria were trials that included women who had contraindications to expectant management after preterm prelabor rupture of membranes (ie, chorioamnionitis, severe preeclampsia, and nonreassuring fetal status) and trials on multiple gestations. We planned to include all progestogens, including but not limited to 17-α hydroxyprogesterone caproate, and natural progesterone. The primary outcome was latency from randomization to delivery. Metaanalysis was performed with the use of the random effects model of DerSimonian and Laird to produce relative risk with 95% confidence interval. Analysis was performed for each mode of progestogen administration separately. Six randomized controlled trials (n=545 participants) were included. Four of the included trials assessed the efficacy of 17-α hydroxyprogesterone caproate; 1 trial assessed rectal progestogen, and 1 trial had 3 arms that compared 17-α hydroxyprogesterone caproate, rectal progestogen, and placebo. The mean gestational age at time randomization was 26.9 weeks in the 17-α hydroxyprogesterone caproate

  11. Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control.

    Science.gov (United States)

    Mikhaylin, Sergey; Bazinet, Laurent

    2016-03-01

    The environmentally friendly ion-exchange membrane (IEM) processes find more and more applications in the modern industries in order to demineralize, concentrate and modify products. Moreover, these processes may be applied for the energy conversion and storage. However, the main drawback of the IEM processes is a formation of fouling, which significantly decreases the process efficiency and increases the process cost. The present review is dedicated to the problematic of IEM fouling phenomena. Firstly, the major types of IEM fouling such as colloidal fouling, organic fouling, scaling and biofouling are discussed along with consideration of the main factors affecting fouling formation and development. Secondly, the review of the possible methods of IEM fouling characterization is provided. This section includes the methods of fouling visualization and characterization as well as methods allowing investigations of characteristics of the fouled IEMs. Eventually, the reader will find the conventional and modern strategies of prevention and control of different fouling types. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Controlled synthesis of N,N,N-trimethyl chitosan for modulated bioadhesion and nasal membrane permeability.

    Science.gov (United States)

    Pardeshi, Chandrakantsing V; Belgamwar, Veena S

    2016-01-01

    In an experiment to explore the bioadhesion, biocompatibility, and membrane permeation properties, the controlled synthesis of N,N,N-trimethyl chitosan (TMC) was carried out by two-step reductive methylation of chitosan (CHT). Methylation was confirmed by (1)H NMR (δ=3.1 ppm) and FTIR analysis (CH stretch at 1,485 cm(-1)). The TMC was further characterized by DSC, TGA, XRD, HR-TEM, SEM, and elemental analysis. Findings revealed improved solubility, enhanced viscosity, increased swelling index and higher molecular weight of TMC over CHT. Comparative evaluation validated increased bioadhesion potential, and improved ex vivo biocompatibility of TMC compared to CHT. Increased bioadhesion of TMC NPs over CHT NPs can be attributed to the strong electrostatic interactions between cationic amino groups with anionic sialic and sulfonic acid moieties contained in the mucin of the nasal mucus. Ex vivo biocompatibility studies suggested that the NP formulations of both biopolymers were biocompatible and could be applied safely on the nasal epithelium. Ex vivo permeation studies executed on excised cattle nasal mucosa illustrated improved permeability of TMC NPs over CHT NPs. In the author's opinion, two-step reductive methylation of CHT could be an attractive strategy to improve its solubility, bioadhesion, and permeation characteristics without affecting biocompatibility across the mucosal surfaces. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [Pollution prevention and control of aqueous extract of astragali radix processed with ZrO2 inorganic ceramic membrane micro-filtration].

    Science.gov (United States)

    Pan, Lin-Men; Huang, Min-Yan; Guo, Li-Wei

    2012-11-01

    To study the measures for preventing and controlling the pollution of aqueous extract of Astragali Radix proceeded with inorganic ceramic membrane micro-filtration, in order to find effective measures for preventing and controlling the membrane pollution. The resistance distribution, polymer removal and changes in physical and chemical parameters of the zirconium oxide film of different pore diameters were determined to analyze the state or location of pollutants as well as the regularity of formation. Meanwhile, recoil and ultrasonic physical measures were adopted to strengthen the membrane process, in order to explore the methods for preventing and controlling the membrane pollution. When 0.2 microm of ZrO2 micro-filtrated aqueous extract of Astragali Radix, the rate of pollution was as high as 44.9%. The hole blocking resistance and the concentration polarization resistance were the main filtration resistances, while the surface deposit resistance decreased with the increase in the membrane's hold diameter; after micro-filtration, the liquid turbidity significantly reduced, with slight changes in both pH and viscosity. The 0.2 microm ZrO2 micro-filtration membrane performed better than the 0.05 microm pore size membrane in terms of conductivity. The 0. 2 microm and 0.05 microm pore diameter membranes showed better performance in the removal of pectin. The ultrasonic measure to strengthen membranes is more suitable to this system, with a flux rate up by 41.7%. The membrane optimization process adopts appropriate measures for preventing and controlling the membrane pollution, in order to reduce the membrane pollution, recover membrane performance and increase filtration efficiency.

  14. A novel reverse osmosis membrane by ferrous sulfate assisted controlled oxidation of polyamide layer

    Science.gov (United States)

    Raval, Hiren D.; Raviya, Mayur R.; Gauswami, Maulik V.

    2017-11-01

    With growing desalination capacity, it is very important to evaluate the performance of thin film composite reverse osmosis (TFC RO) membrane in terms of energy consumption for desalination. There is a trade-off between salt rejection and water-flux of TFC RO membrane. This article presents a novel approach of analyzing the effect of mixture of an oxidizing agent sodium hypochlorite and a reducing agent ferrous sulfate on virgin TFC RO membrane. Experiments were carried out by varying the concentrations of both sodium hypochlorite and ferrous sulfate. The negative charge was induced on the membrane due to the treatment of combination of sodium hypochlorite and ferrous sulfate, thereby resulting in higher rejection of negative ions due to repulsive force. Membrane treated with 1000 mg l-1 sodium hypochlorite and 2000 mg l-1 ferrous sulfate showed the best salt rejection i.e. 96.23%. The characterization was carried out to understand the charge on the membrane surface by Zeta potential, morphology of membrane surface by scanning electron microscope (SEM), surface roughness features by atomic force microscope (AFM) and chemical structural changes by nuclear magnetic resonance (NMR) analysis.

  15. Characterization of phospholipid composition and its control in the plasma membrane of developing soybean root

    International Nuclear Information System (INIS)

    Whitman, C.E.

    1985-01-01

    The phospholipid composition of plasma membrane enriched fractions from developing soybean root and several mechanisms which may regulate it have been examined. Plasma membrane vesicles were isolated from meristematic and mature sections of four-day-old dark grown soybean roots (Glycine max [L.] Merr. Cult. Wells II). Analysis of lipid extracts revealed two major phospholipid classes: phosphatidylcholine and phosphatidylethanolamine. Minor phospholipid classes were phosphatidylinositol, phosphatidylserine, phosphatidylgylcerol and diphosphatidylgylcerol. Phospholipid composition was similar at each developmental stage. Fatty acids of phosphatidylcholine and phosphatidylethanolamine were 16:0, 18:0, 18:2, and 18:3. Fatty acid composition varied with both phospholipid class and the developmental stage of the root. The degradation of phosphatidylcholine by endogenous phospholipase D during membrane isolation indicated that this enzyme might be involved in phospholipid turnover within the membrane. Phospholipase D activity was heat labile and increasing the pH of the enzyme assay from 5.3 to 7.8 resulted in 90% inhibition of activity. The turnover of fatty acids within the phospholipids of the plasma membrane was studied. Mature root sections were incubated with [1- 14 C] acetate, 1 mM Na acetate and 50 μg/ml chloramphenicol. Membrane lipid extracts analyzed for phospholipid class and acyl chain composition revealed that the long incubation times did not alter the phospholipid composition of the plasma membrane enriched fraction

  16. A review on the use of membrane technology and fouling control for olive mill wastewater treatment.

    Science.gov (United States)

    Pulido, Javier Miguel Ochando

    2016-09-01

    Olive mill effluents (OME) by-produced have significantly increased in the last decades as a result of the boost of the olive oil agro-industrial sector and due to the conversion into continuous operation centrifugation technologies. In these effluents, the presence of phytotoxic recalcitrant pollutants makes them resistant to biological degradation and thus inhibits the efficiency of biological and conventional processes. Many reclamation treatments as well as integrated processes for OME have already been proposed and developed but not led to completely satisfactory and cost-effective results. Olive oil industries in its current status, typically small mills dispersed, cannot afford such high treatment costs. Furthermore, conventional treatments are not able to abate the significant dissolved monovalent and divalent ions concentration present in OME. Within this framework, membrane technology offers high efficiency and moderate investment and maintenance expenses. Wastewater treatment by membrane technologies is growing in the recent years. This trend is owed to the fact of the availability of new membrane materials, membrane designs, membrane module concepts and general know-how, which have promoted credibility among investors. However, fouling reduces the membrane performances in time and leads to premature substitution of the membrane modules, and this is a problem of cost efficiency since wastewater treatment must imply low operating costs. Appropriate fouling inhibition methods should assure this result, thus making membrane processes for wastewater stream treatment both technically and economically feasible. In this paper, the treatment of the effluents by-produced in olive mills, generally called olive mill wastewaters, will be addressed. Within this context, the state of the art of the different pretreatments and integral membrane processes proposed up to today will be gathered and discussed, with an insight in the problem of fouling. Copyright © 2015

  17. Oxidative Stress Parameters and Erythrocyte Membrane Adenosine Triphosphatase Activities in Streptozotocin-induced Diabetic Rats Administered Aqueous Preparation of Kalanchoe Pinnata Leaves.

    Science.gov (United States)

    Menon, Nikhil; Sparks, Jean; Omoruyi, Felix O

    2016-01-01

    Diabetes mellitus is a chronic metabolic disease that according to the World Health Organization affects more than 382 million people. The rise in diabetes mellitus coupled with the lack of an effective treatment has led many to investigate medicinal plants to identify a viable alternative. To evaluate red blood cell (RBC) membrane adenosine triphosphatase (ATPase) activities and antioxidant levels in streptozotocin-induced diabetic rats administered aqueous preparation of Kalanchoe pinnata leaves. Diabetes mellitus was induced in rats by a single administration of streptozotocin (60 mg/kg). Diabetic rats were then treated with aqueous K. pinnata preparation (three mature leaves ~ 9.96 g/70 kg body weight or about 0.14 g/kg body weight/day) for 30 days. Serum glucose, RBC membrane ATPase activities, and antioxidant levels were determined. We noted weight loss and reduced food consumption in the treated diabetic group. Serum glucose levels were reduced in the treated diabetic group compared to the other groups. Superoxide dismutase activity and glutathione levels were not significantly elevated in the treated group compared to the diabetic group. However, serum catalase activity was significantly (P < 0.05) increased in the treated diabetic group compared to the other groups. Serum thiobarbituric acid reactive substances were not significantly altered among the groups. There was a significant (P < 0.05) increase in Mg(2+) ATPase activity and a nonsignificant increase in Na(+)/K(+) ATPase activity in the RBC membrane of the treated diabetic group compared to the diabetic group. The consumption of aqueous preparation of K. pinnata may accrue benefits in the management of diabetes by lowering oxidative stress often associated with the disease and improving the availability of cellular magnesium through an increase in the magnesium ATPase pump in the RBC membrane for increased cellular metabolism of glucose through the glycolytic pathway. We noted weight loss and

  18. Comparison of the performance and EIS (electrochemical impedance spectroscopy) response of an activated PEMFC (proton exchange membrane fuel cell) under low and high thermal and pressure stresses

    International Nuclear Information System (INIS)

    Zhiani, Mohammad; Majidi, Somayeh; Silva, Valter Bruno; Gharibi, Hussein

    2016-01-01

    In this study, it was demonstrated that membrane electrode assembly (MEA) conditioning at the low stress condition produces a higher performance compared to MEA conditioning under the high stress condition, although it needs more time to accomplish. The maximum power density (MPD) of 1600 mW cm"−"2 was achieved by the MEA activated at low temperature and pressure (MEA-LTP) compared to the MEA activated at high temperature and pressure (MEA-HTP) in the same operating conditions, 1090 mW cm"−"2, whiles the MEA structure of both cells was identical. MEA conditioning at the low stress condition enhances not only the fuel cell power but also its energy efficiency by 25%. Comparison of electrochemical impedance spectroscopy (EIS) responses of MEA-LTP and MEA-HTP indicated that an extension of the triple phase boundary occurred in MEA-LTP, which was consistent with the results of the MEA performance analysis. - Highlights: • MEA activation at low and high P and T was studied and compared. • High steady state performance achieved by the activated MEA at low P and T. • Low R_c_t and R_m_t obtained by the activated MEA at low P and T. • Low stress condition for MEA activation is more effective than high stress status.

  19. Differential effects of controllable stress exposure on subsequent extinction learning in adult rats

    Directory of Open Access Journals (Sweden)

    Osnat eHadad-Ophir

    2016-01-01

    Full Text Available Deficits in fear extinction are thought to be related to various anxiety disorders. While failure to extinguish conditioned fear may result in pathological anxiety levels, the ability to quickly and efficiently attenuate learned fear through extinction processes can be extremely beneficial for the individual. One of the factors that may affect the efficiency of the extinction process is prior experience of stressful situations. In the current study, we examined whether exposure to controllable stress, which is suggested to induce stress resilience, can affect subsequent fear extinction. Here, following prolonged two-way shuttle (TWS avoidance training and a validation of acquired stress controllability, adult rats underwent either cued or contextual fear-conditioning (FC, followed by an extinction session. We further evaluated long lasting alterations of GABAergic targets in the medial pre-frontal cortex (mPFC, as these were implicated in FC and extinction and stress controllability. In cued, but not in contextual fear extinction, within-session extinction was enhanced following controllable stress compared to a control group. Interestingly, impaired extinction recall was detected in both extinction types following the stress procedure. Additionally, stress controllability-dependent alterations in GABAergic markers expression in infralimbic (IL, but not prelimbic (PL cortex, were detected. These alterations are proposed to be related to the within-session effect, but not the recall impairment. The results emphasize the contribution of prior experience on coping with subsequent stressful experiences. Moreover, the results emphasize that exposure to controllable stress does not generally facilitate future stress coping as previously claimed, but its effects are dependent on specific features of the events taking place.

  20. Combination of cupric ion with hydroxylamine and hydrogen peroxide for the control of bacterial biofilms on RO membranes.

    Science.gov (United States)

    Lee, Hye-Jin; Kim, Hyung-Eun; Lee, Changha

    2017-03-01

    Combinations of Cu(II) with hydroxylamine (HA) and hydrogen peroxide (H 2 O 2 ) (i.e., Cu(II)/HA, Cu(II)/H 2 O 2 , and Cu(II)/HA/H 2 O 2 systems) were investigated for the control of P. aeruginosa biofilms on reverse osmosis (RO) membranes. These Cu(II)-based disinfection systems effectively inactivated P. aeruginosa cells, exhibiting different behaviors depending on the state of bacterial cells (planktonic or biofilm) and the condition of biofilm growth and treatment (normal or pressurized condition). The Cu(II)/HA and Cu(II)/HA/H 2 O 2 systems were the most effective reagents for the inactivation of planktonic cells. However, these systems were not effective in inactivating cells in biofilms on the RO membranes possibly due to the interactions of Cu(I) with extracellular polymeric substances (EPS), where biofilms were grown and treated in center for disease control (CDC) reactors. Different from the results using CDC reactors, in a pressurized cross-flow RO filtration unit, the Cu(II)/HA/H 2 O 2 treatment significantly inactivated biofilm cells formed on the RO membranes, successfully recovering the permeate flux reduced by the biofouling. The pretreatment of feed solutions by Cu(II)/HA and Cu(II)/HA/H 2 O 2 systems (applied before the biofilm formation) effectively mitigated the permeate flux decline by preventing the biofilm growth on the RO membranes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The membrane-topogenic vectorial behaviour of Nrf1 controls its post-translational modification and transactivation activity.

    Science.gov (United States)

    Zhang, Yiguo; Hayes, John D

    2013-01-01

    The integral membrane-bound Nrf1 transcription factor fulfils important functions in maintaining cellular homeostasis and organ integrity, but how it is controlled vectorially is unknown. Herein, creative use of Gal4-based reporter assays with protease protection assays (GRAPPA), and double fluorescence protease protection (dFPP), reveals that the membrane-topogenic vectorial behaviour of Nrf1 dictates its post-translational modification and transactivation activity. Nrf1 is integrated within endoplasmic reticulum (ER) membranes through its NHB1-associated TM1 in cooperation with other semihydrophobic amphipathic regions. The transactivation domains (TADs) of Nrf1, including its Asn/Ser/Thr-rich (NST) glycodomain, are transiently translocated into the ER lumen, where it is glycosylated in the presence of glucose to become a 120-kDa isoform. Thereafter, the NST-adjoining TADs are partially repartitioned out of membranes into the cyto/nucleoplasmic side, where Nrf1 is subject to deglycosylation and/or proteolysis to generate 95-kDa and 85-kDa isoforms. Therefore, the vectorial process of Nrf1 controls its target gene expression.

  2. Combined effects of coagulation and adsorption on ultrafiltration membrane fouling control and subsequent disinfection in drinking water treatment.

    Science.gov (United States)

    Xing, Jiajian; Liang, Heng; Cheng, Xiaoxiang; Yang, Haiyan; Xu, Daliang; Gan, Zhendong; Luo, Xinsheng; Zhu, Xuewu; Li, Guibai

    2018-06-02

    This study investigated the combined effects of coagulation and powdered activated carbon (PAC) adsorption on ultrafiltration (UF) membrane fouling control and subsequent disinfection efficiency through filtration performance, dissolved organic carbon (DOC) removal, fluorescence excitation-emission matrix (EEM) spectroscopy, and disinfectant curve. The fouling behavior of UF membrane was comprehensively analyzed especially in terms of pollutant removal and fouling reversibility to understand the mechanism of fouling accumulation and disinfectant dose reduction. Pre-coagulation with or without adsorption both achieved remarkable effect of fouling mitigation and disinfection dose reduction. The two pretreatments were effective in total fouling control and pre-coagulation combined with PAC adsorption even decreased hydraulically irreversible fouling notably. Besides, pre-coagulation decreased residual disinfectant decline due to the removal of hydrophobic components of natural organic matters (NOM). Pre-coagulation combined with adsorption had a synergistic effect on further disinfectant decline rate reduction and decreased total disinfectant consumption due to additional removal of hydrophilic NOM by PAC adsorption. The disinfectant demand was further reduced after membrane. These results show that membrane fouling and disinfectant dose can be reduced in UF coupled with pretreatment, which could lead to the avoidance of excessive operation cost disinfectant dose for drinking water supply.

  3. Stress and adult smartphone addiction: Mediation by self-control, neuroticism, and extraversion.

    Science.gov (United States)

    Cho, Hea-Young; Kim, Dai Jin; Park, Jae Woo

    2017-12-01

    This study employed descriptive statistics and correlation analysis to examine the influence of stress on smartphone addiction as well as the mediating effects of self-control, neuroticism, and extraversion using 400 men and women in their 20s to 40s followed by structural equation analysis. Our findings indicate that stress had a significant influence on smartphone addiction, and self-control mediates the influence of stress on smartphone addiction. As stress increases, self-control decreases, which subsequently leads to increased smartphone addiction. Self-control was confirmed as an important factor in the prevention of smartphone addiction. Finally, among personality factors, neuroticism, and extraversion mediate the influence of stress on smartphone addiction. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane

    DEFF Research Database (Denmark)

    Fuglsang, Anja Thoe; Kristensen, Astrid; Cuin, Tracey A.

    2014-01-01

    Acidification of the cell wall space outside the plasma membrane is required for plant growth and is the result of proton extrusion by the plasma membrane-localized H+-ATPases. Here we show that the major plasma membrane proton pumps in Arabidopsis, AHA1 and AHA2, interact directly in vitro...... and in planta with PSY1R, a receptor kinase of the plasma membrane that serves as a receptor for the peptide growth hormone PSY1. The intracellular protein kinase domain of PSY1R phosphorylates AHA2/AHA1 at Thr-881, situated in the autoinhibitory region I of the C-terminal domain. When expressed in a yeast...... heterologous expression system, the introduction of a negative charge at this position caused pump activation. Application of PSY1 to plant seedlings induced rapid in planta phosphorylation at Thr-881, concomitant with an instantaneous increase in proton efflux from roots. The direct interaction between AHA2...

  5. Nonlinear observer-based Lyapunov boundary control of distributed heat transfer mechanisms for membrane distillation plant

    KAUST Repository

    Eleiwi, Fadi; Laleg-Kirati, Taous-Meriem

    2016-01-01

    , and seeks to maintain the temperature difference along the membrane boundaries around a sufficient level to promote water production. MD process is modeled with advection diffusion equation model in two dimensions, where the diffusion and convection heat

  6. Controlling the rejection of protein during membrane filtration by adding selected polyelectrolytes

    DEFF Research Database (Denmark)

    Pinelo, Manuel; Ferrer Roca, Carme; Meyer, Anne S.

    2012-01-01

    Electrostatic interactions among the charged groups on proteins and/or between proteins and other solutes significantly affect the aggregation/deposition phenomena that induce fouling and decrease permeate flux during membrane purification of proteins. Such interactions can be turned...... help enhance the performance of membrane filtration for fractionation/purification of a target protein by significantly reducing fouling and modifying rejection/selectivity.......) changing the pH, on the permeate flux and membrane transmission of bovin serum albumina (BSA) through a PVDF membrane. The addition of PS-co-AA to the feed solution resulted in significant increases of the BSA transmission at pH 7.4 as compared to the transmission of a pure BSA solution (1g...

  7. Biofouling Control in Spiral-Wound Membrane Systems: Impact of Feed Spacer Modification and Biocides

    KAUST Repository

    Siddiqui, Amber

    2016-01-01

    was developed. The combination of modeling and experimental testing of 3D printed spacers is a promising strategy to develop advanced spacers aiming to reduce the impact of biofilm formation on membrane performance and to improve the cleanability of spiral

  8. Personality differences in the susceptibility to stress-eating: The influence of emotional control and impulsivity.

    Science.gov (United States)

    Van Blyderveen, Sherry; Lafrance, Adele; Emond, Michael; Kosmerly, Stacey; O'Connor, Megan; Chang, Felicia

    2016-12-01

    Stress has been associated with deviations from typical eating patterns, with respect to both food choice and overall caloric intake. Both increases and decreases in dietary intake have been previously noted in response to stress. The purpose of the present study was to determine whether the affect regulation strategies of emotional control and impulsivity predict susceptibility to eating in response to stress. Specifically, it was anticipated that emotional suppression would predict decreases in caloric intake, whereas impulsivity would predict increases in caloric intake, in response to a stressor. Participants were randomly assigned to view either a video designed to elicit stress or a control video. Food was provided during the video and the amount and type of food consumed was measured. Participants' nutritional intake was greater in the stress condition than in the control condition. One aspect of affect regulation, impulsivity, moderated this relationship, with a tendency for greater impulsivity to be associated with greater caloric intake in the stress condition. The degree of negative affect that participants experienced in the stress condition predicted food choice and overall caloric intake. Both emotional control and impulsivity moderated the relationship between negative affect and both food choice and caloric intake in the stress condition. The present study highlights the importance of considering the personality attributes of both impulsivity and emotional suppression in understanding stress eating. Copyright © 2016. Published by Elsevier Ltd.

  9. ANALISIS PENGENDALIAN KUALITAS MEMBRAN DALAM PERVAPORASI ETANOL-AIR DENGAN MENGGUNAKAN METODE STATISTICAL QUALITY CONTROL

    Directory of Open Access Journals (Sweden)

    Miftahul Djana

    2018-01-01

    Full Text Available Pervaporation is an alternative separation process using membrane which allows separations of organic mixtures and dehydrates organic solvents with low energy consumption. The purpose of this experiment is to analyze the influence of operating parameters such as feed temperature, times, variation of feed ethanol water mixtures, variation of membranes on pervaporation performance shown by the flux and selectivity by using ceramic membranes with variation of diatomaceous earth and clay as separation. Pervaporation process performance is determined from permeate selectivity and flux. Increase of permeate selectivity and flux means also increasing performace of pervaporation. However, increasing product flux may contribute on decreasing selectivity. The research consists of membrane preparation, pervaporation process, and optimization. Feed of this research are ethanol-water mixture with temperature varying between 40-60oC and downstream pressure 0.5 mbar. Ceramic membrane is used and modification with 30,60,90% of diatomaceous earth. From the results, the membranes have successfully improved the flux of this research..The results showed that the operating conditions of 0,5mbar pressure of permeate, the variation in temperatures of 40ºC, 50ºC and º, th variation of membranes and times produces the flux increases and selectivity decreases.In these conditions the maximum temperature, 60ºC gives the flux of 0,1945 l/m2.hr and the selectivity of 1,7198. In these conditions produce fuel grade ethanol with purity levels reached 98% from 95% ethanol feed.The test results indicated the mean value of t = 31.400> t table = 2.00 and sig. =0,000 <α = 0.05, thus the average (mean of 1.806 issignificant. Thus the hypothesis that the level of damage membrane of the product significantly affect the processproduction is not proven.

  10. Life event stress in duodenal ulcer compared with functional dyspepsia: A case-control study

    OpenAIRE

    Abdel Hafeiz Hassan; Al Quorain Abdulaziz; Karim Ahmed; Al-Mangoor Shuaa

    1997-01-01

    This is a prospective study of life event stress in 80 duodenal ulcer patients compared with 80 patients with functional dyspepsia and 80 healthy controls; matched for age, sex and marital status. A semi structured psychiatric interview was used in the psychiatric assessment of the dyspeptic patients and controls. A modified version of Life Events Scale by Tennant and Andrews was used in the assessment of life event stress. More dyspeptic patients reported life events than the controls, but, ...

  11. CYCLIC PLASTIC BEHAVIOUR OF UFG COPPER UNDER CONTROLLED STRESS AND STRAIN LOADING

    Directory of Open Access Journals (Sweden)

    Lucie Navrátilová

    2012-01-01

    Full Text Available The influence of stress- and strain-controlled loading on microstructure and cyclic plastic behaviour of ultrafine-grained copper prepared by equal channel angular pressing was examined. The stability of microstructure is a characteristic feature for stress-controlled test whereas grain coarsening and development of bimodal structure was observed after plastic strain-controlled tests. An attempt to explain the observed behaviour was made.

  12. Stress

    Science.gov (United States)

    ... taking care of an aging parent. With mental stress, the body pumps out hormones to no avail. Neither fighting ... with type 1 diabetes. This difference makes sense. Stress blocks the body from releasing insulin in people with type 2 ...

  13. Occupational Stress and Hypertension among Railway Loco Pilots and Section Controllers

    OpenAIRE

    Jayakumar, Devasigamoney

    2017-01-01

    Introduction: A cross-sectional study on occupational stress was conducted on loco pilots in 2008, in view of loco pilots being one of the high strain jobs in Indian Railways. Subsequently, a comparative cross-sectional study on occupational stress was conducted among section controllers in 2011, which is another high strain job of Indian Railways. Objective: The studies were conducted to analyze and compare occupational stress and hypertension. Setting and Design: A cross-sectional study on ...

  14. Web-Based and Mobile Stress Management Intervention for Employees: A Randomized Controlled Trial

    OpenAIRE

    Heber, Elena; Lehr, Dirk; Ebert, David Daniel; Berking, Matthias; Riper, Heleen

    2016-01-01

    Background: Work-related stress is highly prevalent among employees and is associated with adverse mental health consequences. Web-based interventions offer the opportunity to deliver effective solutions on a large scale; however, the evidence is limited and the results conflicting. Objective: This randomized controlled trial evaluated the efficacy of guided Web-and mobile-based stress management training for employees. Methods: A total of 264 employees with elevated symptoms of stress (Perce...

  15. Measurement of the residual stresses in a PWR Control Rod Drive Mechanism nozzle

    OpenAIRE

    Coules, Harry; Smith, David

    2018-01-01

    Residual stress in the welds that attach Control Rod Drive Mechanism nozzles into the upper head of a PWR reactor vessel can influence the vessel's structural integrity and initiate Primary Water Stress Corrosion Cracking. PWSCC at Alloy 600 CRDM nozzles has caused primary coolant leakage in operating PWRs. We have used Deep Hole Drilling to characterise residual stresses in a PWR vessel head. Measurements of the internal cladding and nozzle attachment weld showed that although modest tensile...

  16. Relationship between resilience to stress, depression, anxiety, and diabetes control

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Iva; Hrachovinová, T.; Fejfarová, V.; Csémy, L.

    2002-01-01

    Roč. 45, - (2002), s. 19 ISSN 0012-186X. [Diabetologia. 01.09.2002-05.09.2002, Budapest] Institutional research plan: CEZ:AV0Z7025918 Keywords : stress-buffering personality factors * diabetes Subject RIV: AN - Psychology

  17. Update in the methodology of the chronic stress paradigm: internal control matters

    Directory of Open Access Journals (Sweden)

    Boyks Marco

    2011-04-01

    Full Text Available Abstract To date, the reliability of induction of a depressive-like state using chronic stress models is confronted by many methodological limitations. We believe that the modifications to the stress paradigm in mice proposed herein allow some of these limitations to be overcome. Here, we discuss a variant of the standard stress paradigm, which results in anhedonia. This anhedonic state was defined by a decrease in sucrose preference that was not exhibited by all animals. As such, we propose the use of non-anhedonic, stressed mice as an internal control in experimental mouse models of depression. The application of an internal control for the effects of stress, along with optimized behavioural testing, can enable the analysis of biological correlates of stress-induced anhedonia versus the consequences of stress alone in a chronic-stress depression model. This is illustrated, for instance, by distinct physiological and molecular profiles in anhedonic and non-anhedonic groups subjected to stress. These results argue for the use of a subgroup of individuals who are negative for the induction of a depressive phenotype during experimental paradigms of depression as an internal control, for more refined modeling of this disorder in animals.

  18. Update in the methodology of the chronic stress paradigm: internal control matters.

    Science.gov (United States)

    Strekalova, Tatyana; Couch, Yvonne; Kholod, Natalia; Boyks, Marco; Malin, Dmitry; Leprince, Pierre; Steinbusch, Harry Mw

    2011-04-27

    To date, the reliability of induction of a depressive-like state using chronic stress models is confronted by many methodological limitations. We believe that the modifications to the stress paradigm in mice proposed herein allow some of these limitations to be overcome. Here, we discuss a variant of the standard stress paradigm, which results in anhedonia. This anhedonic state was defined by a decrease in sucrose preference that was not exhibited by all animals. As such, we propose the use of non-anhedonic, stressed mice as an internal control in experimental mouse models of depression. The application of an internal control for the effects of stress, along with optimized behavioural testing, can enable the analysis of biological correlates of stress-induced anhedonia versus the consequences of stress alone in a chronic-stress depression model. This is illustrated, for instance, by distinct physiological and molecular profiles in anhedonic and non-anhedonic groups subjected to stress. These results argue for the use of a subgroup of individuals who are negative for the induction of a depressive phenotype during experimental paradigms of depression as an internal control, for more refined modeling of this disorder in animals.

  19. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose phosphate synthase and is required for a proper cold stress response

    KAUST Repository

    Almadanim, M. Cecília

    2017-01-19

    Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analyzing OsCPK17 knockout, silencing, and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress-inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose phosphate synthase OsSPS4, and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium-dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism.

  20. MPK-1 ERK Controls Membrane Organization in C. elegans Oogenesis via a Sex-Determination Module

    OpenAIRE

    Arur, Swathi; Ohmachi, Mitsue; Berkseth, Matt; Nayak, Sudhir; Hansen, David; Zarkower, David; Schedl, Tim

    2011-01-01

    Tissues that generate specialized cell-types in a production line must coordinate developmental mechanisms with physiological demand, although how this occurs is largely unknown. In the C. elegans hermaphrodite, the developmental sex-determination cascade specifies gamete sex in the distal germline, while physiological sperm signaling activates MPK-1/ERK in the proximal germline to control plasma membrane biogenesis/organization during oogenesis. We discovered repeated utilization of a self-c...

  1. Reduced-Order Dynamic Modeling, Fouling Detection, and Optimal Control of Solar-Powered Direct Contact Membrane Distillation

    KAUST Repository

    Karam, Ayman M.

    2016-12-01

    Membrane Distillation (MD) is an emerging sustainable desalination technique. While MD has many advantages and can be powered by solar thermal energy, its main drawback is the low water production rate. However, the MD process has not been fully optimized in terms of its manipulated and controlled variables. This is largely due to the lack of adequate dynamic models to study and simulate the process. In addition, MD is prone to membrane fouling, which is a fault that degrades the performance of the MD process. This work has three contributions to address these challenges. First, we derive a mathematical model of Direct Contact Membrane Distillation (DCMD), which is the building block for the next parts. Then, the proposed model is extended to account for membrane fouling and an observer-based fouling detection method is developed. Finally, various control strategies are implemented to optimize the performance of the DCMD solar-powered process. In part one, a reduced-order dynamic model of DCMD is developed based on lumped capacitance method and electrical analogy to thermal systems. The result is an electrical equivalent thermal network to the DCMD process, which is modeled by a system of nonlinear differential algebraic equations (DAEs). This model predicts the water-vapor flux and the temperature distribution along the module length. Experimental data is collected to validate the steady-state and dynamic responses of the proposed model, with great agreement demonstrated in both. The second part proposes an extension of the model to account for membrane fouling. An adaptive observer for DAE systems is developed and convergence proof is presented. A method for membrane fouling detection is then proposed based on adaptive observers. Simulation results demonstrate the performance of the membrane fouling detection method. Finally, an optimization problem is formulated to maximize the process efficiency of a solar-powered DCMD. The adapted method is known as Extremum

  2. Physical activity, mindfulness meditation, or heart rate variability biofeedback for stress reduction: a randomized controlled trial

    NARCIS (Netherlands)

    van der Zwan, J.E.; de Vente, W.; Huizink, A.C.; Bögels, S.M.; de Bruin, E.I.

    2015-01-01

    In contemporary western societies stress is highly prevalent, therefore the need for stress-reducing methods is great. This randomized controlled trial compared the efficacy of self-help physical activity (PA), mindfulness meditation (MM), and heart rate variability biofeedback (HRV-BF) in reducing

  3. The incorporation of displacement-controlled loadings within the net-section stress failure criterion

    International Nuclear Information System (INIS)

    Smith, E.

    1985-01-01

    A net-section stress failure criterion can be used to evaluate the critical flaw size for a material having a high fracture resistance. A simple analysis shows that the stress arising from displacement-controlled loadings should be taken into account fully if the applied tearing modulus exceeds a critical value. (author)

  4. Predicting and Explaining Students' Stress with the Demand-Control Model: Does Neuroticism Also Matter?

    Science.gov (United States)

    Schmidt, Laura I.; Sieverding, Monika; Scheiter, Fabian; Obergfell, Julia

    2015-01-01

    University students often report high stress levels, and studies even suggest a recent increase. However, there is a lack of theoretically based research on the structural conditions that influence students' perceived stress. The current study compared the effects of Karasek's demand-control dimensions with the influence of neuroticism to address…

  5. Role Stress Revisited: Job Structuring Antecedents, Work Outcomes, and Moderating Effects of Locus of Control

    Science.gov (United States)

    Conley, Sharon; You, Sukkyung

    2014-01-01

    A previous study examined role stress in relation to work outcomes; in this study, we added job structuring antecedents to a model of role stress and examined the moderating effects of locus of control. Structural equation modeling was used to assess the plausibility of our conceptual model, which specified hypothesized linkages among teachers'…

  6. Hypothalamic-Pituitary-Adrenal Axis Physiology and Cognitive Control of Behavior in Stress Inoculated Monkeys

    Science.gov (United States)

    Parker, Karen J.; Buckmaster, Christine L.; Lindley, Steven E.; Schatzberg, Alan F.; Lyons, David M.

    2012-01-01

    Monkeys exposed to stress inoculation protocols early in life subsequently exhibit diminished neurobiological responses to moderate psychological stressors and enhanced cognitive control of behavior during juvenile development compared to non-inoculated monkeys. The present experiments extended these findings and revealed that stress inoculated…

  7. Controlled drug release from cross-linked κ-carrageenan/hyaluronic acid membranes.

    Science.gov (United States)

    El-Aassar, M R; El Fawal, G F; Kamoun, Elbadawy A; Fouda, Moustafa M G

    2015-01-01

    In this work, hydrogel membrane composed of; kappa carrageenan (κC) and hyaluronic acid (HA) crosslinked with epichlorohydrine is produced. The optimum condition has been established based on their water absorption properties. Tensile strength (TS) and elongation (E%) for the formed films are evaluated. The obtained films were characterized by FTIR, scanning electron microscopy (SEM) and thermal analysis. All membranes were loaded with l-carnosine as a drug model. The swelling properties and kinetics of the release of the model drug from the crosslinked hydrogel membrane were monitored in buffer medium at 37°C. The equilibrium swelling of films showed fair dependency on the high presence of HA in the hydrogel. Moreover, the cumulative release profile increased significantly and ranged from 28% to 93%, as HA increases. SEM explored that, the porosity increased by increasing HA content; consequently, drug release into the pores and channels of the membranes is facilitated. In addition, water uptake % increased as well. A slight change in TS occurred by increasing the HA% to κC, while the highest value of strain for κC membrane was 498.38% by using 3% HA. The thermal stability of the κC/HA was higher than that of HA. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges

    Energy Technology Data Exchange (ETDEWEB)

    Ngamou, P.H.T.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Overbeek, J.P.; Kreiter, R.; Van Veen, H.M.; Vente, J.F. [ECN, Energy research Centre of the Netherlands, Petten (Netherlands); Wienk, I.M.; Cuperus, P.F. [SolSep BV, Apeldoorn (Netherlands)

    2013-03-05

    Hybrid organically bridged silica membranes are suitable for energy-efficient molecular separations under harsh industrial conditions. Such membranes can be useful in organic solvent nanofiltration if they can be deposited on flexible, porous and large area supports. Here, we report the proof of concept for applying an expanding thermal plasma to the synthesis of perm-selective hybrid silica films from an organically bridged monomer, 1,2-bis(triethoxysilyl)ethane. This membrane is the first in its class to be produced by plasma enhanced chemical vapor deposition. By tuning the plasma and process parameters, the organic bridging groups could be retained in the separating layer. This way, a defect free film could be made with pervaporation performances of an n-butanol-water mixture comparable with those of conventional ceramic supported membranes made by sol-gel technology (i.e. a water flux of [similar]1.8 kg m'-{sup 2} h{sup -1}, a water concentration in the permeate higher than 98% and a separation factor of >1100). The obtained results show the suitability of expanding thermal plasma as a technology for the deposition of hybrid silica membranes for molecular separations.

  9. Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors.

    Science.gov (United States)

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-07-01

    Ultrasound at 20 kHz was applied to a cross-flow ultrafiltration system with gamma-alumina membranes in the presence of colloidal silica particles to systematically investigate how ultrasonic factors affect membrane cleaning. Based on imaging of the ultrasonic cavitation region, optimal cleaning occurred when the membrane was outside but close to the cavitation region. Increasing the filtration pressure increased the compressive forces driving cavitation collapse and resulted in fewer cavitation bubbles absorbing and scattering sound waves and increasing sound wave penetration. However, an increased filtration pressure also resulted in greater permeation drag, and subsequently less improvement in permeate flux compared to low filtration pressure. Finally, pulsed ultrasound with short pulse intervals resulted in permeate flux improvement close to that of continuous sonication.

  10. Confinement of activating receptors at the plasma membrane controls natural killer cell tolerance.

    Science.gov (United States)

    Guia, Sophie; Jaeger, Baptiste N; Piatek, Stefan; Mailfert, Sébastien; Trombik, Tomasz; Fenis, Aurore; Chevrier, Nicolas; Walzer, Thierry; Kerdiles, Yann M; Marguet, Didier; Vivier, Eric; Ugolini, Sophie

    2011-04-05

    Natural killer (NK) cell tolerance to self is partly ensured by major histocompatibility complex (MHC) class I-specific inhibitory receptors on NK cells, which dampen their reactivity when engaged. However, NK cells that do not detect self MHC class I are not autoreactive. We used dynamic fluorescence correlation spectroscopy to show that MHC class I-independent NK cell tolerance in mice was associated with the presence of hyporesponsive NK cells in which both activating and inhibitory receptors were confined in an actin meshwork at the plasma membrane. In contrast, the recognition of self MHC class I by inhibitory receptors "educated" NK cells to become fully reactive, and activating NK cell receptors became dynamically compartmentalized in membrane nanodomains. We propose that the confinement of activating receptors at the plasma membrane is pivotal to ensuring the self-tolerance of NK cells.

  11. High Performance Platinum Group Metal Free Membrane Electrode Assemblies through Control of Interfacial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Katherine [Proton Energy Systems, Wallingford, CT (United States); Capuano, Christopher [Proton Energy Systems, Wallingford, CT (United States); Atanassov, Plamen [Univ. of New Mexico, Albuquerque, NM (United States); Mukerjee, Sanjeev [Northeastern Univ., Boston, MA (United States); Hickner, Michael [Pennsylvania State Univ., University Park, PA (United States)

    2017-11-29

    The quantitative goal of this project was to produce a high-performance anion exchange membrane water electrolyzer (AEM-WE) completely free of platinum group metals (PGMs), which could operate for at least 500 hours with less than 50 microV/hour degradation, at 500 mA/cm2. To achieve this goal, work focused on the optimization of electrocatalyst conductivity, with dispersion and utilization in the membrane electrode assembly (MEA) improved through refinement of deposition techniques. Critical factors were also explored with significant work undertaken by Northeastern University to further understand catalyst-membrane-ionomer interfaces and how they differ from liquid electrolyte. Water management and optimal cell operational parameters were established through the design, fabrication, and test of a new test station at Proton specific for AEM evaluation. Additionally, AEM material stability and robustness at high potentials and gas evolution conditions were advanced at Penn State.

  12. Self-stress control of real civil engineering tensegrity structures

    Science.gov (United States)

    Kłosowska, Joanna; Obara, Paulina; Gilewski, Wojciech

    2018-01-01

    The paper introduces the impact of the self-stress level on the behaviour of the tensegrity truss structures. Displacements for real civil engineering tensegrity structures are analysed. Full-scale tensegrity tower Warnow Tower which consists of six Simplex trusses is considered in this paper. Three models consisting of one, two and six modules are analysed. The analysis is performed by the second and third order theory. Mathematica software and Sofistik programme is applied to the analysis.

  13. Inhibitory Control Mediates the Association between Perceived Stress and Secure Relationship Quality.

    Science.gov (United States)

    Herd, Toria; Li, Mengjiao; Maciejewski, Dominique; Lee, Jacob; Deater-Deckard, Kirby; King-Casas, Brooks; Kim-Spoon, Jungmeen

    2018-01-01

    Past research has demonstrated negative associations between exposure to stressors and quality of interpersonal relationships among children and adolescents. Nevertheless, underlying mechanisms of this association remain unclear. Chronic stress has been shown to disrupt prefrontal functioning in the brain, including inhibitory control abilities, and evidence is accumulating that inhibitory control may play an important role in secure interpersonal relationship quality, including peer problems and social competence. In this prospective longitudinal study, we examine whether changes in inhibitory control, measured at both behavioral and neural levels, mediate the association between stress and changes in secure relationship quality with parents and peers. The sample included 167 adolescents (53% males) who were first recruited at age 13 or 14 years and assessed annually three times. Adolescents' inhibitory control was measured by their behavioral performance and brain activities, and adolescents self-reported perceived stress levels and relationship quality with mothers, fathers, and peers. Results suggest that behavioral inhibitory control mediates the association between perceived stress and adolescent's secure relationship quality with their mothers and fathers, but not their peers. In contrast, given that stress was not significantly correlated with neural inhibitory control, we did not further test the mediation path. Our results highlight the role of inhibitory control as a process through which stressful life experiences are related to impaired secure relationship quality between adolescents and their mothers and fathers.

  14. Inhibitory Control Mediates the Association between Perceived Stress and Secure Relationship Quality

    Directory of Open Access Journals (Sweden)

    Toria Herd

    2018-02-01

    Full Text Available Past research has demonstrated negative associations between exposure to stressors and quality of interpersonal relationships among children and adolescents. Nevertheless, underlying mechanisms of this association remain unclear. Chronic stress has been shown to disrupt prefrontal functioning in the brain, including inhibitory control abilities, and evidence is accumulating that inhibitory control may play an important role in secure interpersonal relationship quality, including peer problems and social competence. In this prospective longitudinal study, we examine whether changes in inhibitory control, measured at both behavioral and neural levels, mediate the association between stress and changes in secure relationship quality with parents and peers. The sample included 167 adolescents (53% males who were first recruited at age 13 or 14 years and assessed annually three times. Adolescents’ inhibitory control was measured by their behavioral performance and brain activities, and adolescents self-reported perceived stress levels and relationship quality with mothers, fathers, and peers. Results suggest that behavioral inhibitory control mediates the association between perceived stress and adolescent’s secure relationship quality with their mothers and fathers, but not their peers. In contrast, given that stress was not significantly correlated with neural inhibitory control, we did not further test the mediation path. Our results highlight the role of inhibitory control as a process through which stressful life experiences are related to impaired secure relationship quality between adolescents and their mothers and fathers.

  15. Social exclusion, personal control, self-regulation, and stress among substance abuse treatment clients.

    Science.gov (United States)

    Cole, Jennifer; Logan, T K; Walker, Robert

    2011-01-01

    The purpose of this study was to examine the relationship of social exclusion, personal control, and self-regulation to perceived stress among individuals who participated in publicly funded substance abuse treatment. Participants entered treatment between June 2006 and July 2007 and completed a 12-month follow-up survey by telephone (n=787). The results of the OLS regression analysis indicate that individuals with greater social exclusion factors (e.g. greater economic hardship, lower subjective social standing, greater perceived discrimination), lower perceived control of one's life, and lower self-regulation had higher perceived stress. Furthermore, a significant interaction was found suggesting a stress-buffering effect of personal control between subjective social standing and perceived stress. Interestingly, income status was not significantly related to perceived stress, while economic hardship, which assesses participants' inability to meet basic expenses, was significantly associated with perceived stress. Future research should examine how to integrate the AA/NA teaching about powerlessness and its role in recovery with the importance of increased personal control and self-control in decreasing perceived stress. Implications for future research and substance abuse treatment are discussed. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Interrelations of stress, optimism and control in older people's psychological adjustment.

    Science.gov (United States)

    Bretherton, Susan Jane; McLean, Louise Anne

    2015-06-01

    To investigate the influence of perceived stress, optimism and perceived control of internal states on the psychological adjustment of older adults. The sample consisted of 212 older adults, aged between 58 and 103 (M = 80.42 years, SD = 7.31 years), living primarily in retirement villages in Melbourne, Victoria. Participants completed the Perceived Stress Scale, Life Orientation Test-Revised, Perceived Control of Internal States Scale and the World Health Organisation Quality of Life-Bref. Optimism significantly mediated the relationship between older people's perceived stress and psychological health, and perceived control of internal states mediated the relationships among stress, optimism and psychological health. The variables explained 49% of the variance in older people's psychological adjustment. It is suggested that strategies to improve optimism and perceived control may improve the psychological adjustment of older people struggling to adapt to life's stressors. © 2014 ACOTA.

  17. Self-Guided Multimedia Stress Management and Resilience Training for Flight Controllers

    Science.gov (United States)

    Rose, R. D.; Zbozinek, T. D.; Hentschel, P. G.; Smith, S, M.; O'Brien J.; Oftedal, A.; Craske, M. G.

    2016-01-01

    Stress and anxiety-related problems are among the most common and costly behavioral health problems in society, and for those working in operational environments (i.e. astronauts, flight controllers, military) this can seriously impact crew performance, safety, and wellbeing. Technology-based interventions are effective for treating behavioral health problems, and can significantly improve the delivery of evidence-based health care. This study is evaluating the effectiveness, usefulness, and usability of a self-guided multimedia stress management and resilience training program in a randomized controlled trial (RCT) with a sample of flight controllers at Johnson Space Center. The intervention, SMART-OP (Stress Management and Resilience Training for Optimal Performance), is a six-session, cognitive behavioral-based computer program that uses self-guided, interactive activities to teach skills that can help individuals build resilience and manage stress. In a prior RCT with a sample of stressed but otherwise healthy individuals, SMART-OP reduced perceived stress and increased perceived control over stress in comparison to an Attention Control (AC) group. SMART-OP was rated as "highly useful" and "excellent" in usability and acceptability. Based on a-amylase data, individuals in SMART-OP recovered quicker and more completely from a social stress test as compared to the AC group [1]. In the current study, flight controllers are randomized either to receive SMART-OP training, or to a 6-week waitlist control period (WLC) before beginning SMART-OP. Eligible participants include JSC flight controllers and instructors without any medical or psychiatric disorder, but who are stressed based on self-report. Flight controllers provide a valid analog sample to astronauts in that they work in an operational setting, use similar terminology to astronauts, are mission-focused, and work under the same broader work culture. The study began in December 2014, and to date 79 flight

  18. Prevention of brittle fracture of steel structures by controlling the local stress and strain fields

    Directory of Open Access Journals (Sweden)

    Moyseychik Evgeniy Alekseevich

    Full Text Available In the article the author offers a classification of the methods to increase the cold resistance of steel structural shapes with a focus on the regulation of local fields of internal stresses and strains to prevent brittle fracture of steel structures. The need of a computer thermography is highlighted not only for visualization of temperature fields on the surface, but also to control the fields of residual stresses and strains in a controlled element.

  19. Acceptance lowers stress reactivity: Dismantling mindfulness training in a randomized controlled trial.

    Science.gov (United States)

    Lindsay, Emily K; Young, Shinzen; Smyth, Joshua M; Brown, Kirk Warren; Creswell, J David

    2018-01-01

    Mindfulness interventions, which train practitioners to monitor their present-moment experience with a lens of acceptance, are known to buffer stress reactivity. Little is known about the active mechanisms driving these effects. We theorize that acceptance is a critical emotion regulation mechanism underlying mindfulness stress reduction effects. In this three-arm parallel trial, mindfulness components were dismantled into three structurally equivalent 15-lesson smartphone-based interventions: (1) training in both monitoring and acceptance (Monitor+Accept), (2) training in monitoring only (Monitor Only), or (3) active control training (Coping control). 153 stressed adults (mean age=32years; 67% female; 53% white, 21.5% black, 21.5% Asian, 4% other race) were randomly assigned to complete one of three interventions. After the intervention, cortisol, blood pressure, and subjective stress reactivity were assessed using a modified Trier Social Stress Test. As predicted, Monitor+Accept training reduced cortisol and systolic blood pressure reactivity compared to Monitor Only and control trainings. Participants in all three conditions reported moderate levels of subjective stress. This study provides the first experimental evidence that brief smartphone mindfulness training can impact stress biology, and that acceptance training drives these effects. We discuss implications for basic and applied research in contemplative science, emotion regulation, stress and coping, health, and clinical interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Occupational Stress and Hypertension among Railway Loco Pilots and Section Controllers

    Science.gov (United States)

    Jayakumar, Devasigamoney

    2017-01-01

    Introduction: A cross-sectional study on occupational stress was conducted on loco pilots in 2008, in view of loco pilots being one of the high strain jobs in Indian Railways. Subsequently, a comparative cross-sectional study on occupational stress was conducted among section controllers in 2011, which is another high strain job of Indian Railways. Objective: The studies were conducted to analyze and compare occupational stress and hypertension. Setting and Design: A cross-sectional study on occupational stress and hypertension was conducted among 230 loco pilots in 2008, and subsequently, a comparative cross-sectional study was conducted among 82 section controllers in 2011. Materials and Methods: A closed end 24 item questionnaire on occupational stress was administered. Systolic blood pressure above 140 mmHg and diastolic blood pressure above 90 mmHg were considered as hypertension as per the VII Joint National Committee. Chi-square test and t-test were used for testing significance at P < 0.05. Results: The mean stress score was 8.56 in loco pilots and 7.32 in section controllers. The number of loco pilots with more than 12 stress factors was 49 (21.3%) and the number of section controllers with more than 12 stress factors was 7 (8.5%). The number employees with more than 12 stress factors in different categories of loco pilots were 30 (32%) in the goods category, 12 (12%) in the mail/passenger category, and 7 (19%) in the shunter category, and 3 (11%) in the supervisory category and 4 (7%) in the on-board category of section controllers. The prevalence of hypertension in loco pilots was 36.52% (84) and in the section controllers was 53.66% (44). The prevalence of hypertension in the category with more than 12 stress factors was 30.61% (15) in the loco pilots and 28.57% (2) in the section controllers. The prevalence of hypertension in the both the study groups were higher in the older age, with a family history of hypertension, and with a body mass index of

  1. Occupational Stress and Hypertension among Railway Loco Pilots and Section Controllers.

    Science.gov (United States)

    Jayakumar, Devasigamoney

    2017-01-01

    A cross-sectional study on occupational stress was conducted on loco pilots in 2008, in view of loco pilots being one of the high strain jobs in Indian Railways. Subsequently, a comparative cross-sectional study on occupational stress was conducted among section controllers in 2011, which is another high strain job of Indian Railways. The studies were conducted to analyze and compare occupational stress and hypertension. A cross-sectional study on occupational stress and hypertension was conducted among 230 loco pilots in 2008, and subsequently, a comparative cross-sectional study was conducted among 82 section controllers in 2011. A closed end 24 item questionnaire on occupational stress was administered. Systolic blood pressure above 140 mmHg and diastolic blood pressure above 90 mmHg were considered as hypertension as per the VII Joint National Committee. Chi-square test and t -test were used for testing significance at P stress score was 8.56 in loco pilots and 7.32 in section controllers. The number of loco pilots with more than 12 stress factors was 49 (21.3%) and the number of section controllers with more than 12 stress factors was 7 (8.5%). The number employees with more than 12 stress factors in different categories of loco pilots were 30 (32%) in the goods category, 12 (12%) in the mail/passenger category, and 7 (19%) in the shunter category, and 3 (11%) in the supervisory category and 4 (7%) in the on-board category of section controllers. The prevalence of hypertension in loco pilots was 36.52% (84) and in the section controllers was 53.66% (44). The prevalence of hypertension in the category with more than 12 stress factors was 30.61% (15) in the loco pilots and 28.57% (2) in the section controllers. The prevalence of hypertension in the both the study groups were higher in the older age, with a family history of hypertension, and with a body mass index of more than 25 kg/m 2 . The mean occupational stress and employees with more than 12 stress

  2. Control and Experimental Characterization of a Methanol Reformer for a 350 W High Temperature Polymer Electrolyte Membrane Fuel Cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    , i.e. cathode and anode gas flows and temperature by using mass flow controllers and controlled heaters. Using this system the methanol reformer is characterized in its different operating points, both steady-state but also dynamically. Methanol steam reforming is a well known process, and provides...... and burner and the behaviour of the CO concentration of the reformate gas....... the high temperature waste gas from a cathode air cooled 45 cell HTPEM fuel cell stack. The MEAs used are BASF P2100 which use phosphoric acid doped polybenzimidazole type membranes; an MEA with high CO tolerance and no complex humidity requirements. The methanol reformer used is integrated into a compact...

  3. Activation of stretch-activated channels and maxi-K+ channels by membrane stress of human lamina cribrosa cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2009-01-01

    The lamina cribrosa (LC) region of the optic nerve head is considered the primary site of damage in glaucomatous optic neuropathy. Resident LC cells have a profibrotic potential when exposed to cyclical stretch. However, the mechanosensitive mechanisms of these cells remain unknown. Here the authors investigated the effects of membrane stretch on cell volume change and ion channel activity and examined the associated changes in intracellular calcium ([Ca(2+)](i)).

  4. Expression of three topologically distinct membrane proteins elicits unique stress response pathways in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Buck, Teresa M; Jordan, Rick; Lyons-Weiler, James; Adelman, Joshua L; Needham, Patrick G; Kleyman, Thomas R; Brodsky, Jeffrey L

    2015-06-01

    Misfolded membrane proteins are retained in the endoplasmic reticulum (ER) and are subject to ER-associated degradation, which clears the secretory pathway of potentially toxic species. While the transcriptional response to environmental stressors has been extensively studied, limited data exist describing the cellular response to misfolded membrane proteins. To this end, we expressed and then compared the transcriptional profiles elicited by the synthesis of three ER retained, misfolded ion channels: The α-subunit of the epithelial sodium channel, ENaC, the cystic fibrosis transmembrane conductance regulator, CFTR, and an inwardly rectifying potassium channel, Kir2.1, which vary in their mass, membrane topologies, and quaternary structures. To examine transcriptional profiles in a null background, the proteins were expressed in yeast, which was previously used to examine the degradation requirements for each substrate. Surprisingly, the proteins failed to induce a canonical unfolded protein response or heat shock response, although messages encoding several cytosolic and ER lumenal protein folding factors rose when αENaC or CFTR was expressed. In contrast, the levels of these genes were unaltered by Kir2.1 expression; instead, the yeast iron regulon was activated. Nevertheless, a significant number of genes that respond to various environmental stressors were upregulated by all three substrates, and compared with previous microarray data we deduced the existence of a group of genes that reflect a novel misfolded membrane protein response. These data indicate that aberrant proteins in the ER elicit profound yet unique cellular responses. Copyright © 2015 the American Physiological Society.

  5. Membrane contactors in the beverage industry for controlling the water gas composition.

    Science.gov (United States)

    Criscuoli, Alessandra; Drioli, Enrico; Moretti, Ugo

    2003-03-01

    In the work described here, membrane contactors are used for coupling the removal of species (oxygen and hydrogen sulfide) present in the water with the water carbonation process. We include both experiments and a theoretical study devoted to the analysis of the transport phenomena that occur in the membrane contactor. The main resistance to mass transport was located at the liquid side. Correlations between Sherwood and Reynolds numbers on the shell side that are suitable for the membrane contactor used to carry out our experiments have been determined. In particular, for Re > 1.6, the expression proposed by Yang and Cussler in 1986: Sh = 0.90 Re(0.40) Sc(0.33) describes the behavior of the system; whereas, for Re between 0.03 and 0.3, a new expression is proposed: Sh = 0.435 Re(1.2)Sc(0.33). A comparison with traditional equipment is also furnished. Membrane contactors offer reduced size, CO(2) consumption, and capital costs.

  6. pH control structure design for a periodically operated membrane separation process

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    2012-01-01

    A bioreactor integrated with an electrically driven membrane separation process (Reverse Electro-Enhanced Dialysis – REED) is under investigation as potential technology for intensifying lactic acid bioproduction. In this contribution the pH regulation issue in the periodically operated REED module...

  7. Tomato UDP-Glucose Sterol Glycosyltransferases: A Family of Developmental and Stress Regulated Genes that Encode Cytosolic and Membrane-Associated Forms of the Enzyme

    Directory of Open Access Journals (Sweden)

    Karla Ramirez-Estrada

    2017-06-01

    Full Text Available Sterol glycosyltransferases (SGTs catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic

  8. Titanium Dioxide Nanoparticles Induce Endoplasmic Reticulum Stress-Mediated Autophagic Cell Death via Mitochondria-Associated Endoplasmic Reticulum Membrane Disruption in Normal Lung Cells

    Science.gov (United States)

    Yu, Kyeong-Nam; Chang, Seung-Hee; Park, Soo Jin; Lim, Joohyun; Lee, Jinkyu; Yoon, Tae-Jong; Kim, Jun-Sung; Cho, Myung-Haing

    2015-01-01

    Nanomaterials are used in diverse fields including food, cosmetic, and medical industries. Titanium dioxide nanoparticles (TiO2-NP) are widely used, but their effects on biological systems and mechanism of toxicity have not been elucidated fully. Here, we report the toxicological mechanism of TiO2-NP in cell organelles. Human bronchial epithelial cells (16HBE14o-) were exposed to 50 and 100 μg/mL TiO2-NP for 24 and 48 h. Our results showed that TiO2-NP induced endoplasmic reticulum (ER) stress in the cells and disrupted the mitochondria-associated endoplasmic reticulum membranes (MAMs) and calcium ion balance, thereby increasing autophagy. In contrast, an inhibitor of ER stress, tauroursodeoxycholic acid (TUDCA), mitigated the cellular toxic response, suggesting that TiO2-NP promoted toxicity via ER stress. This novel mechanism of TiO2-NP toxicity in human bronchial epithelial cells suggests that further exhaustive research on the harmful effects of these nanoparticles in relevant organisms is needed for their safe application. PMID:26121477

  9. Short-term impact of a stress management and health promotion program on perceived stress, parental stress, health locus of control, and cortisol levels in parents of children and adolescents with diabetes type 1: a pilot randomized controlled trial.

    Science.gov (United States)

    Tsiouli, Eleni; Pavlopoulos, Vassilis; Alexopoulos, Evangelos C; Chrousos, George; Darviri, Christina

    2014-01-01

    Parents of children and adolescents with diabetes type 1 (DT1) usually experience high stress levels, as they have to cope with multiple demands in their everyday life. Different complex interventions have been implemented, which sometimes have led to opposite results. The purpose of this study was to assess stress levels in parents of children and adolescents with DT1 and to evaluate the effectiveness of a stress management program (progressive muscle relaxation combined with diaphragmatic breathing) in reducing perceived and parenting stress, increasing internal locus of control, promoting healthy lifestyle, and normalizing cortisol levels. Randomized controlled trial. A total of 44 parents were randomly assigned to the intervention group (performing relaxation for eight weeks, n = 19) and control group (n = 25). Pre-post measurements included cortisol levels, lifestyle characteristics, perceived stress, perception of health, and parenting stress. A statistically significant decrease in perceived stress (from 27.21 to 19.00, P = .001), as well as in parenting stress (from 85.79 to 73.68, P = .003), was observed in the intervention group. A statistically significant difference was found in perceived stress between the two groups after the intervention (Dmean = 6.64, P = .010). No significant difference was revealed between or within the groups in cortisol levels. Significant improvement was reported by the subjects of the intervention group in various lifestyle parameters. Relaxation techniques seem to have a positive impact on stress and on various lifestyle factors in parents of children and adolescents with DT1. Future research on long-term benefits of an intervention program comprising of various relaxation schemes is warranted. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Identification of water stress genes in Pinus pinaster Ait. by controlled progressive stress and suppression-subtractive hybridization.

    Science.gov (United States)

    Perdiguero, Pedro; Collada, Carmen; Barbero, María Del Carmen; García Casado, Gloria; Cervera, María Teresa; Soto, Alvaro

    2012-01-01

    Climate change is a major challenge particularly for forest tree species, which will have to face the severe alterations of environmental conditions with their current genetic pool. Thus, an understanding of their adaptive responses is of the utmost interest. In this work we have selected Pinus pinaster as a model species. This pine is one of the most important conifers (for which molecular tools and knowledge are far more scarce than for angiosperms) in the Mediterranean Basin, which is characterised in all foreseen scenarios as one of the regions most drastically affected by climate change, mainly because of increasing temperature and, particularly, by increasing drought. We have induced a controlled, increasing water stress by adding PEG to a hydroponic culture. We have generated a subtractive library, with the aim of identifying the genes induced by this stress and have searched for the most reliable expressional candidate genes, based on their overexpression during water stress, as revealed by microarray analysis and confirmed by RT-PCR. We have selected a set of 67 candidate genes belonging to different functional groups that will be useful molecular tools for further studies on drought stress responses, adaptation, and population genomics in conifers, as well as in breeding programs. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. Stressful life events and Graves' disease: Results of a case control study

    International Nuclear Information System (INIS)

    Pintor, A.B.; Barrenechea, E.A.; Laureta, E.G.; Ligon, R.A.

    2003-01-01

    Prolonged worry has generally been acknowledged as one of the main precipitating factors of the onset of Graves' disease. A review of literature reveals that emotional stresses of considerable severity precede the onset of hyperthyroidism in about 90% of cases. However, not everyone subscribes to the Stress/Graves' disease hypothesis. Attempts to resolve this issue have tended to focus on whether a correlation can be shown between the magnitude of antecedent life events and the disease. Hence the main objective of the present study was to identify the possible association between stressful life events and Graves' disease. This paper presents the results of a case-control study, involving patents and subjects from the Veterans Memorial Medical Centre of Manila. A total of 224 patients of Graves' disease, newly or previously diagnosed, representing the 'patient's' arm were interviewed. All patients were questioned regarding various stresses, which greatly affected their life style spanning over a 12-month period prior to the onset of the disease. Simultaneously, 224 control subjects were also interviewed, and their stresses spanning over a similar period preceding the dates of interviews were recorded in quantifiable terms. Different stresses were given different intensity scores based on a social readjustment scale taking into consideration the life situations, emotions and diseases. In cases of multiple stresses, intensity scores were added to obtain the total stress intensity. Results were expressed as mean, standard deviation, median, frequency and percent distribution. Scatter plot was also constructed for intensity of stressful life events. To determine association of different factors with Graves' disease, Students t-test and chi-square tests were applied to the data. Odds ratio (OR) was also computed to determine risk attributed to each factor. Since there was significant difference in gender distribution between the patients and controls, stratified Mantel

  12. Unique genetic loci identified for emotional behavior in control and chronic stress conditions.

    Directory of Open Access Journals (Sweden)

    Kimberly AK Carhuatanta

    2014-10-01

    Full Text Available An individual’s genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual’s genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior.

  13. Synthesis of Silicalite Membrane with an Aluminum-Containing Surface for Controlled Modification of Zeolitic Pore Entries for Enhanced Gas Separation

    Directory of Open Access Journals (Sweden)

    Shaowei Yang

    2018-02-01

    Full Text Available The separation of small molecule gases by membrane technologies can help performance enhancement and process intensification for emerging advanced fossil energy systems with CO2 capture capacity. This paper reports the demonstration of controlled modification of zeolitic channel size for the MFI-type zeolite membranes to enhance the separation of small molecule gases such as O2 and N2. Pure-silica MFI-type zeolite membranes were synthesized on porous α-alumina disc substrates with and without an aluminum-containing thin skin on the outer surface of zeolite membrane. The membranes were subsequently modified by on-stream catalytic cracking deposition (CCD of molecular silica to reduce the effective openings of the zeolitic channels. Such a pore modification caused the transition of gas permeation from the N2-selective gaseous diffusion mechanism in the pristine membrane to the O2-selective activated diffusion mechanism in the modified membrane. The experimental results indicated that the pore modification could be effectively limited within the aluminum-containing surface of the MFI zeolite membrane to minimize the mass transport resistance for O2 permeation while maintaining its selectivity. The implications of pore modification on the size-exclusion-enabled gas selectivity were discussed based on the kinetic molecular theory. In light of the theoretical analysis, experimental investigation was performed to further enhance the membrane separation selectivity by chemical liquid deposition of silica into the undesirable intercrystalline spaces.

  14. Effect of Membrane Tension on the Electric Field and Dipole Potential of Lipid Bilayer Membrane

    Science.gov (United States)

    Warshaviak, Dora Toledo; Muellner, Michael J.; Chachisvilis, Mirianas

    2011-01-01

    The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45 mV in the physiologically relevant range of membrane tension values (0 to 15 dyn/cm). The electrostatic field exhibits a peak (~0.8×109 V/m) near the water/lipid interface which shifts by 0.9 Å towards the bilayer center at 15 dyn/cm. Maximum membrane tension of 15 dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states. PMID:21722624

  15. A translational investigation targeting stress-reactivity and prefrontal cognitive control with guanfacine for smoking cessation.

    Science.gov (United States)

    McKee, Sherry A; Potenza, Marc N; Kober, Hedy; Sofuoglu, Mehmet; Arnsten, Amy F T; Picciotto, Marina R; Weinberger, Andrea H; Ashare, Rebecca; Sinha, Rajita

    2015-03-01

    Stress and prefrontal cognitive dysfunction have key roles in driving smoking; however, there are no therapeutics for smoking cessation that attenuate the effects of stress on smoking and enhance cognition. Central noradrenergic pathways are involved in stress-induced reinstatement to nicotine and in the prefrontal executive control of adaptive behaviors. We used a novel translational approach employing a validated laboratory analogue of stress-precipitated smoking, functional magnetic resonance imaging (fMRI), and a proof-of-concept treatment period to evaluate whether the noradrenergic α2a agonist guanfacine (3 mg/day) versus placebo (0 mg/day) reduced stress-precipitated smoking in the laboratory, altered cortico-striatal activation during the Stroop cognitive-control task, and reduced smoking following a quit attempt. In nicotine-deprived smokers (n=33), stress versus a neutral condition significantly decreased the latency to smoke, and increased tobacco craving, ad-libitum smoking, and systolic blood pressure in placebo-treated subjects, and these effects were absent or reduced in guanfacine-treated subjects. Following stress, placebo-treated subjects demonstrated decreased cortisol levels whereas guanfacine-treated subjects demonstrated increased levels. Guanfacine, compared with placebo, altered prefrontal activity during a cognitive-control task, and reduced cigarette use but did not increase complete abstinence during treatment. These preliminary laboratory, neuroimaging, and clinical outcome data were consistent and complementary and support further development of guanfacine for smoking cessation. © The Author(s) 2014.

  16. Internal hydration of a metal-transporting ATPase is controlled by membrane lateral pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Fischermeier, E. [Technische Univ. Dresden (Germany); Pospisil, P. [A.S.C. R., Prague (Czech Republic). J. Heyrovsky Inst. Physical Chemistry; Solioz, M. [Bern Univ. (Switzerland); Sayed, A.; Hof, M.

    2017-07-01

    The active transport of ions across biological mem branes requires their hydration shell to interact with the interior of membrane proteins. However, the influence of the external lipid phase on internal dielectric dynamics is hard to access by experiment. Using the octahelical transmembrane architecture of the copper-transporting P{sub 1B}-type ATPase from Legionella pneumophila (LpCopA) as a model structure, we have established the site-specific labeling of internal cysteines with a polarity-sensitive fluorophore. This enabled dipolar relaxation studies in a solubilized form of the protein and in its lipid-embedded state in nano-discs (NDs). Time-dependent fluorescence shifts revealed the site-specific hydration and dipole mobility around the conserved ion-binding motif. The spatial distribution of both features is shaped significantly and independently of each other by membrane lateral pressure.

  17. Internal hydration of a metal-transporting ATPase is controlled by membrane lateral pressure

    International Nuclear Information System (INIS)

    Fahmy, Karim; Pospisil, P.; Sayed, A.; Hof, M.

    2017-01-01

    The active transport of ions across biological mem branes requires their hydration shell to interact with the interior of membrane proteins. However, the influence of the external lipid phase on internal dielectric dynamics is hard to access by experiment. Using the octahelical transmembrane architecture of the copper-transporting P_1_B-type ATPase from Legionella pneumophila (LpCopA) as a model structure, we have established the site-specific labeling of internal cysteines with a polarity-sensitive fluorophore. This enabled dipolar relaxation studies in a solubilized form of the protein and in its lipid-embedded state in nano-discs (NDs). Time-dependent fluorescence shifts revealed the site-specific hydration and dipole mobility around the conserved ion-binding motif. The spatial distribution of both features is shaped significantly and independently of each other by membrane lateral pressure.

  18. Acute stress shifts the balance between controlled and automatic processes in prospective memory.

    Science.gov (United States)

    Möschl, Marcus; Walser, Moritz; Plessow, Franziska; Goschke, Thomas; Fischer, Rico

    2017-10-01

    In everyday life we frequently rely on our abilities to postpone intentions until later occasions (prospective memory; PM) and to deactivate completed intentions even in stressful situations. Yet, little is known about the effects of acute stress on these abilities. In the present work we investigated the impact of acute stress on PM functioning under high task demands. (1) Different from previous studies, in which intention deactivation required mostly low processing demands, we used salient focal PM cues to induce high processing demands during intention-deactivation phases. (2) We systematically manipulated PM-monitoring demands in a nonfocal PM task that required participants to monitor for either one or six specific syllables that could occur in ongoing-task words. Eighty participants underwent the Trier Social Stress Test, a standardized stress induction protocol, or a standardized control situation, before performing a computerized PM task. Our primary interests were whether PM performance, PM-monitoring costs, aftereffects of completed intentions and/or commission-error risk would differ between stressed and non-stressed individuals and whether these effects would differ under varying task demands. Results revealed that PM performance and aftereffects of completed intentions during subsequent performance were not affected by acute stress induction, replicating previous findings. Under high demands on intention deactivation (focal condition), however, acute stress produced a nominal increase in erroneous PM responses after intention completion (commission errors). Most importantly, under high demands on PM monitoring (nonfocal condition), acute stress led to a substantial reduction in PM-monitoring costs. These findings support ideas of selective and demand-dependent effects of acute stress on cognitive functioning. Under high task demands, acute stress might induce a shift in processing strategy towards resource-saving behavior, which seems to increase the

  19. Assessment of the Hindlimb Membrane Musculature of Bats: Implications for Active Control of the Calcar.

    Science.gov (United States)

    Stanchak, Kathryn E; Santana, Sharlene E

    2018-03-01

    The striking postcranial anatomy of bats reflects their specialized ecology; they are the only mammals capable of powered flight. Bat postcranial adaptations include a series of membranes that connect highly-modified, or even novel, skeletal elements. While most studies of bat postcranial anatomy have focused on their wings, bat hindlimbs also contain many derived and functionally important, yet less studied, features. In this study, we investigate variation in the membrane and limb musculature associated with the calcar, a neomorphic skeletal structure found in the hindlimbs of most bats. We use diffusible iodine-based contrast-enhanced computed tomography and standard histological techniques to examine the calcars and hindlimb membranes of three bat species that vary ecologically (Myotis californicus, a slow-flying insectivore; Molossus molossus, a fast-flying insectivore; and Artibeus jamaicensis, a slow-flying frugivore). We also assess the level of mineralization of the calcar at muscle attachment sites to better understand how muscle contraction may enable calcar function. We found that the arrangement of the calcar musculature varies among the three bat species, as does the pattern of mineral content within the calcar. M. molossus and M. californicus exhibit more complex calcar and calcar musculature morphologies than A. jamaicensis, and the degree of calcar mineralization decreases toward the tip of the calcar in all species. These results are consistent with the idea that the calcar may have a functional role in flight maneuverability. Anat Rec, 301:441-448, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  20. Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chien-Hwa [Department of Civil and Environment Engineering, Nanya Institute of Technology, Taoyuan, Taiwan (China); Fang, Lung-Chen; Lateef, Shaik Khaja [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China); Wu, Chung-Hsin, E-mail: chunghsinwu@yahoo.com.tw [Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, 415 Chien Kung Road, Kaohsiung 807, Taiwan (China); Lin, Cheng-Fang [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China)

    2010-05-15

    Exploring reasonable ways to remove foulant is of great importance in order to allow sustainable operation of ultrafiltration (UF) membranes in water/wastewater treatment technology. Compounds of organic and inorganic origin largely contribute to irreversible fouling. This study attempted to remove problem of UF membrane fouling by using four different enzymes including {alpha}-amylase, lipase, cellulase and protease. This investigation showed that none of the above mentioned enzymes was found to be effective for the removal of foulant when used alone. However, when these enzymes were used in combination with NaOH and citric acid, about 90% cleaning was achieved. The addition of non-ionic surfactant to the enzymatic solution appears to increase the efficiency of flux recovery by reducing the adhesion of foulant species to the membrane surface through the decrease of contact angle. Field emission gun scanning electron microscopy, Fourier transform infrared spectroscopy and atomic force microscopy (AFM) techniques were employed to qualitatively illustrate the foulant characteristics. The surface roughness through AFM was used to explain the potential mechanism for the enzymatic cleaning.

  1. Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration

    International Nuclear Information System (INIS)

    Yu, Chien-Hwa; Fang, Lung-Chen; Lateef, Shaik Khaja; Wu, Chung-Hsin; Lin, Cheng-Fang

    2010-01-01

    Exploring reasonable ways to remove foulant is of great importance in order to allow sustainable operation of ultrafiltration (UF) membranes in water/wastewater treatment technology. Compounds of organic and inorganic origin largely contribute to irreversible fouling. This study attempted to remove problem of UF membrane fouling by using four different enzymes including α-amylase, lipase, cellulase and protease. This investigation showed that none of the above mentioned enzymes was found to be effective for the removal of foulant when used alone. However, when these enzymes were used in combination with NaOH and citric acid, about 90% cleaning was achieved. The addition of non-ionic surfactant to the enzymatic solution appears to increase the efficiency of flux recovery by reducing the adhesion of foulant species to the membrane surface through the decrease of contact angle. Field emission gun scanning electron microscopy, Fourier transform infrared spectroscopy and atomic force microscopy (AFM) techniques were employed to qualitatively illustrate the foulant characteristics. The surface roughness through AFM was used to explain the potential mechanism for the enzymatic cleaning.

  2. Facile Fabrication of Ordered Anodized Aluminum Oxide Membranes with Controlled Pore Size by Improved Hard Anodization.

    Science.gov (United States)

    Fan, Jiangxia; Zhu, Xinxin; Wang, Kunzhou; Chen, Xiaoyuan; Wang, Xinqing; Yan, Minhao; Ren, Yong

    2018-05-01

    We have fabricated highly ordered anodized aluminum oxide (AAO) membranes with different diameter through improved hard anodization (HA) at high temperature. This process can generate thick AAO membranes (30 μm) in a short anodizing time with high growth rate 20-60 μm h-1 which is much faster than that in traditional mild two-step anodization. We enlarged the AAO pore diameter by adjusting the voltage rise rate at the same time, which has a great influence on current density and temperature. The AAO pore diameter varies from 60-110 nm to 160-190 nm. The pore diameter (Dp) of the AAO prepared by this improved process is much larger than that prepared by HA (40-60 nm) when H2C2O4 as electrolyte. It can expand potential use of the AAO membranes such as for the template-based synthesis of nanowires or nanotubes with modulated diameters and also for practical separation technology. We also has used the AAO with different diameters prepared by this improved HA to fabricate Co nanowires and γ-Fe2O3 superparamagnetic nanorods.

  3. Kinetic models of controllable pore growth of anodic aluminum oxide membrane

    Science.gov (United States)

    Huang, Yan; Zeng, Hong-yan; Zhao, Ce; Qu, Ye-qing; Zhang, Pin

    2012-06-01

    An anodized Al2O3 (AAO) membrane with apertures about 72 nm in diameter was prepared by two-step anodic oxidation. The appearance and pore arrangement of the AAO membrane were characterized by energy dispersive x-ray spectroscopy and scanning electron microscopy. It was confirmed that the pores with high pore aspect ratio were parallel, well-ordered, and uniform. The kinetics of pores growth in the AAO membrane was derived, and the kinetic models showed that pores stopped developing when the pressure ( σ) trended to equal the surface tension at the end of anodic oxidation. During pore expansion, the effects of the oxalic acid concentration and expansion time on the pore size were investigated, and the kinetic behaviors were explained with two kinetic models derived in this study. They showed that the pore size increased with extended time ( r= G· t+ G'), but decreased with increased concentration ( r = - K·ln c- K') through the derived mathematic formula. Also, the values of G, G', K, and K' were derived from our experimental data.

  4. Control of Porosity and Pore Size of Metal Reinforced Carbon Nanotube Membranes

    Directory of Open Access Journals (Sweden)

    Stephen Gray

    2010-12-01

    Full Text Available Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT Bucky-Paper (BP composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90% and specific surface area (>400 m2/g. Furthermore, their pore size is generally between 20–50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported.

  5. Comparison of epithelial and fibroblastic cell behavior on nano/micro-topographic PCL membranes produced by crystallinity control.

    Science.gov (United States)

    Gümüşderelioğlu, Menemşe; Kaya, F Betül; Beşkardeş, Işıl Gerçek

    2011-06-15

    In this study, the relationship between the cellular morphology and the material surface topography was investigated. Poly(ε-caprolactone) (PCL) membranes were prepared in a wide range of surface wettabilities by means of crystallinity-controlled solvent casting process. Membrane surfaces were characterized by atomic force microscope (AFM), scanning electron microscope (SEM), and static/dynamic water contact angle measurements. It was found that solvent evaporation and non-solvent (methanol) addition to the solvent (THF) are the most decisive parameters to change the surface topography. The non-solvent addition and the decrease in solvent evaporation temperature from room temperature to -20 °C caused increased polymeric chain mobility and crystallization time. Such changes in crystallization parameters led to the formation of micro/nano-sized features on the membrane. Cell culture studies indicated that in contrast to Madin Darby kidney (MDBK) epithelial cells, L929 mouse fibroblast preferred rough and porous surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Controlled sulfonation of poly(ether sulfone using phthalic anhydride as catalyst and its membrane performance for fuel cell application

    Directory of Open Access Journals (Sweden)

    Seikh Jiyaur Rahaman

    2016-09-01

    Full Text Available Proton exchange membrane (PEM fuel cells are one of the most emerging alternative energy technologies under development. A novel proton exchange membrane sulfonated polyethersulfone (SPES was developed by homogeneous method using phthalic anhydride as catalyst and chlorosulfonic acid as sulfonating agent to control the sulfonation reaction. The method of sulfonation was optimized by varying the reaction time and concentration of the catalyst. The structure of the SPES was studied by 1H-Nuclear Magnetic Resonance, Fourier Transform Infra Red Spectroscopy and X-ray diffraction. The extent of sulfonation was determined by ion exchange capacity studies. The thermal and mechanical stabilities were studied using thermogravimetric analysis (TGA and Dynamic Mechanical Analysis (DMA respectively. DMA results show that the storage modulus increased with increase in degree of sulfonation (DS and water uptake of SPES increased with DS. The proton conductivity of SPES (34% DS measured by impedance spectroscopy was found to be 0.03S/cm at 80%RH and 100°C. Also, current-voltage polarization characteristics of SPES membranes offer a favourable alternative PEM due to the thermal stability and cost effective than perfluorinated ionomers.

  7. Kollidon VA64, a membrane-resealing agent, reduces histopathology and improves functional outcome after controlled cortical impact in mice.

    Science.gov (United States)

    Mbye, Lamin H; Keles, Eyup; Tao, Luyang; Zhang, Jimmy; Chung, Joonyong; Larvie, Mykol; Koppula, Rajani; Lo, Eng H; Whalen, Michael J

    2012-03-01

    Loss of plasma membrane integrity is a feature of acute cellular injury/death in vitro and in vivo. Plasmalemma-resealing agents are protective in acute central nervous system injury models, but their ability to reseal cell membranes in vivo has not been reported. Using a mouse controlled cortical impact (CCI) model, we found that propidium iodide-positive (PI+) cells pulse labeled at 6, 24, or 48 hours maintained a degenerative phenotype and disappeared from the injured brain by 7 days, suggesting that plasmalemma permeability is a biomarker of fatal cellular injury after CCI. Intravenous or intracerebroventricular administration of Kollidon VA64, poloxamer P188, or polyethylene glycol 8000 resealed injured cell membranes in vivo (P<0.05 versus vehicle or poloxamer P407). Kollidon VA64 (1 mmol/L, 500 μL) administered intravenously to mice 1  hour after CCI significantly reduced acute cellular degeneration, chronic brain tissue damage, brain edema, blood-brain barrier damage, and postinjury motor deficits (all P<0.05 versus vehicle). However, VA64 did not rescue pulse-labeled PI+ cells from eventual demise. We conclude that PI permeability within 48 hours of CCI is a biomarker of eventual cell death/loss. Kollidon VA64 reduces secondary damage after CCI by mechanisms other than or in addition to resealing permeable cells.

  8. Vulnerability to stress, anxiety and depressive symptoms and metabolic control in Type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Gois Carlos

    2012-06-01

    Full Text Available Abstract Background Vulnerability to stress has been associated to distress, emotional distress symptoms and metabolic control in type 2 diabetes mellitus (T2DM patients as well. Furthermore some conflicting results were noticed. We aimed to evaluate the effect over metabolic control in what concerns vulnerability to stress beyond depressive and anxiety symptoms. Findings This cross-sectional study assessed 273 T2DM patients with depressive and anxiety symptoms using the Hospital Anxiety Depression Scale (HADS and the 23 Questions to assess Vulnerability to Stress (23QVS, along with demographic and clinical diabetes-related variables. Hierarchical logistic regression models were used to investigate predictors of poor glycemic control. The results showed an association of depressive symptoms (odds ratio = 1.12, 95%CI = 1.01-1.24, P = 0.030 with increased risk of poor glycemic control. Anxiety symptoms and vulnerability to stress on their own were not predictive of metabolic control, respectively (odds ratio = 0.92, 95%CI = 0.84-1.00, P = 0.187 and odds ratio = 0.98, 95%CI = 0.95-1.01, P = 0.282. Conclusions Our data suggested that vulnerability to stress was not predictive of poor glycemic control in T2DM, but depressive symptoms were.

  9. Cyclic Elastoplastic Performance of Aluminum 7075-T6 Under Strain- and Stress-Controlled Loading

    Science.gov (United States)

    Agius, Dylan; Wallbrink, Chris; Kourousis, Kyriakos I.

    2017-12-01

    Elastoplastic investigations of aerospace aluminum are important in the development of an understanding of the possible cyclic transient effects and their contribution to the material performance under cyclic loading. Cyclic plasticity can occur in an aerospace aluminum component or structure depending on the loading conditions and the presence of external and internal discontinuities. Therefore, it is vital that the cyclic transient effects of aerospace aluminum are recognized and understood. This study investigates experimentally the cyclic elastoplastic performance of aluminum 7075-T6 loaded in symmetric strain control, and asymmetric stress and strain control. A combination of cyclic hardening and softening was noticed from high strain amplitude symmetric strain-controlled tests and at low stress amplitude asymmetric stress-controlled tests. From asymmetric strain control results, the extent of mean stress relaxation depended on the size of the strain amplitude. Additionally, saturation of the ratcheting strain (plastic shakedown) was also found to occur during asymmetric stress control tests. The experimental results were further analyzed using published microstructure research from the past two decades to provide added explanation of the micro-mechanism contribution to the cyclic transient behavior.

  10. A randomized controlled trial of mindfulness to reduce stress and burnout among intern medical practitioners.

    Science.gov (United States)

    Ireland, Michael J; Clough, Bonnie; Gill, Kim; Langan, Fleur; O'Connor, Angela; Spencer, Lyndall

    2017-04-01

    Stress and burnout are highly prevalent among medical doctors, and are associated with negative consequences for doctors, patients, and organizations. The purpose of the current study was to examine the effectiveness of a mindfulness training intervention in reducing stress and burnout among medical practitioners, by means of a Randomised Controlled Trial design. Participants were 44 intern doctors completing an emergency department rotation in a major Australian hospital. Participants were randomly assigned to either an active control (one hour extra break per week) or the 10-week mindfulness training intervention. Measures of stress and burnout were taken pre-, mid- and post intervention. Participants undergoing the 10-week mindfulness training program reported greater improvements in stress and burnout relative to participants in the control condition. Significant reduction in stress and burnout was observed for participants in the mindfulness condition. No such reductions were observed for participants in the control condition. Mindfulness interventions may provide medical practitioners with skills to effectively manage stress and burnout, thereby reducing their experience of these symptoms. It is likely that doctors would benefit from the inclusion of such a training program as a part of their general medical education.

  11. Thought control strategies and rumination in youth with acute stress disorder and posttraumatic stress disorder following single-event trauma.

    Science.gov (United States)

    Meiser-Stedman, Richard; Shepperd, Alicia; Glucksman, Ed; Dalgleish, Tim; Yule, William; Smith, Patrick

    2014-02-01

    Certain thought control strategies for managing the intrusive symptoms of posttraumatic stress disorder (PTSD) are thought to play a key role in its onset and maintenance. Whereas measures exist for the empirical assessment of such thought control strategies in adults, relatively few studies have explored how children and adolescents manage posttraumatic intrusive phenomena. In a prospective longitudinal study of 10-16-year-olds with PTSD, who were survivors of road traffic collisions and assaults, a variety of thought control strategies were assessed in the acute phase. These included strategies thought to be protective (reappraisal, social support) as well as maladaptive (distraction, punishment, worry). Ruminative responses to the trauma were assessed at the follow-up assessment. Posttraumatic stress symptoms (PTSS) at each assessment were associated with the use of punishment and reappraisal, whereas social support and rumination were associated with PTSS symptoms at follow-up. Distraction was unrelated to PTSS at any time point. Rumination accounted for variance in PTSS symptoms at follow-up, even when accounting for baseline PTSS, and was found to mediate the relationships between reappraisal and punishment at baseline and PTSS at the follow-up assessment. The present study found no evidence to support advocating any particular thought control strategy for managing the intrusive symptoms of PTSD in youth in the acute posttrauma phase, and raised concerns over the use of reappraisal coping strategies. The study underscores the importance of ruminative responses in the onset and maintenance of PTSD in trauma-exposed youth.

  12. Identification of new SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water stressed condition.

    Science.gov (United States)

    Barakat, Mohamed N; Saleh, Mohamed; Al-Doss, Abdullah A; Moustafa, Khaled A; Elshafei, Adel A; Al-Qurainy, Fahed H

    2015-03-01

    Segregating F4 families from the cross between drought sensitive (Yecora Rojo) and drought tolerant (Pavon 76) genotypes were made to identify SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat (Triticum aestivum L.) under water-stressed condition and to map quantitative trait locus (QTL) for the three physiological traits. The parents and 150 F4 families were evaluated phenotypically for drought tolerance using two irrigation treatments (2500 and 7500 m3/ha). Using 400 SSR primers tested for polymorphism in testing parental and F4 families genotypes, the results revealed that QTL for leaf chlorophyll content, flag leaf senescence and cell membrane stability traits were associated with 12, 5 and 12 SSR markers, respectively and explained phenotypic variation ranged from 6 to 42%. The SSR markers for physiological traits had genetic distances ranged from 12.5 to 25.5 cM. These SSR markers can be further used in breeding programs for drought tolerance in wheat.

  13. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  14. RodZ and PgsA play intertwined roles in membrane homeostasis of Bacillus subtilis and resistance to weak organic acid stress

    Directory of Open Access Journals (Sweden)

    Johan Willem Albertus Van Beilen

    2016-10-01

    Full Text Available Weak organic acids like sorbic and acetic acid are widely used to prevent growth of spoilage organisms such as Bacilli. To identify genes involved in weak acid stress tolerance we screened a transposon mutant library of Bacillus subtilis for sorbic acid sensitivity. Mutants of the rodZ (ymfM gene were found to be hypersensitive to the lipophilic weak organic acid. RodZ is involved in determining the cell’s rod-shape and believed to interact with the bacterial actin-like MreB cytoskeleton. Since rodZ lies upstream in the genome of the essential gene pgsA (phosphatidylglycerol phosphate synthase we hypothesized that expression of the latter might also be affected in rodZ mutants and hence contribute to the phenotype observed. We show that both genes are co-transcribed and that both the rodZ::mini-Tn10 mutant and a conditional pgsA mutant, under conditions of minimal pgsA expression, were sensitive to sorbic and acetic acid. Both strains displayed a severely altered membrane composition. Compared to the wild-type strain, phosphatidylglycerol and cardiolipin levels were lowered and the average acyl chain length was elongated. Induction of rodZ expression from a plasmid in our transposon mutant led to no recovery of weak acid susceptibility comparable to wild-type levels. However, pgsA overexpression in the same mutant partly restored sorbic acid susceptibility and fully restored acetic acid sensitivity. A construct containing both rodZ and pgsA as on the genome led to some restored growth as well. We propose that RodZ and PgsA play intertwined roles in membrane homeostasis and resistance to weak organic acid stress.

  15. Damage to photosystem II due to heat stress without light-driven electron flow: involvement of enhanced introduction of reducing power into thylakoid membranes.

    Science.gov (United States)

    Marutani, Yoko; Yamauchi, Yasuo; Kimura, Yukihiro; Mizutani, Masaharu; Sugimoto, Yukihiro

    2012-08-01

    Under a moderately heat-stressed condition, the photosystems of higher plants are damaged in the dark more easily than they are in the presence of light. To obtain a better understanding of this heat-derived damage mechanism that occurs in the dark, we focused on the involvement of the light-independent electron flow that occurs at 40 °C during the damage. In various plant species, the maximal photochemical quantum yield of photosystem (PS) II (Fv/Fm) decreased as a result of heat treatment in the dark. In the case of wheat, the most sensitive plant species tested, both Fv/Fm and oxygen evolution rapidly decreased by heat treatment at 40 °C for 30 min in the dark. In the damage, specific degradation of D1 protein was involved, as shown by immunochemical analysis of major proteins in the photosystem. Because light canceled the damage to PSII, the light-driven electron flow may play a protective role against PSII damage without light. Light-independent incorporation of reducing power from stroma was enhanced at 40 °C but not below 35 °C. Arabidopsis mutants that have a deficit of enzymes which mediate the incorporation of stromal reducing power into thylakoid membranes were tolerant against heat treatment at 40 °C in the dark, suggesting that the reduction of the plastoquinone pool may be involved in the damage. In conclusion, the enhanced introduction of reducing power from stroma into thylakoid membranes that occurs around 40 °C causes over-reduction of plastoquinone, resulting in the damage to D1 protein under heat stress without linear electron flow.

  16. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  17. Stress !!!

    OpenAIRE

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten. Opvallend is dat mannelijke studenten uit Twente zich veel minder druk lijken te maken over hun studie. Onder vrouwen ligt de stress juist erg hoog ten opzichte van het landelijk gemiddelde.

  18. Pressure modulation of Ras-membrane interactions and intervesicle transfer.

    Science.gov (United States)

    Kapoor, Shobhna; Werkmüller, Alexander; Goody, Roger S; Waldmann, Herbert; Winter, Roland

    2013-04-24

    Proteins attached to the plasma membrane frequently encounter mechanical stresses, including high hydrostatic pressure (HHP) stress. Signaling pathways involving membrane-associated small GTPases (e.g., Ras) have been identified as critical loci for pressure perturbation. However, the impact of mechanical stimuli on biological outputs is still largely terra incognita. The present study explores the effect of HHP on the membrane association, dissociation, and intervesicle transfer process of N-Ras by using a FRET-based assay to obtain the kinetic parameters and volumetric properties along the reaction path of these processes. Notably, membrane association is fostered upon pressurization. Conversely, depending on the nature and lateral organization of the lipid membrane, acceleration or retardation is observed for the dissociation step. In addition, HHP can be inferred as a positive regulator of N-Ras clustering, in particular in heterogeneous membranes. The susceptibility of membrane interaction to pressure raises the idea of a role of lipidated signaling molecules as mechanosensors, transducing mechanical stimuli to chemical signals by regulating their membrane binding and dissociation. Finally, our results provide first insights into the influence of pressure on membrane-associated Ras-controlled signaling events in organisms living under extreme environmental conditions such as those that are encountered in the deep sea and sub-seafloor environments, where pressures reach the kilobar (100 MPa) range.

  19. Perception of control, coping and psychological stress of infertile women undergoing IVF

    DEFF Research Database (Denmark)

    Gourounti, Kleanthi; Anagnostopoulos, Fotios; Potamianos, Grigoris

    2012-01-01

    to control for the effects of demographic variables. This cross-sectional study included 137 women with fertility problems undergoing IVF in a public hospital. All participants completed questionnaires that measured fertility-related stress, state anxiety, depressive symptomatology, perception of control...

  20. Inhibitory Control Mediates the Association between Perceived Stress and Secure Relationship Quality

    OpenAIRE

    Toria Herd; Mengjiao Li; Dominique Maciejewski; Jacob Lee; Kirby Deater-Deckard; Brooks King-Casas; Jungmeen Kim-Spoon

    2018-01-01

    Past research has demonstrated negative associations between exposure to stressors and quality of interpersonal relationships among children and adolescents. Nevertheless, underlying mechanisms of this association remain unclear. Chronic stress has been shown to disrupt prefrontal functioning in the brain, including inhibitory control abilities, and evidence is accumulating that inhibitory control may play an important role in secure interpersonal relationship quality, including peer problems...

  1. Stress Exposure and Depression in Disadvantaged Women: The Protective Effects of Optimism and Perceived Control

    Science.gov (United States)

    Grote, Nancy K.; Bledsoe, Sarah E.; Larkin, Jill; Lemay, Edward P., Jr.; Brown, Charlotte

    2007-01-01

    In the present study, the authors predicted that the individual protective factors of optimism and perceived control over acute and chronic stressors would buffer the relations between acute and chronic stress exposure and severity of depression, controlling for household income, in a sample of financially disadvantaged women. Ninety-seven African…

  2. Imagery and Verbal Counseling Methods in Stress Inoculation Training for Pain Control.

    Science.gov (United States)

    Worthington, Everett L., Jr.; Shumate, Michael

    1981-01-01

    Pleasant imagery relieves pain and may account for much of the effectiveness of stress inoculation training. Women who used imagery controlled their pain better; women who did not use imagery had longer tolerance when they heard pain conceptualized as a multistage process. Self-instruction did not affect pain control. (Author)

  3. Transient stress control of aeroengine disks based on active thermal management

    International Nuclear Information System (INIS)

    Ding, Shuiting; Wang, Ziyao; Li, Guo; Liu, Chuankai; Yang, Liu

    2016-01-01

    Highlights: • The essence of cooling in turbine system is a process of thermal management. • Active thermal management is proposed to control transient stress of disks. • The correlation between thermal load and transient stress of disks is built. • Stress level can be declined by actively adjusting the thermal load distribution. • Artificial temperature gradient can be used to counteract stress from rotating. - Abstract: The physical essence of cooling in the turbine system is a process of thermal management. In order to overcome the limits of passive thermal management based on thermal protection, the concept of active thermal management based on thermal load redistribution has been proposed. On this basis, this paper focuses on a near real aeroengine disk during a transient process and studies the stress control mechanism of active thermal management in transient conditions by a semi-analytical method. Active thermal management is conducted by imposing extra heating energy on the disk hub, which is represented by the coefficient of extra heat flow η. The results show that the transient stress level can be effectively controlled by actively adjusting the thermal load distribution. The decline ratio of the peak equivalent stress of the disk hub can be 9.0% for active thermal management load condition (η = 0.2) compared with passive condition (η = 0), even at a rotation speed of 10,000 r/min. The reason may be that the temperature distribution of the disk turns into an artificial V-shape because of the extra heating energy on the hub, and the resulting thermal stresses induced by the negative temperature gradients counteract parts of the stress from rotating.

  4. Stress and Fatigue Management Using Balneotherapy in a Short-Time Randomized Controlled Trial

    Science.gov (United States)

    Razbadauskas, Artūras; Sąlyga, Jonas; Martinkėnas, Arvydas

    2016-01-01

    Objective. To investigate the influence of high-salinity geothermal mineral water on stress and fatigue. Method. 180 seamen were randomized into three groups: geothermal (65), music (50), and control (65). The geothermal group was administered 108 g/L salinity geothermal water bath for 2 weeks five times a week. Primary outcome was effect on stress and fatigue. Secondary outcomes were the effect on cognitive function, mood, and pain. Results. The improvements after balneotherapy were a reduction in the number and intensity of stress-related symptoms, a reduction in pain and general, physical, and mental fatigue, and an improvement in stress-related symptoms management, mood, activation, motivation, and cognitive functions with effect size from 0.8 to 2.3. In the music therapy group, there were significant positive changes in the number of stress symptoms, intensity, mood, pain, and activity with the effect size of 0.4 to 1.1. The researchers did not observe any significant positive changes in the control group. The comparison between the groups showed that balneotherapy was superior to music therapy and no treatment group. Conclusions. Balneotherapy is beneficial for stress and fatigue reduction in comparison with music or no therapy group. Geothermal water baths have a potential as an efficient approach to diminish stress caused by working or living conditions. PMID:27051455

  5. Stress and Fatigue Management Using Balneotherapy in a Short-Time Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Lolita Rapolienė

    2016-01-01

    Full Text Available Objective. To investigate the influence of high-salinity geothermal mineral water on stress and fatigue. Method. 180 seamen were randomized into three groups: geothermal (65, music (50, and control (65. The geothermal group was administered 108 g/L salinity geothermal water bath for 2 weeks five times a week. Primary outcome was effect on stress and fatigue. Secondary outcomes were the effect on cognitive function, mood, and pain. Results. The improvements after balneotherapy were a reduction in the number and intensity of stress-related symptoms, a reduction in pain and general, physical, and mental fatigue, and an improvement in stress-related symptoms management, mood, activation, motivation, and cognitive functions with effect size from 0.8 to 2.3. In the music therapy group, there were significant positive changes in the number of stress symptoms, intensity, mood, pain, and activity with the effect size of 0.4 to 1.1. The researchers did not observe any significant positive changes in the control group. The comparison between the groups showed that balneotherapy was superior to music therapy and no treatment group. Conclusions. Balneotherapy is beneficial for stress and fatigue reduction in comparison with music or no therapy group. Geothermal water baths have a potential as an efficient approach to diminish stress caused by working or living conditions.

  6. Perceived stress in patients with migraine: a case-control study.

    Science.gov (United States)

    Moon, Hye-Jin; Seo, Jong-Geun; Park, Sung-Pa

    2017-12-01

    Perceived stress is the most common trigger for migraine. The objective of this study was to examine the clinical significance of perceived stress in migraine patients. This is a case-control study. Consecutive migraine patients who visited a tertiary care hospital were enrolled for this study. They completed self-reported questionnaires including Perceived Stress Scale (PSS), 12-item Allodynia Symptom Checklist (ASC-12), Migraine Disability Assessment Scale (MIDAS), Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder-7 (GAD-7), Epworth Sleepiness Scale (ESS), Insomnia Severity Index (ISI), and Migraine-Specific Quality of Life Questionnaire (MSQ). Degree of perceived stress in migraine patients was measured and compared to that in healthy controls. Predictors for perceived stress and their impact on quality of life (QOL) of migraine patients were also determined. A total of 227 migraine patients were eligible for this study, including 103 (45.4%) who had chronic migraine (CM). Mean PSS score was significantly (p migraine is a critical factor for perceived stress. Perceived stress affects QOL of migraine patients.

  7. The effectiveness of stress management training on blood glucose control in patients with type 2 diabetes.

    Science.gov (United States)

    Zamani-Alavijeh, Fereshteh; Araban, Marzieh; Koohestani, Hamid Reza; Karimy, Mahmood

    2018-01-01

    Type 2 diabetes is a chronic disease that is expanding at an alarming rate in the world. Research on individuals with type 2 diabetes showed that stressful life events cause problems in the effective management and control of diabetes. This study aimed at investigating the effect of a stress management intervention on blood glucose control in individuals with type 2 diabetes referred to Zarandeh clinic, Iran. In this experimental study, 230 individuals with type 2 diabetes (179 female and 51 male) were enrolled and assigned to experimental (n = 115) and control (n = 115) groups. A valid and reliable multi-part questionnaire including demographics, Perceived Stress Scale, Coping Inventory for Stressful Situations, Coping Self-Efficacy Scale, and multidimensional scale of perceived social support was used to for data collection. The experimental group received a training program, developed based on the social cognitive theory and with an emphasis on improving self-efficacy and perceived social support, during eight sessions of one and a half hours. Control group received only standard care. Data were analyzed using SPSS 15 applying the t test, paired t-tests, Pearson correlation coefficient, and Chi square analysis. The significance level was considered at 0.05. Before the intervention, the mean perceived stress scores of the experimental and control groups were 33.9 ± 4.6 and 35 ± 6.5, respectively, and no significant difference was observed (p > 0.05). However, after the intervention, the mean perceived stress score of the experimental group (26.7 ± 4.7) was significantly less than that of the control group (34.5 ± 7) (p = 0.001). Before the intervention, the mean scores of HbA1c in the experimental and control groups were 8.52 ± 1 and 8.42 ± 1.2, respectively, and there was no significant difference between the two groups. However, after the intervention, the results showed a significant decrease in glycosylated

  8. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    International Nuclear Information System (INIS)

    Meng, F.; Xu, X.; Liu, X.; Wang, J.

    2014-01-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  9. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    Energy Technology Data Exchange (ETDEWEB)

    Meng, F.; Xu, X.; Liu, X. [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China); Wang, J. [Chinese Academy of Sciences, Institute of Metal Research, Shenyang (China)

    2014-07-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  10. Programs and resources for control of job stress in the Federal workplace

    Science.gov (United States)

    Joice, Wendell

    1993-01-01

    A couple of weeks ago, the American Psychological Association and the National Institute of Occupational Safety and Health held a conference in Washingtion, D.C. entitled 'Stress in the 90's'. At this conference the Office of Personnel Management (OPM) conducted a session on 'Programs and Resources for the Control of Job Stress in the Federal Workplace'. I am going to present an overview of that three-hour session and some related information from the conference. My discussion covers stress terminology and models, selected programs and resources, evaluation research, some concerns about our progress, and plans to expand our efforts at OPM.

  11. Depression, anxiety and stress among female patients of infertility; A case control study

    OpenAIRE

    Yusuf, Lamia

    2016-01-01

    Objectives: Infertility, in many ways, is a very distressing condition that can have its impact on social and marital life of a couple. Depression, anxiety and stress associated with infertility may affect treatment and outcomes for such couples. The purpose of this study was to find out prevalence of depression, anxiety and stress among females suffering from infertility. Methods: One hundred females suffering from infertility as study subjects and 100 females accompanying them as controls w...

  12. Stress and Fatigue Management Using Balneotherapy in a Short-Time Randomized Controlled Trial

    OpenAIRE

    Rapolienė, Lolita; Razbadauskas, Artūras; Sąlyga, Jonas; Martinkėnas, Arvydas

    2016-01-01

    Objective. To investigate the influence of high-salinity geothermal mineral water on stress and fatigue. Method. 180 seamen were randomized into three groups: geothermal (65), music (50), and control (65). The geothermal group was administered 108?g/L salinity geothermal water bath for 2 weeks five times a week. Primary outcome was effect on stress and fatigue. Secondary outcomes were the effect on cognitive function, mood, and pain. Results. The improvements after balneotherapy were a reduct...

  13. An 8-week stress management program in pathological gamblers: a pilot randomized controlled trial.

    Science.gov (United States)

    Linardatou, C; Parios, A; Varvogli, L; Chrousos, G; Darviri, C

    2014-09-01

    Stress plays a major role at the onset and relapse of pathological gambling (PG), but at the same time it can also be the aftermath of gambling behavior, thus revealing a reciprocal relationship. Although the role of stress has been well-documented, there is a paucity of studies investigating the effect of an adjunctive stress management program on PG. In this 8-week parallel randomized waitlist controlled trial pathological gamblers, already in the gamblers anonymous (GA) group, were assigned randomly in two groups, with the intervention group (n = 22) receiving an additional stress management program (consisting of education on diet and exercise, stress coping methods, relaxation breathing -RB- and progressive muscle relaxation -PMR). Self-reported measures were used in order to evaluate stress, depression, anxiety, sleep quality/disturbances, life-satisfaction and daily routine. The statistical analyses for the between group differences concerning the main psychosocial study outcomes revealed a statistically significant amelioration of stress, depression, anxiety symptoms and an increase of life-satisfaction and a better daily routine in participants of the intervention group. We hope that these will encourage researchers and clinicians to adopt stress management in their future work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David

    2015-12-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Endothelin receptor-specific control of endoplasmic reticulum stress and apoptosis in the kidney.

    Science.gov (United States)

    De Miguel, Carmen; Hamrick, William C; Hobbs, Janet L; Pollock, David M; Carmines, Pamela K; Pollock, Jennifer S

    2017-02-23

    Endothelin-1 (ET-1) promotes renal damage during cardiovascular disease; yet, the molecular mechanisms involved remain unknown. Endoplasmic reticulum (ER) stress, triggered by unfolded protein accumulation in the ER, contributes to apoptosis and organ injury. These studies aimed to determine whether the ET-1 system promotes renal ER stress development in response to tunicamycin. ET B deficient (ET B def) or transgenic control (TG-con) rats were used in the presence or absence of ET A receptor antagonism. Tunicamycin treatment similarly increased cortical ER stress markers in both rat genotypes; however, only ET B def rats showed a 14-24 fold increase from baseline for medullary GRP78, sXBP-1, and CHOP. Pre-treatment of TG-con rats with the ET A blocker ABT-627 for 1 week prior to tunicamycin injection significantly reduced the ER stress response in cortex and medulla, and also inhibited renal apoptosis. Pre-treatment with ABT-627 failed to decrease renal ER stress and apoptosis in ET B def rats. In conclusion, the ET-1 system is important for the development of tunicamycin-induced renal ER stress and apoptosis. ET A receptor activation induces renal ER stress genes and apoptosis, while functional activation of the ET B receptor has protective effects. These results highlight targeting the ET A receptor as a therapeutic approach against ER stress-induced kidney injury.

  16. Thermodynamic analysis of effects of contact angle on interfacial interactions and its implications for membrane fouling control.

    Science.gov (United States)

    Chen, Jianrong; Shen, Liguo; Zhang, Meijia; Hong, Huachang; He, Yiming; Liao, Bao-Qiang; Lin, Hongjun

    2016-02-01

    Concept of hydrophobicity always fails to accurately assess the interfacial interaction and membrane fouling, which calls for reliable parameters for this purpose. In this study, effects of contact angle on interfacial interactions related to membrane fouling were investigated based on thermodynamic analysis. It was found that, total interaction energy between sludge foulants and membrane monotonically decreases and increases with water and glycerol contact angle, respectively, indicating that these two parameters can be reliable indicators predicting total interaction energy and membrane fouling. Membrane roughness decreases interaction strength for over 20 times, and effects of membrane roughness on membrane fouling should consider water and glycerol contact angle on membrane. It was revealed existence of a critical water and glycerol contact angle for a given membrane bioreactor. Meanwhile, diiodomethane contact angle has minor effect on the total interaction, and cannot be regarded as an effective indicator assessing interfacial interactions and membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control

    KAUST Repository

    Miller, Daniel J.

    2012-08-01

    Ultrafiltration, nanofiltration membranes and feed spacers were hydrophilized with polydopamine and polydopamine- g-poly(ethylene glycol) surface coatings. The fouling propensity of modified and unmodified membranes was evaluated by short-term batch protein and bacterial adhesion tests. The fouling propensity of modified and unmodified membranes and spacers was evaluated by continuous biofouling experiments in a membrane fouling simulator. The goals of the study were: 1) to determine the effectiveness of polydopamine and polydopamine- g-poly(ethylene glycol) membrane coatings for biofouling control and 2) to compare techniques commonly used in assessment of membrane biofouling propensity with biofouling experiments under practical conditions. Short-term adhesion tests were carried out under static, no-flow conditions for 1 h using bovine serum albumin, a common model globular protein, and Pseudomonas aeruginosa, a common model Gram-negative bacterium. Biofouling tests were performed in a membrane fouling simulator (MFS) for several days under flow conditions similar to those encountered in industrial modules with the autochthonous drinking water population and acetate dosage as organic substrate. Polydopamine- and polydopamine- g-poly(ethylene glycol)-modified membranes showed significantly reduced adhesion of bovine serum albumin and P. aeruginosa in the short-term adhesion tests, but no reduction of biofouling was observed during longer biofouling experiments with modified membranes and spacers. These results demonstrate that short-term batch adhesion experiments using model proteins or bacteria under static conditions are not indicative of biofouling, while continuous biofouling experiments showed that membrane surface modification by polydopamine and polydopamine- g-poly(ethylene glycol) is not effective for biofouling control. © 2012 Elsevier Ltd.

  18. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  19. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis.

    Science.gov (United States)

    Han, Gil-Soo; Carman, George M

    2017-08-11

    The PAH1 -encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae , exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1 -encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1 Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1 Δ mutant is induced through the inositol-sensitive upstream activation sequence (UAS INO ), a cis -acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UAS INO mutation suppressed pah1 Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1 -encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1 Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Novel flower-shaped albumin particles as controlled-release carriers for drugs to penetrate the round-window membrane

    Directory of Open Access Journals (Sweden)

    Yu Z

    2014-07-01

    Full Text Available Zhan Yu,1,* Min Yu,2,* Zhimin Zhou,3 Zhibao Zhang,3 Bo Du,3 Qingqing Xiong3 1Second Artillery General Hospital, Beijing, 2Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, College of Basic Medicine, China Medical University, Shenyang, 3Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Key Laboratory of Biomedical Material of Tianjin, Tianjin, People’s Republic of China *These authors contributed equallyto this work Abstract: Controlled-release carriers for local drug delivery have attracted increasing attention for inner-ear treatment recently. In this paper, flower-shaped bovine serum albumin (FBSA particles were prepared by a modified desolvation method followed by glutaraldehyde or heat denaturation. The size of the FBSA particles varied from 10 µm to 100 µm, and most were 50–80 µm. Heat-denatured FBSA particles have good cytocompatibility with a prolonged survival time for L929 cells. The FBSA particles were utilized as carriers to investigate the release behaviors of the model drug – rhodamine B. Rhodamine B showed a sustained-release effect and penetrated the round-window membrane of guinea pigs. We also confirmed the attachment of FBSA particles onto the round-window membrane by microscopy. The FBSA particles, with good biocompatibility, drug-loading capacity, adhesive capability, and biodegradability, may have potential applications in the field of local drug delivery for inner-ear disease treatment. Keywords: bovine serum albumin (BSA, controlled release, local delivery, round-window membrane

  1. Relation Between Job Stress Dimensions and Job Satisfaction in Workers of a Refinery Control Room

    Directory of Open Access Journals (Sweden)

    Mehdi Behjati Ardakani

    2013-01-01

    Full Text Available Introduction: Job stress can result from an imbalance between job demands and the abilities to cope them. Stress can affect individuals and lead to job dissatisfaction. This study was conducted to assess the influence of different job stress dimensions on job satisfaction in workers of a refinery control room located at the south of Iran. Materials & Methods: In this cross sectional study all 100 workers of an oil refinery control room were studied. Job stress and job satisfaction was measured using standard questionnaires provided by national institute of mental health (NIMH and Robbins respectively. After collecting, data were analyzed using SPSS ver.16 software. A general linear model was used to estimate the effect of different job stress dimensions on the job satisfaction. Results: In this study 62.08 percent of workers were categorized as having high level of stress. In job satisfaction case, 9.2, 27.6, 28.7, 16.1 and 18.4 of workers were classified as totally dissatisfied, dissatisfied, not satisfied nor dissatisfied, satisfied and totally satisfied, respectively. A Pearson correlation test revealed a significant negative correlation between job satisfaction and all studied dimensions of job stress (p= 0.01. In the general regression model, partial Eta squared was 0.03, 0.3 and 0.23 for respectively interpersonal relationships, physical conditions of work and job interest. Conclusion: This study showed that job satisfaction is mostly influenced by physical conditions and job interest dimensions of job stress. Therefore, for improvement of job satisfaction in workers, different parameters of these two dimensions of job stress should be considered.

  2. Controlling the morphology and performance of FO membrane via adjusting the atmosphere humidity during casting procedure

    Science.gov (United States)

    Zuo, Hao-Ran; Cao, Gui-Ping; Wang, Meng; Zhang, Huan-Huan; Song, Chen-Chen; Fang, Xu; Wang, Tao

    2018-03-01

    Forward osmosis (FO) has received great interest for its considerable potential in a wide range of fields. In this work, the morphology and performance of FO membrane were regulated by adjusting the atmosphere humidity (HC) of casting procedure. The polysulfone support layer was casted under various atmosphere humidity levels ranging from 40% to 80%. By multi-techniques such as SEM, AFM, and XPS, it was proved that the atmosphere humidity had modified the surface morphology and thickness of the skin layer in support layer, which contributed up to 90% of the structure parameter, resulting in distinct morphology, thickness, and cross-linking degree of active layer. The active layer with sparse bead-like wrinkles on the smooth surface of support layer casted at HC = 65% showed the highest water permeability [26.9 (L/m2 h MPa)] and considerable low salt permeability [0.0390 (L/m2 h)]. It was found that the water flux of FO-65 was 27% and 46% higher than that of FO-80 in AL-DS and AL-FS mode, respectively, and the salt rejection was as high as 98%. Our work highlighted the importance of considering the effect of atmosphere humidity during casting when design an FO membrane for appropriate performance.

  3. Tetracaine – selective electrodes with polymer membranes and their application in pharmaceutical formulation control

    Directory of Open Access Journals (Sweden)

    Ahmed Khudhair Hassan

    2017-02-01

    Full Text Available The construction and electrochemical response characteristics of poly(vinyl chloride (PVC membrane electrodes for tetracaine hydrochloride (TCH are described. The sensing membranes incorporating ion-association complexes of tetracaine cation with phosphotungstic acid (PTA or phosphomolybdic acid (PMA or Sodium tetraphenyl borate (NaTPB as electroactive materials and di-n-butyl phthalate (DBPH or tri-n-butyl phosphate (TBP as a plasticizer in PVC matrixes were evaluated. The results obtained show the electrodes based on PTA or PMA as electroactive compounds and DBPH as plasticizer with a fast, stable and near-Nernstian response over a wide concentration range (1 × 10−5–5 × 10−2 M, with cationic slopes of 55.02 and 52.05 mV decade−1 over a pH range of (2.5–6.5. The electrodes show good discrimination of tetracaine from several inorganic cations and sugars. The electrodes were successfully applied for the determination of tetracaine in pharmaceutical formulations.

  4. Exploring valid internal-control genes in Porphyra yezoensis (Bangiaceae) during stress response conditions

    Science.gov (United States)

    Wang, Wenlei; Wu, Xiaojie; Wang, Chao; Jia, Zhaojun; He, Linwen; Wei, Yifan; Niu, Jianfeng; Wang, Guangce

    2014-07-01

    To screen the stable expression genes related to the stress (strong light, dehydration and temperature shock) we applied Absolute real-time PCR technology to determine the transcription numbers of the selected test genes in P orphyra yezoensis, which has been regarded as a potential model species responding the stress conditions in the intertidal. Absolute real-time PCR technology was applied to determine the transcription numbers of the selected test genes in P orphyra yezoensis, which has been regarded as a potential model species in stress responding. According to the results of photosynthesis parameters, we observed that Y(II) and F v/ F m were significantly affected when stress was imposed on the thalli of P orphyra yezoensis, but underwent almost completely recovered under normal conditions, which were collected for the following experiments. Then three samples, which were treated with different grade stresses combined with salinity, irradiation and temperature, were collected. The transcription numbers of seven constitutive expression genes in above samples were determined after RNA extraction and cDNA synthesis. Finally, a general insight into the selection of internal control genes during stress response was obtained. We found that there were no obvious effects in terms of salinity stress (at salinity 90) on transcription of most genes used in the study. The 18S ribosomal RNA gene had the highest expression level, varying remarkably among different tested groups. RPS8 expression showed a high irregular variance between samples. GAPDH presented comparatively stable expression and could thus be selected as the internal control. EF-1α showed stable expression during the series of multiple-stress tests. Our research provided available references for the selection of internal control genes for transcripts determination of P. yezoensis.

  5. A fluidic device for the controlled formation and real-time monitoring of soft membranes self-assembled at liquid interfaces.

    Science.gov (United States)

    Mendoza-Meinhardt, Arturo; Botto, Lorenzo; Mata, Alvaro

    2018-02-13

    Membrane materials formed at the interface between two liquids have found applications in a large variety of technologies, from sensors to drug-delivery and catalysis. However, studying the formation of these membranes in real-time presents considerable challenges, owing to the difficulty of prescribing the location and instant of formation of the membrane, the difficulty of observing time-dependent membrane shape and thickness, and the poor reproducibility of results obtained using conventional mixing procedures. Here we report a fluidic device that facilitates characterisation of the time-dependent thickness, morphology and mass transport properties of materials self-assembled at fluid-fluid interfaces. In the proposed device the membrane forms from the controlled coalescence of two liquid menisci in a linear open channel. The linear geometry and controlled mixing of the solutions facilitate real-time visualisation, manipulation and improve reproducibility. Because of its small dimensions, the device can be used in conjunction with standard microscopy methods and reduces the required volumes of potentially expensive reagents. As an example application to tissue engineering, we use the device to characterise interfacial membranes formed by supra-molecular self-assembly of peptide-amphiphiles with either an elastin-like-protein or hyaluronic acid. The device can be adapted to study self-assembling membranes for applications that extend beyond bioengineering.

  6. The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction

    Directory of Open Access Journals (Sweden)

    Sorkin Adam M

    2006-05-01

    Full Text Available Abstract Background In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. Methods To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm2 for this study at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV experiments. Results Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. Conclusion The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable.

  7. Dual control of low concentration CO poisoning by anode air bleeding of low temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Klages, Merle; Tjønnås, Johannes; Zenith, Federico; Halvorsen, Ivar J.; Scholta, Joachim

    2016-12-01

    Fuel impurities, fed to a polymer electrolyte membrane fuel cell, can affect stack performance by poisoning of catalyst layers. This paper describes the dynamic behaviour of a stack, including state-of-the-art membrane electrode assemblies (MEA) of three different manufacturers, at different operating conditions. The voltage transients of the step responses to CO poisoning as well as air bleed recovery are compared, revealing differences in performance loss: slow poisoning versus fast recovery, incomplete recovery and voltage oscillation. The recorded behaviour is used to develop a model, based on Tafel equation and first order dynamic response, which can be calibrated to each MEA type. Using this model to predict voltage response, a controller is built with the aim of reducing the total amount of air bleed and monitoring upstream stack processes without the need of sensors measuring the poisoning level. Two controllers are implemented in order to show the concept from a heuristic, easy to implement, and a more technical side allowing more detailed analysis of the synthesis. The heuristic algorithm, based on periodic perturbations of the manipulated variable (air-bleed), is validated on a real stack, revealing a stabilized performance without the need of detailed stack properties knowledge.

  8. Performance of a sequencing-batch membrane bioreactor (SMBR) with an automatic control strategy treating high-strength swine wastewater.

    Science.gov (United States)

    Sui, Qianwen; Jiang, Chao; Yu, Dawei; Chen, Meixue; Zhang, Junya; Wang, Yawei; Wei, Yuansong

    2018-01-15

    Due to high-strength of organic matters, nutrients and pathogen, swine wastewater is a major source of pollution to rural environment and surface water. A sequencing-batch membrane bioreactor (SMBR) system with an automatic control strategy was developed for high-strength swine wastewater treatment. Short-cut nitrification and denitrification (SND) was achieved at nitrite accumulation rate of 83.6%, with removal rates of COD, NH 4 + -N and TN at 95%, 99% and 93%, respectively, at reduced HRT of 6.0 d and TN loading rate of 0.02kgN/(kgVSS d). With effective membrane separation, the reduction of total bacteria (TB) and putative pathogen were 2.77 logs and 1%, respectively. The shift of microbial community was well responded to controlling parameters. During the SND process, ammonia oxidizing bacteria (AOB) (Nitrosomonas, Nitrosospira) and nitrite oxidizing bacteria (NOB) (Nitrospira) were enriched by 52 times and reduced by 2 times, respectively. The denitrifiers (Thauera) were well enriched and the diversity was enhanced. Copyright © 2017. Published by Elsevier B.V.

  9. The influence of oscillating electromagnetic fields on membrane structure and function: Synthetic liposome and natural membrane bilayer systems with direct application to the controlled delivery of chemical agents

    International Nuclear Information System (INIS)

    Liburdy, R.P.; de Manincor, D.; Fingado, B.

    1989-09-01

    Investigations have been conducted to determine if an imposed electromagnetic field can influence membrane transport, and ion and drug permeability in both synthetic and natural cell membrane systems. Microwave fields enhance accumulation of sodium in the lymphocyte and induce protein shedding at Tc. Microwaves also trigger membrane permeability of liposome systems under specific field exposure conditions. Sensitivity varies in a defined way in bilayers displaying a membrane structural phase transition temperature, Tc; maximal release was observed at or near Tc. Significantly, liposome systems without a membrane phase transition were also found to experience permeability increases but, in contrast, this response was temperature independent. The above results indicate that field-enhanced drug release occurs in liposome vesicles that possess a Tc as well as non-Tc liposomes. Additional studies extend non-Tc liposome responses to the in vivo case in which microwaves trigger Gentamicin release from a liposome ''depot'' placed subcutaneously in the rat hind leg. In addition, evidence is provided that cell surface sequestered liposomes can be triggered by microwave fields to release drugs directly into target cells. 24 refs., 6 figs

  10. The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants.

    Science.gov (United States)

    Hong, Jeum Kyu; Hwang, Byung Kook

    2009-01-01

    The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 was analyzed by an Agrobacterium-mediated transient expression assay in tobacco leaves. Several stress-related cis-acting elements (GT-1, W-box and ABRE) are located within the CaPIMP1 promoter. In tobacco leaf tissues transiently transformed with a CaPIMP1 promoter-beta-glucuronidase (GUS) gene fusion, serially 5'-deleted CaPIMP1 promoters were differentially activated by Pseudomonas syringae pv. tabaci, ethylene, methyl jasmonate, abscisic acid, and nitric oxide. The -1,193 bp region of the CaPIMP1 gene promoter sequence exhibited full promoter activity. The -417- and -593 bp promoter regions were sufficient for GUS gene activation by ethylene and methyl jasmonate treatments, respectively. However, CaPIMP1 promoter sequences longer than -793 bp were required for promoter activation by abscisic acid and sodium nitroprusside treatments. CaPIMP1 expression was activated in pepper leaves by treatment with ethylene, methyl jasmonate, abscisic acid, beta-amino-n-butyric acid, NaCl, mechanical wounding, and low temperature, but not with salicylic acid. Overexpression of CaPIMP1 in Arabidopsis conferred hypersensitivity to mannitol, NaCl, and ABA during seed germination but not during seedling development. In contrast, transgenic plants overexpressing CaPIMP1 exhibited enhanced tolerance to oxidative stress induced by methyl viologen during germination and early seedling stages. These results suggest that CaPIMP1 expression may alter responsiveness to environmental stress, as well as to pathogen infection.

  11. Stress !!!

    NARCIS (Netherlands)

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten.

  12. Age differences in coping and locus of control: a study of managerial stress in Hong Kong.

    Science.gov (United States)

    Siu, O; Cooper, C L; Spector, P E; Donald, I

    2001-12-01

    The present study involved data collection from 3 samples of Hong Kong managers to examine mechanisms by which age would relate to work well-being. A total of 634 managers was drawn by random sampling and purposive sampling methods. The results showed that age was positively related to well-being (job satisfaction and mental well-being). Furthermore, older managers reported fewer sources of stress, better coping, and a more internal locus of control. Multiple regression analyses suggested that the relations of age with 2 well-being indicators can be attributed to various combinations of coping, work locus of control, sources of stress, managerial level, and organizational tenure.

  13. Sensing the Stress: A Role for the UPRmt and UPRam in the Quality Control of Mitochondria

    Directory of Open Access Journals (Sweden)

    Sylvie Callegari

    2018-03-01

    Full Text Available Mitochondria exist as compartmentalized units, surrounded by a selectively permeable double membrane. Within is contained the mitochondrial genome and protein synthesis machinery, required for the synthesis of OXPHOS components and ultimately, ATP production. Despite their physical barrier, mitochondria are tightly integrated into the cellular environment. A constant flow of information must be maintained to and from the mitochondria and the nucleus, to ensure mitochondria are amenable to cell metabolic requirements and also to feedback on their functional state. This review highlights the pathways by which mitochondrial stress is signaled to the nucleus, with a particular focus on the mitochondrial unfolded protein response (UPRmt and the unfolded protein response activated by the mistargeting of proteins (UPRam. Although these pathways were originally discovered to alleviate proteotoxic stress from the accumulation of mitochondrial-targeted proteins that are misfolded or unimported, we review recent findings indicating that the UPRmt can also sense defects in mitochondrial translation. We further discuss the regulation of OXPHOS assembly and speculate on a possible role for mitochondrial stress pathways in sensing OXPHOS biogenesis.

  14. The p66(Shc adaptor protein controls oxidative stress response in early bovine embryos.

    Directory of Open Access Journals (Sweden)

    Dean H Betts

    Full Text Available The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.

  15. Cathepsin activities and membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling.

    Science.gov (United States)

    Zhang, T; Rawson, D M; Tosti, L; Carnevali, O

    2008-04-01

    This study investigated enzymatic activity of cathepsins and the membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling. Stage III oocytes (>0.5mm), obtained through dissection of anaesthetised female fish and desegregation of ovarian cumulus, were exposed to 2M methanol or 2M DMSO (both prepared in Hank's medium) for 30min at 22 degrees C before being loaded into 0.5ml plastic straws and placed into a programmable cooler. After controlled slow freezing, samples were plunged into liquid nitrogen (LN) and held for at least 10min, and thawed by immersing straws into a 27 degrees C water bath for 10s. Thawed oocytes were washed twice in Hank's medium. Cathepsin activity and membrane integrity of oocytes were assessed both after cryoprotectant treatment at 22 degrees C and after freezing in LN. Cathepsin B and L colorimetric analyses were performed using substrates Z-Arg-ArgNNap and Z-Phe-Arg-4MbetaNA-HCl, respectively, and 2-naphthylamine and 4-methoxy-2-naphthylamine were used as standards. Cathepsin D activity was performed by analysing the level of hydrolytic action on haemoglobin. Oocytes membrane integrity was assessed using 0.2% Trypan blue staining for 5min. Analysis of cathepsin activities showed that whilst the activity of cathepsin B and D was not affected by 2M DMSO treatment, their activity was lowered when treated with 2M methanol. Following freezing to -196 degrees C, the activity of all cathepsins (B, D and L) was significantly decreased in both 2M DMSO and 2M methanol. Trypan blue staining showed that 63.0+/-11.3% and 72.7+/-5.2% oocytes membrane stayed intact after DMSO and methanol treatment for 30min at 22 degrees C, respectively, whilst 14.9+/-2.6% and 1.4+/-0.8% stayed intact after freezing in DMSO and methanol to -196 degrees C. The results indicate that cryoprotectant treatment and freezing modified the activities of lysosomal enzymes involved in oocyte maturation and yolk

  16. Multilayered control of peroxisomal activity upon salt stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Manzanares-Estreder, Sara; Espí-Bardisa, Joan; Alarcón, Benito; Pascual-Ahuir, Amparo; Proft, Markus

    2017-06-01

    Peroxisomes are dynamic organelles and the sole location for fatty acid β-oxidation in yeast cells. Here, we report that peroxisomal function is crucial for the adaptation to salt stress, especially upon sugar limitation. Upon stress, multiple layers of control regulate the activity and the number of peroxisomes. Activated Hog1 MAP kinase triggers the induction of genes encoding enzymes for fatty acid activation, peroxisomal import and β-oxidation through the Adr1 transcriptional activator, which transiently associates with genes encoding fatty acid metabolic enzymes in a stress- and Hog1-dependent manner. Moreover, Na + and Li + stress increases the number of peroxisomes per cell in a Hog1-independent manner, which depends instead of the retrograde pathway and the dynamin related GTPases Dnm1 and Vps1. The strong activation of the Faa1 fatty acyl-CoA synthetase, which specifically localizes to lipid particles and peroxisomes, indicates that adaptation to salt stress requires the enhanced mobilization of fatty acids from internal lipid stores. Furthermore, the activation of mitochondrial respiration during stress depends on peroxisomes, mitochondrial acetyl-carnitine uptake is essential for salt resistance and the number of peroxisomes attached to the mitochondrial network increases during salt adaptation, which altogether indicates that stress-induced peroxisomal β-oxidation triggers enhanced respiration upon salt shock. © 2017 John Wiley & Sons Ltd.

  17. Dimensions of control as related to work organization, stress, and health.

    Science.gov (United States)

    Aronsson, G

    1989-01-01

    The aim of this article is to examine how increased worker control-on the individual as well as on collective level-may be a means to reduce the risk of work environment-related stress and diseases. Control is also an important element in socialization processes and in work reform activities directed to a democratization of working life. The concept of control connects a number of research perspectives. It deals with the individual and the collective level, as well as the relationship between them, and it may be a bridge between a social psychological and a psychobiological perspective. In this article, the author considers the control concept primarily from a stress perspective, but also examines how production techniques, legislation, and management strategies create the structure of control at work.

  18. Unpredictable Variable Prenatal Stress Programs Expression of Genes Involved in Appetite Control and Energy Expenditure

    Science.gov (United States)

    Moyer, E. L.; Al-Shayeb, B.; Baer, L. A.; Ronca, A. E.

    2016-01-01

    Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hyper-gravity demonstrated significantly increased (8-15%) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported a similar outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes and the plasma of animals treated with our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats.

  19. Band 3 Erythrocyte Membrane Protein Acts as Redox Stress Sensor Leading to Its Phosphorylation by p72 Syk

    Directory of Open Access Journals (Sweden)

    Antonella Pantaleo

    2016-01-01

    Full Text Available In erythrocytes, the regulation of the redox sensitive Tyr phosphorylation of band 3 and its functions are still partially defined. A role of band 3 oxidation in regulating its own phosphorylation has been previously suggested. The current study provides evidences to support this hypothesis: (i in intact erythrocytes, at 2 mM concentration of GSH, band 3 oxidation, and phosphorylation, Syk translocation to the membrane and Syk phosphorylation responded to the same micromolar concentrations of oxidants showing identical temporal variations; (ii the Cys residues located in the band 3 cytoplasmic domain are 20-fold more reactive than GSH; (iii disulfide linked band 3 cytoplasmic domain docks Syk kinase; (iv protein Tyr phosphatases are poorly inhibited at oxidant concentrations leading to massive band 3 oxidation and phosphorylation. We also observed that hemichromes binding to band 3 determined its irreversible oxidation and phosphorylation, progressive hemolysis, and serine hyperphosphorylation of different cytoskeleton proteins. Syk inhibitor suppressed the phosphorylation of band 3 also preventing serine phosphorylation changes and hemolysis. Our data suggest that band 3 acts as redox sensor regulating its own phosphorylation and that hemichromes leading to the protracted phosphorylation of band 3 may trigger a cascade of events finally leading to hemolysis.

  20. Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface PEGylation.

    Science.gov (United States)

    Chang, Yung; Shih, Yu-Ju; Ko, Chao-Yin; Jhong, Jheng-Fong; Liu, Ying-Ling; Wei, Ta-Chin

    2011-05-03

    In this work, the hemocompatibility of PEGylated poly(vinylidene fluoride) (PVDF) microporous membranes with varying grafting coverage and structures via plasma-induced surface PEGylation was studied. Network-like and brush-like PEGylated layers on PVDF membrane surfaces were achieved by low-pressure and atmospheric plasma treatment. The chemical composition, physical morphology, grafting structure, surface hydrophilicity, and hydration capability of prepared membranes were determined to illustrate the correlations between grafting qualities and hemocompatibility of PEGylated PVDF membranes in contact with human blood. Plasma protein adsorption onto different PEGylated PVDF membranes from single-protein solutions and the complex medium of 100% human plasma were measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Hemocompatibility of the PEGylated membranes was evaluated by the antifouling property of platelet adhesion observed by scanning electron microscopy (SEM) and the anticoagulant activity of the blood coagulant determined by testing plasma-clotting time. The control of grafting structures of PEGylated layers highly regulates the PVDF membrane to resist the adsorption of plasma proteins, the adhesion of platelets, and the coagulation of human plasma. It was found that PVDF membranes grafted with brush-like PEGylated layers presented higher hydration capability with binding water molecules than with network-like PEGylated layers to improve the hemocompatible character of plasma protein and blood platelet resistance in human blood. This work suggests that the hemocompatible nature of grafted PEGylated polymers by controlling grafting structures gives them great potential in the molecular design of antithrombogenic membranes for use in human blood.

  1. Effect of IX dosing on polypropylene and PVDF membrane fouling control

    KAUST Repository

    Myat, Darli Theint

    2013-07-01

    The performance of ion exchange (IX) resin for organics removal from wastewater was assessed using advanced characterisation techniques for varying doses of IX. Organic characterisation using liquid chromatography with a photodiode array (PDA) and fluorescence spectroscopy (Method A), and UV254, organic carbon and organic nitrogen detectors (Method B), was undertaken on wastewater before and after magnetic IX treatment. Results showed partial removal of the biopolymer fraction at high IX doses. With increasing concentration of IX, evidence for nitrogen-containing compounds such as proteins and amino acids disappeared from the LC-OND chromatogram, complementary to the fluorescence response. A greater fluorescence response of tryptophan-like proteins (278nm/343nm) for low IX concentrations was consistent with aggregation of tryptophan-like compounds into larger aggregates, either by self-aggregation or with polysaccharides. Recycling of IX resin through multiple adsorption steps without regeneration maintained the high level of humics removal but there was no continued removal of biopolymer. Subsequent membrane filtration of the IX treated waters resulted in complex fouling trends. Filtration tests with either polypropylene (PP) or polyvinylidene fluoride (PVDF) membranes showed higher rates of initial fouling following treatment with high IX doses (10mL/L) compared to filtration of untreated water, while treatment with lower IX doses resulted in decreased fouling rates relative to the untreated water. However, at longer filtration times the rate of fouling of IX treated waters was lower than untreated water and the relative fouling rates corresponded to the amount of biopolymer material in the feed. It was proposed that the mode of fouling changed from pore constriction during the initial filtration period to filter cake build up at longer filtration times. The organic composition strongly influenced the rate of fouling during the initial filtration period due to

  2. A simple approach to uniform PdAg alloy membranes: Comparative study of conventional and silver concentration-controlled co-plating

    KAUST Repository

    Zeng, Gaofeng

    2014-03-01

    An Ag-controlled co-plating method was developed for the preparation of palladium/silver alloy membranes on porous tubular alumina supports. By controlling the feed rate of Ag to the Pd bath, the concentration of the silver in the plating bath was restricted during the course of plating. As a result, preferential deposition of silver at the beginning was suppressed and uniform dispersion of silver inside the membrane with silver composition in the desired range was achieved. Ultrathin (∼2.5 μm) PdAg alloy membranes with uniform silver composition of ∼25% were successfully obtained. The membrane showed a hydrogen permeance of 0.88 mol m-2 s-1 and pure-gas H2/N2 selectivity of 2140 at 823 K with ΔP = 100 kPa. Only one hydride phase existed in the studied temperature range from 373 to 823 K with ΔPH=100kPa. Direct comparisons with the conventional simply-mixed co-plating method showed that membranes made by the novel Ag-controlled co-plating method had much more uniform silver distribution, smoother surface, denser membrane structure, higher utilization rate of metal sources, and shorter alloying time. © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  3. A simple approach to uniform PdAg alloy membranes: Comparative study of conventional and silver concentration-controlled co-plating

    KAUST Repository

    Zeng, Gaofeng; Shi, Lei; Liu, Yunyang; Zhang, Yanfeng; Sun, Yuhan

    2014-01-01

    An Ag-controlled co-plating method was developed for the preparation of palladium/silver alloy membranes on porous tubular alumina supports. By controlling the feed rate of Ag to the Pd bath, the concentration of the silver in the plating bath was restricted during the course of plating. As a result, preferential deposition of silver at the beginning was suppressed and uniform dispersion of silver inside the membrane with silver composition in the desired range was achieved. Ultrathin (∼2.5 μm) PdAg alloy membranes with uniform silver composition of ∼25% were successfully obtained. The membrane showed a hydrogen permeance of 0.88 mol m-2 s-1 and pure-gas H2/N2 selectivity of 2140 at 823 K with ΔP = 100 kPa. Only one hydride phase existed in the studied temperature range from 373 to 823 K with ΔPH=100kPa. Direct comparisons with the conventional simply-mixed co-plating method showed that membranes made by the novel Ag-controlled co-plating method had much more uniform silver distribution, smoother surface, denser membrane structure, higher utilization rate of metal sources, and shorter alloying time. © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  4. Physiological coherence in healthy volunteers during laboratory-induced stress and controlled breathing.

    Science.gov (United States)

    Mejía-Mejía, Elisa; Torres, Robinson; Restrepo, Diana

    2018-06-01

    Physiological coherence has been related with a general sense of well-being and improvements in health and physical, social, and cognitive performance. The aim of this study was to evaluate the relationship between acute stress, controlled breathing, and physiological coherence, and the degree of body systems synchronization during a coherence-generation exercise. Thirty-four university employees were evaluated during a 20-min test consisting of four stages of 5-min duration each, during which basal measurements were obtained (Stage 1), acute stress was induced using validated mental stressors (Stroop test and mental arithmetic task, during Stage 2 and 3, respectively), and coherence states were generated using a controlled breathing technique (Stage 4). Physiological coherence and cardiorespiratory synchronization were assessed during each stage from heart rate variability, pulse transit time, and respiration. Coherence measurements derived from the three analyzed variables increased during controlled respiration. Moreover, signals synchronized during the controlled breathing stage, implying a cardiorespiratory synchronization was achieved by most participants. Hence, physiological coherence and cardiopulmonary synchronization, which could lead to improvements in health and better life quality, can be achieved using slow, controlled breathing exercises. Meanwhile, coherence measured during basal state and stressful situations did not show relevant differences using heart rate variability and pulse transit time. More studies are needed to evaluate the ability of coherence ratio to reflect acute stress. © 2017 Society for Psychophysiological Research.

  5. Nurse leader mindfulness meditation program for stress management: a randomized controlled trial.

    Science.gov (United States)

    Pipe, Teri Britt; Bortz, Jennifer J; Dueck, Amylou; Pendergast, Debra; Buchda, Vicki; Summers, Jay

    2009-03-01

    The aim of this study was to rigorously evaluate a brief stress management intervention for nurse leaders. Despite the nursing shortage, evidence-based workplace approaches addressing nurse stress have not been well studied. Nurse leaders (n = 33) were randomly assigned to brief mindfulness meditation course (MMC) or leadership course (control). Self-report measures of stress were administered at baseline and within 1 week of course completion. Among MMC participants, change scores (from baseline to postintervention) on several subscales of the Symptom Checklist 90-Revised showed significantly more improvement in self-reported stress symptoms relative to controls. Mindfulness meditation course participants had significantly more improvement in Positive Symptom Distress Index (P = 0.010; confidence interval [CI] = -0.483 to -0.073) and Global Severity Index (P = 0.019; CI = -0.475 to -0.046) and nearly significantly more improvement in Positive Symptom Total (P = 0.066; CI = -16.66 to 0.581) compared with controls. Results support preliminary effectiveness of a 4-week MMC in reducing self-reported stress symptoms among nursing leaders.

  6. Work-related psychosocial stress and glycemic control among working adults with diabetes mellitus.

    Science.gov (United States)

    Annor, Francis B; Roblin, Douglas W; Okosun, Ike S; Goodman, Michael

    2015-01-01

    To examine the association between glycosylated hemoglobin (HbA1c) and four subscales of work-related psychosocial stress at study baseline and over time. We used survey data from a major HMO located in the Southeastern part of the US on health and healthy behaviors linked with patients' clinical, pharmacy and laboratory records for the period between 2005 and 2009. Study participants (n=537) consisted of working adults aged 25-59 years, diagnosed with diabetes mellitus (DM) but without advanced micro or macrovascular complications at the time of the survey. We estimated the baseline (2005) association between HbA1c and work-related psychosocial stress and their interactions using linear regression analysis. Using individual growth model approach, we estimated the association between HbA1c over time and work-related psychosocial stress. Each of the models controlled for socio-demographic variables, diet and physical activity factor, laboratory factor, physical examinations variables and medication use in a hierarchical fashion. After adjusting for all study covariates, we did not find a significant association between work-related psychosocial stress and glycemic control either at baseline or over time. Among fairly healthy middle aged working adults with DM, work-related psychosocial stress was not directly associated with glycemic control. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.