WorldWideScience

Sample records for membrane sequencing batch

  1. Removal of typical endocrine disrupting chemicals by membrane bioreactor: in comparison with sequencing batch reactor.

    Science.gov (United States)

    Zhou, Yingjun; Huang, Xia; Zhou, Haidong; Chen, Jianhua; Xue, Wenchao

    2011-01-01

    The removal of endocrine disrupting chemicals (EDCs) by a laboratory-scale membrane bioreactor (MBR) fed with synthetic sewage was evaluated and moreover, compared with that by a sequencing batch reactor (SBR) operated under same conditions in parallel. Eight kinds of typical EDCs, including 17β-estradiol (E2), estrone (E1), estriol (E3), 17α-ethynilestradiol (EE2), 4-octylphenol (4-OP), 4-nonylphenol (4-NP), bisphenol A (BPA) and nonylphenol ethoxylates (NPnEO), were spiked into the feed. Their concentrations in influent, effluent and supernatant were determined by gas chromatography-mass spectrometry method. The overall estrogenecity was evaluated as 17β-estradiol equivalent quantity (EEQ), determined via yeast estrogen screen (YES) assay. E2, E3, BPA and 4-OP were well removed by both MBR and SBR, with removal rates more than 95% and no significant differences between the two reactors. However, with regard to the other four EDCs, of which the removal rates were lower, MBR performed better. Comparison between supernatant and effluent of the two reactors indicated that membrane separation of sludge and effluent, compared with sedimentation, can relatively improve elimination of target EDCs and total estrogenecity. By applying different solids retention times (SRTs) (5, 10, 20 and 40 d) to the MBR, 10 and 5 d were found to be the lower critical SRTs for efficient target EDCs and EEQ removal, respectively.

  2. Heuristics for batching and sequencing in batch processing machines

    Directory of Open Access Journals (Sweden)

    Chuda Basnet

    2016-12-01

    Full Text Available In this paper, we discuss the “batch processing” problem, where there are multiple jobs to be processed in flow shops. These jobs can however be formed into batches and the number of jobs in a batch is limited by the capacity of the processing machines to accommodate the jobs. The processing time required by a batch in a machine is determined by the greatest processing time of the jobs included in the batch. Thus, the batch processing problem is a mix of batching and sequencing – the jobs need to be grouped into distinct batches, the batches then need to be sequenced through the flow shop. We apply certain newly developed heuristics to the problem and present computational results. The contributions of this paper are deriving a lower bound, and the heuristics developed and tested in this paper.

  3. Optimal operation of batch membrane processes

    CERN Document Server

    Paulen, Radoslav

    2016-01-01

    This study concentrates on a general optimization of a particular class of membrane separation processes: those involving batch diafiltration. Existing practices are explained and operational improvements based on optimal control theory are suggested. The first part of the book introduces the theory of membrane processes, optimal control and dynamic optimization. Separation problems are defined and mathematical models of batch membrane processes derived. The control theory focuses on problems of dynamic optimization from a chemical-engineering point of view. Analytical and numerical methods that can be exploited to treat problems of optimal control for membrane processes are described. The second part of the text builds on this theoretical basis to establish solutions for membrane models of increasing complexity. Each chapter starts with a derivation of optimal operation and continues with case studies exemplifying various aspects of the control problems under consideration. The authors work their way from th...

  4. Comparative study of emerging micropollutants removal by aerobic activated sludge of large laboratory-scale membrane bioreactors and sequencing batch reactors under low-temperature conditions.

    Science.gov (United States)

    Kruglova, Antonina; Kråkström, Matilda; Riska, Mats; Mikola, Anna; Rantanen, Pirjo; Vahala, Riku; Kronberg, Leif

    2016-08-01

    Four emerging micropollutants ibuprofen, diclofenac, estrone (E1) and 17α-ethinylestradiol (EE2) were studied in large laboratory-scale wastewater treatment plants (WWTPs) with high nitrifying activity. Activated sludge (AS) with sludge retention times (SRTs) of 12days and 14days in sequencing batch reactors (SBRs) and 30days, 60days and 90days in membrane bioreactors (MBRs) were examined at 8°C and 12°C. Concentrations of pharmaceuticals and their main metabolites were analysed in liquid phase and solid phase of AS by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A remarkable amount of contaminants were detected in solids of AS, meaning the accumulation of micropollutants in bacterial cells. The biodegradation rate constants (Kbiol) were affected by SRT and temperature. MBR with a 90-day SRT showed the best results of removal. Conventional SBR process was inefficient at 8°C showing Kbiol values lower than 0.5lgSS(-1)d(-1) for studied micropollutants.

  5. Biodenitrification in Sequencing Batch Reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, J. [Colorado Univ., Boulder, CO (United States). Dept. of Civil, Environmental, and Architectural Engineering

    1996-01-23

    One plan for stabilization of the Solar Pond waters and sludges at Rocky Flats Plant (RFP), is evaporation and cement solidification of the salts to stabilize heavy metals and radionuclides for land disposal as low-level mixed waste. It has been reported that nitrate (NO{sub 3}{sub {minus}}) salts may interfere with cement stabilization of heavy metals and radionuclides. Therefore, biological nitrate removal (denitrification) may be an important pretreatment for the Solar Pond wastewaters at RFP, improving the stability of the cement final waste form, reducing the requirement for cement (or pozzolan) additives and reducing the volume of cemented low-level mixed waste requiring ultimate disposal. A laboratory investigation of the performance of the Sequencing Batch Reactor (SBR) activated sludge process developed for nitrate removal from a synthetic brine typical of the high-nitrate and high-salinity wastewaters in the Solar Ponds at Rocky Flats Plant was carried out at the Environmental Engineering labs at the University of Colorado, Boulder, between May 1, 1994 and October 1, 1995.

  6. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment.

    Science.gov (United States)

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-07-27

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome.

  7. Biorreator à membrana em batelada sequencial aplicado ao tratamento de esgoto visando à remoção de nutrientes Membrane sequencing batch reactor for the wastewater treatment aiming the nutrients removal

    Directory of Open Access Journals (Sweden)

    Tiago José Belli

    2012-06-01

    Full Text Available Neste trabalho, avaliou-se o desempenho de um biorreator à membrana em batelada sequencial para a remoção de nutrientes (nitrogênio e fósforo de esgoto sanitário. O reator, construído em escala piloto, foi operado durante 241 dias com tempo total de ciclo de 4 horas, sendo 5 minutos para alimentação, 55 minutos para a fase anóxica e 180 minutos para as fases de aeração e filtração (simultaneamente. Ao longo do monitoramento, foram empregados dois fluxos de filtração: 5,55 e 11,1 L.m-2.h-1, que resultaram nas taxas de troca volumétrica de 5 e 10%, respectivamente. As eficiências médias de remoção de Demanda Química de Oxigênio total, nitrogênio amoniacal e nitrogênio total alcançadas foram de 99, 98 e 96%, respectivamente. Em relação à remoção de fósforo, observou-se inicialmente um baixo rendimento do reator, sendo verificado ao longo do tempo, no entanto, uma tendência de melhora na remoção desse nutriente, atingindo eficiência média de 74% entre os dias 158 e 241. A utilização do fluxo de filtração de 5,55 L.m-2.h-1 proporcionou uma operação estável ao biorreator à membrana em batelada sequencial no que se refere à pressão transmembrana, tendo sido atingido o valor limite de 0,7 bar apenas uma vez em 181 dias de operação, ao passo que, com fluxo de 11,1 L.m-2.h-1, esse limite foi atingido 3 vezes em 55 dias.This study evaluated the performance of a membrane bioreactor sequencing batch, in pilot scale, to remove nutrients (nitrogen and phosphorus from domestic wastewater. The reactor was operated for 241 days with a total cycle time of 4 hours, with 5 minutes for feeding, 55 minutes for the anoxic phase and 180 minutes for the aeration and filtration phases (simultaneously. Throughout the monitoring, two filtration flows were employed: 5.5 and 11.1 (critical flux L.m-2.h-1, which resulted in the volume exchange rates of 5 and 10%, respectively. The removal efficiencies of total Chemical Oxygen

  8. Treatment of slaughterhouse wastewater in anaerobic sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D. I.; Masse, L. [Agriculture and Agri-Food Canada, Lennoxville, PQ (Canada)

    2000-09-01

    Slaughterhouse waste water was treated in anaerobic sequencing batch reactors operated at 30 degrees C. Two of the batch reactors were seeded with anaerobic granular sludge from a milk processing plant reactor; two others received anaerobic non-granulated sludge from a municipal waste water treatment plant. Influent total chemical oxygen demand was reduced by 90 to 96 per cent at organic loading rates ranging from 2.07 kg to 4.93 kg per cubic meter. Reactors seeded with municipal sludge performed slightly better than those containing sludge from the milk processing plant. The difference was particularly noticeable during start-up, but the differences between the two sludges were reduced with time. The reactors produced a biogas containing 75 per cent methane. About 90.5 per cent of the chemical oxygen demand removed was methanized; volatile suspended solids accumulation was determined at 0.068 kg per kg of chemical oxygen demand removed. The high degree of methanization suggests that most of the soluble and suspended organic material in slaughterhouse waste water was degraded during the treatment in the anaerobic sequencing batch reactors. 30 refs., 1 tab., 6 figs.

  9. Biological Treatment of Leachate using Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    WDMC Perera

    2014-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE TA Abstract   In Sri Lanka municipal solid waste is generally disposed in poorly managed open dumps which lack liner systems and leachate collection systems. Rain water percolates through the waste layers to produce leachate which drains in to ground water and finally to nearby water bodies, degrading the quality of water. Leachate thus has become a major environmental concern in municipal waste management and treatment of leachate is a major challenge for the existing and proposed landfill sites.   The study was conducted to assess the feasibility of the usage of the Sequencing Batch Reactor in the treatment of the landfill leachate up to the proposed levels in the draft report of “Proposed Sri Lankan standard for landfill leachate to be disposed to the inland waters". Leachate collected from the open dumpsite at Meethotamulla, Western Province, Sri Lanka was used for leachate characterization.   SBR was constructed with a 10-liter working volume operated in an 18 hour cycle mode and each cycle consists of 15hours of aerobic, 2h settle and 0.5 h of fill/decant stages. The Dissolved Oxygen level within the SBR was maintained at 2 mg/l through the aerobic stage. Infeed was diluted with water during the acclimatization period and a leachate to water ratio of 55:45 was maintained. The removal efficiencies for different parameters were; COD (90.5%, BOD (92.6%, TS (92.1%, Conductivity (83.9%, Alkalinity (97.4%, Hardness (82.2%, Mg (80.5%, Fe (94.2%, Zn (63.4%, Cr (31.69%, Pb (99.6%, Sulphate (98.9%, and Phosphorus (71.4% respectively. In addition Ni and Cd were removed completely during a single SBR cycle. Thus the dilution of leachate in the dumpsites using municipal wastewater, groundwater or rainwater was identified as the most cost effective dilution methods. The effluent from the Sequencing batch reactor is proposed to be further treated using a constructed wetland before releasing to surface water.

  10. Treatemnt of Wastewater with Modified Sequencing Batch Biofilm Reactor Technology

    Institute of Scientific and Technical Information of China (English)

    胡龙兴; 刘宇陆

    2002-01-01

    This paper describes the removel of COD and nitrogen from wastewater with modified sequencing batch biofilm reactor,The strategy of simultaneous feeding and draining was explored.The results show that introduction of a new batch of wastewater and withdrawal of the purifeid water can be conducted simultaneously with the maximum volumetric exchange rate of about 70%,Application of this feeding and draining mode leads to the reduction of the cycle time,the increase of the utilization of the reactor volume and the simplification of the reactor structure.The treatment of a synthetic wastewater containing COD and nitrogen was investigated.The operation mode of F(D)-O(i.e.,simultaneous feeding and draining followed by the aerobic condition)was adopted.It was found that COD was degraded very fast in the initial reaction period of time,then reduced slowly and the ammonia nitrogen and nitrate nitrogen concentrations decreased and increased with time respectively,while the nitrite nitrogen level increased first and then reduced.The relationship between the COD or ammonia nitrogen loading and its removal rate was examined,and the removal of COD,ammonia nitrogen and total nitrogen could exceed 95%,90%and 80% respectively,The fact that nitrogen could e removed more completely under constant aeration(aerobic condition)of the SBBR operation mode is very interesting and could be explained in several respects.

  11. Anaerobic sequencing batch reactors and its influencing factors: an overview.

    Science.gov (United States)

    Akil, K; Jayanthi, S

    2012-04-01

    Anaerobic sequencing batch reactors (ASBR) operate in four cyclic steps: feed, reaction, settling and discharge. ASBRs allow typical biological anaerobic metabolism from substrate consumption to methane and carbon dioxide production. Microorganisms in an ASBR are exposed to variable substrate concentrations over the duration of the cycle, resulting in high rates of substrate conversion and efficient biomass flocculation and settling. High substrate concentrations at the beginning of a cycle result in high metabolic activity and substrate removal. Low substrate concentrations towards the end of the cycle result in low biogas production and allow for good sludge settling. However, the cycles should be as frequent as possible while allowing for completion of each of the four stages. Operating by batches enables the solids residence time to be independent of the hydraulic retention time without recourse to a settling tank, since the reactor functions as a decanter whenever the stirring mechanism is turned off. This review presents an overview of the ASBR process and the various factors influencing its performance.

  12. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    A Mohseni-Bandpi, H Bazari

    2004-10-01

    Full Text Available A bench scale aerobic Sequencing Batch Reactor (SBR was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optimum dissolved oxygen in the reactor was 2 to 3 mg/l and MLVSS was around 3000 mg/l. Easy operation, low cost and minimal sludge bulking condition make the SBR system an interesting option for the biological medium strength industrial wastewater treatment. The study demonstrated the capability of aerobic SBR for COD removal from dairy industrial wastewater.

  13. A comparative study of sequencing batch reactor and moving-bed sequencing batch reactor for piggery wastewater treatment

    Directory of Open Access Journals (Sweden)

    Kwannate Sombatsompop

    2011-06-01

    Full Text Available This research aims to comparatively study the efficiency of piggery wastewater treatment by the moving-bed sequencing batch reactor (moving-bed SBR system with held medium, and the conventional sequencing batch reactor (SBR system, by varying the organic load from 0.59 to 2.36 kgCOD/m3.d. The COD treatment efficiency of the SBR and moving-bed SBR was higher than 60% at an organic load of 0.59 kgCOD/m3.d and higher than 80% at the organic loads of 1.18-2.36 kgCOD/m3.d. The BOD removal efficiency was greater than 90% at high organic loads of 1.18-2.36 kgCOD/m3.d. The moving-bed SBR gave TKN removal efficiency of 86-93%, whereas the SBR system exhibited the removal efficiency of 75-87% at all organic loads. The amount of effluent suspended solids for SBR systems exceeded the piggery wastewater limit of 200 mg/L at the organic load of 2.36 kgCOD/m3.d while that for the moving-bed SBR system did not. When the organic load was increased, the moving-bed SBR system yielded better treatment efficiency than that of the SBR system. The wastewater treated by the moving-bed SBR system met the criteria of wastewater standard for pig farms at all organic loads, while that treated by the SBR system was not satisfactory at a high organic load of 2.36 kgCOD/m3.d.

  14. EFFECT OF DYE CONCENTRATION ON SEQUENCING BATCH REACTOR PERFORMANCE

    Directory of Open Access Journals (Sweden)

    A. A. Vaigan ، M. R. Alavi Moghaddam ، H. Hashemi

    2009-01-01

    Full Text Available Reactive dyes have been identified as problematic compounds in textile industries wastewater as they are water soluble and cannot be easily removed by conventional aerobic biological treatment systems. The treatability of a reactive dye (Brill Blue KN-R by sequencing batch reactor and the influence of the dye concentration on system performance were investigated in this study. Brill Blue KN-R is one of the main dyes that are used in textile industries in Iran. Four cylindrical Plexiglas reactors were run for 36 days (5 days for acclimatization of sludge and 31 days for normal operation at different initial dye concentrations. The dye concentrations were adjusted to be 20, 25, 30 and 40 mg/L in the reactors R1, R2, R3 and R4, respectively. In all reactors, effective volume, influent wastewater flowrate and sludge retention time were 5.5 L, 3.0 L/d and 10 d, respectively. According to the obtained data, average dye removal efficiencies of R1, R2, R3 and R4 were 57% ± 2, 50.18% ± 3, 44.97% ± 3 and 30.98% ± 3, respectively. The average COD removal efficiencies of all reactors were 97% ± 1, 97.12% ± 1, 96.93% ± 1 and 97.22% ± 1, respectively. The dye removal efficiency was decreased by increasing the dye concentration with the correlation coefficient of 0.997.

  15. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N.S. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil); Zaiat, M. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil)], E-mail: zaiat@sc.usp.br

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m{sup 3} day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 {+-} 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms.

  16. Operational strategies for nitrogen removal in granular sequencing batch reactor.

    Science.gov (United States)

    Chen, Fang-yuan; Liu, Yong-Qiang; Tay, Joo-Hwa; Ning, Ping

    2011-05-15

    This study investigated the effects of different operational strategies for nitrogen removal by aerobic granules with mean granule sizes of 1.5mm and 0.7 mm in a sequencing batch reactor (SBR). With an alternating anoxic/oxic (AO) operation mode without control of dissolve oxygen (DO), the granular sludge with different size achieved the total inorganic nitrogen (TIN) removal efficiencies of 67.8-71.5%. While under the AO condition with DO controlled at 2mg/l at the oxic phase, the TIN removal efficiency was improved up to 75.0-80.4%. A novel operational strategy of alternating anoxic/oxic combined with the step-feeding mode was developed for nitrogen removal by aerobic granules. It was found that nitrogen removal efficiencies could be further improved to 93.0-95.9% with the novel strategy. Obviously, the alternating anoxic/oxic strategy combined with step-feeding is the optimal way for TIN removal by granular sludge, which is independent of granule size. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Treatment of brewery slurry in thermophilic anaerobic sequencing batch reactor.

    Science.gov (United States)

    Zupancic, Gregor D; Straziscar, Matej; Ros, Milenko

    2007-10-01

    Treatment of brewery slurry in a thermophilic anaerobic sequencing batch reactor (ASBR) was studied using conventional fully mixed semi-continuous digestion as a control. The process phases were adapted to fit the brewery slurry discharge schedule. ASBR experiments were conducted under different organic loading rates (OLR) from 3.23 to 8.57 kg of COD/m(3)day of reactor and control was conducted with OLR of 3.0 kg of COD/m(3)day. The ASBR COD degradation efficiency was from 79.6% to 88.9%, control experiment efficiency was 65%. ASBR VSS removal efficiency was from 78.5% to 90.5%, control experiment efficiency was 54%. The ASBR methane production yield was from 371 to 418 L/kg COD inserted, control experiment methane yield was 248 L/kg COD inserted. The ASBR process was superior to conventional fully mixed digestion, and is fully adaptable to brewery slurry discharge, needs no additional collection and settling pools and experiences no solids settling problems.

  18. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR).

    Science.gov (United States)

    Pereira, N S; Zaiat, M

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 degrees C with 8h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m(3)day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6+/-1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3mg/Lh as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms.

  19. Pretreatment of coking wastewater using anaerobic sequencing batch reactor (ASBR)

    Institute of Scientific and Technical Information of China (English)

    LI Bing; SUN Ying-lan; LI Yu-ying

    2005-01-01

    A laboratory-scale anaerobic sequencing batch reactor (ASBR) was used to pretreat coking wastewater. Inoculated anaerobic granular biomass was acclimated for 225 d to the coking wastewater, and then the biochemical methane potential (BMP)of the coking wastewater in the acclimated granular biomass was measured. At the same time, some fundamental technological factors, such as the filling time and the reacting time ratio (tf/tr), the mixing intensity and the intermittent mixing mode, that affect anaerobic pretreatment of coking wastewater with ASBR, were evaluated through orthogonal tests. The COD removal efficiency reached 38%~50% in the stable operation period with the organic loading rate of 0.37~0.54 kg COD/(m3.d) at the optimum conditions of tf/tr, the mixing intensity and the intermittent mixing mode. In addition, the biodegradability of coking wastewater distinctly increased after the pretreatment using ASBR. At the end of the experiment, the microorganism forms on the granulated sludge in the ASBR were observed using SEM (scanning electron microscope) and fluoroscope. The results showed that the dominant microorganism on the granular sludge was Methanosaeta instead of Methanosarcina dominated on the inoculated sludge.

  20. Simultaneous denitrifying phosphorus accumulation in a sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    YUAN Linjiang; HAN Wei; WANG Lei; YANG Yongzhe; WANG Zhiying

    2007-01-01

    In order to achieve simultaneous nitrogen and phosphorus removal in the biological treatment process,denitrifying phosphorus accumulation(DNPA)and its affecting factors were studied in a sequencing batch reactor(SBR)with synthetic wastewater.The results showed that when acetate was used as the sole carbon resource in the influent.the sludge acclimatized under anaerobic/aerobic operation had good phosphorus removal ability.Denitrifying phosphorus accumulation was observed soon when fed with nitrate instead of aeration following the anaerobic stage,which is a vital premise to DNPA.If DNPA sludge is fed with nitrate prior to the anaerobic stage,the DNPA would weaken or even disappear.At the high concen tration of nitrate fed in the anoxic stage,the longer anoxic time needed,the better the DNPA was.Induced DNPA did not disappear even though an aerobic stage followed the anoxic stage,but the shorter the aerobic stage lasted,the higher the proportions of phosphorus removal via DNPA to total removal.

  1. Characteristics of anoxic phosphors removal in sequence batch reactor

    Institute of Scientific and Technical Information of China (English)

    WANG Ya-yi; PAN Mian-li; Yan Min; PENG Yong-zhen; WANG Shu-ying

    2007-01-01

    The characteristics of anaerobic phosphorus release and anoxic phosphorus uptake was investigated in sequencing batch reactors using denitrifying phosphorus removing bacteria (DPB) sludge. The lab-scale experiments were accomplished under conditions of various nitrite concentrations (5.5, 9.5, and 15 mg/L) and mixed liquor suspended solids (MLSS) (1844, 3231, and 6730 mg/L). The results obtained confirmed that nitrite, MLSS, and pH were key factors, which had a significant impact on anaerobic phosphorus release and anoxic phosphorus uptake in the biological phosphorous removal process. The nitrites were able to successfully act as electron acceptors for phosphorous uptake at a limited concentration between 5.5 and 9.5 mg/L. The denitrification and dephosphorous were inhibited when the nitrite concentration reached 15 mg/L. This observation indicated that the nitrite would not inhibit phosphorus uptake before it exceeded a threshold concentration. It was assumed that an increase of MLSS concentration from 1844 mg/L to 6730 mg/L led to the increase of denitrification and anoxic P-uptake rate. On the contrary, the average P uptake/N denitrifying reduced from 2.10 to 1.57 mg PO43--P/mg NO3--N. Therefore, it could be concluded that increasing MLSS of the DEPHANOX system might shorten the reaction time of phosphorus release and anoxic phosphorus uptake. However, excessive MLSS might reduce the specific denitrifying rate. Meanwhile, a rapid pH increase occurred at the beginning of the anoxic conditions as a result of denitrification and anoxic phosphate uptake. Anaerobic P release rate increased with an increase in pH. Moreover, when pH exceeded a relatively high value of 8.0, the dissolved P concentration decreased in the liquid phase, because of chemical precipitation. This observation suggested that pH should be strictly controlled below 8.0 to avoid chemical precipitation if the biological denitrifying phosphorus removal capability is to be studied accurately.

  2. Aerobic Granulation in Sequencing Batch Reactor (SBR Treating Saline Wastewater

    Directory of Open Access Journals (Sweden)

    Ensieh Taheri

    2012-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Background and Objectives: Aerobic sludge granulation is an advanced phenomenonin which its mechanisms have not been understood. Granulation can be a promising and novel biological wastewater treatment technology to eliminate organic and inorganic materials in future. High salinity is a parameter which leads to plasmolisatian and reduction of the cell activity. This could be a problem for biological treatment of the saline wastewater. Aerobic granule was formed and investigated during this study. Materials and Methods: This study is an intervention study on the treatment of wastewater with 500-10000 mg/L concentration of NaCl by sequencing batch reactor. Asynthesized wastewater including nutrient required for microorganism's growth was prepared. Input and output pH and EC were measured. Range of pH and DO varied between 7-8, and 2-5 mg/L, respectively. SEM technology was used to identify graduals properties.Results: In terms of color, granules divided into two groups of light brown and black. Granule ranged in 3-7mm with the sediment velocity of 0.9-1.35 m/s and density of 32-60 g/L.Properties of granules were varied. Filamentous bacteria and fungi were dominant in some granules. However non filamentous bacteria were dominant in others. EDX analysis indicated the presence of Ca and PO4.Conclusion: Granules with non filamentous bacterial were compact and settled faster. Presence of different concentrations of salinity leaded to plasmolysis of the bacterial cells and increased concentrations of EPS  in the system as a result  of which granulation accelerated. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso

  3. BatchPrimer3: a high throughput web application for PCR and sequencing primer design.

    Science.gov (United States)

    You, Frank M; Huo, Naxin; Gu, Yong Qiang; Luo, Ming-Cheng; Ma, Yaqin; Hane, Dave; Lazo, Gerard R; Dvorak, Jan; Anderson, Olin D

    2008-05-29

    Microsatellite (simple sequence repeat - SSR) and single nucleotide polymorphism (SNP) markers are two types of important genetic markers useful in genetic mapping and genotyping. Often, large-scale genomic research projects require high-throughput computer-assisted primer design. Numerous such web-based or standard-alone programs for PCR primer design are available but vary in quality and functionality. In particular, most programs lack batch primer design capability. Such a high-throughput software tool for designing SSR flanking primers and SNP genotyping primers is increasingly demanded. A new web primer design program, BatchPrimer3, is developed based on Primer3. BatchPrimer3 adopted the Primer3 core program as a major primer design engine to choose the best primer pairs. A new score-based primer picking module is incorporated into BatchPrimer3 and used to pick position-restricted primers. BatchPrimer3 v1.0 implements several types of primer designs including generic primers, SSR primers together with SSR detection, and SNP genotyping primers (including single-base extension primers, allele-specific primers, and tetra-primers for tetra-primer ARMS PCR), as well as DNA sequencing primers. DNA sequences in FASTA format can be batch read into the program. The basic information of input sequences, as a reference of parameter setting of primer design, can be obtained by pre-analysis of sequences. The input sequences can be pre-processed and masked to exclude and/or include specific regions, or set targets for different primer design purposes as in Primer3Web and primer3Plus. A tab-delimited or Excel-formatted primer output also greatly facilitates the subsequent primer-ordering process. Thousands of primers, including wheat conserved intron-flanking primers, wheat genome-specific SNP genotyping primers, and Brachypodium SSR flanking primers in several genome projects have been designed using the program and validated in several laboratories. BatchPrimer3 is a

  4. Study of a sequencing batch reactor performance in soft drink wastewater treatment

    Directory of Open Access Journals (Sweden)

    Francisco Javier Cuba Terán

    2009-08-01

    Full Text Available A sequencing batch aerobic reactor in pilot scale was constructed and operated with intermittent aeration in Wastewater Treatment Lab of Faculdade de Ciências e Tecnologia de Unesp at Presidente Prudente city. Research was conducted in order to improve reactor’s performance in organic matter and nitrogen removal by means of the application of different aeration times. In 12 and 14 hours long batch tests, with 6 and 8 hours of aeration, more than 96% of organic matter was removed by the third hour in both cases, in the other hand, nitrification showed 50 and 55% of removal at the end of every cycle. Tough showing nitrate removal, denitrification requires more research to be done in order to obtain more accurate data related with best cycle time for both pollutants removal.Key-words: sequencing batchs, aerobic treatment, industrial wastewater.A sequencing batch aerobic reactor in pilot scale was constructed and operated with intermittent aeration in Wastewater Treatment Lab of Faculdade de Ciências e Tecnologia de Unesp at Presidente Prudente city. Research was conducted in order to improve reactor’s performance in organic matter and nitrogen removal by means of the application of different aeration times. In 12 and 14 hours long batch tests, with 6 and 8 hours of aeration, more than 96% of organic matter was removed by the third hour in both cases, in the other hand, nitrification showed 50 and 55% of removal at the end of every cycle. Tough showing nitrate removal, denitrification requires more research to be done in order to obtain more accurate data related with best cycle time for both pollutants removal.Key-words: sequencing batchs, aerobic treatment, industrial wastewater.

  5. Computer aided design, analysis and experimental investigation of membrane assisted batch reaction-separation systems

    DEFF Research Database (Denmark)

    Mitkowski, Piotr Tomasz; Buchaly, Carsten; Kreis, Peter;

    2009-01-01

    Membrane assisted batch reaction operation offers an interesting option for equilibrium limited reaction systems in chemical and biochemical manufacturing by selective removal of one of the products and thereby increasing the product yield. The design of such hybrid systems need to take into acco...... and separation functionalities and to design/analyse the hybrid scheme. The generated hybrid scheme has been validated through experiments involving an esterification reaction....

  6. Performance study of vegetated sequencing batch coal slag bed treating domestic wastewater in suburban area

    Energy Technology Data Exchange (ETDEWEB)

    Chan, S.Y.; Tsang, Y.F.; Chua, H.; Sin, S.N.; Cui, L.H. [Hong Kong Polytechnic University, Hong Kong (China)

    2008-06-15

    A practical and affordable wastewater treatment system serving small community in suburban areas was studied. The system was a vegetated sequencing batch coal slag bed integrated with the rhythmical movement of wastewater and air like that of a sequencing batch reactor. The removal mechanisms capitalized on the pollutant removal process in conventional constructed wetland. Cyperus alternifolius was planted into the coal slag bed to form a novel plant-soil-microbial interactive system. Nutrients in the domestic wastewater, which cause environmental nuisance like eutrophication, were targeted to be eliminated by the process design. Operated with the contact time of 18 h, the treatment systems achieved around 60% removal efficiency for carbonaceous matters. The removals of ammonia nitrogen and phosphorus were about 50% and 40%, respectively, while the removal of total suspended solids was approaching 80%. From the current study.. the construction cost of the vegetated sequencing batch coal slag bed was 256 RMB/m{sup 3} and the operation cost was 0.13 RMB/m{sup 3}. With the advantages of ease of operation, low costs, desirable treatment efficiency and aesthetic value, the vegetated sequencing batch coal slag bed is proposed to be an alternative for onsite domestic wastewater treatment in suburban areas.

  7. Psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D.I. [Agriculture Canada, Ottawa, ON (Canada). Food Research Branch; Droste, R.L. [Ottawa Univ., ON (Canada). Dept. of Civil Engineering

    1993-12-31

    This work presents preliminary results of an ongoing laboratory study to evaluate the feasibility of psychrophilic anaerobic digestion in sequencing batch reactors (SBR) for stabilizing, deodorizing and adding value to swine manure. Preliminary results show that the process is feasible. (author). 14 refs., 7 tabs.

  8. 40 CFR 205.57-7 - Acceptance and rejection of batch sequence.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Acceptance and rejection of batch sequence. 205.57-7 Section 205.57-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks §...

  9. Effect of temperature and cycle length on microbial competition in PHB-producing sequencing batch reactor

    NARCIS (Netherlands)

    Jiang, Y.; Marang, L.; Kleerebezem, R.; Muyzer, G.; van Loosdrecht, M.C.M.

    2011-01-01

    The impact of temperature and cycle length on microbial competition between polyhydroxybutyrate (PHB)-producing populations enriched in feast-famine sequencing batch reactors (SBRs) was investigated at temperatures of 20 °C and 30 °C, and in a cycle length range of 1-18 h. In this study, the microbi

  10. Biodegradation of Jet Fuel-4 (JP-4) in Sequencing Batch Reactors

    Science.gov (United States)

    1992-06-01

    Specific Objectives of This Proposal Are: 1. To assess the ability of C. resinae , P. chrysosporium and selected bacterial consortia to degrade individual...chemical components of JP-4. 2. To develop a sequencing batch reactor that utilizes C. resinae to degrade chemical components of JP-4 in contaminated...Angeles Air Force Base. The study of the effectiveness of the two fungal systems (P. chrysosporium and and C. resinae ) is still in progress. Initial

  11. Multivariate Statistical Process Control and Case-Based Reasoning for situation assessment of Sequencing Batch Reactors

    OpenAIRE

    Ruiz Ordóñez, Magda Liliana

    2008-01-01

    ABSRACTThis thesis focuses on the monitoring, fault detection and diagnosis of Wastewater Treatment Plants (WWTP), which are important fields of research for a wide range of engineering disciplines. The main objective is to evaluate and apply a novel artificial intelligent methodology based on situation assessment for monitoring and diagnosis of Sequencing Batch Reactor (SBR) operation. To this end, Multivariate Statistical Process Control (MSPC) in combination with Case-Based Reasoning (CBR)...

  12. Role of Moving Bed Biofilm Reactor and Sequencing Batch Reactor in Biological Degradation of Formaldehyde Wastewater

    OpenAIRE

    2011-01-01

    Nowadays formaldehyde is used as raw material in many industries. It has also disinfection applications in some public places. Due to its toxicity for microorganisms, chemical or anaerobic biological methods are applied for treating wastewater containing formaldehyde.In this research, formaldehyde removal efficiencies of aerobic biological treatment systems including moving bed biofilm (MMBR) and sequencing batch reactors (SBR) were investigated. During all experiments, the efficiency of SBR ...

  13. Performance of Aerobic Sequencing Batch reactor (SBR) for Formaldehyde Removal from Synthetic Wastewater

    OpenAIRE

    2013-01-01

    Background and objectives: Formaldehyde is one of the compounds widely used in various industries; hence, its discharge into the effluent is unavoidable. Exposure to formaldehyde has a significant health effects. To prevent these issues, treatment of wastewater containing formaldehyde is necessary. The purpose of this study was to determine the performance of aerobic sequencing batch reactor (SBR) in removing formaldehyde from wastewater. Methods: We used a SBR having a total volume of 6.1...

  14. Biomass characteristics in three sequencing batch reactors treating a wastewater containing synthetic organic chemicals

    DEFF Research Database (Denmark)

    Hu, Z.Q.; Ferraina, R.A.; Ericson, J.F.

    2005-01-01

    The physical and biochemical characteristics of the biomass in three lab-scale sequencing batch reactors (SBR) treating a synthetic wastewater at a 20-day target solids retention time (SRT) were investigated. The synthetic wastewater feed contained biogenic compounds and 22 organic priming....../aerobic cycles might facilitate the formation of granular sludge with good settleability, and retain comparable removal of nitrogen and synthetic organic compounds. Hence, the practice of anoxic/aerobic cycling should be considered in wastewater treatment systems whenever possible....

  15. Metaheuristics for Order Batching and Sequencing in Manual Order Picking Systems

    OpenAIRE

    Sebastian Henn; Verena Schmid

    2011-01-01

    Order picking deals with the retrieval of articles from their storage locations in order to satisfy customer requests. A major issue in manual order picking systems concerns of the transformation and consolidation of customer orders into picking orders (order batching). In practice, customer orders have to be completed by certain due dates in order to avoid delay in the shipment to customers or in production. The composition of the picking orders, their processing times and the sequence accor...

  16. Application of Forward Osmosis Membrane in a Sequential Batch Reactor for Water Reuse

    KAUST Repository

    Li, Qingyu

    2011-07-01

    Forward osmosis (FO) is a novel membrane process that potentially can be used as an energy-saving alternative to conventional membrane processes. The objective of this study is to investigate the performance of a FO membrane to draw water from wastewater using seawater as draw solution. A study on a novel osmotic sequential batch reactor (OsSBR) was explored. In this system, a plate and frame FO cell including two flat-sheet FO membranes was submerged in a bioreactor treating the wastewater. We found it feasible to treat the wastewater by the OsSBR process. The DOC removal rate was 98.55%. Total nitrogen removal was 62.4% with nitrate, nitrite and ammonium removals of 58.4%, 96.2% and 88.4% respectively. Phosphate removal was almost 100%. In this OsSBR system, the 15-hour average flux for a virgin membrane with air scouring is 3.103 LMH. After operation of 3 months, the average flux of a fouled membrane is 2.390 LMH with air scouring (23% flux decline). Air scouring can help to remove the loose foulants on the active layer, thus helping to maintain the flux. Cleaning of the FO membrane fouled in the active layer was probably not effective under the conditions of immersing the membrane in the bioreactor. LC-OCD results show that the FO membrane has a very good performance in rejecting biopolymers, humics and building blocks, but a limited ability in rejecting low molecular weight neutrals.

  17. EFFECTS OF 4-CHLOROPHENOL LOADINGS ON ACCLIMATION OF BIOMASS WITH OPTIMIZED FIXED TIME SEQUENCING BATCH REACTOR

    Directory of Open Access Journals (Sweden)

    H. Movahedyan, A. Assadi, M. M. Amin

    2008-10-01

    Full Text Available Abstract: Chlorinated phenols in many industrial effluents are usually difficult to be removed by conventional biological treatment processes. Performance of the aerobic sequencing batch reactor treating 4-chlorophenol containing wastewater at different loadings rates from 0.0075 to 1.2 g4CP/L.d was evaluated. The sequencing batch reactor was operated with fill, react, settle and decant phases in the order of 10:370:90:10 min, respectively, for a cycle time of 8 h at 10 days solid retention time and 16 h hydraulic retention time in the stable period. The effects of 4-chlorophenol loadings on the 4-chlorophenol and chemical oxygen demand removal percents, yield coefficient (Y, biomass variation and sludge volume index were investigated. High chemical oxygen demand removal efficiencies (95±3.5% and approximately complete 4-chlorophenol removal (>99% were observed even in the absence of growth substrate. The degradation of 4-chlorophenol led to formation of 5-chloro-2-hydroxymuconic semialdehyde, which was more oxidized, indicating complete disappearance of 4-chlorophenol via meta-cleavage pathway. A compact sludge with excellent settleability (sludge volume index=47±6.1 mL/g developed during entire acclimation period. High removal efficiencies with sequencing batch reactor may be due to enforced short term unsteady state conditions coupled with periodic exposure of the microorganisms to defined process conditions which facilitate the required metabolic pathways for treating xenobiotics containing wastewater.

  18. Ethanol production potential from fermented rice noodle wastewater treatment using entrapped yeast cell sequencing batch reactor

    Science.gov (United States)

    Siripattanakul-Ratpukdi, Sumana

    2012-03-01

    Fermented rice noodle production generates a large volume of starch-based wastewater. This study investigated the treatment of the fermented rice noodle wastewater using entrapped cell sequencing batch reactor (ECSBR) compared to traditional sequencing batch reactor (SBR). The yeast cells were applied because of their potential to convert reducing sugar in the wastewater to ethanol. In present study, preliminary treatment by acid hydrolysis was performed. A yeast culture, Saccharomyces cerevisiae, with calcium alginate cell entrapment was used. Optimum yeast cell loading in batch experiment and fermented rice noodle treatment performances using ECSBR and SBR systems were examined. In the first part, it was found that the cell loadings (0.6-2.7 × 108 cells/mL) did not play an important role in this study. Treatment reactions followed the second-order kinetics with the treatment efficiencies of 92-95%. In the second part, the result showed that ECSBR performed better than SBR in both treatment efficiency and system stability perspectives. ECSBR maintained glucose removal of 82.5 ± 10% for 5-cycle treatment while glucose removal by SBR declined from 96 to 40% within the 5-cycle treatment. Scanning electron microscopic images supported the treatment results. A number of yeast cells entrapped and attached onto the matrix grew in the entrapment matrix.

  19. Operational conditions for successful partial nitrification in a sequencing batch reactor (SBR) based on process kinetics.

    Science.gov (United States)

    Liu, Xiaoguang; Kim, Mingu; Nakhla, George

    2017-03-01

    The objective of this study is to analyze the factors affecting the performance of partial nitrification in a sequencing batch reactor (SBR) using kinetic models. During the 4-month operation, dissolved oxygen (DO) and influent ammonia concentration were selected as operating variables to evaluate nitrite accumulation. Stable partial nitrification was observed with two conditions, influent ammonia concentration of 190 mg N/L and a DO of 0.6-3.0 mg/L as well as influent ammonia concentration of 100 mg N/L and a DO of 0.15-2.0 mg/L with intermittent aeration. At a DO of 0.6-3.0 mg O2/L and influent ammonia concentration of 90 mg N/L, nitrite-oxidizing bacteria growth was not suppressed. Kinetic parameters were determined or estimated with batch tests and model simulation. The kinetic model predicted the SBR performance well.

  20. Biological removal of selenate and ammonium by activated sludge in a sequencing batch reactor.

    Science.gov (United States)

    Mal, J; Nancharaiah, Y V; van Hullebusch, E D; Lens, P N L

    2017-04-01

    Wastewaters contaminated by both selenium and ammonium need to be treated prior to discharge into natural water bodies, but there are no studies on the simultaneous removal of selenium and ammonium. A sequencing batch reactor (SBR) was inoculated with activated sludge and operated for 90days. The highest ammonium removal efficiency achieved was 98%, while the total nitrogen removal was 75%. Nearly a complete chemical oxygen demand removal efficiency was attained after 16days of operation, whereas complete selenate removal was achieved only after 66days. The highest total Se removal efficiency was 97%. Batch experiments showed that the total Se in the aqueous phase decreased by 21% with increasing initial ammonium concentration from 50 to 100mgL(-1). This study showed that SBR can remove both selenate and ammonium via, respectively, bioreduction and partial nitrification-denitrification and thus offer possibilities for treating selenium and ammonium contaminated effluents.

  1. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR to Treat the Antibiotic Cefradine.

    Directory of Open Access Journals (Sweden)

    Jianqiu Chen

    Full Text Available Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L were considered. Compared with the algal characteristics in the first treatment batch at 10 and 30 mg/L, higher algal growth inhibition rates were observed in the second treatment batch (11.23% to 20.81%. In contrast, algae produced more photosynthetic pigments in response to cefradine in the second treatment batch. A better removal efficiency (76.02% was obtained during 96 h when the alga treated the antibiotic at 60 mg/L in the first treatment batch and at 30 mg/L in the second treatment batch. Additionally, the removal rate per unit algal density was also improved when the alga treated the antibiotic at 30 or 60 mg/L in the first treatment batch, respectively and at 30 mg/L in the second treatment batch. Our result indicated that the green algae were also able to adapt to varied pollution loads in different treatment batches.

  2. REMOVAL OF REACTIVE BLUE 19 BY ADDING POLYALUMINUM CHLORIDE TO SEQUENCING BATCH REACTOR SYSTEM

    OpenAIRE

    1Sh. Mehrali, *1M. R. Alavi Moghaddam, 2S. H. Hashemi

    2010-01-01

    The main objective of this study was to evaluate Reactive Blue 19 dye removal efficiency in aerobic sequencing batch reactor (SBR) process by adding polyaluminum chloride (PACl). PACl was added to the reactors in concentrations of 0, 1, 5, 15 and 30 mg-Al/L (SBR1 to SBR5) after filling periods. Initial dye concentrations were selected to be 40 mg/L for all reactors. The averages of dye removal efficiencies were more than 57% in all reactors. The maximum and minimum dye removal efficiencies we...

  3. Nitrifying and denitrifying bacteria in aerobic granules formed in sequencing batch airlift reactors

    Institute of Scientific and Technical Information of China (English)

    WANG Fang; YANG Fenglin; QI Aijiu

    2007-01-01

    The purpose of this study was to investigate nitrifying bacteria and denitrifying bacteria isolated from aerobic granules.Aerobic granules were formed in an internal-circulate sequencing batch airlift reactor(SBAR)and biodegradation of NH3 -N was analyzed in the reactor.Bacteria were isolated and determined from aerobic granules using selected media.The growth properties and morphology of bacteria colonies were observed by controlling aerobic or anaerobic conditions in the culture medium.It was found that bacteria in aerobic granules were diverse and some of them were facultative aerobes.The diversity of bacteria in aerobic granules was a premise of simultaneous nitrification and denitrification.

  4. INVESTIGATION OF INTERMITTENT CHLORINATION SYSTEM IN BIOLOGICAL EXCESS SLUDGE REDUCTION BY SEQUENCING BATCH REACTORS

    Directory of Open Access Journals (Sweden)

    A. Takdastan ، N. Mehrdadi ، A. A. Azimi ، A. Torabian ، G. Nabi Bidhendi

    2009-01-01

    Full Text Available The excessive biological sludge production is one of the disadvantages of aerobic wastewater treatment processes such as sequencing batch reactors. To solve the problem of excess sludge production, oxidizing some of the sludge by chlorine, thus reducing the biomass coefficient as well as the sewage sludge disposal may be a suitable idea. In this study, two sequencing batch reactors, each with 20 L volume and controlled by on-line system were used. After providing the steady state conditions in the reactors, sampling and testing of parameters were done during 8 months. The results showed that during the solid retention time of 10 days the kinetic coefficient of Y and Kd were 0.58 mg biomass/mg COD and 0.058/day, respectively. At the next stage, different concentrations of chlorine were used in the reactors intermittently. Results showed that 15 mg chlorine/gMLSS in the reactor was able to reduce the yield coefficient from 0.58 to 0.3 mg biomass/mg COD. In other words, the biological excess sludge was reduced about 48%. But the soluble chemical oxygen demand increased slightly in the effluent and the removal percentage decreased from 95% in the blank reactor to 55% in the test reactor.

  5. Biodegradation of p-cresol by aerobic granules in sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    Farrukh Basheer; I.H.Farooqi

    2012-01-01

    The cultivation of aerobic granules in sequencing batch reactor for the biodegradation of p-cresol was studied.The reactor was started with 100 mg/L of p-cresol.Aerobic granules first appeared within one month of start up.The granules were large and strong and had a compact structure.The diameter of stable granules was in the range of 1-5 mm.The integrity coefficient and granules density was found to be 96% and 1046 kg/m3,respectively.The settling velocity of granules was found to be in the range of 2×10-2-6×10-2 m/sec.The aerobic granules were able to degrade p-cresol upto 800 mg/L at a removal efficiency of 88%.Specific p-cresol degradation rate in aerobic granules followed Haldane model for substrate inhibition.High specific p-cresol degradation rate up to 0.96 g pcresol/(g VSS.day) were sustained upto p-cresol concentration of 400 mg/L.Higher removal efficiency,good settling characteristics of aerobic granules,makes sequencing batch reactor suitable for enhancing the microorganism potential for biodegradation of inhibitory compounds.

  6. Aerobic biodegradation of a mixture of monosubstituted phenols in a sequencing batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Isaac; Suárez-Ojeda, María Eugenia; Pérez, Julio; Carrera, Julián, E-mail: julian.carrera@uab.es

    2013-09-15

    Highlights: • Aerobic biodegradation of a mixture of p-nitrophenol and o-cresol is feasible. • Simultaneous biodegradation of p-nitrophenol and o-cresol was achieved at long-term. • o-Chlorophenol caused complete failure of the sequencing batch reactor. • Biomass had good settling properties although no mature granules were obtained. • p-Nitrophenol is believed to be responsible for granulation failure. -- Abstract: A sequencing batch reactor (SBR) was inoculated with p-nitrophenol-degrading activated sludge to biodegrade a mixture of monosubstituted phenols: p-nitrophenol (PNP), PNP and o-cresol; and PNP, o-cresol and o-chlorophenol. Settling times were progressively decreased to promote biomass granulation. PNP was completely biodegraded. The PNP and o-cresol mixture was also biodegraded although some transitory accumulation of intermediates occurred (mainly hydroquinone and catechol). o-Chlorophenol was not biodegraded and resulted in inhibition of o-cresol and PNP biodegradation and complete failure of the SBR within a few days. The biomass had very good settling properties when a settling time of 1 min was applied: sludge volume index (SVI{sub 5}) below 50 mL g{sup −1}, SVI{sub 5}/SVI{sub 30} ratio of 1 and average particle size of 200 μm.

  7. Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor.

    Science.gov (United States)

    Zhao, Yuanyuan; Park, Hee-Deung; Park, Jeong-Hoon; Zhang, Fushuang; Chen, Chen; Li, Xiangkun; Zhao, Dan; Zhao, Fangbo

    2016-09-01

    The performance and microbial community profiles in a sequencing batch reactor (SBR) treating saline wastewater were studied over 300days from 0wt% to 3.0wt% salinity. The experimental results indicated that the activated sludge had high sensitivity to salinity variations in terms of pollutants removal and sedimentation. At 2.0wt% salinity, the system retained a good performance, and 95% removal rate of chemical oxygen demand (COD), biochemical oxygen demand (BOD), NH4(+)-N and total phosphorus (TP) could be achieved. Operation before addition salinity revealed the optimal performance and the most microbial diversity indicated by 16S rRNA gene clone library. Sequence analyses illustrated that Candidate_division_TM7 (TM7) was predominant at 2.0 wt% salinity; however, Actinobacteria was more abundant at 3.0wt% salinity.

  8. Sequential batch membrane bio-reactor for wastewater treatment: The effect of increased salinity.

    Science.gov (United States)

    Mannina, Giorgio; Capodici, Marco; Cosenza, Alida; Di Trapani, Daniele; Viviani, Gaspare

    2016-06-01

    In this work, a sequential batch membrane bioreactor pilot plant is investigated to analyze the effect of a gradual increase in salinity on carbon and nutrient removal, membrane fouling and biomass kinetic parameters. The salinity was increased by 2gNaClL(-1) per week up to 10gNaClL(-1). The total COD removal efficiency was quite high (93%) throughout the experiment. A gradual biomass acclimation to the salinity level was observed during the experiment, highlighting the good recovery capabilities of the system. Nitrification was also influenced by the increase in salinity, with a slight decrease in nitrification efficiency (the lowest value was obtained at 10gNaClL(-1) due to lower nitrifier activity). Irreversible cake deposition was the predominant fouling mechanism observed during the experiment. Respirometric tests exhibited a stress effect due to salinity, with a reduction in the respiration rates observed (from 8.85mgO2L(-1)h(-1) to 4mgO2L(-1)h(-1)).

  9. Effects of the antimicrobial tylosin on the microbial community structure of an anaerobic sequencing batch reactor.

    Science.gov (United States)

    Shimada, Toshio; Li, Xu; Zilles, Julie L; Morgenroth, Eberhard; Raskin, Lutgarde

    2011-02-01

    The effects of the antimicrobial tylosin on a methanogenic microbial community were studied in a glucose-fed laboratory-scale anaerobic sequencing batch reactor (ASBR) exposed to stepwise increases of tylosin (0, 1.67, and 167 mg/L). The microbial community structure was determined using quantitative fluorescence in situ hybridization (FISH) and phylogenetic analyses of bacterial 16S ribosomal RNA (rRNA) gene clone libraries of biomass samples. During the periods without tylosin addition and with an influent tylosin concentration of 1.67 mg/L, 16S rRNA gene sequences related to Syntrophobacter were detected and the relative abundance of Methanosaeta species was high. During the highest tylosin dose of 167 mg/L, 16S rRNA gene sequences related to Syntrophobacter species were not detected and the relative abundance of Methanosaeta decreased considerably. Throughout the experimental period, Propionibacteriaceae and high GC Gram-positive bacteria were present, based on 16S rRNA gene sequences and FISH analyses, respectively. The accumulation of propionate and subsequent reactor failure after long-term exposure to tylosin are attributed to the direct inhibition of propionate-oxidizing syntrophic bacteria closely related to Syntrophobacter and the indirect inhibition of Methanosaeta by high propionate concentrations and low pH. © 2010 Wiley Periodicals, Inc.

  10. Use of an anaerobic sequencing batch reactor for parameter estimation in modelling of anaerobic digestion.

    Science.gov (United States)

    Batstone, D J; Torrijos, M; Ruiz, C; Schmidt, J E

    2004-01-01

    The model structure in anaerobic digestion has been clarified following publication of the IWA Anaerobic Digestion Model No. 1 (ADM1). However, parameter values are not well known, and uncertainty and variability in the parameter values given is almost unknown. Additionally, platforms for identification of parameters, namely continuous-flow laboratory digesters, and batch tests suffer from disadvantages such as long run times, and difficulty in defining initial conditions, respectively. Anaerobic sequencing batch reactors (ASBRs) are sequenced into fill-react-settle-decant phases, and offer promising possibilities for estimation of parameters, as they are by nature, dynamic in behaviour, and allow repeatable behaviour to establish initial conditions, and evaluate parameters. In this study, we estimated parameters describing winery wastewater (most COD as ethanol) degradation using data from sequencing operation, and validated these parameters using unsequenced pulses of ethanol and acetate. The model used was the ADM1, with an extension for ethanol degradation. Parameter confidence spaces were found by non-linear, correlated analysis of the two main Monod parameters; maximum uptake rate (k(m)), and half saturation concentration (K(S)). These parameters could be estimated together using only the measured acetate concentration (20 points per cycle). From interpolating the single cycle acetate data to multiple cycles, we estimate that a practical "optimal" identifiability could be achieved after two cycles for the acetate parameters, and three cycles for the ethanol parameters. The parameters found performed well in the short term, and represented the pulses of acetate and ethanol (within 4 days of the winery-fed cycles) very well. The main discrepancy was poor prediction of pH dynamics, which could be due to an unidentified buffer with an overall influence the same as a weak base (possibly CaCO3). Based on this work, ASBR systems are effective for parameter

  11. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)-Effect of gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bural, Cavit B.; Demirer, Goksel N. [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey); Kantoglu, Omer [Turkish Atomic Energy Authority, Saraykoy Nuclear Research and Training Center, 06982, Kazan, Ankara (Turkey); Dilek, Filiz B., E-mail: fdilek@metu.edu.t [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey)

    2010-04-15

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD{sub 5}/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm{sup -3}. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm{sup -3}. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  12. The sequencing batch reactor as an excellent configuration to treat wastewater from the petrochemical industry.

    Science.gov (United States)

    Caluwé, Michel; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan

    2017-02-01

    In the present study, the influence of a changing feeding pattern from continuous to pulse feeding on the characteristics of activated sludge was investigated with a wastewater from the petrochemical industry from the harbour of Antwerp. Continuous seed sludge, adapted to the industrial wastewater, was used to start up three laboratory-scale sequencing batch reactors. After an adaptation period from the shift to pulse feeding, the effect of an increasing organic loading rate (OLR) and volume exchange ratio (VER) were investigated one after another. Remarkable changes of the specific oxygen uptake rate (sOUR), microscopic structure, sludge volume index (SVI), SVI30/SVI5 ratio, and settling rate were observed during adaptation. sOUR increased two to five times and treatment time decreased 43.9% in 15 days. Stabilization of the SVI occurred after a period of 20 days and improved significantly from 300 mL·g(-1) to 80 mL·g(-1). Triplication of the OLR and VER had no negative influence on sludge settling and effluent quality. Adaptation time of the microorganisms to a new feeding pattern, OLR and VER was relatively short and sludge characteristics related to aerobic granular sludge were obtained. This study indicates significant potential of the batch activated sludge system for the treatment of this industrial petrochemical wastewater.

  13. Effects of La3+, Ce3+ on nitrogen removal in sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    Qing XIA; Rui LIANG; Yuxiang MAO; Yuning HONG; Lili DING; Hongqiang REN; Mingyu ZHAO

    2009-01-01

    Batch experiments were conducted to study the short-term biological effects of rare earth ions (La3+,Ce3+) and their mixture on the nitrogen removal in a sequencing batch reactor (SBR). The data showed that higher NH4+-N removal rate, total inorganic nitrogen removal efficiency, and denitrification efficiency were achieved at lower concentrations of rare earth elements (REEs) ( < 1 mg/L). In the first hour of the aeration stage of SBR, the presence of REEs increased the total inorganic nitrogen removal efficiency and NH4+-N removal effi-ciency by 15.7% and 10%-15%, respectively. When the concentrations of REEs were higher than 1 mg/L, the total inorganic nitrogen removal efficiency decreased, and nitrate was found to accumulate in the effluent. When the concentrations of REEs was up to 50.0 mg/L, the total inorganic nitrogen removal efficiency was less than 30% of the control efficiency with a high level of nitrate. Lower concentrations of REEs were found to accelerate the nitrogen conversion and removal in SBR.

  14. Simultaneous Nitrogen and Phosphorus Removal by Denitrifying Dephosphatation in a (AO)2 Sequencing Batch Reactor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-ping; PENG Yong-zhen; WANG Shu-ying; WANG Shao-po

    2005-01-01

    A 24 L working volume reactor was used for the research on simultaneous phosphorus (P) and nitrogen (N) removal by denitrifying dephosphatation in an anaerobic-oxid-anoxic-oxid sequencing batch reactor ((AO)2SBR) system. The durations of each phase are: anaerobic 1.5 h, aerobic 2.5 h, anoxic 1.5 h, post-aerobic 0.5 h, settling 1.0 h, fill 0.5 h. The successful removal of nitrogen and phosphorus is achieved in a stable (AO)2SBR. The effluent P concentrations is below 1 mg/L, and the COD,TN and P average removal efficiency is 88.9%, 77.5% and 88.7%, respectively. The batch experiment results show that the durations of aerobic and anoxic phase influence the P removal efficiency. Some feature points are found on the DO, ORP and pH curves to demonstrate the complete of phosphate release and phosphate uptake. These feature points can be used for the control of (AO)2 SBR.

  15. Effects of feeding time and organic loading in an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted whey.

    Science.gov (United States)

    Damasceno, Leonardo H S; Rodrigues, José A D; Ratusznei, Suzana M; Zaiat, Marcelo; Foresti, Eugênio

    2007-12-01

    An investigation was carried out on the performance of an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted cheese whey when submitted to different feed strategies and volumetric organic loads (VOL). Polyurethane foam cubes were used as support for biomass immobilization and stirring was provided by helix impellers. The reactor with a working volume of 3 L treated 2 L of wastewater in 8-h cycles at 500 rpm and 30 degrees C. The organic loads applied were 2, 4, 8 and 12 g COD L(-1) d(-1), obtained by increasing the feed concentration. Alkalinity was supplemented at a ratio of 50% NaHCO(3)/COD. For each organic load applied three feed strategies were tested: (a) batch operation with 8-h cycle; (b) 2-h fed-batch operation followed by 6-h batch; and (c) 4-h fed-batch followed by 4-h batch. The 2-h fed-batch operation followed by 6-h batch presented the best results for the organic loads of 2 and 4 g COD L(-1) d(-1), whereas the 4-h fed-batch operation followed by 4-h batch presented results slightly inferior for the same organic loads and the best results at organic loads of 8 and 12 g COD L(-1) d(-1). The concentration of total volatile acids varied with fill time. For the higher fill times maximum concentrations were obtained at the end of the cycle. Moreover, no significant difference was detected in the maximum concentration of total volatile acids for any of the investigated conditions. However, the maximum values of propionic acid tended to decrease with increasing fill time considering the same organic load. Microbiological analyses revealed the presence of Methanosaeta-like structures and methanogenic hydrogenotrophic-like fluorescent bacilli. No Methanosarcina-like structures were observed in the samples.

  16. [Characteristics of anaerobic sequencing batch reactor for the treatment of high-solids-content waste].

    Science.gov (United States)

    Wang, Zhi-jun; Wang, Wei; Zhang, Xi-hui

    2006-06-01

    Based on the experiments of digestion of thermo-hydrolyzed sewage sludge in both mesophilic and thermophilic anaerobic sequencing batch reactors (ASBRs) with 20, 10, 7.5, 5d hydraulic retention time (HRT), operating characteristics of ASBR for treatment of high-solids-content waste were investigated. ASBR can efficiently accumulates suspended solids and keep high concentration solids, however there exists a "critical point" of ASBR, which means the maximum capability to accumulate suspended solids without negative effects on ASBR stability, and beyond which the performance deteriorates. Under steady condition, ASBR can sustains high solid retention time (SRT) and mean cell retention time (MCRT), the SRT and MCRT is 2.53 approximately 3.73 and 2.03 approximately 3.14 times of hydraulic retention time (HRT) when treating thermo-hydrolyzed sludge, respectively. Therefore, compared to traditional continuous-flow stirred tank reactor (CSTR), the efficiency of ASBR enhances about 7.13% approximately 34.68%.

  17. Effect of redox conditions on pharmaceutical loss during biological wastewater treatment using sequencing batch reactors

    DEFF Research Database (Denmark)

    Stadler, Lauren B.; Su, Lijuan; Moline, Christopher J.

    2015-01-01

    We lack a clear understanding of how wastewater treatment plant (WWTP) process parameters, such as redox environment, impact pharmaceutical fate. WWTPs increasingly install more advanced aeration control systems to save energy and achieve better nutrient removal performance. The impact of redox...... condition, and specifically the use of microaerobic (low dissolved oxygen) treatment, is poorly understood. In this study, the fate of a mixture of pharmaceuticals and several of their transformation products present in the primary effluent of a local WWTP was assessed in sequencing batch reactors operated...... of their parent compounds during treatment. The results suggest that transformation products must be accounted for when assessing removal efficiencies and that redox environment influences the degree of pharmaceutical loss....

  18. Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater.

    Science.gov (United States)

    Jiang, Yu; Wei, Li; Zhang, Huining; Yang, Kai; Wang, Hongyu

    2016-10-01

    Hypersaline phenol-rich wastewater is hard to be treated by traditional biological systems. In this work, a sequencing batch reactor was used to remove phenol from hypersaline wastewater. The removal performance was evaluated in response to the variations of operating parameters and the microbial diversity was investigated by 454 pyrosequencing. The results showed that the bioreactor had high removal efficiency of phenol and was able to keep stable with the increase of initial phenol concentration. DO, pH, and salinity also affected the phenol removal rate. The most abundant bacterial group was phylum Proteobacteria in the two working conditions, and class Gammaproteobacteria as well as Alphaproteobacteria was predominant subgroup. The abundance of bacterial clusters was notably different along with the variation of operation conditions, resulting in changes of phenol degradation rates. The high removal efficiency of phenol suggested that the reactor might be promising in treating phenol-laden industrial wastewater in high-salt condition.

  19. Decolorization of Orange Ⅱ using an anaerobic sequencing batch reactor with and without co-substrates

    Institute of Scientific and Technical Information of China (English)

    Soon-An Ong; Eiichi Toorisaka; Makoto Hirata; Tadashi Hano

    2012-01-01

    We investigated the decolorization of Orange Ⅱ with and without the addition of co-substrates and nutrients under an anaerobic sequencing batch reactor (ASBR).The increase in COD concentrations from 900 to 1750 to 3730 mg/L in the system treating 100 mg/L of Orange H-containing wastewater enhanced color removal from 27% to 81% to 89%,respectively.In the absence of co-substrates and nutrients,more than 95% of decolorization was achieved by the acclimatized anaerobic microbes in the bioreactor treating 600 mg/L of Orange Ⅱ.The decrease in mixed liquor suspended solids concentration by endogenous lysis of biomass preserved a high reducing environment in the ASBR,which was important for the reduction of the Orange Ⅱ azo bond that caused decolorization.The maximum decolorization rate in the ASBR was approximately 0.17 g/hr in the absence of co-substrates and nutrients.

  20. Factors affecting biological denitrifying dephosphatation in anaerobic/anoxic/aerobic sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study was conducted to verify and discuss the denitrifying dephosphatation under different levels of nitrate concentration and retention time of anoxic/aerobic process in a Sequencing Batch Reactor ( SBR ).The results of tests demonstrated that there were two kinds of phosphorus-accumulating organisms (PAOs) in the biological excess phosphorus removal (BEPR) system. One was non-DNPAOs that could only use oxygen as terminal electron acceptors, the other was denitrifying PAOs (DNPAOs) that could use both nitrate and oxygen as terminal electron acceptors. Phosphorus uptake efficiency could be attained under anoxic period ranging from 28.7%-96.7% in an anacrobic/anoxic/aerobic system. Experimental results showed that nitrate concentration and retention time of anoxic/aerobic process were the key factors affecting the course of denitrifying dephosphatation.

  1. Advanced nitrogen removal by pulsed sequencing batch reactors (SBR) with real-time control

    Institute of Scientific and Technical Information of China (English)

    YANG Qing; PENG Yongzhen; YANG Anming; GUO Jianhua; LI Jianfeng

    2007-01-01

    The feasibility of pH and oxidation reduction potential (ORP) as on-line control parameters to advance nitrogen removal in pulsed sequencing batch reactors (SBR)was evaluated.The pulsed SBR,a novel operational mode of SBR,was utilized to treat real municipal wastewater accompanied with adding ethanol as external carbon source.It was observed that the bending-point (apex and knee) of pH and ORP profiles can be used to control denitrification process at a low influent C/N ratio while dpH/dt can be used to control the nitrification and denitrification process at a high influent C/N ratio.The experimental results demonstrated that the effluent total nitrogen can be reduced to lower than 2 mg/L,and the average total nitrogen (TN) removal efficiency was higher than 98% by using real-time controll strategy.

  2. Kinetics of psychrophilic anaerobic sequencing batch reactor treating flushed dairy manure.

    Science.gov (United States)

    Ma, Jingwei; Yu, Liang; Frear, Craig; Zhao, Quanbao; Li, Xiujin; Chen, Shulin

    2013-03-01

    In this study, a new strategy, improving biomass retention with fiber material present within the dairy manure as biofilm carriers, was evaluated for treating flushed dairy manure in a psychrophilic anaerobic sequencing batch reactor (ASBR). A kinetic study was carried out for process control and design by comparing four microbial growth kinetic models, i.e. first order, Grau, Monod and Chen and Hashimoto models. A volumetric methane production rate of 0.24L/L/d of and a specific methane productivity of 0.19L/gVSloaded were achieved at 6days HRT. It was proved that an ASBR using manure fiber as support media not only improved methane production but also reduced the necessary HRT and temperature to achieve a similar treating efficiency compared with current technologies. The kinetic model can be used for design and optimization of the process.

  3. Biological treatment of shrimp aquaculture wastewater using a sequencing batch reactor.

    Science.gov (United States)

    Lyles, C; Boopathy, R; Fontenot, Q; Kilgen, M

    2008-12-01

    To improve the water quality in the shrimp aquaculture, a sequencing batch reactor (SBR) has been tested for the treatment of shrimp wastewater. A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same tank to take the place of multiple tanks in a conventional treatment system. The SBR accomplishes equalization, aeration, and clarification in a timed sequence in a single reactor basin. This is achieved in a simple tank, through sequencing stages, which include fill, react, settle, decant, and idle. A laboratory scale SBR and a pilot scale SBR was successfully operated using shrimp aquaculture wastewater. The wastewater contained high concentration of carbon and nitrogen. By operating the reactor sequentially, viz, aerobic and anoxic modes, nitrification and denitrification were achieved as well as removal of carbon in a laboratory scale SBR. To be specific, the initial chemical oxygen demand (COD) concentration of 1,593 mg/l was reduced to 44 mg/l within 10 days of reactor operation. Ammonia in the sludge was nitrified within 3 days. The denitrification of nitrate was achieved by the anaerobic process and 99% removal of nitrate was observed. Based on the laboratory study, a pilot scale SBR was designed and operated to remove excess nitrogen in the shrimp wastewater. The results mimicked the laboratory scale SBR.

  4. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rahayu, Suparni Setyowati, E-mail: suparnirahayu@yahoo.co.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Mechanical Engineering, State Polytechnic of Semarang, Semarang Indonesia (Indonesia); Purwanto,, E-mail: p.purwanto@che.undip.ac.id; Budiyono, E-mail: budiyono@live.undip.ac.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang Indonesia (Indonesia)

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  5. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Science.gov (United States)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  6. Outer membrane vesicles (OMV) production of Neisseria meningitidis serogroup B in batch process.

    Science.gov (United States)

    Santos, Sílvia; Arauz, Luciana Juncioni de; Baruque-Ramos, Júlia; Lebrun, Ivo; Carneiro, Sylvia Mendes; Barreto, Sandra Alves; Schenkman, Rocilda Perazzini Furtado

    2012-09-14

    Serogroup B outer membrane vesicles (OMV) with iron regulated proteins (IRP) from Neisseria meningitidis constitute the antigen for the vaccine against the disease caused by this bacterium. Aiming to enhance final OMV concentration, seven batch experiments were carried out under four different conditions: (i) with original Catlin medium; (ii) with original Catlin medium and lactate and amino acids pulse at the 6th cultivation hour; (iii) with Catlin medium with double initial concentrations of lactate and amino acids and (iv) Catlin medium without glycerol and with double initial concentrations of lactate and amino acids. The cultivation experiments were carried out in a 7-L bioreactor under the following conditions: 36°C, 0.5atm, overlay air 1L/min, agitation: 250-850 rpm, and O(2) control at 10%, 20 h. After lactate and amino acids exhaustion, cell growth reached stationary phase and a significant release increase of OMV was observed. According to the Luedeking & Piret model, OMV liberation is non-growth associated. Glycerol was not consumed during cultivation. The maximum OMV concentration value attained was 162 mg/L with correspondent productivity of 8.1mg/(Lh) employing Catlin medium with double initial concentrations of lactate and amino acids. The obtained OMV satisfied constitution and protein pattern criteria and were suitable for vaccine production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Characterization of the start-up period of single-step autotrophic nitrogen removal in a sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    GUO Jin-song; QIN Yu; FANG Fang; YANG Guo-hong

    2008-01-01

    The characteristics of the start-up period of single-step autotrophic nitrogen removal process were investigated. The autotrophic nitrogen removal process used a sequencing batch reactor to treat wastewater of medium to low ammonia-nitrogen concentration, with dissolved oxygen (DO), hydraulic retention time (HRT) and temperature controlled. The experimental conditions were temperature at (30(2) (C, ammonia concentration of (60 to 120) mg/L, DO of (0.8 to 1.0) mg/L, pH from 7.8 to 8.5 and HRT of 24 h. The rates of nitrification and nitrogen removal turn out to be 77% and 40%, respectively, after a start up period going through three stages divided according to nitrite accumulation: sludge domestication, nitrifying bacteria selection and sludge adaptation. It is demonstrated that dissolved oxygen is critical to nitrite accumulation and elastic YJZH soft compound packing is superior to polyhedral hollow balls in helping the bacteria adhere to the membrane.

  8. Improvement of l-lactic acid productivity from sweet sorghum juice by repeated batch fermentation coupled with membrane separation.

    Science.gov (United States)

    Wang, Yong; Meng, Hongyu; Cai, Di; Wang, Bin; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    In order to efficiently produce l-lactic acid from non-food feedstocks, sweet sorghum juice (SSJ), which is rich of fermentable sugars, was directly used for l-lactic acid fermentation by Lactobacillus rhamnosus LA-04-1. A membrane integrated repeated batch fermentation (MIRB) was developed for productivity improvement. High-cell-density fermentation was achieved with a final cell density (OD620) of 42.3, and the CCR effect was overcomed. When SSJ (6.77gL(-1) glucose, 4.51gL(-1) fructose and 50.46gL(-1) sucrose) was used as carbon source in MIRB process, l-lactic acid productivity was increased significantly from 1.45gL(-1)h(-1) (batch 1) to 17.55gL(-1)h(-1) (batch 6). This process introduces an effective way to produce l-lactic acid from SSJ.

  9. Simultaneous domestic wastewater and nitrate sewage treatment by DEnitrifying AMmonium OXidation (DEAMOX) in sequencing batch reactor.

    Science.gov (United States)

    Du, Rui; Cao, Shenbin; Li, Baikun; Wang, Shuying; Peng, Yongzhen

    2017-05-01

    A novel DEAMOX system was developed for nitrogen removal from domestic wastewater and nitrate (NO3(-)-N) sewage in sequencing batch reactor (SBR). High nitrite (NO2(-)-N) was produced from NO3(-)-N reduction in partial-denitrification process, which served as electron acceptor for anammox and was removed with ammonia (NH4(+)-N) in domestic wastewater simultaneously. A 500-days operation demonstrated that the efficient and stable nitrogen removal performance could be achieved by DEAMOX. The total nitrogen (TN) removal efficiency was as high as 95.8% with influent NH4(+)-N of 63.58 mg L(-1) and NO3(-)-N of 69.24 mg L(-1). The maximum NH4(+)-N removal efficiency reached up to 94.7%, corresponding to the NO3(-)-N removal efficiency of 97.8%. The biomass of partial-denitrification and anammox bacteria was observed to be wall-growth. The deteriorated nitrogen removal performance occurred due to excess denitrifying microbial growth in the outer layer of sludge consortium, which prevented the substrate transfer for anammox inside. However, an excellent nitrogen removal could be guaranteed by scrapping the superficial denitrifying biomass at regular intervals. Furthermore, the high-throughput sequencing analysis revealed that the Thauera genera (26.33%) was possibly responsible for the high NO2(-)-N accumulation in partial-denitrification and Candidatus Brocadia (1.7%) was the major anammox species.

  10. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaodong; Chen, Yan [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Zhang, Xin [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Suzhou Institute of Architectural Design Co., Ltd, Suzhou 215021, Jiangsu Province (China); Jiang, Xinbai; Wu, Shijing [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Shen, Jinyou, E-mail: shenjinyou@mail.njust.edu.cn [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Sun, Xiuyun; Li, Jiansheng; Lu, Lude [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China)

    2015-09-15

    Abstract: Aerobic granules were successfully cultivated in a sequencing batch reactor (SBR), using a single bacterial strain Rhizobium sp. NJUST18 as the inoculum. NJUST18 presented as both a good pyridine degrader and an efficient autoaggregator. Stable granules with diameter of 0.5–1 mm, sludge volume index of 25.6 ± 3.6 mL g{sup −1} and settling velocity of 37.2 ± 2.7 m h{sup −1}, were formed in SBR following 120-day cultivation. These granules exhibited excellent pyridine degradation performance, with maximum volumetric degradation rate (V{sub max}) varied between 1164.5 mg L{sup −1} h{sup −1} and 1867.4 mg L{sup −1} h{sup −1}. High-throughput sequencing analysis exhibited a large shift in microbial community structure, since the SBR was operated under open condition. Paracoccus and Comamonas were found to be the most predominant species in the aerobic granule system after the system had stabilized. The initially inoculated Rhizobium sp. lost its dominance during aerobic granulation. However, the inoculation of Rhizobium sp. played a key role in the start-up process of this bioaugmentation system. This study demonstrated that, in addition to the hydraulic selection pressure during settling and effluent discharge, the selection of aggregating bacterial inocula is equally important for the formation of the aerobic granule.

  11. Monitoring of Biological Nitrogen Removal in Tannery Wastewater Using a Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Carrasquero-Ferrer Sedolfo José

    2014-04-01

    Full Text Available The objective of this research was to relate the biological nitrogen removal in tannery wastewater with profiles of pH, alkalinity and redox potential (ORP using a sequencing batch reactor (SBR with a working volume of 2 L. The reactor worked under two operational sequences: anoxic-aerobic-anoxic (Ax/Ae/Ax and aerobic-anoxic (Ae/Ax, which were combined with two cell retention times (CRT (15 and 25 days, with an operation cycle time (OCT of 11 hours. The profiles were performed by measuring each 15 minutes the following parameters: pH, dissolved oxygen (DO, ORP, and each hour the parameters: total alkalinity, total chemical oxygen demand (DQOT, soluble chemical oxygen demand (DQOS, total Kjeldahl nitrogen (TKN, nitrite (NO2-, nitrate (NO3- and ammonia nitrogen (N-NH4+. Alkalinity and ORP profile were excellent indicators of the processes of biological nitrogen removal. However, pH could not be used as a control parameter, due to the buffering capacity of tannery wastewater. Finally, this research work showed that alkalinity and ORP values can be used as on-line control parameters to monitor the evolution of the nitrogen removal in tannery wastewater (nitrification and denitrification processes.

  12. Treatment of slaughter house wastewater in a sequencing batch reactor: performance evaluation and biodegradation kinetics.

    Science.gov (United States)

    Kundu, Pradyut; Debsarkar, Anupam; Mukherjee, Somnath

    2013-01-01

    Slaughterhouse wastewater contains diluted blood, protein, fat, and suspended solids, as a result the organic and nutrient concentration in this wastewater is vary high and the residues are partially solubilized, leading to a highly contaminating effect in riverbeds and other water bodies if the same is let off untreated. The performance of a laboratory-scale Sequencing Batch Reactor (SBR) has been investigated in aerobic-anoxic sequential mode for simultaneous removal of organic carbon and nitrogen from slaughterhouse wastewater. The reactor was operated under three different variations of aerobic-anoxic sequence, namely, (4+4), (5+3), and (3+5) hr. of total react period with two different sets of influent soluble COD (SCOD) and ammonia nitrogen (NH4(+)-N) level 1000 ± 50 mg/L, and 90 ± 10 mg/L, 1000 ± 50 mg/L and 180 ± 10 mg/L, respectively. It was observed that from 86 to 95% of SCOD removal is accomplished at the end of 8.0 hr of total react period. In case of (4+4) aerobic-anoxic operating cycle, a reasonable degree of nitrification 90.12 and 74.75% corresponding to initial NH4(+)-N value of 96.58 and 176.85 mg/L, respectively, were achieved. The biokinetic coefficients (k, K(s), Y, k(d)) were also determined for performance evaluation of SBR for scaling full-scale reactor in future operation.

  13. Performance and microbial ecology of a nitritation sequencing batch reactor treating high-strength ammonia wastewater

    Science.gov (United States)

    Chen, Wenjing; Dai, Xiaohu; Cao, Dawen; Wang, Sha; Hu, Xiaona; Liu, Wenru; Yang, Dianhai

    2016-01-01

    The partial nitrification (PN) performance and the microbial community variations were evaluated in a sequencing batch reactor (SBR) for 172 days, with the stepwise elevation of ammonium concentration. Free ammonia (FA) and low dissolved oxygen inhibition of nitrite-oxidized bacteria (NOB) were used to achieve nitritation in the SBR. During the 172 days operation, the nitrogen loading rate of the SBR was finally raised to 3.6 kg N/m3/d corresponding the influent ammonium of 1500 mg/L, with the ammonium removal efficiency and nitrite accumulation rate were 94.12% and 83.54%, respectively, indicating that the syntrophic inhibition of FA and low dissolved oxygen contributed substantially to the stable nitrite accumulation. The results of the 16S rRNA high-throughput sequencing revealed that Nitrospira, the only nitrite-oxidizing bacteria in the system, were successively inhibited and eliminated, and the SBR reactor was dominated finally by Nitrosomonas, the ammonium-oxidizing bacteria, which had a relative abundance of 83%, indicating that the Nitrosomonas played the primary roles on the establishment and maintaining of nitritation. Followed by Nitrosomonas, Anaerolineae (7.02%) and Saprospira (1.86%) were the other mainly genera in the biomass. PMID:27762325

  14. Quantitative modeling of viable cell density, cell size, intracellular conductivity, and membrane capacitance in batch and fed-batch CHO processes using dielectric spectroscopy.

    Science.gov (United States)

    Opel, Cary F; Li, Jincai; Amanullah, Ashraf

    2010-01-01

    Dielectric spectroscopy was used to analyze typical batch and fed-batch CHO cell culture processes. Three methods of analysis (linear modeling, Cole-Cole modeling, and partial least squares regression), were used to correlate the spectroscopic data with routine biomass measurements [viable packed cell volume, viable cell concentration (VCC), cell size, and oxygen uptake rate (OUR)]. All three models predicted offline biomass measurements accurately during the growth phase of the cultures. However, during the stationary and decline phases of the cultures, the models decreased in accuracy to varying degrees. Offline cell radius measurements were unsuccessfully used to correct for the deviations from the linear model, indicating that physiological changes affecting permittivity were occurring. The beta-dispersion was analyzed using the Cole-Cole distribution parameters Deltaepsilon (magnitude of the permittivity drop), f(c) (critical frequency), and alpha (Cole-Cole parameter). Furthermore, the dielectric parameters static internal conductivity (sigma(i)) and membrane capacitance per area (C(m)) were calculated for the cultures. Finally, the relationship between permittivity, OUR, and VCC was examined, demonstrating how the definition of viability is critical when analyzing biomass online. The results indicate that the common assumptions of constant size and dielectric properties used in dielectric analysis are not always valid during later phases of cell culture processes. The findings also demonstrate that dielectric spectroscopy, while not a substitute for VCC, is a complementary measurement of viable biomass, providing useful auxiliary information about the physiological state of a culture.

  15. Biological nutrient removal from municipal wastewater in sequencing batch biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Arnz, P.

    2001-07-01

    Enhanced biological phosphorus removal (EBPR) has only been put into practice in activated sludge systems. In recent years, the Sequencing Batch Biofilm Reactor (SBBR) has emerged as an alternative allowing EBPR to be achieved in a biofilm reactor. High efficiency of phosphate removal was demonstrated in a SBBR fed with synthetic wastewater containing acetate. The aim of this study was to investigate EBPR from municipal wastewater in semi full-scale and laboratory-scale SBBRs. The focus of the investigation in the semi full-scale reactor was on determination of achievable reaction rates and effluent concentrations under varying influent conditions throughout all seasons of a year. Interactions between nitrogen and phosphorus removal and the influence of backwashing on the reactor performance was examined. Summing up, it can be stated that the SBBR proved to be an attractive alternative to activated sludge systems. Phosphorus elimination efficiency was comparable to common systems but biomass sedimentation problems were avoided. In order to further exploit the potential of the SBBR and to achieve reactor performances superior to those of existing systems designing a special biofilm carrier material may allow to increase the phenomenon of simultaneous nitrification/denitrification while maintaining EBPR activity. (orig.) [German] Die vermehrte biologische Phosphorelimination (Bio-P) aus Abwasser wurde bisher nur in Belebtschlammsystemen praktiziert. In den letzten Jahren konnte jedoch gezeigt werden, dass sich durch die Anwendung des Sequencing Batch Biofilm Reactor (SBBR) - Verfahrens auch in Biofilmreaktoren Bio-P verwirklichen laesst. Versuche in Laboranlagen haben ergeben, dass sich eine weitgehende Phosphorelimination aufrecht erhalten laesst, wenn die Reaktoren mit einem ideal zusammengesetzten, synthetischen Abwasser beschickt werden. Ziel dieser Arbeit war es, Bio-P aus kommunalem Abwasser in SBBR-Versuchsanlagen im halbtechnischen und im Labormassstab zu

  16. Study of nitrogen and organics removal in sequencing batch reactor (SBR) using hybrid media.

    Science.gov (United States)

    Thuan, Tran-Hung; Chung, Yun-Chul; Ahn, Dae-Hee

    2003-03-01

    The removal of nitrogen and organics in a sequencing batch reactor (SBR) using hybrid media were investigated in this work. The hybrid media was made by the use of polyurethane foam (PU) cubes and powdered activated carbon (PAC). The function of activated carbon of hybrid media was to offer a suitable active site, which was able to absorb organic substances and ammonia, as well as that of PU was to provide an appropriated surface onto which biomass could be attached and grown. A laboratory-scale moving-bed sequencing batch reactor (SBR) was used for investigating the efficiency of hybrid media. The removal of nitrogen and organics for synthetic wastewater (COD; 490-1,627 mg/L, NH4(+)-N; 180-210 mg/L) were evaluated at different COD/N ratio and different anoxic phase conditions, respectively. The system was operated with the organic loading rate (OLR) of 0.1, 0.16, 0.24, and 0.28 kg COD/m3 day, respectively. Each mode based on OLR was divided as the periods of 45 days of operation time, except for third mode that was operated during 30 days. After acclimatization period, effluent total COD concentrations slightly decreased and the removal efficiency of organics increased to about 90% (COD; 70 mg/L) after 60 days and achieved 98% (COD; 30 mg/L) at the end of experiments. The organics reduction seemed to be less affected by shock loading since high organic loads did not affect the removal efficiency. The NIH4(+)-N concentrations in effluent showed almost lower than 1 mg/L and NO3(-)-N concentrations were high (150 mg/L) during a very low C/N ratio (C/N=2). Over 90% of T-N removal efficiency (T-N; 16 mg/L) was obtained during the last 20 days of the operation after controlling the COD/N ratio (C/N=7). The mixing condition and COD/N ratio at anoxic phase were determined as a main operating factors. In future, the optimal operating conditions of SBR system with hybrid media will be investigated from the view of maintaining a sufficient biomass to the hybrid media under

  17. Effect of feeding strategy on the stability of anaerobic sequencing batch reactor responses to organic loading conditions.

    Science.gov (United States)

    Cheong, Dae-Yeol; Hansen, Conly L

    2008-07-01

    The goal of this study was to examine the effect of feeding strategy on the capability for treatment and the stability of an anaerobic sequencing batch reactor (ASBR) under increasing organic loading. The lab-scale ASBR systems were operated at 35 degrees C using synthetic organic wastewater under both batch and fed-batch operational modes with different feed to cycle time (F:C) ratios. Experimental studies were conducted over a wide range of volumetric organic loading rates (VOLRs) (1.524 g COD/l/d) by varying the hydraulic retention time (HRT) (1.25, 2.5, and 5d) and the feed wastewater's COD (3750-30,000 mg/l). With an F:C ratio greater than or equal to 0.42, the fed-batch mode operation showed higher system efficiency in COD removal, volumetric methane production rate (VMPR), and specific methane production rate (SMPR) as compared to those in the batch mode with identical VOLR and HRT. In the fed-batch mode, the COD removals reached 86-95% with VOLR up to 12 g COD/l/d. The maximums for VMPR of 3.17 l CH4/l/d and for SMPR of 1.63 g CH4-COD/g VSS/d were achieved with a VOLR of 12 g COD/l/d at HRTs of 2.5 and 1.25 d, respectively. The fed-batch operation presented a lower concentration of volatile fatty acids (VFAs) than those in the batch operation. A lower concentration of VFAs confirmed the stability and efficiency of the fed-batch mode operation. The specific methanogenic activity (SMA) analysis showed that the VFA-degrading activity of the biomass in the fed-batch mode was higher for acetate and butyrate, and lower for propionate. Determined biomass yield and bacterial decay coefficients in the fed-batch operational mode were 0.05 g VSS/g COD rem and 0.001 d(-1), respectively.

  18. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guanghua [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China); Guangzhou municipal engineering design and research institute, Guangzhou, 510060 (China); Sui Jun [Guangzhou municipal engineering design and research institute, Guangzhou, 510060 (China); Shen Huishan; Liang Shukun [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China); He Xiangming; Zhang Minju; Xie Yizhong; Li Lingyun [Nanhai Limited Liability Development Company, Foshan, 528200 (China); Hu Yongyou, E-mail: ppyyhu@scut.edu.cn [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China) and State Key Lab of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology; Guangzhou, 510640 (China)

    2011-08-15

    In this study, chlorine dioxide (ClO{sub 2}) instead of chlorine (Cl{sub 2}) was proposed to minimize the formation of chlorine-based by-products and was incorporated into a sequencing batch reactor (SBR) for excess sludge reduction. The results showed that the sludge disintegrability of ClO{sub 2} was excellent. The waste activated sludge at an initial concentration of 15 g MLSS/L was rapidly reduced by 36% using ClO{sub 2} doses of 10 mg ClO{sub 2}/g dry sludge which was much lower than that obtained using Cl{sub 2} based on similar sludge reduction efficiency. Maximum sludge disintegration was achieved at 10 mg ClO{sub 2}/g dry sludge for 40 min. ClO{sub 2} oxidation can be successfully incorporated into a SBR for excess sludge reduction without significantly harming the bioreactor performance. The incorporation of ClO{sub 2} oxidation resulted in a 58% reduction in excess sludge production, and the quality of the effluent was not significantly affected.

  19. Role of Moving Bed Biofilm Reactor and Sequencing Batch Reactor in Biological Degradation of Formaldehyde Wastewater

    Directory of Open Access Journals (Sweden)

    B. Ayati

    2011-10-01

    Full Text Available Nowadays formaldehyde is used as raw material in many industries. It has also disinfection applications in some public places. Due to its toxicity for microorganisms, chemical or anaerobic biological methods are applied for treating wastewater containing formaldehyde.In this research, formaldehyde removal efficiencies of aerobic biological treatment systems including moving bed biofilm (MMBR and sequencing batch reactors (SBR were investigated. During all experiments, the efficiency of SBR was more than MBBR, but the difference was not significant statistically. According to the results, the best efficiencies were obtained for influent formaldehyde COD of 200 mg/L in MBBR and SBR which were 93% and 99.4%, respectively. The systems were also capable to treat higher formaldehyde concentrations (up to 2500 mg/L with lower removal efficiency. The reaction kinetics followed the Stover-Kincannon second order model. The gram-positive and gram-negative bacillus and coccus as well as the gram-positive binary bacillus were found to be the most dominant species. The results of 13C-NMR analysis have shown that formaldehyde and urea were converted into N-{[(aminocarbonyl amino] methyl}urea and the residual formaldehyde was polymerized at room temperature.

  20. Use of Sequencing Batch Reactors (SBRs in Treatment of Wood Fiber Wastewater

    Directory of Open Access Journals (Sweden)

    H Ganjidoust, B Ayati

    2004-10-01

    Full Text Available Wood fiber industries are producing large amounts of wastewater, which are discharged into the environment everyday. This type of wastewater with high pollution potential in suspended solids, COD and color, are required to be treated before entering to the receiving environment. North part of Iran is covered by huge land of forests. Several pulp and paper industries are located in the area. One of these industries is Iran Wood Fiber Company in which many researches have been done in both laboratory and pilot scale by the main author in recent years. One of the studies was to investigate the Sequencing Batch Reactors (SBRs efficiency for treating the wastewater. Considering parameters such as influent COD, detention time, nutrient concentration, and their effects on COD, turbidity and total solids removal efficiency of the system, four serial SBRs in laboratory scale were investigated. The results of the system with 10 hours detention time, 1000-2500 mg/L COD and 100:5.1:1 C/N/P had the best efficiency with 92, 84, 52 percent removal for COD, turbidity and total solids, respectively. Pilot scale plant studies using SBRs were also done in the company. The results indicated good removal efficiencies that also discussed in this paper.

  1. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-01-01

    Full Text Available Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR with 50,000 m3 d−1 for treating a town’s wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O reactor and an oxidation ditch (OD being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS. X-ray fluorescence (XRF analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation.

  2. Effect of dissolved oxygen concentration on nitrite accumulation in nitrifying sequencing batch reactor.

    Science.gov (United States)

    Sánchez, Omar; Bernet, Nicolas; Delgenès, Jean-Philippe

    2007-08-01

    A mathematical model based on Activated Sludge Model No. 3 (International Water Association, London) and laboratory-scale experiments were used to investigate ammonia conversion by nitrification in a sequencing batch reactor (SBR). The purpose of the study was to assess the effect of dissolved oxygen concentration on nitrite accumulation in the SBR. As the dissolved oxygen concentration in the SBR depends on the balance between oxygen consumption and oxygen transfer rates, ammonium conversion was measured for different air flowrate values to obtain different dissolved oxygen concentration profiles during the cycle. The ammonia concentration in the feeding medium was 500 mg ammonium as nitrogen (N-NH4(+))/L, and the maximum nitrite concentration achieved during a cycle was approximately 50 mg nitrite as nitrogen (N-NO2)/L. The air flow supplied to the reactor was identified as a suitable parameter to control nitrite accumulation in the SBR. This identification was carried out based on experimental results and simulation with a calibrated model. At a low value of the volumetric mass-transfer coefficient (kLa), the maximum nitrite concentration achieved during a cycle depends strongly on k(L)a, whereas, at a high value of k(L)a, the maximum nitrite concentration was practically independent of kL(a).

  3. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: you.rahimi@gmail.com [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: mehrdadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Shahmoradi, Behzad, E-mail: bshahmorady@gmail.com [Department of Environmental Science, University of Mysore, MGM-06 Mysore (India)

    2011-01-30

    Research highlights: {yields} Sludge production in FSBR reactor is 20-30% less than SBR reactor. {yields} FSBR reactor showed more nutrient removal rate than SBR reactor. {yields} FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y{sub obs}) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  4. Effect of redox conditions on pharmaceutical loss during biological wastewater treatment using sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Lauren B., E-mail: lstadler@umich.edu [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States); Su, Lijuan, E-mail: lijuansu@buffalo.edu [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Moline, Christopher J., E-mail: christopher.moline@hdrinc.com [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States); Ernstoff, Alexi S., E-mail: alexer@dtu.dk [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States); Aga, Diana S., E-mail: dianaaga@buffalo.edu [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Love, Nancy G., E-mail: nglove@umich.edu [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States)

    2015-01-23

    Highlights: • Pharmaceutical fate was studied in SBRs operated at different redox conditions. • Stable carbon oxidation and nitrification occurred under microaerobic conditions. • Losses of atenolol and trimethoprim were highest under fully aerobic conditions. • Loss of sulfamethoxazole was highest under microaerobic conditions. • Deconjugation occurred during treatment to form sulfamethoxazole and desvenlafaxine. - Abstract: We lack a clear understanding of how wastewater treatment plant (WWTP) process parameters, such as redox environment, impact pharmaceutical fate. WWTPs increasingly install more advanced aeration control systems to save energy and achieve better nutrient removal performance. The impact of redox condition, and specifically the use of microaerobic (low dissolved oxygen) treatment, is poorly understood. In this study, the fate of a mixture of pharmaceuticals and several of their transformation products present in the primary effluent of a local WWTP was assessed in sequencing batch reactors operated under different redox conditions: fully aerobic, anoxic/aerobic, and microaerobic (DO concentration ≈0.3 mg/L). Among the pharmaceuticals that were tracked during this study (atenolol, trimethoprim, sulfamethoxazole, desvenlafaxine, venlafaxine, and phenytoin), overall loss varied between them and between redox environments. Losses of atenolol and trimethoprim were highest in the aerobic reactor; sulfamethoxazole loss was highest in the microaerobic reactors; and phenytoin was recalcitrant in all reactors. Transformation products of sulfamethoxazole and desvenlafaxine resulted in the reformation of their parent compounds during treatment. The results suggest that transformation products must be accounted for when assessing removal efficiencies and that redox environment influences the degree of pharmaceutical loss.

  5. Embedding constructed wetland in sequencing batch reactor for enhancing nutrients removal: A comparative evaluation.

    Science.gov (United States)

    Liu, Ranbin; Zhao, Yaqian; Zhao, Jinhui; Xu, Lei; Sibille, Caroline

    2017-05-01

    In the present study, a novel green bio-sorption reactor (GBR) was firstly proposed and preliminarily investigated by embedding constructed wetland (CW) into the aeration tank of the conventional activated sludge (CAS). This integrated novel system owns the striking features of adding carriers of wetland substrate (i.e. the dewatered alum sludge in this case) in CAS for robust phosphorus adsorption and enriching the biomass. Meanwhile, the "green" feature of this GBR imparted aesthetic value of CW to the CAS system. The preliminary 3-month trial of GBR based on a sequencing batch reactor (GB-SBR) with diluted piggery wastewater demonstrated an average removal of 96%, 99% and 90% for BOD, TP and TN, respectively. The comparison with moving bed biofilm reactor (MBBR) and integrated fixed-film activated sludge (IFAS) reflected the advantages of GBR over purification performance, aesthetic value and potential carbon sink. Moreover, the carriers used in the GBR are dewatered alum sludge which is in line with the policy of "recycle, reuse and reduce". Overall, this GBR undoubtedly offered a more sustainable and economical solution for retrofitting the aging CAS.

  6. Comparison of four enhancement strategies for aerobic granulation in sequencing batch reactors.

    Science.gov (United States)

    Gao, Dawen; Liu, Lin; Liang, Hong; Wu, Wei-Min

    2011-02-15

    Aerobic granules were developed in four identical sequencing batch reactors (SBRs) with synthetic wastewater to compare different strategies for the enhancement of granulation. The SBRs were operated by (a) increasing organic loading rate in R1; (b) reducing settling time in R2; (c) extending starvation period in R3; and (d) increasing shear force in R4. The results showed that four operational strategies were able to enhance aerobic granulation successfully in SBR, but that also showed different effect on the granulation process and characteristics of mature aerobic granules. The rapidest granulation was observed by using short settling time (R2) and the granules had higher extracellular polymeric substance (EPS) than other reactors. Extended starvation period (R3) and high shear force (R4) resulted in longer granulation period and the granules with higher integrity and smaller size. Higher organic loading rate (R1) resulted in the granules with larger size and higher K value. The maximum specific COD removal rates (q(max)) of the granules in all SBRs were at a similar level (0.13-0.16 g COD/h-g VSS) but the granules in R1 and R2 had higher apparent half rate constant (K) of 18 and 16 mg/L, than those in R3 and R4 (2.8 and 3.3 mg/L).

  7. Comparison of four enhancement strategies for aerobic granulation in sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gao Dawen, E-mail: dawengao@gmail.com [School of Forestry, Northeast Forestry University, Harbin 150040 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Liu Lin; Liang Hong [School of Forestry, Northeast Forestry University, Harbin 150040 (China); Wu Weimin [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020 (United States)

    2011-02-15

    Aerobic granules were developed in four identical sequencing batch reactors (SBRs) with synthetic wastewater to compare different strategies for the enhancement of granulation. The SBRs were operated by (a) increasing organic loading rate in R1; (b) reducing settling time in R2; (c) extending starvation period in R3; and (d) increasing shear force in R4. The results showed that four operational strategies were able to enhance aerobic granulation successfully in SBR, but that also showed different effect on the granulation process and characteristics of mature aerobic granules. The rapidest granulation was observed by using short settling time (R2) and the granules had higher extracellular polymeric substance (EPS) than other reactors. Extended starvation period (R3) and high shear force (R4) resulted in longer granulation period and the granules with higher integrity and smaller size. Higher organic loading rate (R1) resulted in the granules with larger size and higher K value. The maximum specific COD removal rates (q{sub max}) of the granules in all SBRs were at a similar level (0.13-0.16 g COD/h-g VSS) but the granules in R1 and R2 had higher apparent half rate constant (K) of 18 and 16 mg/L, than those in R3 and R4 (2.8 and 3.3 mg/L).

  8. Performance evaluation of sequencing batch reactor for beverage industrial wastewater treatment.

    Science.gov (United States)

    El-Kamah, Hala; Mahmoud, Mohamed

    2012-02-01

    Attempts were made in this study to examine the effectiveness of sequencing batch reactor (SBR) for the treatment of beverage industrial wastewater. The SBR was operated at three different organic loading rates (OLRs): 2, 1.7 and 1.1 kg COD/m3 d. Results of continuous long-term operation showed that by decreasing OLR from 2 to 1.7 kg COD/m3 day, the removal efficiency was increased from 95.5 to 99.3% for COD, from 95.3 to 98.1% for BOD and from 87 to 97.7% for TSS. While further decreasing of the OLR to 1.1 kg COD/m3 day, there is no significant adverse effect on organics removal. Also, residual total nitrogen (TN) concentration decreased by decreasing the OLR. However, increasing the OLRs exerted a slightly negative effect on the removal of total phosphorous. On the other hand, the experimental data indicated that the substrate utilization kinetic followed Monod's kinetics model approximately. The maximum specific substrate utilization rate (micro(max), half velocity coefficient (Ks), growth yield coefficient (Y) and decay coefficient (Kd) were 2.94 d(-1), 15.22 mg/L, 0.2384 g VSS/g COD and 0.2019 h(-1), respectively.

  9. Aerobic sludge granulation in a full-scale sequencing batch reactor.

    Science.gov (United States)

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m(3) d(-1) for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g(-1), diameter of 0.5 mm, and settling velocity of 42 m h(-1) were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation.

  10. Nitrous oxide production during nitrogen removal from domestic wastewater in lab-scale sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    LIU Xiuhong; PENG Yi; WU Changyong; AKIO Takigawa; PENG Yongzhen

    2008-01-01

    The production of N2O during nitrogen removal from real domestic wastewater was investigated in a lab-scale aerobic-anoxic sequencing batch reactor with a working volume of 14 L.The results showed that the total N2O-N production reached higher than 1.87 mg/L,and up to 4% of removed nitrogen was converted into N2O.In addition,N2O led to a much higher greenhouse effect than CO2 during aerobic reaction phase,this proved that N2O production could not be neglected.The N2O-N production during nitrification Was 1.85 mg/L,whereas,during denitrification,no N2O was produced,nitrification was the main source of N2O production during nitrogen removal.Furthermore,during denitrification,the dissolved N2O at the end of aeration Was found to be further reduced to N2.Denitrification thus had the potential of controlling N2O production.

  11. Effects of hexavalent chromium on performance and microbial community of an aerobic granular sequencing batch reactor.

    Science.gov (United States)

    Wang, Zichao; Gao, Mengchun; She, Zonglian; Jin, Chunji; Zhao, Yangguo; Yang, Shiying; Guo, Liang; Wang, Sen

    2015-03-01

    The performance and microbial community of an aerobic granular sequencing batch reactor (GSBR) were investigated at different hexavalent chromium (Cr(VI)) concentrations. The COD and NH4 (+)-N removal efficiencies decreased with the increase in Cr(VI) concentration from 0 to 30 mg/L. The specific oxygen utilization rate (SOUR) decreased from 34.86 to 12.18 mg/(g mixed liquor suspended sludge (MLSS)·h) with the increase in Cr(VI) concentration from 0 to 30 mg/L. The specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR), and specific nitrate reduction rate (SNRR) decreased with the increase in Cr(VI) concentration, whereas the SNRR was always higher than the sum of SAOR and SNOR at 0-30 mg/L Cr(VI). The scanning electron micrographs (SEM) showed some undefined particles on the surface of filamentous bacteria that might be the chelation of chromium and macromolecular organics at 30 mg/L Cr(VI). The denaturing gradient gel electrophoresis (DGGE) profiles revealed that some microorganisms adapting to high Cr(VI) concentration gradually became the predominant bacteria, while others without Cr(VI)-tolerance capacity tended to deplete or weaken. Some bacteria could tolerate the toxicity of high Cr(VI) concentration in the aerobic GSBR, such as Propionibacteriaceae bacterium, Ochrobactrum anthropi, and Micropruina glycogenica.

  12. Effects of idle time on biological phosphorus removal by sequencing batch reactors.

    Science.gov (United States)

    Gao, Dawen; Yin, Hang; Liu, Lin; Li, Xing; Liang, Hong

    2013-12-01

    Three identical sequencing batch reactors (SBRs) were operated to investigate the effects of various idle times on the biological phosphorus (P) removal. The idle times were set to 3 hr (R1), 10 hr (R2) and 17 hr (R3). The results showed that the idle time of a SBR had potential impact on biological phosphorus removal, especially when the influent phosphorus concentration increased. The phosphorus removal efficiencies of the R2 and R3 systems declined dramatically compared with the stable R1 system, and the P-release and P-uptake rates of the R3 system in particular decreased dramatically. The PCR-DGGE analysis showed that uncultured Pseudomonas sp. (GQ183242.1) and beta-Proteobacteria (AY823971) were the dominant phosphorus removal bacteria for the R1 and R2 systems, while uncultured gamma-Proteobacteria were the dominant phosphorus removal bacteria for the R3 system. Glycogen-accumulating organisms (GAOs), such as uncultured Sphingomonas sp. (AM889077), were found in the R2 and R3 systems. Overall, the R1 system was the most stable and exhibited the best phosphorus removal efficiency. It was found that although the idle time can be prolonged to allow the formation of intracellular polymers when the phosphorus concentration of the influent is low, systems with a long idle time can become unstable when the influent phosphorus concentration is increased.

  13. Treatment of a Slaughterhouse Wastewater using Sequencing Batch Reactors at a Shortened Operating Cycle

    Directory of Open Access Journals (Sweden)

    Suwadi Saikomon

    2017-01-01

    Full Text Available This laboratory-scale study employed sequencing batch reactor (SBR technology to investigate the effect of two operational parameters [i.e. solids retention time (SRT and anoxic time ratios] regarding the treatment of a slaughterhouse wastewater. Results indicated that organic matter removal, expressed as chemical oxygen demand (COD, was very high, consistently exceeding the 95 % level. In addition, the total nitrogen (TN removal ranged between 82 and 94 %, while total phosphorus (TP removal fluctuated between 88 and 94 %. In general, the reactors exhibited a high degree of operational stability during treatment. Although the investigated range of the two operational parameters appeared to have a minimal effect on the process performance (expressed as % carbon or nutrient removal, the corresponding COD and TN specific consumption rates were noticeably affected by the variation in the anoxic time ratios. Furthermore, the operating cycle length of 8 h employed in this study resulted in improved performance, in terms of nitrogen removal, compared to other studies conducted at longer operating cycles.

  14. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    Science.gov (United States)

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy.

  15. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor.

    Science.gov (United States)

    Bassin, João P; Dezotti, Marcia; Sant'anna, Geraldo L

    2011-01-15

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl(-)/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  16. Biological nutrient removal from meat processing wastewater using a sequencing batch reactor.

    Science.gov (United States)

    Thayalakumaran, N; Bhamidimarri, R; Bickers, P O

    2003-01-01

    Meat processing effluents are rich in nutrients (nitrogen: 75-200 mg L(-1) and phosphorus: 20-40 mg L(-1)) and COD (800-2,000 mg L(-1)) after primary treatment. A laboratory scale sequencing batch reactor (SBR) was operated for the treatment of a beef processing effluent from slaughtering and boning operations. An effective SBR cycle was found for removal of COD, nitrogen and phosphorus at 22 degrees C. The solid retention time was 15 days while the hydraulic retention time (HRT) was 2.5 days. The total nitrogen in the wastewater was reduced to less than 10 mg L(-1), while the total phosphorus decreased to less than 1.0 mg L(-1). The residual effluent soluble COD was found to be non-biodegradable as reflected by no further soluble COD removal following prolonged aeration. Removal of biodegradable soluble COD, ammonia nitrogen and soluble phosphate phosphorus of greater than 99% was achieved in the SBR. Good prediction of ammonia and nitrate nitrogen removal was obtained using IWA Activated Sludge Model. The operating cycle is shown to be appropriate to achieve simultaneous removal of COD and nutrients from the meat processing wastewater. Alkalinity and pH have an inverse relationship during the initial anaerobic and aerobic stages due to production and stripping of CO2. Use of a low level of DO in the final aerobic stage ensured complete ammonia removal and enhanced denitrification.

  17. Nitrogen removal optimization in a sequencing batch reactor treating sanitary landfill leachate.

    Science.gov (United States)

    Spagni, Alessandro; Lavagnolo, M Cristina; Scarpa, Carlotta; Vendrame, Paola; Rizzo, Andrea; Luccarini, Luca

    2007-05-01

    Biological nitrogen removal via nitrite may represent a promising process for the optimization of nitrogen removal, in particular in the presence of a low biodegradable COD/TKN ratio. In the present study a lab-scale sequencing batch reactor (SBR) was monitored for approximately 2 years to evaluate the use of dissolved oxygen (DO), pH and oxidation-reduction potential (ORP) as monitoring parameters in order to optimize nitrogen removal via nitrite from leachate generated in old sanitary landfills. The SBR manifested a nitrification efficiency exceeding 99% whereas, due to the low biodegradability of the organic matter presents in the leachates, COD removal reached approximately 40% and the addition of external COD was required to accomplish denitrification process. Moreover, the results demonstrate that DO, pH and ORP are reliable parameters for use in the monitoring of nitritation and denitritation processes in SBRs treating landfill leachates. Through manual modification of the length of the SBR phases to achieve nitrogen removal via nitrite, the nitritation and denitritation processes were rendered unstable leading to the saving of 20% in addition of external COD, almost half the theoretically achievable value. Furthermore, the low dissolved oxygen concentration applied during the oxic phases in an attempt to increase the nitritation process would appear to cause the settling characteristics of the activated sludge to deteriorate.

  18. Effects of extracellular polymer substances on aerobic granulation in sequencing batch reactors

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-ping; LIU Li-li; YAO Jie; SUN Li-xin; CAI Wei-min

    2009-01-01

    The effects of extracellular polymeric substances (EPS) on aerobic granulation in sequencing batch reactors (SBR) were investigated by evaluating the EPS content, and the relationship between EPS composition and surface properties of glucose-fed aerobic granules. The results show that aerobic granular sludge contains more EPS than seed sludge, and it is about 47 mg/gMLSS. Corresponding to the changes of EPS, the surface charge of microorganisms in granules increases from -0. 732 to -0. 845 meq/gMLSS, whereas the hydrophobicry changes significantly from 48.46% to 73. 16%. It is obviously that changes of EPS in sludge alter the negative surface charge and hydrophobieity of microorganisms in granules, enhance the polymeric interaction and promote the aerobic granulation. Moreover, EPS can serve as carbon and energy reserves in granulation, thus the growth between the interior and exterior bacteria is balanced, and the integrality of granules is maintained.SEM observation of the granules exhibits that EPS in granules are ropy ; by mixing with bacteria, compact matrix structure can be formed. The distribution of EPS in granules profiles the importance of EPS storage. It can be concluded that EPS play a crucial role in aerobic granulation.

  19. Treatment of textile effluent by chemical (Fenton's Reagent) and biological (sequencing batch reactor) oxidation.

    Science.gov (United States)

    Rodrigues, Carmen S D; Madeira, Luis M; Boaventura, Rui A R

    2009-12-30

    The removal of organic compounds and colour from a synthetic effluent simulating a cotton dyeing wastewater was evaluated by using a combined process of Fenton's Reagent oxidation and biological degradation in a sequencing batch reactor (SBR). The experimental design methodology was first applied to the chemical oxidation process in order to determine the values of temperature, ferrous ion concentration and hydrogen peroxide concentration that maximize dissolved organic carbon (DOC) and colour removals and increase the effluent's biodegradability. Additional studies on the biological oxidation (SBR) of the raw and previously submitted to Fenton's oxidation effluent had been performed during 15 cycles (i.e., up to steady-state conditions), each one with the duration of 11.5h; Fenton's oxidation was performed either in conditions that maximize the colour removal or the increase in the biodegradability. The obtained results allowed concluding that the combination of the two treatment processes provides much better removals of DOC, BOD(5) and colour than the biological or chemical treatment alone. Moreover, the removal of organic matter in the integrated process is particularly effective when Fenton's pre-oxidation is carried out under conditions that promote the maximum increase in wastewater biodegradability.

  20. Coupled anaerobic-aerobic treatment of whey wastewater in a sequencing batch reactor: proof of concept.

    Science.gov (United States)

    Frigon, J C; Bruneau, T; Moletta, R; Guiot, S R

    2007-01-01

    A proof of concept was performed in order to verify if the coupling of anaerobic and aerobic conditions inside the same digester could efficiently treat a reconstituted whey wastewater at 21 degrees C. The sequencing batch reactor (SBR) cycles combined initial anaerobic phase and final aerobic phase with reduced aeration. A series of 24 h cycles in 0.5 L digesters, with four different levels of oxygenation (none, 54, 108 and 182 mgO2 per gram of chemical oxygen demand (COD)), showed residual soluble chemical oxygen demand (sCOD) of 683 +/- 46, 720 +/- 33, 581 +/- 45, 1239 +/- 15 mg L(-1), respectively. Acetate and hydrogen specific activities were maintained for the anaerobic digester, but decreased by 10-25% for the acetate and by 20-50% for the hydrogen, in the coupled digesters. The experiment was repeated using 48 h cycles with limited aeration during 6 or 16 hours at 54 and 108 mgO2gCODinitial(-1), displaying residual sCOD of 177 +/- 43, 137 +/- 38, 104 +/- 22 and 112 +/- 9 mgL(-1) for the anaerobic and the coupled digesters, respectively. The coupled digesters recovered after a pH shock with residual sCOD as low as 132 mg L(-1) compared to 636 mg L(-1) for the anaerobic digester. With regard to the obtained results, the feasibility of the anaerobic-aerobic coupling in SBR digesters for the treatment of whey wastewater was demonstrated.

  1. Influence of temperature on the partial nitritation of reject water in a granular sequencing batch reactor.

    Science.gov (United States)

    López-Palau, Sílvia; Sancho, Irene; Pinto, Antonio; Dosta, Joan; Mata-Alvarez, Joan

    2013-01-01

    Two Granular Sequencing Batch Reactors were operated to perform partial nitrification of sludge reject water at different temperatures, from 25-41 degrees C. Every temperature was fixed for about a month in order to evaluate the nitritation rate, morphological features of aggregates and bacterial populations. The optimum temperature was found between 33 and 37 degrees C in terms of nitritation rate. Morphological features of granules did not show significant changes with temperature in the range between 28 and 37 degrees C; Feret diameter remained at 5.8 +/- 0.7mm and roundness was 0.76 +/- 0.02. Lower temperatures promoted the appearance of filamentous bacteria, leading to an increase of the sludge volume index (SVI) and a consequent reduction of biomass concentration. When the temperature was increased to 39 degrees C, more than the 80% of aggregates showed a diameter higher than 6mm but density decreased from 28 to 19 g VSS L(-1), resulting in an increase of the SVI from 33 to 80 mL g(-1). The establishment of 41 degrees C caused a rapid destabilization of the system and nitritation activity disappeared. Bacterial populations did not experience significant changes during the experimental period and Nitrosomonas was the dominant species at all the temperatures assayed.

  2. Performance of a sequencing batch biofilm reactor for the treatment of pre-oxidized sulfamethoxazole solutions.

    Science.gov (United States)

    González, Oscar; Esplugas, Marc; Sans, Carme; Torres, Alicia; Esplugas, Santiago

    2009-05-01

    A combined strategy of a photo-Fenton pretreatment followed by a Sequencing Batch Biofilm Reactor (SBBR) was evaluated for total C and N removal from a synthetic wastewater containing exclusively 200 mg L(-1) of the antibiotic Sulfamethoxazole (SMX). Photo-Fenton reaction was optimized at the minimum reagent doses in order to improve the biocompatibility of effluents with the subsequent biological reactor. Consequently, the pretreatment was performed with two different initial H(2)O(2) concentrations (300 and 400 mg L(-1)) and 10 mg L(-1) of Fe(2+). The pre-treated effluents with the antibiotic intermediates as sole carbon source were used as feed for the biological reactor. The SBBR was operated under aerobic conditions to mineralize the organic carbon, and the Hydraulic Retention Time (HRT) was optimized down to 8h reaching a removal of 75.7% of the initial Total Organic Carbon (TOC). The total denitrification of the NO(3)(-) generated along the chemical-biological treatment was achieved by means of the inclusion of a 24-h anoxic stage in the SBBR strategy. In addition, the Activated Sludge Model No. 1 (ASM1) was successfully used to complete the N balance determining the N fate in the SBBR. The characterization and the good performance of the SBBR allow presenting the assessed combination as an efficient way for the treatment of wastewaters contaminated with biorecalcitrant pharmaceuticals as the SMX.

  3. Biodegradation and kinetics of aerobic granules under high organic loading rates in sequencing batch reactor.

    Science.gov (United States)

    Chen, Yao; Jiang, Wenju; Liang, David Tee; Tay, Joo Hwa

    2008-05-01

    Biodegradation, kinetics, and microbial diversity of aerobic granules were investigated under a high range of organic loading rate 6.0 to 12.0 kg chemical oxygen demand (COD) m(-3) day(-1) in a sequencing batch reactor. The selection and enriching of different bacterial species under different organic loading rates had an important effect on the characteristics and performance of the mature aerobic granules and caused the difference on granular biodegradation and kinetic behaviors. Good granular characteristics and performance were presented at steady state under various organic loading rates. Larger and denser aerobic granules were developed and stabilized at relatively higher organic loading rates with decreased bioactivity in terms of specific oxygen utilization rate and specific growth rate (muoverall) or solid retention time. The decrease of bioactivity was helpful to maintain granule stability under high organic loading rates and improve reactor operation. The corresponding biokinetic coefficients of endogenous decay rate (kd), observed yield (Yobs), and theoretical yield (Y) were measured and calculated in this study. As the increase of organic loading rate, a decreased net sludge production (Yobs) is associated with an increased solid retention time, while kd and Y changed insignificantly and can be regarded as constants under different organic loading rates.

  4. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bassin, Joao P. [Programa de Engenharia Quimica/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G - sala 116, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ (Brazil); Dezotti, Marcia, E-mail: mdezotti@peq.coppe.ufrj.br [Programa de Engenharia Quimica/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G - sala 116, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ (Brazil); Sant' Anna, Geraldo L. [Programa de Engenharia Quimica/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G - sala 116, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ (Brazil)

    2011-01-15

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl{sup -}/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  5. Integrated photocatalytic and sequencing batch reactor (SBR) treatment system for degradation of phenol

    Science.gov (United States)

    Yusoff, Nik Noor Athirah Nik; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Khalik, Wan Fadhilah Wan Mohd; Lee, Sin-Li

    2017-04-01

    This study will examine the efficiency of the simultaneous photocatalytic and biodegradation process in the same treatment reactor. The sequencing batch reactor or also known as SBR is an effective wastewater treatment method that has been applied widely. SBR system has become an alternative method for industrial wastewater treatment with high concentration of chemical oxygen demand (COD), and phenolic compound. In order for the photocatalytic process to occur, ZnO nanoparticles immobilized onto sponge were introduced to the reactor. It was observed that the COD value were decreased, indicated that the simultaneous biodegradation and photodegradation process in functional. The effect of ZnO nanoparticles on the production and composition of extracellular polymeric substances (EPS) and the physiochemical stability of activated sludge in hybrid growth type SBR were monitored. The percentages of removal are varied with different concentration of ZnO nanoparticles. The highest COD removal recorded is 31.5% with concentration of ZnO 0.6 mg/L. With the present of the ZnO nanoparticles, the degradation of phenol was relatively better than combination of biological of photlysis and biological.

  6. Low temperature biological phosphorus removal and partial nitrification in a pilot sequencing batch reactor system.

    Science.gov (United States)

    Yuan, Qiuyan; Oleszkiewicz, Jan A

    2011-01-01

    Partial nitrification and biological phosphorus removal appear to hold promise of a cost-effective and sustainable biological nutrient removal process. Pilot sequencing batch reactors (SBRs) were operated under anaerobic/aerobic configuration for 8 months. It was found that biological phosphorus removal can be achieved in an SBR system, along with the partial nitrification process. Sufficient volatile fatty acids supply was the key for enhanced biological phosphorus removal. This experiment demonstrated that partial nitrification can be achieved even at low temperature with high dissolved oxygen (>3 mg/L) concentration. Shorter solid retention time (SRT) for nitrite oxidizing bacteria (NOB) than for ammonia oxidizing bacteria due to the nitrite substrate limitation at the beginning of the aeration cycle was the reason that caused NOB wash-out. Controlling SRT should be the strategy for an SBR operated in cold climate to achieve partial nitrification. It was also found that the aerobic phosphorus accumulating organisms' P-uptake was more sensitive to nitrite inhibition than the process of anaerobic P-release.

  7. Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor.

    Science.gov (United States)

    Wu, Chang-Yong; Peng, Yong-Zhen; Wang, Ran-Deng; Zhou, Yue-Xi

    2012-02-01

    The granulation of activated sludge was investigated using two parallel sequencing batch reactors (SBRs) operated in biological nitrogen and phosphorus removal conditions though the reactor configuration and operating parameters did not favor the granulation. Granules were not observed when the SBR was operated in biological nitrogen removal period for 30d. However, aerobic granules were formed naturally without the increase of aeration intensity when enhanced biological phosphorus removal (EBPR) was achieved. It can be detected that plenty of positive charged particles were formed with the release of phosphorus during the anaerobic period of EBPR. The size of the particles was about 5-20 μm and their highest positive ζ potential was about 73 mV. These positive charged particles can stimulate the granulation. Based on the experimental results, a hypothesis was proposed to interpret the granulation process of activated sludge in the EBPR process in SBR. Dense and compact subgranules were formed stimulated by the positive charged particles. The subgranules grew gradually by collision, adhesion and attached growth of bacteria. Finally, the extrusion and shear of hydrodynamic shear force would help the maturation of granules. Aerobic granular SBR showed excellent biological phosphorus removal ability. The average phosphorus removal efficiency was over 95% and the phosphorus in the effluent was below 0.50 mg L(-1) during the operation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Mechanism studies on nitrogen removal when treating ammonium-rich leachate by sequencing batch biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    XU Zhengyong; YANG Zhaohui; ZENG Guangming; XIAO Yong; DENG Jiuhua

    2007-01-01

    The nitrogen removal mechanism was studied and analyzed when treating the ammonium-rich landfill leachate by a set of sequencing batch biofilm reactors(SBBRs),which was designed independently.At the liquid temperature of(32±0.4)℃,and after a 58-days domestication period and a 33-days stabilization period.the efficiency of ammonium removal in the SBBR went up to 95%.Highly frequent intermittent aeration suppressed the activity of nitratebacteria.and also eliminated the influence on the activity of anaerobic ammonium oxidation(ANAMMOX)bacteria and nitritebacteria.This influence was caused by the accumulation of nitrous acid and the undulation of pH.During the aeration stage,the concentration of dissolved oxygen was controlled at 1.2-1.4 mg/L.The nitritebacteria became dominant and nitrite accumulated gradually.During the anoxic stage,along with the concentration debasement of the dissolved oxygen,ANAMMOX bacteria became dominant;then,the nitrite that was accumulated in the aeration stage was wiped off with ammonium simultaneously.

  9. Bioaggregate of photo-fermentative bacteria for enhancing continuous hydrogen production in a sequencing batch photobioreactor.

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Rui-Qing; Ding, Jie; Ren, Hong-Yu; Zhou, Xu; Ren, Nan-Qi

    2015-11-05

    Hydrogen recovery through solar-driven biomass conversion by photo-fermentative bacteria (PFB) has been regarded as a promising way for sustainable energy production. However, a considerable fraction of organic substrate was consumed for the growth of PFB as biocatalysts, furthermore, these PFB were continuously washed out from the photobioreactor in continuous operation because of their poor flocculation. In this work, PFB bioaggregate induced by L-cysteine was applied in a sequencing batch photobioreactor to enhance continuous hydrogen production and reduce biomass washout. The effects of the hydraulic retention time (HRT), influent concentration and light intensity on hydrogen production of the photobioreactor were investigated. The maximum hydrogen yield (3.35 mol H2/mol acetate) and production rate (1044 ml/l/d) were obtained at the HRT of 96 h, influent concentration of 3.84 g COD/l, and light intensity of 200 W/m(2). With excellent settling ability, biomass accumulated in the photobioreactor and reached 2.15 g/l under the optimum conditions. Structural analysis of bioaggregate showed that bacterial cells were covered and tightly linked together by extracellular polymeric substances, and formed a stable structure. Therefore, PFB bioaggregate induced by L-cysteine is an efficient strategy to improve biomass retention capacity of the photobioreactor and enhance hydrogen recovery efficiency from organic wastes.

  10. Microalgae-activated sludge treatment of molasses wastewater in sequencing batch photo-bioreactor.

    Science.gov (United States)

    Tsioptsias, Costas; Lionta, Gesthimani; Samaras, Petros

    2017-05-01

    The aim of this work was the examination of the treatment potential of molasses wastewater, by the utilization of activated sludge and microalgae. The systems used included a sequencing batch bioreactor and a similar photo-bioreactor, favoring microalgae growth. The microalgae treatment of molasses wastewater mixture resulted in a considerable reduction in the total nitrogen content. A reduction in the ammonium and nitrate content was observed in the photo-bioreactor, while the effluent's total nitrogen consisted mainly of 50% organic nitrogen. The transformation of the nitrogen forms in the photo-bioreactor was attributed to microalgae activity, resulting in the production of a better quality effluent. Lower COD removal was observed for the photo-bioreactor than the control, which however increased, by the replacement of the anoxic phase by a long aeration period. The mechanism of nitrogen removal included both the denitrification process during the anoxic stage and the microalgae activities, as the replacement of the anoxic stage resulted in low total nitrogen removal capacities. A decrease in the photobioreactor performance was observed after 35 days of operation due to biofilm formation on the light tube surface, while the operation at higher temperature accelerated microalgae growth, resulting thus in the early failure of the photoreactor.

  11. Influence of aeration intensity on mature aerobic granules in sequencing batch reactor.

    Science.gov (United States)

    Gao, Da-Wen; Liu, Lin; Liang, Hong

    2013-05-01

    Aeration intensity is well known as an important factor in the formation of aerobic granules. In this research, two identical lab-scale sequencing batch reactors with aeration intensity of 0.8 (R1) and 0.2 m(3)/h (R2) were operated to investigate the characteristics and kinetics of matured aerobic granules. Results showed that both aeration intensity conditions induced granulation, but they showed different effects on the characteristics of aerobic granules. Compared with the low aeration intensity (R2), the aerobic granules under the higher aeration intensity (R1) had better physical characteristics and settling ability. However, the observed biomass yield (Y obs) in R1 [0.673 kg mixed liquor volatile suspended solids (MLVSS)/kg chemical oxygen demand (COD)] was lower than R2 (0.749 kg MLVSS/kg COD). In addition, the maximum specific COD removal rates (q max) and apparent half rate constant (K) of mature aerobic granular sludge under the two aeration intensities were at a similar level. Therefore, the matured aerobic granule system does not require to be operated in a higher aeration intensity, which will reduce the energy consumption.

  12. Biological phosphorus removal in sequencing batch reactor with single-stage oxic process.

    Science.gov (United States)

    Wang, Dong-Bo; Li, Xiao-Ming; Yang, Qi; Zeng, Guang-Ming; Liao, De-Xiang; Zhang, Jie

    2008-09-01

    The performance of biological phosphorus removal (BPR) in a sequencing batch reactor (SBR) with single-stage oxic process was investigated using simulated municipal wastewater. The experimental results showed that BPR could be achieved in a SBR without anaerobic phase, which was conventionally considered as a key phase for BPR. Phosphorus (P) concentration 0.22-1.79 mg L(-1) in effluent can be obtained after 4h aeration when P concentration in influent was about 15-20 mg L(-1), the dissolved oxygen (DO) was controlled at 3+/-0.2 mg L(-1) during aerobic phase and pH was maintained 7+/-0.1, which indicated the efficiencies of P removal were achieved 90% above. Experimental results also showed that P was mainly stored in the form of intracellular storage of polyphosphate (poly-P), and about 207.235 mg phosphates have been removed by the discharge of rich-phosphorus sludge for each SBR cycle. However, the energy storage poly-beta-hydroxyalkanoates (PHA) was almost kept constant at a low level (5-6 mg L(-1)) during the process. Those results showed that phosphate could be transformed to poly-P with single-stage oxic process without PHA accumulation, and BPR could be realized in net phosphate removal.

  13. Nitrous Oxide Production in a Sequence Batch Reactor Wastewater Treatment System Using Synthetic Wastewater

    Institute of Scientific and Technical Information of China (English)

    MAO Jian; JIANG Xiao-Qin; YANG Lin-Zhang; ZHANG Jian; QIAO Qing-Yun; HE Chen-Da; YIN Shi-Xue

    2006-01-01

    The rate of nitrous oxide emission from a laboratory sequence batch reactor (SBR) wastewater treatment system using synthetic wastewater was measured under controlled conditions. The SBR was operated in the mode of 4 h for aeration, 3.5 h for stirring without aeration, 0.5 h for settling and drainage, and 4 h of idle. The sludge was acclimated by running the system to achieve a stable running state as indicated by rhythmic changes of total N, dissolved oxygen,chemical oxygen demand, NO2-, NO3-, NH4+, pH, and N2O. Under the present experimental conditions measured nitrous oxide emitted from the off-gas in the aerobic and anaerobic phases, respectively, accounted for 8.6%-16.1% and 0-0.05%of N removed, indicating that the aerobic phase was the main source of N2O emission from the system. N2O dissolved in discharged water was considerable in term of concentration. Thus, measures to be developed for the purpose of reducing N2O emission from the system should be effective in the aeration phase.

  14. Estimation of spatial distribution of quorum sensing signaling in sequencing batch biofilm reactor (SBBR) biofilms.

    Science.gov (United States)

    Wang, Jinfeng; Ding, Lili; Li, Kan; Huang, Hui; Hu, Haidong; Geng, Jinju; Xu, Ke; Ren, Hongqiang

    2017-08-28

    Quorum sensing (QS) signaling, plays a significant role in regulating formation of biofilms in the nature; however, little information about the occurrence and distribution of quorum sensing molecular in the biofilm of carriers has been reported. In this study, distribution of QS signaling molecules (the acylated homoserine lactones-AHLs, and AI-2), extracellular polymeric substances (EPS) and the mechanical properties in sequencing batch biofilm reactor (SBBR) biofilms have been investigated. Using increased centrifugal force, the biofilms were detached into different fractions. The AHLs ranged from 5.2ng/g to 98.3ng/g in different fractions of biofilms, and N-decanoyl-dl-homoserine lactone (C10-HSL) and N-dodecanoyl-dl-homoserine lactone (C12-HSL) in the biofilms obtained at various centrifugal forces displayed significant differences (pbiofilms ranged from 79.2ng/g to 98.3ng/g. Soluble EPS and loosely bound EPS content in the different fractions of biofilms displayed significant positive relationship with the distribution of C12-HSL (r=0.86, pbiofilms were positively related with AHLs with 22.76% was significantly positively (pBiofilm adhesion and compliance was the strongest in the tightly-bound biofilm, the weakest in the supernatant/surface biofilm, which was in accordance with the distribution of C12 HSL(r=0.77, pbiofilm application. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A low volumetric exchange ratio allows high autotrophic nitrogen removal in a sequencing batch reactor.

    Science.gov (United States)

    De Clippeleir, Haydée; Vlaeminck, Siegfried E; Carballa, Marta; Verstraete, Willy

    2009-11-01

    Sequencing batch reactors (SBRs) have several advantages, such as a lower footprint and a higher flexibility, compared to biofilm based reactors, such as rotating biological contactors. However, the critical parameters for a fast start-up of the nitrogen removal by oxygen-limited autotrophic nitrification/denitrification (OLAND) in a SBR are not available. In this study, a low critical minimum settling velocity (0.7 m h(-1)) and a low volumetric exchange ratio (25%) were found to be essential to ensure a fast start-up, in contrast to a high critical minimum settling velocity (2 m h(-1)) and a high volumetric exchange ratio (40%) which yielded no successful start-up. To prevent nitrite accumulation, two effective actions were found to restore the microbial activity balance between aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB). A daily biomass washout at a critical minimum settling velocity of 5 m h(-1) removed small aggregates rich in AerAOB activity, and the inclusion of an anoxic phase enhanced the AnAOB to convert the excess nitrite. This study showed that stable physicochemical conditions were needed to obtain a competitive nitrogen removal rate of 1.1 g N L(-1) d(-1).

  16. Effect of temperature and cycle length on microbial competition in PHB-producing sequencing batch reactor.

    Science.gov (United States)

    Jiang, Yang; Marang, Leonie; Kleerebezem, Robbert; Muyzer, Gerard; van Loosdrecht, Mark C M

    2011-05-01

    The impact of temperature and cycle length on microbial competition between polyhydroxybutyrate (PHB)-producing populations enriched in feast-famine sequencing batch reactors (SBRs) was investigated at temperatures of 20 °C and 30 °C, and in a cycle length range of 1-18 h. In this study, the microbial community structure of the PHB-producing enrichments was found to be strongly dependent on temperature, but not on cycle length. Zoogloea and Plasticicumulans acidivorans dominated the SBRs operated at 20 °C and 30 °C, respectively. Both enrichments accumulated PHB more than 75% of cell dry weight. Short-term temperature change experiments revealed that P. acidivorans was more temperature sensitive as compared with Zoogloea. This is particularly true for the PHB degradation, resulting in incomplete PHB degradation in P. acidivorans at 20 °C. Incomplete PHB degradation limited biomass growth and allowed Zoogloea to outcompete P. acidivorans. The PHB content at the end of the feast phase correlated well with the cycle length at a constant solid retention time (SRT). These results suggest that to establish enrichment with the capacity to store a high fraction of PHB, the number of cycles per SRT should be minimized independent of the temperature.

  17. Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid.

    Science.gov (United States)

    Mohn, W W

    1995-06-01

    Eleven isolates capable of growth on the resin acid dehydroabietic acid (DhA) were obtained from a sequencing batch reactor designed to treat a high-strength process stream from a paper mill. The isolates belonged to two groups, represented by strains DhA-33 and DhA-35, which were characterized. In the bioreactor, bacteria like DhA-35 were more abundant than those like DhA-33. The population in the bioreactor of organisms capable of growth on DhA was estimated to be 1.1 x 10(6) propagules per ml, based on a most-probable-number determination. Analysis of small-subunit rRNA partial sequences indicated that DhA-33 was most closely related to Sphingomonas yanoikuyae (Sab = 0.875) and that DhA-35 was most closely related to Zoogloea ramigera (Sab = 0.849). Both isolates additionally grew on other abietanes, i.e., abietic and palustric acids, but not on the pimaranes, pimaric and isopimaric acids. For DhA-33 and DhA-35 with DhA as the sole organic substrate, doubling times were 2.7 and 2.2 h, respectively, and growth yields were 0.30 and 0.25 g of protein per g of DhA, respectively. Glucose as a cosubstrate stimulated growth of DhA-33 on DhA and stimulated DhA degradation by the culture. Pyruvate as a cosubstrate did not stimulate growth of DhA-35 on DhA and reduced the specific rate of DhA degradation of the culture. DhA induced DhA and abietic acid degradation activities in both strains, and these activities were heat labile. Cell suspensions of both strains consumed DhA at a rate of 6 mumol mg of protein-1 h-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Effect of metal ions and petrochemicals on bioremediation of chlorpyrifos in aerobic sequencing batch bioreactor (ASBR).

    Science.gov (United States)

    Khalid, Saira; Hashmi, Imran; Jamal Khan, Sher; Qazi, Ishtiaq A; Nasir, Habib

    2016-10-01

    Application of chlorpyrifos (CP) has increased its environmental concentration. Increasing CP concentration has increased chances of adverse health effects. Its removal from environment has attained researcher's attention. CP degrading bacterial strains were isolated from wastewater and agricultural soil. Finally, selected five bacterial strains were identified using 16S rRNA nucleotide sequence analysis as Pseudomonas kilonensis SRK1, Serratia marcescens SRK2, Bacillus pumilus SRK4, Achromobacter xylosoxidans SRK5, and Klebsiella sp. T13. Interaction studies among bacterial strains demonstrated possibility for development of five membered bacterial consortium. Biodegradation potential of bacterial consortium was investigated in the presence of petrochemicals and trace metals. About 98 % CP removal was observed in sequencing batch reactors at inoculum level, 10 %; pH, 7; CP concentration, 400 mgL(-1), and HRT, 48 h. Experimental data has shown an excellent fit to first order growth model. Among all petrochemicals only toluene (in low concentration) has stimulatory effect on biodegradation of CP. Addition of petrochemicals (benzene, toluene, and xylene) in high concentration (100 mg L(-1)) inhibited bacterial activity and decreased CP removal. At low concentration i.e., 1 mg L(-1) of inorganic contaminants (Cu, Hg, and Zn) >96 % degradation was observed. Addition of Cu(II) in low concentration has stimulated CP removal efficiency. Hg(II) in all concentrations has strongly inhibited biodegradation rate except at 1 mgL(-1). In simulated pesticide, wastewater CP removal efficiency decreased to 77.5 %. Outcomes of study showed that both type and concentration of petrochemicals and trace metals influenced biodegradation of CP.

  19. Microbial and hydrodynamic properties of aerobic granules in a sequencing batch reactor treating landfill leachate

    Institute of Scientific and Technical Information of China (English)

    Yan-jie WEI; Min JI; Guo-yi LI; Fei-fei QIN

    2012-01-01

    A sequencing batch reactor (SBR) seeded with activated sludge was established for landfill leachate treatment.Small bio-aggregates began to appear after 40-d operation,and gradually changed to mature aerobic granules,with a mean size of 0.36-0.60 mm.Their sludge volume index at 5 min (SVI5 min),mixed liquor volatile suspended solids (MLVSS),and wet density were around 35 ml/g,3.4 g/L,and 1.062 g/cm3,respectively.The settling velocities of the granules in distilled water ranged from 0.3 to 1.3 cm/s,which were faster than those in landfill leachate with a salt content of 1.4% (w/v),and also slightly faster than those predicted by Stokes' law for porous but impermeable particles.Microbial community evolution during the granulation process and stages under different nitrogen loading rates (NLRs) were monitored and analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE),cloning,and sequencing of 16S ribosomal RNA (rRNA) fragments.Results revealed that some primary and dominant communities in inoculating activated sludge died out gradually; while a few common bacteria,inhabiting soils,municipal wastewater,or activated sludge systems,dominated in the SBR system throughout.In addition,some other dominant species,associated with the aerobic granulation process,were thought to play a significant role in the formation and growth of aerobic granular sludge.During the stable operation time under low NLR,a few species were present in abundance,and may have been responsible for the high organic removal efficiency at this time.

  20. Biodegradation of high concentrations of phenol by baker’s yeast in anaerobic sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Ali Asghar Najafpoor

    2015-06-01

    Full Text Available Background: Phenol, as a pure substance, is used in many fields because of its disinfectant, germicidal, local anesthetic, and peptizing properties. Aqueous solutions of phenol are produced as waste in industries and discharged into the environment. Therefore, elevated concentrations of phenol may be found in air or water because of industrial discharge or the use of phenolic products. Method: The strains of Saccharomyces cerevisiae used in this project were natural strains previously purchased from Razavy company. They were grown at 30°C on Petri plates containing yeast extract glucose (YGC and then purified by being spread onto new plates, and isolated colonies were obtained. These colonies provided the basis of selection. Prepared strains were applied in anaerobic sequencing batch reactors (ASBRs as first seed. The experiment conditions were optimized using response surface methodology (RSM. After the determined runs were performed using Design-Expert software, data were analyzed using mentioned software as well. Results: This study evaluated the capability of baker’s yeast to remove phenol in high concentrations. The tested strains showed excellent tolerance to phenol toxicity at concentrations up to 6100 mg/L. Study of the batch degradation process showed that the phenol removal rate could exceed 99.9% in 24 hours at a concentration of 1000 mg/L. The results showed catechol is the first intermediate product of phenol degradation. In survey results of the Design–Expert software, R2 and Adeq precision were 0.97 and 25.65, respectively. Conclusion: The results demonstrated that ASBR performs robustly under variable influent concentrations of inhibitory compounds. The high removal performance despite the high phenol concentration may be a result of reactor operating strategies. Based on the progressive increase of inlet phenol concentration, allowing for an enhanced biomass acclimation in a short time, results at the microbiological levels

  1. Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Michela eLangone

    2014-02-01

    Full Text Available Elevated nitrogen removal efficiencies from ammonium-rich wastewaters have been demonstrated by several applications, that combine nitritation and anammox processes. Denitrification will occur simultaneously when organic carbon is also present. In this study, the activity of aerobic ammonia oxidizing, anammox and denitrifying bacteria in a full scale Sequencing Batch Reactor, treating digester supernatants, was studied by means of batch-assays. AOB and anammox activities were maximum at pH of 8.0 and 7.8-8.0, rispectively. Short term effect of nitrite on anammox activity was studied, showing nitrite up to 42 mg/L did not result in inhibition. Both denitrification via nitrate and nitrite were measured. To reduce nitrite-oxidizing activity, high of NH3 – N (1.9-10 mg N-NH3/L and low nitrite (3-8 mg TNN/L are required conditions during the whole SBR cycle.Molecular analysis showed the nitritation-anammox sludge harbored a high microbial diversity, where each microorganism has a specific role. Using ammonia monooxygenase α –subunit (amoA gene as a marker, our analyses suggested different macro- and micro-environments in the reactor strongly affect the AOB community, allowing the development of different AOB species, such as N. europaea/eutropha and N. oligotropha groups, which improve the stability of nitritation process. A specific PCR primer set, used to target the 16S rRNA gene of anammox bacteria, confirmed the presence of the Ca. Brocadia fulgida type, able to grow in precence of organic matter and to tolerate high nitrite concentrations. The diversity of denitrifiers was assessed by using dissimilatory nitrite reductase (nirS gene-based analyses, who showed denitifiers were related to different betaproteobacterial genera, such as Thauera, Pseudomonas, Dechloromonas and Aromatoleum, able to assist in forming microbial aggregates. Concerning possible secondary processes, no n-damo bacteria were found while NOB from the genus of Nitrobacter

  2. Nitrogen removal in moving bed sequencing batch reactor using polyurethane foam cubes of various sizes as carrier materials.

    Science.gov (United States)

    Lim, Jun-Wei; Seng, Chye-Eng; Lim, Poh-Eng; Ng, Si-Ling; Sujari, Amat-Ngilmi Ahmad

    2011-11-01

    The performance of moving bed sequencing batch reactors (MBSBRs) added with 8 % (v/v) of polyurethane (PU) foam cubes as carrier media in nitrogen removal was investigated in treating low COD/N wastewater. The results indicate that MBSBR with 8-mL cubes achieved the highest total nitrogen (TN) removal efficiency of 37% during the aeration period, followed by 31%, 24% and 19 % for MBSBRs with 27-, 64- and 125-mL cubes, respectively. The increased TN removal in MBSBRs was mainly due to simultaneous nitrification and denitrification (SND) process which was verified by batch studies. The relatively lower TN removal in MBSBR with larger PU foam cubes was attributed to the observation that larger PU foam cubes were not fully attached by biomass. Higher concentrations of 8-mL PU foam cubes in batch reactors yielded higher TN removal.

  3. Comparative study between chemostat and batch reactors to quantify membrane permeability changes on bacteria exposed to silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Anaya, Nelson M.; Faghihzadeh, Fatemeh [Department of Civil and Environmental Engineering, University of Rhode Island, 1 Lippitt Rd., Bliss Hall 203, Kingston, RI 02881 (United States); Ganji, Nasim; Bothun, Geoff [Department of Chemical Engineering, University of Rhode Island, 16 Greenhouse Rd., Crawford Hall, Kingston, RI 02881 (United States); Oyanedel-Craver, Vinka, E-mail: craver@uri.edu [Department of Civil and Environmental Engineering, University of Rhode Island, 1 Lippitt Rd., Bliss Hall 203, Kingston, RI 02881 (United States)

    2016-09-15

    Continuous and batch reactors were used to assess the effect of the exposure of casein-coated silver nanoparticles (AgNPs) on Escherichia coli (E. coli). Additionally, E. coli membrane extracts, membrane permeability and Langmuir film balance assays were used to determine integrity and changes in lipid composition in response to AgNPs exposure. Results showed that batch conditions were not appropriate for the tests due to the production of exopolymeric substances (EPS) during the growth phase. After 5 h of contact between AgNPs and the used growth media containing EPS, the nanoparticles increased in size from 86 nm to 282 nm reducing the stability and thus limiting cell-nanoparticle interactions. AgNPs reduced E. coli growth by 20% at 1 mg/L, in terms of Optical Density 670 (OD670), while no effect was detected at 15 mg/L. At 50 mg/L of AgNPs was not possible to perform the test due to aggregation and sedimentation of the nanoparticles. Membrane extract assays showed that at 1 mg/L AgNPs had a greater change in area (− 4.4cm{sup 2}) on bacteria compared to 15 mg/L (− 4.0cm{sup 2}). This area increment suggested that membrane disruption caused by AgNPs had a stabilizing/rigidifying effect where the cells responded by shifting their lipid composition to more unsaturated lipids to counteract membrane rigidification. In chemostats, the constant inflow of fresh media and aeration resulted in less AgNPs aggregation, thus increased the AgNPs-bacteria interactions, in comparison to batch conditions. AgNPs at 1 mg/L, 15 mg/L, and 50 mg/L inhibited the growth (OD670 reduction) by 0%, 11% and 16.3%, respectively. Membrane extracts exposed to 1 mg/L, 15 mg/L, and 50 mg/L of AgNPs required greater changes in area by − 0.5 cm{sup 2}, 2.7 cm{sup 2} and 3.6 cm{sup 2}, respectively, indicating that the bacterial membranes were disrupted and bacteria responded by synthesizing lipids that stabilize or strengthen membranes. This study showed that the chemostat is more

  4. Biogas Production from Brewer's Yeast Using an Anaerobic Sequencing Batch Reactor.

    Science.gov (United States)

    Zupančič, Gregor Drago; Panjičko, Mario; Zelić, Bruno

    2017-06-01

    Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer's yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer's yeast is higher than its energy value. Due to the increase of energy prices, brewer's yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer's yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR) seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m(3)·day), and with a maximum achieved organic loading rate of 13.6 kg/(m(3)·day) in a single cycle. A specific biogas productivity of over 0.430 m(3)/kg of the total chemical oxygen demand (COD) inserted, and total COD removal efficiencies of over 90% were achieved. This study suggests that the brewer's yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer's yeast/wastewater mixtures of up to 8% (by volume). By using the brewer's yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50%.

  5. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    Science.gov (United States)

    2017-01-01

    Summary Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy value. Due to the increase of energy prices, brewer’s yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer’s yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR) seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m3·day), and with a maximum achieved organic loading rate of 13.6 kg/(m3·day) in a single cycle. A specific biogas productivity of over 0.430 m3/kg of the total chemical oxygen demand (COD) inserted, and total COD removal efficiencies of over 90% were achieved. This study suggests that the brewer’s yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer’s yeast/wastewater mixtures of up to 8% (by volume). By using the brewer’s yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50%.

  6. Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor (SBAR) at low temperature.

    Science.gov (United States)

    Bao, Ruiling; Yu, Shuili; Shi, Wenxin; Zhang, Xuedong; Wang, Yulan

    2009-09-15

    To understand the effect of low temperature on the formation of aerobic granules and their nutrient removal characteristics, an aerobic granular sequencing batch airlift reactor (SBAR) has been operated at 10 degrees C using a mixed carbon source of glucose and sodium acetate. The results showed that aerobic granules were obtained and that the reactor performed in stable manner under the applied conditions. The granules had a compact structure and a clear out-surface. The average parameters of the granules were: diameter 3.4mm, wet density 1.036 g mL(-1), sludge volume index 37 mL g(-1), and settling velocity 18.6-65.1 cm min(-1). Nitrite accumulation was observed, with a nitrite accumulation rate (NO(2)(-)-N/NO(x)(-)-N) between 35% and 43% at the beginning of the start-up stage. During the stable stage, NO(x) was present at a level below the detection limit. However, when the influent COD concentration was halved (resulting in COD/N a reduction of the COD/N from 20:1 to 10:1) nitrite accumulation was observed once more with an effluent nitrite accumulation rate of 94.8%. Phosphorus release was observed in the static feeding phase and also during the initial 20-30 min of the aerobic phase. Neither the low temperature nor adjustment of the COD/P ratio from 100:1 to 25:1 had any influence on the phosphorus removal efficiency under the operating conditions. In the granular reactor with the influent load rates for COD, NH(4)(+)-N, and PO(4)(3-)-P of 1.2-2.4, 0.112 and 0.012-0.024 kg m(-3)d(-1), the respective removal efficiencies at low temperature were 90.6-95.4%, 72.8-82.1% and 95.8-97.9%.

  7. Biological phosphorus removal in anoxic-aerobic sequencing batch reactor with starch as sole carbon source.

    Science.gov (United States)

    Luo, Dacheng; Yuan, Linjiang; Liu, Lun; Chai, Lu; Wang, Xin

    2017-01-01

    In traditional biological phosphorus removal (BPR), phosphorus release in anaerobic stage is the prerequisite of phosphorus excessive uptake in aerobic conditions. Moreover, when low molecular weight of the organic substance such as volatile fatty acids (VFAs) is scarce in bulk liquid or anaerobic condition does not exist, phosphate accumulating organisms (PAOs) have difficulty removing phosphorus. However, in this work, phosphorus removal in two anoxic-aerobic sequencing batch reactors (SBRs) was observed when starch was supplied as a sole carbon source. The relations of the BPR with idle period were investigated in the two identical SBRs; the idle times were set to 0.5 hr (R1) and 4 hr (R2), respectively. Results of the study showed that, in the two SBRs, phosphorus concentrations of 0.26-3.11 mg/L in effluent were obtained after aeration when phosphorus concentration in influent was about 8 mg/L. Moreover, lower accumulations/transformations of polyhydroxyalkanoates (PHAs) and higher transformation of glycogen occurred in the SBRs, indicating that glycogen was the main energy source that was different from the traditional mechanism of BPR. Under the different idle time, the phosphorus removal was a little different. In R2, which had a longer idle period, phosphorus release was very obvious just as occurs in a anaerobic-aerobic regime, but there was a special phenomenon of chemical oxygen demand increase, while VFAs had no notable change. It is speculated that PAOs can assimilate organic compounds in the mixed liquor, which were generated from glycolysis by fermentative organisms, coupled with phosphorus release. In R1, which had a very short idle period, anaerobic condition did not exist; phosphorus removal rate reached 63%. It is implied that a new metabolic pathway can occur even without anaerobic phosphorus release when starch is supplied as the sole carbon source.

  8. Microbiological and performance evaluation of sequencing batch reactor for textile wastewater treatment.

    Science.gov (United States)

    Ogleni, Nurtac; Arifoglu, Yasemin Damar; Ileri, Recep

    2012-04-01

    This study focused on laboratory-scaled and real-scaled treatment plant performances and microbiological investigations for the optimum treatment of textile industry wastewater performed with sequencing batch reactor (SBR). As a result of experimental studies of laboratory-scaled SBR treatment unit, optimum treatment efficiency was taken from 0.5 h filling to 1.5 h. reaction to 1.5 h. settlement to 0.5 h. discharge-idle periods. Average chemical oxygen demand (COD) removal efficiency of SBR of laboratory-scaled textile industry was 75%, whereas average turbidity and color removal (coloration number [RES, m(-1)] 586 nm) efficiencies were 90% and 75%, respectively. Optimum reaction and settlement periods were used in a real-scaled plant, and plant efficiency was examined for parameters such as COD, phenol, pH, mixed liquor suspended solids (MLSS) and sludge volume index (SVI). In this study, optimum reaction and settlement periods for treatment of textile industry wastewater were determined within a SBR in a laboratory-scaled plant. These reaction and settlement periods were verified with the measurement of COD, color, and turbidity parameters. Floc structure and protozoa-metazoa species of activated sludge in a SBR were also determined. Optimum reaction and settlement times were used in a real-scaled plant, and plant efficiency was examined for COD, Phenol, pH, MLSS, and SVI parameters. The corresponding values were found as appropriate, acceptable, and meaningful because of variance value of statistical analysis. Protozoa and metazoan in the activated sludge in the laboratory-scaled plant were investigated. Peranema sp., Epistylis sp., Didinium sp., Chilodonella sp., Opercularia sp., Vorticella sp. as protozoa species and Habrotrocha sp., Philodina sp. as metazoa species were determined.

  9. Simultaneous biodegradation of nitrogen-containing aromatic compounds in a sequencing batch bioreactor

    Institute of Scientific and Technical Information of China (English)

    LIU Xing-yu; WANG Bao-jun; JIANG Cheng-ying; ZHAO Ke-xin; Harold L.Drake; LIU Shuang-Jiang

    2007-01-01

    Many nitrogen-containing aromatic compounds (NACs), such as nitrobenzene (NB), 4-nitrophenol (4-NP), aniline (AN), and 2,4-dinitrophenol (2,4-DNP), are environmentally hazardous, and their removal from contaminated water is one of the main challenges facing wastewater treatment plants. In this study, synthetic wastewater containing NB, 4-NP, 2,4-DNP, and AN at concentrations ranging from 50 to 180 mg/L was fed into a sequencing batch reactor (SBR). Analyses of the SBR system indicated that it simultaneously removed more than 99% of the NACs at loading rates of 0.36 kg NB/(m3·d), 0.3 kg 4-NP/(m3·d), 0.25 kg AN/(m3·d), and 0.1 kg 2,4-DNP/(m3·d). Bacterial groups of Bacteriodetes, Candidate division TM7, α-Proteobacteria, and β-Proteobacteria were dominant in the clone libraries of 16S rRNA genes retrieved from the microbial communities in the SBR system. "Cycle tests" designed to alter feeding and aeration parameters of the SBR system demonstrated that the resident microbial biome of the SBR system responded rapidly to changing conditions. Consumption of O2 was concomitant with the apparent mineralization of NACs. Aromatic ring-cleaving dioxygenase activities suggested that (1) AN and NB were degraded via catechol 2,3-dioxygenase; (2) 4-NP was degraded via 1,2,4-benzentriol 1,2-dioxygenase; and (3) 2,4-DNP was degraded via an unresolved pathway.

  10. Treatment of phenolic wastewater using agricultural wastes as an adsorbent in a sequencing batch reactor.

    Science.gov (United States)

    Lee, K M; Lim, P E

    2003-01-01

    The objective of this study is to investigate the potential of the activated rice husk to be used as an alternative adsorbent to powdered activated carbon (PAC) in the simultaneous adsorption and biodegradation processes under sequencing batch reactor (SBR) operation to treat synthetic wastewater containing phenol, p-methylphenol, p-ethylphenol and p-isopropylphenol. The rice husk (PRH) was activated by pyrolysis at 600 degrees C for 5 hours in a nitrogen atmosphere. Using the Langmuir model, the limiting adsorption capacities of PRH for the phenols were found to vary from 0.015-0.05 of those of PAC. The SBR reactors with and without adsorbent addition were operated with fill, react, settle, draw and idle periods in the ratio of 4:6:1:0.76:0.25 for a cycle time of 12 hours. For phenolic wastewater containing, 1,200 mg/L phenol, 1,200 mg/L p-methylphenol, 800 mg/L p-ethylphenol and 660 mg/L p-isopropylphenol, it was found that the biodegradation process alone was unable to produce effluent of quality which would satisfy the discharge standards of COD < or = 100 mg/L and phenol concentration < or = 1 mg/L. The addition of PAC in the ratio of PAC/phenolic compound at 0.095 g/g for phenol, 0.119 g/g for p-methylpheol, 0.179 g/g for p-ethylphenol and 0.220 g/g for p-isopropylphenol, can improve the effluent quality to satisfy the discharge standards. Equivalent treatment performance was achieved with the use of PRH at dosages of 2-3 times higher than those of PAC for all the phenolic wastewater studied. The increased adsorption capacity of PRH shown in the treatment indicates bioregeneration of the adsorbed surface during the treatment process.

  11. Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin.

    Science.gov (United States)

    Amorim, Catarina L; Maia, Alexandra S; Mesquita, Raquel B R; Rangel, António O S S; van Loosdrecht, Mark C M; Tiritan, Maria Elizabeth; Castro, Paula M L

    2014-03-01

    A granular sludge sequencing batch reactor (SBR) was operated for 340 days for treating a synthetic wastewater containing fluoroquinolones (FQs), namely ofloxacin, norfloxacin and ciprofloxacin. The SBR was intermittently fed with FQs, at concentrations of 9 and 32 μM. No evidence of FQ biodegradation was observed but the pharmaceutical compounds adsorbed to the aerobic granular sludge, being gradually released into the medium in successive cycles after stopping the FQ feeding. Overall COD removal was not affected during the shock loadings. Activity of ammonia oxidizing bacteria and nitrite oxidizing bacteria did not seem to be inhibited by the presence of FQs (maximum of 0.03 and 0.01 mM for ammonium and nitrite in the effluent, respectively). However, during the FQs feeding, nitrate accumulation up to 1.7 mM was observed at the effluent suggesting that denitrification was inhibited. The activity of phosphate accumulating organisms was affected, as indicated by the decrease of P removal capacity during the aerobic phase. Exposure to the FQs also promoted disintegration of the granules leading to an increase of the effluent solid content, nevertheless the solid content at the bioreactor effluent returned to normal levels within ca. 1 month after removing the FQs in the feed allowing recovery of the bedvolume. Denaturing gradient gel electrophoresis revealed a dynamic bacterial community with gradual changes due to FQs exposure. Bacterial isolates retrieved from the granules predominantly belonged to α- and γ-branch of the Proteobacteria phylum. The capacity of the system to return to its initial conditions after withdrawal of the FQ compounds in the inlet stream, reinforced its robustness to deal with wastewaters containing organic pollutants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Simultaneous removal of nitrogen and phosphorus from swine wastewater in a sequencing batch biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    Reti Hai; Yiqun He; Xiaohui Wang; Yuan Li

    2015-01-01

    In this study, the performance of a sequencing batch biofilm reactor (SBBR) for removal of nitrogen and phosphorus from swine wastewater was evaluated. The replacement rate of wastewater was set at 12.5%throughout the exper-iment. The anaerobic and aerobic times were 3 h and 7 h, respectively, and the dissolved oxygen concentration of the aerobic phase was about 3.95 mg·L−1. The SBBR process demonstrated good performance in treating swine wastewater. The percentage removal of total chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) was 98.2%, 95.7%, 95.6%, and 96.2%at effluent concentrations of COD 85.6 mg·L−1, NH4+-N 35.22 mg·L−1, TN 44.64 mg·L−1, and TP 1.13 mg·L−1, respectively. Simultaneous nitrification and denitrification phenomenon was observed. Further improvement in removal efficiency of NH4+-N and TN occurred at COD/TN ratio of 11:1, with effluent concentrations at NH4+-N 18.5 mg·L−1 and TN 34 mg·L−1, while no such improvement in COD and TP removal was found. Microbial electron microscopy analysis showed that the fil er surface was covered with a thick biofilm, forming an anaerobic–aerobic microenvironment and facilitating the removal of nitrogen, phosphorus and organic matters. A long-term experiment (15 weeks) showed that stable removal efficiency for N and P could be achieved in the SBBR system.

  13. Effect of different carbon sources on the biological phosphorus removal by a sequencing batch reactor using pressurized pure oxygen

    OpenAIRE

    Wei,Jie; IMAI, Tsuyoshi; Higuchi, Takaya; Arfarita, Novi; Yamamoto, Koichi; Sekine, Masahiko; Kanno, Ariyo

    2014-01-01

    The effect of different carbon source on the efficiency of enhanced biological phosphorus removal (EBPR) from synthetic wastewater with acetate and two ratios of acetate/starch as a carbon source was investigated. Three pressurized pure oxygen sequencing batch reactor (POSBR) experiments were operated. The reactors (POSBR1, POSBR2 and POSBR3) were developed and studied at different carbon source ratios of 100% acetate, 75% acetate plus 25% starch and 50% acetate plus 50% starch, respectively....

  14. Biodegradation of 4-nitrophenol in a two-phase sequencing batch reactor: concept demonstration, kinetics and modelling.

    Science.gov (United States)

    Tomei, M Concetta; Annesini, M Cristina; Rita, Sara; Daugulis, Andrew J

    2008-10-01

    The objectives of this work were to demonstrate the potential of a two-phase sequencing batch reactor in degrading xenobiotics and to evaluate the kinetic parameters leading to a mathematical model of the system. 4-Nitrophenol (4NP), a typical representative of substituted phenols, was selected as the target xenobiotic; this compound has never been remediated in a two-phase bioreactor before. Partition tests were conducted to determine the most appropriate partitioning solvent, and among the three investigated solvents (1-undecanol, 2-undecanone and oleyl alcohol), 2-undecanone was chosen because of its favourable partition coefficient and its negligible emulsion-forming tendencies. Moreover, the selected solvent showed satisfactory biocompatibility characteristics with respect to the biomass, with only minor effects on the intrinsic microbial kinetics. Kinetic tests were then performed in a sequencing batch reactor (2-l volume) operated in both conventional one- and two-phase configurations, with the two-phase system showing a significant improvement in the process kinetics in terms of reduced inhibition and increased maximum removal rate. The obtained kinetic parameters suggest that the two-phase sequencing batch system may find full-scale application, as the maximum removal rate k(max) (approximately 3 mg 4NP mgVSS(-1) day(-1)) is of the same order of magnitude of heterotrophic bacteria operating in wastewater treatment plants.

  15. Optimization of culture conditions for biological hydrogen production by Citrobacter freundii CWBI952 in batch, sequenced-batch and semicontinuous operating mode

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Christopher; Hiligsmann, Serge; Beckers, Laurent; Masset, Julien; Thonart, Philippe [Walloon Centre of Industrial Biology, Bd du Rectorat, 29, B.40 - P.70, B-4000 Liege (Belgium); Wilmotte, Annick [Center for Protein Engineering, Institute of Chemistry, B.6-P.14, B-4000 Liege (Belgium)

    2010-02-15

    Investigations were carried out to determine the effect of the pH, the nitrogen source, iron and the dilution rate (h{sup -1}) on fermentative hydrogen production from glucose by the newly isolated strain Citrobacter freundii CWBI952. The hydrogen production rate (HPR), hydrogen yield, biomass and soluble metabolites were monitored at 30 C in 100 mL serum bottles and in a 2.3 L bioreactor operated in batch, sequenced-batch and semicontinuous mode. The results indicate that hydrogen production activity, formate biosynthesis and glucose intake rates are very sensitive to the culture pH, and that additional formate bioconversion and production of hydrogen with lower biomass yields can be obtained at pH 5.9. In a further series of cultures casein peptone was replaced by (NH{sub 4}){sub 2}SO{sub 4}, a low cost alternative nitrogen source. The ammonia-based substitute was found to be suitable for H{sub 2} production when a concentration of 0.045 g/L FeSO{sub 4} was provided. Optimal overall performances (ca. an HPR of 33.2 mL H{sub 2}/L h and a yield of 0.83mol{sub H{sub 2}}/mol{sub glucose}) were obtained in the semicontinuous culture applying the previously optimized parameters for pH, nitrogen, and iron with a dilution rate of 0.012 h{sup -1} and degassing of biogas by N{sub 2} at a 28 mL/min flow rate. (author)

  16. Effect of Membrane Type for the Treatment of Organized Industrial Zone (OIZ Wastewater with a Membrane Bioreactor (MBR: Batch Experiments

    Directory of Open Access Journals (Sweden)

    Oktay Özkan

    2017-08-01

    Full Text Available Organized industrial zone (OIZ wastewater is a mixed wastewater that is contributed by both municipal use and from different industrial sectors. Since MBR has advantages over conventional treatment plants, membrane types and fouling become the most important parameters in the treatment of this kind of wastewater. In this study, six different membrane types were used to find the most suitable membrane with the least resistivity to fouling. Three different microfiltration (MF and ultrafiltration (UF membranes were operated to estimate their (i membrane, (ii cake, (iii pore, and (iv total resistances. The highest total resistance was observed in a polyethersulfone (PES membrane (3.8 × 1010 m−1, while the lowest one was a UF polyvinylidene fluoride (PVDF membrane with approximately 20 times lower resistance than the highest one. PVDF membranes showed lower total resistances than PES membranes. An MF or a 250 kDa UF membrane could be operated long-term in a membrane bioreactor with the least fouling potential.

  17. MODELING OF MIXED LIQUOR VOLATILE SUSPENDED SOLIDS AND PERFORMANCE EVALUATION FOR A SEQUENCING BATCH REACTOR

    Directory of Open Access Journals (Sweden)

    S.A. Mirbagheri

    2015-01-01

    Full Text Available This study examined carbon, nitrogen and phosphorous removal from municipal wastewater in a sequencing batch reactor and biokinetic coefficients were evaluated according to results of BOD and COD. Furthermore, the MLVSS in the aeration reactor was modeled by using multilayer perceptron and radial basis function artificial neural networks (MLPANN and RBFANN. The experiments were performed so that the cell retention time, filling time and intensity of aeration were (5, 10 and 15 d, (1, 2 and 3 h and (weak, medium and strong respectively. The result indicated that with cell retention time of 15 d, filling time of 1 h, aeration time of 6 h and settling time of 3 h the HRT is optimized at 10 h. The BOD5, COD, TP, TN and NH4  N removal efficiencies were 97.13%, 94.58%, 94.27%, 89.7% and 92.75% respectively. The yield coefficient (Y, decay coefficient (Kd, maximum specific growth rate (K and saturation constant (Ks were 6.22 mgVSS/mgCOD, 0.002 1/d, 0.029 1/d and 20 mg COD/L according to COD experimental data. The values of the biokinetic coefficients were found to be as follows: Y = 10.45 mgVSS/mgBOD, Kd = 0.01 1/d, 0.014 1/d and 3.38 mgBOD/L according to BOD5 experimental data. The training procedures for simulation of MLVSS were highly collaborated for both RBFANN and MLPANN. The train and test models for both MLPANN and RBFANN demonstrated perfectly matched results between the experimental and the simulated values of MLVSS. The values of RMSE for train and test (verification models obtained by MLPANN were 31.82 and 40.25 mg/L respectively, and the value of R2 was 0.99 for both models. The values of RMSE for train and test models obtained by RBFANN were 69.04 and 43.87 mg/L respectively, and the value of R2 was 0.99 for both models. It was observed that the MLPANN has stronger approximation and generalization ability than the RBFANN with regard to our experimental data for MLVSS.

  18. Successful hydraulic strategies to start up OLAND sequencing batch reactors at lab scale

    Science.gov (United States)

    Schaubroeck, Thomas; Bagchi, Samik; De Clippeleir, Haydée; Carballa, Marta; Verstraete, Willy; Vlaeminck, Siegfried E.

    2012-01-01

    Summary Oxygen‐limited autotrophic nitrification/denitrification (OLAND) is a one‐stage combination of partial nitritation and anammox, which can have a challenging process start‐up. In this study, start‐up strategies were tested for sequencing batch reactors (SBR), varying hydraulic parameters, i.e. volumetric exchange ratio (VER) and feeding regime, and salinity. Two sequential tests with two parallel SBR were performed, and stable removal rates > 0.4 g N l−1 day−1 with minimal nitrite and nitrate accumulation were considered a successful start‐up. SBR A and B were operated at 50% VER with 3 g NaCl l−1 in the influent, and the influent was fed over 8% and 82% of the cycle time respectively. SBR B started up in 24 days, but SBR A achieved no start‐up in 39 days. SBR C and D were fed over 65% of the cycle time at 25% VER, and salt was added only to the influent of SBR D (5 g NaCl l−1). Start‐up of both SBR C and D was successful in 9 and 32 days respectively. Reactor D developed a higher proportion of small aggregates (0.10–0.25 mm), with a high nitritation to anammox rate ratio, likely the cause of the observed nitrite accumulation. The latter was overcome by temporarily including an anoxic period at the end of the reaction phase. All systems achieved granulation and similar biomass‐specific nitrogen removal rates (141–220 mg N g−1 VSS day−1). FISH revealed a close juxtapositioning of aerobic and anoxic ammonium‐oxidizing bacteria (AerAOB and AnAOB), also in small aggregates. DGGE showed that AerAOB communities had a lower evenness than Planctomycetes communities. A higher richness of the latter seemed to be correlated with better reactor performance. Overall, the fast start‐up of SBR B, C and D suggests that stable hydraulic conditions are beneficial for OLAND while increased salinity at the tested levels is not needed for good reactor performance. PMID:22236147

  19. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    Science.gov (United States)

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs).

  20. Fermentative hydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor

    Science.gov (United States)

    Wu, Xiao

    2009-12-01

    The idea of coupling renewable energy production and agricultural waste management inspired this thesis. The production of an important future fuel---hydrogen gas---from high strength waste stream-liquid swine manure---using anaerobic treatment processes makes the most sustainable sense for both wastewater utilization and energy generation. The objectives of this thesis were to develop a fermentation process for converting liquid swine manure to hydrogen and to maximize hydrogen productivity. Anaerobic sequencing batch reactor (ASBR) systems were constructed to carry out this fermentation process, and seed sludge obtained from a dairy manure anaerobic digester and pretreated by nutrient acclimation, heat and pH treatment was used as inoculum. High system stability was indicated by a short startup period of 12 days followed by stable hydrogen production, and successful sludge granulation occurred within 23 days of startup at a hydraulic retention time (HRT) of 24 hours. Operation at a progressively decreasing HRT from 24 to 8h gave rise to an increasing biogas production rate from 15.2-34.4L/d, while good linear relationships were observed between both total biogas and hydrogen production rates correlated to HRT, with R2 values of 0.993 and 0.997, respectively. The maximum hydrogen yield of 1.63 mol-H 2/mol-hexose-feed occurred at HRT of 16h, while the HRT of 12h was highly suggested to achieve both high production rate and efficient yield. Hexose utilization efficiencies over 98%, considerable hydrogen production rate up to 14.3 L/d and hydrogen percentage of off-gas up to 43% (i.e., a CO 2/H2 ratio of 1.2) with the absence of CH4 production throughout the whole course of experiment at a pH of 5.0 strongly validated the feasibility of the fermentative H2 production from liquid swine manure using an ASBR system. Ethanol as well as acetic, butyric and valeric acids were produced in the system accompanying the hydrogen production, with acetic acid being the dominant

  1. Batch sequencing of oil derivates in pipeline networks; Sequenciamento de bateladas de derivados leves de petroleo numa rede dutoviaria

    Energy Technology Data Exchange (ETDEWEB)

    Bonacin, Mario Vicente; Oliveira, Daniel Rossato de; Czaikowski, Daniel Irineu; Polli, Helton Luis; Magatao, Leandro; Stebel, Sergio Leandro; Neves Junior, Flavio [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Ribas, Paulo Cesar [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    This work presents a computational tool to assist the operational scheduling of a pipeline network. In this network, transfer of products is carried out by batches, from a source to a destination. This tool implements a proposal to determine priorities of the outgoing batches as well as alternatives for sequencing them fulfilling the stated periods stipulated. This proposal uses an analysis of production and demand plans, stockage, products draining in terminals, as well as operational restrictions of the pipeline network, looking for optimizing the use of resources such as pipes, bombs and tanks. The scenario in study is composed by 14 areas (4 refineries, 2 harbours, 6 distribution centres and 2 costumers) and 29 pipes. Prioritizing the attendance to the areas of source or demand, the algorithm carries choices between routes and possible batches volumes, considering calculations of time windows, that determine the limited interval when transference operations must occur. Moreover, operations called 'lung' are also treated, which involve flow changes during the movement. (author)

  2. COMBINING A SEQUENCING BATCH REACTOR WITH HETEROGENEOUS PHOTOCATALYSIS (TiO2/UV FOR TREATING A PENCIL MANUFACTURER'S WASTEWATER

    Directory of Open Access Journals (Sweden)

    R. N. Padovan

    2015-03-01

    Full Text Available Abstract A Sequencing Batch Reactor (SBR was combined with heterogeneous photocatalysis (TiO2/UV as a tertiary treatment for a pencil manufacturer's wastewater. The SBR removed almost all Chemical Oxygen Demand (COD from the wastewater, although color was barely removed. Photocatalysis was optimized using a factorial design. Final COD, Dissolved Organic Carbon (DOC, and color removals were 95%, 80%, and 93%, respectively. Treated wastewater showed no ecotoxicity towards Lactuca sativa. Color removal kinetics (photocatalysis followed a pseudo-first order model. The SBR + AOP (Advanced Oxidation Process, TiO2/UV combination was a feasibility choice for removing both COD and color from this wastewater.

  3. Nitrile bioconversion by Microbacterium imperiale CBS 498-74 resting cells in batch and ultrafiltration membrane bioreactors.

    Science.gov (United States)

    Cantarella, M; Cantarella, L; Gallifuoco, A; Spera, A

    2006-03-01

    The biohydration of acrylonitrile, propionitrile and benzonitrile catalysed by the NHase activity contained in resting cells of Microbacterium imperiale CBS 498-74 was operated at 5, 10 and 20 degrees C in laboratory-scale batch and membrane bioreactors. The bioreactions were conducted in buffered medium (50 mM Na(2)HPO(4)/NaH(2)PO(4), pH 7.0) in the presence of distilled water or tap-water, to simulate a possible end-pipe biotreatment process. The integral bioreactor performances were studied with a cell loading (dry cell weight; DCW) varying from 0.1 mg(DCW) per reactor to 16 mg(DCW) per reactor, in order to realize near 100% bioconversion of acrylonitrile, propionitrile and benzonitrile without consistent loss of NHase activity.

  4. The Study Effect of Fill and React Period Change on the Performance of the Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Azwar Azwar

    2009-06-01

    Full Text Available The operation of the sequencing batch reactor (SBR can be optimized by controlling the dissolved oxygen concentration, the dosage of external carbon, nitrification and denitrification, and the phase length of aeration (fills and react period. In this work, the analyses and tested with open loop identification the effect of fill and react period change on the performance of the SBR were studied. The process dynamic has been tested to determine the effect of Fill (tf and React (trperiod changes on soluble substrate (Ss, soluble intermediate product (Ps, inert substrate (Si, particulate organics concentration (Xs, active biomass concentration (Xa, inert biomass concentration (Xi, the total biomass concentration (Xto and the effluent chemical oxygen demand (COD concentration in the SBR. In all simulations the total Fill and React time were set at 6 h, with the Fill time varied at 0.5 h, 1 h, 1.5 h, 2 h, 2.5 h, 3 h, and the corresponding react time set at 5.5 h, 5 h, 4.5 h, 4 h, 3.5 h, and 3 h, respectively. Keywords: fill time and reaction time, sequencing batch reactor, wastewater treatment

  5. Treatment of anaerobic digester effluents of nylon wastewater through chemical precipitation and a sequencing batch reactor process.

    Science.gov (United States)

    Huang, Haiming; Song, Qianwu; Wang, Wenjun; Wu, Shaowei; Dai, Jiankun

    2012-06-30

    Chemical precipitation, in combination with a sequencing batch reactor (SBR) process, was employed to remove pollutants from anaerobic digester effluents of nylon wastewater. The effects of the chemicals along with various Mg:N:P ratios on the chemical precipitation (struvite precipitation) were investigated. When brucite and H(3)PO(4) were applied at an Mg:N:P molar ratio of 3:1:1, an ammonia-removal rate of 81% was achieved, which was slightly more than that (80%) obtained with MgSO(4)·7H(2)O and Na(2)HPO(4)·12H(2)O at Mg:N:P molar ratios greater than the stoichiometric ratio. To further reduce the ammonia loads of the successive biotreatment, an overdose of phosphate with brucite and H(3)PO(4) was applied during chemical precipitation. The ammonia-removal rate at the Mg:N:P molar ratio of 3.5:1:1.05 reached 88%, with a residual PO(4)-P concentration of 16 mg/L. The economic analysis showed that the chemical cost of chemical precipitation could be reduced by about 41% when brucite and H(3)PO(4) were used instead of MgSO(4)·7H(2)O and Na(2)HPO(4)·12H(2)O. The subsequent biological process that used a sequencing batch reactor showed high removal rates of contaminants. The quality of the final effluent met the requisite effluent-discharging standards.

  6. A study on the use of the BioBall® as a biofilm carrier in a sequencing batch reactor.

    Science.gov (United States)

    Masłoń, Adam; Tomaszek, Janusz A

    2015-11-01

    Described in this study are experiments conducted to evaluate the removal of organics and nutrients from synthetic wastewater by a moving bed sequencing batch biofilm reactor using BioBall® carriers as biofilm media. The work involving a 15L-laboratory scale MBSBBR (moving bed sequencing batch biofilm reactor) model showed that the wastewater treatment system was based on biochemical processes taking place with activated sludge and biofilm microorganisms developing on the surface of the BioBall® carriers. Classical nitrification and denitrification and the typical enhanced biological phosphorus removal process were achieved in the reactor analyzed, which operated with a volumetric organic loading of 0.84-0.978gCODL(-1)d(-1). The average removal efficiencies for COD, total nitrogen and total phosphorus were found to be 97.7±0.5%, 87.8±2.6% and 94.3±1.3%, respectively. Nitrification efficiency reached levels in the range 96.5-99.7%.

  7. Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode.

    Science.gov (United States)

    Nam, Joo-Youn; Kim, Dong-Hoon; Kim, Sang-Hyoun; Lee, Wontae; Shin, Hang-Sik; Kim, Hyun-Woo

    2016-04-01

    Food waste and sewage sludge are the most abundant and problematic organic wastes in any society. Mixture of these two wastes may provide appropriate substrate condition for dark fermentative biohydrogen production based on synergistic mutual benefits. This work evaluates continuous hydrogen production from the cosubstrate of food waste and sewage sludge to verify mechanisms of performance improvement in anaerobic sequencing batch reactors. Volatile solid concentration and mixing ratio of food waste and sludge were adjusted to 5 % and 80:20, respectively. Five different hydraulic retention times (HRT) of 36, 42, 48, 72, and 108 h were tested using anaerobic sequencing batch reactors to find out optimal operating condition. Results show that the best performance was achieved at HRT 72 h, where the hydrogen yield, the hydrogen production rate, and hydrogen content were 62.0 mL H2/g VS, 1.0 L H2/L/day, and ~50 %, respectively. Sufficient solid retention time (143 h) and proper loading rate (8.2 g COD/L/day as carbohydrate) at HRT 72h led to the enhanced performance with better hydrogen production showing appropriate n-butyrate/acetate (B/A) ratio of 2.6. Analytical result of terminal-restriction fragment length polymorphism revealed that specific peaks associated with Clostridium sp. and Bacillus sp. were strongly related to enhanced hydrogen production from the cosubstrate of food waste and sewage sludge.

  8. Batch By Batch Longitudinal Emittance Blowup MD

    CERN Document Server

    Mastoridis, T; Butterworth, A; Jaussi, M; Molendijk, J

    2012-01-01

    The transverse bunch emittance increases significantly at 450 GeV from the time of injection till the ramp due to IBS. By selectively blowing up the longitudinal emittance of the incoming batch at each injection, it should be possible to reduce the transverse emittance growth rates due to IBS. An MD was conducted on April 22nd 2012 to test the feasibility and performance of the batch-by-batch longitudinal emittance blowup. There were three main goals during the MD. First, to test the developed hardware, firmware, and software for the batch-by-batch blowup. Then, to measure the transverse emittance growth rates of blown-up and "witness" batches to quantify any improvement, and finally to test the ALLInjectSequencer class, which deals with the complicated gymnastics of introducing or masking the new batch to various RF loops.

  9. Lignin removal from paper mill wastewaters in sequencing batch reactors (SBR) by adsorption to the sludge; Entfernung von Lignin aus Papierfabrikabwaessern in Sequencing-Batch-Reaktoren (SBR) durch Schlamm-Adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Schiegl, C.; Kriebitzsch, K.; Helmreich, B.; Wilderer, P.A. [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl und Pruefamt fuer Wasserguete- und Abfallwirtschaft

    1997-11-01

    Lignin is known to be poorly biodegradable. During the mechanical pulp lignin gets dissolved in the water because of high temperatures and pressures. By biological treatment of mechanical pulp wastewater the amount of lignin is decreased. Experiments about lignin adsorption were carried out in a lab scale batch-test with different sludge ages to clarify whether lignin is removed from the waste water by biodegradation or by adsorption to the activated sludge. By carrying out pyrolysis-gas chromatography/mass spectrometry (pyGC/MS) the amount of lignin was quantified for the different sludges. Up to 30 weight percent of lignin could be adsorbed to the activated sludge which proves the excellent adsorption properties of the activated sludge. The adsorbed quantity of lignin depends on the sludge age which results in a higher adsorptive capacity of the sludge at lower sludge ages than at higher ones. A total removal of the lignin from the wastewater could be reached if there was a satisfying high content of sludge for total lignin adsorption or a relatively low amount of lignin in the influent. (orig.) [Deutsch] Lignin gilt als biologisch schwerabbaubar. Beim Holzschliffprozess wird aufgrund der hohen Temperaturen und Druecke Lignin im Wasser geloest. Durch die biologische Reinigung von Holzschliffabwasser in Sequencing-Batch Reaktoren (SBR) kann die Menge an geloestem Lignin reduziert werden. Um zu klaeren, ob Lignin biologisch metabolisiert wird oder aber lediglich durch Adsorption an Schlamm aus dem Abwasser entfernt wird, werden Batch-Versuche zur Adsorption des Lignin im Labormassstab mit verschiedenen Schlammaltern durchgefuehrt. Mit Hilfe der Pyrolyse-Gaschromatographie/Massenspektrometrie (pyGC/MS) wird der Lingingehalt der einzelnen Schlaemme quantifiziert. Der Belebtschlamm erweist sich dabei als hervorragendes Adsorbermaterial, an dem sich Lignin mit bis zu 30 Gewichtsprozent adsorbieren laesst. Die Adsorptionskapazitaet der einzelnen Schlaemme sinkt mit

  10. ANAEROBIC-AEROBIC TREATMENT OF TEXTILE WASTEWATER IN A SEQUENCING BATCH REACTOR

    Directory of Open Access Journals (Sweden)

    IBTISSAM KANBOUCHI

    2014-04-01

    Full Text Available In this work, the treatment of synthetic textile wastewater using sequential batch reactor (SBR was studied. This in order to predict the effectiveness of biological treatment on wastewater containing dyes while minimizing the aeration cost. Laboratory tests were performed on synthetic wastewater containing filtered urban wastewater (source of bacteria and dyes solutions. This promotes the biomass development in the mixture, capable of degrading organic matter properly. The results indicate that the increasing of anaerobic phase (16 hours allows removal of 77 % and 80 % of COD and colour, respectively. The sludge age did not affect markedly dyes biodegradability. However, the biodegradability is strongly influenced by the dyes concentration. Indeed, for the lowest dyes contents, improved biodegradability was observed, while it decreases when the dyes concentration increases.

  11. Long-term effects of nickel oxide nanoparticles on performance, microbial enzymatic activity, and microbial community of a sequencing batch reactor.

    Science.gov (United States)

    Wang, Sen; Li, Zhiwei; Gao, Mengchun; She, Zonglian; Guo, Liang; Zheng, Dong; Zhao, Yangguo; Ma, Bingrui; Gao, Feng; Wang, Xuejiao

    2017-02-01

    The nitrogen and phosphorus removal, microbial enzymatic activity, and microbial community of a sequencing batch reactor (SBR) were evaluated under long-term exposure to nickel oxide nanoparticles (NiO NPs). High NiO NP concentration (over 5 mg L(-1)) affected the removal of chemical oxygen demand, nitrogen, and phosphorus. The presence of NiO NP inhibited the microbial enzymatic activities and reduced the nitrogen and phosphorus removal rates of activated sludge. The microbial enzymatic activities of the activated sludge showed a similar variation trend to the nitrogen and phosphorus removal rates with the increase in NiO NP concentration from 0 to 60 mg L(-1). The Ni content in the effluent and activated sludge showed an increasing trend with the increase in NiO NP concentration. Some NiO NPs were absorbed on the sludge surface or penetrate the cell membrane into the interior of microbial cells in the activated sludge. NiO NP facilitated the increase in reactive oxygen species by disturbing the balance between the oxidation and anti-oxidation processes, and the variation in lactate dehydrogenase demonstrated that NiO NP could destroy the cytomembrane and cause variations in the microbial morphology and physiological function. High-throughput sequencing demonstrated that the microbial community of SBR had some obvious changes at 0-60 mg L(-1) NiO NPs at the phyla, class and genus levels.

  12. Simultaneous 4-chlorophenol and nitrogen removal in moving bed sequencing batch reactors packed with polyurethane foam cubes of various sizes.

    Science.gov (United States)

    Lim, Jun-Wei; Lim, Poh-Eng; Seng, Chye-Eng; Adnan, Rohana

    2013-02-01

    Moving bed sequencing batch reactors (MBSBRs) packed with 8% (v/v) of 8-, 27- and 64-mL polyurethane (PU) foam cubes, respectively, were investigated for simultaneous 4-chlorophenol (4-CP) and nitrogen removal at increasing 4-CP concentration. When the 4-CP concentration exceeded 300 mg L(-1), the MBSBR with 27-mL foam cubes was observed to outperform the other MBSBRs in removing 4-CP and nitrogen. The reasons were: (1) there were more biomass in inner layer of the 27-mL cubes, compared to that of the 8-mL cubes, which was more shielded from the inhibitory effect of 4-CP and (2) the 27-mL cubes were more mobile than the 64-mL cubes. Although increasing 4-CP concentration to 600 mg L(-1) resulted in incomplete removal of 4-CP in the MBSBRs, results of the batch reactor with 27-mL foam cubes showed that complete 4-CP removal within the REACT period could be achieved by increasing the packing volume to 20%.

  13. Treatment of agro based industrial wastewater in sequencing batch reactor: performance evaluation and growth kinetics of aerobic biomass.

    Science.gov (United States)

    Lim, J X; Vadivelu, V M

    2014-12-15

    A sequencing batch reactor (SBR) with a working volume of 8 L and an exchange ratio of 25% was used to enrich biomass for the treatment of the anaerobically treated low pH palm oil mill effluent (POME). The influent concentration was stepwise increased from 5000 ± 500 mg COD/L to 11,500 ± 500 mg COD/L. The performance of the reactor was monitored at different organic loading rates (OLRs). It was found that approximately 90% of the COD content of the POME wastewater was successfully removed regardless of the OLR applied to the SBR. Cycle studies of the SBR show that the oxygen uptake by the biomass while there is no COD reduction may be due to the oxidation of the storage product by the biomass. Further, the growth kinetic parameters of the biomass were determined in batch experiments using respirometer. The maximum specific growth rate (μmax) was estimated to be 1.143 day(-1) while the half saturation constant (Ks) with respect to COD was determined to be 0.429 g COD/L. The decay coefficient (bD) and biomass yield (Y) were found to be 0.131 day(-1) and 0.272 mg biomass/mg COD consumed, respectively.

  14. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)—Effect of gamma irradiation

    Science.gov (United States)

    Bural, Cavit B.; Demirer, Goksel N.; Kantoglu, Omer; Dilek, Filiz B.

    2010-04-01

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD 5/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm -3. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm -3. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  15. A comparison of anaerobic 2, 4-dichlorophenoxy acetic acid degradation in single-fed and sequencing batch reactor systems

    Science.gov (United States)

    Elefsiniotis, P.; Wareham, D. G.; Fongsatitukul, P.

    2017-08-01

    This paper compares the practical limits of 2, 4-dichlorophenoxy acetic acid (2,4-D) degradation that can be obtained in two laboratory-scale anaerobic digestion systems; namely, a sequencing batch reactor (SBR) and a single-fed batch reactor (SFBR) system. The comparison involved synthesizing a decade of research conducted by the lead author and drawing summative conclusions about the ability of each system to accommodate industrial-strength concentrations of 2,4-D. In the main, 2 L liquid volume anaerobic SBRs were used with glucose as a supplemental carbon source for both acid-phase and two-phase conditions. Volatile fatty acids however were used as a supplemental carbon source for the methanogenic SBRs. The anaerobic SBRs were operated at an hydraulic retention time of 48 hours, while being subjected to increasing concentrations of 2,4-D. The SBRs were able to degrade between 130 and 180 mg/L of 2,4-D depending upon whether they were operated in the acid-phase or two-phase regime. The methanogenic-only phase did not achieve 2,4-D degradation however this was primarily attributed to difficulties with obtaining a sufficiently long SRT. For the two-phase SFBR system, 3.5 L liquid-volume digesters were used and no difficulty was experienced with degrading 100 % of the 2,4-D concentration applied (300 mg/L).

  16. Enhanced formation of aerobic granular sludge with yellow earth as nucleating agent in a sequencing batch reactor

    Science.gov (United States)

    He, Q. L.; Zhang, S. L.; Zou, Z. C.; Wang, H. Y.

    2016-08-01

    Enhanced formation of aerobic granulation was investigated by adding yellow earth as a nucleating agent in a sequencing batch reactor with a constant setting time of 10 min. As a result, granules with an average diameter over 1 mm were obtained on the 4th day. The mature granules behaved better than the seed sludge in the water content, specific gravity, sludge volume index, settling velocity, and specific oxygen uptake rate. The yellow earth stimulated the secretion of extracellular polymeric substances, especially proteins. Both chemical oxygen demand and ammonia nitrogen had a removal rate over 90%, and more than 80% of the total inorganic nitrogen was removed even under aeration conditions due to simultaneous denitrification. The enhancement effects of the yellow earth might be based on the unique physicochemical characteristics and short settling time. A settling time of 10 min or more turned out not to be a prerequisite for a rapid granulation process.

  17. Analysis of denitrifier community in a bioaugmented sequencing batch reactor for the treatment of coking wastewater containing pyridine and quinoline

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yaohui; Xing, Rui; Wen, Donghui; Tang, Xiaoyan [Peking Univ., Beijing (CN). Key Lab. of Water and Sediment Sciences (Ministry of Education); Sun, Qinghua [Peking Univ., Beijing (CN). Key Lab. of Water and Sediment Sciences (Ministry of Education); Chinese Center for Disease Control and Prevention, Beijing (China). Inst. of Environmental Health and Related Product Safety

    2011-05-15

    The denitrifier community and associated nitrate and nitrite reduction in the bioaugmented and general sequencing batch reactors (SBRs) during the treatment of coking wastewater containing pyridine and quinoline were investigated. The efficiency and stability of nitrate and nitrite reduction in SBR was considerably improved after inoculation with four pyridine- or quinoline-degrading bacterial strains (including three denitrifying strains). Terminal restriction fragment length polymorphism (T-RFLP) based on the nosZ gene revealed that the structures of the denitrifier communities in bioaugmented and non-bioaugmented reactors were distinct and varied during the course of the experiment. Bioaugmentation protected indigenous denitrifiers from disruptions caused by pyridine and quinoline. Clone library analysis showed that one of the added denitrifiers comprised approximately 6% of the denitrifier population in the bioaugmented sludge. (orig.)

  18. Intracellular storage of acetate/starch mixture by fast growing microbial culture in sequencing batch reactor under continuous feeding.

    Science.gov (United States)

    Ciggin, Asli Seyhan; Majone, Mauro; Orhon, Derin

    2012-09-01

    The paper evaluated intracellular storage formation in fast growing microbial culture fed with acetate/starch mixture under continuous feeding. Three parallel laboratory-scale sequencing batch reactors (SBRs) were operated at a sludge age of 2 days: one of the SBRs was fed with acetate/starch mixture and the other two with acetate and starch, respectively, for comparing the results with single substrate systems. Despite continuous feeding, both acetate and starch components in the substrate mixture were partially converted to storage biopolymers. Poly-hydroxybutyrate (PHB) and glycogen pools were formed during SBR operation at steady state. Only a limited fraction of 12% of the acetate fed during each cycle generated PHB storage while the rest was directly utilized for microbial growth. Around half of the starch fraction of the substrate mixture was converted to glycogen. Increasing the sludge age to 8 days did not affect storage stoichiometry both for acetate and starch in the mixture.

  19. Diversity and dynamics of dominant and rare bacterial taxa in replicate sequencing batch reactors operated under different solids retention time

    KAUST Repository

    Bagchi, Samik

    2014-10-19

    In this study, 16S rRNA gene pyrosequencing was applied in order to provide a better insight on the diversity and dynamics of total, dominant, and rare bacterial taxa in replicate lab-scale sequencing batch reactors (SBRs) operated at different solids retention time (SRT). Rank-abundance curves showed few dominant operational taxonomic units (OTUs) and a long tail of rare OTUs in all reactors. Results revealed that there was no detectable effect of SRT (2 vs. 10 days) on Shannon diversity index and OTU richness of both dominant and rare taxa. Nonmetric multidimensional scaling analysis showed that the total, dominant, and rare bacterial taxa were highly dynamic during the entire period of stable reactor performance. Also, the rare taxa were more dynamic than the dominant taxa despite expected low invasion rates because of the use of sterile synthetic media.

  20. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, De-Gao, E-mail: degaowang@dlmu.edu.cn; Du, Juan; Pei, Wei; Liu, Yongjun; Guo, Mingxing

    2015-04-15

    The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L{sup −1} and 0.343 μg L{sup −1}; the total removal efficiency of VMSs is > 60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg{sup −1}. High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg{sup −1}. No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d{sup −1} 1000 inhabitants{sup −1} derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP. - Highlights: • A mass balance model for siloxanes was developed in sequencing batch reactor. • Total suspended solid in effluent has the most influence on removal efficiency. • Enhancement of suspended solid removal reduces the release to aquatic environment.

  1. Microbial Aggregate and Functional Community Distribution in a Sequencing Batch Reactor with Anammox Granules

    KAUST Repository

    Sun, Shan

    2013-05-01

    Anammox (anaerobic ammonium oxidation) process is a one-step conversion of ammonia into nitrogen gas with nitrite as an electron acceptor. It has been developed as a sustainable technology for ammonia removal from wastewater in the last decade. For wastewater treatment, anammox biomass was widely developed as microbial aggregate where the conditions for enrichment of anammox community must be delicately controlled and growth of other bacteria especially NOB should be suppressed to enhance nitrogen removal efficiency. Little is known about the distribution of microbial aggregates in anammox process. Thus the objective of our study was to assess whether segregation of biomass occurs in granular anammox system. In this study, a laboratory-scale sequential batch reactor (SBR) was successfully operated for a period of 80 days with granular anammox biomass. Temporal and spatial distribution of microbial aggregates was studied by particle characterization system and the distribution of functional microbial communities was studied with qPCR and 16s rRNA amplicon pyrosequencing. Our study revealed the spatial and temporal distribution of biomass aggregates based on their sizes and density. Granules (>200 μm) preferentially accumulated in the bottom of the reactor while floccules (30-200 μm) were relatively rich at the top layer. The average density of aggregate was higher at the bottom than the density of those at the top layer. Degranulation caused by lack of hydrodynamic shear force in the top layer was considered responsible for this phenomenon. NOB was relatively rich in the top layer while percentage of anammox population was higher at the bottom, and anammox bacteria population gradually increased over a period of time. NOB growth was supposed to be associated with the increase of floccules based on the concurrent occurrence. Thus, segregation of biomass can be utilized to develop an effective strategy to enrich anammox and wash out NOB by shortening the settling

  2. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR).

    Science.gov (United States)

    Yuan, Yue; Liu, Jinjin; Ma, Bin; Liu, Ye; Wang, Bo; Peng, Yongzhen

    2016-12-01

    This study presents a novel strategy to improve the removal efficiency of nitrogen and phosphorus from municipal wastewater by feeding sequencing batch reactor (SBR) with sludge alkaline fermentation products as carbon sources. The performances of two SBRs treating municipal wastewater (one was fed with sludge fermentation products; F-SBR, and the other without sludge fermentation products; B-SBR) were compared. The removal efficiencies of total nitrogen (TN) and phosphorus (PO4(3-)-P) were found to be 82.9% and 96.0% in F-SBR, while the corresponding values in B-SBR were 55.9% (TN) and -6.1% (PO4(3-)-P). Illumina MiSeq sequencing indicated that ammonium-oxidizing bacteria (Nitrosomonadaceae and Nitrosomonas) and denitrifying polyphosphate accumulating organisms (Dechloromonas) were enriched in F-SBR, which resulted in NO2(-)-N accumulation and denitrifying phosphorus removal via nitrite (DPRN). Moreover, feeding of sludge fermentation products reduced 862.1mg VSS/d of sludge in the F-SBR system (volume: 10L).

  3. Regime Shift and Microbial Dynamics in a Sequencing Batch Reactor for Nitrification and Anammox Treatment of Urine ▿†

    Science.gov (United States)

    Bürgmann, Helmut; Jenni, Sarina; Vazquez, Francisco; Udert, Kai M.

    2011-01-01

    The microbial population and physicochemical process parameters of a sequencing batch reactor for nitrogen removal from urine were monitored over a 1.5-year period. Microbial community fingerprinting (automated ribosomal intergenic spacer analysis), 16S rRNA gene sequencing, and quantitative PCR on nitrogen cycle functional groups were used to characterize the microbial population. The reactor combined nitrification (ammonium oxidation)/anammox with organoheterotrophic denitrification. The nitrogen elimination rate initially increased by 400%, followed by an extended period of performance degradation. This phase was characterized by accumulation of nitrite and nitrous oxide, reduced anammox activity, and a different but stable microbial community. Outwashing of anammox bacteria or their inhibition by oxygen or nitrite was insufficient to explain reactor behavior. Multiple lines of evidence, e.g., regime-shift analysis of chemical and physical parameters and cluster and ordination analysis of the microbial community, indicated that the system had experienced a rapid transition to a new stable state that led to the observed inferior process rates. The events in the reactor can thus be interpreted to be an ecological regime shift. Constrained ordination indicated that the pH set point controlling cycle duration, temperature, airflow rate, and the release of nitric and nitrous oxides controlled the primarily heterotrophic microbial community. We show that by combining chemical and physical measurements, microbial community analysis and ecological theory allowed extraction of useful information about the causes and dynamics of the observed process instability. PMID:21724875

  4. Effect of florfenicol on performance and microbial community of a sequencing batch biofilm reactor treating mariculture wastewater.

    Science.gov (United States)

    Gao, Feng; Li, Zhiwei; Chang, Qingbo; Gao, Mengchun; She, Zonglian; Wu, Juan; Jin, Chunji; Zheng, Dong; Guo, Liang; Zhao, Yangguo; Wang, Sen

    2017-03-16

    The effects of florfenicol (FF) on the performance, microbial activity and microbial community of a sequencing batch biofilm reactor (SBBR) were evaluated in treating mariculture wastewater. The chemical oxygen demand (COD) and nitrogen removal were inhibited at high FF concentrations. The specific oxygen utilization rate (SOUR), specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR) and specific nitrate reduction rate (SNRR) were decreased with an increase in the FF concentration from 0 to 35 mg/L. The chemical compositions of loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) could be affected with an increase in the FF concentration. The high-throughput sequencing indicated some obvious variations in the microbial community at different FF concentrations. The relative abundance of Nitrosomonas and Nitrospira showed a decreasing tendency with an increase in the FF concentration, suggesting that FF could affect the nitrification process of SBBR. Some genera capable of reducing nitrate to nitrogen gas could be inhibited by the addition of FF in the influent, such as Azospirillum and Hyphomicrobium.

  5. On-line controlling system for nitrogen and phosphorus removal of municipal wastewater in a sequencing batch reactor (SBR)

    Institute of Scientific and Technical Information of China (English)

    Jun LI; Yongjiong NI; Yongzhen PENG; Guowei GU; Jingen LU; Su WEI; Guobiao CHENG; Changjin OU

    2008-01-01

    The objectives of this study were to establish an on-line controlling system for nitrogen and phosphorus removal synchronously of municipal wastewater in a sequencing batch reactor (SBR). The SBR for municipal wastewater treatment was operated in sequences: filling, anaerobic, oxic, anoxic, oxic, settling and discharge. The reactor was equipped with on-line monitoring sensors for dissolved oxygen (DO), oxidation-reduction potential (ORP) and pH. The variation of DO, ORP and pH is relevant to each phase of biological process for nitrogen and phosphorus removal in this SBR. The characteristic points of DO, ORP and pH can be used to judge and control the stages of process that include: phosphate release by the turning points of ORP and pH; nitrification by the ammonia valley of pH and ammonia elbows of DO and ORP; denitrification by the nitrate knee of ORP and nitrate apex ofpH; phosphate uptake by the turning point ofpH; and residual organic carbon oxida-tion by the carbon elbows of DO and ORP. The controlling system can operate automatically for nitrogen and phosphorus efficiently removal.

  6. The effect of biological sulfate reduction on anaerobic color removal in anaerobic-aerobic sequencing batch reactors.

    Science.gov (United States)

    Cirik, Kevser; Kitis, Mehmet; Cinar, Ozer

    2013-05-01

    Combination of anaerobic-aerobic sequencing processes result in both anaerobic color removal and aerobic aromatic amine removal during the treatment of dye-containing wastewaters. The aim of the present study was to gain more insight into the competitive biochemical reactions between sulfate and azo dye in the presence of glucose as electron donor source. For this aim, anaerobic-aerobic sequencing batch reactor fed with a simulated textile effluent including Remazol Brilliant Violet 5R (RBV 5R) azo dye was operated with a total cycle time of 12 h including anaerobic (6 h) and aerobic cycles (6 h). Microorganism grown under anaerobic phase of the reactor was exposed to different amounts of competitive electron acceptor (sulfate). Performance of the anaerobic phase was determined by monitoring color removal efficiency, oxidation reduction potential, color removal rate, chemical oxygen demand (COD), color, specific anaerobic enzyme (azo reductase) and aerobic enzyme (catechol 1,2-dioxygenase), and formation of aromatic amines. The presence of sulfate was not found to significantly affect dye decolorization. Sulfate and azo dye reductions took place simultaneously in all operational conditions and increase in the sulfate concentration generally stimulated the reduction of RBV 5R. However, sulfate accumulation under anaerobic conditions was observed proportional to increasing sulfate concentration.

  7. Multiserver queue with semi-Markovian batch arrivals with application to the MPEG frame sequence

    Science.gov (United States)

    Takagi, Hideaki; Wu, De-An

    2002-07-01

    We consider a queueing system consisting of multiple identical servers and a common queue. The service time follows an exponential distribution and the arrival process is governed by a semi-Markov process (SMP). The motivation to study the queueing system with SMP arrivals lies in that it can model the auto-correlated traffic on the high speed network generated by a real time communication, for example, the MPEG-encoded VBR video. Our analysis is based on the theory of piecewise Markov process. We first derive the distributions of the queue size and the waiting time. When the sojourn time of SMP follows an exponential distribution all the unknown constants contained in the generating function of queue size can be determined through the zeros of the denominator for this generating function. Based on the result of the analysis, we propose a model to evaluate the waiting time of MPEG video traffic on an ATM network with multiple channels. Here, the SMP corresponds to the exact MPEG sequence of frames. Finally, a numerical example using a real video data is shown.

  8. Microbial population dynamics during long-term sludge adaptation of thermophilic and mesophilic sequencing batch digesters treating sewage fine sieved fraction at varying organic loading rates

    NARCIS (Netherlands)

    Tao, Y.; De Kreuk, M.K.; Zandvoort, M.H.; Van Lier, J.B.

    2015-01-01

    Background In this research, the feasibility of, and population dynamics in, one-step anaerobic sequencing batch reactor systems treating the fine sieved fraction (FSF) from raw municipal wastewater was studied under thermophilic (55 °C) and mesophilic (35 °C) conditions. FSF was sequestered from ra

  9. Evaluation of the microbial diversity in sequencing batch reactor treating linear alkylbenzene sulfonate under denitrifying and mesophilic conditions using swine sludge as inoculum

    Directory of Open Access Journals (Sweden)

    Iolanda Cristina Silveira Duarte

    2015-06-01

    Full Text Available The objective of this study was to evaluate the degradation of Linear Alkylbenzene Sulfonate (LAS in anaerobic sequencing batch reactor (ASBR under denitrifying conditions using swine sludge as inoculum. The reactor was operated for 104 days with synthetic substrate containing nitrate, and LAS was added later (22 mg/L. Considering the added mass of the LAS, the adsorbed mass in the sludge and discarded along with the effluent, degradation of the surfactant at the end of operation was 87%, removal of chemical oxygen demand was 86% and nitrate was 98%. The bacterial community was evaluated by cutting the bands and sequencing of polymerase chain reaction (PCR fragments and denaturing gradient gel electrophoresis (DGGE. The sequences obtained were related to the phylum Proteobacteria and the alpha-and beta-proteobacteria classes, these bacteria were probably involved in the degradation of LAS. The efficiently degraded LAS in the reactor was operated in batch sequences in denitrifying conditions.

  10. Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable waste in anaerobic sequencing batch reactors.

    Science.gov (United States)

    Bouallagui, Hassib; Rachdi, Boutheina; Gannoun, Hana; Hamdi, Moktar

    2009-06-01

    Anaerobic co-digestion of fruit and vegetable waste (FVW) and abattoir wastewater (AW) was investigated using anaerobic sequencing batch reactors (ASBRs). The effects of hydraulic retention time (HRT) and temperature variations on digesters performances were examined. At both 20 and 10 days biogas production for co-digestion was greater thanks to the improved balance of nutrients. The high specific gas productions for the different digestion processes were 0.56, 0.61 and 0.85 l g(-1) total volatile solids (TVS) removal for digesters treating AW, FVW and AW + FVW, respectively. At an HRT of 20 days, biogas production rates from thermophilic digesters were higher on average than from mesophilic AW, FVW and AW + FVW digestion by 28.5, 44.5 and 25%, respectively. However, at 10 days of HRT results showed a decrease of biogas production rate for AW and AW + FVW digestion processes due to the high amount of free ammonia at high organic loading rate (OLR).

  11. Optimization of operation conditions for preventing sludge bulking and enhancing the stability of aerobic granular sludge in sequencing batch reactors.

    Science.gov (United States)

    Zhou, Jun; Wang, Hongyu; Yang, Kai; Ma, Fang; Lv, Bin

    2014-01-01

    Sludge bulking caused by loss of stability is a major problem in aerobic granular sludge systems. This study investigated the feasibility of preventing sludge bulking and enhancing the stability of aerobic granular sludge in a sequencing batch reactor by optimizing operation conditions. Five operation parameters have been studied with the aim to understand their impact on sludge bulking. Increasing dissolved oxygen (DO) by raising aeration rates contributed to granule stability due to the competition advantage of non-filamentous bacteria and permeation of oxygen at high DO concentration. The ratio of polysaccharides to proteins was observed to increase as the hydraulic shear force increased. When provided with high/low organic loading rate (OLR) alternately, large and fluffy granules disintegrated, while denser round-shape granules formed. An increase of biomass concentration followed a decrease at the beginning, and stability of granules was improved. This indicated that aerobic granular sludge had the resistance of OLR. Synthetic wastewater combined highly and slowly biodegradable substrates, creating a high gradient, which inhibited the growth of filamentous bacteria and prevented granular sludge bulking. A lower chemical oxygen demand/N favored the hydrophobicity of granular sludge, which promoted with granule stability because of the lower diffusion rate of ammonia. The influence of temperature indicated a relatively low temperature was more suitable.

  12. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    Science.gov (United States)

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  13. Aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor.

    Science.gov (United States)

    Wei, Dong; Shi, Li; Yan, Tao; Zhang, Ge; Wang, Yifan; Du, Bin

    2014-11-01

    The objective of this study was to evaluate aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor (SBR). After successful aerobic granulation, mixed liquor suspended solids (MLSS) concentrations of the SBR increased from 3.11 to 14.52 g/L, while sludge volume index (SVI) values decreased from 144.61 to 30.32 mL/g. Protein (PN) and polysaccharide (PS) concentrations increased from 60.2 and 12.5 mg/L to 101.1 and 15.8 mg/L, respectively. Simultaneous nitrogen and phosphorus removal was enhanced by altering the influent chemical oxygen demand/nitrogen (COD/N) ratio. At COD/N ratio of 9, total nitrogen (TN) and total phosphorus (TP) removal efficiencies were up to 89.8% and 77.5%, respectively. Three-dimensional excitation-emission matrix (3D-EEM) spectroscopy showed that the chemical compositions of sludge EPS were changed during granulation process. The results could provide useful information to promote nitrogen and phosphorus removal using aerobic granular sludge technology.

  14. Respirometric response and microbial succession of nitrifying sludge to m-cresol pulses in a sequencing batch reactor.

    Science.gov (United States)

    Ordaz, Alberto; Sánchez, Mariana; Rivera, Rodrigo; Rojas, Rafael; Zepeda, Alejandro

    2017-02-01

    A nitrifying consortium was kinetically, stoichiometrically and molecularly characterized via the in situ pulse respirometric method and pyrosequencing analysis before and after the addition of m-cresol (25 mg C L(-1)) in a sequencing batch reactor (SBR). Five important kinetic and stoichiometric parameters were determined: the maximum oxygen uptake rate, the maximum nitrification rate, the oxidation yield, the biomass growth yield, and the substrate affinity constant. An inhibitory effect was observed in the nitrification process with a recovery of this by up to eight SBR cycles after m-cresol was added to the system. However, full recovery of the nitrification process was not observed, as the maximum oxygen uptake rate was 25% lower than that of the previous operation without m-cresol addition. Furthermore, the pyrosequencing analyses of the nitrifying consortium after the addition of only two pulses of 25 mg C L(-1) m-cresol showed an important microbial community change represented by a decrease in the nitrifying populations and an increase in the populations degrading phenolic compounds.

  15. High-rate nitrogen removal and its behavior of granular sequence batch reactor under step-feed operational strategy.

    Science.gov (United States)

    Zhong, Chen; Wang, Yaqin; Wang, Yongjian; Lv, Junping; Li, Yaochen; Zhu, Jianrong

    2013-04-01

    Alternating anoxic/oxic (A/O) combined with the step-feed granular sequence batch reactor (step-feed SBR) was operated in laboratory scale to investigate nitrogen removal. The results showed that when the total inorganic nitrogen (TIN) and chemical oxygen demand (COD) levels were 55 and 320 mg/L in the influent, the TIN removal efficiencies were 89.7-92.4% in the step-feed mode and 48.1-59.5% in the conventional alternating A/O single-feed mode within a 360 min cycle. The pH and dissolved oxygen (DO) were used to optimize the process of denitrification and nitrification in the step-feed mode. The optimized operational condition was achieved by shortening the cycle time to 207 min, resulting in a nitrogen removal rate of 0.27 kg N/m3 d, which was much higher than those achieved using activated sludge systems. The dominant community in the aerobic granules was coccus-like bacteria, and filamentous bacteria were hardly found. Granules were well maintained throughout the 90 days of continuous step-feed operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors.

    Science.gov (United States)

    Huang, Wenli; Li, Bing; Zhang, Chao; Zhang, Zhenya; Lei, Zhongfang; Lu, Baowang; Zhou, Beibei

    2015-03-01

    The effect of algae growth on aerobic granulation and nutrients removal was studied in two identical sequencing batch reactors (SBRs). Sunlight exposure promoted the growth of algae in the SBR (Rs), forming an algal-bacterial symbiosis in aerobic granules. Compared to the control SBR (Rc), Rs had a slower granulation process with granules of loose structure and smaller particle size. Moreover, the specific oxygen uptake rate was significantly decreased for the granules from Rs with secretion of 25.7% and 22.5% less proteins and polysaccharides respectively in the extracellular polymeric substances. Although little impact was observed on chemical oxygen demand (COD) removal, algal-bacterial symbiosis deteriorated N and P removals, about 40.7-45.4% of total N and 44% of total P in Rs in contrast to 52.9-58.3% of TN and 90% of TP in Rc, respectively. In addition, the growth of algae altered the microbial community in Rs, especially unfavorable for Nitrospiraceae and Nitrosomonadaceae.

  17. Simultaneous removal of nutrients from milking parlor wastewater using an AO2 sequencing batch reactor (SBR) system.

    Science.gov (United States)

    Wu, Xiao; Zhu, Jun

    2015-01-01

    The feasibility of using a lab-scale, anaerobic-aerobic-anoxic-aerobic sequencing batch reactor ((AO)2 SBR) to simultaneously remove biological organics, nitrogen and phosphorus from dairy milking parlor wastewater was investigated in this study. Three hydraulic retention times (HRT = 2.1, 2.7, and 3.5 days) and three mixing-to-process time ratios (TM/TP = 0.43, 0.57, and 0.68) were evaluated as two controlling factors using a 3 × 3 experimental design to determine the optimal combination. Results showed that the HRT of 2.7 days with TM/TP = 0.57 was the best to achieve simultaneous nutrients removal for the influent with initial soluble chemical oxygen demand (SCOD) of about 2000 mg L(-1) (only 0.55 mg L(-1) NH4-N, < 0.1 mg L(-1) nitrate, and 0.14 mg L(-1) soluble phosphorus in the effluent). Good correlations between pH and ORP, and ORP and DO, were also obtained with correlation coefficients all higher than or equal to 0.975. These relationships could be used to develop real-time control strategies to optimize the duration of each operating phase in the (AO)2 SBR system to save energy and enhance treatment efficiency.

  18. Assessment of a bioaugmentation strategy with polyphosphate accumulating organisms in a nitrification/denitrification sequencing batch reactor.

    Science.gov (United States)

    Tayà, Carlota; Guisasola, Albert; Baeza, Juan A

    2011-09-01

    Different alternative configurations and strategies for the simultaneous biological removal of organic matter and nutrients (N and P) in wastewater have been proposed in the literature. This work demonstrates a new successful strategy to bring in enhanced biological phosphorus removal (EBPR) to a conventional nitrification/denitrification system by means of bioaugmentation with an enriched culture of phosphorus accumulating organisms (PAO). This strategy was tested in a sequencing batch reactor (SBR), where an 8h configuration with 3h anoxic, 4.5h aerobic and 25 min of settling confirmed that nitrification, denitrification and PAO activity could be maintained for a minimum of 60 days of operation after the bioaugmentation step. The successful bioaugmentation strategy opens new possibilities for retrofitting full-scale WWTP originally designed for only nitrification/denitrification. These systems could remove P simultaneously to COD and N if they were bioaugmented with waste purge of an anaerobic/aerobic SBR operated in parallel treating part of the influent wastewater.

  19. Effect of different carbon sources on the biological phosphorus removal by a sequencing batch reactor using pressurized pure oxygen.

    Science.gov (United States)

    Wei, Jie; Imai, Tsuyoshi; Higuchi, Takaya; Arfarita, Novi; Yamamoto, Koichi; Sekine, Masahiko; Kanno, Ariyo

    2014-05-04

    The effect of different carbon source on the efficiency of enhanced biological phosphorus removal (EBPR) from synthetic wastewater with acetate and two ratios of acetate/starch as a carbon source was investigated. Three pressurized pure oxygen sequencing batch reactor (POSBR) experiments were operated. The reactors (POSBR1, POSBR2 and POSBR3) were developed and studied at different carbon source ratios of 100% acetate, 75% acetate plus 25% starch and 50% acetate plus 50% starch, respectively. The results showed that POSBR1 had a higher phosphate release-to-uptake ratio and, respectively, in a much higher phosphorus removal efficiency (93.8%) than POSBR2 (84.7%) and POSBR3 (77.3%) within 30 days of operation. This indicated that the phosphorus removal efficiency decreased the higher the starch concentration was. It was also found that POSBR1 produced more polyhydroxyalkanoates (PHAs) than the other reactors. Based on the effect of the carbon source on the PHA concentration and consumption, the conditions of POSBR1 were favourable for the growth of polyphosphate-accumulating organisms and therefore, beneficial for the biological phosphorus removal process.

  20. Simultaneous ammonium and nitrate removal by a modified intermittently aerated sequencing batch reactor (SBR with multiple filling events

    Directory of Open Access Journals (Sweden)

    Hajsardar Mehdi

    2016-09-01

    Full Text Available Optimized methods for simultaneous removal of nitrate, nitrite and ammonium are important features of nutrient removal. Nitrogen removal efficiency in an intermittently aerated sequencing batch reactor (IA-SBR with multiple filling events was studied. No external carbon source was added and three filling events were considered. Oxidationreduction potential (ORP and pH curve at solids retention time (SRT of 20 d were analyzed. Effects of three organic loading rates (OLR, 0.67, 1.0 and 1.5 kgCOD/m3d, and three nitrogen loading rates (NLR, 0.054, 0.1 and 0.15 kgN/m3d, on nitrogen removal were studied. Nitrate Apex in pH curve and Nitrate Knee in ORP profile indicated that the end of denitrification would be achieved sooner. The kinetic coefficients of endogenous decay (kd and yield (Y were identified to evaluate heterotrophic specific denitrification rate (SDNRb. In period 2 at NLR of 0.054 kgN/m3d and considering 2 anoxic and 3 aerobic phases, nitrogen removal efficiency was 91.43%.

  1. Effects of carbon-nitrogen ratio on nitrogen removal in a sequencing batch reactor enhanced with low-intensity ultrasound.

    Science.gov (United States)

    Jin, Ruofei; Liu, Guangfei; Li, Chunling; Xu, Rongjuan; Li, Hongyang; Zhang, Lunxiang; Zhou, Jiti

    2013-11-01

    A sequencing batch reactor (SBR) enhanced with low-intensity ultrasound was designed to study the removal of nitrogen under different carbon-nitrogen (C/N) ratios. The results showed that the removal efficiencies of CODCr and nitrogen were inversely proportional to C/N ratios. The CODCr of the effluent in the control reactor (CR) and the low-intensity ultrasound-enhanced reactor (UER) were lower than 40 mg L(-1). With a decrease in C/N ratio, the NH4(+)-N removal load of the CR showed little change, while the NH4(+)-N removal load of UER increased from 21.2 to 56.1mg NH4(+)-N/g mixed liquid suspended solids per day. To further understand effects of low-intensity ultrasound, the denaturing gel gradient electrophoresis (DGGE) analysis showed that the similar coefficients of the community structures in the UER and CR were 86%, 52% and 29% when the C/N ratios were 15:1, 10:1, 5:1, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Integrating sequencing batch reactor with bio-electrochemical treatment for augmenting remediation efficiency of complex petrochemical wastewater.

    Science.gov (United States)

    Yeruva, Dileep Kumar; Jukuri, Srinivas; Velvizhi, G; Naresh Kumar, A; Swamy, Y V; Venkata Mohan, S

    2015-01-01

    The present study evaluates the sequential integration of two advanced biological treatment methods viz., sequencing batch reactor (SBR) and bioelectrochemical treatment systems (BET) for the treatment of real-field petrochemical wastewater (PCW). Initially two SBR reactors were operated in aerobic (SBR(Ae)) and anoxic (SBR(Ax)) microenvironments with an organic loading rate (OLR) of 9.68 kg COD/m(3)-day. Relatively, SBR(Ax) showed higher substrate degradation (3.34 kg COD/m(3)-day) compared to SBR(Ae) (2.9 kg COD/m(3)-day). To further improve treatment efficiency, the effluents from SBR process were fed to BET reactors. BET(Ax) depicted higher SDR (1.92 kg COD/m(3)-day) with simultaneous power generation (17.12 mW/m(2)) followed by BET(Ae) (1.80 kg COD/m(3)-day; 14.25 mW/m(2)). Integrating both the processes documented significant improvement in COD removal efficiency due to the flexibility of combining multiple microenvironments sequentially. Results were supported with GC-MS and FTIR, which confirmed the increment in biodegradability of wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Enhanced Biological Phosphorus Removal in Anaerobic/Aerobic Sequencing Batch Reactor Supplied with Glucose as Carbon Source

    Institute of Scientific and Technical Information of China (English)

    LIU Yanan; YU Shui-li; JING Guo-lin; ZHAO Bing-jie; GUO Si-yuan

    2005-01-01

    Phosphorus removal performance in an aerobic/aerobic sequencing batch reactor (SBR) supplied with glucose as carbon source was investigated. It was found that there was no phosphate release concomitant with the storing of poly-β-hydroxyalkanoate (PHA) during the anaerobic phase. Whereas, glycogen was soon built up followed by rapid consumption, at the same time, glucose was depleted rapidly. Based on the analysis of different fractions of phosphorus in activated sludge, the relative ratio of organically bound phosphorus in sludge changed at the end of anaerobic and aerobic phases. The ratios were 45.3% and51.8% respectively. This showed that the polyphosphate broke down during the anaerobic phase to supply part of energy for PHA synthesis. The reason why there was no phosphate release might be the biosorption effect of extracellular exopolymers (EPS). It was also proved by the analysis of EPS with scanning electron microscopy (SEM)combined with energy dispersive spectrometry (EDS). The phosphorus weight percentage of EPS at the end of anaerobic phase was 9.22%.

  4. Treatment of textile effluent by chemical (Fenton's Reagent) and biological (sequencing batch reactor) oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Carmen S.D. [LSRE - Laboratory of Separation and Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal); Madeira, Luis M. [LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal); Boaventura, Rui A.R., E-mail: bventura@fe.up.pt [LSRE - Laboratory of Separation and Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2009-12-30

    The removal of organic compounds and colour from a synthetic effluent simulating a cotton dyeing wastewater was evaluated by using a combined process of Fenton's Reagent oxidation and biological degradation in a sequencing batch reactor (SBR). The experimental design methodology was first applied to the chemical oxidation process in order to determine the values of temperature, ferrous ion concentration and hydrogen peroxide concentration that maximize dissolved organic carbon (DOC) and colour removals and increase the effluent's biodegradability. Additional studies on the biological oxidation (SBR) of the raw and previously submitted to Fenton's oxidation effluent had been performed during 15 cycles (i.e., up to steady-state conditions), each one with the duration of 11.5 h; Fenton's oxidation was performed either in conditions that maximize the colour removal or the increase in the biodegradability. The obtained results allowed concluding that the combination of the two treatment processes provides much better removals of DOC, BOD{sub 5} and colour than the biological or chemical treatment alone. Moreover, the removal of organic matter in the integrated process is particularly effective when Fenton's pre-oxidation is carried out under conditions that promote the maximum increase in wastewater biodegradability.

  5. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent.

    Science.gov (United States)

    Santos, Sílvia C R; Boaventura, Rui A R

    2015-06-30

    Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD5 removals of 53-79%, but color removal was rather limited (10-18%). The performance was significantly enhanced by the addition of WS, with BOD5 removals above 91% and average color removals of 60-69%. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effects of CeO2 nanoparticles on system performance and bacterial community dynamics in a sequencing batch reactor.

    Science.gov (United States)

    Qiu, Guanglei; Neo, Sin-Yi; Ting, Yen-Peng

    2016-01-01

    The effects of CeO2 nanoparticles (NPs) on the system performance and the bacterial community dynamics in a sequencing batch reactor (SBR) were investigated, along with the fate and removal of CeO2 NPs within the SBR. Significant impact was observed on nitrification; NH4+-N removal efficiency decreased from almost 100% to around 70% after 6 days of continuous exposure to 1.0 mg/L of CeO2 NPs, followed by a gradual recovery until a stable value of around 90% after 20 days. Additionally, CeO2 NPs also led to a significant increase in the protein content in the soluble microbial products, showing the disruptive effects of CeO2 NPs on the extracellular polymeric substance matrix and related activated sludge structure. Denaturing gradient gel electrophoresis analysis showed remarkable changes in the bacterial community structure in the activated sludge after exposure to CeO2 NPs. CeO2 NPs were effectively removed in the SBR mainly via sorption onto the sludge. However, the removal efficiency decreased from 95 to 80% over 30 days. Mass balance evaluation showed that up to 50% of the NPs were accumulated within the activated sludge and were removed with the waste sludge.

  7. An anoxic-aerobic system for simultaneous biodegradation of phenol and ammonia in a sequencing batch reactor.

    Science.gov (United States)

    Liu, Qifeng; Singh, Vijay P; Fu, Zhimin; Wang, Jing; Hu, La

    2017-03-24

    A laboratory-scale sequencing batch reactor (SBR) was investigated to treat artificial pretreated coal gasification wastewater that was mainly contained of ammonia and phenol. The efficiency of SBR fed with increasing phenol concentrations (from 150 to 300 mg l(-1)) and the relationship among phenol, nitrogen removal, and the microbial community structure were evaluated. When the phenol feeding concentration was increased to about 300 mg l(-1), the removal efficiency was above 99.0%, demonstrating the robustness of phenol removal capacity. The study showed that most phenol was degraded in anoxic stage. The average removal efficiencies of ammonia and total nitrogen were 98.4 and 81.9%, respectively, with average NH4(+)-N concentration of 107.5 mg l(-1) and COD/N 7.5. Low temperature caused sludge loss that led to the decreased performance. Increasing the temperature could not recover the performance effectively. The data from bacterial analysis revealed that Delftia, Hydrogenophaga, and unclassified Xanthomonadaceae played a significant role in phenol degradation before the temperature increase, while uncultured Syntrophococcus sp. and unclassified Rhodocyclaceae were responsible for phenol degradation after the temperature increase. These results imply that the SBR holds potential for the simultaneous removal of phenolic compounds and nitrogen through aerobic ammonia oxidation and anoxic denitrification with phenol as the co-organic carbon source.

  8. Fast start-up of a pilot-scale deammonification sequencing batch reactor from an activated sludge inoculum.

    Science.gov (United States)

    Jeanningros, Y; Vlaeminck, S E; Kaldate, A; Verstraete, W; Graveleau, L

    2010-01-01

    Deammonification involves the combined application of aerobic and anoxic ammonium-oxidizing bacteria (AerAOB & AnAOB) and allows to treat wastewaters with a high ammonium concentration in a sustainable and cost-efficient way. So far, it could take more than one year to start up the process, even with the addition of AnAOB enriched inocula. In contrast, we started up a deammonifying reactor for the treatment of sludge digestate in less than four months without any AnAOB enriched inoculum. In a single sequencing batch reactor (SBR) of 3 m(3), nitritation and anammox were performed without nitrite accumulation. Larger biomass aggregates (>1.0 mm) had a typical reddish colour, but FISH also showed that small aggregates (<0.25 mm) contained a considerable amount of AnAOB. The AerAOB were related to Nitrosomonas halophila, N. eutropha and N. halophila, and the AnAOB to "Candidatus Kuenenia & Brocadia", as shown by FISH. Our results show that the deammonification inoculum does not play an important role, and that the AnAOB can quickly develop under the proper aerational conditions. Nitrogen was removed stably at high nitrogen loading rates (740 mg N/L/d) and removal efficiency (90%).

  9. Sequence and batch language programs and alarm-related ``C`` programs for the 242-A MCS. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Berger, J.F.

    1995-03-01

    A Distributive Process Control system was purchased by Project B-534, ``242-A Evaporator/Crystallizer Upgrades``. This control system, called the Monitor and Control System (MCS), was installed in the 242-A Evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment Systems Engineering (WTSE) group of Westinghouse. The standard displays and alarm scheme provide for control and monitoring, but do not directly indicate the signal location or depict the overall process. To do this, WTSE developed a second alarm scheme which uses special programs, annunciator keys, and process graphics. The special programs are written in two languages; Sequence and Batch Language (SABL), and ``C`` language. The WTSE-developed alarm scheme works as described below: SABL relates signals and alarms to the annunciator keys, called SKID keys. When an alarm occurs, a SABL program causes a SKID key to flash, and if the alarm is of yellow or white priority then a ``C`` program turns on an audible horn (the D/3 system uses a different audible horn for the red priority alarms). The horn and flashing key draws the attention of the operator.

  10. Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems.

    Science.gov (United States)

    Gani, Khalid Muzamil; Rajpal, Ankur; Kazmi, Absar Ahmad

    2016-03-01

    The contamination level of four phthalates in untreated and treated wastewater of fifteen wastewater treatment plants (WWTPs) and their fate in a full scale sequencing batch reactor (SBR) based WWTP was evaluated in this study. The four phthalates were diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP) and diethylhexyl phthalate (DEHP). All compounds were present in untreated wastewater with DEHP being present in the highest mean concentration of 28.4 ± 5.3 μg L(-1). The concentration was in the range of 7.3 μg L(-1) (BBP) to 28.4 μg L(-1) (DEHP) in untreated wastewater and 1.3 μg L(-1) (DBP) to 2.6 μg L(-1) (DEHP) in treated wastewater. The nutrient removal process and advance tertiary treatment based WWTPs showed the highest phthalate removal efficiencies of 87% and 93%, respectively. The correlation between phthalate removal and conventional performance of WWTPs was positive. Fate analysis of these phthalates in a SBR based WWTP showed that total removal of the sum of phthalates in a primary settling tank and SBR was 84% out of which 55% is removed by biodegradation and 29% was removed by sorption to primary and secondary sludge. The percentage removal of four phthalates in primary settling tanks was 18%. Comparison of the diluted effluent DEHP concentration with its environmental quality standards showed that the dilution in an effluent receiving water body can reduce the DEHP emissions to acceptable values.

  11. Simultaneous removal of phosphorus and nitrogen in a sequencing batch biofilm reactor with transgenic bacteria expressing polyphosphate kinase.

    Science.gov (United States)

    Du, Hongwei; Yang, Liuyan; Wu, Jun; Xiao, Lin; Wang, Xiaolin; Jiang, Lijuan

    2012-10-01

    To improve phosphorus removal from wastewater, we constructed a high-phosphate-accumulating microorganism, KTPPK, using Pseudomonas putida KT2440 as a host. The expression plasmid was constructed by inserting and expressing polyphosphate kinase gene (ppk) from Microcystis aeruginosa NIES-843 into broad-host-range plasmid, pBBR1MCS-2. KTPPK was then added to a sequencing batch biofilm reactor (SBBFR) using lava as a biological carrier. The results showed that SBBFR with KTPPK not only efficiently removed COD, NH(3)-N, and NO(3)(-)-N but also had a high removal capacity for PO(4)(3-)-P, resulting in a low phosphorus concentration remaining in the outflow of the SBBFR. The biofilm increased by 30-53% on the lava in the SBBFR that contained KTPPK after 11 days when compared with the reactor that contained P. putida KT2440. Real-time quantitative polymerase chain reaction confirmed that the copy of ppk was maintained at about 3.5 × 10(10) copies per μL general DNA in the biofilm after 20 days. Thus, the transgenic bacteria KTPPK could maintain a high density and promote phosphorus removal in the SBBFR. In summary, this study indicates that the use of SBBFR with transgenic bacteria has the potential to remove phosphorus and nitrogen from wastewater.

  12. Realization of microbial community stratification for single-stage nitrogen removal in a sequencing batch biofilter granular reactor.

    Science.gov (United States)

    Sun, Na; Ge, Chenghao; Ahmad, Hafiz Adeel; Gao, Baoyu; Ni, Shou-Qing

    2017-10-01

    A permanent microbial stratified nitrogen removal system coupling anammox with partial nitrification (SNAP) in a sequencing batch biofilter granular reactor (SBBGR) was successfully constructed for the treatment of ammonia-rich wastewater. With a nitrogen loading rate of 0.1kgNm(-3)·d(-1), the maximal ammonia and total nitrogen removal efficiencies could reach up to 96.08% and 84.86% on day 108, respectively. The pH, DO profiles revealed a switch of functional species (AOB and anammox) at a typical intermittent aeration cycle. qPCR and high throughput analyses certified a stable spatial microbial stratified community structure. Although, anammox preferred strict anaerobic environment while AOB needed oxygen, a special stratified community structure contributed to conquer this obstacle. Moreover, Bacteroidet, Chlorobi, OD1, Planctomycetes, and Proteobacteria were the dominant species in the SBBGR. Although we have predicted the possible pathways of nitrogen transformation, further studies are needed to validate the pathways in enzymology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Enhancement of extracellular lipid production by oleaginous yeast through preculture and sequencing batch culture strategy with acetic acid.

    Science.gov (United States)

    Huang, Xiang-Feng; Shen, Yi; Luo, Hui-Juan; Liu, Jia-Nan; Liu, Jia

    2017-09-19

    Oleaginous yeast Cryptococcus curvatus MUCL 29819, an acid-tolerant lipid producer, was tested to spill lipids extracellularly using different concentrations of acetic acid as carbon source. Extracellular lipids were released when the yeast was cultured with acetic acid exceeding 20g/L. The highest production of lipid (5.01g/L) was obtained when the yeast was cultured with 40g/L acetic acid. When the yeast was cultivated with moderate concentration (20g/L) of acetic acid, lipid production was further increased by 49.6% through preculture with 40g/L acetic acid as stimulant. When applying high concentration (40g/L) of acetic acid as carbon source in sequencing batch cultivation, extracellular lipids accounted up to 50.5% in the last cycle and the extracellular lipids reached 5.43g/L through the whole process. This study provides an effective strategy to enhance extracellular lipid production and facilitate the recovery of microbial lipids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Enhancing nitrogen removal from low carbon to nitrogen ratio wastewater by using a novel sequencing batch biofilm reactor.

    Science.gov (United States)

    Zou, Jinte; Li, Jun; Ni, Yongjiong; Wei, Su

    2016-12-01

    Removing nitrogen from wastewater with low chemical oxygen demand/total nitrogen (COD/TN) ratio is a difficult task due to the insufficient carbon source available for denitrification. Therefore, in the present work, a novel sequencing batch biofilm reactor (NSBBR) was developed to enhance the nitrogen removal from wastewater with low COD/TN ratio. The NSBBR was divided into two units separated by a vertical clapboard. Alternate feeding and aeration was performed in the two units, which created an anoxic unit with rich substrate content and an aeration unit deficient in substrate simultaneously. Therefore, the utilization of the influent carbon source for denitrification was increased, leading to higher TN removal compared to conventional SBBR (CSBBR) operation. The results show that the CSBBR removed up to 76.8%, 44.5% and 10.4% of TN, respectively, at three tested COD/TN ratios (9.0, 4.8 and 2.5). In contrast, the TN removal of the NSBBR could reach 81.9%, 60.5% and 26.6%, respectively, at the corresponding COD/TN ratios. Therefore, better TN removal performance could be achieved in the NSBBR, especially at low COD/TN ratios (4.8 and 2.5). Furthermore, it is easy to upgrade a CSBBR into an NSBBR in practice.

  15. Microbial community changes during the start-up of an anaerobic/aerobic/anoxic-type sequencing batch reactor.

    Science.gov (United States)

    Zhang, Qian; He, Jiajie; Wang, Hongyu; Ma, Fang; Yang, Kai; Wang, Jingbo

    2013-01-01

    An anaerobic/aerobic/anoxic-type sequencing batch reactor was started up during a summer rainy season to obtain enhanced biological phosphorus removal (EBPR), and its sludge microbial community was also monitored in the hope of observing the microbial community evolution of polyphosphate-accumulating organisms (PAOs). During the start-up process, a total of 17 bands of highest species richness were detected in the sludge microbial community, including Alpha-, Beta-, and Gamma- Proteobacteria, as well as Actinobacteria and Planctomycetes. Major microbial community structural change was observed in Rhodocyclus-related and Acinetobacter-related PAOs, glycogen-accumulating organisms (GAOs), and Actinobacteria. In contrast to the current belief that enrichment of PAOs is essential for the establishment of EBPR, PAOs were not favourably enriched in this study. Instead, Actinobacteria and GAOs overwhelmingly flourished. The overall conclusion of this study challenges the conventional view that EBPR cannot live without traditional PAOs. However, it suggests an non-negligible role of denitrifying phosphorus-accumulating bacteria in EBPR systems, as well as other uncultured bacteria.

  16. Effects of antibiotic resistance genes on the performance and stability of different microbial aggregates in a granular sequencing batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Wenci; Xue, Bin; Zhi, Weijia; Zhao, Tianyu; Yang, Dong; Qiu, Zhigang; Shen, Zhiqiang; Li, Junwen; Zhang, Bin, E-mail: tjzhangbin@sohu.com; Wang, Jingfeng, E-mail: jingfengwang@hotmail.com

    2016-03-05

    Highlights: • The inoculation of donor strain undermined treatment efficiencies of bioreactor. • The presence of RP4 plasmid affected the activity of ammonia-oxidizing bacteria. • Granular sludge shortened the residence time of RP4 in sludge. • Granular sludge system could reduce the ecological risk from ARGs. - Abstract: Antibiotic resistance genes (ARGs) have emerged as key factors in wastewater environmental contaminants and continue to pose a challenge for wastewater treatment processes. With the aim of investigating the performance of granular sludge system when treating wastewater containing a considerable amount of ARGs, a lab-scale granular sequencing batch reactor (GSBR) where flocculent and granular sludge coexisted was designed. The results showed that after inoculation of donor strain NH{sub 4}{sup +}-N purification efficiency diminished from 94.7% to 32.8% and recovered to 95.2% after 10 days. Meanwhile, RP4 plasmid had varying effects on different forms of microbial aggregates. As the size of aggregates increased, the abundance of RP4 in sludge decreased. The residence time of RP4 in granules with particle size exceeding 0.9 mm (14 days) was far shorter than that in flocculent sludge (26 days). Therefore, our studies conclude that with increasing number of ARGs being detected in wastewater, the use of granular sludge system in wastewater treatment processes will allow the reduction of ARGs transmissions and lessen potential ecological threats.

  17. Evaluation of volcanic pumice stone as media in fixed bed sequence batch reactor for atrazine removal from aquatic environments.

    Science.gov (United States)

    Derakhshan, Zahra; Ehrampoush, Mohammad Hassan; Mahvi, Amir Hossein; Faramarzian, Mohammad; Mokhtari, Mehdi; Mazloomi, Seyed Mohammad

    2016-12-01

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is a component of S-triazine. Its characteristics make it a pollutant of ecosystems and a probable human carcinogen. The present study evaluated volcanic pumice stone as a suitable media for biological growth and biofilm development in a fixed-bed sequencing batch reactor (FBSBR) for atrazine removal from aquatic environments. The FBSBR was fed with synthetic wastewater containing sucrose and atrazine at four hydraulic retention times to assess biodegradation of atrazine by a microbial consortium for removal from aquatic environments. The maximum efficiency for atrazine and soluble chemical oxygen demand removal were 97.9% and 98.9%, respectively. The results of this research showed that the Stover-Kincannon model was a very good fit (R(2) > 99%) for loading atrazine onto the FBSBR. Increasing the initial concentration of atrazine increased the removal efficiency. There was no significant inhibition of the mixed aerobic microbial consortia by the atrazine. Atrazine degradation depended on its initial concentration in the wastewater and the amount of atrazine in the influent. Although this system shows good potential for atrazine removal from aqueous environments, that remaining in the effluent does not yet meet international standards. Further research is required to make this system effective for removal of atrazine from the environment.

  18. First-order kinetics of landfill leachate treatment in a pilot-scale anaerobic sequence batch biofilm reactor.

    Science.gov (United States)

    Contrera, Ronan Cleber; da Cruz Silva, Katia Cristina; Morita, Dione Mari; Domingues Rodrigues, José Alberto; Zaiat, Marcelo; Schalch, Valdir

    2014-12-01

    This paper reports the kinetics evaluation of landfill leachate anaerobic treatment in a pilot-scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR). The experiment was carried out at room temperature (23.8 ± 2.1 °C) in the landfill area in São Carlos-SP, Brazil. Biomass from the bottom of a local landfill leachate stabilization pond was used as inoculum. After acclimated and utilizing leachate directly from the landfill, the AnSBBR presented efficiency over 70%, in terms of COD removal, with influent COD ranging from 4825 mg L(-1) to 12,330 mg L(-1). To evaluate the kinetics of landfill leachate treatment, temporal profiles of CODFilt. concentration were performed and a first-order kinetics model was adjusted for substrate consumption, obtaining an average k1 = 4.40 × 10(-5) L mgTVS(-1) d(-1), corrected to 25 °C. Considering the temperature variations, a temperature-activity coefficient θ = 1.07 was obtained. Statistical "Randomness" and "F" tests were used to successfully validate the model considered. Thus, the results demonstrate that the first-order kinetic model is adequate to model the anaerobic treatment of the landfill leachate in the AnSBBR.

  19. Characterization of the dissolved organic matter in sewage effluent of sequence batch reactor: the impact of carbon source

    Institute of Scientific and Technical Information of China (English)

    Jin GUO; Feng SHENG; Jianhua GUO; Xiong YANG; Mintao MA; Yongzhen PENG

    2012-01-01

    Dissolved organic matter (DOM) transforma- tion in sequence batch reactor (SBR) fed with carbon sources of different biodegradability was investigated. During the biologic degradation process, the low mole- cular weight (MW) fraction (〈 1 kDa) gradually decreased, while the refractory compounds with higher aromaticity were aggregated. Size exclusion chromatogra- phy (SEC) and fluorescence of excitation emission matrices (EEM) demonstrated that more biopolymers (polysaccharides or proteins) and humic-like substances were presented in the extracellular polymeric substance (EPS) extracted from the SBR fed with sodium acetate or glucose, while the EPS from SBR fed with slowly biodegradable dissolved organic carbon (DOC) substrate- starch had relatively less biopolymers. Comparing the EfOM in sewage effluent of three SBRs, the effluent from SBR fed with starch is more aromatic. Organic carbon with MW 〉 1 kDa as well as the hydrophobic fraction in DOM gradually increased with the carbon sources changing from sodium acetate to glucose and starch. The DOC fractiona- tion and the EEM all demonstrated that EfOM from the effluent of the SBR fed with starch contained more fulvic acid-like substances comparing with the SBR fed with sodium acetate and glucose.

  20. Biogas production in an anaerobic sequencing batch reactor by using tequila vinasses: effect of pH and temperature.

    Science.gov (United States)

    Arreola-Vargas, J; Jaramillo-Gante, N E; Celis, L B; Corona-González, R I; González-Álvarez, V; Méndez-Acosta, H O

    2016-01-01

    In recent years, anaerobic digestion has been recognized as a suitable alternative for tequila vinasses treatment due to its high energy recovery and chemical oxygen demand (COD) removal efficiency. However, key factors such as the lack of suitable monitoring schemes and the presence of load disturbances, which may induce unstable operating conditions in continuous systems, have limited its application at full scale. Therefore, the aim of this work was to evaluate the anaerobic sequencing batch reactor (AnSBR) configuration in order to provide a low cost and easy operation alternative for the treatment of these complex effluents. In particular, the AnSBR was evaluated under different pH-temperature combinations: 7 and 32 °C; 7 and 38 °C; 8 and 32 °C and 8 and 38 °C. Results showed that the AnSBR configuration was able to achieve high COD removal efficiencies (around 85%) for all the tested conditions, while the highest methane yield was obtained at pH 7 and 38 °C (0.29 L/g COD added). Furthermore, high robustness was found in all the AnSBR experiments. Therefore, the full-scale application of the AnSBR technology for the treatment of tequila vinasses is quite encouraging, in particular for small and medium size tequila industries that operate under seasonal conditions.

  1. Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors.

    Science.gov (United States)

    Guo, Xueping; Pang, Weihai; Dou, Chunling; Yin, Daqiang

    2017-05-01

    The abundant microbial community in biological treatment processes in wastewater treatment plants (WWTPs) may potentially enhance the horizontal gene transfer of antibiotic resistance genes with the presence of antibiotics. A lab-scale sequencing batch reactor was designed to investigate response of sulfonamide resistance genes (sulI, sulII) and bacterial communities to various concentrations of sulfamethoxazole (SMX) and chemical oxygen demand (COD) of wastewater. The SMX concentrations (0.001 mg/L, 0.1 mg/L and 10 mg/L) decreased with treatment time and higher SMX level was more difficult to remove. The presence of SMX also significantly reduced the removal efficiency of ammonia nitrogen, affecting the normal function of WWTPs. All three concentrations of SMX raised both sulI and sulII genes with higher concentrations exhibiting greater increases. The abundance of sul genes was positive correlated with treatment time and followed the second-order reaction kinetic model. Interestingly, these two genes have rather similar activity. SulI and sulII gene abundance also performed similar response to COD. Simpson index and Shannon-Weiner index did not show changes in the microbial community diversity. However, the 16S rRNA gene cloning and sequencing results showed the bacterial community structures varied during different stages. The results demonstrated that influent antibiotics into WWTPs may facilitate selection of ARGs and affect the wastewater conventional treatment as well as the bacteria community structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Effect of Initial Inoculum Source on the Microbial Community Structure and Dynamics in Laboratory-Scale Sequencing Batch Reactors

    KAUST Repository

    Hernandez, Susana

    2011-07-01

    Understanding the factors that shapes the microbial community assembly in activated sludge wastewater treatment processes provide a conceptual foundation for improving process performance. The aim of this study was to compare two major theories (deterministic theory and neutral theory) regarding the assembly of microorganisms in activated sludge: Six lab-scale activated sludge sequencing batch reactors were inoculated with activated sludge collected from three different sources (domestic, industrial, and sugar industry WWTP). Additionally, two reactors were seeded with equal proportion of sludge from the three WWTPs. Duplicate reactors were used for each sludge source (i.e. domestic, industrial, sugar and mix). Reactors were operated in parallel for 11 weeks under identical conditions. Bacterial diversity and community structure in the eight SBRs were assessed by 16S rRNA gene pyrosequencing. The 16S rRNA gene sequences were analyzed using taxonomic and clustering analysis and by measuring diversity indices (Shannon-weaver and Chao1 indices). Cluster analysis revealed that the microbial community structure was dynamic and that replicate reactors evolved differently. Also the microbial community structure in the SBRs seeded with a different sludge did not converge after 11 weeks of operation under identical conditions. These results suggest that history and distribution of taxa in the source inoculum were stronger regulating factors in shaping bacterial community structure than environmental factors. This supports the neutral theory which states that the assembly of the local microbial community from the metacommunity is random and is regulated by the size and diversity of the metacommunity. Furthermore, sludge performance, measured by COD and ammonia removal, confirmed that broad-scale functions (e.g. COD removal) are not influenced by dynamics in the microbial composition, while specific functions (e.g. nitrification) are more susceptible to these changes.

  3. Identification of trigger factors selecting for polyphosphate- and glycogen-accumulating organisms in aerobic granular sludge sequencing batch reactors.

    Science.gov (United States)

    Weissbrodt, David G; Schneiter, Guillaume S; Fürbringer, Jean-Marie; Holliger, Christof

    2013-12-01

    Nutrient removal performances of sequencing batch reactors using granular sludge for intensified biological wastewater treatment rely on optimal underlying microbial selection. Trigger factors of bacterial selection and nutrient removal were investigated in these novel biofilm systems with specific emphasis on polyphosphate- (PAO) and glycogen-accumulating organisms (GAO) mainly affiliated with Accumulibacter and Competibacter, respectively. In a first dynamic reactor operated with stepwise changes in concentration and ratio of acetate and propionate (Ac/Pr) under anaerobic feeding and aerobic starvation conditions and without wasting sludge periodically, propionate favorably selected for Accumulibacter (35% relative abundance) and stable production of granular biomass. A Plackett-Burman multifactorial experimental design was then used to screen in eight runs of 50 days at stable sludge retention time of 15 days for the main effects of COD concentration, Ac/Pr ratio, COD/P ratio, pH, temperature, and redox conditions during starvation. At 95% confidence level, pH was mainly triggering direct Accumulibacter selection and nutrient removal. The overall PAO/GAO competition in granular sludge was statistically equally impacted by pH, temperature, and redox factors. High Accumulibacter abundances (30-47%), PAO/GAO ratios (2.8-8.4), and phosphorus removal (80-100%) were selected by slightly alkaline (pH > 7.3) and lower mesophilic (temperature. In addition to alkalinity, non-limited organic conditions, 3-carbon propionate substrate, sludge age control, and phase length adaptation under alternating aerobic-anoxic conditions during starvation can lead to efficient nutrient-removing granular sludge biofilm systems.

  4. Effects of phenol on physicochemical properties and treatment performances of partial nitrifying granules in sequencing batch reactors

    Directory of Open Access Journals (Sweden)

    Mingming Gao

    2017-03-01

    Full Text Available This study attempts to investigate the effect of phenol on physicochemical properties and treatment performances of partial nitrifying granules (PNGs. Two sequencing batch reactors (SBRs fed with synthetic ammonium wastewaters were operated in absence (R1 or presence (R2 of phenol. The PNGs in R1 maintained excellent partial nitrification performance and relatively stable physicochemical properties, and exhibited compact and regular shaped structure with a cocci-dominant surface. However, as phenol concentration was stepwise increased from 0 to 300 mg/L in R2, filamentous bacteria appeared and gradually dominated within granules, which in turn resulted in settleability deterioration. Most notably, granules in R2 got easier to agglomerate in the reactor walls and then been washed out with effluent, leading to significant biomass loss, frequent outflow pipe blockage, and eventual system failure. The extracellular polymeric substances (EPS contents including proteins and polysaccharides in R2 reached 1.8 and 1.7 times of that in R1, respectively, indicating that the presence of phenol played an important role on EPS production. Removal efficiency of ammonium and phenol remained high, but dropped sharply when phenol concentration reached 300 mg/L. Moreover, the failed maintenance of partial nitrification was observed due to the revival of nitrite oxidizing bacteria (NOB within granules after phenol exposure, which was confirmed by quantitative fluorescence in situ hybridization (FISH analysis. Overall this study demonstrates that phenol had negative effects on PNGs, and pretreatment to eliminate phenolic substances is recommended when using PNGs for wastewater treatment.

  5. A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater.

    Science.gov (United States)

    Lemaire, Romain; Yuan, Zhiguo; Bernet, Nicolas; Marcos, Marcelino; Yilmaz, Gulsum; Keller, Jürg

    2009-06-01

    A sequencing batch reactor (SBR) system is demonstrated to biologically remove nitrogen, phosphorus and chemical oxygen demand (COD) to very low levels from abattoir wastewater. Each 6 h cycle contained three anoxic/anaerobic and aerobic sub-cycles with wastewater fed at the beginning of each anoxic/anaerobic period. The step-feed strategy was applied to avoid high-level build-up of nitrate or nitrite during nitrification, and therefore to facilitate the creation of anaerobic conditions required for biological phosphorus removal. A high degree removal of total phosphorus (>98%), total nitrogen (>97%) and total COD (>95%) was consistently and reliably achieved after a 3-month start-up period. The concentrations of total phosphate and inorganic nitrogen in the effluent were consistently lower than 0.2 mg P l(-1) and 8 mg N l(-1), respectively. Fluorescence in situ hybridization revealed that the sludge was enriched in Accumulibacter spp. (20-40%), a known polyphosphate accumulating organism, whereas the known glycogen accumulating organisms were almost absent. The SBR received two streams of abattoir wastewater, namely the effluent from a full-scale anaerobic pond (75%) and the effluent from a lab-scale high-rate pre-fermentor (25%), both receiving raw abattoir wastewater as feed. The pond effluent contained approximately 250 mg N l(-1) total nitrogen and 40 mg P l(-1) of total phosphorus, but relatively low levels of soluble COD (around 500 mg l(-1)). The high-rate lab-scale pre-fermentor, operated at 37 degrees C and with a sludge retention time of 1 day, proved to be a cheap and effective method for providing supplementary volatile fatty acids allowing for high-degree of biological nutrient removal from abattoir wastewater.

  6. The Performance of Advanced Sequencing Batch Reactor in Wastewater Treatment Plant to Remove Organic Materials and Linear Alkyl Benzene Sulfonates

    Directory of Open Access Journals (Sweden)

    Eslami

    2015-07-01

    Full Text Available Background Linear alkyl benzene sulfonates (LAS are the most important ionic detergents that produce negative ions in the environment. These compounds enter surface waters through domestic and industrial wastewaters and cause environmental hazards. Objectives The present study was aimed at assessing the performance of advanced sequencing batch reactor (SBR in wastewater treatment plant of Yazd, Iran, to remove organic materials and detergents. Materials and Methods The present research was a descriptive longitudinal study conducted on 96 input and output samples of SBR system over eight months from October 2012 to June 2013. The studied parameters were biochemical oxygen demand 5 (BOD5, chemical oxygen demand (COD, and detergents (LAS, which were assessed through standard methods. Finally, the study data were analyzed through analysis of variance (ANOVA using software package for statistical analysis (SPSS. Results The mean inputs of BOD5, COD, and LAS to the SBR system were 292.40 ± 45.28, 597.15 ± 97.30, and 3.29 ± 0.92 mg/L, and the mean outputs were 20.59 ± 3.54, 59.34 ± 9.47, and 0.606 ± 0.09 mg/L, respectively. The removal efficiency of BOD5, COD and LAS were respectively 92.95%, 90.06% and 81.6%. The results of ANOVA indicated that there was a significant relationship between the mean inputs and outputs of BOD5, COD, and the detergents (P ≤ 0.001. Conclusions With the proper operation of wastewater the treatment plant and increasing the retention time, the removal efficiency of the detergents increased. In addition, according to the environmental standards for BOD5, COD and the detergents, the results of the present study indicated that the outputs of these parameters from the SBR system were appropriate for agricultural irrigation.

  7. Partial nitritation of stored source-separated urine by granular activated sludge in a sequencing batch reactor.

    Science.gov (United States)

    Chen, Liping; Yang, Xiaoxiao; Tian, Xiujun; Yao, Song; Li, Jiuyi; Wang, Aimin; Yao, Qian; Peng, Dangcong

    2017-12-01

    The combination of partial nitritation (PN) and anaerobic ammonium oxidation (anammox) has been proposed as an ideal process for nitrogen removal from source-separated urine, while the high organic matters in urine cause instability of single-stage PN-anammox process. This study aims to remove the organic matters and partially nitrify the nitrogen in urine, producing an ammonium/nitrite solution suitable for anammox. The organic matters in stored urine were used as the electron donors to achieve 40% total nitrogen removal in nitritation-denitrification process in a sequencing batch reactor (SBR). Granular aggregates were observed and high mixed liquor suspended solids (9.5 g/L) were maintained in the SBR. Around 70-75% ammonium was oxidized to nitrite under the volumetric loading rates of 3.23 kg chemical oxygen demand (COD)/(m(3) d) and 1.86 kg N/(m(3) d), respectively. The SBR produced an ammonium/nitrite solution free of biodegradable organic matters, with a NO2(-)-N:NH4(+)-N of 1.24 ± 0.13. Fluorescence in situ hybridization images showed that Nitrosomonas-like ammonium-oxidizing bacteria, accounting for 7.2% of total bacteria, located in the outer layer (25 μm), while heterotrophs distributed homogeneously throughout the granular aggregates. High concentrations of free ammonia and nitrous acids in the reactor severely inhibited the growth of nitrite-oxidizing bacteria, resulting in their absence in the granular sludge. The microbial diversity analysis indicated Proteobacteria was the predominant phylum, in which Pseudomonas was the most abundant genus.

  8. Individual and combined effects of organic, toxic, and hydraulic shocks on sequencing batch reactor in treating petroleum refinery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Mizzouri, Nashwan Sh., E-mail: nashwan_mizzouri@yahoo.com [Department of Civil Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Department of Civil Engineering, University of Duhok, Kurdistan (Iraq); Shaaban, Md Ghazaly [Department of Civil Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2013-04-15

    Highlights: ► This research focuses on the combined impact of shock loads on the PRWW treatment. ► System failure resulted when combined shock of organic and hydraulic was applied. ► Recovery was achieved by replacing glucose with PRWW and OLR was decreased to half. ► Worst COD removals were 68.9, and 57.8% for organic, and combined shocks. -- Abstract: This study analyzes the effects of toxic, hydraulic, and organic shocks on the performance of a lab-scale sequencing batch reactor (SBR) with a capacity of 5 L. Petroleum refinery wastewater (PRWW) was treated with an organic loading rate (OLR) of approximately 0.3 kg chemical oxygen demand (COD)/kg MLSS d at 12.8 h hydraulic retention time (HRT). A considerable variation in the COD was observed for organic, toxic, hydraulic, and combined shocks, and the worst values observed were 68.9, 77.1, 70.2, and 57.8%, respectively. Improved control of toxic shock loads of 10 and 20 mg/L of chromium (VI) was identified. The system was adversely affected by the organic shock when a shock load thrice the normal value was used, and this behavior was repeated when the hydraulic shock was 4.8 h HRT. The empirical recovery period was greater than the theoretical period because of the inhibitory effects of phenols, sulfides, high oil, and grease in the PRWW. The system recovery rates from the shocks were in the following order: toxic, organic, hydraulic, and combined shocks. System failure occurred when the combined shocks of organic and hydraulic were applied. The system was resumed by replacing the PRWW with glucose, and the OLR was reduced to half its initial value.

  9. Influence of the type and source of inoculum on the start-up of anammox sequencing batch reactors (SBRs).

    Science.gov (United States)

    Guerrero, Lorna; Van Diest, Federico; Barahona, Andrea; Montalvo, Silvio; Borja, Rafael

    2013-01-01

    Anammox (anaerobic ammonium oxidation) is an attractive option for the treatment of wastewaters with a low carbon/nitrogen ratio. This is due to its low operating costs when compared to the classical nitrification-denitrification processes. However, one of the main disadvantages of the Anammox process is slow biomass growth, meaning a relatively slow reactor start-up. This becomes even more complicated when Anammox microorganisms are not present in the inoculum. Four inocula were studied for the start-up of Anammox sequencing batch reactors (SBRs) 2 L in volume agitated at 100 rpm, one of them using zeolite as a microbial support. Two inocula were taken from UASB reactors and two from aerobic reactors (activated sludge and SBR). The Anammox SBRs studied were operated at 36 ± 0.5°C. The results showed that the only inoculum that enabled the enrichment of the Anammox biomass came from an activated sludge plant treating wastewaters from a poultry slaughterhouse. This plant was designed for organic matter degradation and nitrogen removal (nitrification). This could explain the presence of Anammox microorganisms. This SBR operated without zeolite and achieved nitrite and ammonium removals of 96.3% and 68.4% respectively, at a nitrogen loading rate (NLR) of 0.1 kg N/m(3)/d in both cases. The lower ammonium removal was due to the fact that a sub-stoichiometric amount of nitrite (1 molar ratio) was fed. The specific Anammox activity (SAA) achieved was 0.18 g N/g VSS/d.

  10. Process evaluation of an alternating aerobic-anoxic process applied in a sequencing batch reactor for nitrogen removal

    Institute of Scientific and Technical Information of China (English)

    ZENG Wei; PENG Yongzhen; WANG Shuying

    2007-01-01

    In order to improve the nitrogen removal efficiency and save operational cost,the feasibility of the alternating aerobic-anoxic process(AAA process)applied in a sequencing batch reactor(SBR)system for nitrogen removal was investigated.Under sufficient influent alkalinity,the AAA process did not have an advantage over one aerobicanoxic(OAA)cycle on treatment efficiency because microorganisms had an adaptive stage at the alternating aerobic-anoxic transition,which would prolong the total cycling time.On the contrary,the AAA process made the system control more complicated.Under deficient influent alkalinity,when compared to OAA,the AAA process improved treatment efficiency and effluent quality with NH4+-N in the effluent below the detection limit.In the nitrification.the average stoichiometric ratio between alkalinity consumption and ammonia oxidation is calculated to be 7.07 mg CaCO3/mg NH4+-N.In the denitrification,the aver age stoichiometric ratio between alkalinity production and NO3- -N reduction is about 3.57 mg CaCO3/mg NO3- -N.As a result,half of the alkalinity previously consumed during the aerobic nitrification was recovered during the subsequent anoxic denitrification period.That was why the higher treatment efficiency in the AAA process was achieved without the supplement of bicarbonate alkalinity.If the lack of alkalinity in the influent was less than 1/3 of that needed.there is no need for external alkalinity addition and treatment efficiency was the same as that under sufficient influent alkalinity.Eyen if the lack of alkalinity in the influent was more than 1/3 of that needed.the AAA process was an optimal strategy because it reduced the external alkalinity addition and saved on operational cost.

  11. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sílvia C.R., E-mail: scrs@fe.up.pt; Boaventura, Rui A.R.

    2015-06-30

    Highlights: • Treating textile dyeing effluents by SBR coupled with waste sludge adsorption. • Metal hydroxide sludge: a good adsorbent for a direct textile dye. • Good adsorption capacities were found with the low-cost adsorbent. • Adsorbent performance considerably reduced by auxiliary products. • Color removal complies with discharge limits. - Abstract: Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD{sub 5} removals of 53–79%, but color removal was rather limited (10–18%). The performance was significantly enhanced by the addition of WS, with BOD{sub 5} removals above 91% and average color removals of 60–69%.

  12. Sequencing batch reactor enhances bacterial hydrolysis of starch promoting continuous bio-hydrogen production from starch feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shing-Der [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu (China); Lo, Yung-Chung; Huang, Tian-I. [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Lee, Kuo-Shing [Department of Safety Health and Environmental Engineering, Central Taiwan University of Science and Technology, Taichung (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China)

    2009-10-15

    Bio-hydrogen production from starch was carried out using a two-stage process combining thermophillic starch hydrolysis and dark H{sub 2} fermentation. In the first stage, starch was hydrolyzed by Caldimonas taiwanensis On1 using sequencing batch reactor (SBR). In the second stage, Clostridium butyricum CGS2 was used to produce H{sub 2} from hydrolyzed starch via continuous dark hydrogen fermentation. Starch hydrolysis with C. taiwanensis On1 was operated in SBR under pH 7.0 and 55 C. With a 90% discharge volume, the reducing sugar (RS) production from SBR reactor reached 13.94 g RS/L, while the reducing sugar production rate and starch hydrolysis rate was 0.92 g RS/h/L and 1.86 g starch/h/L, respectively, which are higher than using other discharge volumes. For continuous H{sub 2} production with the starch hydrolysate, the highest H{sub 2} production rate and yield was 0.52 L/h/L and 13.2 mmol H{sub 2}/g total sugar, respectively, under a hydraulic retention time (HRT) of 12 h. The best feeding nitrogen source (NH{sub 4}HCO{sub 3}) concentration was 2.62 g/L, attaining a good H{sub 2} production efficiency along with a low residual ammonia concentration (0.14 g/L), which would be favorable to follow-up photo H{sub 2} fermentation while using dark fermentation effluents as the substrate. (author)

  13. [Stability of Short-cut Nitrification Nitrogen Removal in Digested Piggery Wastewater with an Intermittently Aerated Sequencing Batch Reactor].

    Science.gov (United States)

    Song, Xiao-yan; Liu, Rui; Shui, Yong; Kawagishi, Tomoki; Zhan, Xin-min; Chen, Lu-jun

    2016-05-15

    Stability of short-cut nitrification nitrogen removal performance was studied in a step-feeding, intermittently aerated sequencing batch reactor (IASBR) at 30°C to treat digested piggery wastewater. Results showed that the nitrogen removal was greatly influenced by the ratio of chemical oxygen demand (COD) to total nitrogen (TN) in the influent. Nitrite nitrogen kept accumulating up to 800 mg · L⁻1 when the influent COD/TN ratio was 0.8 ± 0.2, and the removal rates of TN, ammonium nitrogen and total organic carbon (TOC) were only 18.3% ± 12.2%, 84.2% ± 10.3% and 60.7% ± 10.7%, respectively. By contrast, as the influent COD/ TN ratio was increased to 2.4 ± 0.5, the accumulated concentration of nitrite nitrogen sharply decreased from 800 mg · L⁻¹ to below 10 mg-L⁻¹, and the removal rates of TN, ammonium nitrogen and TOC were increased to over 90%, 95% and 85%, respectively. Gradually shortened hydraulic retention time ( HRT) reveales that the ammonia load is a restricting factor for nitrogen removal. The ammonia load should be controlled at no more than 0.30 kg · (m³ · d) ⁻¹, or else, the removal rates of TN, ammonium and TOC would be greatly decreased. The nitrite accumulation rate over the whole run was 74.6%-97.8% and the TN removal rate in the stable phase was over 90%. With efficient and stable short-cut nitrification-denitrification in a low COD/TN, moreover, and unnecessary for addition of alkaline, IASBR shows great advantage for treating wastewater with high concentration of ammonia while low COD/TN ratio.

  14. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors.

    Science.gov (United States)

    Wang, De-Gao; Du, Juan; Pei, Wei; Liu, Yongjun; Guo, Mingxing

    2015-04-15

    The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L(-1) and 0.343 μg L(-1); the total removal efficiency of VMSs is >60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg(-1). High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg(-1). No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d(-1)1000 inhabitants(-1) derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP.

  15. Biological treatment of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale Sequencing Batch Reactor (SBR).

    Science.gov (United States)

    Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim

    2010-08-01

    The production of highly polluting palm oil mill effluent (POME) has resulted in serious environmental hazards. While anaerobic digestion is widely accepted as an effective method for the treatment of POME, anaerobic treatment of POME alone has difficulty meeting discharge limits due to the high organic strength of POME. Hence, subsequent post-treatment following aerobic treatment is vital to meet the discharge limits. The objective of the present study is to investigate the aerobic treatment of anaerobically digested POME by using a sequencing batch reactor (SBR). The SBR performance was assessed by measuring Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) removal as well as Sludge Volume Index (SVI). The operating pH and dissolved oxygen concentrations were found to be 8.25-9.14 and 1.5-6.4 mg/L, respectively, throughout the experiment. The experimental results demonstrate that MLVSS, OLR and sludge loading rate (SLR) play a significant role in the organic removal efficiency of SBR systems and therefore, further investigation on these parameters was conducted to attain optimum SBR performance. Maximum COD (95-96%), BOD (97-98%) and TSS (98-99%) removal efficiencies were achieved at optimum OLR, SLR and MLVSS concentration ranges of 1.8-4.2 kg COD/m(3)day, 2.5-4.6 kg TSS/m(3)day and 22,000-25,000 mg/L, respectively. The effluent quality remained stable and complied with the discharge limit. At the same time, the sludge showed good settling properties with average SVI of 65. It is envisaged that the SBR process could complement the anaerobic treatment to produce final treated effluent which meets the discharge limit.

  16. Production of bio-hydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor.

    Science.gov (United States)

    Cheong, Dae-Yeol; Hansen, Conly L; Stevens, David K

    2007-02-15

    The pH and hydraulic retention time (HRT) of an anaerobic sequencing batch reactor (ASBR) were varied to optimize the conversion of carbohydrate-rich synthetic wastewater into bio-hydrogen. A full factorial design using evolutionary operation (EVOP) was used to determine the effect of the factors and to find the optimum condition of each factor required for high hydrogen production rate. Experimental results from 20 runs indicate that a maximum hydrogen production rate of 4,460-5,540 mL/L/day under the volumetric organic loading rate (VOLR) of 75 g-COD/L/day obtained at an observed design point of HRT = 8 h and pH = 5.7. The hydrogen production rate was strongly dependent on the HRT, and the effect was statistically significant (P 0.05) was found for the pH on the hydrogen production rate. When the ASBR conditions were set for a maximum hydrogen production rate, the hydrogen production yield and specific hydrogen production rate were 60-74 mL/g-COD and 330-360 mL/g-VSS/day, respectively. The hydrogen composition was 43-51%, and no methanogenesis was observed. Acetate, propionate, butyrate, valerate, caproate, and ethanol were major liquid intermediate metabolites during runs of this ASBR. The dominant fermentative types were butyrate-acetate or ethanol-acetate, representing the typical anaerobic pathway of Clostridium species. This hydrogen-producing ASBR had a higher hydrogen production rate, compared with that produced using continuous-flow stirred tank reactors (CSTRs). This study suggests that the hydrogen-producing ASBR is a promising bio-system for prolonged and stable hydrogen production.

  17. Evaluation of the microbial diversity in sequencing batch reactor treating linear alkylbenzene sulfonate under denitrifying and mesophilic conditions using swine sludge as inoculum

    OpenAIRE

    2015-01-01

    The objective of this study was to evaluate the degradation of Linear Alkylbenzene Sulfonate (LAS) in anaerobic sequencing batch reactor (ASBR) under denitrifying conditions using swine sludge as inoculum. The reactor was operated for 104 days with synthetic substrate containing nitrate, and LAS was added later (22 mg/L). Considering the added mass of the LAS, the adsorbed mass in the sludge and discarded along with the effluent, degradation of the surfactant at the end of operation was 87%, ...

  18. Effects of cycle-frequency and temperature on the performance of anaerobic sequencing batch reactors (ASBRs) treating swine waste.

    Science.gov (United States)

    Ndegwa, P M; Hamilton, D W; Lalman, J A; Cumba, H J

    2008-04-01

    Anaerobic digestion of animal waste is a technically viable process for the abatement of adverse environmental impacts caused by animal wastes; however, widespread acceptance has been plagued by poor economics. This situation is dismal if the technology is adapted for treating low strength animal slurries because of large digester-volume requirements and a corresponding high energy input. A possible technology to address these constraints is the anaerobic sequencing batch reactor (ASBR). The ASBR technology has demonstrated remarkable potential to improve the economics of treating dilute animal waste effluents. This paper presents preliminary data on the effects of temperature and frequency-cycle on the operation of an ASBR at a fixed hydraulic retention time (HRT). The results suggest that within the parameter range under consideration, temperature did not affect the biogas yield significantly, however, higher cycle-frequency had a negative effect. The biogas quality (%CH(4)) was not significantly affected by temperature nor by the cycle-frequency. The operating principle of the ASBR follows four phases: feed, react, settle, and decant in a cyclic mode. To improve the biogas production in an ASBR, one long react-phase was preferable compared to three shorter react-phases. Treatment of dilute manure slurries in an ASBR at 20 degrees C was more effective than at 35 degrees C; similarly more bio-stable effluents were obtained at low cycle-frequency. The treatment of dilute swine slurries in an ASBR at the lower temperature (20 degrees C) and lower cycle-frequency is, therefore, recommended for the bio-stabilization of dilute swine wastewaters. The results also indicate that significantly higher VFA degradation occurred at 20 degrees C than at 35 degrees C, suggesting that the treatment of dilute swine slurries in ASBRs for odor control might be more favorable at the lower than at the higher temperatures examined in this study. Volatile fatty acid reduction at the two

  19. A Novel Bioinformatics Strategy to Analyze Microbial Big Sequence Data for Efficient Knowledge Discovery: Batch-Learning Self-Organizing Map (BLSOM).

    Science.gov (United States)

    Iwasaki, Yuki; Abe, Takashi; Wada, Kennosuke; Wada, Yoshiko; Ikemura, Toshimichi

    2013-11-20

    With the remarkable increase of genomic sequence data of microorganisms, novel tools are needed for comprehensive analyses of the big sequence data available. The self-organizing map (SOM) is an effective tool for clustering and visualizing high-dimensional data, such as oligonucleotide composition on one map. By modifying the conventional SOM, we developed batch-learning SOM (BLSOM), which allowed classification of sequence fragments (e.g., 1 kb) according to phylotypes, solely depending on oligonucleotide composition. Metagenomics studies of uncultivable microorganisms in clinical and environmental samples should allow extensive surveys of genes important in life sciences. BLSOM is most suitable for phylogenetic assignment of metagenomic sequences, because fragmental sequences can be clustered according to phylotypes, solely depending on oligonucleotide composition. We first constructed oligonucleotide BLSOMs for all available sequences from genomes of known species, and by mapping metagenomic sequences on these large-scale BLSOMs, we can predict phylotypes of individual metagenomic sequences, revealing a microbial community structure of uncultured microorganisms, including viruses. BLSOM has shown that influenza viruses isolated from humans and birds clearly differ in oligonucleotide composition. Based on this host-dependent oligonucleotide composition, we have proposed strategies for predicting directional changes of virus sequences and for surveilling potentially hazardous strains when introduced into humans from non-human sources.

  20. A Novel Bioinformatics Strategy to Analyze Microbial Big Sequence Data for Efficient Knowledge Discovery: Batch-Learning Self-Organizing Map (BLSOM

    Directory of Open Access Journals (Sweden)

    Yuki Iwasaki

    2013-11-01

    Full Text Available With the remarkable increase of genomic sequence data of microorganisms, novel tools are needed for comprehensive analyses of the big sequence data available. The self-organizing map (SOM is an effective tool for clustering and visualizing high-dimensional data, such as oligonucleotide composition on one map. By modifying the conventional SOM, we developed batch-learning SOM (BLSOM, which allowed classification of sequence fragments (e.g., 1 kb according to phylotypes, solely depending on oligonucleotide composition. Metagenomics studies of uncultivable microorganisms in clinical and environmental samples should allow extensive surveys of genes important in life sciences. BLSOM is most suitable for phylogenetic assignment of metagenomic sequences, because fragmental sequences can be clustered according to phylotypes, solely depending on oligonucleotide composition. We first constructed oligonucleotide BLSOMs for all available sequences from genomes of known species, and by mapping metagenomic sequences on these large-scale BLSOMs, we can predict phylotypes of individual metagenomic sequences, revealing a microbial community structure of uncultured microorganisms, including viruses. BLSOM has shown that influenza viruses isolated from humans and birds clearly differ in oligonucleotide composition. Based on this host-dependent oligonucleotide composition, we have proposed strategies for predicting directional changes of virus sequences and for surveilling potentially hazardous strains when introduced into humans from non-human sources.

  1. Microbial succession within an anaerobic sequencing batch biofilm reactor (ASBBR treating cane vinasse at 55ºC

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Ferreira Ribas

    2009-08-01

    Full Text Available The aim of this work was to investigate the anaerobic biomass formation capable of treating vinasse from the production of sugar cane alcohol, which was evolved within an anaerobic sequencing batch biofilm reactor (ASBBR as immobilized biomass on cubes of polyurethane foam at the temperature of 55ºC. The reactor was inoculated with mesophilic granular sludge originally treating poultry slaughterhouse wastewater. The evolution of the biofilm in the polyurethane foam matrices was assessed during seven experimental phases which were thus characterized by the changes in the organic matter concentrations as COD (1.0 to 20.0 g/L. Biomass characterization proceeded with the examination of sludge samples under optical and scanning electron microscopy. The reactor showed high microbial morphological diversity along the trial. The predominance of Methanosaeta-like cells was observed up to the organic load of 2.5 gCOD/L.d. On the other hand, Methanosarcinalike microorganisms were the predominant archaeal population within the foam matrices at high organic loading ratios above 3.3 gCOD/L.d. This was suggested to be associated to a higher specific rate of acetate consumption by the later organisms.Este trabalho investigou a formação de um biofilme anaeróbio capaz de tratar vinhaça da produção de álcool de cana-de-açúcar, que evoluiu dentro de um reator operado em bateladas seqüenciais com biofilme (ASBBR tendo a biomassa imobilizada em cubos de espuma de poliuretano na temperatura de 55ºC. O reator foi inoculado com lodo granular mesofílico tratando água residuária de abatedouro de aves. A evolução do biofilme nas matrizes de espuma de poliuretano foi observada durante sete fases experimentais que foram caracterizadas por mudanças nas concentrações de matéria orgânica como DQO (1,0 a 20,0 g/L. A caracterização da biomassa foi feita por exames de amostras do lodo em microscopia ótica e eletrônica de varredura. O reator apresentou

  2. The Denitrifying Biological Phosphorus Removal Performance in Anaerobic/Anoxic Sequencing Batch Reactor: The Effect of Carbon Source

    OpenAIRE

    Gürtekin, Engin; ŞEKERDAĞ, Nusret

    2015-01-01

    In this study, the effect of carbon source on denitrifying biological phosphorus removal performance in acetate and glucose fed two anaerobic/anoxic sequencinq batch reactor (SBR) was investigated. Glucose and acetate were used as the substrates. In acetate and glucose fed reactors, the COD (Chemical Oxygen Demand) removal efficiencies were 91,90% and PO4-P removal efficiencies were 87,51% respectively. These results shows that the phosphorus removal efficiency is lower in glucose fed reactor.

  3. The Denitrifying Biological Phosphorus Removal Performance in Anaerobic/Anoxic Sequencing Batch Reactor: The Effect of Carbon Source

    OpenAIRE

    Gürtekin, Engin; ŞEKERDAĞ, Nusret

    2015-01-01

    In this study, the effect of carbon source on denitrifying biological phosphorus removal performance in acetate and glucose fed two anaerobic/anoxic sequencinq batch reactor (SBR) was investigated. Glucose and acetate were used as the substrates. In acetate and glucose fed reactors, the COD (Chemical Oxygen Demand) removal efficiencies were 91,90% and PO4-P removal efficiencies were 87,51% respectively. These results shows that the phosphorus removal efficiency is lower in glucose fed reactor.

  4. Influence of trace erythromycin and eryhthromycin-H2O on carbon and nutrients removal and on resistance selection in sequencing batch reactors (SBRs).

    Science.gov (United States)

    Fan, Caian; Lee, Patrick K H; Ng, Wun Jern; Alvarez-Cohen, Lisa; Brodie, Eoin L; Andersen, Gary L; He, Jianzhong

    2009-11-01

    Three sequencing batch reactors (SBRs) were operated in parallel to study the effects of trace erythromycin (ERY) and ERY-H2O on the treatment of a synthetic wastewater. Through monitoring (1) daily effluents and (2) concentrations of nitrogen (N) and phosphorous (P) in certain batch cycles of the three reactors operated from transient to steady states, the removal of carbon, N, and P was affected negligibly by ERY (100 microg/L) or ERY-H2O (50 microg/L) when compared with the control reactor. However, through analyzing microbial communities of the three steady state SBRs on high-density microarrays (Phylo-Chip), ERY, and ERY-H2O had pronounced effects on the community composition of bacteria related to N and P removal, leading to diversity loss and abundance change. The above observations indicated that resistant bacteria were selected upon exposure to ERY or ERY-H2O. Shortterm batch experiments further proved the resistance and demonstrated that ammonium oxidation (56-95%) was inhibited more significantly than nitrite oxidation (18-61%) in the presence of ERY (100, 400, or 800 microg/L). Therefore, the presence of ERY or ERY-H2O (at microg/L levels) shifted the microbial community and selected resistant bacteria, which may account for the negligible influence of the antibiotic ERY or its derivative ERY-H2O (at microg/L levels) on carbon, N, and P removal in the SBRs.

  5. Application of multivariate statistical projection techniques for monitoring a sequencing batch reactor (SBR); Aplicacion de tecnicas estadisticas de proyeccion multivariante para la monitorizacion de un SBR

    Energy Technology Data Exchange (ETDEWEB)

    Aguado Garcia, D.; Ferrer Riquelme, A. J.; Seco Torrecillas, A.; Ferrer Polo, J.

    2006-07-01

    Due to the increasingly stringent effluents quality requirements imposed by the regulations, monitoring wastewater treatment plants (WWTP) becomes extremely important in order to achieve efficient process operations. Nowadays, at modern WWTP large number of online process variables are collected and these variable are usually highly correlated. Therefore, appropriate techniques are required to extract the information from the huge amount of collected data. In this work, the application of multivariate statistical projection techniques is presented as an effective strategy for monitoring a sequencing batch reactor (SBR) operated for enhanced biological phosphorus removal. (Author)

  6. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sangchul, E-mail: sangchul.hwang@upr.edu [Department of Civil Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Martinez, Diana [Department of Civil Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Perez, Priscilla [Department of Biology, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Rinaldi, Carlos [Department of Chemical Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico)

    2011-12-15

    This study was conducted to evaluate the effect of commercially available engineered iron oxide nanoparticles coated with a surfactant (ENP{sub Fe-surf}) on effluent water quality from a lab-scale sequencing batch reactor as a model secondary biological wastewater treatment. Results showed that {approx}8.7% of ENP{sub Fe-surf} applied were present in the effluent stream. The stable presence of ENP{sub Fe-surf} was confirmed by analyzing the mean particle diameter and iron concentration in the effluent. Consequently, aqueous ENP{sub Fe-surf} deteriorated the effluent water quality at a statistically significant level (p < 0.05) with respect to soluble chemical oxygen demand, turbidity, and apparent color. This implied that ENP{sub Fe-surf} would be introduced into environmental receptors through the treated effluent and could potentially impact them. - Highlights: > Surfactant-coated engineered iron oxide nanoparticles (ENP{sub Fe-surf}) were assessed. > Effluent quality was analyzed from a sequencing batch reactor with ENP{sub Fe-surf}. > {approx}8.7% of ENP{sub Fe-surf} applied was present in the effluent. > ENP{sub Fe-surf} significantly (p < 0.05) deteriorated the effluent water quality. > Stable fraction of ENP{sub Fe-surf} will be introduced into environmental receptors. - Stable presence of surfactant-coated engineered iron oxides nanoparticles deteriorated the effluent water quality at a statistically significant level (p < 0.05).

  7. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors.

    Science.gov (United States)

    Lei, Chin-Nan; Whang, Liang-Ming; Chen, Po-Chun

    2010-09-01

    The amount of pollutants produced during manufacturing processes of thin-film transistor liquid crystal display (TFT-LCD) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. This study presents the treatment performance of one aerobic and one anoxic/oxic (A/O) sequencing batch reactors (SBRs) treating synthetic TFT-LCD wastewater containing dimethyl sulfoxide (DMSO), monoethanolamine (MEA), and tetra-methyl ammonium hydroxide (TMAH). The long-term monitoring results for the aerobic and A/O SBRs demonstrate that stable biodegradation of DMSO, MEA, and TMAH can be achieved without any considerably adverse impacts. The ammonium released during MEA and TMAH degradation can also be completely oxidized to nitrate through nitrification in both SBRs. Batch studies on biodegradation rates for DMSO, MEA, and TMAH under anaerobic, anoxic, and aerobic conditions indicate that effective MEA degradation can be easily achieved under all three conditions examined, while efficient DMSO and TMAH degradation can be attained only under anaerobic and aerobic conditions, respectively. The potential odor problem caused by the formation of malodorous dimethyl sulfide from DMSO degradation under anaerobic conditions, however, requires insightful consideration in treating DMSO-containing wastewater.

  8. Biogenic hydrogen conversion of de-oiled jatropha waste via anaerobic sequencing batch reactor operation: process performance, microbial insights, and CO2 reduction efficiency.

    Science.gov (United States)

    Kumar, Gopalakrishnan; Lin, Chiu-Yue

    2014-01-01

    We report the semicontinuous, direct (anaerobic sequencing batch reactor operation) hydrogen fermentation of de-oiled jatropha waste (DJW). The effect of hydraulic retention time (HRT) was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L ∗ d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d) with a DJW concentration of 200 g/L, temperature 55 °C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L ∗ d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30 °C, and pH 7.0. PCR-DGGE analysis revealed that combination of cellulolytic and fermentative bacteria were present in the hydrogen producing ASBR.

  9. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Kumar

    2014-01-01

    Full Text Available We report the semicontinuous, direct (anaerobic sequencing batch reactor operation hydrogen fermentation of de-oiled jatropha waste (DJW. The effect of hydraulic retention time (HRT was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L*d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L*d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR.

  10. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater.

    Science.gov (United States)

    Hwang, Sangchul; Martinez, Diana; Perez, Priscilla; Rinaldi, Carlos

    2011-12-01

    This study was conducted to evaluate the effect of commercially available engineered iron oxide nanoparticles coated with a surfactant (ENP(Fe-surf)) on effluent water quality from a lab-scale sequencing batch reactor as a model secondary biological wastewater treatment. Results showed that ~8.7% of ENP(Fe-surf) applied were present in the effluent stream. The stable presence of ENP(Fe-surf) was confirmed by analyzing the mean particle diameter and iron concentration in the effluent. Consequently, aqueous ENP(Fe-surf) deteriorated the effluent water quality at a statistically significant level (p < 0.05) with respect to soluble chemical oxygen demand, turbidity, and apparent color. This implied that ENP(Fe-surf) would be introduced into environmental receptors through the treated effluent and could potentially impact them.

  11. Treatment of liquid fraction of pig slurry by sequencing batch reactor; Tratamiento de la fraccion liquida de purines de cerdo mediante un reactor discontinuo secuencial (SBR)

    Energy Technology Data Exchange (ETDEWEB)

    Magri, A. [Universidad de Lleida (Spain)

    2000-07-01

    A laboratory scale sequencing batch reactor (SBR) was used for the treatment of the liquid fraction of pig slurry (FLPC). Alternating aerobic, anoxic and anaerobic conditions were used for the biological removal of organic matter, nitrogen and phosphorus. Although the low COD/TKN ratio of the FLPC, around 7, removal as high as 89% TS 98% COD, 98% N and 89% P were reached. The obtained effluent didn't reach Spanish water quality limits for discharge on natural watercourses. Therefore, improvements on cycle design and/or further tertiary treatment would be needed. However, results show that the SBR system is a promising technology for full scale implementation. (Author) 10 refs.

  12. Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time.

    Science.gov (United States)

    Buitrón, Germán; Carvajal, Carolina

    2010-12-01

    The effect of the temperature (25 and 35 degrees C), the hydraulic retention time, HRT, (12 and 24 h) and initial substrate concentration on hydrogen production from Tequila vinasse was studied using a sequencing batch reactor. When 25 degrees C and 12-h HRT were applied, only insignificant biogas quantities were produced; however, using 24 h of HRT and temperatures of 25 and 35 degrees C, biogas containing hydrogen was produced. A maximum volumetric hydrogen production rate of 50.5 mL H(2) L(-1) h(-1) (48 mmol H(2) L(reactor)(-1) d(-1)) and an average hydrogen content in the biogas of 29.2+/-8.8% were obtained when the reactor was fed with 3 g COD L(-1), at 35 degrees C and 12-h HRT. Methane formation was observed when the longer HRT was applied. Results demonstrated the feasibility to produce hydrogen from this waste without a previous pre-treatment.

  13. Tracing isolates from domestic human Campylobacter jejuni infections to chicken slaughter batches and swimming water using whole-genome multilocus sequence typing.

    Science.gov (United States)

    Kovanen, Sara; Kivistö, Rauni; Llarena, Ann-Katrin; Zhang, Ji; Kärkkäinen, Ulla-Maija; Tuuminen, Tamara; Uksila, Jaakko; Hakkinen, Marjaana; Rossi, Mirko; Hänninen, Marja-Liisa

    2016-06-02

    Campylobacter jejuni is the leading cause of bacterial gastroenteritis and chicken is considered a major reservoir and source of human campylobacteriosis. In this study, we investigated temporally related Finnish human (n=95), chicken (n=83) and swimming water (n=20) C. jejuni isolates collected during the seasonal peak in 2012 using multilocus sequence typing (MLST) and whole-genome MLST (wgMLST). Our objective was to trace domestic human C. jejuni infections to C. jejuni isolates from chicken slaughter batches and swimming water. At MLST level, 79% of the sequence types (STs) of the human isolates overlapped with chicken STs suggesting chicken as an important reservoir. Four STs, the ST-45, ST-230, ST-267 and ST-677, covered 75% of the human and 64% of the chicken isolates. In addition, 50% of the swimming water isolates comprised ST-45, ST-230 and ST-677. Further wgMLST analysis of the isolates within STs, accounting their temporal relationship, revealed that 22 of the human isolates (24%) were traceable back to C. jejuni positive chicken slaughter batches. None of the human isolates were traced back to swimming water, which was rather sporadically sampled. The highly discriminatory wgMLST, together with the patient background information and temporal relationship data with possible sources, offers a new, accurate approach to trace back the origin of domestic campylobacteriosis. Our results suggest that potentially a substantial proportion of campylobacteriosis cases during the seasonal peak most probably are due to other sources than chicken meat consumption. These findings warrant further wgMLST-based studies to reassess the role of other reservoirs in the Campylobacter epidemiology both in Finland and elsewhere.

  14. Effect of feeding time on the performance of a sequencing batch reactor treating a mixture of 4-CP and 2,4-DCP.

    Science.gov (United States)

    Sahinkaya, Erkan; Dilek, Filiz B

    2007-06-01

    This paper investigated the biodegradation kinetics of 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) separately in batch reactors and mixed in sequencing batch reactors (SBRs). Batch reactor experiments showed that both 4-CP and 2,4-DCP began to inhibit their own degradation at 53 and 25 mg l(-1), respectively, and that the Haldane equation gave a good fit to the experimental data because r(2) values were higher than 0.98. The maximum specific degradation rates (q(m)) were 130.3 and 112.4 mg g(-1) h for 4-CP and 2,4-DCP, respectively. The values of the half saturation (K(s)) and self-inhibition constants (K(i)) were 34.98 and 79.74 mg l(-1) for 4-CP, and 13.77 and 44.46 mg l(-1) for 2,4-DCP, respectively. The SBR was fed with a mixture of 220 mg l(-1) of 4-CP, 110 mg l(-1) of 2,4-DCP, and 300 mg l(-1) of peptone as biogenic substrate at varying feeding periods (0-8h) to evaluate the effect of feeding time on the performance of the SBR. During SBR operation, in addition to self-inhibition, 4-CP degradation was strongly and competitively inhibited by 2,4-DCP. The inhibitory effects were particularly pronounced during short feeding periods because of higher chlorophenol peak concentrations in the reactor. The competitive inhibition constant (K(ii)) of 2,4-DCP on 4-CP degradation was 0.17 mg l(-1) when the reactor was fed instantaneously (0 h feeding). During longer feedings, increased removal/loading rates led to lower chlorophenol peak concentrations at the end of feeding. Therefore, in multi-substrate systems feeding time plus reaction time should be determined based on both degradation kinetics and substrate interaction. During degradation, the meta cleavage of 4-chlorocatechol resulted in accumulation of a yellowish color because of the formation of 5-chloro-2-hydroxymuconic semialdehyde (CHMS), which was further metabolized. Isolation and enrichment of the chlorophenols-degrading culture suggested Pseudomonas sp. and Pseudomonas stutzeri to be the

  15. Digester performance and microbial community changes in thermophilic and mesophilic sequencing batch reactors fed with the fine sieved fraction of municipal sewage.

    Science.gov (United States)

    Ghasimi, Dara S M; Tao, Yu; de Kreuk, Merle; Abbas, Ben; Zandvoort, Marcel H; van Lier, Jules B

    2015-12-15

    This study investigates the start-up and operation of bench-scale mesophilic (35 °C) and thermophilic (55 °C) anaerobic sequencing batch reactor (SBR) digesters treating the fine sieved fraction (FSF) from raw municipal sewage. FSF was sequestered from raw municipal wastewater, in the Netherlands, using a rotating belt filter equipped with a 350 micron mesh. For the given wastewater, the major component of FSF was toilet paper, which is estimated to be 10-14 kg per year per average person in the western European countries. A seven months adaptation time was allowed for the thermophilic and mesophilic digesters in order to adapt to FSF as the sole substrate with varying dry solids content of 10-25%. Different SBR cycle durations (14, 9 and 2 days) were applied for both temperature conditions to study methane production rates, volatile fatty acids (VFAs) dynamics, lag phases, as well as changes in microbial communities. The prevailing sludge in the two digesters consisted of very different bacterial and archaeal communities, with OP9 lineage and Methanothermobacter being pre-dominant in the thermophilic digester and Bacteroides and Methanosaeta dominating the mesophilic one. Eventually, decreasing the SBR cycle period, thus increasing the FSF load, resulted in improved digester performances, particularly with regard to the thermophilic digester, i.e. shortened lag phases following the batch feedings, and reduced VFA peaks. Over time, the thermophilic digester outperformed the mesophilic one with 15% increased volatile solids (VS) destruction, irrespective to lower species diversity found at high temperature.

  16. Magnetic Fe3O4 nanoparticles induced effects on performance and microbial community of activated sludge from a sequencing batch reactor under long-term exposure.

    Science.gov (United States)

    Ma, Bingrui; Wang, Sen; Li, Zhiwei; Gao, Mengchun; Li, Shanshan; Guo, Liang; She, Zonglian; Zhao, Yangguo; Zheng, Dong; Jin, Chunji; Wang, Xuejiao; Gao, Feng

    2017-02-01

    The performance and microbial community of activated sludge from a sequencing batch reactor (SBR) were investigated under long-term exposure of magnetic Fe3O4 nanoparticles (Fe3O4 NPs). The COD removal showed a slight decrease at 5-60mg/L Fe3O4 NPs compared to 0mg/L Fe3O4 NPs, whereas the NH4(+)-N removal had no obvious variation at 0-60mg/L Fe3O4 NPs. It was found that 10-60mg/L Fe3O4 NPs improved the denitrification process and phosphorus removal of activated sludge. The microbial enzymatic activities of activated sludge could be affected by Fe3O4 NPs, which had similar variation trends to the nitrogen and phosphorus removal rates of activated sludge. The reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release demonstrated that Fe3O4 NPs led to the toxicity to activated sludge and destroyed the integrity of microbial cytomembrane. High throughput sequencing indicated that Fe3O4 NPs could obviously affect the microbial richness and diversity of activated sludge.

  17. Long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial community and enzymatic activity of activated sludge in a sequencing batch reactor.

    Science.gov (United States)

    Wang, Sen; Li, Zhiwei; Gao, Mengchun; She, Zonglian; Ma, Bingrui; Guo, Liang; Zheng, Dong; Zhao, Yangguo; Jin, Chunji; Wang, Xuejiao; Gao, Feng

    2017-02-01

    The long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial activity and microbial community of activated sludge were investigated in a sequencing batch reactor (SBR). The SBR performance had no evident change at 0-10 mg/L CuO NPs, whereas the CuO NPs concentration at 30-60 mg/L affected the COD, NH4(+)-N and soluble orthophosphate (SOP) removal, nitrogen and phosphorus removal rate and microbial enzymatic activity of activated sludge. Some CuO NPs might be absorbed on the surface of activated sludge or penetrate the microbial cytomembrane into the microbial cell interior of activated sludge. Compared to 0 mg/L CuO NPs, the reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release increased by 43.6% and 56.4% at 60 mg/L CuO NPs, respectively. The variations of ROS production and LDH release demonstrated that CuO NPs could induce the toxicity towards the microorganisms and destroy the integrity of microbial cytomembrane in the activated sludge. High throughput sequencing of 16S rDNA indicated that CuO NPs could evidently impact on the microbial richness, diversity and composition of activated sludge in the SBR.

  18. Effect of carbon to nitrogen (C:N) ratio on nitrogen removal from shrimp production waste water using sequencing batch reactor.

    Science.gov (United States)

    Roy, Dhiriti; Hassan, Komi; Boopathy, Raj

    2010-10-01

    The United States Marine Shrimp Farming Program (USMSFP) introduced a new technology for shrimp farming called recirculating raceway system. This is a zero-water exchange system capable of producing high-density shrimp yields. However, this system produces wastewater characterized by high levels of ammonia, nitrite, and nitrate due to 40% protein diet for the shrimp at a high density of 1,000 shrimp per square meter. The high concentrations of nitrate and nitrite (greater than 25 ppm) are toxic to shrimp and cause high mortality. So treatment of this wastewater is imperative in order to make shrimp farming viable. One simple method of treating high-nitrogen wastewater is the use of a sequencing batch reactor (SBR). An SBR is a variation of the activated sludge process, which accomplishes many treatment events in a single reactor. Removal of ammonia and nitrate involved nitrification and denitrification reactions by operating the SBR aerobically and anaerobically in sequence. Initial SBR operation successfully removed ammonia, but nitrate concentrations were too high because of carbon limitation in the shrimp production wastewater. An optimization study revealed the optimum carbon to nitrogen (C:N) ratio of 10:1 for successful removal of all nitrogen species from the wastewater. The SBR operated with a C:N ratio of 10:1 with the addition of molasses as carbon source successfully removed 99% of ammonia, nitrate, and nitrite from the shrimp aquaculture wastewater within 9 days of operation.

  19. Comparison of the bacterial community composition in the granular and the suspended phase of sequencing batch reactors.

    Science.gov (United States)

    Szabó, Enikö; Liébana, Raquel; Hermansson, Malte; Modin, Oskar; Persson, Frank; Wilén, Britt-Marie

    2017-09-05

    Granulation of activated sludge is an increasingly important area within the field of wastewater treatment. Granulation is usually achieved by high hydraulic selection pressure, which results in the wash-out of slow settling particles. The effect of the harsh wash-out conditions on the granular sludge ecosystem is not yet fully understood, but different bacterial groups may be affected to varying degrees. In this study, we used high-throughput amplicon sequencing to follow the community composition in granular sludge reactors for 12 weeks, both in the granular phase and the suspended phase (effluent). The microbiome of the washed out biomass was similar but not identical to the microbiome of the granular biomass. Certain taxa (e.g. Flavobacterium spp. and Bdellovibrio spp.) had significantly (p Zooglea sp.) had significantly lower relative abundance in the granules compared to the effluent, and appeared to be mainly located on the surface of granules and therefore subject to erosion. Despite being washed out, these taxa were among the most abundant members of the granular sludge communities and were likely growing fast in the reactors. The ratio between relative abundance in the granular biomass and in the effluent did not predict temporal variation of the taxa in the reactors, but it did appear to predict the spatial location of the taxa in the granules.

  20. Effect of pH on biologic degradation of Microcystis aeruginosa by alga-lysing bacteria in sequencing batch biofilm reactors

    Institute of Scientific and Technical Information of China (English)

    Hongjing LI; Mengli HAO; Jingxian LIU; Chen CHEN1; Zhengqiu FAN; Xiangrong WANG

    2012-01-01

    In this paper, the effect of pH on biological degradation of Microcystis aeruginosa by alga-lysing bacteria in laboratory-scale sequencing batch biofilm reactors (SBBRs) was investigated. After 10 d filming with waste activated sludge, the biological film could be formed, and the bioreactors in which laid polyolefin resin filler were used to treat algal culture. By comparing the removal efficiency of chlorophyll a at different aerobic time, the optimum time was determined as 5 h. Under pH 6.5, 7.5, and 8.5 conditions, the removal rates of Microcystis aeruginosa were respectively 75.9%, 83.6%, and 78.3% (in term of chlorophyll a), and that of Chemical Oxygen Demand (CODMn) were 30.6%, 35.8%, and 33.5%. While the removal efficiencies of ammonia nitrogen (NH+ -N) were all 100%. It was observed that the sequence of the removal efficiencies of algae, NH+ -N and organic matter were pH 7.5 〉 pH 8.5 〉 pH 6.5. The results showed that the dominant alga-lysing bacteria in the SBBRs was strain HM-01, which was identified as Bacillus sp. by Polymerase Chain Reaction (PCR) amplification of the 16S rRNA gene, Basic Local Alignment Search Tool (BLAST) analysis, and compar- ison with sequences in the GenBank nucleotide database. The algicidal activated substance which HM-01 strain excreted could withstand high temperature and pressure, also had better hydrophily and stronger polarity.

  1. Nitrogen and phosphorus treatment of marine wastewater by a laboratory-scale sequencing batch reactor with eco-friendly marine high-efficiency sediment.

    Science.gov (United States)

    Cho, Seonghyeon; Kim, Jinsoo; Kim, Sungchul; Lee, Sang-Seob

    2017-06-22

    We screened and identified a NH3-N-removing bacterial strain, Bacillus sp. KGN1, and a [Formula: see text] removing strain, Vibrio sp. KGP1, from 960 indigenous marine isolates from seawater and marine sediment from Tongyeong, South Korea. We developed eco-friendly high-efficiency marine sludge (eco-HEMS), and inoculated these marine bacterial strains into the marine sediment. A laboratory-scale sequencing batch reactor (SBR) system using the eco-HEMS for marine wastewater from land-based fish farms improved the treatment performance as indicated by 88.2% removal efficiency (RE) of total nitrogen (initial: 5.6 mg/L) and 90.6% RE of total phosphorus (initial: 1.2 mg/L) under the optimal operation conditions (food and microorganism (F/M) ratio, 0.35 g SCODCr/g mixed liquor volatile suspended solids (MLVSS)·d; dissolved oxygen (DO) 1.0 ± 0.2 mg/L; hydraulic retention time (HRT), 6.6 h; solids retention time (SRT), 12 d). The following kinetic parameters were obtained: cell yield (Y), 0.29 g MLVSS/g SCODCr; specific growth rate (µ), 0.06 d(-1); specific nitrification rate (SNR), 0.49 mg NH3-N/g MLVSS·h; specific denitrification rate (SDNR), 0.005 mg [Formula: see text]/g MLVSS·h; specific phosphorus uptake rate (SPUR), 0.12 mg [Formula: see text]/g MLVSS·h. The nitrogen- and phosphorus-removing bacterial strains comprised 18.4% of distribution rate in the microbial community of eco-HEMS under the optimal operation conditions. Therefore, eco-HEMS effectively removed nitrogen and phosphorus from highly saline marine wastewater from land-based fish farms with improving SNR, SDNR, and SPUR values in more diverse microbial communities. DO: dissolved oxygen; Eco-HEMS: eco-friendly high efficiency marine sludge; F/M: food and microorganism ratio; HRT: hydraulic retention time; ML(V)SS: mixed liquor (volatile) suspended solids; NCBI: National Center for Biotechnology Information; ND: not determined; qPCR: quantitative real-time polymerase chain

  2. Sludge reduction by direct addition of chlorine dioxide into a sequencing batch reactor under operational mode of repeatedly alternating aeration/non-aeration.

    Science.gov (United States)

    Peng, Hong; Liu, Weiyi; Li, Yuanmei; Xiao, Hong

    2015-01-01

    The effect of direct addition of chlorine dioxide (ClO2) into a repeatedly alternating aeration/non-aeration sequencing batch reactor (SBR) on its sludge reduction and process performance was investigated. The experimental results showed that the sludge reduction efficiency was 32.9% and the observed growth yield (Yobs) of SBR was 0.11 kg VSS (volatile suspended solids) /kg COD (chemical oxygen demand) for 80 days' operation at the optimum ClO2 dosage of 2.0 mg/g TSS (total suspended solids). It was speculated that cell lysis and cryptic growth, uncoupled metabolism and endogenous metabolism were jointly responsible for the sludge reduction in this study. COD, NH3-N, total nitrogen (TN) and total phosphorus (TP) in the effluent increased on average 29.47, 4.44, 1.97 and 0.05 mg/L, respectively. However, the effluent quality still satisfied the first-class B discharge standards for municipal wastewater treatment plants in China. In that case, the sludge maintained fine viability with the specific oxygen uptake rate (SOUR) being 14.47 mg O2/(g VSS·h) and demonstrated good settleability with the sludge volume index (SVI) being 116 mL/g. The extra cost of sludge reduction at the optimum ClO2 dosage was estimated to be 2.24 CNY (or 0.36 dollar)/kg dry sludge.

  3. Long-term effects of ZnO nanoparticles on nitrogen and phosphorus removal, microbial activity and microbial community of a sequencing batch reactor.

    Science.gov (United States)

    Wang, Sen; Gao, Mengchun; She, Zonglian; Zheng, Dong; Jin, Chunji; Guo, Liang; Zhao, Yangguo; Li, Zhiwei; Wang, Xuejiao

    2016-09-01

    The performance, microbial activity, and microbial community of a sequencing batch reactor (SBR) were investigated under the long-term exposure of ZnO nanoparticles (ZnO NPs). Low ZnO NPs concentration (less than 5mg/L) had no obvious effect on the SBR performance, whereas the removals of COD, NH4(+)-N, and phosphorus were affected at 10-60mg/L ZnO NPs. The variation trend of nitrogen and phosphorus removal rate was similar to that of microbial enzymatic activity with the increase of ZnO NPs concentrations. The richness and diversity of microbial community showed obvious variations at different ZnO NPs concentrations. ZnO NPs appeared on the surface and cell interior of activated sludge, and the Zn contents in the effluent and activated sludge increased with the increase of ZnO NPS concentration. The present results provide use information to understand the effect of ZnO NPS on the performance of wastewater biological treatment systems.

  4. Optimization of the moving-bed biofilm sequencing batch reactor (MBSBR) to control aeration time by kinetic computational modeling: Simulated sugar-industry wastewater treatment.

    Science.gov (United States)

    Faridnasr, Maryam; Ghanbari, Bastam; Sassani, Ardavan

    2016-05-01

    A novel approach was applied for optimization of a moving-bed biofilm sequencing batch reactor (MBSBR) to treat sugar-industry wastewater (BOD5=500-2500 and COD=750-3750 mg/L) at 2-4 h of cycle time (CT). Although the experimental data showed that MBSBR reached high BOD5 and COD removal performances, it failed to achieve the standard limits at the mentioned CTs. Thus, optimization of the reactor was rendered by kinetic computational modeling and using statistical error indicator normalized root mean square error (NRMSE). The results of NRMSE revealed that Stover-Kincannon (error=6.40%) and Grau (error=6.15%) models provide better fits to the experimental data and may be used for CT optimization in the reactor. The models predicted required CTs of 4.5, 6.5, 7 and 7.5 h for effluent standardization of 500, 1000, 1500 and 2500 mg/L influent BOD5 concentrations, respectively. Similar pattern of the experimental data also confirmed these findings.

  5. Enhancement of the performance of an anaerobic sequencing batch reactor treating low-strength wastewater through implementation of a variable stirring rate program

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.A.D.; Pinto, A.G.; Ratusznei, S.M.; Gedraite, R. [Instituto Maua de Tecnologia (IMT), Sao Caetano do Sul, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Quimica e de Alimentos]. E-mail: rodrigues@maua.br; Zaiat, M. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Hidraulica e Saneamento

    2004-09-01

    This work focuses on enhancement of the performance of an anaerobic sequencing batch reactor with a six-vertical-blade-disk-turbine impeller, containing granulated biomass treating low-strength synthetic wastewater, through a study of the feasibility of implementing a variable stirring rate program. The reactor was operated at 30 deg C and a six-hour cycle was used to treat approximately 2.0 L of the synthetic substrate with a chemical oxygen demand (COD) of nearly 500 mg/L. Two different stirring rate program were implemented: a constant rate of 50 rpm and a variable rate consisting of 75 rpm for one hour, 50 rpm for four hours and 25 rpm for 0.5 hour. The last 0.5 hour of the cycle was used for the settling step. In both cases, a very short start-up period and unfiltered and filtered substrate removal efficiencies of 81% and 88%, respectively, were attained. However, use of the variable stirring rate enhanced efficiency of the reactor dynamics without impairing biomass morphology, thus resulting in a reduction in the total cycle time and a possible decrease in energy consumption. Additionally, a simplified model of the anaerobic metabolic activity, using apparent kinetic parameters, was proposed as a consecutive first-order kinetic model with substrate and total volatile acid residual concentrations in order to analyze how the variable stirring rate affects reactor performance. (author)

  6. Biological treatment of a synthetic dairy wastewater in a sequencing batch biofilm reactor: Statistical modeling using optimization using response surface methodology

    Directory of Open Access Journals (Sweden)

    Zinatizadeh A.A.L.

    2011-01-01

    Full Text Available In this study, the interactive effects of initial chemical oxygen demand (CODin, biomass concentration and aeration time on the performance of a lab-scale sequencing batch biofilm reactor (SBBR treating a synthetic dairy wastewater were investigated. The experiments were conducted based on a central composite design (CCD and analyzed using response surface methodology (RSM. The region of exploration for treatment of the synthetic dairy wastewater was taken as the area enclosed by the influent comical oxygen demand (CODin (1000, 3000 and 5000 mg/l, biomass concentration (3000, 5000 and 7000 mg VSS/l and aeration time (2, 8 and 18 h boundaries. Two dependent parameters were measured or calculated as response. These parameters were total COD removal efficiency and sludge volume index (SVI. The maximum COD removal efficiencies (99.5% were obtained at CODin, biomass concentration and aeration time of 5000 mg COD/l, 7000 mg VSS/l and 18 h, respectively. The present study provides valuable information about interrelations of quality and process parameters at different values of the operating variables.

  7. Reduction of excess sludge in a sequencing batch reactor by lysis-cryptic growth using quick lime for disintegration under low temperature.

    Science.gov (United States)

    Lv, Xiao-Mei; Song, Ju-Sheng; Li, Ji; Zhai, Kun

    2016-10-06

    In the present study, quick-lime-based thermal-alkaline sludge disintegration (SD) under low temperature was combined with cryptic growth to investigate the excess sludge reduction efficiency in the sequencing batch reactor (SBR). The optimized condition of SD was as follows: T = 80℃, pH = 11, t = 180 min, and the SD rate was about 42.1%. With 65.6% of excess sludge disintegrated and returned to the SBR, the system achieved sludge reduction rate of about 40.1%. The lysis-cryptic growth still obtained satisfactory sludge reduction efficiency despite the comparative low SD rate, which suggested that disintegration rate might not be the decisive factor for cryptic-growth-based sludge reduction. Lysis-cryptic growth did not impact the effluent quality, yet the phosphorus removal performance was enhanced, with effluent total phosphorus concentration decreased by 0.3 mg/L (33%). Crystal compounds of calcium phosphate precipitate were detected in the system by Fourier transform infrared spectroscopy and X-ray diffraction, which indicated the phosphorus removal potential of SD using lime. Moreover, endogenous dehydrogenase activity of activated sludge in the lysis-cryptic system was enhanced, which was beneficial for sludge reduction. SD and cryptic growth in the present study demonstrates an economical and effective approach for sludge reduction.

  8. Treatment of low-strength wastewater using immobilized biomass in a sequencing batch external loop reactor: influence of the medium superficial velocity on the stability and performance

    Directory of Open Access Journals (Sweden)

    Camargo E.F.M.

    2002-01-01

    Full Text Available An anaerobic sequencing batch bioreactor with external circulation of the liquid phase wherein the biomass was immobilized on a polyurethane foam matrix was analyzed, focussing on the influence of the liquid superficial velocity on the reactor's stability and efficiency. Eight-hour cycles were carried out at 30ºC treating glucose-based synthetic wastewater around 500 mgDQO/L. The performance of the reactor was assessed without circulation and with circulating liquid superficial velocity between 0.034 and 0.188 cm/s. The reactor attained operating stability and a high organic matter removal was achieved when liquid was circulated. A first order model was used to evaluate the influence of the liquid superficial velocity (vS, resulting in an increase in the apparent first order parameter when vS increased from 0.034 to 0.094 cm/s. The parameter value remained unchangeable when 0.188 cm/s was applied, indicating that beyond this value no improvement on liquid mass transfer was observed. Moreover, the necessary time to reach the final removal efficiency decreased when liquid circulation was applied, indicating that a 3-hour cycle could be enough.

  9. Influence of the cycle length on the production of PHA and polyglucose from glycerol by bacterial enrichments in sequencing batch reactors.

    Science.gov (United States)

    Moralejo-Gárate, Helena; Palmeiro-Sánchez, Tania; Kleerebezem, Robbert; Mosquera-Corral, Anuska; Campos, José Luis; van Loosdrecht, Mark C M

    2013-12-01

    PHA, a naturally occurring biopolymer produced by a wide range of microorganisms, is known for its applications as bioplastic. In recent years the use of agro-industrial wastewater as substrate for PHA production by bacterial enrichments has attracted considerable research attention. Crude glycerol as generated during biodiesel production is a waste stream that due to its high organic matter content and low price could be an interesting substrate for PHA production. Previously we have demonstrated that when glycerol is used as substrate in a feast-famine regime, PHA and polyglucose are simultaneously produced as storage polymers. The work described in this paper aimed at understanding the effect of the cycle length on the bacterial enrichment process with emphasis on the distribution of glycerol towards PHA and polyglucose. Two sequencing batch reactors where operated with the same hydraulic and biomass retention time. A short cycle length (6 h) favored polyglucose production over PHA, whereas at long cycle length (24 h) PHA was more favored. In both communities the same microorganism appeared dominating, suggesting a metabolic rather than a microbial competition response. Moreover, the presence of ammonium during polymer accumulation did not influence the maximum amount of PHA that was attained.

  10. Biodegradation of industrial-strength 2,4-dichlorophenoxyacetic acid wastewaters in the presence of glucose in aerobic and anaerobic sequencing batch reactors.

    Science.gov (United States)

    Elefsiniotis, Panagiotis; Wareham, David G

    2013-01-01

    This research explored the biodegradability of 2,4-dichlorophenoxyacetic acid (2,4-D) in two laboratory-scale sequencing batch reactors (SBRs) that operated under aerobic and anaerobic conditions. The potential limit of 2,4-D degradation was investigated at a hydraulic retention time of 48 h, using glucose as a supplemental substrate and increasing feed concentrations of 2,4-D; namely 100 to 700 mg/L (i.e. industrial strength) for the aerobic system and 100 to 300 mg/L for the anaerobic SBR. The results revealed that 100 mg/L of 2,4-D was completely degraded following an acclimation period of 29 d (aerobic SBR) and 70 d (anaerobic SBR). The aerobic system achieved total 2,4-D removal at feed concentrations up to 600 mg/L which appeared to be a practical limit, since a further increase to 700 mg/L impaired glucose degradation while 2,4-D biodegradation was non-existent. In all cases, glucose was consumed before the onset of 2,4-D degradation. In the anaerobic SBR, 2,4-D degradation was limited to 120 mg/L.

  11. Study of the Effect of SRT on Microbial Diversity in Laboratory-scale Sequencing Batch Reactors Using Acclimated and Non-Acclimated Seed

    KAUST Repository

    Tellez, Berenice

    2011-07-07

    Solids Retention Time (SRT) is an important design parameter in activated sludge wastewater treatment systems. In this study, the effect of SRT on the bacterial community structure and diversity was examined in replicate lab-scale activated sludge sequencing batch reactors were operated for a period of 8 weeks and seeded with acclimated or non-acclimated sludge. Four SBRs (acclimated) were set up as duplicates and operated at an SRT of 2 days, and another set of four SBRs (non-acclimated) were operated at an SRT of 10 days. To characterize the microbial community in the SBRs, 16S rRNA gene pyrosequencing was used to measure biodiversity and to assess the reproducibility and stability of the bacterial community structure in replicate reactors. Diversity results showed that SBRs operated at an SRT of 10 days are more diverse than SBRs operated at an SRT of 2 days. This suggests that engineering decision could enhance diversity in activated sludge systems. Cluster analysis based on phylogenetic information revealed that the bacterial community structure was not stable and replicated SBRs evolved differently.

  12. 厌氧/缺氧SBR反硝化除磷过程的研究%Denitrification and Dephosphatation by Anaerobic/Anoxic Sequencing Batch Reactor

    Institute of Scientific and Technical Information of China (English)

    彭永臻; 李勇智; 王淑莹; 王亚宜

    2004-01-01

    Removal of denitrifying phosphorus was verified in a laboratory anaerobic/anoxic sequencing batch reactor (A/A SBR). The results obtained demonstrated that the anaerobic/anoxic strategy can enrich the growth of denitrifying phosphorus removing bacteria (DPB) and take up phosphate under anoxic condition by using nitrate as the electron acceptor. The phosphorus removal efficiency was higher than 90% and the effluent phosphate concentration was lower than 1 mg·L-1 after the A/A SBR was operated in a steady-state. When the chemical oxygen demand(COD) of influent was lower than 180mg· L-1, the more COD in the influent was, the higher efficiency of phosphorus removal could be attained under anoxic condition. However, simultaneous presence of carbon and nitrate would be detrimental to denitrifying phosphorus removal. Result of influence of sludge retention time (SRT) on denitrifying phosphorus removal suggested that the decrease of SRT caused a washout of DPB and consequently the enhanced biological phosphorus removal decreased with 8 days SRT. When the SRT was restored to 16 days, however, the efficiency of phosphorus removal was higher than 90%.

  13. Modeling chlorophenols degradation in sequencing batch reactors with instantaneous feed-effect of 2,4-DCP presence on 4-CP degradation kinetics.

    Science.gov (United States)

    Sahinkaya, Erkan; Dilek, Filiz B

    2007-08-01

    Two instantaneously fed sequencing batch reactors (SBRs), one receiving 4-chlorophenol (4-CP) (SBR4) only and one receiving mixture of 4-CP and 2,4-dichlorophenol (2,4-DCP) (SBRM), were operated with increasing chlorophenols concentrations in the feed. Complete degradation of chlorophenols and high-Chemical oxygen demand (COD) removal efficiencies were observed throughout the reactors operation. Only a fraction of biomass (competent biomass) was thought to be responsible for the degradation of chlorophenols due to required unique metabolic pathways. Haldane model developed based on competent biomass concentration fitted reasonably well to the experimental data at different feed chlorophenols concentrations. The presence of 2,4-DCP competitively inhibited 4-CP degradation and its degradation began only after complete removal of 2,4-DCP. Based on the experimental results, the 4-CP degrader's fraction in SBRM was estimated to be higher than that in SBR4 since 2,4-DCP degraders were also capable of degrading 4-CP due to similarity in the degradation pathways of both compounds.

  14. Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors.

    Science.gov (United States)

    Tang, Cong-Cong; Zuo, Wei; Tian, Yu; Sun, Ni; Wang, Zhen-Wei; Zhang, Jun

    2016-12-01

    This study investigated aeration rate (0, 0.2, 0.4 and 1.0L/min) effects on algal-bacterial symbiosis (ABS) and conventional activated sludge (CAS) systems while treating domestic wastewater in sequencing batch reactors. Experiment results showed that ABS system performed better on NH4(+)-N, total nitrogen and total phosphorus removal than CAS system, especially under lower aeration rate condition (0.2Lair/min), with removal efficiencies improvements of 18.90%, 12.45% and 46.66%, respectively. The mechanism study demonstrated that a favorable aeration rate reduction (half of traditional value in CAS system) could enhance algae growth but weaken hydraulic shear force, which contributed to the interactions between algae and sludge flocs and further stability of ABS system. In addition, algae growth protected both ammonia and nitrite oxidizing bacteria from optical damage. It is expected that the present study would provide some new insights into ABS system and be helpful for development of low-energy demand wastewater treatment process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration.

    Science.gov (United States)

    Kim, S-H; Han, S-K; Shin, H-S

    2005-01-01

    This study was conducted to compare the performance of a continuous-flow stirred-tank reactor (CSTR) and an anaerobic sequencing batch reactor (ASBR) for fermentative hydrogen production at various substrate concentrations. Heat-treated anaerobic sludge was utilized as an inoculum, and hydraulic retention time (HRT) for each reactor was maintained at 12 h. At the influent sucrose concentration of 5 g COD/L, start-up was not successful in both reactors. The CSTR, which was started-up at 10 g COD/L, showed stable hydrogen production at the influent sucrose concentrations of 10-60 g COD/L during 203 days. Hydrogen production was dependent on substrate concentration, resulting in the highest performance at 30 g COD/L. At the lower substrate concentration, the hydrogen yield (based on hexose consumed) decreased with biomass reduction and changes in fermentation products. At the higher substrate concentration, substrate inhibition on biomass growth caused the decrease of carbohydrate degradation and hydrogen yield (based on hexose added). The ASBR showed higher biomass concentration and carbohydrate degradation efficiency than the CSTR, but hydrogen production in the ASBR was less effective than that in the CSTR at all the substrate concentrations.

  16. Dynamic control of nutrient-removal from industrial wastewater in a sequencing batch reactor, using common and low-cost online sensors.

    Science.gov (United States)

    Dries, Jan

    2016-01-01

    On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the 'nitrate knee' in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.

  17. Population dynamics of bacteria for phosphorus removal in sequencing batch reactor (SBR) activated sludge processes. Kaibunshiki kassei odeiho ni okeru datsu rin tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Okada, M.; Ueno, Y.; Lin, C.; Murakami, A. (Tokyo University of Agriculture and Technology, Tokyo (Japan))

    1990-01-10

    As the phosphorus removal processes, chemical methods and biological methods are considered. This paper discussed a biological phosphorus removal method. Laboratory experiments of phosphorus removal in sequencing batch reactor (SBR) activated sludge processes were operated using synthetic waste water to clarify the effects of solid retention time (SRT) and organic substrates on the accumulation of bacteria having phosphorus removal ability (bio-P-bacteria). The accumulation of bio-P-bacteria was enhanced by large fluctuation in concentration of organic substances in the reactor fed in a short period of time under anaerobic condition. However, the accumulation did not be enhanced in the reactor operated with SRT less than 25 d. The specific growth rates of bio-P-bacteria were estimated to a range from 0.033/d to 0.035/d in the SBR activated sludge processes fed with glucose and polypeptone as substrates. Therefore, large SRT is necessary for the accumulation of bio-P-bacteria. 18 refs., 10 figs., 1 tab.

  18. Response of aerobic granular sludge to the long-term presence to nanosilver in sequencing batch reactors: reactor performance, sludge property, microbial activity and community.

    Science.gov (United States)

    Quan, Xiangchun; Cen, Yan; Lu, Fang; Gu, Lingyun; Ma, Jingyun

    2015-02-15

    The increasing use of silver nanoparticles (Ag NPs) raises concerns about their potential toxic effects on the environment. Granular shape sludge is a special type of microbial aggregate. The response of aerobic granular sludge (AGS) to the long-term presence of Ag NPs has not been well studied. In this study, AGS was exposed to 5 and 50mg/L Ag NPs in sequence batch reactors (SBRs) for 69 days, and its response was evaluated based on the sludge properties, microbial activity and community, and reactor performance. The results showed that Ag NPs caused inhibition to microbial activities of AGS from Day 35. At the end of 69 days of Ag NPs exposure, the microbial activity of AGS was significantly inhibited in terms of inhibitions of the ammonia oxidizing rate (33.0%), respiration rate (17.7% and 45.6%) and denitrification rate (6.8%), as well as decreases in the ammonia mono-oxygenase and nitrate reductase activities. During the long-term exposure, the AGS maintained its granular shape and large granule size (approximately 900 μm); the microbial community of AGS slightly changed, but the dominant microbial population remained. Overall, the AGS tolerated the toxicity of Ag NPs well, but a long-term exposure may produce chronic toxicity to the AGS, which is concerning.

  19. Anaerobic digestion of kitchen wastes in a single-phased anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO2

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bo; HE Zheng-guang; ZHANG Li-li; XU Jian-bo; SHI Hong-zhuan; CAI Wei-min

    2005-01-01

    The performance of the single-stage anaerobic digestion of kitchen wastes was investigated in an anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO2. The ASBR was operated at four chemical oxygen demand(COD) loading rates, 2.8,respectively. The operation of the reactor with gas-phased absorb of CO2 was stable in spite of the low pH (2.6-3.9) and high concentration of TS(142 g/L) of input mixture. The output volatile fatty acid(VFA) concentration was between 2.7-4.7 g/L and had no inhibition on the methanogenic microorganism. The reactor without gas-phased absorb of CO2 became acidified when the total COD alkaline will be required to keep pH in the appropriate range for the methanogenic microorganism based on theoretical calculation. Gasphased absorb of CO2 effectively reduced the alkaline consumption, hence avoided excessive cation into the reactor.

  20. Performance and microbial community of a sequencing batch biofilm reactor treating synthetic mariculture wastewater under long-term exposure to norfloxacin.

    Science.gov (United States)

    Zheng, Dong; Chang, Qingbo; Li, Zhiwei; Gao, Mengchun; She, Zonglian; Wang, Xuejiao; Guo, Liang; Zhao, Yangguo; Jin, Chunji; Gao, Feng

    2016-12-01

    The performance and microbial community of a sequencing batch biofilm reactor (SBBR) treating synthetic mariculture wastewater were evaluated under long-term exposure to norfloxacin (NFX) due to the overuse of antibiotics during the mariculture. The COD and NH4(+)-N removals had no distinct change at 0-6mgL(-1) NFX and were inhibited at 6-35mgL(-1) NFX. The specific oxygen uptake rate (SOUR), specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR) and specific nitrate reduction rate (SNRR) of the biofilm kept a decreasing tendency with the increase of NFX concentration from 0 to 35mgL(-1). The presence of NFX promoted the microorganisms to secrete more extracellular polymeric substances (EPS) and affected the chemical compositions of EPS. The microbial richness and diversity showed some obvious variations at different NFX concentrations. The present results demonstrated that NFX inhibited the SBBR performance and should decrease the NFX dosage in the mariculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Comparison of three combined sequencing batch reactor followed by enhanced Fenton process for an azo dye degradation: Bio-decolorization kinetics study.

    Science.gov (United States)

    Azizi, A; Alavi Moghaddam, M R; Maknoon, R; Kowsari, E

    2015-12-15

    The purpose of this research was to compare three combined sequencing batch reactor (SBR) - Fenton processes as post-treatment for the treatment of azo dye Acid Red 18 (AR18). Three combined treatment systems (CTS1, CTS2 and CTS3) were operated to investigate the biomass concentration, COD removal, AR18 dye decolorization and kinetics study. The MLSS concentration of CTS2 reached 7200 mg/L due to the use of external feeding in the SBR reactor of CTS2. The COD concentration remained 273 mg/L and 95 mg/L (initial COD=3270 mg/L) at the end of alternating anaerobic-aerobic SBR with external feeding (An-A MSBR) and CTS2, respectively, resulting in almost 65% of Fenton process efficiency. The dye concentration of 500 mg/L was finally reduced to less than 10mg/L in all systems indicating almost complete AR18 decolorization, which was also confirmed by UV-vis analysis. The dye was removed following two successive parts as parts 1 and 2 with pseudo zero-order and pseudo first-order kinetics, respectively, in all CTSs. Higher intermediate metabolites degradation was obtained using HPLC analysis in CTS2. Accordingly, a combined treatment system can be proposed as an appropriate and environmentally-friendly system for the treatment of the azo dye AR18 in wastewater.

  2. Evaluation of a sequencing batch reactor sewage treatment rig for investigating the fate of radioactively labelled pharmaceuticals: Case study of propranolol.

    Science.gov (United States)

    Popple, T; Williams, J B; May, E; Mills, G A; Oliver, R

    2016-01-01

    Pharmaceuticals are frequently detected in the aquatic environment, and have potentially damaging effects. Effluents from sewage treatment plants (STPs) are major sources of these substances. The use of sequencing batch reactor (SBR) STPs, involving cycling between aerobic and anoxic conditions to promote nitrification and denitrification, is increasing but these have yet to be understood in terms of removal of pharmaceutical residues. This study reports on the development of a laboratory rig to simulate a SBR. The rig was used to investigate the fate of radiolabelled propranolol. This is a commonly prescribed beta blocker, but with unresolved fate in STPs. The SBR rig (4.5 L) was operated on an 8 h batch cycle with settled sewage. Effective treatment was demonstrated, with clearly distinct treatment phases and evidence of nitrogen removal. Radiolabelled (14)C-propranolol was dosed into both single (closed) and continuous (flow-through) simulations over 13 SBR cycles. Radioactivity in CO2 off-gas, biomass and liquid was monitored, along with the characteristics of the sewage. This allowed apparent rate constants and coefficients for biodegradation and solid:water partitioning to be determined. Extrapolation from off-gas radioactivity measurements in the single dose 4-d study suggested that propranolol fell outside the definitions of being readily biodegradable (DegT50 = 9.1 d; 60% biodegradation at 12.0 d). During continuous dosing, 63-72% of propranolol was removed in the rig, but less than 4% of dose recovered as (14)CO2, suggesting that biodegradation was a minor process (Kbiol(M) L kg d(-1) = 22-49) and that adsorption onto solids dominated, giving rise to accumulations within biomass during the 17 d solid retention time in the SBR. Estimations of adsorption isotherm coefficients were different depending on which of three generally accepted denominators representing sorption sites was used (mixed liquor suspended solids, reactor COD or mass of waste

  3. Multiple sequence elements facilitate Chp Rho GTPase subcellular location, membrane association, and transforming activity.

    Science.gov (United States)

    Chenette, Emily J; Mitin, Natalia Y; Der, Channing J

    2006-07-01

    Cdc42 homologous protein (Chp) is a member of the Rho family of small GTPases and shares significant sequence and functional similarity with Cdc42. However, unlike classical Rho GTPases, we recently found that Chp depends on palmitoylation, rather than prenylation, for association with cellular membranes. Because palmitoylation alone is typically not sufficient to promote membrane association, we evaluated the possibility that other carboxy-terminal residues facilitate Chp subcellular association with membranes. We found that Chp membrane association and transforming activity was dependent on the integrity of a stretch of basic amino acids in the carboxy terminus of Chp and that the basic amino acids were not simply part of a palmitoyl acyltransferase recognition motif. We also determined that the 11 carboxy-terminal residues alone were sufficient to promote Chp plasma and endomembrane association. Interestingly, stimulation with tumor necrosis factor-alpha activated only endomembrane-associated Chp. Finally, we found that Chp membrane association was not disrupted by Rho guanine nucleotide dissociation inhibitory proteins, which are negative regulators of Cdc42 membrane association and biological activity. In summary, the unique carboxy-terminal sequence elements that promote Chp subcellular location and function expand the complexity of mechanisms by which the cellular functions of Rho GTPases are regulated.

  4. The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR).

    Science.gov (United States)

    Cao, Yongfeng; Zhang, Chaosheng; Rong, Hongwei; Zheng, Guilin; Zhao, Limin

    2017-01-01

    The effect of dissolved oxygen concentration (DO) on simultaneous nitrification and denitrification was studied in a moving bed sequencing batch reactor (MBSBR) by microelectrode measurements and by real-time PCR. In this system, the biofilm grew on polyurethane foam carriers used to treat municipal sewage at five DO concentrations (1.5, 2.5, 3.5, 4.5 and 5.5 mg/L). The results indicated that the MBSBR exhibited good removal of chemical oxygen demand (92.43%) and nitrogen (83.73%) when DO concentration was 2.5 mg/L. Increasing the oxygen concentration in the reactor was inhibitory to denitrification. Microelectrode measurements showed that the thickness of oxygen penetration increased from 1.2 to 2.6 mm when the DO concentration (from 1.5 mg/L to 5.5 mg/L) in the system increased. Oxygen diffusion was not significantly limited by the boundary layer surrounding the carrier and had the largest slope when DO concentration was 2.5 mg/L. The real-time PCR analysis indicated that the amount of the ammonia-oxidizing bacteria and nitrite-oxidizing bacteria increased slowly as DO concentration increased. The proportions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, as a percentage of the total bacteria, were low with average values of 0.063% and 0.67%, respectively. When the DO concentration was 2.5 mg/L, oxygen diffusion was optimal and ensured the optimal bacterial community structure and activity; under these conditions, the MBSBR was efficient for total inorganic nitrogen removal. Changing the DO concentration could alter the aerobic zone and the bacterial community structure in the biofilm, directly influencing the simultaneous nitrification and denitrification activity in MBSBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Using a Statistical Model to Examine the Effect of COD: SO42− Ratio, HRT and LA Concentration on Sulfate Reduction in an Anaerobic Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Rajesh Singh

    2014-11-01

    Full Text Available Taguchi statistical design, an orthogonal array (OA method, was used to study the impact of the COD/SO42− ratio, hydraulic retention time (HRT and linoleic acid (LA concentration on sulfate (SO42− reduction in an anaerobic sequencing batch reactor using glucose as the electron donor. Based on the OA, optimum condition for maximum SO42− reduction was evaluated. Increasing the COD/SO42− ratio and HRT caused decreasing SO42− reduction while increased SO42− reduction was observed with increasing LA concentration (1 g L−1. In control (not fed LA cultures, higher SO42− reduction (87% ± 3% was observed at a low COD/SO42− ratio of 0.8. This indicates that increasing SO42− reduction was observed at increasing SO42− loading rates. In general, results from this study reveal that limiting the substrate concentration with high SO42− levels (low COD/SO42− ratio favors high SO42− removal. Surface plots were used to evaluate the significant interactions between the experimental factors. Accuracy of the model was verified using an analysis of residuals. Optimum conditions for maximum SO42− reduction (97.61% were observed at a COD/SO42− ratio of 0.8 (level 1, 12 h HRT (level 1 together with 1000 mg L−1 LA addition (level 3. In general, the Taguchi OA provided a useful approach for predicting the percent SO42− reduction in inhibited mixed anaerobic cultures within the factor levels investigated.

  6. Nitrogen removal via the nitrite pathway during wastewater co-treatment with ammonia-rich landfill leachates in a sequencing batch reactor.

    Science.gov (United States)

    Fudala-Ksiazek, S; Luczkiewicz, A; Fitobor, K; Olanczuk-Neyman, K

    2014-06-01

    The biological treatment of ammonia-rich landfill leachates due to an inadequate C to N ratio requires expensive supplementation of carbon from an external carbon source. In an effort to reduce treatment costs, the objective of the study was to determine the feasibility of nitrogen removal via the nitrite pathway during landfill leachate co-treatment with municipal wastewater. Initially, the laboratory-scale sequencing batch reactor (SBR) was inoculated with nitrifying activated sludge and fed only raw municipal wastewater (RWW) during a start-up period of 9 weeks. Then, in the co-treatment period, consisting of the next 17 weeks, the system was fed a mixture of RWW and an increasing quantity of landfill leachates (from 1 to 10% by volume). The results indicate that landfill leachate addition of up to 10% (by volume) influenced the effluent quality, except for BOD5. During the experiment, a positive correlation (r(2) = 0.908) between ammonia load in the influent and nitrite in the effluent was observed, suggesting that the second step of nitrification was partially inhibited. The partial nitrification (PN) was also confirmed by fluorescence in situ hybridisation (FISH) analysis of nitrifying bacteria. Nitrogen removal via the nitrite pathway was observed when the oxygen concentration ranged from 0.5 to 1.5 mg O2/dm(3) and free ammonia (FA) ranged from 2.01 to 35.86 mg N-NH3/dm(3) in the aerobic phase. Increasing ammonia load in wastewater influent was also correlated with an increasing amount of total nitrogen (TN) in the effluent, which suggested insufficient amounts of assimilable organic carbon to complete denitrification. Because nitrogen removal via the nitrite pathway is beneficial for carbon-limited and highly ammonia-loaded mixtures, obtaining PN can lead to a reduction in the external carbon source needed to support denitrification.

  7. Optimization of main factors associated with nitrogen removal in hybrid sludge sequencing batch reactor with step-feeding of swine wastewater.

    Science.gov (United States)

    Han, Zhiying; Wu, Weixiang; Ding, Ying; Zhu, Jun; Chen, Yingxu

    2008-02-01

    To attain a high nitrogen removal efficiency and good sludge settleability in a step-fed sequencing batch reactor (SFSBR) treating swine wastewater, L(9)(3(4)) orthogonal experiments were carried out to optimize main factors associated with nitrogen removal, namely, the influent C/N ratio, feeding volume ratio, nitrogen loading rate and aeration intensity. Results showed that nitrogen loading rate contributed most for the build-up of NO(2)(-)-N, NO(3)(-)-N and NH(4)(+)-N in the effluent, while aeration intensity was the most important factor for net nitrogen removal efficiency based on the initial and final nitrogen concentrations in the SFSBR cycle. Additionally, the periodic starvation created by stepwise feeding was the major inducing force for granulation in the SFBSR process and the influent C/N ratio had a profound influence on sludge settleability and granular sludge stability in terms of sludge volume index (SVI) and the fraction of granular sludge with diameter over 0.5 mm (f(0.5 mm)), respectively. Considering the most and secondary important control factor for individual response index, the optimal operating condition for nitrogen removal of SFSBR treating swine wastewater was determined as A(3)B(3)C(1)D(2), i.e., influent C/N ratio 7.0 mg COD/mg NH(4)(+)-N, feeding volume ratio 3:1, nitrogen loading rate 0.026 g NH(4)(+)-N/gVSS . d and aeration intensity 4.2 L/m(3) . s, respectively. Under the optimal operating conditions, inorganic nitrogen concentration in the effluent, net nitrogen removal efficiency, SVI and f(0.5 mm) reached 21 mg/L, 72 %, 40.7 mL/g and 4.3 %, respectively.

  8. Long-term exposure of bacterial and protozoan communities to TiO2 nanoparticles in an aerobic-sequencing batch reactor

    Science.gov (United States)

    Supha, Chitpisud; Boonto, Yuphada; Jindakaraked, Manee; Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat

    2015-06-01

    Titanium dioxide (TiO2) nanopowders at different concentrations (0-50 mg L-1) were injected into an aerobic-sequencing batch reactor (SBR) to investigate the effects of long-term exposure to nanoparticles on bacterial and protozoan communities. The detection of nanoparticles in the bioflocs was analyzed by scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The SBR wastewater experiments were conducted under the influence of ultraviolet light with photocatalytic TiO2. The intrusion of TiO2 nanoparticles was found both on the surface and inside of the bioflocs. The change of microbial population in terms of mixed liquor-suspended solids and the sludge volume index was monitored. The TiO2 nanoparticles tentatively exerted an adverse effect on the microbial population, causing the reduction of microorganisms (both bacteria and protozoa) in the SBR. The respiration inhibition rate of the bacteria was increased, and the viability of the microbial population was reduced at the high concentration (50 mg L-1) of TiO2. The decreasing number of protozoa in the presence of TiO2 nanoparticles during 20 days of treatment with 0.5 and 1.0 mg L-1 TiO2 is clearly demonstrated. The measured chemical oxygen demand (COD) in the effluent tends to increase with a long-term operation. The increase of COD in the system suggests a decrease in the efficiency of the wastewater treatment plant. However, the SBR can effectively remove the TiO2 nanoparticles (up to 50 mg L-1) from the effluent.

  9. 基于神经网络的SBBR系统建模方法%Modeling based on neural network for sequencing batch biofilm reactor system

    Institute of Scientific and Technical Information of China (English)

    卿晓霞; 梁汉超; 周健; 余建平

    2012-01-01

    It is difficult to build the model of sequencing batch biofilm reactor. This problem has been studied and solved by using the neural network technique. The 7-12-3 back-propagation neural network technique is developed for the system with excluding abnormal data according to pauta criterion,adjusting the network connection weights by training samples,monitoring the training process timely with test samples and the LM algorithm. The model output result being compared with actually measured data,the coefficient of COD is 0.857,ammonia is 0.918,and phosphate is 0.942, meeting the modeling requirement of sewage treatment process.%针对序批式生物膜系统难以构建水质模型的问题,采用神经网络技术进行建模方法研究.根据拉伊达准则剔除异常数据,并用训练样本调整网络连接权值,用检验样本实时动态监控训练过程,用LM算法构建了一个7-12-3结构的BP神经网络模型.将模型输出结果与实测数据进行比较,其相关系数分别为ROOD=0.857,RNH4+-N=0.918,RPO43--P=0.942,能够满足污水处理过程建模的要求.

  10. Comparison of three combined sequencing batch reactor followed by enhanced Fenton process for an azo dye degradation: Bio-decolorization kinetics study

    Energy Technology Data Exchange (ETDEWEB)

    Azizi, A., E-mail: armina_84@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Alavi Moghaddam, M.R., E-mail: alavim@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Maknoon, R., E-mail: rmaknoon@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Kowsari, E., E-mail: kowsarie@aut.ac.ir [Department of Chemistry, Amirkabir University of Technology, Hafez Ave., Tehran 15875-4413 (Iran, Islamic Republic of)

    2015-12-15

    Highlights: • Three combined advanced SBR and enhanced Fenton process as post treatment was compared. • Higher biomass concentration, dye, COD and metabolites removal was presented together. • Pseudo zero and pseudo first-order bio-decolorization kinetics were observed in all SBRs. • High reduction of AR18 to intermediate metabolites was monitored by HPLC. - Abstract: The purpose of this research was to compare three combined sequencing batch reactor (SBR) – Fenton processes as post-treatment for the treatment of azo dye Acid Red 18 (AR18). Three combined treatment systems (CTS1, CTS2 and CTS3) were operated to investigate the biomass concentration, COD removal, AR18 dye decolorization and kinetics study. The MLSS concentration of CTS2 reached 7200 mg/L due to the use of external feeding in the SBR reactor of CTS2. The COD concentration remained 273 mg/L and 95 mg/L (initial COD = 3270 mg/L) at the end of alternating anaerobic–aerobic SBR with external feeding (An-A MSBR) and CTS2, respectively, resulting in almost 65% of Fenton process efficiency. The dye concentration of 500 mg/L was finally reduced to less than 10 mg/L in all systems indicating almost complete AR18 decolorization, which was also confirmed by UV–vis analysis. The dye was removed following two successive parts as parts 1 and 2 with pseudo zero-order and pseudo first-order kinetics, respectively, in all CTSs. Higher intermediate metabolites degradation was obtained using HPLC analysis in CTS2. Accordingly, a combined treatment system can be proposed as an appropriate and environmentally-friendly system for the treatment of the azo dye AR18 in wastewater.

  11. Effect of high levels of the rotifer Lecane inermis on the ciliate community in laboratory-scale sequencing batch bioreactors (SBRs).

    Science.gov (United States)

    Fyda, Janusz; Babko, Roman; Fiałkowska, Edyta; Pajdak-Stós, Agnieszka; Kocerba-Soroka, Wioleta; Sobczyk, Mateusz; Sobczyk, Łukasz

    2015-10-01

    Due to its ability to feed on filamentous bacteria, the rotifer Lecane inermis has already been recognized as a potential control agent of activated sludge bulking, which is usually caused by the excessive growth of filamentous microorganisms. However, their effectiveness depends, in part, on their abundance. We studied the influence of high densities of L. inermis on the protozoan community in activated sludge from a wastewater treatment plant (WWTP) in 4 laboratory-scale sequencing batch bioreactors (SBRs). Two treatments and two controls were subjected to nutrient removal system in process similar to that used in a WWTP. The experiment lasted 9 days and was repeated in 24-h cycles, including phases of agitation with feeding, aeration and agitation and sedimentation with decantation at the end of the cycle. In total, 32 taxa were identified, among which 25 were ciliated protozoa, 4 were amoebae, 2 were flagellates, and one was a nematode. Rotifers were then introduced to 2 bioreactors at a final concentration of 500ind.mL(-1), and the taxonomic composition and abundance of the activated sludge microfauna were assessed 2, 5 and 8 days thereafter. The mean density of ciliates on the first day of experiment was 12,610ind.mL(-1) and diminished to 4868±432ind.mL-±432ind.mL(-1) in the control and 5496±638ind.mL(-1) in the rotifer-treated group on the last day. Thus, even extremely high densities of artificially introduced rotifers did not negatively affect the protozoan community. On the contrary, the protozoan community was more diverse in the treatment group than in the control.

  12. Sequencing Batch Reactor (SBR) for the removal of Hg{sup 2+} and Cd{sup 2+} from synthetic petrochemical factory wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Malakahmad, Amirhossein, E-mail: amirhossein@petronas.com.my [Faculty of Energy and Environmental Studies, Islamic Azad University, Science and Research branch, Hesarak, Tehran (Iran, Islamic Republic of); Civil Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia); Hasani, Amirhesam [Faculty of Energy and Environmental Studies, Islamic Azad University, Science and Research branch, Hesarak, Tehran (Iran, Islamic Republic of); Eisakhani, Mahdieh [School of Social, Development and the Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia); Isa, Mohamed Hasnain [Civil Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia)

    2011-07-15

    Highlights: {yields} We assessed SBR performances to treat synthetic wastewater containing Hg{sup 2+} and Cd{sup 2+}. {yields} SBR was able to remove 76-90% of Hg{sup 2+} and 96-98% of Cd{sup 2+}. {yields} COD removal efficiency and MLVSS was affected by Hg{sup 2+} and Cd{sup 2+} concentrations. {yields} Removal was not only biological process but also by biosorption process of sludge. - Abstract: Petrochemical factories which manufacture vinyl chloride monomer and poly vinyl chloride (PVC) are among the largest industries which produce wastewater contains mercury and cadmium. The objective of this research is to evaluate the performance of a lab-scale Sequencing Batch Reactor (SBR) to treat a synthetic petrochemical wastewater containing mercury and cadmium. After acclimatization of the system which lasted 60 days, the SBR was introduced to mercury and cadmium in low concentrations which then was increased gradually to 9.03 {+-} 0.02 mg/L Hg and 15.52 {+-} 0.02 mg/L Cd until day 110. The SBR performance was assessed by measuring Chemical Oxygen Demand, Total and Volatile Suspended Solids as well as Sludge Volume Index. At maximum concentrations of the heavy metals, the SBR was able to remove 76-90% of Hg{sup 2+} and 96-98% of Cd{sup 2+}. The COD removal efficiency and MLVSS (microorganism population) in the SBR was affected by mercury and cadmium concentrations in influent. Different species of microorganisms such as Rhodospirilium-like bacteria, Gomphonema-like algae, and sulfate reducing-like bacteria were identified in the system. While COD removal efficiency and MLVSS concentration declined during addition of heavy metals, the appreciable performance of SBR in removal of Hg{sup 2+} and Cd{sup 2+} implies that the removal in SBR was not only a biological process, but also by the biosorption process of the sludge.

  13. Estimation of autotrophic maximum specific growth rate constant--experience from the long-term operation of a laboratory-scale sequencing batch reactor system.

    Science.gov (United States)

    Su, Yu-min; Makinia, Jacek; Pagilla, Krishna R

    2008-04-01

    The autotrophic maximum specific growth rate constant, muA,max, is the critical parameter for design and performance of nitrifying activated sludge systems. In literature reviews (i.e., Henze et al., 1987; Metcalf and Eddy, 1991), a wide range of muA,max values have been reported (0.25 to 3.0 days(-1)); however, recent data from several wastewater treatment plants across North America revealed that the estimated muA,max values remained in the narrow range 0.85 to 1.05 days(-1). In this study, long-term operation of a laboratory-scale sequencing batch reactor system was investigated for estimating this coefficient according to the low food-to-microorganism ratio bioassay and simulation methods, as recommended in the Water Environment Research Foundation (Alexandria, Virginia) report (Melcer et al., 2003). The estimated muA,max values using steady-state model calculations for four operating periods ranged from 0.83 to 0.99 day(-1). The International Water Association (London, United Kingdom) Activated Sludge Model No. 1 (ASM1) dynamic model simulations revealed that a single value of muA,max (1.2 days(-1)) could be used, despite variations in the measured specific nitrification rates. However, the average muA,max was gradually decreasing during the activated sludge chlorination tests, until it reached the value of 0.48 day(-1) at the dose of 5 mg chlorine/(g mixed liquor suspended solids x d). Significant discrepancies between the predicted XA/YA ratios were observed. In some cases, the ASM1 predictions were approximately two times higher than the steady-state model predictions. This implies that estimating this ratio from a complex activated sludge model and using it in simple steady-state model calculations should be accepted with great caution and requires further investigation.

  14. Long-term effects of CuO nanoparticles on the surface physicochemical properties of biofilms in a sequencing batch biofilm reactor.

    Science.gov (United States)

    Hou, Jun; You, Guoxiang; Xu, Yi; Wang, Chao; Wang, Peifang; Miao, Lingzhan; Li, Yi; Ao, Yanhui; Lv, Bowen; Yang, Yangyang

    2016-11-01

    In this study, we examined the long-term effects of copper oxide nanoparticles (CuO NPs) on the production and properties of EPS and the resulting variations in surface physicochemical characteristics of biofilms in a sequencing batch biofilm reactor. After exposure to 50 mg/L CuO NPs for 45 days, the protein (PRO) and polysaccharide (PS) contents in loosely bound EPS (LB-EPS) decreased as the production of LB-EPS decreased from 34.4 to 30 mg TOC/g EPS. However, the production of tightly bound EPS (TB-EPS) increased by 16.47 % as the PRO and PS contents increased. The content of humic-like substances (HS) increased significantly, becoming the predominant constituent in EPS with the presence of 50 mg/L CuO NPs. Furthermore, the results of three-dimensional excitation-emission fluorescence spectra confirmed the various changes in terms of the LB-EPS and TB-EPS contents after exposure to CuO NPs. Fourier transform infrared spectroscopy showed that the -OH and -NH2 groups of proteins in EPS were involved in the reaction with CuO NPs. Moreover, the chronic exposure to CuO NPs induced a negative impact on the flocculating efficiency of EPS and on the hydrophobicity and aggregation ability of microbial cells. The PRO/PS ratios of different EPS fractions were consistent with their hydrophobicities (R (2) >0.98) and bioflocculating efficiencies (R (2) >0.95); however, there was no correlation with aggregation ability. Additionally, the presence of bovine serum albumin (BSA) prevented the physical contact between CuO NPs and EPS as a result of NP aggregation and electrostatic repulsion.

  15. Combined coagulation-flocculation and sequencing batch reactor with phosphorus adjustment for the treatment of high-strength landfill leachate: experimental kinetics and chemical oxygen demand fractionation.

    Science.gov (United States)

    El-Fadel, M; Matar, F; Hashisho, J

    2013-05-01

    The treatability of high-strength landfill leachate is challenging and relatively limited. This study examines the feasibility of treating high-strength landfill leachate (chemical oxygen demand [COD]: 7,760-11,770 mg/L, biochemical oxygen demand [BOD5]: 2,760-3,569 mg/L, total nitrogen [TN] = 980-1,160 mg/L) using a sequencing batch reactor (SBR) preceded by a coagulation-flocculation process with phosphorus nutritional balance under various mixing and aeration patterns. Simulations were also conducted to define kinetic parameters and COD fractionation. Removal efficiencies reached 89% for BOD5, 60% for COD, and 72% for TN, similar to and better than reported studies, albeit with a relatively lower hydraulic retention time (HRT) and solid retention time (SRT). The coupled experimental and simulation results contribute in filling a gap toward managing high-strength landfill leachate and providing guidelines for corresponding SBR applications. The treatability of high-strength landfill leachate, which is challenging and relatively limited, was demonstrated using a combined coagulation-flocculation with SBR technology and nutrient balance adjustment. The most suitable coagulant, kinetic design parameters, and COD fractionation were defined using coupled experimental and simulation results contributing in filling a gap toward managing high-strength leachate by providing guidelines for corresponding SBR applications and anticipating potential constraints related to the non-biodegradable COD fraction. In this context, while the combined coagulation-flocculation and SBR process improved removal efficiencies, posttreatment may be required for high-strength leachate, depending on discharge standards and ultimate usage of the treated leachate.

  16. Dynamic Batch Bayesian Optimization

    CERN Document Server

    Azimi, Javad; Fern, Xiaoli

    2011-01-01

    Bayesian optimization (BO) algorithms try to optimize an unknown function that is expensive to evaluate using minimum number of evaluations/experiments. Most of the proposed algorithms in BO are sequential, where only one experiment is selected at each iteration. This method can be time inefficient when each experiment takes a long time and more than one experiment can be ran concurrently. On the other hand, requesting a fix-sized batch of experiments at each iteration causes performance inefficiency in BO compared to the sequential policies. In this paper, we present an algorithm that asks a batch of experiments at each time step t where the batch size p_t is dynamically determined in each step. Our algorithm is based on the observation that the sequence of experiments selected by the sequential policy can sometimes be almost independent from each other. Our algorithm identifies such scenarios and request those experiments at the same time without degrading the performance. We evaluate our proposed method us...

  17. Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer– couple hypothesis from membrane mechanics

    Science.gov (United States)

    Lim H. W., Gerald; Wortis, Michael; Mukhopadhyay, Ranjan

    2002-01-01

    Red-cell shape is encoded in the mechanical properties of the membrane. The plasma membrane contributes bending rigidity; the protein-based membrane skeleton contributes stretch and shear elasticity. When both effects are included, membrane mechanics can reproduce in detail the full stomatocyte–discocyte–echinocyte sequence by variation of a single parameter related to the bilayer couple originally introduced by Sheetz and Singer [Sheetz, M. P. & Singer, S. J. (1974) Proc. Natl. Acad. Sci. USA 71, 4457–4461]. PMID:12471152

  18. Competitive sorption and selective sequence of Cu(II) and Ni(II) on montmorillonite: Batch, modeling, EPR and XAS studies

    Science.gov (United States)

    Yang, Shitong; Ren, Xuemei; Zhao, Guixia; Shi, Weiqun; Montavon, Gilles; Grambow, Bernd; Wang, Xiangke

    2015-10-01

    Heavy metal ions that leach from various industrial and agricultural processes are simultaneously present in the contaminated soil and water systems. The competitive sorption of these toxic metal ions on the natural soil components and sediments significantly influences their migration, bioavailability and ecotoxicity in the geochemical environment. In this study, the competitive sorption and selectivity order of Cu(II) and Ni(II) on montmorillonite are investigated by combining the batch experiments, X-ray diffraction (XRD), electron paramagnetic resonance (EPR), surface complexation modeling and X-ray Absorption Spectroscopy (XAS). The batch experimental data show that the coexisting Ni(II) exhibits a negligible influence on the sorption behavior of Cu(II), whereas the coexisting Cu(II) reduces the Ni(II) sorption percentage and changes the shape of the Ni(II) sorption isotherm. The sorption species of Cu(II) and Ni(II) on montmorillonite over the acidic and near-neutral pH range are well simulated by the surface complexation modeling. However, this model cannot identify the occurrence of surface nucleation and the co-precipitation processes at a highly alkaline pH. Based on the results of the EPR and XAS analyses, the microstructures of Cu(II) on montmorillonite are identified as the hydrated free Cu(II) ions at pH 5.0, inner-sphere surface complexes at pH 6.0 and the surface dimers/Cu(OH)2(s) precipitate at pH 8.0 in the single-solute and the binary-solute systems. For the Ni(II) sorption in the single-solute system, the formed microstructure varies from the hydrated free Ni(II) ions at the pH values of 5.0 and 6.0 to the inner-sphere surface complexes at pH 8.0. For the Ni(II) sorption in the binary-solute system, the coexisting Cu(II) induces the formation of the inner-sphere complexes at pH 6.0. In contrast, Ni(II) is adsorbed on montmorillonite via the formation of Ni phyllosilicate co-precipitate/α-Ni(OH)2(s) precipitate at pH 8.0. The selective sequence

  19. VNS (Variable Neighbourhood Search) applied to batch sequencing in operational scheduling of pipeline network; VNS (Variable Neighbourhood Search) aplicado ao sequenciamento de bateladas do 'scheduling' de operacoes de uma malha dutoviaria

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Lia; Arruda, Lucia Valeria Ramos de; Libert, Nikolas [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2008-07-01

    This work presents the VNS heuristic technique applied on batches ordering in a real network of petroleum derivatives distribution. These ordering have great influence in operational scheduling of a pipeline network. The operational scheduling purposes the efficient utilization of the resources, resulting on a better performance. Due to the great complexity of the real network problem and the necessity of its resolution in little computational time, it was adopted a problem subdivision in assignment of resources, sequencing and timing. In the resources assignment stage, it is considered the production/consumption functions and the products tankages to determine the total batches, including its volume, flow rate and the time-windows to satisfy the demand. These data are used in the sequencing stage, where a VNS based model determines the batches ordering. In a final step, the last block, realize the temporisation considering the network operational constraints. This work shows the results from the optimization of the sequencing stage which aims the improvement of the solution quality of scheduling. (author)

  20. Plasmid-mediated bioaugmentation of sequencing batch reactors for enhancement of 2,4-dichlorophenoxyacetic acid removal in wastewater using plasmid pJP4.

    Science.gov (United States)

    Tsutsui, Hirofumi; Anami, Yasutaka; Matsuda, Masami; Hashimoto, Kurumi; Inoue, Daisuke; Sei, Kazunari; Soda, Satoshi; Ike, Michihiko

    2013-06-01

    Plasmid-mediated bioaugmentation was demonstrated using sequencing batch reactors (SBRs) for enhancing 2,4-dichlorophenoxyacetic acid (2,4-D) removal by introducing Cupriavidus necator JMP134 and Escherichia coli HB101 harboring 2,4-D-degrading plasmid pJP4. C. necator JMP134(pJP4) can mineralize and grow on 2,4-D, while E. coli HB101(pJP4) cannot assimilate 2,4-D because it lacks the chromosomal genes to degrade the intermediates. The SBR with C. necator JMP134(pJP4) showed 100 % removal against 200 mg/l of 2,4-D just after its introduction, after which 2,4-D removal dropped to 0 % on day 7 with the decline in viability of the introduced strain. The SBR with E. coli HB101(pJP4) showed low 2,4-D removal, i.e., below 10 %, until day 7. Transconjugant strains of Pseudomonas and Achromobacter isolated on day 7 could not grow on 2,4-D. Both SBRs started removing 2,4-D at 100 % after day 16 with the appearance of 2,4-D-degrading transconjugants belonging to Achromobacter, Burkholderia, Cupriavidus, and Pandoraea. After the influent 2,4-D concentration was increased to 500 mg/l on day 65, the SBR with E. coli HB101(pJP4) maintained stable 2,4-D removal of more than 95 %. Although the SBR with C. necator JMP134(pJP4) showed a temporal depression of 2,4-D removal of 65 % on day 76, almost 100 % removal was achieved thereafter. During this period, transconjugants isolated from both SBRs were mainly Achromobacter with high 2,4-D-degrading capability. In conclusion, plasmid-mediated bioaugmentation can enhance the degradation capability of activated sludge regardless of the survival of introduced strains and their 2,4-D degradation capacity.

  1. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: A comparative study on a novel sequencing batch reactor based on zero valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Diwen [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Peng, Juan [Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Xu, Xinyan; Li, Kan; Wang, Yalin [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Jia, Jinping, E-mail: jpjia@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Specifically-designed SIME reactor for treatment of mature landfill leachate. Black-Right-Pointing-Pointer Excellent removal efficiencies of COD (86.1%), color (95.3%), and HA (81.8%). Black-Right-Pointing-Pointer Combination effect of IME without aeration and IME with aeration. Black-Right-Pointing-Pointer Optimal pH of 5, Fe/C of 1:1, gas flow rate of 80 L h{sup -1}, and H{sub 2}O{sub 2} of 100 mg L{sup -1}. - Abstract: A comparative study of treating mature landfill leachate with various treatment processes was conducted to investigate whether the method of combined processes of internal micro-electrolysis (IME) without aeration and IME with full aeration in one reactor was an efficient treatment for mature landfill leachate. A specifically designed novel sequencing batch internal micro-electrolysis reactor (SIME) with the latest automation technology was employed in the experiment. Experimental data showed that combined processes obtained a high COD removal efficiency of 73.7 {+-} 1.3%, which was 15.2% and 24.8% higher than that of the IME with and without aeration, respectively. The SIME reactor also exhibited a COD removal efficiency of 86.1 {+-} 3.8% to mature landfill leachate in the continuous operation, which is much higher (p < 0.05) than that of conventional treatments of electrolysis (22.8-47.0%), coagulation-sedimentation (18.5-22.2%), and the Fenton process (19.9-40.2%), respectively. The innovative concept behind this excellent performance is a combination effect of reductive and oxidative processes of the IME, and the integration electro-coagulation. Optimal operating parameters, including the initial pH, Fe/C mass ratio, air flow rate, and addition of H{sub 2}O{sub 2}, were optimized. All results show that the SIME reactor is a promising and efficient technology in treating mature landfill leachate.

  2. Effect and mechanism of carbon sources on phosphorus uptake by microorganisms in sequencing batch reactors with the single-stage oxic process

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    To investigate the chief reason for phosphorus uptake by microorganisms affected by substrates in sequencing batch reactors with the single-stage oxic process,two typical substrates,glucose (R1) and acetate (R2) were used as the sole carbon source,and the performances of phosphorus removal and the changes of intracellular storage were compared. The experimental results showed that the phenomenon of excess phosphorus uptake was observed in two reactors,but bacteria’s capability to take in phosphorus and its intracellular storage were obviously different under the same operational condition. After steady-state operation,total phosphorus (TP) removed per MLVSS in R1 and R2 was 6.7―7.4 and 2.7―3.2 mg/g,respectively. The energy storage of poly-β-hydroxyalkanoates (PHA) was nearly constant in R1 during the whole period,and another aerobic storage of glycogen was accumulated (the max accumulation of glycogen was 3.21 mmol-C/g) when external substrate was consumed,and then was decreased to the initial level. However in R2,PHA and glycogen were both accumulated (2.1 and 0.55 mmol-C/g,respectively) when external substrate was consumed,but they showed different changes after the period of external consumption. Compared to rapid decrease of PHA to the initial level,glycogen continued accumulating to the peak (0.88 mmol-C/g) in 2 h of aeration before decreasing. During the aeration,the accumulations/transformations of internal carbon sources in R1 were higher than those in R2. In addition,obvious TP releases were both observed in R1 and R2 other than PHA and glycogen during the long-term idle period; moreover,the release content of phosphorus in R1 was also higher than that in R2. The researches indicated that different aerobic metabolism of substrate occurred in R1 and R2 due to the different carbon sources in influent,resulting in different types and contents of aerobic storage accumulated/translated in bacteria of R1 and R2. As a result,ATP content provided for

  3. Performance evaluation of a granular activated carbon-sequencing batch biofilm reactor pilot plant system used in treating real wastewater from recycled paper industry.

    Science.gov (United States)

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Rahman, Rakmi Abdul; Kadhum, Abdul Amir Hasan

    2012-01-01

    A pilot scale granular activated carbon-sequencing batch biofilm reactor with a capacity of 2.2 m3 was operated for over three months to evaluate its performance treating real recycled paper industry wastewater under different operational conditions. In this study, dissolved air floatation (DAF) and clarifier effluents were used as influent sources of the pilot plant. During the course of the study, the reactor was able to biodegrade the contaminants in the incoming recycled paper mill wastewater in terms of chemical oxygen demand (COD), adsorbable organic halides (AOX; specifically 2,4-dichlorophenol (2,4-DCP)) and ammoniacal nitrogen (NH3-N) removal efficiencies at varying hydraulic retention times (HRTs) of 1-3 days, aeration rates (ARs) of 2.1-3.4 m3/min and influent feed concentration of 40-950 mg COD/l. Percentages of COD, 2,4-DCP and NH3-N removals increased with increasing HRT, resulting in more than 90% COD, 2,4-DCP and NH3-N removals at HRT values above two days. Degradation of COD, 2,4-DCP and NH3-N were seriously affected by variation of ARs, which resulted in significant decrease of COD, 2,4-DCP and NH3-N removals by decreasing ARs from 3.4 m3/min to 2.1 m3/min, varying in the ranges of 24-80%, 6-96% and 5-42%, respectively. In comparison to the clarifier effluent, the treatment performance of DAF effluent, containing high COD concentration, resulted in a higher COD removal of 82%. The use of diluted DAF effluent did not improve significantly the COD removal. Higher NH3-N removal efficiency of almost 100% was observed during operation after maintenance shutdown compared to normal operation, even at the same HRT of one day due to the higher dissolved oxygen concentrations (1-7 mg/l), while no significant difference in COD removal efficiency was observed.

  4. Cultivation of Denitrifying Polyphosphate-accumulating Organisms in Sequencing Batch Reactor%SBR反应器中反硝化除磷菌的快速富集

    Institute of Scientific and Technical Information of China (English)

    夏灵敏; 王弘宇; 田俊; 杨开; 张静

    2013-01-01

    Denitrifying polyphosphate-accumulating organisms (DPAOs),a principal part in the denitrifying phosphorus removal process,can remove nitrogen and phosphorus simultaneously under anoxic condition.The cultivation of DPAOs was achieved in a two-stage sequencing batch reactor (SBR) system,using the returned sludge from a secondary settling tank of Wuhan Shahu WWTP.The first-stage SBR operated in anaerobic/aerobic (A/O) mode to achieve the cultivation of PAOs.After 13 d,the removal rates of nitrogen and phosphorus were all above 85%.The second-stage SBR operated in anaerobic/aerobic/anoxic (A/O/A) mode to achieve the cultivation of DPAOs.After 26 d,the removal rates of ammonia nitrogen and phosphate were 92.2% and 91.2%,respectively.There was a linear relationship between phosphorus uptake and nitrate consumption,which suggested that the denitrifying phosphorus removal ability of the system was enhanced significantly.%反硝化除磷菌(DPAOs)能够在缺氧条件下同步完成脱氮除磷,是反硝化除磷工艺的主体.以武汉沙湖污水处理厂二沉池的回流污泥为种泥,采用二段式SBR工艺实现了反硝化除磷菌的快速富集.在第一阶段反应器采用厌氧/好氧(A/O)模式运行,可以实现对除磷菌(PAOs)的快速诱导和富集,运行13d后,SBR反应器对氮、磷的去除率均达到85%以上.而后进入第二阶段,采用厌氧/好氧/缺氧(A/O/A)模式运行,以快速富集培养反硝化除磷菌,经过26 d的运行,反应器对氨氮和磷酸盐的去除率分别达到92.2%和91.2%左右,且典型周期内硝酸盐的消耗量与磷的吸收量基本呈线性关系,表明系统的反硝化除磷能力得到显著增强.

  5. Sequence and TnphoA analysis of a Mycoplasma hyorhinis protein with membrane export function.

    Science.gov (United States)

    Yogev, D; Watson-McKown, R; McIntosh, M A; Wise, K S

    1991-03-01

    Proteins translocated across the single plasma membrane of mycoplasmas (class Mollicutes) represent important components likely to affect several interactions of these wall-less microbes with their respective hosts. However, identification and functional analysis of such proteins is hampered by the lack of mutational systems in mycoplasmas and by a perceived limitation in translating recombinant mycoplasma genes containing UGA (Trp) codons in other eubacteria. Here we directly analyze a gene encoding a Mycoplasma hyorhinis protein capable of promoting its membrane translocation. It was initially detected by screening a recombinant phage genomic library with antibody from a host with M. hyorhinis-induced arthritis and was localized by Tn5 and deletion mutations affecting expression of antigenic translational products. Sequence analysis of the isolated gene predicted a hydrophilic protein, P101, containing three UGA codons and a putative signal peptide with an uncharacteristic cluster of positively charged amino acids near its C terminus. Nevertheless, lambda::TnphoA transposon mutagenesis of an Escherichia coli plasmid bearing the p101 gene resulted in p101::TnphoA fusions expressing products that could translocate as much as 48 kDa of the P101 sequence (up to the first UGA codon) across the E. coli plasma membrane. Fusion proteins containing mature P101 sequences expressed mycoplasma epitopes and were found by cell fractionation and detergent phase partitioning to be integral membrane proteins in E. coli, suggesting a lack of signal peptide cleavage in this system. Importantly, identification of P101 by direct analysis of its export function relied neither on prior identification of the mycoplasmal product nor on complete expression of the product from the cloned mycoplasma gene.

  6. The Interaction of Polyglutamine Peptides with Lipid Membranes Is Regulated by Flanking Sequences Associated with Huntingtin*

    Science.gov (United States)

    Burke, Kathleen A.; Kauffman, Karlina J.; Umbaugh, C. Samuel; Frey, Shelli L.; Legleiter, Justin

    2013-01-01

    Huntington disease (HD) is caused by an expanded polyglutamine (poly(Q)) repeat near the N terminus of the huntingtin (htt) protein. Expanded poly(Q) facilitates formation of htt aggregates, eventually leading to deposition of cytoplasmic and intranuclear inclusion bodies containing htt. Flanking sequences directly adjacent to the poly(Q) domain, such as the first 17 amino acids on the N terminus (Nt17) and the polyproline (poly(P)) domain on the C-terminal side of the poly(Q) domain, heavily influence aggregation. Additionally, htt interacts with a variety of membraneous structures within the cell, and Nt17 is implicated in lipid binding. To investigate the interaction between htt exon1 and lipid membranes, a combination of in situ atomic force microscopy, Langmuir trough techniques, and vesicle permeability assays were used to directly monitor the interaction of a variety of synthetic poly(Q) peptides with different combinations of flanking sequences (KK-Q35-KK, KK-Q35-P10-KK, Nt17-Q35-KK, and Nt17-Q35-P10-KK) on model membranes and surfaces. Each peptide aggregated on mica, predominately forming extended, fibrillar aggregates. In contrast, poly(Q) peptides that lacked the Nt17 domain did not appreciably aggregate on or insert into lipid membranes. Nt17 facilitated the interaction of peptides with lipid surfaces, whereas the poly(P) region enhanced this interaction. The aggregation of Nt17-Q35-P10-KK on the lipid bilayer closely resembled that of a htt exon1 construct containing 35 repeat glutamines. Collectively, this data suggests that the Nt17 domain plays a critical role in htt binding and aggregation on lipid membranes, and this lipid/htt interaction can be further modulated by the presence of the poly(P) domain. PMID:23572526

  7. Not all transmembrane helices are born equal: Towards the extension of the sequence homology concept to membrane proteins

    Science.gov (United States)

    2011-01-01

    Background Sequence homology considerations widely used to transfer functional annotation to uncharacterized protein sequences require special precautions in the case of non-globular sequence segments including membrane-spanning stretches composed of non-polar residues. Simple, quantitative criteria are desirable for identifying transmembrane helices (TMs) that must be included into or should be excluded from start sequence segments in similarity searches aimed at finding distant homologues. Results We found that there are two types of TMs in membrane-associated proteins. On the one hand, there are so-called simple TMs with elevated hydrophobicity, low sequence complexity and extraordinary enrichment in long aliphatic residues. They merely serve as membrane-anchoring device. In contrast, so-called complex TMs have lower hydrophobicity, higher sequence complexity and some functional residues. These TMs have additional roles besides membrane anchoring such as intra-membrane complex formation, ligand binding or a catalytic role. Simple and complex TMs can occur both in single- and multi-membrane-spanning proteins essentially in any type of topology. Whereas simple TMs have the potential to confuse searches for sequence homologues and to generate unrelated hits with seemingly convincing statistical significance, complex TMs contain essential evolutionary information. Conclusion For extending the homology concept onto membrane proteins, we provide a necessary quantitative criterion to distinguish simple TMs (and a sufficient criterion for complex TMs) in query sequences prior to their usage in homology searches based on assessment of hydrophobicity and sequence complexity of the TM sequence segments. Reviewers This article was reviewed by Shamil Sunyaev, L. Aravind and Arcady Mushegian. PMID:22024092

  8. Model Penjadwalan Batch Multi Item dengan Dependent Processing Time

    Directory of Open Access Journals (Sweden)

    Sukoyo Sukoyo

    2010-01-01

    Full Text Available This paper investigates a development of single machine batch scheduling for multi items with dependent processing time. The batch scheduling problem is to determine simultaneously number of batch (N, which item and its size allocated for each batch, and processing sequences of resulting batches. We use total actual flow time as the objective of schedule performance. The multi item batch scheduling problem could be formulated into a biner-integer nonlinear programming model because the number of batch should be in integer value, the allocation of items to resulting batch need binary values, and also there are some non-linearity on objective function and constraint due to the dependent processing time. By applying relaxation on the decision variable of number of batch (N as parameter, a heuristic procedure could be applied to find solution of the single machine batch scheduling problem for multi items.

  9. Prediction of membrane transport proteins and their substrate specificities using primary sequence information.

    Directory of Open Access Journals (Sweden)

    Nitish K Mishra

    Full Text Available BACKGROUND: Membrane transport proteins (transporters move hydrophilic substrates across hydrophobic membranes and play vital roles in most cellular functions. Transporters represent a diverse group of proteins that differ in topology, energy coupling mechanism, and substrate specificity as well as sequence similarity. Among the functional annotations of transporters, information about their transporting substrates is especially important. The experimental identification and characterization of transporters is currently costly and time-consuming. The development of robust bioinformatics-based methods for the prediction of membrane transport proteins and their substrate specificities is therefore an important and urgent task. RESULTS: Support vector machine (SVM-based computational models, which comprehensively utilize integrative protein sequence features such as amino acid composition, dipeptide composition, physico-chemical composition, biochemical composition, and position-specific scoring matrices (PSSM, were developed to predict the substrate specificity of seven transporter classes: amino acid, anion, cation, electron, protein/mRNA, sugar, and other transporters. An additional model to differentiate transporters from non-transporters was also developed. Among the developed models, the biochemical composition and PSSM hybrid model outperformed other models and achieved an overall average prediction accuracy of 76.69% with a Mathews correlation coefficient (MCC of 0.49 and a receiver operating characteristic area under the curve (AUC of 0.833 on our main dataset. This model also achieved an overall average prediction accuracy of 78.88% and MCC of 0.41 on an independent dataset. CONCLUSIONS: Our analyses suggest that evolutionary information (i.e., the PSSM and the AAIndex are key features for the substrate specificity prediction of transport proteins. In comparison, similarity-based methods such as BLAST, PSI-BLAST, and hidden Markov models

  10. SBR短程硝化处理老龄化垃圾渗滤液%Treatment of Aged Landfill Leachate by Shortcut Nitrification in Sequencing Batch Reactor

    Institute of Scientific and Technical Information of China (English)

    周海妙; 解庆林; 黄国玲; 杨永东

    2012-01-01

    采用序批式反应器(SBR)短程硝化系统处理老龄化垃圾渗滤液,研究有机物浓度、水力停留时间(HRT)、pH值、温度对短程硝化系统的影响.以硝化污泥接种反应器,在溶解氧为1.0~1.2 mg/L和温度为(35±1)℃下达到亚硝酸氮的快速积累.结果表明,在进水氨氮为300mg/L、COD为600 mg/L、HRT为24 h、pH值为7.5~8.5、温度为(35±1)℃、溶解氧浓度保持不变的条件下,出水氨氮平均为134.0 mg/L,出水亚硝酸氮平均为142.5 mg/L,对氨氮的平均去除率为55.3%,NO2--N/NH4+-N平均值为1.06,出水硝酸氮平均为10.2 mg/L,亚硝酸氮的平均积累率为93.3%,对COD的去除率稳定在38%左右.%The shortcut nitrification process was used to treat aged landfill leachate in a sequencing batch reactor (SBR). The effect of organic concentration, hydraulic retention time (HRT) , pH and temperature was investigated. The reactor was inoculated with nitrifying sludge, and nitrite accumulation was achieved at DO concentration of 1. 0 to 1. 2 mg/L and temperature of (35 ± 1) ℃. The results showed that the average concentrations of NH4+ - N, NO2- - N and NO3- - N in effluent were 134. 0 mg/L, 142.5 mg/L and 10.2 mg/L, the average NO2- - N/NH4+ -N ratio was 1.06, the average nitrite accumulation was 93. 3% , and the average removal rates of NH4+ - N and COD were 55. 3% and about 38% respectively when the influent NH4+ - N and COD were 300 mg/L and 600 mg/L respectively. The reaction conditions were controlled as follows: HRT at 24 h, pH at 7. 5 to 8. 5 , temperature at (35 ± 1) ℃ and unchanged DO concentration.

  11. Factors of the Rapid Startup for Nitrosation in Sequencing Batch Reactor%SBR亚硝化快速启动过程中影响因子研究

    Institute of Scientific and Technical Information of China (English)

    李冬; 陶晓晓; 李占; 王俊安; 张杰

    2011-01-01

    在低DO条件下对SBR反应器实现快速亚硝化的途径及影响因素进行研究.控制反应器主要参数为:DO 0.15~0.40mg/L,pH值7.52~8.30,温度22.3~27.1℃,曝气时间为8 h.通过高、低氨氮浓度(245.28 mg/L与58.08 mg/L)交替进水的方式,经过57个周期(36 d)的稳定运行成功实现了亚硝化的快速启动,亚硝化率高达100%,并考察了启动过程中亚硝酸盐氮积累的影响因素,分析了不同溶解氧浓度下SBR周期内DO和pH值的变化规律.结果表明,适当提高DO浓度可以提高亚硝化系统的%The approach and factors for realizing the rapid startup of nitrosation were researched at the low level of dissolved oxygen(DO) in sequencing batch reactor(SBR).The main parameters of the reactor were controlled as follows: DO were 0.15-0.40 mg/L,pH values kept from 7.52 to 8.30,temperature maintained at 22.3-27.1℃,and time of aeration was 8 hours.The purpose of rapid startup for nitrosation was achieved after 57 cycles(36 d) with the alternative influent of high and low ammonium wastewater(the mean values were 245.28 mg/L and 58.08 mg/L respectively) in a SBR,and the nitrosation rate was even 100%.Factors of accumulation of nitrite were investigated and the effects of DO and pH were analyzed during the startup for nitrosation.The results showed that it could improve the efficiency of nitrosation when DO concentration was increased appropriately.The activity of nitrite oxidizing bacteria(NOB) was recovered gradually when DO was higher than 0.72 mg/L.The key factor of controlling nitrosation reaction was the concentration of free ammonia(FA),while the final factor was the concentration of DO.pH was a desired controlling parameter to show the end of nitrification in a SBR cycle,while DO concentration did not indicate the finishing of SBR nitrification accurately because it increased rapidly before ammonia nitrogen was oxidized absolutely.

  12. Pro Spring Batch

    CERN Document Server

    Minella, Michael T

    2011-01-01

    Since its release, Spring Framework has transformed virtually every aspect of Java development including web applications, security, aspect-oriented programming, persistence, and messaging. Spring Batch, one of its newer additions, now brings the same familiar Spring idioms to batch processing. Spring Batch addresses the needs of any batch process, from the complex calculations performed in the biggest financial institutions to simple data migrations that occur with many software development projects. Pro Spring Batch is intended to answer three questions: *What? What is batch processing? What

  13. Membrane gene ontology bias in sequencing and microarray obtained by housekeeping-gene analysis.

    Science.gov (United States)

    Zhang, Yijuan; Akintola, Oluwafemi S; Liu, Ken J A; Sun, Bingyun

    2016-01-10

    Microarray (MA) and high-throughput sequencing are two commonly used detection systems for global gene expression profiling. Although these two systems are frequently used in parallel, the differences in their final results have not been examined thoroughly. Transcriptomic analysis of housekeeping (HK) genes provides a unique opportunity to reliably examine the technical difference between these two systems. We investigated here the structure, genome location, expression quantity, microarray probe coverage, as well as biological functions of differentially identified human HK genes by 9 MA and 6 sequencing studies. These in-depth analyses allowed us to discover, for the first time, a subset of transcripts encoding membrane, cell surface and nuclear proteins that were prone to differential identification by the two platforms. We hope that the discovery can aid the future development of these technologies for comprehensive transcriptomic studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Septal localization by membrane targeting sequences and a conserved sequence essential for activity at the COOH-terminus of Bacillus subtilis cardiolipin synthase.

    Science.gov (United States)

    Kusaka, Jin; Shuto, Satoshi; Imai, Yukiko; Ishikawa, Kazuki; Saito, Tomo; Natori, Kohei; Matsuoka, Satoshi; Hara, Hiroshi; Matsumoto, Kouji

    2016-04-01

    The acidic phospholipid cardiolipin (CL) is localized on polar and septal membranes and plays an important physiological role in Bacillus subtilis cells. ClsA, the enzyme responsible for CL synthesis, is also localized on septal membranes. We found that GFP fusion proteins of the enzyme with NH2-terminal and internal deletions retained septal localization. However, derivatives with deletions starting from the COOH-terminus (Leu482) ceased to localize to the septum once the deletion passed the Ile residue at 448, indicating that the sequence responsible for septal localization is confined within a short distance from the COOH-terminus. Two sequences, Ile436-Leu450 and Leu466-Leu478, are predicted to individually form an amphipathic α-helix. This configuration is known as a membrane targeting sequence (MTS) and we therefore refer to them as MTS2 and MTS1, respectively. Either one has the ability to affect septal localization, and each of these sequences by itself localizes to the septum. Membrane association of the constructs of this enzyme containing the MTSs was verified by subcellular fractionation of the cells. CL synthesis, in contrast, was abolished after deleting just the last residue, Leu482, in the COOH-terminal four amino acid residue sequence, Ser-Pro-Ile-Leu, which is highly conserved among bacterial CL synthases.

  15. Assembly of transmembrane helices of simple polytopic membrane proteins from sequence conservation patterns.

    Science.gov (United States)

    Park, Yungki; Helms, Volkhard

    2006-09-01

    The transmembrane (TM) domains of most membrane proteins consist of helix bundles. The seemingly simple task of TM helix bundle assembly has turned out to be extremely difficult. This is true even for simple TM helix bundle proteins, i.e., those that have the simple form of compact TM helix bundles. Herein, we present a computational method that is capable of generating native-like structural models for simple TM helix bundle proteins having modest numbers of TM helices based on sequence conservation patterns. Thus, the only requirement for our method is the presence of more than 30 homologous sequences for an accurate extraction of sequence conservation patterns. The prediction method first computes a number of representative well-packed conformations for each pair of contacting TM helices, and then a library of tertiary folds is generated by overlaying overlapping TM helices of the representative conformations. This library is scored using sequence conservation patterns, and a subsequent clustering analysis yields five final models. Assuming that neighboring TM helices in the sequence contact each other (but not that TM helices A and G contact each other), the method produced structural models of Calpha atom root-mean-square deviation (CA RMSD) of 3-5 A from corresponding crystal structures for bacteriorhodopsin, halorhodopsin, sensory rhodopsin II, and rhodopsin. In blind predictions, this type of contact knowledge is not available. Mimicking this, predictions were made for the rotor of the V-type Na(+)-adenosine triphosphatase without such knowledge. The CA RMSD between the best model and its crystal structure is only 3.4 A, and its contact accuracy reaches 55%. Furthermore, the model correctly identifies the binding pocket for sodium ion. These results demonstrate that the method can be readily applied to ab initio structure prediction of simple TM helix bundle proteins having modest numbers of TM helices.

  16. Application of real-time PCR to determination of combined effect of antibiotics on Bacteria, Methanogenic Archaea, Archaea in anaerobic sequencing batch reactors.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2015-06-01

    This study evaluated the long-term effects of erythromycin-tetracycline-sulfamethoxazole (ETS) and sulfamethoxazole-tetracycline (ST) antibiotic combinations on the microbial community and examined the ways in which these antimicrobials impact the performance of anaerobic reactors. Quantitative real-time PCR was used to determine the effect that different antibiotic combinations had on the total and active Bacteria, Archae and Methanogenic Archae. Three primer sets that targeted metabolic genes encoding formylterahydrofolate synthetase, methyl-coenzyme M reductase and acetyl-coA synthetase were also used to determine the inhibition level on the mRNA expression of the homoacetogens, methanogens and specifically acetoclastic methanogens, respectively. These microorganisms play a vital role in the anaerobic degradation of organic waste and targeting these gene expressions offers operators or someone at a treatment plant the potential to control and the improve the anaerobic system. The results of the investigation revealed that acetogens have a competitive advantage over Archaea in the presence of ETS and ST combinations. Although the efficiency with which methane production takes place and the quantification of microbial populations in both the ETS and ST reactors decreased as antibiotic concentrations increased, the ETS batch reactor performed better than the ST batch reactor. According to the expression of genes results, the syntrophic interaction of acetogens and methanogens is critical to the performance of the ETS and ST reactors. Failure to maintain the stability of these microorganisms resulted in a decrease in the performance and stability of the anaerobic reactors.

  17. Successful treatment of high azo dye concentration wastewater using combined anaerobic/aerobic granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR): simultaneous adsorption and biodegradation processes.

    Science.gov (United States)

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    The application of a granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR) for treatment of wastewater containing 1,000 mg/L Acid Red 18 (AR18) was investigated in this research. The treatment system consisted of a sequencing batch reactor equipped with moving GAC as biofilm support. Each treatment cycle consisted of two successive anaerobic (14 h) and aerobic (8 h) reaction phases. Removal of more than 91% chemical oxygen demand (COD) and 97% AR18 was achieved in this study. Investigation of dye decolorization kinetics showed that the dye removal was stimulated by the adsorption capacity of the GAC at the beginning of the anaerobic phase and then progressed following a first-order reaction. Based on COD analysis results, at least 77.8% of the dye total metabolites were mineralized during the applied treatment system. High-performance liquid chromatography analysis revealed that more than 97% of 1-naphthyalamine-4-sulfonate as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase. According to the scanning electron microscopic analysis, the microbial biofilms grew in most cavities and pores of the GAC, but not on the external surfaces of the GAC.

  18. Membrane biofouling mechanism in an aerobic granular reactor degrading 4-chlorophenol.

    Science.gov (United States)

    Buitrón, Germán; Moreno-Andrade, Iván; Arellano-Badillo, Víctor M; Ramírez-Amaya, Víctor

    2014-01-01

    The membrane fouling of an aerobic granular reactor coupled with a submerged membrane in a sequencing batch reactor (SBR) was evaluated. The fouling analysis was performed by applying microscopy techniques to determine the morphology and structure of the fouling layer on a polyvinylidene fluoride membrane. It was found that the main cause of fouling was the polysaccharide adsorption on the membrane surface, followed by the growth of microorganisms to form a biofilm.

  19. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.

    Science.gov (United States)

    Shelar, Ashish; Bansal, Manju

    2014-12-01

    α-Helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α-helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C-termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α-helices in a high-resolution dataset of integral α-helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C-termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near-helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins.

  20. Plastic membrane, carbon paste and multiwalled carbon nanotube composite coated copper wire sensors for determination of oxeladin citrate using batch and flow injection techniques

    OpenAIRE

    Zayed,Sayed I. M.; Yousry M Issa

    2013-01-01

    The fabrication and performance characteristics of three novel potentiometric sensors for the determination of oxeladin citrate are described. The proposed sensors include a PVC plastic membrane sensor, a carbon paste sensor and a multiwalled carbon nanotube (MWCNT) composite coated copper wire sensor. The sensors are based on the oxeladin-phosphotungstate ion associate as electroactive material and dibutyl phthalate as solvent mediator. The developed sensors exhibited near nernstian slopes o...

  1. 用改进的序批式生物膜反应器技术处理废水%Treatment of Wastewater with Modified Sequencing Batch Biofilm Reactor Technology

    Institute of Scientific and Technical Information of China (English)

    胡龙兴; 刘宇陆

    2002-01-01

    This paper describes the removal of COD and nitrogen from wastewater with modified sequencing batch biofilm reactor. The strategy of simultaneous feeding and draining was explored. The results show that introduction of a new batch of wastewater and withdrawal of the purified water can be conducted simultaneously with the maximum volumetric exchange rate of about 70 %. Application of this feeding and draining mode leads to the reduction of the cycle time, the increase of the utilization of the reactor volume and the simplification of the reactor structure. The treatment of a synthetic wastewater containing COD and nitrogen was investigated. The operation mode of F(D)-O ( i. e. , simultaneous feeding and draining followed by the aerobic condition) was adopted. It was found that COD was degraded very fast in the initial reaction period of time, then reduced slowly and the ammonia nitrogen and nitrate nitrogen concentrations decreased and increased with time respectively, while the nitrite nitrogen level increased first and then reduced. The relationship between the COD or ammonia nitrogen loading and its removal rate was examined, and the removal of COD, ammonia nitrogen and total nitrogen could exceed 95%, 90% and 80% respectively. The fact that nitrogen could be removed more completely under constant aeration (aerobic condition) of the SBBR operation mode is very interesting and could be explained in several respects.

  2. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  3. Camps 2.0: exploring the sequence and structure space of prokaryotic, eukaryotic, and viral membrane proteins.

    Science.gov (United States)

    Neumann, Sindy; Hartmann, Holger; Martin-Galiano, Antonio J; Fuchs, Angelika; Frishman, Dmitrij

    2012-03-01

    Structural bioinformatics of membrane proteins is still in its infancy, and the picture of their fold space is only beginning to emerge. Because only a handful of three-dimensional structures are available, sequence comparison and structure prediction remain the main tools for investigating sequence-structure relationships in membrane protein families. Here we present a comprehensive analysis of the structural families corresponding to α-helical membrane proteins with at least three transmembrane helices. The new version of our CAMPS database (CAMPS 2.0) covers nearly 1300 eukaryotic, prokaryotic, and viral genomes. Using an advanced classification procedure, which is based on high-order hidden Markov models and considers both sequence similarity as well as the number of transmembrane helices and loop lengths, we identified 1353 structurally homogeneous clusters roughly corresponding to membrane protein folds. Only 53 clusters are associated with experimentally determined three-dimensional structures, and for these clusters CAMPS is in reasonable agreement with structure-based classification approaches such as SCOP and CATH. We therefore estimate that ∼1300 structures would need to be determined to provide a sufficient structural coverage of polytopic membrane proteins. CAMPS 2.0 is available at http://webclu.bio.wzw.tum.de/CAMPS2.0/. Copyright © 2011 Wiley Periodicals, Inc.

  4. Spring batch essentials

    CERN Document Server

    Rao, P Raja Malleswara

    2015-01-01

    If you are a Java developer with basic knowledge of Spring and some experience in the development of enterprise applications, and want to learn about batch application development in detail, then this book is ideal for you. This book will be perfect as your next step towards building simple yet powerful batch applications on a Java-based platform.

  5. Sequence analysis of the Epstein-Barr virus (EBV) latent membrane protein-1 gene and promoter region

    DEFF Research Database (Denmark)

    Sandvej, K; Gratama, J W; Munch, M

    1997-01-01

    Sequence variations in the Epstein-Barr virus (EBV) encoded latent membrane protein-1 (LMP-1) gene have been described in a Chinese nasopharyngeal carcinoma-derived isolate (CAO), and in viral isolates from various EBV-associated tumors. It has been suggested that these genetic changes, which inc...

  6. GoPipe:批量序列的Gene Ontology注释和统计分析%GoPipe: Streamlined Gene Ontology Annotation for Batch Anonymous Sequences With Statistics

    Institute of Scientific and Technical Information of China (English)

    陈作舟; 薛成海; 朱晟; 周丰丰; XUEFENG BRUCE LING; 刘国平; 陈良标

    2005-01-01

    随着后基因组时代的到来,批量的测序,特别是EST的测序,逐渐成为普通实验室的日常工作.这些新的序列往往需要进行批量的Gene Ontology(GO)的注释及随后的统计分析.但是目前除了Goblet以外,并没有软件适合对未知序列进行批量的GO注释,而GoBlet因为具有上载量的限制,以及仅仅利用BLAST作为预测工具,所以仍有许多不足之处.开发了一个软件包GoPipe,通过整合BLAST和InterProScan的结果来进行序列注释,并提供了进一步作统计比较的工具.主程序接收任意个BLAST和InterProScan的结果文件,并依次进行文本分析、数据整合、去除冗余、统计分析和显示等工作.还提供了统计的工具来比较不同输入对GO的分布来挖掘生物学意义.另外,在交集工作模式下,程序取InterProScan和BLAST结果的交集,在测试数据集中,其精确度达到99.1%,这大大超过了InterProScan本身对GO预测的精确度,而敏感度只是稍微下降.较高的精确度、较快的速度和较大的灵活性使它成为对未知序列进行批量Gene Ontology注释的理想的工具.上述软件包可以在网站(http://gopipe.fishgenome.org/)免费获得或者与作者联系获取.%Accelerated availability of new sequences, especially ESTs, calls for computational methods to link sequences with Gene Ontology (GO) terms in a batch mode. There is currently no program for such purpose except Goblet, an online tool which uses BLAST to interpret query sequence with proper GO terms, but has a restriction of upload sequence files less than 100 kilobytes in size. GoPipe is a standalone package that integrates BLAST and InterProScan results to obtain Gene Ontology annotation with built-in statistical options. GoPipe takes any number of BLAST and/or InterProScan output files simultaneously and launches jobs sequentially to perform parsing, data integration, redundancy removal, GO distributions calculation and graphic display. A very

  7. Effect of variations in peptide sequence on anti-human milk fat globule membrane antibody reactions.

    Science.gov (United States)

    Xing, P X; Reynolds, K; Pietersz, G A; McKenzie, I F

    1991-02-01

    Monoclonal anti-mucine antibodies BC1, BC2 and BC3 produced using human milk fat globule membrane react with a synthetic peptide p1-24 (PDTRPAPGSTAPPAHGVTSAPDTR) representing the repeating amino acid sequence of the mucin core protein. The minimum epitope recognized by these three monoclonal antibodies (mAb) in p1-24 was contained in the five amino acids APDTR. To analyse the variation of position of the epitope, various modifications of the APDTR sequence were made by synthesizing peptides and testing by direct binding and inhibition enzyme-linked immunosorbent assays. Firstly, peptides p13-32 and C-p13-32, in which the epitope APDTR was placed in the middle instead of the C-terminal as in p1-24, were examined. These peptides had a greater reaction with mAb BC1, BC2 and BC3 compared with the reaction with p1-24. Secondly, A-p1-24 and TSA-p1-24 were made wherein two APDTR epitopes were present--these peptides were shown to bind two IgG antibody molecules. Finally, the contribution of each amino acid in the APDTR epitope was studied using the pepscan polyethylene rods, making all 20 of the amino acid substitutions in each position for SAPDTR (the minimum epitope APDTR with an adjacent amino acid S). In the 120 peptides examined there were some 'permissible' substitutions in A, D and T but not in P or R for BC1 and BC2; there were more 'permissible' substitutions for BC3; different substitution patterns were found with each antibody and some substitutions gave an increased reaction compared with the native peptide SAPDTR. The studies are of value in analysing the reaction of antibodies with epitopes expressed in breast cancer and in determining the antigenicity of synthetic peptides.

  8. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination.

    Science.gov (United States)

    Warsinger, David M; Tow, Emily W; Nayar, Kishor G; Maswadeh, Laith A; Lienhard V, John H

    2016-12-01

    As reverse osmosis (RO) desalination capacity increases worldwide, the need to reduce its specific energy consumption becomes more urgent. In addition to the incremental changes attainable with improved components such as membranes and pumps, more significant reduction of energy consumption can be achieved through time-varying RO processes including semi-batch processes such as closed-circuit reverse osmosis (CCRO) and fully-batch processes that have not yet been commercialized or modelled in detail. In this study, numerical models of the energy consumption of batch RO (BRO), CCRO, and the standard continuous RO process are detailed. Two new energy-efficient configurations of batch RO are analyzed. Batch systems use significantly less energy than continuous RO over a wide range of recovery ratios and source water salinities. Relative to continuous RO, models predict that CCRO and batch RO demonstrate up to 37% and 64% energy savings, respectively, for brackish water desalination at high water recovery. For batch RO and CCRO, the primary reductions in energy use stem from atmospheric pressure brine discharge and reduced streamwise variation in driving pressure. Fully-batch systems further reduce energy consumption by not mixing streams of different concentrations, which CCRO does. These results demonstrate that time-varying processes can significantly raise RO energy efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Contribution of microfiltration on phosphorus removal in the sequencing anoxic/anaerobic membrane bioreactor.

    Science.gov (United States)

    Cho, Jinwoo; Song, Kyung-Guen; Ahn, Kyu-Hong

    2009-08-01

    This study investigated the contribution of microfiltration to phosphorus removal in the sequencing anoxic/anaerobic membrane bioreactor. The phosphorus content in activated sludge was fractionated by the Schmidt-Thannhauser-Schneider method. The size distribution of phosphorus in the influent was analyzed to estimate the portion of particulate phosphorus rejected physically by the 0.2 mum microfiltration. The result was that along with the high removal of phosphorus (83%) the phosphorus content of activated sludge was measured as 58.66 mgP/gVSS corresponding to 5.87% on dry weight basis. About 9% of total phosphorus was chemically precipitated phosphates while 56% was stored inside the microbial cell by activity of PAOs, and 35% was the sum of minor intracellular compositions and the particulate residuals, which could be rejected completely by the microfiltration. The biological activity is the dominant way of phosphorus removal in the process. However, the microfiltration also contributed significantly to phosphorus removal by retaining the particulate phosphorus inside the system.

  10. Identification of Outer Membrane and Exoproteins of Carbapenem-Resistant Multilocus Sequence Type 258 Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Amanda J Brinkworth

    Full Text Available Carbapenem-resistant Klebsiella pneumoniae strains have emerged as a cause of life-threatening infections in susceptible individuals (e.g., transplant recipients and critically ill patients. Strains classified as multilocus sequence type (ST 258 are among the most prominent causes of carbapenem-resistant K. pneumoniae infections worldwide, but the basis for the success of this lineage remains incompletely determined. To gain a more comprehensive view of the molecules potentially involved in the success of ST258, we used a proteomics approach to identify surface-associated and culture supernatant proteins produced by ST258. Protein samples were prepared from varied culture conditions in vitro, and were analyzed by a combination of two-dimensional electrophoresis and liquid chromatography followed by tandem mass spectrometry (LC-MS/MS. We identified a total of 193 proteins in outer membrane preparations from bacteria cultured in Luria-Bertani broth (LB or RPMI 1640 tissue culture media (RPMI. Compared with LB, several iron-acquisition proteins, including IutA, HmuR, HmuS, CirA, FepA, FitA, FoxA, FhuD, and YfeX, were more highly expressed in RPMI. Of the 177 proteins identified in spent media, only the fimbrial subunit, MrkA, was predicted to be extracellular, a finding that suggests few proteins (or a limited quantity are freely secreted by ST258. Notably, we discovered 203 proteins not reported in previous K. pneumoniae proteome studies. In silico modeling of proteins with unknown function revealed several proteins with beta-barrel transmembrane structures typical of porins, as well as possible host-interacting proteins. Taken together, these findings contribute several new targets for the mechanistic study of drug-resistance and pathogenesis by ST258 K. pneumoniae isolates.

  11. Long term effects of cerium dioxide nanoparticles on the nitrogen removal, micro-environment and community dynamics of a sequencing batch biofilm reactor.

    Science.gov (United States)

    Xu, Yi; Wang, Chao; Hou, Jun; Wang, Peifang; Miao, Lingzhan; You, Guoxiang; Lv, Bowen; Yang, Yangyang; Zhang, Fei

    2017-09-01

    The influences of cerium dioxide nanoparticles (CeO2 NPs) on nitrogen removal in biofilm were investigated. Prolonged exposure (75d) to 0.1mg/L CeO2 NPs caused no inhibitory effects on nitrogen removal, while continuous addition of 10mg/L CeO2 NPs decreased the treatment efficiency to 53%. With the progressive concentration of CeO2 NPs addition, the removal efficiency could nearly stabilize at 67% even with the continues spike of 10mg/L. The micro-profiles of dissolved oxygen, pH, and oxidation reduction potential suggested the developed protection mechanisms of microbes to progressive CeO2 NPs exposure led to the less influence of microenvironment, denitrification bacteria and enzyme activity than those with continuous ones. Furthermore, high throughput sequencing illustrated the drastic shifted communities with gradual CeO2 NPs spiking was responsible for the adaption and protective mechanisms. The present study demonstrated the acclimated microbial community was able to survive CeO2 NPs addition more readily than those non-acclimated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Hybrid Batch Bayesian Optimization

    CERN Document Server

    Azimi, Javad; Fern, Xiaoli

    2012-01-01

    Bayesian Optimization aims at optimizing an unknown non-convex/concave function that is costly to evaluate. We are interested in application scenarios where concurrent function evaluations are possible. Under such a setting, BO could choose to either sequentially evaluate the function, one input at a time and wait for the output of the function before making the next selection, or evaluate the function at a batch of multiple inputs at once. These two different settings are commonly referred to as the sequential and batch settings of Bayesian Optimization. In general, the sequential setting leads to better optimization performance as each function evaluation is selected with more information, whereas the batch setting has an advantage in terms of the total experimental time (the number of iterations). In this work, our goal is to combine the strength of both settings. Specifically, we systematically analyze Bayesian optimization using Gaussian process as the posterior estimator and provide a hybrid algorithm t...

  13. Cloning and sequence analysis of hsf, an outer membrane protein gene of Pasteurella multocida serotype B:2

    Directory of Open Access Journals (Sweden)

    A. Priyadarshini

    2014-12-01

    Full Text Available Aim: The present study was undertaken to clone, sequence and analyze the hsf, an outer membrane protein gene of Pasteurella multocida serotype B:2 Materials and Methods: hsf gene was amplified from genomic DNA of P. multocida. Polymerase chain reaction (PCR product was cloned in pET-32a vector and was characterized. hsf gene was sequenced, analyzed and phylogenetic tree was constructed taking sequences of other strains. Results: Amplicon size was found to be 785 bp. Recombinant got characterized through colony PCR and restriction enzyme analysis. Conclusion: hsf gene of P. multocida serotype B is similar to serotype A, but different from serotype D. Further work is needed to evaluate role of Hsf protein in protection studies and to study the antigenic properties of this recombinant protein as a candidate for vaccine.

  14. Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye acid red 18: comparison of using two types of packing media.

    Science.gov (United States)

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    Two integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor (FB-SBBR) were operated to evaluate decolorization and biodegradation of azo dye Acid Red 18 (AR18). Volcanic pumice stones and a type of plastic media made of polyethylene were used as packing media in FB-SBBR1 and FB-SBBR2, respectively. Decolorization of AR18 in both reactors followed first-order kinetic with respect to dye concentration. More than 63.7% and 71.3% of anaerobically formed 1-naphthylamine-4-sulfonate (1N-4S), as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase in FB-SBBR1 and FB-SBBR2, respectively. Based on statistical analysis, performance of FB-SBBR2 in terms of COD removal as well as biodegradation of 1N-4S was significantly higher than that of FB-SBBR1. Spherical and rod shaped bacteria were the dominant species of bacteria in the biofilm grown on the pumice stones surfaces, while, the biofilm grown on surfaces of the polyethylene media had a fluffy structure.

  15. Effects of loading rate and aeration on nitrogen removal and N2O emissions in intermittently aerated sequencing batch reactors treating slaughterhouse wastewater at 11 °C.

    Science.gov (United States)

    Pan, Min; Hu, Zhenhu; Liu, Rui; Zhan, Xinmin

    2015-04-01

    This study aimed to find optimal operation conditions for nitrogen removal from high strength slaughterhouse wastewater at 11 °C using the intermittently aerated sequencing batch reactors (IASBRs) so as to provide an engineering control strategy for the IASBR technology. Two operational parameters were examined: (1) loading rates and (2) aeration rates. Both the two parameters affected variation of DO concentrations in the IASBR operation cycles. It was found that to achieve efficient nitrogen removal via partial nitrification-denitrification (PND), "DO elbow" point must appear at the end of the last aeration period. There was a correlation between the ammonium oxidizing bacteria (AOB)/nitrite oxidizing bacteria (NOB) ratio and the average DO concentrations in the last aeration periods; when the average DO concentrations in the last aeration periods were lower than 4.86 mg/L, AOB became the dominant nitrifier population, which benefited nitrogen removal via PND. Both the nitrogen loading rate and the aeration rate influenced the population sizes of AOB and NOB. To accomplish efficient nitrogen removal via PND, the optimum aeration rate (A, L air/min) applied can be predicted according to the average organic loading rates based on mathematical equations developed in this study. The research shows that the amount of N2O generation in the aeration period was reduced with increasing the aeration rate; however, the highest N2O generation in the non-aeration period was observed at the optimum aeration rates.

  16. Treatability of cheese whey for single-cell protein production in nonsterile systems: Part II. The application of aerobic sequencing batch reactor (aerobic SBR) to produce high biomass of Dioszegia sp. TISTR 5792.

    Science.gov (United States)

    Monkoondee, Sarawut; Kuntiya, Ampin; Chaiyaso, Thanongsak; Leksawasdi, Noppol; Techapun, Charin; Kawee-Ai, Arthitaya; Seesuriyachan, Phisit

    2016-07-03

    This study aimed to investigate the efficiency of an aerobic sequencing batch reactor (aerobic SBR) in a nonsterile system using the application of an experimental design via central composite design (CCD). The acidic whey obtained from lactic acid fermentation by immobilized Lactobacillus plantarum sp. TISTR 2265 was fed into the bioreactor of the aerobic SBR in an appropriate ratio between acidic whey and cheese whey to produce an acidic environment below 4.5 and then was used to support the growth of Dioszegia sp. TISTR 5792 by inhibiting bacterial contamination. At the optimal condition for a high yield of biomass production, the system was run with a hydraulic retention time (HRT) of 4 days, a solid retention time (SRT) of 8.22 days, and an acidic whey concentration of 80% feeding. The chemical oxygen demand (COD) decreased from 25,230 mg/L to 6,928 mg/L, which represented a COD removal of 72.15%. The yield of biomass production and lactose utilization by Dioszegia sp. TISTR 5792 were 13.14 g/L and 33.36%, respectively, with a long run of up to 180 cycles and the pH values of effluent were rose up to 8.32 without any pH adjustment.

  17. Application of response surface methodology (RSM) for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR).

    Science.gov (United States)

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Abdul Rahman, Rakmi; Hasan Kadhum, Abdul Amir

    2013-05-30

    In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively.

  18. Process Design and Commissioning Operation of Constant Water-Level Sequencing Batch Reactor (CWSBR) at low Temperature%低温环境下CWSBR工艺设计与调试运行

    Institute of Scientific and Technical Information of China (English)

    马海龙; 沙瑛; 陈永

    2012-01-01

    The process of constant water-level sequencing batch reactor (CWSBR) was used in Dongwuqi wastewater treatment plant in Inner Mongolia province. After commissioning operation, nutrient removal effect was realized in the system at low temperature (8 - 10 t). The result* showed that the effluent qualities were qualified to Standard I-A of "Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant" (CB 18918-2002) with CWSBR at low temperature.%内蒙古东乌珠旗污水处理厂采用恒水位SBR工艺处理城市污水,冬季运行的温度为8~10℃,通过调试运行,实现了系统低温条件下脱氮除磷的效果.结果表明:CWSBR工艺在低温条件下保证了出水水质符合GB18918-2002《城镇污水处理厂污染物排放标准》的一级A标准.

  19. On-line Monitoring for Phosphorus Removal Process and Bacterial Community in Sequencing Batch Reactor%SBR工艺除磷过程与种群结构在线监测

    Institute of Scientific and Technical Information of China (English)

    崔有为; 王淑莹; 李晶

    2009-01-01

    For efficient energy consumption and control of effluent quality, the cycle duration for a sequencing batch reactor (SBR) needs to be adjusted by real-time control according to the characteristics and loading of waste-water. In this study, an on-line information system for phosphorus removal processes was established. Based on the analysis for four systems with different ecological community structures and two operation modes, anaerobic-aerobic process and anaerobic-anaerobic process, the characteristic patterns of oxidation-reduction potential (ORP) and pH were related to phosphorous dynamics in the anaerobic, anoxic and aerobic phases, for determination of the end of phosphorous removal. In the operation mode of anaerobic-aerobic process, the pH profile in the anaerobic phase was used to estimate the relative amount of phosphorous accumulating organisms (PAOs) and glycogen accumulat- ing organisms (GAOs), which is beneficial to early detection of ecology community shifts. The on-line sensor val-ue of pH and ORP may be used as the parameters to adjust the duration for phosphorous removal and community shifts to cope with influent variations and maintain appropriate operation conditions.

  20. Optimization of the Sequence of Washing Reverse Osmosis Membranes Used for Seawater Desalination

    Directory of Open Access Journals (Sweden)

    S. Gutierrez-Ruiz

    2017-04-01

    Full Text Available Seawater contains a number of organic and inorganic components that cause fouling of membranes when subjected to a process of reverse osmosis desalination. This fouling is one of the most important problems in the management of desalination plants, as it entails a significant loss in system performance. For membranes to be able to continue operating under appropriate conditions, they must undergo periodic cleaning protocols. This paper presents the results obtained when, subjecting a previously fouled aromatic polyamide membrane to different washing agents and using different concentrations of the same. Optimal concentrations of cleaning reagents were established. The results indicate that the performance of cleaning using a mixture of reagents, and alternating alkaline and acidic media, enabled maximum recovery of the membrane permeate flux (94.2 % and a significant reduction in the consumption of cleaning reagents.

  1. A sequence in subdomain 2 of DBL1α of Plasmodium falciparum erythrocyte membrane protein 1 induces strain transcending antibodies.

    Directory of Open Access Journals (Sweden)

    Karin Blomqvist

    Full Text Available Immunity to severe malaria is the first level of immunity acquired to Plasmodium falciparum. Antibodies to the variant antigen PfEMP1 (P. falciparum erythrocyte membrane protein 1 present at the surface of the parasitized red blood cell (pRBC confer protection by blocking microvascular sequestration. Here we have generated antibodies to peptide sequences of subdomain 2 of PfEMP1-DBL1α previously identified to be associated with severe or mild malaria. A set of sera generated to the amino acid sequence KLQTLTLHQVREYWWALNRKEVWKA, containing the motif ALNRKE, stained the live pRBC. 50% of parasites tested (7/14 were positive both in flow cytometry and immunofluorescence assays with live pRBCs including both laboratory strains and in vitro adapted clinical isolates. Antibodies that reacted selectively with the sequence REYWWALNRKEVWKA in a 15-mer peptide array of DBL1α-domains were also found to react with the pRBC surface. By utilizing a peptide array to map the binding properties of the elicited anti-DBL1α antibodies, the amino acids WxxNRx were found essential for antibody binding. Complementary experiments using 135 degenerate RDSM peptide sequences obtained from 93 Ugandan patient-isolates showed that antibody binding occurred when the amino acids WxLNRKE/D were present in the peptide. The data suggests that the ALNRKE sequence motif, associated with severe malaria, induces strain-transcending antibodies that react with the pRBC surface.

  2. Purification, in vitro reassembly, and preliminary sequence analysis of epiplasmins, the major constituent of the membrane skeleton of Paramecium.

    Science.gov (United States)

    Coffe, G; Le Caer, J P; Lima, O; Adoutte, A

    1996-01-01

    The epiplasmic layer, a continuous rigid granulo-fibrillar sheet directly subtending the surface membranes of Paramecium, is one of the outermost of the various cytoskeletal networks that compose it cortex. We have previously shown that the epiplasm consists of a set of 30 to 50 protein bands on SDS-PAGE in the range 50 to 33 kDa, the epiplasmins. We report a purification procedure for the set of epiplasmic proteins, a description of their physicochemical and reassembly properties, and a preliminary characterization of their sequence. The conditions for solubilization of the epiplasm and for in vitro reassembly of its purified constituents ar described. Reassembly of the entire set of proteins and of some (but not all) subsets are shown to yield filamentous aggregates. Microsequences of two purified bands of epiplasmins reveal a striking amino acid sequence consisting of heptad repeats of only three main amino acids, P, V, and Q. These repeats were confirmed by DNA sequencing of polymerase chain reaction products. The motif is QPVQ-h, in which h is a hydrophobic residue. This may constitute the core of the epiplasmin sequence and, in view of the tendency of such a sequence to form a coiled-coil, may account for the remarkable self-aggregation properties of epiplasmins.

  3. 基于空间蚁群算法的混流装配线组批排序方法%Mixed-Model Assembly Line Batch Sequencing Method Based on Space Ant Colony Algorithm

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    A mathematical sequence optimization model with constraints of components kitting and batch production based on shop calendar,aiming at minimize total completion time, total earliness/tardiness time and overtime is established.The proposition that the optimal job sequence considering shortest total completion time also has a characteristic of "V" is proved.A space ant colony algorithm with a new weight determination mechanism is designed to solve this problem,in which ant searched solutions along a randomly generated weight direction in its sub-space,thus improving the global searching capability.Besides,ants are assigned to the corresponding sub-space according to the distribution of current Pareto solutions,this efficiently avoids algorithm falling into local optimum.Compared to the results of the algorithm in literature,the space ant colony algorithm has better optimizing performance.A case study is also given to validate the proposed sequencing method.%针对混流装配线按工作日历调度过程中,组批生产导致订单准时交付率差、加班时间长,以及缺料等干扰因素导致完工周期延长等问题,以零部件配套、按工作日历组批为约束,最小化完工周期、提前/拖期时间以及加班时间为多目标,建立工件排序数学优化模型.验证以完工周期最短为目标的流水线工件最优排序亦具有V型特征.提出空间蚁群权重设计方法,将蚂蚁沿不同的权重向量寻优,提高算法的全局搜索能力;并根据当前Pareto解在各权重子空间的分布情况动态调整各子空间的蚂蚁数量,避免陷入局部最优.通过与文献算法对比,验证空间蚁群算法具有良好的优化性能,并通过实例验证了排序方法的有效性.

  4. Statistical strategies for microRNAseq batch effect reduction

    OpenAIRE

    Guo,Yan; Zhao, Shilin; Su, Pei-Fang; Li, Chung-I; Ye, Fei; Flynn, Charles R.; Shyr, Yu

    2014-01-01

    RNAseq technology is replacing microarray technology as the tool of choice for gene expression profiling. While providing much richer data than microarray, analysis of RNAseq data has been much more challenging. Among the many difficulties of RNAseq analysis, correctly adjusting for batch effect is a pivotal one for large-scale RNAseq based studies. The batch effect of RNAseq data is most obvious in microRNA (miRNA) sequencing studies. Using real miRNA sequencing (miRNAseq) dat...

  5. Analyzing Plasmodium falciparum erythrocyte membrane protein 1 gene expression by a next generation sequencing based method

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Petersen, Bent; Seguin-Orlando, Andaine;

    2013-01-01

    Plasmodium falciparum is responsible for most cases of severe malaria and causes >1 million deaths every year. The particular virulence of this Plasmodium species is highly associated with the expression of certain members of the Plasmodium falciparum erythrocyte membrane protein 1(PfEMP1) family...

  6. Effect of DO on Simultaneous Nitrification and Denitrification via Nitrite and Its Process Control in Sequencing Batch Biofilm Reactor%DO对SBBR工艺亚硝酸型SND及过程控制的影响

    Institute of Scientific and Technical Information of China (English)

    荣宏伟; 谢玉辉; 张可方; 凌忠勇; 张朝升

    2012-01-01

    在SBBR工艺亚硝酸型同步硝化反硝化过程中,DO是一个主要限制性因素,通过调节曝气量控制DO浓度在3.60~4.25 mg/L范围内可较好地实现亚硝酸型同步硝化反硝化.DO、pH值和ORP的变化规律与反应器内COD的降解和“三氮”的转化有良好的相关性.DO浓度的变化对DO、pH值和ORP曲线的变化规律影响较大,ORP曲线的特征点与COD的降解过程具有良好的相关性,可作为易降解有机物反应完毕的指示点.DO、pH值和ORP曲线的突跃特征点可以作为SBBR工艺亚硝酸型同步硝化反硝化反应结束的控制点.%The dissolved oxygen (DO) is an important restrictive factor on simultaneous nitrification and denitrification via nitrite in sequencing batch biofilm reactor (SBBR). Simultaneous nitrification and denitrification via nitrite could be achieved by controlling the average DO range from 3.60 mg/L to 4.25 mg/L. The variation of DO, pH and ORP are related to COD degradation and conversion of nitrogens in SBBR. The change of DO has great influence on the variation of DO, pH and ORP. Feature point of the ORP curve is related to COD degradation and can be used to judge the end of organic degradation. Feature point of DO, pH and ORP curves can be used as process control parameters to end simultaneous nitrification and denitrification via nitrite.

  7. 序批式中和沉淀法处理钛生产含铬废水研究%Research on Treatment of Titanium Production Chromium- containing Wastewater with Sequencing Batch Reactor Neutralization Precipitation Method

    Institute of Scientific and Technical Information of China (English)

    王威

    2012-01-01

    氯化法海绵钛生产过程中会产生大量的含重金属离子的酸性废水,含有大量的重金属氯化物,主要污染物为Cr(Ⅲ)和Mn(Ⅱ),应当调节pH值至Cr3+沉淀完全,将含铬废水单独处理。采用传统工艺投加石灰乳后沉淀[1],会产生大量的含铬废渣难于处置。本研究通过实验室研究和工程实践,开发了一种序批式的中和沉淀法,可以实现连续准确控制pH值,使铬渣控制在最少量。%A great amount of acidic wastewater containing heavy metal ion will be produced in the process of titanium sponge production, containing a large amount of heavy metal chloride, with principle pollutant of Cr( Ⅲ ) and Mn (Ⅱ). PH value shall be adjusted until Cr3 + is precipitated completely. Chromium- containing wastewater shall be treated separately. To adopt traditional technology of precipitating after add of lime milk will produce a lot of chromium residue which is difficult to be treated. Through lab research and engineering practice, this research develops a sequencing batch reactor neutralization precipitation method which can control pH value continuously and accurately so as to control chromium residue at the minimum amount.

  8. Impacts of CuO nanoparticles on nitrogen removal in sequencing batch biofilm reactors after short-term and long-term exposure and the functions of natural organic matter.

    Science.gov (United States)

    Hou, Jun; You, Guoxiang; Xu, Yi; Wang, Chao; Wang, Peifang; Miao, Lingzhan; Ao, Yanhui; Li, Yi; Lv, Bowen; Yang, Yangyang

    2016-11-01

    The impacts of CuO nanoparticle (NP) exposure on total nitrogen (TN) removal in a sequencing batch biofilm reactor (SBBR) as well as the effects of natural organic matter (NOM) in wastewater were studied. Short-term exposure (8 h) to 1 and 50 mg/L CuO NPs induced negligible influence on the nitrogen removal efficiency, and biofilms could recover from the slight damage caused by the prolonged exposure (45 days) to 1 mg/L CuO NPs. On the other hand, long-term exposure to 50 mg/L CuO NPs notably decreased the nitrogen removal efficiencies to 47.74 and 59.04 % in the absence and presence of bovine serum albumin (BSA), much lower than those in the control (75.43 %), mainly as the suppressed denitrification process. Analysis of key enzyme activities showed that the activities of nitrite reductase and nitrate reductase were obviously reduced with 50 mg/L CuO NP exposure. Further studies revealed that the inhibited nitrite/nitrate reductase was related to the variations of microenvironment pH and decrease of nirS and nirK by microelectrode and fluorescent quantitative polymerase chain reaction (PCR) analysis. In addition, the presence of BSA mitigated the toxicity of CuO NPs due to the enhanced particle size and Cu(2+) release, electrostatic repulsion, and surface coating of CuO NPs, which indicated that lower inhibition effects of CuO NPs in NOM-rich wastewater is of importance when evaluating the environmental risk of NPs to wastewater treatment plants.

  9. Modelling of Batch Process Operations

    DEFF Research Database (Denmark)

    2011-01-01

    Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown that s...

  10. A workflow for peptide-based proteomics in a poorly sequenced plant: A case study on the plasma membrane proteome of banana

    DEFF Research Database (Denmark)

    Vertommen, A.; Laurell Blom Møller, Anders; Cordewener, J. H. G.

    2011-01-01

    Membrane proteins are an interesting class of proteins because of their functional importance. Unfortunately their analysis is hampered by low abundance and poor solubility in aqueous media. Since shotgun methods are high-throughput and partly overcome these problems, they are preferred......, integral plasma membrane proteins from banana leaves were successfully identified....... for membrane proteomics. However, their application in non-model plants demands special precautions to prevent false positive identification of proteins.In the current paper, a workflow for membrane proteomics in banana, a poorly sequenced plant, is proposed. The main steps of this workflow are (i...

  11. Batch process. Optimum designing and operation of a batch process; Bacchi purosesu

    Energy Technology Data Exchange (ETDEWEB)

    Hasebe, S. [Kyoto Univ. (Japan). Faculty of Engineering

    1997-09-05

    Since the control of a batch process becomes dynamic, it becomes necessary to handle the process differently from a continuous process in terms of the designing, operating and controlling of the process. This paper describes the characteristics and the problems to be solved of a batch process from three points of view, the designing, operation and controlling of the process. A major problem of a batch process is the designing difficulty. In a batch process, the amount of products capable of being manufactured per unit time by each apparatus and that by the whole plant structured by combining apparatuses are different, and therefore the time and apparatus capacity are wasted in some cases. The actual designing of a batch process involves various factors, such as the seasonal fluctuation of demand for products, the possibility of expanding the apparatuses in the future and the easiness of controlling the process, and the shipment of products during consecutive holidays and periodic maintenance, which are not included in the formulation of mathematical programming problems. Regarding the optimum operation of a batch process and the controlling of the same, descriptions of forming of a dynamic optimum operation pattern and verification of the sequence control system are given. 9 refs., 4 figs.

  12. Improved diagnostic PCR assay for Actinobacillus pleuropneumoniae based on the nucleotide sequence of an outer membrane lipoprotein

    DEFF Research Database (Denmark)

    Gram, Trine; Ahrens, Peter

    1998-01-01

    The gene (omlA) coding for an outer membrane protein of Actinobacillus pleuropneumoniae serotypes 1 and 5 has been described earlier and has formed the basis for development of a specific PCR assay, The corresponding regions of all 12 A. pleuropneumoniae reference strains of biovar 1 were sequenc...... and sensitivity of this PCR compared to those of culture suggest the use of this PCR for routine identification of A. pleuropneumoniae.......The gene (omlA) coding for an outer membrane protein of Actinobacillus pleuropneumoniae serotypes 1 and 5 has been described earlier and has formed the basis for development of a specific PCR assay, The corresponding regions of all 12 A. pleuropneumoniae reference strains of biovar 1 were sequenced...... species related to A. pleuropneumoniae or isolated from pigs were assayed. They were all found negative in the PCR, as were tonsil cultures from 50 pigs of an A. pleuropneumoniae-negative herd. The sensitivity assessed by agarose gel analysis of the PCR product was 10(2) CFU/PCR test tube. The specificity...

  13. A 30-residue-long "export initiation domain" adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli.

    OpenAIRE

    Andersson, H; von Heijne, G

    1991-01-01

    Signal sequences serve to target proteins to the secretory pathway in both prokaryotic and eukaryotic cells. However, although necessary, the presence of a signal sequence is not always sufficient to ensure efficient membrane translocation. One feature of the nascent chain that adversely affects secretion, at least in Escherichia coli, is the presence of positively charged amino acids immediately downstream of the signal sequence. We have exploited this sensitivity to positively charged resid...

  14. NMR solution structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein.

    Science.gov (United States)

    Biverståhl, Henrik; Andersson, August; Gräslund, Astrid; Mäler, Lena

    2004-11-30

    The structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein (bPrPp) has been investigated by NMR spectroscopy in phospholipid membrane mimetic systems. CD spectroscopy revealed that the peptide adopts a largely alpha-helical structure in zwitterionic bicelles as well as in DHPC micelles but has a less degree of alpha-helix structure in partly charged bicelles. The solution structure of bPrPp was determined in DHPC micelles, and an alpha-helix was found between residues Ser8 and Ile21. The residues within the helical region show slow amide hydrogen exchange. Translational diffusion measurements in zwitterionic q = 0.5 bicelles show that the peptide does not induce aggregation of the bicelles. Increased quadrupolar splittings were observed in the outer part of the (2)H spectrum of DMPC in q = 3.5 bicelles, indicating that the peptide induces a certain degree of order in the bilayer. The amide hydrogen exchange and the (2)H NMR results are consistent with a slight positive hydrophobic mismatch and that bPrPp forms a stable helix that inserts in a transmembrane location in the bilayer. The structure of bPrPp and its position in the membrane may be relevant for the understanding of how the N-terminal (1-30) part of the bovine PrP functions as a cell-penetrating peptide. These findings may lead to a better understanding of how the prion protein accumulates at the membrane surface and also how the conversion into the scrapie form is carried out.

  15. On-line Scheduling Algorithm for Penicillin Fed-batch Fermentation

    Institute of Scientific and Technical Information of China (English)

    XUE Yao-feng; YUAN Jing-qi

    2005-01-01

    An on-line scheduling algorithm to maximize gross profit of penicillin fed-batch fermentation is proposed. According to the on-line classification method, fed-batch fermentation batches are classified into three categories. Using the scheduling strategy, the optimal termination sequence of batches is obtained. Pseudo on-line simulations for testing the proposed algorithm with the data from industrial scale penicillin fermentation are carried out.

  16. SBBR系统短程硝化处理低碳城市污水研究%Treatment of Low Carbon Urban Sewage with Short-cut Nitrification Process in Sequencing Batch Biofilm Reactor

    Institute of Scientific and Technical Information of China (English)

    张立秋; 张朝升; 张可方; 荣宏伟; 李淑更

    2012-01-01

    Low carbon urban sewage in south China was treated by the short-cut nitrification process in a sequencing batch biofilm reactor (SBBR). The effects of aeration rate on ammonia oxidation rate and short-cut nitrification performance were studied under the operating conditions of influent TN 25. 6 to 32. 1 mg/L, COD 50 to 100 mg/L, pH 7. 1 to 7.6 and temperature 24 to 29 ℃,. The characteristics of biofilm in SBBR were investigated. The results showed that the ammonia oxidation rate increased with an increase of aeration rate from 100 to 200 L/h. Under aeration rate of 100 to 120 L/h, stable nitrite accumulation and effective short-cut nitrification could be realized and simultaneous nitrification and denitrification (SND) also occurred. The TN removal rate was 48. 1% to 60. 1%. Meanwhile, sludge reduction was achieved because of the complex food chain in biofilm.%采用序批式生物膜反应器(SBBR),应用短程硝化技术处理南方地区的低碳城市污水.在进水TN为25.6~32.1 mg/L、COD为50~100 mg/L、pH值为7.1~7.6、温度为24~29℃的条件下,进行曝气量对氨氧化速率及短程硝化效果的影响研究,同时考察了SBBR反应器的生物膜特性.结果表明:在曝气量为100~200 L/h范围内,氨氧化速率随着曝气量的增加而增大;在曝气量为100~120 L/h条件下能够实现NO2- -N的稳定积累和高效短程硝化,且有较明显的同步硝化反硝化(SND)过程,对TN的去除率在48.1%~60.1%之间.同时,由于生物膜复杂的食物链结构,还实现了系统的污泥减量.

  17. Production of outer membrane vesicles (OMV in batch cultivation of Neisseria meningitidis serogroup B Produção de vesículas da membrana externa (OMV em cultivo batelada de Neisseria meningitidis sorogrupo B

    Directory of Open Access Journals (Sweden)

    Silvia Santos

    2006-12-01

    Full Text Available Meningococcal disease is an important cause of death and morbidity throughout the world. Nearly 330,000 cases and 35,000 deaths occur yearly. Neisseria meningitidis, serogroup B strain N.44/89, is prevalent in Brazil. Its outer membrane vesicles (OMV with iron regulated proteins (IRP are released to the culture medium and are used as antigen for vaccine production. In order to have knowledge about the kinetic parameters, especially the final OMV concentration values, 20-h batch cultivations were carried out in Catlin medium with iron restriction. Process conditions comprised: 7 L bioreactor, 36ºC, 0.5 atm, overlay air flowrate of 1 L/min, agitation varying from 250 rpm to 850 rpm and dissolved oxygen control set at 10% of saturation condition. Biomass was determined by optical density at 540 nm and dry weight. Glycerol, lactate, pH and dissolved oxygen were measured from samples taken during cultivation. Outer membrane vesicle (OMV concentration was determined by Lowry's method after ultracentrifugation. IRP presence was verified by SDS-PAGE. Highest biomass value, corresponding to the highest initial lactate concentration (7.84 g/L was achieved at the 9th hour process time corresponding to 1.0 g/L dry biomass and 2.3 optical density at 540 nm. Lactate consumption was directly related to cell growth (yield factor: 0.24 g dry biomass / g lactate. Glycerol concentration in the medium did not change significantly during the process. OMV concentration reached the highest value of 80 mg/L at end cultivation time. The obtained results suggest that lactate is a main limiting growth factor and the maximum amount of antigen is obtained during stationary growth and cell death phases.A doença meningocócica é uma causa importante de morte a nível mundial. Aproximadamente 330.000 casos e 35.000 mortes ocorrem anualmente. A cepa N.44/89 do sorogrupo B de Neisseria meningitidis é prevalente no Brasil. Suas vesículas de membrana externa (OMV - "outer

  18. Effect of solvent addition sequence on lycopene extraction efficiency from membrane neutralized caustic peeled tomato waste.

    Science.gov (United States)

    Phinney, David M; Frelka, John C; Cooperstone, Jessica L; Schwartz, Steven J; Heldman, Dennis R

    2017-01-15

    Lycopene is a high value nutraceutical and its isolation from waste streams is often desirable to maximize profits. This research investigated solvent addition order and composition on lycopene extraction efficiency from a commercial tomato waste stream (pH 12.5, solids ∼5%) that was neutralized using membrane filtration. Constant volume dilution (CVD) was used to desalinate the caustic salt to neutralize the waste. Acetone, ethanol and hexane were used as direct or blended additions. Extraction efficiency was defined as the amount of lycopene extracted divided by the total lycopene in the sample. The CVD operation reduced the active alkali of the waste from 0.66 to lycopene efficiently from tomato processing byproducts.

  19. Identification of potential platelet alloantigens in the Equidae family by comparison of gene sequences encoding major platelet membrane glycoproteins.

    Science.gov (United States)

    Boudreaux, Mary K; Humphries, Drew M

    2013-12-01

    Platelet alloantigens in horses may play an important role in the development of neonatal alloimmune thrombocytopenia (NAIT). The objective of this study was to evaluate genes encoding major platelet glycoproteins within the Equidae family in an effort to identify potential alloantigens. DNA was isolated from blood samples obtained from Equidae family members, including a Holsteiner-Oldenburg cross, a Quarter horse, a donkey, and a Plains zebra (Equus burchelli). Gene sequences encoding equine platelet membrane glycoproteins IIb, IIIa (integrin subunits αIIb and β3), Ia (integrin subunit α2), and Ibα were determined using PCR. Gene sequences were compared to the equine genome available on GenBank. Polymorphisms that would be predicted to result in amino acid changes on platelet surfaces were documented and compared with known alloantigenic sites documented on human platelets. Amino acid differences were predicted based on nucleotide sequences for all 4 genes. Nine differences were documented for αIIb, 5 differences were documented for β3, 7 differences were documented for α2, and 16 differences were documented for Ibα outside the macroglycopeptide region. This study represents the first effort at identifying potential platelet alloantigens in members of the Equidae Family based on evaluation of gene sequences. The data obtained form the groundwork for identifying potential platelet alloantigens involved in transfusion reactions and neonatal alloimmune thrombocytopenia (NAIT). More work is required to determine whether the predicted amino acid differences documented in this study play a role in alloimmunity, and whether other polymorphisms not detected in this study are present that may result in alloimmunity. © 2013 American Society for Veterinary Clinical Pathology.

  20. Automatically Identifying Fusion Events between GLUT4 Storage Vesicles and the Plasma Membrane in TIRF Microscopy Image Sequences

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2015-01-01

    Full Text Available Quantitative analysis of the dynamic behavior about membrane-bound secretory vesicles has proven to be important in biological research. This paper proposes a novel approach to automatically identify the elusive fusion events between VAMP2-pHluorin labeled GLUT4 storage vesicles (GSVs and the plasma membrane. The differentiation is implemented to detect the initiation of fusion events by modified forward subtraction of consecutive frames in the TIRFM image sequence. Spatially connected pixels in difference images brighter than a specified adaptive threshold are grouped into a distinct fusion spot. The vesicles are located at the intensity-weighted centroid of their fusion spots. To reveal the true in vivo nature of a fusion event, 2D Gaussian fitting for the fusion spot is used to derive the intensity-weighted centroid and the spot size during the fusion process. The fusion event and its termination can be determined according to the change of spot size. The method is evaluated on real experiment data with ground truth annotated by expert cell biologists. The evaluation results show that it can achieve relatively high accuracy comparing favorably to the manual analysis, yet at a small fraction of time.

  1. Stability of Short­cut Nitrification Nitrogen Removal in Digested Piggery Wastewater with an Intermittently Aerated Sequencing Batch Reactor%间歇曝气 SBR 处理养猪沼液的短程脱氮性能

    Institute of Scientific and Technical Information of China (English)

    宋小燕; 刘锐; 税勇; 川岸朋树; 占新民; 陈吕军

    2016-01-01

    采用间歇曝气序批式活性污泥法(intermittently aerated sequencing batch reactors,IASBR)处理养猪沼液,研究在控温30℃、分步进水条件下的短程脱氮性能.结果表明,进水化学需氧量(COD)与总氮(TN)的比值对脱氮性能影响很大,当进水COD/ TN 为0.8±0.2时,反应器内亚硝态氮浓度持续积累到高达800 mg.L -1,对 TN、氨氮(NH +4-N)和总有机碳(TOC)的去除率仅分别为18.3%±12.2%、84.2%±10.3%、60.7%±10.7%;进水 COD/ TN 提高到2.4±0.5后,亚硝态氮积累浓度迅速从800 mg.L -1降低至10 mg.L -1以下,TN、氨氮和 TOC 的去除率分别上升至90%、95%和85%以上.逐步缩短 HRT 以提高运行负荷,发现氨氮负荷是 IASBR 稳定脱氮的制约因素,体系耐受的氨氮负荷最大为0.30 kg.(m3.d)-1,当超过耐受负荷后,TN、氨氮和 TOC 的去除率将显著下降.整个运行阶段反应器内亚硝态氮积累率达74.6%~97.8%,运行稳定期实现 TN去除率达90%以上,IASBR 系统在低碳氮比下实现了高效稳定的短程硝化反硝化,且不需要额外添加碱度药剂,在处理高氨氮低碳氮比废水上具有优越性.%Stability of short-cut nitrification nitrogen removal performance was studied in a step-feeding, intermittently aerated sequencing batch reactor (IASBR) at 30℃ to treat digested piggery wastewater. Results showed that the nitrogen removal was greatly influenced by the ratio of chemical oxygen demand (COD) to total nitrogen (TN) in the influent. Nitrite nitrogen kept accumulating up to 800 mg.L - 1 when the influent COD/ TN ratio was 0. 8 ± 0. 2, and the removal rates of TN, ammonium nitrogen and total organic carbon (TOC) were only 18. 3% ± 12. 2% , 84. 2% ± 10. 3% and 60. 7% ± 10. 7% , respectively. By contrast, as the influent COD/TN ratio was increased to 2. 4 ± 0. 5, the accumulated concentration of nitrite nitrogen sharply decreased from 800 mg.L - 1 to below 10 mg.L - 1 , and the removal rates

  2. Determination of amino acid compositions and NH2-terminal sequences of peptides electroblotted onto PVDF membranes from tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis

    DEFF Research Database (Denmark)

    Ploug, M; Jensen, A L; Barkholt, V.

    1989-01-01

    The combination of high-resolution Tricine-Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (H. Schägger and G. von Jagow (1987) Anal. Biochem. 166, 368-379) and electroblotting onto polyvinylidene difluoride (PVDF) membranes represents a powerful technique for the isolation of small...... amounts of peptides and protein fragments (Mr 1000-20,000) in a suitable form for amino acid sequencing, directly on the blotting membrane. Conditions for electrophoresis and electroblotting were optimized with respect to high transfer yield and suitability for both amino acid analysis and sequence...

  3. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life.

    Science.gov (United States)

    Elbourne, Liam D H; Tetu, Sasha G; Hassan, Karl A; Paulsen, Ian T

    2017-01-04

    All cellular life contains an extensive array of membrane transport proteins. The vast majority of these transporters have not been experimentally characterized. We have developed a bioinformatic pipeline to identify and annotate complete sets of transporters in any sequenced genome. This pipeline is now fully automated enabling it to better keep pace with the accelerating rate of genome sequencing. This manuscript describes TransportDB 2.0 (http://www.membranetransport.org/transportDB2/), a completely updated version of TransportDB, which provides access to the large volumes of data generated by our automated transporter annotation pipeline. The TransportDB 2.0 web portal has been rebuilt to utilize contemporary JavaScript libraries, providing a highly interactive interface to the annotation information, and incorporates analysis tools that enable users to query the database on a number of levels. For example, TransportDB 2.0 includes tools that allow users to select annotated genomes of interest from the thousands of species held in the database and compare their complete transporter complements.

  4. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life

    Science.gov (United States)

    Elbourne, Liam D. H.; Tetu, Sasha G.; Hassan, Karl A.; Paulsen, Ian T.

    2017-01-01

    All cellular life contains an extensive array of membrane transport proteins. The vast majority of these transporters have not been experimentally characterized. We have developed a bioinformatic pipeline to identify and annotate complete sets of transporters in any sequenced genome. This pipeline is now fully automated enabling it to better keep pace with the accelerating rate of genome sequencing. This manuscript describes TransportDB 2.0 (http://www.membranetransport.org/transportDB2/), a completely updated version of TransportDB, which provides access to the large volumes of data generated by our automated transporter annotation pipeline. The TransportDB 2.0 web portal has been rebuilt to utilize contemporary JavaScript libraries, providing a highly interactive interface to the annotation information, and incorporates analysis tools that enable users to query the database on a number of levels. For example, TransportDB 2.0 includes tools that allow users to select annotated genomes of interest from the thousands of species held in the database and compare their complete transporter complements. PMID:27899676

  5. Comparative sequence analysis of domain I of Plasmodium falciparum apical membrane antigen 1 from Saudi Arabia and worldwide isolates.

    Science.gov (United States)

    Al-Qahtani, Ahmed A; Abdel-Muhsin, Abdel-Muhsin A; Bin Dajem, Saad M; AlSheikh, Adel Ali H; Bohol, Marie Fe F; Al-Ahdal, Mohammed N; Putaporntip, Chaturong; Jongwutiwes, Somchai

    2016-04-01

    The apical membrane antigen 1 of Plasmodium falciparum (PfAMA1) plays a crucial role in erythrocyte invasion and is a target of protective antibodies. Although domain I of PfAMA1 has been considered a promising vaccine component, extensive sequence diversity in this domain could compromise an effective vaccine design. To explore the extent of sequence diversity in domain I of PfAMA1, P. falciparum-infected blood samples from Saudi Arabia collected between 2007 and 2009 were analyzed and compared with those from worldwide parasite populations. Forty-six haplotypes and a novel codon change (M190V) were found among Saudi Arabian isolates. The haplotype diversity (0.948±0.004) and nucleotide diversity (0.0191±0.0008) were comparable to those from African hyperendemic countries. Positive selection in domain I of PfAMA1 among Saudi Arabian parasite population was observed because nonsynonymous nucleotide substitutions per nonsynonymous site (dN) significantly exceeded synonymous nucleotide substitutions per synonymous site (dS) and Tajima's D and its related statistics significantly deviated from neutrality in the positive direction. Despite a relatively low prevalence of malaria in Saudi Arabia, a minimum of 17 recombination events occurred in domain I. Genetic differentiation was significant between P. falciparum in Saudi Arabia and parasites from other geographic origins. Several shared or closely related haplotypes were found among parasites from different geographic areas, suggesting that vaccine derived from multiple shared epitopes could be effective across endemic countries.

  6. Association of Arabidopsis type-II ROPs with the plasma membrane requires a conserved C-terminal sequence motif and a proximal polybasic domain.

    Science.gov (United States)

    Lavy, Meirav; Yalovsky, Shaul

    2006-06-01

    Plant ROPs (or RACs) are soluble Ras-related small GTPases that are attached to cell membranes by virtue of the post-translational lipid modifications of prenylation and S-acylation. ROPs (RACs) are subdivided into two major subgroups called type-I and type-II. Whereas type-I ROPs terminate with a conserved CaaL box and undergo prenylation, type-II ROPs undergo S-acylation on two or three C-terminal cysteines. In the present work we determined the sequence requirement for association of Arabidopsis type-II ROPs with the plasma membrane. We identified a conserved sequence motif, designated the GC-CG box, in which the modified cysteines are flanked by glycines. The GC-CG box cysteines are separated by five to six mostly non-polar residues. Deletion of this sequence or the introduction of mutations that change its nature disrupted the association of ROPs with the membrane. Mutations that changed the GC-CG box glycines to alanines also interfered with membrane association. Deletion of a polybasic domain proximal to the GC-CG box disrupted the plasma membrane association of AtROP10. A green fluorescent protein fusion protein containing the C-terminal 25 residues of AtROP10, including its polybasic domain and GC-CG box, was primarily associated with the plasma membrane but a similar fusion protein lacking the polybasic domain was exclusively localized in the soluble fraction. These data provide evidence for the minimal sequence required for plasma membrane association of type-II ROPs in Arabidopsis and other plant species.

  7. BATCHING PRINCIPLE OF RATING POINT ACCRUAL

    Directory of Open Access Journals (Sweden)

    S. A. Safontsev

    2014-01-01

    Full Text Available The paper analyzes characteristics of the postindustrial educational system, including the credit competence assessment, academic loads, and module-rating discipline structure. The employers’ judgments, reflected in the survey outcomes, make it possible to single out the most significant competencies for students to master. Such findings are regarded as a foundation for developing the assignment modules, integrating the problematic, testing and projecting tasks, designed to master necessary competences; their effectiveness is estimated by using the criteria of behavioral psychology. The paper demonstrates the sequences of monitoring assessment of students’ academic achievements, and recommends the batching principle of rating point accrual, based on criterion-oriented evaluation standards, reflecting students’ competence levels. The authors identify the basic competence indicators: interest in the subject, reflections on the test results, and inner motivation for project activities. The complex of batching equations is given for developing the training cards of academic disciplines, and guaranteeing the effectiveness of education system.

  8. SBR法处理油页岩废水试验研究%Study on the treatment of oil shale wastewater by sequencing batch reactor activated sludge process (SBR)

    Institute of Scientific and Technical Information of China (English)

    樊亚楠; 张兰英; 王显胜; 马然; 张婧赢

    2012-01-01

    对油页岩废水水质进行分析,采用SBR工艺进行处理,以废水COD和总石油烃为控制指标,结合污泥脱氢酶的活性,探索SBR工艺运行的最佳条件;并利用修正的Monod公式,对SBR池中生化动力学进行研究,确定了其动力学参数,反应级数及反应速率常数.结果表明,在温度为24~28℃,pH值为6.58 ~ 7.24,DO为3.36~4.36mg/L,水力停留时间为36 h条件下,处理效果较佳.在进水水量为15L,COD为491.008 mg/L,总石油烃为33.25 mg/L时,废水COD去除率可达70%,总石油烃去除率可达90%.%Since the wastewater generated by oil shale mining is the factor limiting the wide use of oil shale, the research on oil shale wastewater is one of the focuses in the home and abroad. In the present research, water quality of oil shale wastewater was analyzed. It could be found that the wastewater was with characteristics of great odor, deep color and consisted of complex components. To note, the organic compounds contained in the wastewater were mostly hydrocarbons . Furthermore, Sequencing Batch Reactor Activated Sludge Pro-cess(SBR) was used to treat the oil shale wastewater and the optimum treatment condition was explored at different temperature, pH, DO, and hydraulic retention time (HRT), with the control index of COD and TPH, combined with the sludge dehydrogenase activity. The results show that within temperature of 24 - 28 ℃, pH of 6.58 - 7.24, DO of 3.36 - 4.36 mg/L, HRT of 36 h, the elimination effect of COD and TPH are promising. For the conditions of influent volume of 15 L, COD of 491.008 mg/L, and total petroleum hydrocarbons of 33.25 mg/L, the COD removal rate can be up to 70% and the total petroleum hydrocarbon removal rate can be up to 90 % . Besides, the influent and effluent were measured by GC - MS. Through the result of analysis, the content and type of organic matters in wastewater were found to significantly reduce. Furthermore, with modified Mon-od equation, the

  9. SBR亚硝化处理化肥厂氨氮废水影响因素分析%Influence factors of treatment by nitrosation in sequencing batch reactor with ammonia-nitrogen wastewater of fertilizer plant

    Institute of Scientific and Technical Information of China (English)

    庞荣辉; 黄智宁; 曹蔓

    2014-01-01

    A lab-scale batch sequencing reactor (SBR) was used to treat ammonia-nitrogen wastewater of fertilizer plant and factors affecting the short-cut biological nitrogen removal, such as pH, DO, effluent of NH4+-N and temperature etc., were investigated. The optimum operating condition of nitrosation by SBR was confirmed. It reveals that pH value over low restrained generation of nitrite when pH value over high prejudiced the removal of TN through denitrification by denitrificans. Nitrosation rate remained high level and effluent of TN was well controlled as the pH value was approximately maintained 8.0. When DO was 0.2~0.3 mg/L, the reaction rate of nitrosation was slow as the partial nitrification was still going on. The nitrosation in system couldn’t achieved and nitrification became maim reaction while DO was 1.5~2.8 mg/l. Nitrite was abundantly accumulated at high ammonia nitrogen load from inflow while the removal efficiency of NH4+-N was not good. High nitrosation rate can be obtained at relatively high temperature. The optimum operating conditions were controlled as follows: temperature at 35℃, pH of initial inflow at 7.8 to 8.2, DO at 0.5 to 0.6 mg/L and influent concentration of NH4+-N at 100mg/L. The nitrosation rate can be retained above 90%in optimum operating conditions.%利用SBR亚硝化处理化肥厂实际废水,研究其短程生物脱氮过程中pH、溶解氧、进水氨氮负荷和温度等因素影响,并确定亚硝化处理的最佳操作条件。结果表明,pH过低会抑制亚硝酸盐的生成,过高则不利于反硝化菌反硝化过程TN的去除;当pH值控制在8.0左右时,亚硝化率保持较高水平,同时出水TN浓度控制较好。当DO浓度为0.2~0.3 mg/L时,亚硝化反应继续进行,但NH4+-N亚硝化反应速率较慢;当DO浓度为1.5~2.8 mg/l时,无法实现系统中亚硝化的运行,硝化作用成为主要反应。高氨氮负荷进水有利于亚硝酸盐的积累,但对出水氨氮

  10. 序批式生物反应器工艺脱氮除磷过程控制参数%Control Parameters for Removal of Nitrogen and Phosphorus in Sequencing Batch Reactor

    Institute of Scientific and Technical Information of China (English)

    贾艳萍; 贾心倩; 张兰河; 宗庆

    2015-01-01

    In order to realize automatic control of sequencing batch reactor(SBR), the feasibility of employing dissolved oxygen(DO), pH value and oxidation reduction potential(ORP) as the controlling parameters for the termination of different reaction stages, which included phosphorus release under anaerobic condition, nitrification under aerobic condition, aeration and phosphorus uptake under aerobic condition and denitrification under anoxic conditions, were investigated by treating synthetic wastewater in an anaerobic/aerobic/anoxic (AOA) SBR. The results showed that the turning point of pH value andORP profiles was corresponding to the termination of phosphorus release in anaerobic stage. The lowest point of pH profile was corresponding to the termination of nitrification in aerobic andDO, pH value andORP increased to stable levels after nitrification. The combination ofDO, pH value andORP could be used to estimate the termination of aeration time and phosphorus uptake in aerobic stage. The lowest point ofORP profile was corresponding to the termination of denitrification in anoxic. The characteristic points ofDO, pH value andORP could be used as the process control parameters for the nitrogen and phosphorus removal in SBR.%为了实现序批式生物反应器(SBR)的自动控制,利用SBR工艺厌氧-好氧-缺氧(AOA)的运行方式处理模拟废水,考察溶解氧(DO)、pH值及氧化还原电位(ORP)作为各反应阶段终止(包括厌氧释磷、好氧硝化、曝气、好氧吸磷和缺氧反硝化)控制参数的可行性。结果表明:厌氧段,pH值与ORP曲线下降至平台的转折点对应厌氧释磷的终点;好氧段,pH值曲线的最低点对应硝化作用的终点,pH值、DO与ORP在硝化结束后均上升至一个稳定的平台,三者结合来判断曝气时间的结束以及好氧吸磷的终点;缺氧段,ORP曲线的最低点对应反硝化作用的终点。DO,pH值与ORP的

  11. Effect of different salinity on sludge bulking by using sequencing batch reactor%盐度对序批式生物反应器污泥膨胀的影响

    Institute of Scientific and Technical Information of China (English)

    贾艳萍; 王山山; 张兰河; 王旭明; 郭静波

    2013-01-01

    As one of the most significant factors influencing the settling properties of the activated sludge, the effects of various salinities and their changes on sludge bulking were investigated by applying wastewaters containing different kinds of salinity in a sequencing batch reactor (SBR). The influences of salinities induced by NaCl, Na2SO4 and Na3PO4 on the removal efficiency of pollutants and the settleability of the activated sludge were analyzed by utilizing sodium acetate as sole carbon source. The performances of the SBR fed with NaCl salinity (increased gradually from 0 to 30 g/L) when the dissolved oxygen (DO) concentration was 3 mg/L were as follows:the sludge volume index (SVI) dropped from 135 mL/g to 71 mL/g;the removal efficiency of the total nitrogen (TN) dropped from 80%to 60%;The extracellular polymeric substance (EPS) increased from 521 to 917 mg/L;And the sludge showed a good settleability. When the Na2SO4 salinity increased gradually from 0 to 30 g/L, the SVI dropped from 135 to 73 mL/g, the TN removal efficiency dropped from 81% to 60% and the EPS increased from 523 to 896 mg/L. By comparison, when the Na3PO4 salinity increased gradually from 0 to 8 g/L, SVI increased from 135 to 198 mL/g, the removal efficiency of TN dropped from 80% to 60% and the EPS increased from 549 to 674 mg/L, which led to sludge bulking. It demonstrated that when the NaCl and Na2SO4 salinity increased, the removal efficiency of TN decreased, while the sludge settleability was improved and the EPS concentration increased. For system fed with increasing Na3PO4 salinity, the sludge settleability and the removal efficiency of TN decreased, while the EPS concentration increased. Meanwhile, with the decreasing salinity of NaCl (30~0 g/L), Na2SO4 (30~0 g/L) and Na3PO4 (8~0 g/L), SVI increased from 71 to 298 mL/g, 73 to 291 mL/g and 198 to 241mL/g, respectively, the respective TN removal efficiency dropped from 62% to 43%, 65%to 44%and 70%to 35%and the EPS concentration increased

  12. Membrane topologies of the PGLa antimicrobial peptide and a transmembrane anchor sequence by Dynamic Nuclear Polarization/solid-state NMR spectroscopy.

    Science.gov (United States)

    Salnikov, Evgeniy Sergeevich; Aisenbrey, Christopher; Aussenac, Fabien; Ouari, Olivier; Sarrouj, Hiba; Reiter, Christian; Tordo, Paul; Engelke, Frank; Bechinger, Burkhard

    2016-02-15

    Dynamic Nuclear Polarization (DNP) has been introduced to overcome the sensitivity limitations of nuclear magnetic resonance (NMR) spectroscopy also of supported lipid bilayers. When investigated by solid-state NMR techniques the approach typically involves doping the samples with biradicals and their investigation at cryo-temperatures. Here we investigated the effects of temperature and membrane hydration on the topology of amphipathic and hydrophobic membrane polypeptides. Although the antimicrobial PGLa peptide in dimyristoyl phospholipids is particularly sensitive to topological alterations, the DNP conditions represent well its membrane alignment also found in bacterial lipids at ambient temperature. With a novel membrane-anchored biradical and purpose-built hardware a 17-fold enhancement in NMR signal intensity is obtained by DNP which is one of the best obtained for a truly static matrix-free system. Furthermore, a membrane anchor sequence encompassing 19 hydrophobic amino acid residues was investigated. Although at cryotemperatures the transmembrane domain adjusts it membrane tilt angle by about 10 degrees, the temperature dependence of two-dimensional separated field spectra show that freezing the motions can have beneficial effects for the structural analysis of this sequence.

  13. A general framework for the synthesis and operational design of batch processes

    DEFF Research Database (Denmark)

    Papaeconomou, Eirini; Gani, Rafiqul; Jørgensen, Sten Bay

    2002-01-01

    , for the operational design of batch reactors. A case study involving the feasible operation of a batch reactor with multiple desirable and undesirable reactions and operational constraints is presented. Application results including verification of the generated operational sequences (alternatives) through dynamic......The objective of this paper is to present a general problem formulation and a general methodology for the synthesis of batch operations and the operational design of individual batch processes, such as mixing, reaction and separation. The general methodology described supplies the batch routes...

  14. Whole exome sequencing implicates eye development, the unfolded protein response and plasma membrane homeostasis in primary open-angle glaucoma

    Science.gov (United States)

    Souzeau, Emmanuelle; Sharma, Shiwani; Landers, John; Mills, Richard; Goldberg, Ivan; Healey, Paul R.; Graham, Stuart; Hewitt, Alex W.; Mackey, David A.; Galanopoulos, Anna; Casson, Robert J.; Ruddle, Jonathan B.; Ellis, Jonathan; Leo, Paul; Brown, Matthew A.; MacGregor, Stuart; Lynn, David J.; Burdon, Kathryn P.; Craig, Jamie E.

    2017-01-01

    Purpose To identify biological processes associated with POAG and its subtypes, high-tension (HTG) and normal-tension glaucoma (NTG), by analyzing rare potentially damaging genetic variants. Methods A total of 122 and 65 unrelated HTG and NTG participants, respectively, with early onset advanced POAG, 103 non-glaucoma controls and 993 unscreened ethnicity-matched controls were included in this study. Study participants without myocilin disease-causing variants and non-glaucoma controls were subjected to whole exome sequencing on an Illumina HiSeq2000. Exomes of participants were sequenced on an Illumina HiSeq2000. Qualifying variants were rare in the general population (MAF < 0.001) and potentially functionally damaging (nonsense, frameshift, splice or predicted pathogenic using SIFT or Polyphen2 software). Genes showing enrichment of qualifying variants in cases were selected for pathway and network analysis using InnateDB. Results POAG cases showed enrichment of rare variants in camera-type eye development genes (p = 1.40×10–7, corrected p = 3.28×10–4). Implicated eye development genes were related to neuronal or retinal development. HTG cases were significantly enriched for key regulators in the unfolded protein response (UPR) (p = 7.72×10–5, corrected p = 0.013). The UPR is known to be involved in myocilin-related glaucoma; our results suggest the UPR has a role in non-myocilin causes of HTG. NTG cases showed enrichment in ion channel transport processes (p = 1.05×10–4, corrected p = 0.027) including calcium, chloride and phospholipid transporters involved in plasma membrane homeostasis. Network analysis also revealed enrichment of the MHC Class I antigen presentation pathway in HTG, and the EGFR1 and cell-cycle pathways in both HTG and NTG. Conclusion This study suggests that mutations in eye development genes are enriched in POAG. HTG can result from aberrant responses to protein misfolding which may be amenable to molecular chaperone therapy. NTG

  15. N-terminal amino acid sequences of the major outer membrane proteins from a Neisseria meningitidis group B strain isolated in Brazil

    Directory of Open Access Journals (Sweden)

    Salvatore Giovanni De Simone

    1996-02-01

    Full Text Available The four dominant outer membrane proteins (46, 38, 33 and 28 kDa were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE in a semi-purified preparation of vesicle membranes of a Neisseria meningitidis (N44/89, B:4:P1.15:P5.5,7 strain isolated in Brazil. The N-terminal amino acid sequence for the 46 kDa and 28 kDa proteins matched that reported by others for class 1 and 5 proteins respectively, whereas the sequence (25 amino acids for the 38 kDa (class 3 protein was similar to class 1 meningococcal proteins. The sequence for the 33 kDa (class 4 was unique and not homologous to any known protein.

  16. Microsequencing of proteins and peptides in the Knauer sequencer with and without covalent attachment to polyvinylidene difluoride membranes by the wet-phase degradation technique.

    Science.gov (United States)

    Herfurth, E; Pilling, U; Wittmann-Liebold, B

    1991-05-01

    Proteins and large peptides were degraded with phenylisothiocyanate (PITC) in the horizontal flow-through-reactor of the Modular Knauer Sequencer (Fischer, S., Reimann, F. & Wittmann-Liebold, B. (1989) in Methods in Protein Sequence Analysis (Wittmann-Liebold, B., ed.) Springer-Verlag, Berlin, pp. 98-107) by the wet-phase filter technique (Wittmann-Liebold, B. (1988) J. Prot. Chem. 7, 224-225) employing polyvinylidene difluoride (PVDF) membranes without polybrene. In order to prevent losses of small peptides during solvent washes at the degradation, 1.4-phenylene diisothiocyanate (DITC) derivatized PVDF support (MilliGen, Burlington, MA) was used to covalently attach the peptide via its lysine groups in situ within the cross-flow reaction chamber onto this membrane (Herfurth, E., Pilling, U. & Wittmann-Liebold, B. (1990) J. Prot. Chem. 9, 267). We found these membranes very suitable for peptide degradations in the Knauer sequencer. In almost all cases we were able to identify the amino-acid residues of the peptide up to its last covalent fixation point to the membrane.

  17. Data-driven batch schuduling

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John [Los Alamos National Laboratory; Denehy, Tim [GOOGLE; Arpaci - Dusseau, Remzi [UNIV OF WISCONSIN; Livny, Miron [UNIV OF WISCONSIN; Arpaci - Dusseau, Andrea C [NON LANL

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  18. On the distribution of batch shelf lives.

    Science.gov (United States)

    Quinlan, Michelle; Stroup, Walter; Christopher, David; Schwenke, James

    2013-01-01

    Implicit in ICH Q1E (International Conference on Harmonization [ICH], 2003b ) are definitions of batch shelf life (the time the batch mean crosses the acceptance limit) and product shelf life (the minimum batch shelf life). The distribution of batch means over time projects to a distribution of batch shelf lives on the x-axis. Assuming multivariate normality, shelf life is the ratio of correlated Gaussian variables. Using Hinkley ( 1969 ), we describe the relationship between quantiles of the distributions of batch shelf lives and batch means. Exploiting this relationship, a linear mixed model is used to estimate a target quantile of batch shelf lives to address the ICH objective.

  19. BatchJobs and BatchExperiments: Abstraction Mechanisms for Using R in Batch Environments

    Directory of Open Access Journals (Sweden)

    Bernd Bischl

    2015-03-01

    Full Text Available Empirical analysis of statistical algorithms often demands time-consuming experiments. We present two R packages which greatly simplify working in batch computing environments. The package BatchJobs implements the basic objects and procedures to control any batch cluster from within R. It is structured around cluster versions of the well-known higher order functions Map, Reduce and Filter from functional programming. Computations are performed asynchronously and all job states are persistently stored in a database, which can be queried at any point in time. The second package, BatchExperiments, is tailored for the still very general scenario of analyzing arbitrary algorithms on problem instances. It extends package BatchJobs by letting the user define an array of jobs of the kind apply algorithm A to problem instance P and store results. It is possible to associate statistical designs with parameters of problems and algorithms and therefore to systematically study their influence on the results. The packages main features are: (a Convenient usage: All relevant batch system operations are either handled internally or mapped to simple R functions. (b Portability: Both packages use a clear and well-defined interface to the batch system which makes them applicable in most high-performance computing environments. (c Reproducibility: Every computational part has an associated seed to ensure reproducibility even when the underlying batch system changes. (d Abstraction and good software design: The code layers for algorithms, experiment definitions and execution are cleanly separated and enable the writing of readable and maintainable code.

  20. The Number, Organization, and Size of Polymorphic Membrane Protein Coding Sequences as well as the Most Conserved Pmp Protein Differ within and across Chlamydia Species.

    Science.gov (United States)

    Van Lent, Sarah; Creasy, Heather Huot; Myers, Garry S A; Vanrompay, Daisy

    2016-01-01

    Variation is a central trait of the polymorphic membrane protein (Pmp) family. The number of pmp coding sequences differs between Chlamydia species, but it is unknown whether the number of pmp coding sequences is constant within a Chlamydia species. The level of conservation of the Pmp proteins has previously only been determined for Chlamydia trachomatis. As different Pmp proteins might be indispensible for the pathogenesis of different Chlamydia species, this study investigated the conservation of Pmp proteins both within and across C. trachomatis,C. pneumoniae,C. abortus, and C. psittaci. The pmp coding sequences were annotated in 16 C. trachomatis, 6 C. pneumoniae, 2 C. abortus, and 16 C. psittaci genomes. The number and organization of polymorphic membrane coding sequences differed within and across the analyzed Chlamydia species. The length of coding sequences of pmpA,pmpB, and pmpH was conserved among all analyzed genomes, while the length of pmpE/F and pmpG, and remarkably also of the subtype pmpD, differed among the analyzed genomes. PmpD, PmpA, PmpH, and PmpA were the most conserved Pmp in C. trachomatis,C. pneumoniae,C. abortus, and C. psittaci, respectively. PmpB was the most conserved Pmp across the 4 analyzed Chlamydia species.

  1. BatchJS: Implementing Batches in JavaScript

    NARCIS (Netherlands)

    Kasemier, D.

    2014-01-01

    None of our popular programming languages know how to handle distribution well. Yet our programs interact more and more with each other and our data resorts in databases and web services. Batches are a new addition to languages that can finally bring native support for distribution to our favourite

  2. Analysis of Adiabatic Batch Reactor

    Directory of Open Access Journals (Sweden)

    Erald Gjonaj

    2016-05-01

    Full Text Available A mixture of acetic anhydride is reacted with excess water in an adiabatic batch reactor to form an exothermic reaction. The concentration of acetic anhydride and the temperature inside the adiabatic batch reactor are calculated with an initial temperature of 20°C, an initial temperature of 30°C, and with a cooling jacket maintaining the temperature at a constant of 20°C. The graphs of the three different scenarios show that the highest temperatures will cause the reaction to occur faster.

  3. Physicochemical Characteristics of Transferon™ Batches

    Directory of Open Access Journals (Sweden)

    Emilio Medina-Rivero

    2016-01-01

    Full Text Available Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes.

  4. Physicochemical Characteristics of Transferon™ Batches

    Science.gov (United States)

    Pérez-Sánchez, Gilberto; Favari, Liliana; Estrada-Parra, Sergio

    2016-01-01

    Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS) for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API) of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD) of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes. PMID:27525277

  5. Physicochemical Characteristics of Transferon™ Batches.

    Science.gov (United States)

    Medina-Rivero, Emilio; Vallejo-Castillo, Luis; Vázquez-Leyva, Said; Pérez-Sánchez, Gilberto; Favari, Liliana; Velasco-Velázquez, Marco; Estrada-Parra, Sergio; Pavón, Lenin; Pérez-Tapia, Sonia Mayra

    2016-01-01

    Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS) for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API) of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD) of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes.

  6. Keeping Quality of Strawberry Batches

    NARCIS (Netherlands)

    Schouten, R.E.; Kooten, van O.

    2001-01-01

    Post-harvest life of strawberries is largely limited by Botrytis cinerea infection. It is assumed that there are two factors influencing the batch keeping quality: the botrytis pressure and the resistance of the strawberry against infection. The latter factor will be discussed here. A model is

  7. Batching System for Superior Service

    Science.gov (United States)

    2001-01-01

    Veridian's Portable Batch System (PBS) was the recipient of the 1997 NASA Space Act Award for outstanding software. A batch system is a set of processes for managing queues and jobs. Without a batch system, it is difficult to manage the workload of a computer system. By bundling the enterprise's computing resources, the PBS technology offers users a single coherent interface, resulting in efficient management of the batch services. Users choose which information to package into "containers" for system-wide use. PBS also provides detailed system usage data, a procedure not easily executed without this software. PBS operates on networked, multi-platform UNIX environments. Veridian's new version, PBS Pro,TM has additional features and enhancements, including support for additional operating systems. Veridian distributes the original version of PBS as Open Source software via the PBS website. Customers can register and download the software at no cost. PBS Pro is also available via the web and offers additional features such as increased stability, reliability, and fault tolerance.A company using PBS can expect a significant increase in the effective management of its computing resources. Tangible benefits include increased utilization of costly resources and enhanced understanding of computational requirements and user needs.

  8. NDA BATCH 2002-02

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.

  9. NGBAuth - Next Generation Batch Authentication for long running batch jobs.

    CERN Document Server

    Juto, Zakarias

    2015-01-01

    This document describes the prototyping of a new solution for the CERN batch authentication of long running jobs. While the job submission requires valid user credentials, these have to be renewed due to long queuing and execution times. Described within is a new system which will guarantee a similar level of security as the old LSFAuth while simplifying the implementation and the overall architecture. The new system is being built on solid, streamlined and tested components (notably OpenSSL) and a priority has been to make it more generic in order to facilitate the evolution of the current system such as for the expected migration from LSF to Condor as backend batch system.

  10. First study on gene expression of cement proteins and potential adhesion-related genes of a membranous-based barnacle as revealed from Next-Generation Sequencing technology

    KAUST Repository

    Lin, Hsiu Chin

    2013-12-12

    This is the first study applying Next-Generation Sequencing (NGS) technology to survey the kinds, expression location, and pattern of adhesion-related genes in a membranous-based barnacle. A total of 77,528,326 and 59,244,468 raw sequence reads of total RNA were generated from the prosoma and the basis of Tetraclita japonica formosana, respectively. In addition, 55,441 and 67,774 genes were further assembled and analyzed. The combined sequence data from both body parts generates a total of 79,833 genes of which 47.7% were shared. Homologues of barnacle cement proteins - CP-19K, -52K, and -100K - were found and all were dominantly expressed at the basis where the cement gland complex is located. This is the main area where transcripts of cement proteins and other potential adhesion-related genes were detected. The absence of another common barnacle cement protein, CP-20K, in the adult transcriptome suggested a possible life-stage restricted gene function and/or a different mechanism in adhesion between membranous-based and calcareous-based barnacles. © 2013 © 2013 Taylor & Francis.

  11. Batch-oriented software appliances

    CERN Document Server

    Murri, Riccardo

    2012-01-01

    This paper presents AppPot, a system for creating Linux software appliances. AppPot can be run as a regular batch or grid job and executed in user space, and requires no special virtualization support in the infrastructure. The main design goal of AppPot is to bring the benefits of a virtualization-based IaaS cloud to existing batch-oriented computing infrastructures. In particular, AppPot addresses the application deployment and configuration on large heterogeneous computing infrastructures: users are enabled to prepare their own customized virtual appliance for providing a safe execution environment for their applications. These appliances can then be executed on virtually any computing infrastructure being in a private or public cloud as well as any batch-controlled computing clusters the user may have access to. We give an overview of AppPot and its features, the technology that makes it possible, and report on experiences running it in production use within the Swiss National Grid infrastructure SMSCG.

  12. NDA Batch 2002-13

    Energy Technology Data Exchange (ETDEWEB)

    Hollister, R

    2009-09-17

    QC sample results (daily background check drum and 100-gram SGS check drum) were within acceptance criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on drum LL85501243TRU. Replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. HWM NCAR No. 02-1000168 issued on 17-Oct-2002 regarding a partially dislodged Cd sheet filter on the HPGe coaxial detector. This physical geometry occurred on 01-Oct-2002 and was not corrected until 10-Oct-2002, during which period is inclusive of the present batch run of drums. Per discussions among the Independent Technical Reviewer, Expert Reviewer and the Technical QA Supervisor, as well as in consultation with John Fleissner, Technical Point of Contact from Canberra, the analytical results are technically reliable. All QC standard runs during this period were in control. Data packet for SGS Batch 2002-13 generated using passive gamma-ray spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with establiShed control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable.

  13. 间歇结晶过程的分批优化%Batch-to-batch Optimization of Batch Crystallization Processes

    Institute of Scientific and Technical Information of China (English)

    Woranee Paengjuntuek; Paisan Kittisupakorn; Amornchai Arpornwichanop

    2008-01-01

    It is the fact that several process parameters are either unknown or uncertain. Therefore, an optimal control profile calculated with developed process models with respect to such process parameters may not give an optimal performance when implemented to real processes. This study proposes a batch-to-batch optimization strat-egy for the estimation of uncertain kinetic parameters in a batch crystallization process of potassium sulfate produc-tion. The knowledge of a crystal size distribution of the product at the end of batch operation is used in the proposedmethodology. The updated kinetic parameters are applied for determining an optimal operating temperature policy for the next batch run.

  14. Assessing the ability of sequence-based methods to provide functional insight within membrane integral proteins: a case study analyzing the neurotransmitter/Na+ symporter family

    Directory of Open Access Journals (Sweden)

    Eskandari Sepehr

    2007-10-01

    Full Text Available Abstract Background Efforts to predict functional sites from globular proteins is increasingly common; however, the most successful of these methods generally require structural insight. Unfortunately, despite several recent technological advances, structural coverage of membrane integral proteins continues to be sparse. ConSequently, sequence-based methods represent an important alternative to illuminate functional roles. In this report, we critically examine the ability of several computational methods to provide functional insight within two specific areas. First, can phylogenomic methods accurately describe the functional diversity across a membrane integral protein family? And second, can sequence-based strategies accurately predict key functional sites? Due to the presence of a recently solved structure and a vast amount of experimental mutagenesis data, the neurotransmitter/Na+ symporter (NSS family is an ideal model system to assess the quality of our predictions. Results The raw NSS sequence dataset contains 181 sequences, which have been aligned by various methods. The resultant phylogenetic trees always contain six major subfamilies are consistent with the functional diversity across the family. Moreover, in well-represented subfamilies, phylogenetic clustering recapitulates several nuanced functional distinctions. Functional sites are predicted using six different methods (phylogenetic motifs, two methods that identify subfamily-specific positions, and three different conservation scores. A canonical set of 34 functional sites identified by Yamashita et al. within the recently solved LeuTAa structure is used to assess the quality of the predictions, most of which are predicted by the bioinformatic methods. Remarkably, the importance of these sites is largely confirmed by experimental mutagenesis. Furthermore, the collective set of functional site predictions qualitatively clusters along the proposed transport pathway, further

  15. Comparison of membrane fouling during short-term filtration of aerobic granular sludge and activated sludge

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aerobic granular sludge was cultivated adopting internal-circulate sequencing batch airlift reactor. The contradistinctive experiment about short-term membrane fouling between aerobic granular sludge system and activated sludge system were investigated. The membrane foulants was also characterized by Fourier Transform Infrared (FTIR) spectroscopy technique. The results showed that the aerobic granular sludge had excellent denitrification ability; the removal efficiency of TN could reach 90%. The aerobic granular sludge could alleviate membrane fouling effectively. The steady membrane flux of aerobic granular sludge was twice as much as that of activated sludge system. In addition, it was found that the aerobic granular sludge could result in severe membrane pore-blocking, however, the activated sludge could cause severe cake fouling. The major components of the foulants were identified as comprising of proteins and polysaccharide materials.

  16. Antigen sequence typing of outer membrane protein (fetA gene of Neisseria meningitidis serogroup A from Delhi & adjoining areas

    Directory of Open Access Journals (Sweden)

    S Dwivedi

    2014-01-01

    Full Text Available Background & objectives: Meningitis caused by Neisseria meningitidis is a fatal disease. Meningococcal meningitis is an endemic disease in Delhi and irregular pattern of outbreaks has been reported in India. All these outbreaks were associated with serogroup A. Detailed molecular characterization of N. meningitidis is required for the management of this fatal disease. In this study, we characterized antigenic diversity of surface exposed outer membrane protein (OMP FetA antigen of N. meningitidis serogroup A isolates obtained from cases of invasive meningococcal meningitis in Delhi, India. Methods: Eight isolates of N. meningitidis were collected from cerebrospinal fluid during October 2008 to May 2011 from occasional cases of meningococcal meningitis. Seven isolates were from outbreaks of meningococcal meningitis in 2005-2006 in Delhi and its adjoining areas. These were subjected to molecular typing of fetA gene, an outer membrane protein gene. Results: All 15 N. meningitides isolates studied were serogroup A. This surface exposed porin is putatively under immune pressure. Hence as a part of molecular characterization, genotyping was carried out to find out the diversity in outer membrane protein (FetA gene among the circulating isolates of N. meningitidis. All 15 isolates proved to be of the same existing allele type of FetA variable region (VR when matched with global database. The allele found was F3-1 for all the isolates. Interpretation & conclusions: There was no diversity reported in the outer membrane protein FetA in the present study and hence this protein appeared to be a stable molecule. More studies on molecular characterization of FetA antigen are required from different serogroups circulating in different parts of the world.

  17. On Bottleneck Product Rate Variation Problem with Batching

    Directory of Open Access Journals (Sweden)

    Shree Khadka

    2013-07-01

    Full Text Available The product rate variation problem minimizes the variation in the rate at which different models of a common base product are produced on the assembly lines with the assumption of negligible switch-over cost and unit processing time for each copy of each model. The assumption of significant setup and arbitrary processing times forces the problem to be a two phase problem. The first phase determines the size and the number of batches and the second one sequences the batches of models. In this paper, the bottleneck case i.e. the min-max case of the problem with a generalized objective function is formulated. A Pareto optimal solution is proposed and a relation between optimal sequences for the problem with different objective functions is investigated.

  18. BATCH SETTLING IN VERTICAL SETTLERS

    OpenAIRE

    Lama Ramirez, R.; Universidad Nacional Mayor De San Marcos Facultad de Química e Ingeniería Química Departamento de Operaciones Unitarias Av. Venezuela cdra. 34 sin, Lima - Perú; Condorhuamán Ccorimanya, C.; Universidad Nacional Mayor De San Marcos Facultad de Química e Ingeniería Química Departamento de Operaciones Unitarias Av. Venezuela cdra. 34 sin, Lima - Perú

    2014-01-01

    lt has been studied the batch sedimentation of aqueous suspensions of precipitated calcium carbonate, barium sulphate and lead oxide , in vertical thickeners of rectangular and circular cross sectional area. Suspensions vary in concentration between 19.4 and 617.9 g/I and the rate of sedimentation obtained between 0.008 and 7.70 cm/min. The effect of the specific gravity of the solid on the rate of sedimentation is the same for all the suspensions, that is, the greater the value of the specif...

  19. Membrane-bound human orphan cytochrome P450 2U1: Sequence singularities, construction of a full 3D model, and substrate docking.

    Science.gov (United States)

    Ducassou, Lionel; Dhers, Laura; Jonasson, Gabriella; Pietrancosta, Nicolas; Boucher, Jean-Luc; Mansuy, Daniel; André, François

    2017-09-01

    Human cytochrome P450 2U1 (CYP2U1) is an orphan CYP that exhibits several distinctive characteristics among the 57 human CYPs with a highly conserved sequence in almost all living organisms. We compared its protein sequence with those of the 57 human CYPs and constructed a 3D structure of a full-length CYP2U1 model bound to a POPC membrane. We also performed docking experiments of arachidonic acid (AA) and N-arachidonoylserotonin (AS) in this model. The protein sequence of CYP2U1 displayed two unique characteristics when compared to those of the human CYPs, the presence of a longer N-terminal region upstream of the putative trans-membrane helix (TMH) containing 8 proline residues, and of an insert of about 20 amino acids containing 5 arginine residues between helices A' and A. Its N-terminal part upstream of TMH involved an additional short terminal helix, in a manner similar to what was reported in the crystal structure of Saccharomyces cerevisiae CYP51. Our model also showed a specific interaction between the charged residues of insert AA' and phosphate groups of lipid polar heads, suggesting a possible role of this insert in substrate recruitment. Docking of AA and AS in this model showed these substrates in channel 2ac, with the terminal alkyl chain of AA or the indole ring of AS close to the heme, in agreement with the reported CYP2U1-catalyzed AA and AS hydroxylation regioselectivities. This model should be useful to find new endogenous or exogenous CYP2U1 substrates and to interpret the regioselectivity of their hydroxylation. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. Sequence variations of latent membrane protein 2A in Epstein-Barr virus-associated gastric carcinomas from Guangzhou, southern China.

    Directory of Open Access Journals (Sweden)

    Jing Han

    Full Text Available Latent membrane protein 2A (LMP2A, expressed in most Epstein-Barr virus (EBV-associated malignancies, has been demonstrated to be responsible for the maintenance of latent infection and epithelial cell transformation. Besides, it could also act as the target for a CTL-based therapy for EBV-associated malignancies. In the present study, sequence variations of LMP2A in EBV-associated gastric carcinoma (EBVaGC and healthy EBV carriers from Guangzhou, southern China, where nasopharyngeal carcinoma (NPC is endemic, were investigated. Widespread sequence variations in the LMP2A gene were found, with no sequence identical to the B95.8 prototype. No consistent mutation was detected in all isolates. The immunoreceptor tyrosine-based activation motif (ITAM and PY motifs in the amino terminus of LMP2A were strictly conserved, suggesting their important roles in virus infection; while 8 of the 17 identified CTL epitopes in the transmembrane region of LMP2A were affected by at least one point mutation, which may implicate that the effect of LMP2A polymorphisms should be considered when LMP2A-targeted immunotherapy is conducted. The polymorphisms of LMP2A in EBVaGC in gastric remnant carcinoma (GRC were for the first time investigated in the world. The LMP2A sequence variations in EBVaGC in GRC were somewhat different from those in EBVaGC in conventional gastric carcinoma. The sequence variations of LMP2A in EBVaGC were similar to those in throat washing of healthy EBV carriers, indicating that these variations are due to geographic-associated polymorphisms rather than EBVaGC-associated mutations. This, to our best knowledge, is the first detailed investigation of LMP2A polymorphisms in EBVaGC in Guangzhou, southern China, where NPC is endemic.

  1. Fouling potential evaluation of soluble microbial products (SMP) with different membrane surfaces in a hybrid membrane bioreactor using worm reactor for sludge reduction.

    Science.gov (United States)

    Li, Zhipeng; Tian, Yu; Ding, Yi; Chen, Lin; Wang, Haoyu

    2013-07-01

    The fouling characteristics of soluble microbial products (SMP) in the membrane bioreactor coupled with Static Sequencing Batch Worm Reactor (SSBWR-MBR) were tested with different types of membranes. It was noted that the flux decrements of S-SMP (SMP in SSBWR-MBR) with cellulose acetate (CA), polyvinylidene fluoride (PVDF) and polyether sulfones (PES) membranes were respectively 6.7%, 8.5% and 9.5% lower compared to those of C-SMP (SMP in Control-MBR) with corresponding membranes. However, for both the filtration of the C-SMP and S-SMP, the CA membrane exhibited the fastest diminishing rate of flux among the three types of membranes. The surface morphology analysis showed that the CA membrane exhibited more but smaller protuberances compared to the PVDF and PES. The second minimums surrounding each protruding asperity on CA membrane were more than those on the PVDF and PES membranes, enhancing the attachment of SMP onto the membrane surface. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Modulation of Membrane Influx and Efflux in Escherichia coli Sequence Type 131 Has an Impact on Bacterial Motility, Biofilm Formation, and Virulence in a Caenorhabditis elegans Model

    Science.gov (United States)

    Pantel, Alix; Dunyach-Remy, Catherine; Ngba Essebe, Christelle; Mesureur, Jennifer; Sotto, Albert; Nicolas-Chanoine, Marie-Hélène

    2016-01-01

    Energy-dependent efflux overexpression and altered outer membrane permeability (influx) can promote multidrug resistance (MDR). The present study clarifies the regulatory pathways that control membrane permeability in the pandemic clone Escherichia coli sequence type 131 (ST131) and evaluates the impact of efflux and influx modulations on biofilm formation, motility, and virulence in the Caenorhabditis elegans model. Mutants of two uropathogenic E. coli (UPEC) strains, MECB5 (ST131; H30-Rx) and CFT073 (ST73), as well as a fecal strain, S250 (ST131; H22), were in vitro selected using continuous subculture in subinhibitory concentrations of ertapenem (ETP), chloramphenicol (CMP), and cefoxitin (FOX). Mutations in genes known to control permeability were shown for the two UPEC strains: MECB5-FOX (deletion of 127 bp in marR; deletion of 1 bp and insertion of an IS1 element in acrR) and CFT073-CMP (a 1-bp deletion causing a premature stop in marR). We also demonstrated that efflux phenotypes in the mutants selected with CMP and FOX were related to the AcrAB-TolC pump, but also to other efflux systems. Alteration of membrane permeability, caused by underexpression of the two major porins, OmpF and OmpC, was shown in MECB5-ETP and mutants selected with FOX. Lastly, our findings suggest that efflux pump-overproducing isolates (CMP mutants) pose a serious threat in terms of virulence (significant reduction in worm median survival) and host colonization. Lack of porins (ETP and FOX mutants) led to a high level of antibiotic resistance in an H30-Rx subclone. Nevertheless, this adaptation created a physiological disadvantage (decreased motility and ability to form biofilm) associated with a low potential for virulence. PMID:26926643

  3. 污泥固体停留时间对实时控制生物脱氮SBR中亚硝酸盐积累的影响%Effect of Sludge Retention Time on Nitrite Accumulation in Real-time Control Biological Nitrogen Removal Sequencing Batch Reactor

    Institute of Scientific and Technical Information of China (English)

    吴昌永; 彭永臻; 王淑莹; 李晓玲; 王然登

    2011-01-01

    In this study, four sequencing batch reactors (SBR), with the sludge retention time (SRT) of 5, 10, 20and 40 d, were used to treat domestic wastewater, and the effect of SRT on nitrite accumulation in the biological nitrogen removal SBR was investigated. The real-time control strategy based on online parameters, such as pH, dissolved oxygen (DO) and oxidation reduction potential (ORP), was used to regulate the nitrite accumulation in SBR.The model-based simulation and experimental results showed that with the increase of SRT, longer time was needed to achieve high level of nitritation. In addition, the nitrite accumulation rate (NAR) was higher when the SRT was relatively shorter during a 112-day operation. When the SRT was 5 d, the system was unstable with the mixed liquor suspended solids (MLSS) decreased day after day. When the SRT was 40 d, the nitrification process was significantly inhibited. SRT of 10 to 20 d was more suitable in this study. The real-time control strategy combined with SRT control in SBR is an effective method for biological nitrogen removal via nitrite from wastewater.

  4. C-terminal sequences in R-Ras are involved in integrin regulation and in plasma membrane microdomain distribution.

    Science.gov (United States)

    Hansen, Malene; Prior, Ian A; Hughes, Paul E; Oertli, Beat; Chou, Fan-Li; Willumsen, Berthe M; Hancock, John F; Ginsberg, Mark H

    2003-11-28

    The small GTPases R-Ras and H-Ras are highly homologous proteins with contrasting biological properties, for example, they differentially modulate integrin affinity: H-Ras suppresses integrin activation in fibroblasts whereas R-Ras can reverse this effect of H-Ras. To gain insight into the sequences directing this divergent phenotype, we investigated a panel of H-Ras/R-Ras chimeras and found that sequences in the R-Ras hypervariable C-terminal region including amino acids 175-203 are required for the R-Ras ability to increase integrin activation in CHO cells; however, the proline-rich site in this region, previously reported to bind the adaptor protein Nck, was not essential for this effect. In addition, we found that the GTPase TC21 behaved similarly to R-Ras. Because the C-termini of Ras proteins can control their subcellular localization, we compared the localization of H-Ras and R-Ras. In contrast to H-Ras, which migrates out of lipid rafts upon activation, we found that activated R-Ras remained localized to lipid rafts. However, functionally distinct H-Ras/R-Ras chimeras containing different C-terminal R-Ras segments localized to lipid rafts irrespective of their integrin phenotype.

  5. Exploring the potential of membrane bioreactors to enhance metals removal from wastewater: pilot experiences.

    Science.gov (United States)

    Fatone, F; Eusebi, A L; Pavan, P; Battistoni, P

    2008-01-01

    The potential of membrane bioreactors to enhance the removal of selected metals from low loaded sewages has been explored. A 1400 litre pilot plant, equipped with an industrial submerged module of hollow fibre membranes, has been used in three different configurations: membrane bioreactor, operating in sequencing batch modality, for the treatment of real mixed municipal/industrial wastewater; membrane-assisted biosorption reactor, for the treatment of real leachate from municipal landfills; continuously fed membrane bioreactor, for the treatment of water charged with cadmium and nickel ions. The results show that: (a) in treating wastewaters with low levels of heavy metals (high sludge ages is not an effective strategy to significantly enhance the metals removal; (b) Hg and Cd are effectively removed already in conventional systems with gravitational final clarifiers, while Cu, Cr, Ni can rely on a additional performance in membrane bioreactors; (c) the further membrane effect is remarkable for Cu and Cr, while it is less significant for Ni. Basically, similar membrane effects recur in three different experimental applications that let us estimate the potential of membrane system to retain selected metal complexes. The future development of the research will investigate the relations between the membrane effect and the manipulable filtration parameters (i.e., permeate flux, solids content, filtration cycle).

  6. An order-picking operations system for managing the batching activities in a warehouse

    Science.gov (United States)

    Lam, Cathy H. Y.; Choy, K. L.; Ho, G. T. S.; Lee, C. K. M.

    2014-06-01

    Nowadays, customer orders with high product variety in small quantities are often received and requested for timely delivery. However, the order-picking process is a labour-intensive and costly activity to handle those small orders separately. In such cases, small orders are often grouped into batches so that two or more orders can be served at once to increase the picking efficiency and thus reduce the travel distance. In this paper, an order-picking operations system (OPOS) is proposed to assist the formulation of an order-picking plan and batch-handling sequence. The study integrates a mathematical model and fuzzy logic technique to divide the receiving orders into batches and prioritise the batch-handling sequence for picking, respectively. Through the proposed system, the order-picking process can be managed as batches with common picking locations to minimise the travel distance, and the batch-picking sequence can be determined as well. To demonstrate the use of the system, a case study in a third-party logistics warehouse is presented, and the result shows that both the order-picking activity and labour utilisation can be better organised.

  7. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.;

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed-b...

  8. Family based dispatching with batch availability

    NARCIS (Netherlands)

    van der Zee, D.J.

    2013-01-01

    Family based dispatching rules seek to lower set-up frequencies by grouping (batching) similar types of jobs for joint processing. Hence shop flow times may be improved, as less time is spent on set-ups. Motivated by an industrial project we study the control of machines with batch availability, i.e

  9. Supervision of Fed-Batch Fermentations

    DEFF Research Database (Denmark)

    Gregersen, Lars; Jørgensen, Sten Bay

    1999-01-01

    Process faults may be detected on-line using existing measurements based upon modelling that is entirely data driven. A multivariate statistical model is developed and used for fault diagnosis of an industrial fed-batch fermentation process. Data from several (25) batches are used to develop a mo...

  10. Automatic Endpoint Determination for Batch Tea Dryers

    NARCIS (Netherlands)

    Temple, S.J.; Boxtel, van A.J.B.

    2000-01-01

    Agricultural Engineering and Physics, Wageningen University, Bomenweg 4, Wageningen, 6703 HD, The Netherlands Abstract: A laboratory batch fluid-bed dryer was developed for handling small samples of tea for experimental batch manufacture, and this dryer required a means of stopping drying when the p

  11. Automatic endpoint determination for batch tea dryers

    NARCIS (Netherlands)

    Temple, S.J.; Boxtel, van A.J.B.

    2001-01-01

    A laboratory batch fluid-bed dryer was developed for handling small samples of tea for experimental batch manufacture, and this dryer required a means of stopping drying when the process was complete. A control system was devised which requires only the initial weight of the sample to be entered

  12. Norton's theorem for batch routing queueing networks

    NARCIS (Netherlands)

    Bause, Falko; Boucherie, Richard J.; Buchholz, Peter

    2001-01-01

    This paper shows that the aggregation and decomposition result known as Norton’s theorem for queueing networks can be extended to a general class of batch routing queueing networks with product-form solution that allows for multiple components to simultaneously release and receive (batches of) custo

  13. Operation of a Batch Stripping Distillation Column

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A stripping batch distillation column is preferred when the amount of the light component in the feed is small and the products are to be recovered at high purity. The operation modes of a batch stripping are believed to be the same as those of a rectifier. However, the control system of a stripper is different. In this paper, we explore three different control methods with Hysys (Hyprotech Ltd. 1997) for a batch stripper. The main difference is the control scheme for reboiler liquid level: (a) controlled by reflux flow; (b) controlled by reboiler heat duty; (c) controlled by bottom product flow. The main characteristics of operating a batch stripper with different control scheme are presented in this paper. Guidelines are provided for the startup of a batch stripper, the effects of somecontrol tuning parameters on the column performance are discussed.

  14. Consequence Identification for Maloperation in Batch Process

    Institute of Scientific and Technical Information of China (English)

    张玉良; 张贝克; 马昕; 曹柳林; 吴重光

    2013-01-01

    Batch processes are important in chemical industry, in which operators usually play a major role and hazards may arise by their inadvertent acts. In this paper, based on hazard and operability study and concept of qualitative simulation, an automatic method for adverse consequence identification for potential maloperation is proposed. The qualitative model for production process is expressed by a novel directed graph. Possible operation deviations from normal operating procedure are identified systematically by using a group of guidewords. The pro-posed algorithm is used for qualitative simulation of batch processes to identify the effects of maloperations. The method is illustrated with a simple batch process and a batch reaction process. The results show that batch processes can be simulated qualitatively and hazards can be identified for operating procedures including maloperations. After analysis for possible plant maloperations, some measures can be taken to avoid maloperations or reduce losses re-sulted from maloperations.

  15. Biological Treatment of Leachate using Sequencing Batch Reactor

    OpenAIRE

    2014-01-01

    Abstract   In Sri Lanka municipal solid waste is generally disposed in poorly managed open dumps which lack liner systems and leachate collection systems. Rain water percolates through the waste layers to produce leachate which drains in to ground water and finally to nearby water bodies, degrading the quality of water. Leachate thus has become a major environmental concern in municipal waste management and treatment of leachate is a major challenge for the existing and proposed landfill si...

  16. Biological Treatment of Wastewater by Sequencing Batch Reactors

    Directory of Open Access Journals (Sweden)

    Tsvetko Prokopov

    2014-04-01

    Full Text Available In the present paper the operation of wastewater treatment plant (WWTP in the town of Hisarya which includes a biological stage with aeration basins of cyclic type (SBR-method was studied. The values of the standard indicators of input and output water from the wastewater treatment plant were evaluated. Moreover, the reached effects due to the biological treatment of the wastewater in terms of the COD (95.7%, BOD5 (96.6%, total nitrogen (81.3%, total phosphorus (53.7% and suspended solids (95.7% were established. It was concluded that the indexes of the treated water were significantly below the emission limits specified in the discharge permit

  17. Batch Scheduling a Fresh Approach

    Science.gov (United States)

    Cardo, Nicholas P.; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    The Network Queueing System (NQS) was designed to schedule jobs based on limits within queues. As systems obtain more memory, the number of queues increased to take advantage of the added memory resource. The problem now becomes too many queues. Having a large number of queues provides users with the capability to gain an unfair advantage over other users by tailoring their job to fit in an empty queue. Additionally, the large number of queues becomes confusing to the user community. The High Speed Processors group at the Numerical Aerodynamics Simulation (NAS) Facility at NASA Ames Research Center developed a new approach to batch job scheduling. This new method reduces the number of queues required by eliminating the need for queues based on resource limits. The scheduler examines each request for necessary resources before initiating the job. Also additional user limits at the complex level were added to provide a fairness to all users. Additional tools which include user job reordering are under development to work with the new scheduler. This paper discusses the objectives, design and implementation results of this new scheduler

  18. Batch and Fed-Batch Fermentation System on Ethanol Production from Whey using Kluyveromyces marxianus

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2013-10-01

    Full Text Available Nowadays reserve of fossil fuel has gradually depleted. This condition forces many researchers to  find energy alternatives which is renewable and sustainable in the future. Ethanol derived from cheese industrial waste (whey using fermentation process can be a new perspective in order to secure both energy and environment. The aim of this study was  to compare the operation modes (batch and fed-batch of fermentation system on ethanol production from whey using Kluyveromyces marxianus. The result showed that the fermentation process for ethanol production by fed-batch system was higher at some point of parameters compared with batch system. Growth rate and ethanol yield (YP/S of fed-batch fermentation were 0.122/h and 0.21 gP/gS respectively; growth rate and ethanol yield (YP/S of batch fermentation were 0.107/h, and 0.12 g ethanol/g substrate, respectively. Based on the data of biomass and ethanol concentrations, the fermentation process for ethanol production by fed-batch system were higher at some point of parameters compared to batch system. Periodic substrate addition performed on fed-batch system leads the yeast growth in low substrate concentrations and consequently  increasing their activity and ethanol productivity. Keywords: batch; ethanol; fed-batch; fermentation;Kluyveromyces marxianus, whey

  19. Uneven batch data alignment with application to the control of batch end-product quality.

    Science.gov (United States)

    Wan, Jian; Marjanovic, Ognjen; Lennox, Barry

    2014-03-01

    Batch processes are commonly characterized by uneven trajectories due to the existence of batch-to-batch variations. The batch end-product quality is usually measured at the end of these uneven trajectories. It is necessary to align the time differences for both the measured trajectories and the batch end-product quality in order to implement statistical process monitoring and control schemes. Apart from synchronizing trajectories with variable lengths using an indicator variable or dynamic time warping, this paper proposes a novel approach to align uneven batch data by identifying short-window PCA&PLS models at first and then applying these identified models to extend shorter trajectories and predict future batch end-product quality. Furthermore, uneven batch data can also be aligned to be a specified batch length using moving window estimation. The proposed approach and its application to the control of batch end-product quality are demonstrated with a simulated example of fed-batch fermentation for penicillin production. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Batch process. Changes and problems of a batch process; Bacchi prosesu no hensen to kadai

    Energy Technology Data Exchange (ETDEWEB)

    Niwa, T. [Asahi Engineering (Japan)

    1997-09-05

    One of the characteristics of the manufacture of fine chemical products is multikind production. The life cycles of chemical industrial products have become shorter, and the difference between these life cycles and those of the manufacturing facility has become larger. The use of an FMS (Flexible Manufacturing System) has been demanded as the measure for solving the problems, and the advantages of a batch process have begun to be reconsidered. This paper describes the history of the development of a batch process, and then explains the problems of a batch process. The paper mentions the process control techniques, production information control systems, production support systems, training systems and process simulation systems as the main techniques supporting the development of a batch process. The paper mentions the modeling and standardizing of a batch process, systematic batch process designing methods and the modeling of a production control information system as the problems of a batch process. 8 refs., 5 figs., 2 tabs.

  1. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    Energy Technology Data Exchange (ETDEWEB)

    You, Sheng-Jie, E-mail: sjyou@cycu.edu.tw [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, No. 200, Rd. Chung-Pei, Chungli 320, Taiwan (China); Teng, Jun-Yu, E-mail: nickprometheus@yahoo.com.tw [Department of Civil Engineering, Chung Yuan Christian University, Chungli 320, Taiwan (China)

    2009-12-15

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  2. Model Integrasi Penjadwalan Produksi Batch dan Penjadwalan Perawatan dengan Kendala Due Date

    Directory of Open Access Journals (Sweden)

    Zahedi .

    2014-01-01

    Full Text Available This paper discusses the integration model of batch production and preventive maintenance scheduling on a single machine producing an item to be delivered at a common due date. The machine is a deteriorating machine that requires preventive maintenance to ensure the availability of the machine at a desired service level. Decision variables of the model are the number of preventive maintenances, the schedule, length of production runs, as well as the number of batches, batch sizes and the production schedule of the resulting batches for each production run. The objective function of the model is to minimize the total cost consisting of inventory costs during parts processing, setup cost and cost of preventive maintenance. The results show three important points: First, the sequence of optimal batches always follows the SPT (short processing time. Second, variation of preventive maintenance unit cost does not influence the sequence of batches. Third, the first production run length from production starting time is smaller than the next production run length and this pattern continues until the due date. When in process inventory unit cost is increased, the pattern will continue until a specified cost limit, and beyond the limit the pattern will change to be the opposite pattern.

  3. An LMI Method to Robust Iterative Learning Fault-tolerant Guaranteed Cost Control for Batch Processes

    Institute of Scientific and Technical Information of China (English)

    WANG Limin; CHEN Xi; GAO Furong

    2013-01-01

    Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry,a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures.This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC).A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences.For the convenience of implementation,only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control,consisting of dynamic output feedback plus feed-forward control.The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞ performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures.Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs),and design procedures,which formulate a convex optimization problem with LMI constraints,are presented.An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.

  4. Remoção biológica de fósforo em reatores em bateladas sequenciais com diferentes tempos de retenção de sólidos Biological phosphorus removal in sequencing batch reactors with different solid retention times

    Directory of Open Access Journals (Sweden)

    Israel Nunes Henrique

    2010-06-01

    Full Text Available Nos últimos anos, tem surgido a necessidade de se projetarem sistemas de tratamento de águas residuárias que, além de remover carga orgânica, sejam capazes de remover nutrientes, particularmente nitrogênio e fósforo. Este trabalho avaliou a remoção biológica de fósforo em sistemas de lodo ativado, tratando esgoto doméstico por meio de reatores em bateladas sequenciais (RBS, monitorado com diferentes tempos de retenção celular (TRC: 20, 5 e 3 dias. Esses experimentos foram avaliados em escala de bancada com o uso da respirometria, utilizando-se acetato como fonte de carbono orgânico. Os resultados mostraram satisfatória remoção de fósforo total nos três experimentos, com valores médios entre 79 a 82%, sendo que o sistema RBS que operou com TRC de cinco dias obteve resultados melhores.In recent years, there has been an increasing need to design wastewater treatment systems that are capable of removing both organic material and nutrients, notably nitrogen and phosphorus. This study evaluated biological phosphorus removal by activated sludge systems fed with domestic sewage and operating as sequencing batch reactors (SBR with different solids retention times (SRT namely 20, 5 and 3 days. This was supported by respirometry experiments at bench scale using acetate as the source of organic carbon. The results showed satisfactory total phosphorus removal efficiencies mean values between 79-82% for the three regimes with the best removal efficiency occurring in the SBR operating with a five-day SRT.

  5. LSF usage for batch at CERN

    CERN Multimedia

    Schwickerath, Ulrich

    2007-01-01

    Contributed poster to the CHEP07. Original abstract: LSF 7, the latest version of Platform's batch workload management system, addresses many issues which limited the ability of LSF 6.1 to support large scale batch farms, such as the lxbatch service at CERN. In this paper we will present the status of the evaluation and deployment of LSF 7 at CERN, including issues concerning the integration of LSF 7 with the gLite grid middleware suite and, in particular, the steps taken to endure an efficient reporting of the local batch system status and usage to the Grid Information System

  6. Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia.

    Science.gov (United States)

    Yang, Zhiman; Guo, Rongbo; Xu, Xiaohui; Wang, Lin; Dai, Meng

    2016-09-01

    Using batch and repeated batch cultivations, this study investigated the effects of bioaugmentation with enriched microbial consortia (named as EMC) on methane production from effluents of hydrogen-producing stage of potato slurry, as well as on the indigenous bacterial community. The results demonstrated that the improved methane production and shift of the indigenous bacterial community structure were dependent on the EMC/sludge ratio and bioaugmentation patterns. The methane yield and production rate in repeated batch bioaugmentation pattern of EMC were, respectively, average 15% and 10% higher than in one-time bioaugmentation pattern of EMC. DNA-sequencing approach showed that the enhanced methane production in the repeated batch bioaugmentation pattern of EMC mainly resulted from the enriched iron-reducing bacteria and the persistence of the introduced Syntrophomonas, which led to a rapid degradation of individual VFAs to methane. The findings contributed to understanding the correlation between the bioaugmentation of microbial consortia, community shift, and methane production.

  7. Master-Batch Sector Develops Rapidly

    Institute of Scientific and Technical Information of China (English)

    Wu Lifeng

    2007-01-01

    @@ Plastic industry promotes the development of the master-batch sector The plastic processing industry in China has developed rapidly. The output is increasing rapidly and the quality is improving constantly.

  8. Nano Au/TiO2 hollow microsphere membranes for the improved sensitivity of detecting specific DNA sequences related to transgenes in transgenic plants

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Gold nanoparticles (nano Au)/titanium dioxide (TiO2) hollow microsphere membranes were prepared on the carbon paste electrode (CPE) for enhancing the sensitivity of DNA hybridization detection. The immobilization of nano Au and TiO2 microsphere was investigated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization events were monitored with EIS us-ing [Fe(CN)6]3-/4- as indicator. The sequence-specific DNA of the 35S promoter from cauliflower mosaic virus (CaMV35S) gene was detected with this DNA electrochemical sensor. The dynamic detection range was from 1.0×10-12 to 1.0×10-8 mol/L DNA and a detection limit of 2.3×10-13 mol/L could be ob-tained. The polymerase chain reaction (PCR) amplification of the terminator of nopaline synthase (NOS) gene from the real sample of a kind of transgenic soybean was also satisfactorily detected.

  9. Batch process. Application of CAE technique to a batch process; Bacchi purosesu eno CAE gijutsu no tenkai

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Nakai, K.; Oba, S. [Aspentic Japan Co. Ltd. (Japan)

    1997-09-05

    This paper introduces recent topics of the application of the CAE technique to a batch process. A batch distillation modeling tool (BATCHFRAC) is aimed at modeling a distillation tower and a batch reactor for a batch process for fine chemical products, and is provided as an expanded additional function for ASPEN FLUS batch distillation. A batch process designing system (BATCH PLUS) is a comprehensive batch process simulator for efficiently carrying out the designing, the development or the analysis of a complicated recipe-based batch process concerning medical treatment, biotechnology and agriculture. A batch process information control system (Batch/21) is provided as a system having an expanded and additional function for a batch process of InfoPlus/21, an information control system which enables the observation, management and controlling of a process. 4 figs.

  10. Systematic Methodology for Reproducible Optimizing Batch Operation

    DEFF Research Database (Denmark)

    Bonné, Dennis; Jørgensen, Sten Bay

    2006-01-01

    This contribution presents a systematic methodology for rapid acquirement of discrete-time state space model representations of batch processes based on their historical operation data. These state space models are parsimoniously parameterized as a set of local, interdependent models. The present....... This controller may also be used for Optimizing control. The modeling and control performance is demonstrated on a fed-batch protein cultivation example. The presented methodologies lend themselves directly for application as Process Analytical Technologies (PAT)....

  11. Batch Extractive Distillation with Light Entrainer

    OpenAIRE

    Varga, Viktoria; Rev, Endre; Gerbaud, Vincent; Fonyo, Zsolt; Joulia, Xavier

    2006-01-01

    Use of a light entrainer in batch extractive distillation is justified when the mixture boils at a high temperature, or when an appropriate heavy or intermediate entrainer cannot be found. Feasibility of batch extractive distillation with light entrainer for separating minimum and maximum boiling azeotropes and close boiling mixtures is studied in this article. Our test mixtures are: ethanol/water (minimum boiling azeotrope) with methanol, water/ethylene diamine (maximum boiling azeotro...

  12. Batch extractive distillation with light entrainer

    OpenAIRE

    Varga, Viktoria; Rev, Endre; Gerbaud, Vincent; Lelkes, Zoltan; Fonyo, Zsolt; Joulia, Xavier

    2006-01-01

    Use of a light entrainer in batch extractive distillation is justified when the mixture boils at a high temperature, or when an appropriate heavy or intermediate entrainer cannot be found. Feasibility of batch extractive distillation with light entrainer for separating minimum and maximum boiling azeotropes and close boiling mixtures is studied in this article. Our test mixtures are: ethanol / water (minimum boiling azeotrope) with methanol, water / ethylene diamine (maximum boiling azeotrope...

  13. Role of extracellular polymeric substances (EPSs) in membrane fouling of membrane bioreactor coupled with worm reactor.

    Science.gov (United States)

    Tian, Yu; Li, Zhipeng; Chen, Lin; Lu, Yaobin

    2012-11-01

    This study focused on the effect of worm reactor on the fouling behaviors of extracellular polymeric substances (EPSs) in the MBR coupled with Static Sequencing Batch Worm Reactor (SSBWR-MBR). The filtration tests showed that the C-EPS (EPS in Control-MBR) and S-EPS (EPS in SSBWR-MBR) resulted in 76% and 67% of flux decrement, respectively. On both fouling layers, the preferential accumulation was protein, but the adsorption efficiency for protein in C-EPS was 20% higher than that in S-EPS. In comparison with the membrane fouled by C-EPS, the bio-volume of protein on the membrane fouled by S-EPS reduced 33%, and the protein porosity increased 20%. Meanwhile, the S-EPS approaching the membrane had to overcome×2.4 stronger repulsive interaction energy than C-EPS, and the membrane fouled by S-EPS exhibited relatively smoother compared to that fouled by C-EPS. As a result, the fouling potential of S-EPS was lower than that of C-EPS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. An Integer Batch Scheduling Model for a Single Machine with Simultaneous Learning and Deterioration Effects to Minimize Total Actual Flow Time

    Science.gov (United States)

    Yusriski, R.; Sukoyo; Samadhi, T. M. A. A.; Halim, A. H.

    2016-02-01

    In the manufacturing industry, several identical parts can be processed in batches, and setup time is needed between two consecutive batches. Since the processing times of batches are not always fixed during a scheduling period due to learning and deterioration effects, this research deals with batch scheduling problems with simultaneous learning and deterioration effects. The objective is to minimize total actual flow time, defined as a time interval between the arrival of all parts at the shop and their common due date. The decision variables are the number of batches, integer batch sizes, and the sequence of the resulting batches. This research proposes a heuristic algorithm based on the Lagrange Relaxation. The effectiveness of the proposed algorithm is determined by comparing the resulting solutions of the algorithm to the respective optimal solution obtained from the enumeration method. Numerical experience results show that the average of difference among the solutions is 0.05%.

  15. Membrane Automata with Priorities

    Institute of Scientific and Technical Information of China (English)

    Luděk Cienciala; Lucie Ciencialová

    2004-01-01

    In this paper the one-way P automata with priorities are introduced. Such automata are P systemshere the membranes are only allowed to consume objects from parent membranes, under the given conditions. The result of computation of these systems is the set of multiset sequences consumed by skin membrane intc the system. The rules associated in some order with each membrane cannot modify any objects, they can only move them through membrane. We show that P automata with priorities and two membranes can accept every recursively enumerated language.

  16. Rescheduling to Minimize Total Completion Time Under a Limit Time Disruption for the Parallel Batch

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-yan; MU Yun-dong; GUO Xiao; HAO Yun

    2015-01-01

    In the rescheduling on a single machine, a set of the original jobs has already been scheduled, in order to make a given objective function is optimal. The decision maker needs to insert the new jobs into the existing schedule without excessively disrupting it. A batching machine is a machine that can handle up to some jobs simultaneously. In this paper, we consider the total completion time under a limit on the sequence disruptions for parallel batching based on rescheduling. For the parallel batching problem based on rescheduling, we research the properties of feasible schedules and optimal schedules on the total completion time under a limit on the maximum time disruptions or total time disruptions, in which the jobs are sequenced in SPT order, and give out the pseudo-polynomial time algorithms on the number of jobs and the processing time of jobs by applying the dynamic programming method.

  17. An innovative membrane bioreactor for methane biohydroxylation.

    Science.gov (United States)

    Pen, N; Soussan, L; Belleville, M-P; Sanchez, J; Charmette, C; Paolucci-Jeanjean, D

    2014-12-01

    In this study, a membrane bioreactor (MBR) was developed for efficient, safe microbial methane hydroxylation with Methylosinus trichosporium OB3b. This innovative MBR, which couples a bioreactor with two gas/liquid macroporous membrane contactors supplying the two gaseous substrates (methane and oxygen) was operated in fed-batch mode. The feasibility and the reproducibility of this new biohydroxylation process were first demonstrated. The mass transfer within this MBR was twice that observed in a batch reactor in similar conditions. The productivity reached with this MBR was 75±25mgmethanol(gdrycell)(-1)h(-1). Compared to the literature, this value is 35times higher than that obtained with the only other fed-batch membrane bioreactor reported, which was run with dense membranes, and is comparable to those obtained with bioreactors fed by bubble-spargers. However, in the latter case, an explosive gas mixture can be formed, a problem that is avoided with the MBR.

  18. Tratamento de esgoto sanitário em reator híbrido em bateladas sequenciais: eficiência e estabilidade na remoção de matéria orgânica e nutrientes (N, P Sewage treatment in a sequencing batch hybrid reactor: efficiency and stability in organic matter and nutrient (N, P removal

    Directory of Open Access Journals (Sweden)

    Luiz Gonzaga Lamego Neto

    2011-12-01

    Full Text Available Este trabalho apresenta os resultados de estudo sobre o comportamento de um reator híbrido, operado em bateladas sequenciais, na remoção conjunta de matéria carbonácea, nitrogênio e fósforo de esgoto sanitário. Operado em ciclos de 8 horas de duração, o reator possuía em seu interior um suporte fixo com rede de nylon. Foram testadas cargas compreendidas entre 0,39 e 1,35 kgDQO.m-3.dia-1, 42 e 60 gN-NH4-.m-3.dia e 51 e 70 gP-PO4-.m-3.dia. O reator funcionou como um sistema estável e apresentou boas condições de depuração. A remoção da matéria carbonácea mostrou-se elevada, com eficiências médias de 92% de DBO5 e 80% de DQO. A remoção de nutrientes variou entre 59 e 71% para nitrogênio total e entre 45 e 67% para fósforo total. Tanto no lodo em suspensão, quanto no biofilme, foi observada a ocorrência de bactérias oxidadoras de amônio e micro-organismos responsáveis pela desnitrificação e remoção biológica de fósforo.This paper presents the results about the behavior of a sequencing batch hybrid reactor on combined removal of carbonaceous matter, nitrogen and phosphorus from sewage. Operated in 8-hour cycles, the reactor had a nylon net fixed inside. Loads between 0.39 and 1.35 kg COD.m-3.day-1, 42 and 60 gN-NH4-m-3.day-1 and 51 and 70 gP-PO4-m-3.day-1 were tested. The reactor operated as a stable system and showed good depuration conditions. The carbonaceous matter removal was high, with 92 and 80% efficiencies average to BOD5 and COD, respectively. The nutrients removal varied between 59 and 71% for total nitrogen and between 45 and 67% for total phosphorus. In both, sludge in suspension and the biofilm, occurrence of ammonium-oxidizing bacteria and microorganisms responsible for denitrification and biological phosphorus removal was observed.

  19. 21 CFR 211.188 - Batch production and control records.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Batch production and control records. 211.188... Reports § 211.188 Batch production and control records. Batch production and control records shall be... production and control of each batch. These records shall include: (a) An accurate reproduction of...

  20. 27 CFR 19.748 - Dump/batch records.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Dump/batch records. 19.748... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Records and Reports Processing Account § 19.748 Dump/batch records. (a) Format of dump/batch records. Proprietor's dump/batch records shall contain,...

  1. Enhanced protective efficacy against tuberculosis provided by a recombinant urease deficient BCG expressing heat shock protein 70-major membrane protein-II having PEST sequence.

    Science.gov (United States)

    Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Mukai, Tetsu; Mitarai, Satoshi; Yamamoto, Saburo; Makino, Masahiko

    2016-12-07

    Enhancement of the T cell-stimulating ability of Mycobacterium bovis BCG (BCG) is necessary to develop an effective tuberculosis vaccine. For this purpose, we introduced the PEST-HSP70-major membrane protein-II (MMPII)-PEST fusion gene into ureC-gene depleted recombinant (r) BCG to produce BCG-PEST. The PEST sequence is involved in the proteasomal processing of antigens. BCG-PEST secreted the PEST-HSP70-MMPII-PEST fusion protein and more efficiently activated human monocyte-derived dendritic cells (DCs) in terms of phenotypic changes and cytokine productions than an empty-vector-introduced BCG or HSP70-MMPII gene-introduced ureC gene-depleted BCG (BCG-DHTM). Autologous human naïve CD8(+) T cells and naïve CD4(+) T cells were effectively activated by BCG-PEST and produced IFN-γ in an antigen-specific manner through DCs. These T cell activations were closely associated with phagosomal maturation and intraproteasomal protein degradation in antigen-presenting cells. Furthermore, BCG-PEST produced long-lasting memory-type T cells in C57BL/6 mice more efficiently than control rBCGs. Moreover, a single subcutaneous injection of BCG-PEST more effectively reduced the multiplication of subsequent aerosol-challenged Mycobacterium tuberculosis of the standard H37Rv strain and clinically isolated Beijing strain in the lungs than control rBCGs. The vaccination effect of BCG-PEST lasted for at least 6months. These results indicate that BCG-PEST may be able to efficiently control the spread of tuberculosis in human.

  2. A Batch Feeder for Inhomogeneous Bulk Materials

    Science.gov (United States)

    Vislov, I. S.; Kladiev, S. N.; Slobodyan, S. M.; Bogdan, A. M.

    2016-04-01

    The work includes the mechanical analysis of mechanical feeders and batchers that find application in various technological processes and industrial fields. Feeders are usually classified according to their design features into two groups: conveyor-type feeders and non-conveyor feeders. Batchers are used to batch solid bulk materials. Less frequently, they are used for liquids. In terms of a batching method, they are divided into volumetric and weighting batchers. Weighting batchers do not provide for sufficient batching accuracy. Automatic weighting batchers include a mass controlling sensor and systems for automatic material feed and automatic mass discharge control. In terms of operating principle, batchers are divided into gravitational batchers and batchers with forced feed of material using conveyors and pumps. Improved consumption of raw materials, decreased loss of materials, ease of use in automatic control systems of industrial facilities allows increasing the quality of technological processes and improve labor conditions. The batch feeder suggested by the authors is a volumetric batcher that has no comparable counterparts among conveyor-type feeders and allows solving the problem of targeted feeding of bulk material batches increasing reliability and hermeticity of the device.

  3. On the design of two small batch operating systems 1965 - 1970

    NARCIS (Netherlands)

    F.E.J. Kruseman Aretz

    2013-01-01

    htmlabstractThis paper describes the design considerations and decisions for two small batch operating systems, called MICRO and MILLI, for the Electrologica X8, a Dutch computer delivered from 1965 onwards. Their sole tasks were to run sequences of ALGOL 60 programs, thus transforming the X8 into

  4. Dynamic Fractional Resource Scheduling vs. Batch Scheduling

    CERN Document Server

    Casanova, Henri; Vivien, Frédéric

    2011-01-01

    We propose a novel job scheduling approach for homogeneous cluster computing platforms. Its key feature is the use of virtual machine technology to share fractional node resources in a precise and controlled manner. Other VM-based scheduling approaches have focused primarily on technical issues or on extensions to existing batch scheduling systems, while we take a more aggressive approach and seek to find heuristics that maximize an objective metric correlated with job performance. We derive absolute performance bounds and develop algorithms for the online, non-clairvoyant version of our scheduling problem. We further evaluate these algorithms in simulation against both synthetic and real-world HPC workloads and compare our algorithms to standard batch scheduling approaches. We find that our approach improves over batch scheduling by orders of magnitude in terms of job stretch, while leading to comparable or better resource utilization. Our results demonstrate that virtualization technology coupled with light...

  5. The nucleotide sequence of a CpG island demonstrates the presence of the first exon of the gene encoding the human lysosomal membrane protein lamp2 and assigns the gene to Xq24.

    Science.gov (United States)

    Manoni, M; Tribioli, C; Lazzari, B; DeBellis, G; Patrosso, C; Pergolizzi, R; Pellegrini, M; Maestrini, E; Rivella, S; Vezzoni, P

    1991-03-01

    An EagI-EcoRI clone of human genomic DNA, p2-7, mapped to Xq24 has been sequenced. This analysis has confirmed the presence of a CpG island and has identified the first exon of the human LAMP2 gene, encoding a glycoprotein of the lysosomal membrane. Since the p2-7 clone corresponds to single-copy DNA, we can assign the human LAMP2 gene to Xq24.

  6. Exploring the Transition From Batch to Online

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    2010-01-01

    of the truly interactive use of computers known today. The transition invoked changes in a number of areas: technological, such as hybrid forms between batch and online; organisational such as decentralization; and personal as users and developers alike had to adopt new technology, shape new organizational...... structures, and acquire new skills. This work-in-progress paper extends an earlier study of the transition from batch to online, based on oral history interviews with (ex)-employees in two large Danish Service Bureaus. The paper takes the next step by ana-lyzing a particular genre: the commercial computer...

  7. Predictability of Keeping Quality for Strawberry Batches

    NARCIS (Netherlands)

    Schouten, R.E.; Kessler, D.; Orcaray, L.; Kooten, van O.

    2002-01-01

    Postharvest life of strawberries is largely limited by Botrytis cinerea infection. It is assumed that there are two factors influencing the batch keeping quality: the Botrytis pressure and the resistance of the strawberry to infection. The latter factor will be discussed in this article. A colour

  8. Integer batch scheduling problems for a single-machine with simultaneous effect of learning and forgetting to minimize total actual flow time

    Directory of Open Access Journals (Sweden)

    Rinto Yusriski

    2015-09-01

    Full Text Available This research discusses an integer batch scheduling problems for a single-machine with position-dependent batch processing time due to the simultaneous effect of learning and forgetting. The decision variables are the number of batches, batch sizes, and the sequence of the resulting batches. The objective is to minimize total actual flow time, defined as total interval time between the arrival times of parts in all respective batches and their common due date. There are two proposed algorithms to solve the problems. The first is developed by using the Integer Composition method, and it produces an optimal solution. Since the problems can be solved by the first algorithm in a worst-case time complexity O(n2n-1, this research proposes the second algorithm. It is a heuristic algorithm based on the Lagrange Relaxation method. Numerical experiments show that the heuristic algorithm gives outstanding results.

  9. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  10. APPLICATION OF THE ANAEROBIC SEQUENCING BATCH REACTORS WITH FIXED FILM IN THE TREATMENT OF INDUSTRIAL WASTEWATER CONTAINING HIGH SULFATE CONCENTRATION = APLICAÇÃO DE REATORES ANAERÓBIOS OPERADOS EM BATELADAS SEQUENCIAIS COM FILME FIXO NO TRATAMENTO DE ÁGUA RESIDUARIA INDUSTRIAL RICA EM SULFATO

    Directory of Open Access Journals (Sweden)

    Eugenio Foresti

    2009-01-01

    Full Text Available This paper presents and discusses the potential for use of pilot-scale anaerobic sequencing batch biofilm reactors (ASBBR for the treatment of industrial wastewater containing high sulfate concentration. The pilot-scale ASBBR reactor (total volume=1.2 m3 containing biomass immobilized in inert support (mineral coal was operated at sulfate loading rates varying from 0.15 to 1.90 kgSO4-2/cycle (cycle of 48h corresponding to sulfate concentrations of 0.25 to 3.0 gSO4-2.L-1. Domestic sewage and ethanol were utilized as electron donors for sulfate reduction. The mean sulfate removal efficiencies remained in the range of 88 to 92% in the several sulfate concentrations obtained from 92 operational cycles. As post-treatment unit for the generated effluents by the sulfate reduction was used another reactor ASBBR in pilot-scale (total volume=385,0 L with same inert support for biomass immobilization and different granulometry. The mean COD removal (mean influent=1450 mg.L-1 achieved 88% and total sulfide concentrations (H2S, HS−, S2− remained in the range of 41 to 71 mg.L-1 during the 35 operational cycles of 48 h. The results demonstrated that the use of ASBBR reactors is an alternative potential for the sulfate removal and as post-treatment of generated effluent. = Este trabalho apresenta e discute o potencial de uso de reatores anaeróbios operados em bateladas seqüenciais com biomassa imobilizada (ASBBR, em escala piloto, no tratamento de água residuária industrial contendo elevadas concentrações de sulfato. No ASBBR, com volume total de 1,2 m3, preenchido com carvão mineral (meio suporte foram aplicadas cargas de sulfato de 0,15 a 1,90 kg/ciclo com duração de ciclo de 48 h, correspondendo, respectivamente, às concentrações de sulfato no afluente de 0,25 a 3,0 g.L-1. O esgoto sanitário e etanol foram usados como doadores de elétrons para a redução do sulfato. As eficiências médias na redução de sulfato ficaram entre 88 e 92% nos

  11. Effect of Initial pH on Enhanced Biological Phosphorus Removal in Sequencing Batch Reactor (SBR)%起始 pH 值对序批式反应器中强化生物除磷系统的影响研究

    Institute of Scientific and Technical Information of China (English)

    李亚静; 谭静亮

    2013-01-01

      通过3个序批式反应器(SBR)的连续运行,研究了污水不同起始 pH 值对强化生物除磷系统(EBPR)的影响(SBR1:pH=6.5;SBR2:pH=7.0;SBR3:pH=7.5).结果表明:随着 pH 值的提高,厌氧释磷量和好氧吸磷量都逐渐增加,释磷速率和吸磷速率也在增加;除磷效率分别为82.69%、93.87%和98.50%.运用荧光原位杂交技术(FISH)鉴定 EBPR 中的功能菌为聚磷菌(PAO)并计算出其含量,即 SBR3>SBR2>SBR1,得到在一定的 pH 值范围内 pH 值越高聚磷菌的含量越高.比较不同 pH 值下 EBPR 系统中脱氢酶活性的变化规律,在 pH=6.5~7.5范围内,脱氢酶的活性随着 pH 的增加而线性增加,表明较高的 pH 有利于 PAO 的生长和提高 PAO 的活性,从而提高了除磷效率.因此,通过控制污水起始 pH 值的方法可以达到显著提高强化生物除磷效果的目的.%Three laboratory-scale sequencing batch reactors (SBRs) were operated continuously to investigate the influence of wastewater initial pH on enhanced biological phosphorus removal (SBR1: pH=6.5; SBR2: pH=7.0; SBR3: pH=7.5). Re-sults showed that the soluble ortho-phosphorus (SOP) release and uptake were increased, while the pH value was increased. And the SOP removal efficiency of the three reactors reached 82.69%、93.87% and 98.50% respectively. The proportion of phosphorus accumulating bacteria (PAO) in the three SBRs was calculated by FISH technology, namely SBR3 > SBR2 >SBR1, The proportion of PAO increased with the increase of the pH value. In the range of pH 6.5~7.5,the activity of dehy-drogenase increased linearly with pH value,The results indicated that a higher pH value was beneficial to the growth and the activity of PAO,which led to an improved phosphorus removal performance. Thus, the efficiency of enhanced biological phosphorus removal can be significantly improved by controlling the initial pH of wastewater.

  12. Sojourn time distributions in a Markovian G-queue with batch arrival and batch removal

    OpenAIRE

    1999-01-01

    We consider a single server Markovian queue with two types of customers; positive and negative, where positive customers arrive in batches and arrivals of negative customers remove positive customers in batches. Only positive customers form a queue and negative customers just reduce the system congestion by removing positive ones upon their arrivals. We derive the LSTs of sojourn time distributions for a single server Markovian queue with positive customers and negative custom...

  13. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    Institute of Scientific and Technical Information of China (English)

    HE Guo-qing; KONG Qing; CHEN Qi-he; RUAN Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB.

  14. Batch and fed-batch fermentation of Bacillus thuringiensis using starch industry wastewater as fermentation substrate.

    Science.gov (United States)

    Vu, Khanh Dang; Tyagi, Rajeshwar Dayal; Valéro, José R; Surampalli, Rao Y

    2010-08-01

    Bacillus thuringiensis var. kurstaki biopesticide was produced in batch and fed-batch fermentation modes using starch industry wastewater as sole substrate. Fed-batch fermentation with two intermittent feeds (at 10 and 20 h) during the fermentation of 72 h gave the maximum delta-endotoxin concentration (1,672.6 mg/L) and entomotoxicity (Tx) (18.5 x 10(6) SBU/mL) in fermented broth which were significantly higher than maximum delta-endotoxin concentration (511.0 mg/L) and Tx (15.8 x 10(6) SBU/mL) obtained in batch process. However, fed-batch fermentation with three intermittent feeds (at 10, 20 and 34 h) of the fermentation resulted in the formation of asporogenous variant (Spo-) from 36 h to the end of fermentation (72 h) which resulted in a significant decrease in spore and delta-endotoxin concentration and finally the Tx value. Tx of suspended pellets (27.4 x 10(6) SBU/mL) obtained in fed-batch fermentation with two feeds was the highest value as compared to other cases.

  15. Effect of membrane polymeric materials on relationship between surface pore size and membrane fouling in membrane bioreactors

    Science.gov (United States)

    Miyoshi, Taro; Yuasa, Kotaku; Ishigami, Toru; Rajabzadeh, Saeid; Kamio, Eiji; Ohmukai, Yoshikage; Saeki, Daisuke; Ni, Jinren; Matsuyama, Hideto

    2015-03-01

    We investigated the effect of different membrane polymeric materials on the relationship between membrane pore size and development of membrane fouling in a membrane bioreactor (MBR). Membranes with different pore sizes were prepared using three different polymeric materials, cellulose acetate butyrate (CAB), polyvinyl butyral (PVB), and polyvinylidene fluoride (PVDF), and the development of membrane fouling in each membrane was evaluated by batch filtration tests using a mixed liquor suspension obtained from a laboratory-scale MBR. The results revealed that the optimal membrane pore size to mitigate membrane fouling differed depending on membrane polymeric material. For PVDF membranes, the degree of membrane fouling decreased as membrane pore size increased. In contrast, CAB membranes with smaller pores had less fouling propensity than those with larger ones. Such difference can be attributed to the difference in major membrane foulants in each membrane; in PVDF, they were small colloids or dissolved organics in which proteins are abundant, and in CAB, microbial flocs. The results obtained in this study strongly suggested that optimum operating conditions of MBRs differ depending on the characteristics of the used membrane.

  16. Using Forensics to Untangle Batch Effects in TCGA Data - TCGA

    Science.gov (United States)

    Rehan Akbani, Ph.D., and colleagues at the University of Texas MD Anderson Cancer Center developed a tool called MBatch to detect, diagnose, and correct batch effects in TCGA data. Read more about batch effects in this Case Study.

  17. Batch Processing of CMOS Compatible Feedthroughs

    DEFF Research Database (Denmark)

    Rasmussen, F.E.; Heschel, M.; Hansen, Ole

    2003-01-01

    This paper presents a technique for batch fabrication of electrical feedthroughs in CMOS wafers. The presented process is designed with specific attention on industrial applicability. The electrical feedthroughs are processed entirely by low temperature, CMOS compatible processes. Hence, the proc......This paper presents a technique for batch fabrication of electrical feedthroughs in CMOS wafers. The presented process is designed with specific attention on industrial applicability. The electrical feedthroughs are processed entirely by low temperature, CMOS compatible processes. Hence....... The feedthrough technology employs a simple solution to the well-known CMOS compatibility issue of KOH by protecting the CMOS side of the wafer using sputter deposited TiW/Au. The fabricated feedthroughs exhibit excellent electrical performance having a serial resistance of 40 mOmega and a parasitic capacitance...

  18. Capacitated max -Batching with Interval Graph Compatibilities

    Science.gov (United States)

    Nonner, Tim

    We consider the problem of partitioning interval graphs into cliques of bounded size. Each interval has a weight, and the weight of a clique is the maximum weight of any interval in the clique. This natural graph problem can be interpreted as a batch scheduling problem. Solving a long-standing open problem, we show NP-hardness, even if the bound on the clique sizes is constant. Moreover, we give a PTAS based on a novel dynamic programming technique for this case.

  19. Isopropyl alcohol recovery by heteroazeotropic batch distillation

    OpenAIRE

    Van Baelen, Guy; Vreysen, Steven; Gerbaud, Vincent; Rodriguez-Donis, Ivonne; Geens, Jeroen; Janssens, Bart

    2010-01-01

    Solvent recovery is becoming a major issue in the pharmaceutical and specialty chemical industries. Solvent recovery by conventional batch distillation is limited by the frequent presence of azeotropes in the used solvent mixtures. Most distillation processes for the separation of azeotropic or difficult zeotropic mixtures involve the addition of an entrainer (homogeneous and heterogeneous azeotropic distillation or extractive distillation). In this study the recovery of IPA (isopropyl alc...

  20. Batch Computed Tomography Analysis of Projectiles

    Science.gov (United States)

    2016-05-01

    component densities and their relative shapes and locations in space. Currently, surrogate BS41 projectiles are manufactured for the US Army Research...single core of an Intel Xeon X5650 processor operating at 2.67 GHz. To batch process the (210) projectiles, a Matlab script was written to parallelize...understand manufacturing variability, and to obtain a subgroup of the most similar for later ballistic testing, while omitting outliers. These

  1. On the optimal control of fed-batch reactors with substrate-inhibited kinetics.

    Science.gov (United States)

    Cazzador, L

    1988-05-01

    The optimal feed rate profiles, for fed-batch fermentation that maximizes the biomass production and accounts for time, are analyzed. The solution can be found only if the final arc of the optimal control is a batch arc, since in this case the final concentrations of substrate and biomass can be determined by ulterior conditions on the mass balance and on the final growth rate of biomass and thus it is possible to solve the resulting time optimal problem by using Green's theorem. This evidences the "turnpike property" of the solution, which tries to spend the maximum time on or at least near the singular arc along which the substrate concentration is maintained constant. The optimality of the final batch arc is related to the time operational cost in the performance index. The sequence of the control depends on the initial conditions for which six different regions, with the respective patterns, have been identified, in case the performance index allows the control sequence to have a final batch.

  2. On-line Scheduling Of Multi-Server Batch Operations

    NARCIS (Netherlands)

    van der Zee, D.J.; van Harten, A.; Schuur, P.C.

    1999-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of setups and/or facilitation of material handling. Good examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing. Thes

  3. Accuracy Enhancement of Electrotechnical System for Bulk Material Batching

    Directory of Open Access Journals (Sweden)

    Bukreev Victor G.

    2014-01-01

    Full Text Available In the paper an automatic system for batching and mixing the components of combined feed is considered. A novel algorithm has been proposed for the batching error correction caused by mass of the material column dropping into the batching bin. The proposed algorithm has been validated in a simulation model and in an experimental facility.

  4. Secure Batch Verification Protocol for RSA Signature Scheme

    Institute of Scientific and Technical Information of China (English)

    JIAZongpu; LIQingchao; LIZichen

    2005-01-01

    Harn, in 1998, proposed an efficient batch verification scheme for multiple RSA digital signatures.However, the scheme has a weakness, that is a signer can generate multiple signatures which can pass the batch verification scheme, but every one of these multiple signatures is not a valid signature. To avoid this disadvantage, we propose an improved batch verification scheme.

  5. Batch correction of microarray data substantially improves the identification of genes differentially expressed in Rheumatoid Arthritis and Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Kupfer Peter

    2012-06-01

    > OA, both constitutively at time point 0, and at all time points following stimulation with either TNF-α or TGF-β1. Conclusion Batch correction appears to be an extremely valuable tool to eliminate non-biological batch effects, and allows the identification of genes discriminating between different joint diseases. RA-SFB show an upregulated expression of extracellular matrix components, both constitutively following isolation from the synovial membrane and upon stimulation with disease-relevant cytokines or growth factors, suggesting an “imprinted” alteration of their phenotype.

  6. SLUDGE BATCH 5 SIMULANT FLOWSHEET STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D; Michael Stone, M; Bradley Pickenheim, B; David Best, D; David Koopman, D

    2008-10-03

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 4 (SB4) processing to Sludge Batch 5 (SB5) processing in early fiscal year 2009. Tests were conducted using non-radioactive simulants of the expected SB5 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2007-0007, Rev. 1 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB5 flowsheet studies were conducted to guide decisions during the sludge batch preparation process. These studies were conducted with the estimated SB5 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the washing plan to prepare SB5 and the estimated SB4 heel mass. Nine DWPF process simulations were completed in 4-L laboratory-scale equipment using both a batch simulant (Tank 51 simulant after washing is complete) and a blend simulant (Tank 40 simulant after Tank 51 transfer is complete). Each simulant had a set of four SRAT and SME simulations at varying acid stoichiometry levels (115%, 130%, 145% and 160%). One additional run was made using blend simulant at 130% acid that included additions of the Actinide Removal Process (ARP) waste prior to acid addition and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) waste following SRAT dewatering. There are several parameters that are noteworthy concerning SB5 sludge: (1) This is the first batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution. (2) The sludge is high in mercury

  7. Batch Model for Batched Timestamps Data Analysis with Application to the SSA Disability Program.

    Science.gov (United States)

    Yue, Qingqi; Yuan, Ao; Che, Xuan; Huynh, Minh; Zhou, Chunxiao

    2016-08-01

    The Office of Disability Adjudication and Review (ODAR) is responsible for holding hearings, issuing decisions, and reviewing appeals as part of the Social Security Administration's disability determining process. In order to control and process cases, the ODAR has established a Case Processing and Management System (CPMS) to record management information since December 2003. The CPMS provides a detailed case status history for each case. Due to the large number of appeal requests and limited resources, the number of pending claims at ODAR was over one million cases by March 31, 2015. Our National Institutes of Health (NIH) team collaborated with SSA and developed a Case Status Change Model (CSCM) project to meet the ODAR's urgent need of reducing backlogs and improve hearings and appeals process. One of the key issues in our CSCM project is to estimate the expected service time and its variation for each case status code. The challenge is that the systems recorded job departure times may not be the true job finished times. As the CPMS timestamps data of case status codes showed apparent batch patterns, we proposed a batch model and applied the constrained least squares method to estimate the mean service times and the variances. We also proposed a batch search algorithm to determine the optimal batch partition, as no batch partition was given in the real data. Simulation studies were conducted to evaluate the performance of the proposed methods. Finally, we applied the method to analyze a real CPMS data from ODAR/SSA.

  8. Batch Model for Batched Timestamps Data Analysis with Application to the SSA Disability Program

    Science.gov (United States)

    Yue, Qingqi; Yuan, Ao; Che, Xuan; Huynh, Minh; Zhou, Chunxiao

    2016-01-01

    The Office of Disability Adjudication and Review (ODAR) is responsible for holding hearings, issuing decisions, and reviewing appeals as part of the Social Security Administration’s disability determining process. In order to control and process cases, the ODAR has established a Case Processing and Management System (CPMS) to record management information since December 2003. The CPMS provides a detailed case status history for each case. Due to the large number of appeal requests and limited resources, the number of pending claims at ODAR was over one million cases by March 31, 2015. Our National Institutes of Health (NIH) team collaborated with SSA and developed a Case Status Change Model (CSCM) project to meet the ODAR’s urgent need of reducing backlogs and improve hearings and appeals process. One of the key issues in our CSCM project is to estimate the expected service time and its variation for each case status code. The challenge is that the systems recorded job departure times may not be the true job finished times. As the CPMS timestamps data of case status codes showed apparent batch patterns, we proposed a batch model and applied the constrained least squares method to estimate the mean service times and the variances. We also proposed a batch search algorithm to determine the optimal batch partition, as no batch partition was given in the real data. Simulation studies were conducted to evaluate the performance of the proposed methods. Finally, we applied the method to analyze a real CPMS data from ODAR/SSA.

  9. Mutation of the RGD sequence does not affect plasma membrane association and growth inhibitory effects of elevated IGFBP-2 in vivo

    NARCIS (Netherlands)

    Hoeflich, A; Reisinger, R; Vargas, GA; Elmlinger, MW; Schuett, B; Jehle, PM; Renner-Muller, [No Value; Lahm, H; Russo, VC; Wolf, E

    2002-01-01

    Using insulin-like growth factor-binding protein-2 (IGFBP-2) transgenic mice (D mice) as a model of elevated IGFBP-2 expression, which is often found in unphysiological conditions, we found association of IGFBP-2 to purified plasma membranes of many organs. To determine whether the RGD (Arg-Gly-Asp)

  10. Modelling and pathway identification involving the transport mechanism of a complex metabolic system in batch culture

    Science.gov (United States)

    Yuan, Jinlong; Zhang, Xu; Zhu, Xi; Feng, Enmin; Yin, Hongchao; Xiu, Zhilong

    2014-06-01

    The bio-dissimilation of glycerol to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) can be characterized by a complex metabolic system of interactions among biochemical fluxes, metabolic compounds, key enzymes and genetic regulation. In this paper, in consideration of the fact that the transport ways of 1,3-PD and glycerol with different weights across cell membrane are still unclear in batch culture, we consider 121 possible metabolic pathways and establish a novel mathematical model which is represented by a complex metabolic system. Taking into account the difficulty in accurately measuring the concentration of intracellular substances and the absence of equilibrium point for the metabolic system of batch culture, the novel approach used here is to define quantitatively biological robustness of the intracellular substance concentrations for the overall process of batch culture. To determine the most possible metabolic pathway, we take the defined biological robustness as cost function and establish an identification model, in which 1452 system parameters and 484 pathway parameters are involved. Simultaneously, the identification model is subject to the metabolic system, continuous state constraints and parameter constraints. As such, solving the identification model by a serial program is a very complicated task. We propose a parallel migration particle swarm optimization algorithm (MPSO) capable of solving the identification model in conjunction with the constraint transcription and smoothing approximation techniques. Numerical results show that the most possible metabolic pathway and the corresponding metabolic system can reasonably describe the process of batch culture.

  11. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie, E-mail: valerie.panneels@psi.ch [Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI (Switzerland)

    2015-06-27

    A new batch preparation method is presented for high-density micrometre-sized crystals of the G protein-coupled receptor rhodopsin for use in time-resolved serial femtosecond crystallography at an X-ray free-electron laser using a liquid jet. Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  12. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  13. Evolutionary origins of membrane proteins

    Science.gov (United States)

    Mulkidjanian, Armen Y.; Galperin, Michael Y.

    Although the genes that encode membrane proteins make about 30% of the sequenced genomes, the evolution of membrane proteins and their origins are still poorly understood. Here we address this topic by taking a closer look at those membrane proteins the ancestors of which were present in the Last Universal Common Ancestor, and in particular, the F/V-type rotating ATPases. Reconstruction of their evolutionary history provides hints for understanding not only the origin of membrane proteins, but also of membranes themselves. We argue that the evolution of biological membranes could occur as a process of coevolution of lipid bilayers and membrane proteins, where the increase in the ion-tightness of the membrane bilayer may have been accompanied by a transition from amphiphilic, pore-forming membrane proteins to highly hydrophobic integral membrane complexes.

  14. CONVERSION OF PINEAPPLE JUICE WASTE INTO LACTIC ACID IN BATCH AND FED – BATCH FERMENTATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Abdullah Mochamad Busairi

    2012-01-01

    Full Text Available Pineapple juice waste contains valuable components, which are mainly sucrose, glucose, and fructose. Recently, lactic acid has been considered to be an important raw material for the production of biodegradable lactide polymer. The fermentation experiments were carried out in a 3 litres fermentor (Biostat B Model under anaerobic condition with stirring speed of 50 rpm, temperature at 40oC, and pH of 6.00. Effect of feed concentration on lactic acid production, bacterial growth, substrate utilisation and productivity was studied. The results obtained from fed- batch culture fermentation showed that the maximum lactic acid productivity was 0.44 g/L.h for feed concentration of 90 g/L at 48 hours. Whereas the lactic acid productivity obtained from fed-batch culture was twice and half fold higher than that of batch culture productivity.  Buangan jus nanas mengandung komponen yang berharga terutama sukrosa, glukosa, dan fruktosa. Asam laktat adalah bahan baku yang terbaru dan penting untuk dibuat sebagai polimer laktat yang dapat terdegradasi oleh lingkungan. Percobaan dilakukan pada fermentor 3 liter (Model Biostat B di bawah kondisi anaerob dengan kecepatan pengadukan 50 rpm, temperatur 40oC, dan pH 6,00. Pengaruh konsentrasi umpan terhadap produksi asam laktat, pertumbuhan mikroba, pengggunaan substrat dan produktivitas telah dipelajari. Hasil yang didapatkan pada fermentasi dengan menggunakan sistem fed-batch menunjukkan bahwa produktivitas asam laktat maksimum adalah 0.44 g/L,jam dengan konsentrasi umpan, 90 g/L pada waktu 48 jam. Bahkan produktivitas asam laktat yang didapat pada kultur fed-batch lebih tinggi 2,5 kali dari pada proses menggunakan sistem batch

  15. Sojourn time distributions in a Markovian G-queue with batch arrival and batch removal

    Directory of Open Access Journals (Sweden)

    Yang Woo Shin

    1999-01-01

    Full Text Available We consider a single server Markovian queue with two types of customers; positive and negative, where positive customers arrive in batches and arrivals of negative customers remove positive customers in batches. Only positive customers form a queue and negative customers just reduce the system congestion by removing positive ones upon their arrivals. We derive the LSTs of sojourn time distributions for a single server Markovian queue with positive customers and negative customers by using the first passage time arguments for Markov chains.

  16. Characteristics of aerobic granules grown on glucose a sequential batch shaking reactor

    Institute of Scientific and Technical Information of China (English)

    CAI Chun-guang; ZHU Nan-wen; LIU Jun-shen; WANG Zhen-peng; CAI Wei-min

    2004-01-01

    Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor(SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules were investigated. Compared with the conventional activated sludge flocs, the aerobic granules exhibit excellent physical characteristics in terms of settleability, size, shape, biomass density, and physical strength.Scanning electron micrographs revealed that in mature granules little filamentous bacteria could be found, rodshaped and coccoid bacteria were the dominant microorganisms.

  17. Graphene Trans-Electrode Membranes

    Science.gov (United States)

    Kuan, Aaron; Bo, Lu; Rollings, Ryan; Dressen, Don; Branton, Daniel; Golovchenko, Jene

    2014-03-01

    We report an electrical study of suspended single-layer graphene membranes separating reservoirs of electrolyte solution. Because the opposing reservoirs are separated only by an atomically thin membrane, the trans-conductance (ionic current response to a voltage across the membrane) is extremely sensitive to nanoscale defects in the membrane. This sensitivity allows the precise examination and characterization of intrinsic defects in graphene membranes, as well as engineered defects for devices. We will discuss methods for creating single nanopores or distributed defects in our graphene membranes, with the applications of nanopore DNA sequencing and water desalination in mind.

  18. Cloning and Characterization of an Outer Membrane Protein of Vibrio vulnificus Required for Heme Utilization: Regulation of Expression and Determination of the Gene Sequence

    OpenAIRE

    Litwin, Christine M.; Byrne, Burke L.

    1998-01-01

    Vibrio vulnificus is a halophilic, marine pathogen that has been associated with septicemia and serious wound infections in patients with iron overload and preexisting liver disease. For V. vulnificus, the ability to acquire iron from the host has been shown to correlate with virulence. V. vulnificus is able to use host iron sources such as hemoglobin and heme. We previously constructed a fur mutant of V. vulnificus which constitutively expresses at least two iron-regulated outer membrane pro...

  19. Transfer of Campylobacter from a Positive Batch to Broiler Carcasses of a Subsequently Slaughtered Negative Batch: A Quantitative Approach.

    Science.gov (United States)

    Seliwiorstow, Tomasz; Baré, Julie; Van Damme, Inge; Gisbert Algaba, Ignacio; Uyttendaele, Mieke; De Zutter, Lieven

    2016-06-01

    The present study was conducted to quantify Campylobacter cross-contamination from a positive batch of broiler chicken carcasses to a negative batch at selected processing steps and to evaluate the duration of this cross-contamination. During each of nine visits conducted in three broiler slaughterhouses, Campylobacter levels were determined on broiler carcasses originating from Campylobacter-negative batches processed immediately after Campylobacter-positive batches. Data were collected after four steps during the slaughter process (scalding, plucking, evisceration, and washing) at 1, 10, and 20 min after the start of the slaughter of the batches. Campylobacter levels in ceca of birds from Campylobacter-positive batches ranged from 5.62 to 9.82 log CFU/g. When the preceding positive batch was colonized at a low level, no (enumerable) carcass contamination was found in a subsequent negative batch. However, when Campylobacter levels were high in the positive batch, Campylobacter was found on carcasses of the subsequent negative batch but at levels significantly lower than those found on carcasses from the preceding positive batch. The scalding and the evisceration process contributed the least (< 1.5 log CFU/g) and the most (up to 4 log CFU/ g), respectively, to the Campylobacter transmission from a positive batch to a negative batch. Additionally, the number of Campylobacter cells transferred from positive to negative batches decreased over the first 20 min of sampling time. However, the reduction was slower than previously estimated in risk assessment studies, suggesting that pathogen transfer during crosscontamination is a complex process.

  20. PBSNG—Batch System for Farm Architecture

    Institute of Scientific and Technical Information of China (English)

    J.Fromm; K.Genser; 等

    2001-01-01

    FBSNG [1] is a redesigned version of Farm Batch System (FBS[1]),which was developed as a batch process management system for off-line Run II data processing at FNAL.FBSNG is designed for UNIX computer farms and is capable of managing up to 1000 nodes in a single farm.FBSNG allows users to start arrays of parallel processes on one or more farm computers,It uses a simplified abstract resource counting method for load balancing between computers.The resource counting approach allows FBSNG to be a simple and flexible tool for farm resource management.FBSNG scheduler features include guaranteed and controllable” fair-share” scheduling.FBSNG is easily portable across different flavors of UNIX.The system has been successfully used at Fermilab as well as by off-site collaborators for several years on farms of different sizes and different platforms for off-line data processing,Monte-Carlo data generation and other tasks.

  1. Common Structure of Rare Replication-Deficient E1-Positive Particles in Adenoviral Vector Batches

    Science.gov (United States)

    Murakami, Pete; Havenga, Menzo; Fawaz, Farah; Vogels, Ronald; Marzio, Giuseppe; Pungor, Erno; Files, Jim; Do, Linh; Goudsmit, Jaap; McCaman, Michael

    2004-01-01

    The use of the PER.C6 adenovirus packaging cell line in combination with a designated vector plasmid system, whereby the cell line and vector with E1 deleted have no sequence overlap, eliminates the generation of replication-competent adenovirus during vector production. However, we have found cytopathic effect (CPE)-inducing particles in 2 out of more than 40 large-scale manufacturing lots produced in PER.C6 cells. The CPE inducer was detected at a frequency of 1 event in 7.5 × 1012 vector particles. Despite amplification, it was not readily purified, indicating that the agent itself is replication deficient and requires the parental recombinant adenovirus serotype 5 (rAd5) vector for replication and packaging. Therefore, we designated the agent as a helper-dependent E1-positive region containing viral particle (HDEP). Here, we report the molecular structure of the HDEP genome, revealing an Ad comprised of E1 sequences derived from PER.C6 cells flanked by inverted terminal repeat, packaging signal, and transgene sequences. These sequences form a palindromic structure devoid of E2, E3, E4, and late genes. Since only 5 bp were shared between E1 sequences in the PER.C6 genome and viral vector sequences, the data strongly suggested that insertion of genomic DNA into an adenoviral genome had occurred essentially via nonhomologous recombination. HDEPs have been found in unrelated virus batches and appear to share a common structure that may explain their mechanism of generation. This finding allowed development of an HDEP assay to screen batches of rAd5 produced on the PER.C6 cell line and resulted in detection of seven HDEP agents from four different transgene-virus vector constructs in separate batches of Ad. PMID:15163713

  2. Production of savinase and population viability of Bacillus clausii during high-cell-density fed-batch cultivations

    DEFF Research Database (Denmark)

    Christiansen, Torben; Michaelsen, S.; Wumpelmann, M.

    2003-01-01

    feed profiles applied and, in addition, there was a time-dependent decrease in specific productivity. The specific glucose uptake rate increased with time for constant specific growth rate indicating that the maintenance requirements increased with time, possibly due to a decreasing K+ concentration......The growth and product formation of a Savinase-producing Bacillus clausii were investigated in high-cell-density fed-batch cultivations with both linear and exponential feed profiles. The highest specific productivity of Savinase was observed shortly after the end of the initial batch phase for all....... The physiological state of the cells was monitored during the cultivations using a flow cytometry assay based on the permeability of the cell membrane to propidium iodide. In the latter parts of the fed-batch cultures with a linear feed profile, a large portion of the cell population was found to have a permeable...

  3. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Hingston, Patricia; Chen, Jessica; Allen, Kevin

    2017-01-01

    -supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA) profiling to characterize the bacterium’s cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more...

  4. The Membrane Gradostat Reactor: Secondary metabolite production ...

    African Journals Online (AJOL)

    SERVER

    2007-05-16

    May 16, 2007 ... gies are now well accepted and cost effective (Wiesner and Chellam ... uce these secondary metabolites continuously were .... and ammonium sources in the feed and permeates reco- .... when the solutions were fed through the lumen of the .... Progress from batch culture to a membrane bioreactor for the.

  5. Melting Properties of Loose and Granulated Glass Batch

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; DENG Zhenglu; XIE Jun; CHENG Jinshu; HAN Jianjun; ZHOU Xuedong

    2014-01-01

    The physical properties, the pre-reacting performance and melting properties of the loose glass batch and the granulated glass batch were investigated, respectively. The experimental results showed that compacted glass batch could reduce dust, use ultra-fine powder, and improve heat transfer efficiency. When loose glass batch was compressed into granular, the thermal conductivity was increased from 0.273 W/m•℃to 0.430 W/m•℃, the activation energy Ea of pre-reacting decreased from 178.77 kJ/mol to 143.30 kJ/mol. Using the pre-reacted granular glass batch can significantly reduce the melting time, increase the batch melting rate, and decrease the heat consumption of 1kg molten glass from 3591.24 to 3277.03kJ/kg.

  6. Adaptive quality prediction of batch processes based on PLS model

    Institute of Scientific and Technical Information of China (English)

    LI Chun-fu; ZHANG Jie; WANG Gui-zeng

    2006-01-01

    There are usually no on-line product quality measurements in batch and semi-batch processes,which make the process control task very difficult.In this paper,a model for predicting the end-product quality from the available on-line process variables at the early stage of a batch is developed using partial least squares (PLS)method.Furthermore,some available mid-course quality measurements are used to rectify the final prediction results.To deal with the problem that the process may change with time,recursive PLS (RPLS) algorithm is used to update the model based on the new batch data and the old model parameters after each batch.An application to a simulated batch MMA polymerization process demonstrates the effectiveness of the proposed method.

  7. TANK 50 BATCH 0 SALTSTONE FORMULATION CONFIRMATION

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.

    2006-06-05

    Savannah River National Laboratory (SRNL) personnel were requested to confirm the Tank 50 Batch 0 grout formulation per Technical Task Request, SSF-TTR-2006-0001 (task 1 of 2) [1]. Earlier Batch 0 formulation testing used a Tank 50 sample collected in September 2005 and is described elsewhere [2]. The current testing was performed using a sample of Tank 50 waste collected in May 2006. This work was performed according to the Technical Task and Quality Assurance Plan (TT/QAP), WSRC-RP-2006-00594 [3]. The salt solution collected from Tank 50 in May 2006 contained approximately 3 weight percent more solids than the sample collected in September 2005. The insoluble solids took longer to settle in the new sample which was interpreted as indicating finer particles in the current sample. The saltstone formulation developed for the September 2005 Tank 50 Batch 0 sample was confirmed for the May 2006 sample with one minor exception. Saltstone prepared with the Tank 50 sample collected in May 2006 required 1.5 times more Daratard 17 set retarding admixture than the saltstone prepared with the September In addition, a sample prepared with lower shear mixing (stirring with a spatula) had a higher plastic viscosity (57 cP) than samples made with higher shear mixing in a blender (23cP). The static gel times of the saltstone slurries made with low shear mixing were also shorter ({approx}32 minutes) than those for comparable samples made in the blender ({approx}47 minutes). The addition of the various waste streams (ETP, HEU-HCAN, and GPE-HCAN) to Tank 50 from September 2005 to May 2006 has increased the amount of set retarder, Daratard 17, required for processing saltstone slurries through the Saltstone facility. If these streams are continued to be added to Tank 50, the quantity of admixtures required to maintain the same processing conditions for the Saltstone facility will probably change and additional testing is recommended to reconfirm the Tank 50 Saltstone formulation.

  8. A batch fabricated capacitive pressure sensor with an integrated Guyton capsule for interstitial fluid pressure measurement

    Science.gov (United States)

    Maleki, Teimour; Fogle, Benjamin; Ziaie, Babak

    2011-05-01

    In this paper, we present the design, fabrication and test of a batch fabricated capacitive pressure sensor with an integrated Guyton capsule for interstitial fluid pressure measurement. The sensor is composed of 12 µm thick single crystalline silicon membrane and a 3 µm gap, hermetically sealed through silicon-glass anodic bonding. A novel batch scale method for creating electrical feed-throughs inside the sealed capacitor chamber is developed. The Guyton capsule consists of an array of 10 µm diameter access holes etched onto a silicon back-plate separated from the silicon sensing membrane by a gap of 5 µm. The presence of the Guyton capsule (i.e. plates with access holes plus the gap separating them from the sensing membrane) allows for the ingress of interstitial fluid inside the 5 µm gap following the implantation, thus, providing an accurate measurement of interstitial fluid pressure. The fabricated sensor is 3 × 2 × 0.42 mm3 in dimensions and has a maximum sensitivity of 10 fF mmHg-1.

  9. Batching, Scheduling, Disjunctive graph, Local search, Simulated Annealing, Wafer fabrication

    OpenAIRE

    Yugma, Claude; Dauzere-Peres, Stephane; Artigues, Christian; Derreumaux, Alexandre; Sibille, Olivier

    2011-01-01

    Abstract This paper proposes an efficient heuristic algorithm for solving a complex batching and scheduling problem in a diffusion area of a semiconductor plant. Diffusion is frequently bottleneck in the plant and also one of the most complex areas in terms of number of machines, constraints to satisfy and the large number of lots to manage. The purpose of this study is to investigate an approach to group lots in batches and to schedule these batches on machines. The proble...

  10. ENGINEERING CONTRACT ON FY-2 BATCH 2 SATELLITES SIGNED

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2004-01-01

    The signing ceremony of the Engineering Contract on FY-2 Batch 2 (FY-2 02) Satellites was held in Beijing by Commission of Science, Technology and Industry for National Defense (COSTIND) on August 31, 2004. The contract on the development and manufacture of FY-2 batch 2 satellites and the contract on the launch, test and control of FY-2 Batch 2 satellites were signed by China Meteorological Administration (CMA),

  11. Reducing variance in batch partitioning measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul E.

    2010-08-11

    The partitioning experiment is commonly performed with little or no attention to reducing measurement variance. Batch test procedures such as those used to measure K{sub d} values (e.g., ASTM D 4646 and EPA402 -R-99-004A) do not explain how to evaluate measurement uncertainty nor how to minimize measurement variance. In fact, ASTM D 4646 prescribes a sorbent:water ratio that prevents variance minimization. Consequently, the variance of a set of partitioning measurements can be extreme and even absurd. Such data sets, which are commonplace, hamper probabilistic modeling efforts. An error-savvy design requires adjustment of the solution:sorbent ratio so that approximately half of the sorbate partitions to the sorbent. Results of Monte Carlo simulations indicate that this simple step can markedly improve the precision and statistical characterization of partitioning uncertainty.

  12. Reactive Scheduling in Multipurpose Batch Plants

    Science.gov (United States)

    Narayani, A.; Shaik, Munawar A.

    2010-10-01

    Scheduling is an important operation in process industries for improving resource utilization resulting in direct economic benefits. It has a two-fold objective of fulfilling customer orders within the specified time as well as maximizing the plant profit. Unexpected disturbances such as machine breakdown, arrival of rush orders and cancellation of orders affect the schedule of the plant. Reactive scheduling is generation of a new schedule which has minimum deviation from the original schedule in spite of the occurrence of unexpected events in the plant operation. Recently, Shaik & Floudas (2009) proposed a novel unified model for short-term scheduling of multipurpose batch plants using unit-specific event-based continuous time representation. In this paper, we extend the model of Shaik & Floudas (2009) to handle reactive scheduling.

  13. A batch fabricated biomimetic dry adhesive

    Science.gov (United States)

    Northen, Michael T.; Turner, Kimberly L.

    2005-08-01

    The fine hair adhesive system found in nature is capable of reversibly adhering to just about any surface. This dry adhesive, best demonstrated in the pad of the gecko, makes use of a multilevel conformal structure to greatly increase inelastic surface contact, enhancing short range interactions and producing significant amounts of attractive forces. Recent work has attempted to reproduce and test the terminal submicrometre 'hairs' of the system. Here we report the first batch fabricated multi-scale conformal system to mimic nature's dry adhesive. The approach makes use of massively parallel MEMS processing technology to produce 20-150 µm platforms, supported by single slender pillars, and coated with ~2 µm long, ~200 nm diameter, organic looking polymer nanorods, or 'organorods'. To characterize the structures a new mesoscale nanoindenter adhesion test technique has been developed. Experiments indicate significantly improved adhesion with the multiscale system. Additional processing caused a hydrophilic to hydrophobic transformation of the surface and testing indicated further improvement in adhesion.

  14. Deduced sequences of the membrane fusion and attachment proteins of canine distemper viruses isolated from dogs and wild animals in Korea.

    Science.gov (United States)

    Bae, Chae-Wun; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Lee, Nak-Hyung; Seo, Kun-Ho; Kang, Young-Sun; Park, Choi-Kyu; Choi, In-Soo

    2013-08-01

    Canine distemper virus (CDV) causes highly contagious respiratory, gastrointestinal, and neurological diseases in wild and domestic animal species. Despite a broad vaccination campaign, the disease is still a serious problem worldwide. In this study, six field CDV strains were isolated from three dogs, two raccoon dogs, and one badger in Korea. The full sequence of the genes encoding fusion (F) and hemagglutinin (H) proteins were compared with those of other CDVs including field and vaccine strains. The phylogenetic analysis for the F and H genes indicated that the two CDV strains isolated from dogs were most closely related to Chinese strains in the Asia-1 genotype. Another four strains were closely related to Japanese strains in the Asia-2 genotype. The six currently isolated strains shared 90.2-92.1% and 88.2-91.8% identities with eight commercial vaccine strains in their nucleotide and amino acid sequences of the F protein, respectively. They also showed 90.1-91.4% and 87.8-90.7% identities with the same vaccine strains in their nucleotide and deduced amino acid sequences of the H protein, respectively. Different N-linked glycosylation sites were identified in the F and H genes of the six isolates from the prototype vaccine strain Onderstepoort. Collectively, these results demonstrate that at least two different CDV genotypes currently exist in Korea. The considerable genetic differences between the vaccine strains and wild-type isolates would be a major factor of the incomplete protection of dogs from CDV infections.

  15. Structural Requirements for Membrane Assembly of Proteins Spanning the Membrane Several Times

    OpenAIRE

    Lipp, Joachim; Flint, Nicholas; Haeuptle, Marie-Theres; Dobberstein, Bernhard

    1989-01-01

    We have investigated the structural requirements for the biogenesis of proteins spanning the membrane several times. Proteins containing various combinations of topological signals (signal anchor and stop transfer sequences) were synthesized in a cell-free translation system and their membrane topology was determined. Proteins spanning the membrane twice were obtained when a signal anchor sequence was followed by either a stop transfer sequence or a second signal anchor sequence. Thus, a sig...

  16. Fatty acid accumulation in the yeast Sporidiobolus salmonicolor during batch production of gamma-decalactone.

    Science.gov (United States)

    Feron, G; Dufossé, L; Mauvais, G; Bonnarme, P; Spinnler, H E

    1997-04-01

    This paper provides new information about the metabolism of various fatty acids and gamma-decalactone production by yeast. An analysis of the fatty acid composition of the yeast Sporidiobolus salmonicolor during batch production of lactone with ricinoleic acid methyl ester as a precursor showed an accumulation of the gamma-decalactone precursor inside the cells. Electron microscopy of the yeasts showed the presence of large internal inclusions leading to membrane and organelle lysis and, consequently, death of the yeast. S. salmonicolor cultivated with methyl oleate did not produce gamma-decalactone and is viable during the whole culture. Analysis of the long chain fatty acid fraction showed incorporation of methyl oleate.

  17. Membrane reactor. Membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Y.; Wakabayashi, K. (National Chemical Laboratory for Industry, Tsukuba (Japan))

    1990-08-05

    Many reaction examples were introduced of membrane reactor, to be on the point of forming a new region in the field of chemical technology. It is a reactor to exhibit excellent function, by its being installed with membrane therein, and is generally classified into catalyst function type and reaction promotion type. What firstly belongs to the former is stabilized zirconia, where oxygen, supplied to the cathodic side of membrane with voltage, impressed thereon, becomes O {sup 2 {minus}} to be diffused through the membrane and supplied, as variously activated oxygenous species, on the anodic side. Examples with many advantages can be given such as methane coupling, propylene oxidation, methanating reaction of carbon dioxide, etc. Apart, palladium film and naphion film also belong to the former. While examples of the latter comprise, among others, decomposition of hydrogen sulfide by porous glass film and dehydrogenation of cyclohexane or palladium alloy film, which are expected to be developed and materialized in the industry. 33 refs., 8 figs.

  18. Statistical methods in media optimization for batch and fed-batch animal cell culture.

    Science.gov (United States)

    De Alwis, Diliny M; Dutton, Roshni L; Scharer, Jeno; Moo-Young, Murray

    2007-03-01

    Hybridoma 130-8F producing anti-F monoclonal antibodies (MAb) were grown in batch and fed-batch mode with glutamine as the limiting substrate. The initial concentration of glucose varied between 10 and 25 mM but was not growth limiting. Monoclonal antibody production was identified as being partially growth associated. Employing the cumulative cell hour concept, external metabolic flux estimates were calculated during the exponential growth phase for MAb, glucose, amino acids, ammonia and lactate. Through nutritional profiling using principal component analysis (PCA) followed by partial least squares regression (PLS), key metabolites were identified and grouped for significant positive, significant negative, low level, and negligible correlation to MAb production, cellular growth, glucose consumption, and ammonia and lactate production. Significant relationships peculiar to Hybridoma 130-8F were identified, such as demand for two normally non-essential amino acids (asparagine and aspartic acid), and the positive correlation between MAb and ammonia production.

  19. Batch process. Batch process used in a beer brewery; Biru kojo no bacchi purosesu

    Energy Technology Data Exchange (ETDEWEB)

    Kihara, K. [Kirin Engneering Co. Ltd. (Japan)

    1997-09-05

    In a beer brewing process, there is a system in which unit operation of chemical engineering is combined with the techniques of food and fermentation engineering in order to brew beer meeting the quality concept. This paper introduces the characteristics of a batch system used in the brewing of beer and the control method for the brewing of beer. The characteristics of the batch system used in a beer brewing process are the following three. In order to minimize the quality variation ascribed to the raw materials and the process, the materials are blended in various parts of the system. In the saccharification step which determines the quality of beer, two methods, i.e. a batch method and a continuous method are used, and beer brewing companies employ a saccharification system meeting the condition for attaining a desired quality of their own products. Two mashing systems are operated at different cycles shifted by half cycle from each other, not starting both at a time, so as to level the peaks of the utilities, whereby the operation of the utility-related facility is optimized. 1 ref., 2 figs., 1 tab.

  20. Contribution of factor H-Binding protein sequence to the cross-reactivity of meningococcal native outer membrane vesicle vaccines with over-expressed fHbp variant group 1.

    Science.gov (United States)

    Marini, Arianna; Rossi, Omar; Aruta, Maria Grazia; Micoli, Francesca; Rondini, Simona; Guadagnuolo, Serafina; Delany, Isabel; Henderson, Ian R; Cunningham, Adam F; Saul, Allan; MacLennan, Calman A; Koeberling, Oliver

    2017-01-01

    Factor H-binding protein (fHbp) is an important meningococcal vaccine antigen. Native outer membrane vesicles with over-expressed fHbp (NOMV OE fHbp) have been shown to induce antibodies with broader functional activity than recombinant fHbp (rfHbp). Improved understanding of this broad coverage would facilitate rational vaccine design. We performed a pair-wise analysis of 48 surface-exposed amino acids involved in interacting with factor H, among 383 fHbp variant group 1 sequences. We generated isogenic NOMV-producing meningococcal strains from an African serogroup W isolate, each over-expressing one of four fHbp variant group 1 sequences (ID 1, 5, 9, or 74), including those most common among invasive African meningococcal isolates. Mice were immunised with each NOMV, and sera tested for IgG levels against each of the rfHbp ID and for ability to kill a panel of heterologous meningococcal isolates. At the fH-binding site, ID pairs differed by a maximum of 13 (27%) amino acids. ID 9 shared an amino acid sequence common to 83 ID types. The selected ID types differed by up to 6 amino acids, in the fH-binding site. All NOMV and rfHbp induced high IgG levels against each rfHbp. Serum killing from mice immunised with rfHbp was generally less efficient and more restricted compared to NOMV, which induced antibodies that killed most meningococci tested, with decreased stringency for ID type differences. Breadth of killing was mostly due to anti-fHbp antibodies, with some restriction according to ID type sequence differences. Nevertheless, under our experimental conditions, no relationship between antibody cross-reactivity and variation fH-binding site sequence was identified. NOMV over-expressing different fHbp IDs belonging to variant group 1 induce antibodies with fine specificities against fHbp, and ability to kill broadly meningococci expressing heterologous fHbp IDs. The work reinforces that meningococcal NOMV with OE fHbp is a promising vaccine strategy, and provides

  1. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser.

    Science.gov (United States)

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie

    2015-07-01

    Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  2. Biobased Membrane

    NARCIS (Netherlands)

    Koenders, E.A.B.; Zlopasa, J.; Picken, S.J.

    2015-01-01

    The present invention is in the field of a composition for forming a bio-compatible membrane applicable to building material, such as concrete, cement, etc., to a meth od of applying said composition for forming a bio-compatible membrane, a biocompatible membrane, use of said membrane for various pu

  3. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  4. Adaptive scheduling of batch servers in flow shops

    NARCIS (Netherlands)

    van der Zee, D.J.

    2002-01-01

    Batch servicing is a common way of benefiting from economies of scale in manufacturing operations. Good examples of production systems that allow for batch processing are ovens found in the aircraft industry and in semiconductor manufacturing. In this paper we study the issue of dynamic scheduling o

  5. Genetic algorithm for short-term scheduling of make-and-pack batch production process

    Institute of Scientific and Technical Information of China (English)

    Wuthichai Wongthatsanekorn; Busaba Phruksaphanrat

    2015-01-01

    This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy al constraints while meeting demand requirement of packed products from various product fam-ilies. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore, we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromo-somes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to de-termine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for com-parison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, al heuristics show the capability to solve large instances within reason-able computational time. In al problem instances, genetic algorithm averagely outperforms ant colony optimiza-tion and Tabu search with slightly longer computational time.

  6. Dynamic Simulation of Batch Photocatalytic Reactor (BPR) for Wastewater Treatment

    Science.gov (United States)

    Dutta, Suman

    2012-08-01

    Reactive dyes discharged from dyehouse causes a serious environmental problem. UV/TiO2 photocatalysis has been employed effectively for these organic dyes removal from dye-house effluent. This process produces less amount of non-toxic final product. In this paper a photocatalytic reactor has been designed for Reactive red 198 (RR198) removal from aqueous solution. The reactor is operating in batch mode. After each batch, TiO2 catalyst has been separated and recycled in the next batch. Mathematical model equation of this batch photocatalytic reactor (BPR) has been developed considering Langmuir-Hinshelwood kinetics. Simulation of BPR has been carried out using fourth order Runge-Kutta (RK) method and fifth order RK method (Butcher method). This simulation results can be used to develop an automatic photocatlytic reactor for industrial wastewater treatment. Catalyst activity decay and its effect on each batch have been incorporated in this model.

  7. A canned food scheduling problem with batch due date

    Science.gov (United States)

    Chung, Tsui-Ping; Liao, Ching-Jong; Smith, Milton

    2014-09-01

    This article considers a canned food scheduling problem where jobs are grouped into several batches. Jobs can be sent to the next operation only when all the jobs in the same batch have finished their processing, i.e. jobs in a batch, have a common due date. This batch due date problem is quite common in canned food factories, but there is no efficient heuristic to solve the problem. The problem can be formulated as an identical parallel machine problem with batch due date to minimize the total tardiness. Since the problem is NP hard, two heuristics are proposed to find the near-optimal solution. Computational results comparing the effectiveness and efficiency of the two proposed heuristics with an existing heuristic are reported and discussed.

  8. On the track of fish batches in three distribution networks

    DEFF Research Database (Denmark)

    Randrup, Maria; Wu, Haiping; Jørgensen, Bo M.

    2012-01-01

    Three fish products sampled in retail shops were traced back to their origin and fish from the same batch were tracked forward towards the retailer, thereby simulating a recall situation. The resulting distribution networks were very complex, but to the extent that companies were willing to provide...... the necessary information, it was possible to locate the end destinations of the fish batches. The batch sizes and the number of companies involved clearly rose when batch joining occurred. Thus, a fault in a small batch can potentially have widespread implications. The study also underlines the importance...... of discovering a fault as early as possible in order to minimise the costs of a recall. The localisation of distributed products during a recall operation can be facilitated by a well-constructed traceability system....

  9. Batch Delivery Scheduling with Multiple Decentralized Manufacturers

    Directory of Open Access Journals (Sweden)

    Shi Li

    2014-01-01

    Full Text Available This paper addresses an integrated decision on production scheduling and delivery operations, which is one of the most important issues in supply chain scheduling. We study a model in which a set of jobs ordered by only one customer and a set of decentralized manufacturers located at different locations are considered. Specifically, each job must be assigned to one of the decentralized manufacturers to process on its single machine facility. Then, the job is delivered to the customer directly in batch without intermediate inventory. The objective is to find a joint schedule of production and distribution to optimize the customer service level and delivery cost. In our work, we discuss this problem considering two different situations in terms of the customer service level. In the first one, the customer service is measured by the maximum arrival time, while the customer service is measured by the total arrival time in the second one. For each situation, we develop a dynamic programming algorithm to solve, respectively. Moreover, we identify a special case for the latter situation by introducing its corresponding solutions.

  10. Biodegradability of industrial textile wastewater - batch tests.

    Science.gov (United States)

    Paździor, Katarzyna; Klepacz-Smółka, Anna; Wrębiak, Julita; Liwarska-Bizukojć, Ewa; Ledakowicz, Stanisław

    Following new trends we applied oxygen uptake rate (OUR) tests as well as long-term tests (in two batch bioreactors systems) in order to assess the biodegradability of textile wastewater. Effluents coming from a dyeing factory were divided into two streams which differed in inorganic and organic contaminants loads. Usefulness of the stream division was proved. Biodegradation of the low-loaded stream led to over 97% reduction of biochemical oxygen demand (BOD5) together with 80% reduction of chemical oxygen demand (COD) and total organic carbon (TOC). Most of the controlled parameter values were below the levels allowed by legislation for influents to surface water, whereas the high-loaded stream was so contaminated with recalcitrant organic compounds that despite the reduction of BOD5 by over 95%, COD, TOC, total nitrogen and total phosphorus levels exceeded permissible values. OUR tests were aimed at determination of the following kinetic parameters: maximum specific growth rate (μMax), half-saturation constant, hydrolysis constant and decay coefficient for activated sludge biomass for both types of textile wastewater studied. The values of kinetic parameters will be applied in activated sludge models used for prediction and optimisation of biological treatment of textile wastewater.

  11. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Beyer, Michael; Nielsen, Jens

    2000-01-01

    The Aspergillus niger strain BO-1 was grown in batch, continuous (chemostat) and fed-batch cultivations in order to study the production of the extracellular enzyme glucoamylase under different growth conditions. In the pH range 2.5-6.0, the specific glucoamylase productivity and the specific gro...

  12. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi

    2012-03-01

    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.