WorldWideScience

Sample records for membrane charge movement

  1. Introducing Membrane Charge and Membrane Potential to T Cell Signaling

    Directory of Open Access Journals (Sweden)

    Yuanqing Ma

    2017-11-01

    Full Text Available While membrane models now include the heterogeneous distribution of lipids, the impact of membrane charges on regulating the association of proteins with the plasma membrane is often overlooked. Charged lipids are asymmetrically distributed between the two leaflets of the plasma membrane, resulting in the inner leaflet being negatively charged and a surface potential that attracts and binds positively charged ions, proteins, and peptide motifs. These interactions not only create a transmembrane potential but they can also facilitate the formation of charged membrane domains. Here, we reference fields outside of immunology in which consequences of membrane charge are better characterized to highlight important mechanisms. We then focus on T cell receptor (TCR signaling, reviewing the evidence that membrane charges and membrane-associated calcium regulate phosphorylation of the TCR–CD3 complex and discuss how the immunological synapse exhibits distinct patterns of membrane charge distribution. We propose that charged lipids, ions in solution, and transient protein interactions form a dynamic equilibrium during T cell activation.

  2. The effects of tetracaine on charge movement in fast twitch rat skeletal muscle fibres.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W; Robson, E

    1990-02-01

    1. The effects of tetracaine, a local anaesthetic that inhibits muscle contraction, on membrane potential and intramembrane charge movements were investigated in fast twitch rat muscle fibres (extensor digitorum longus). 2. The resting membrane potentials of surface fibres from muscles bathed in isotonic Ringer solution containing 2 mM-tetracaine were well maintained, but higher concentrations of tetracaine caused a time-dependent fall of potential. Muscle fibres bathed in hypertonic solutions containing 2 mM-tetracaine were rapidly depolarized. In both isotonic and hypertonic solutions, the depolarizing effect of tetracaine could not be reversed. 3. Charge movement measurements were made using the middle-of-the-fibre voltage clamp technique. The voltage dependence of charge movements measured in cold isotonic solutions was well fitted by a Boltzmann distribution (Q(V) = Qmax/(1 + exp(-(V-V)/k] where Qmax = 37.3 +/- 2.8 nC muF-1, V = -17.9 +/- 1.2 mV and k = 12.6 +/- 0.8 mV (n = 6, 2 degrees C; means +/- S.E. of means). Similar values were obtained when 2 mM-tetracaine was added to the isotonic bathing fluid (Qmax = 40.6 +/- 2.3 nC microF-1, V = -14.1 +/- 1.3 mV, k = 15.3 +/- 0.8 mV; n = 8, 2 degrees C). 4. Charge movements measured around mechanical threshold in muscle fibres bathed in hypertonic solutions were reduced when 2 mM-tetracaine was added to the bathing fluid. The tetracaine-sensitive component of charge was well fitted with an unconstrained Boltzmann distribution which gave: Qmax = 7.5 nC microF-1, V = -46.5 mV, k = 5.5 mV. The e-fold rise of the foot of the curve was 9.3 mV.

  3. Ionic currents and charge movements in organ-cultured rat skeletal muscle.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W; Robson, E

    1984-12-01

    The middle of the fibre voltage-clamp technique was used to measure ionic currents and non-linear charge movements in intact, organ-cultured (in vitro denervated) mammalian fast-twitch (rat extensor digitorum longus) muscle fibres. Muscle fibres organ cultured for 4 days can be used as electrophysiological and morphological models for muscles in vivo denervated for the same length of time. Sodium currents in organ-cultured muscle fibres are similar to innervated fibres except that in the temperature range 0-20 degrees C (a) in the steady state, the voltage distribution of inactivation in cultured fibres is shifted negatively some 20 mV; (b) at the same temperature and membrane potential, the time constant of inactivation in cultured fibres is about twice that of innervated fibres. Potassium currents in innervated and cultured fibres at 15 degrees C can be fitted with the Hodgkin-Huxley n variable raised to the second power. Despite the large range we would estimate that the maximum value of the steady-state potassium conductance of cultured fibres is about one-half that of innervated fibres. The estimated maximum amount of charge moved in cultured fibre is about one-third that in innervated fibres. Compared to innervated fibres, culturing doubles the kinetics of the decay phase of charge movement. The possibility of a negative shift of the voltage distribution of charge movements in cultured fibres is discussed.

  4. An Investigation of Low Biofouling Copper-charged Membranes

    Science.gov (United States)

    Asapu, Sunitha

    Water is essential for the survival of life on Earth, but pollutants in water can cause dangerous diseases and fatalities. The need for purified water has been increasing with increasing world population; however, natural sources of water such as rivers, lakes and streams, are progressively falling shorter and shorter of meeting water needs. The provision of clean, drinkable water to people is a key factor for the development of novel and alternative water purification technologies, such as membrane separations. Nanofiltration (NF) is a membrane separations technology that purifies water from lower quality sources, such as brackish water, seawater and wastewater. During the filtration of such sources, materials that are rejected by the membrane may accumulate on the surface of the membrane to foul it. Such materials include organic and inorganic matter, colloids, salts and microorganisms. The former four can often be controlled via pretreatment; however, the accumulation of microorganisms is more problematic to membranes. Biofouling is the accumulation and growth of microorganisms on the surface of membranes and on feed spacers. After attachment, microorganisms excrete extracellular polymeric substances (EPS), which form a matrix around the organism's outer surface as biofilm. These biofilms are detrimental and result in irreversible membrane fouling. Copper and silver ions inactivate the bacterial cells and prevent the DNA replication in microbial cells. Previous studies using copper-charged feed spacers have shown the ability of copper to control biofouling without a significant amount of copper leaching from copper-charged polypropylene (PP) feed spacers during crossflow filtration. Also, filtration using unmodified speed facers experienced almost 70% flux decline, while filtration using copper-charged feed spacers displayed only 25% flux decline. These intriguing results led to the hypothesis that the polymer chemistry could be extrapolated to produce membranes

  5. Novel use of positively charged nylon transfer membranes for trapping indoleacetic acid or other small anions during efflux from plant tissues

    Science.gov (United States)

    Evans, M. L.; Hangarter, R. P.

    1993-01-01

    Positively charged nylon blotting membranes were used as an anion binding medium to trap [14C]indoleactic acid (IAA) as it exited cells at the basal ends of Coleus blumei L. stem and Zea mays L. coleoptile segments. Autoradiography was used to visualize where the [14C] that moved out of the cut ends was localized on the nylon membrane. Diffusion of [14C]IAA from the initial point of contact with the nylon membrane was minimal. Comparison of the autoradiograms with anatomical tissue prints of the cut ends of the segments was used to determine what tissues participate in IAA movement. The results of these initial studies were consistent with other reports suggesting that [14C]IAA movement was primarily associated with vascular tissues in both C. blumei stems and corn coleoptiles, but the resolution was not sufficient to identify which vascular tissues were involved in IAA transport. With further refinements, this technique could also be used for studying the movement of other small charged molecules through plant tissues.

  6. Long-range interaction between heterogeneously charged membranes.

    Science.gov (United States)

    Jho, Y S; Brewster, R; Safran, S A; Pincus, P A

    2011-04-19

    Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the electrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased. © 2011 American Chemical Society

  7. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto

    2012-02-01

    Surface charge plays an important role in membrane-based separations of particulates, macromolecules, and dissolved ionic species. In this study, we present two experimental methods to determine the concentration of negatively charged functional groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact with the membrane functional groups via complexation and electrostatic interaction, respectively, were used as probes. The amount of associated probes was quantified using liquid scintillation counting for uranium atoms and visible light spectroscopy for the toluidine blue dye. The techniques were validated using self-assembled monolayers of alkanethiols with known amounts of charged moieties. The surface density of negatively charged functional groups of hand-cast thin-film composite polyamide membranes, as well as commercial cellulose triacetate and polyamide membranes, was quantified under various conditions. Using both techniques, we measured a negatively charged functional group density of 20-30nm -2 for the hand-cast thin-film composite membranes. The ionization behavior of the membrane functional groups, determined from measurements with toluidine blue at varying pH, was consistent with published data for thin-film composite polyamide membranes. Similarly, the measured charge densities on commercial membranes were in general agreement with previous investigations. The relative simplicity of the two methods makes them a useful tool for quantifying the surface charge concentration of a variety of surfaces, including separation membranes. © 2011 Elsevier B.V.

  8. Charge movement and depolarization-contraction coupling in arthropod vs. vertebrate skeletal muscle.

    OpenAIRE

    Scheuer, T; Gilly, W F

    1986-01-01

    Voltage-dependent charge movement has been characterized in arthropod skeletal muscle. Charge movement in scorpion (Centuroides sculpturatus) muscle is distinguishable from that in vertebrate skeletal muscle by criteria of kinetics, voltage dependence, and pharmacology. The function of scorpion charge movement is gating of calcium channels in the sarcolemma, and depolarization-contraction coupling relies on calcium influx through these channels.

  9. Surface charges promote nonspecific nanoparticle adhesion to stiffer membranes

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Sachar, Harnoor Singh; Das, Siddhartha

    2018-04-01

    This letter establishes the manner in which the electric double layer induced by the surface charges of the plasma membrane (PM) enhances the nonspecific adhesion (NSA) of a metal nanoparticle (NP) to stiffer PMs (i.e., PMs with larger bending moduli). The NSA is characterized by the physical attachment of the NP to the membrane and occurs when the decrease in the surface energy (or any other mechanism) associated with the attachment process provides the energy for bending the membrane. Such an attachment does not involve receptor-ligand interactions that characterize the specific membrane-NP adhesion. Here, we demonstrate that a significant decrease in the electrostatic energy caused by the NP-attachment-induced destruction of the charged-membrane-electrolyte interface is responsible for providing the additional energy needed for bending the membrane during the NP adhesion to stiffer membranes. A smaller salt concentration and a larger membrane charge density augment this effect, which can help to design drug delivery to cells with stiffer membranes due to pathological conditions, fabricate NPs with biomimetic cholesterol-rich lipid bilayer encapsulation, etc.

  10. Quantification of retinal tangential movement in epiretinal membranes

    DEFF Research Database (Denmark)

    Kofod, Mads; la Cour, Morten

    2012-01-01

    To describe a technique of quantifying retinal vessel movement in eyes with epiretinal membrane (ERM) and correlate the retinal vessel movement with changes in best-corrected visual acuity (BCVA), central macular thickness (CMT), and patients' subjective reports about experienced symptoms (sympto...

  11. The Effect of Voltage Charging on the Transport Properties of Gold Nanotube Membranes.

    Science.gov (United States)

    Experton, Juliette; Martin, Charles R

    2018-05-01

    Porous membranes are used in chemical separations and in many electrochemical processes and devices. Research on the transport properties of a unique class of porous membranes that contain monodisperse gold nanotubes traversing the entire membrane thickness is reviewed here. These gold nanotubes can act as conduits for ionic and molecular transports through the membrane. Because the tubes are electronically conductive, they can be electrochemically charged by applying a voltage to the membrane. How this "voltage charging" affects the transport properties of gold nanotube membranes is the subject of this Review. Experiments showing that voltage charging can be used to reversibly switch the membrane between ideally cation- and anion-transporting states are reviewed. Voltage charging can also be used to enhance the ionic conductivity of gold nanotube membranes. Finally, voltage charging to accomplish electroporation of living bacteria as they pass through gold nanotube membranes is reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Positive zeta potential of a negatively charged semi-permeable plasma membrane

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha

    2017-08-01

    The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.

  13. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin

    2016-07-25

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR), and acid yellow 36 (AY) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane–dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye–dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment.

  14. Quantum charged rigid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Zacatecas Zac. (Mexico); Rojas, Efrain, E-mail: cordero@esfm.ipn.mx, E-mail: amolgado@fisica.uaz.edu.mx, E-mail: efrojas@uv.mx [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2011-03-21

    The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.

  15. Quantum charged rigid membrane

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2011-01-01

    The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.

  16. Holographic QCD with topologically charged domain-wall/membranes

    International Nuclear Information System (INIS)

    Lin Fengli; Wu Shangyu

    2008-01-01

    We study the thermodynamical phase structures of holographic QCD with nontrivial topologically charged domain-wall/membranes which are originally related to the multiple θ-vacua in the large N c limit. We realize the topologically charged membranes as the holographic D6-brane fluxes in the Sakai-Sugimoto model. The D6-brane fluxes couple to the probe D8-D8-bar via Chern-Simon term, and act as the source for the baryonic current density of QCD. We find rich phase structures of the dual meson system by varying asymptotic separation of D8 and D8-bar. Especially, there can be a thermodynamically favored and stable phase of finite baryonic current density. This provides the supporting evidence for the discovery of the topologically charged membranes found in the lattice QCD calculations. We also find a crossover phase with the limiting baryonic current density and temperature which suggest a Hagedorn-like phase transition of meson dissociation.

  17. Charge movements and transverse tubular ultrastructure in organ cultured skeletal muscle.

    Science.gov (United States)

    Cullen, M J; Hollingworth, S; Marshall, M W; Robson, E

    1990-04-01

    A study was made of charge movements and the transverse tubular systems in rat EDL and soleus muscle fibres maintained for up to five days in organ culture. In the cultured EDL muscle the maximum amount of charge moved was about one third of that in innervated muscle. Charge movements in innervated soleus fibres are small, less than 10 nC/microF, and difficult to resolve. They remain small following organ culturing. The ultrastructural study examined the concentration of junctional feet because of their proposed key role in excitation-contraction coupling. The general architecture of the triads and the spacing of the feet in both muscle types was largely unchanged by culturing. In cultured EDL muscles the small changes in feet concentration did not parallel the large fall in charge movement. The results reported here support a previous conclusion that, in mammalian muscle, there is not a simple relation between charge and feet. The stimulation of cultured soleus muscles with a fast twitch pattern of electrical activity produced no observable changes in morphology.

  18. Ion Transport through Diffusion Layer Controlled by Charge Mosaic Membrane

    Directory of Open Access Journals (Sweden)

    Akira Yamauchi

    2012-01-01

    Full Text Available The kinetic transport behaviors in near interface of the membranes were studied using commercial anion and cation exchange membrane and charge mosaic membrane. Current-voltage curve gave the limiting current density that indicates the ceiling of conventional flux. From chronopotentiometry above the limiting current density, the transition time was estimated. The thickness of boundary layer was derived with conjunction with the conventional limiting current density and the transition time from steady state flux. On the other hand, the charge mosaic membrane was introduced in order to examine the ion transport on the membrane surface in detail. The concentration profile was discussed by the kinetic transport number with regard to the water dissociation (splitting on the membrane surface.

  19. Electrolytic charge inversion at the liquid-solid interface in a nanopore in a doped semiconductor membrane

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, Maria E [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Leburton, Jean-Pierre [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2007-04-11

    The electrostatics of a nanopore in a doped semiconductor membrane immersed in an electrolyte is studied with a numerical model. Unlike dielectric membranes that always attract excess positive ion charges at the electrolyte/membrane interface whenever a negative surface charge is present, semiconductor membranes exhibit more versatility in controlling the double layer at the membrane surface. The presence of dopant charge in the semiconductor membrane, the shape of the nanopore and the negative surface charge resulting from the pore fabrication process have competing influences on the double layer formation. The inversion of the electrolyte surface charge from negative to positive is observed for n-Si membranes as a function of the membrane surface charge density, while no such inversion occurs for dielectric and p-Si membranes.

  20. Combined effect of salt concentration and pressure gradients across charged membranes

    DEFF Research Database (Denmark)

    Benavente, Juana; Jonsson, Gunnar Eigil

    2002-01-01

    The combined effect of both concentration and pressure differences on electrical potential (Deltaphi) for two ion-exchanger membranes, one positively charged (AE) and another negatively charged (CE), measured with the membranes in contact with NaCl solutions was studied. Results show a linear dep...

  1. Deposition of Aerosol Particles in Electrically Charged Membrane Filters

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, L

    1972-05-15

    A theory for the influence of electric charge on particle deposition on the surface of charged filters has been developed. It has been tested experimentally on ordinary membrane filters and Nuclepore filters of 8 mum pore size, with a bipolar monodisperse test aerosol of 1 mum particle diameter, and at a filter charge up to 20 muC/m2. Agreement with theory was obtained for the Coulomb force between filter and particle for both kinds of filters. The image force between charged filter and neutral particles did not result in the predicted deposition in the ordinary membrane filter, probably due to lacking correspondence between the filter model employed for the theory, and the real filter. For the Nuclepore filter a satisfactory agreement with theory was obtained, also at image interaction

  2. Role of charged lipids in membrane structures — Insight given by simulations

    DEFF Research Database (Denmark)

    Pöyry, Sanja; Vattulainen, Ilpo

    2016-01-01

    Lipids and proteins are the main components of cell membranes. It is becoming increasingly clear that lipids, in addition to providing an environment for proteins to work in, are in many cases also able to modulate the structure and function of those proteins. Particularly charged lipids...... to fruitful directions. In this paper, we review studies that have utilized molecular dynamics simulations to unravel the roles of charged lipids in membrane structures. We focus on lipids as active constituents of the membranes, affecting both general membrane properties as well as non-lipid membrane...

  3. Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores.

    Science.gov (United States)

    Ryzhkov, I I; Lebedev, D V; Solodovnichenko, V S; Shiverskiy, A V; Simunin, M M

    2017-12-01

    When a charged membrane separates two salt solutions of different concentrations, a potential difference appears due to interfacial Donnan equilibrium and the diffusion junction. Here, we report a new mechanism for the generation of a membrane potential in polarizable conductive membranes via an induced surface charge. It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space-charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and NaCl aqueous solutions.

  4. [A probability wave theory on the ion movement across cell membrane].

    Science.gov (United States)

    Zhang, Hui; Xu, Jiadong; Niu, Zhongqi

    2007-04-01

    The ionic quantity across the channel of the cell membrane decides the cell in a certain life state. The theory analysis that existed on the bio-effects of the electro-magnetic field (EMF) does not unveil the relationship between the EMF exerted on the cell and the ionic quantity across the cell membrane. Based on the cell construction, the existed theory analysis and the experimental results, an ionic probability wave theory is proposed in this paper to explain the biological window-effects of the electromagnetic wave. The theory regards the membrane channel as the periodic potential barrier and gives the physical view of the ion movement across cell-membrane. The theory revises the relationship between ion's energy in cell channel and the frequency exerted EMF. After the application of the concept of the wave function, the ionic probability across the cell membrane is given by the method of the quantum mechanics. The numerical results analyze the physical factors that influences the ion's movement across the cell membrane. These results show that the theory can explain the phenomenon of the biological window-effects.

  5. Critical Structure for Telescopic Movement of Honey bee (Insecta: Apidae) Abdomen: Folded Intersegmental Membrane.

    Science.gov (United States)

    Zhao, Jieliang; Yan, Shaoze; Wu, Jianing

    2016-01-01

    The folded intersegmental membrane is a structure that interconnects two adjacent abdominal segments; this structure is distributed in the segments of the honey bee abdomen. The morphology of the folded intersegmental membrane has already been documented. However, the ultrastructure of the intersegmental membrane and its assistive role in the telescopic movements of the honey bee abdomen are poorly understood. To explore the morphology and ultrastructure of the folded intersegmental membrane in the honey bee abdomen, frozen sections were analyzed under a scanning electron microscope. The intersegmental membrane between two adjacent terga has a Z-S configuration that greatly influences the daily physical activities of the honey bee abdomen. The dorsal intersegmental membrane is 2 times thicker than the ventral one, leading to asymmetric abdominal motion. Honey bee abdominal movements were recorded using a high-speed camera and through phase-contrast computed tomography. These movements conformed to the structural features of the folded intersegmental membrane. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  6. Temperature dependence of positronium reactivities with charge transfer molecules in bilayer membranes

    International Nuclear Information System (INIS)

    Jean, Y.C.; Yu, C.; Wang, Y.Y.; Yeh, Y.Y.

    1984-01-01

    Rate constants for positronium atoms reacting chemically with charge-transfer molecules such as p-benzoquinone, nitrobenzene, and coenzyme Q-10 in a model bilayer membrane, dipalmitoylphosphatidylcholine (DPPC), have been measured at temperatures between 23 and 65 0 C. A strong variation of the positronium chemical reactivities, k/sub Ps/ was observed in these systems: k/sub Ps/ increases with increasing temperature until the pretransition temperature of the membrane reaches a maximum value near the main transition temperature and decreases at temperatures higher than the main transition temperature. This variation is interpreted in terms of fluidity and permeability changes associated with the phase transitions of membranes and in terms of charge-transfer-complex formation between the solubilized molecules and the polar head of the membrane. These results demonstrate that positronium and its annihilation characteristics can be employed to investigate charge transport phenomena and microstructural changes of real biological membranes

  7. Selective Acylation Enhances Membrane Charge Sensitivity of the Antimicrobial Peptide Mastoparan-X

    DEFF Research Database (Denmark)

    Etzerodt, Thomas Povl; Henriksen, Jonas Rosager; Rasmussen, Palle

    2011-01-01

    and positioning of the peptide in the membrane caused by either PA or OA acylation play a critical role in the fine-tuning of the effective charge of the peptide and thereby the fine-tuning of the peptide's selectivity between neutral and negatively charged lipid membranes. This finding is unique compared...... to previous reports where peptide acylation enhanced membrane affinity but also resulted in impaired selectivity. Our result may provide a method of enhancing selectivity of antimicrobial peptides toward bacterial membranes due to their high negative charge—a finding that should be investigated for other...

  8. Role of plasma membrane surface charges in dictating the feasibility of membrane-nanoparticle interactions

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Sachar, Harnoor Singh; Das, Siddhartha

    2017-12-01

    Receptor-ligand (R-L) binding mediated interactions between the plasma membrane (PM) and a nanoparticle (NP) require the ligand-functionalized NPs to come to a distance of separation (DOS) of at least dRL (length of the R-L complex) from the receptor-bearing membranes. In this letter, we establish that the membrane surface charges and the surrounding ionic environment dictate whether or not the attainment of such a critical DOS is possible. The negatively charged membrane invariably induces a negative electrostatic potential at the NP surface, repelling the NP from the membrane. This is countered by the attractive influences of the thermal fluctuations and van der Waals (vdw) interactions that drive the NP close to the membrane. For a NP approaching the membrane from a distance, the ratio of the repulsive (electrostatic) and attractive (thermal and vdW) effects balances at a critical NP-membrane DOS of dg,c. For a given set of parameters, there can be two possible values of dg,c, namely, dg,c,1 and dg,c,2 with dg,c,1 ≫ dg,c,2. We establish that any R-L mediated NP-membrane interaction is possible only if dRL > dg,c,1. Therefore, our study proposes a design criterion for engineering ligands for a NP that will ensure the appropriate length of the R-L complex in order to ensure the successful membrane-NP interaction in the presence of a given electrostatic environment. Finally, we discuss the manner in which our theory can help designing ligand-grafted NPs for targeted drug delivery, design biomimetics NPs, and also explain various experimental results.

  9. The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes

    Science.gov (United States)

    Peiró, Ana; Martínez-Gil, Luis; Tamborero, Silvia; Pallás, Vicente

    2014-01-01

    ABSTRACT Plant positive-strand RNA viruses require association with plant cell endomembranes for viral translation and replication, as well as for intra- and intercellular movement of the viral progeny. The membrane association and RNA binding of the Tobacco mosaic virus (TMV) movement protein (MP) are vital for orchestrating the macromolecular network required for virus movement. A previously proposed topological model suggests that TMV MP is an integral membrane protein with two putative α-helical transmembrane (TM) segments. Here we tested this model using an experimental system that measured the efficiency with which natural polypeptide segments were inserted into the ER membrane under conditions approximating the in vivo situation, as well as in planta. Our results demonstrated that the two hydrophobic regions (HRs) of TMV MP do not span biological membranes. We further found that mutations to alter the hydrophobicity of the first HR modified membrane association and precluded virus movement. We propose a topological model in which the TMV MP HRs intimately associate with the cellular membranes, allowing maximum exposure of the hydrophilic domains of the MP to the cytoplasmic cellular components. IMPORTANCE To facilitate plant viral infection and spread, viruses encode one or more movement proteins (MPs) that interact with ER membranes. The present work investigated the membrane association of the 30K MP of Tobacco mosaic virus (TMV), and the results challenge the previous topological model, which predicted that the TMV MP behaves as an integral membrane protein. The current data provide greatly needed clarification of the topological model and provide substantial evidence that TMV MP is membrane associated only at the cytoplasmic face of the membrane and that neither of its domains is integrated into the membrane or translocated into the lumen. Understanding the topology of MPs in the ER is vital for understanding the role of the ER in plant virus transport

  10. A comparative study of charge movement in rat and frog skeletal muscle fibres.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W

    1981-12-01

    1. The middle of the fibre voltage--clamp technique (Adrian & Marshall, 1977), modified where necessary for electrically short muscle fibres, has been used to measure non-linear charge movements in mammalian fast twitch (rat extensor digitorum longus), mammalian slow twitch (rat soleus) and frog (sartorius) muscles. 2. The maximum amount of charge moved in mammalian fast twitch muscle at 2 degrees C in hypertonic solution, was 3--5 times greater than in slow twitch muscle. The voltage distribution of fast twitch charge was 10--15 mV more positive when compared to slow twitch. 3. In both mammalian muscle types hypertonic Ringer solution negatively shifted the voltage distribution of charge some 6 mV. The steepness of charge moved around mechanical threshold was unaffected by hypertonicity. 4. The amount of charge in frog sartorius fibres at 2 degrees C in hypertonic solution was about half of that in rat fast twitch muscle; the voltage distribution of the frog charge was similar to rat soleus muscle. 5. Warming between 2 and 15 degrees C had no effect on either the amount of steady-state distribution of charge in mammalian or frog muscles. 6. At 2 degrees C, the kinetics of charge movement in fast and slow twitch mammalian muscles were similar and 2--3 times faster than frog muscle at the same temperature. In fast and slow mammalian fibres at 2 degrees C similar times were taken to shift the same fractions of the total amount of charge. The Q10 of charge movement kinetics was between 1.2 and 2.0 in the three muscles studied.

  11. Influence of quantum dot labels on single molecule movement in the plasma membrane

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking results are very dependent on the probe that is used. In this study we have investigated the influence that functionalized quantum dots (QDs) have on the recorded movement in single molecule tracking experiments of plasma membrane species in live cells. Potential issues...... for simultaneous investigations of different plasma membrane species in order to discriminate the effect of the label from differences in movement of the target molecules....

  12. Positively charged microporous ceramic membrane for the removal of Titan Yellow through electrostatic adsorption.

    Science.gov (United States)

    Cheng, Xiuting; Li, Na; Zhu, Mengfu; Zhang, Lili; Deng, Yu; Deng, Cheng

    2016-06-01

    To develop a depth filter based on the electrostatic adsorption principle, positively charged microporous ceramic membrane was prepared from a diatomaceous earth ceramic membrane. The internal surface of the highly porous ceramic membrane was coated with uniformly distributed electropositive nano-Y2O3 coating. The dye removal performance was evaluated through pressurized filtration tests using Titan Yellow aqueous solution. It showed that positively charged microporous ceramic membrane exhibited a flow rate of 421L/(m(2)·hr) under the trans-membrane pressure of 0.03bar. Moreover it could effectively remove Titan Yellow with feed concentration of 10mg/L between pH3 to 8. The removal rate increased with the enhancement of the surface charge properties with a maximum rejection of 99.6%. This study provides a new and feasible method of removing organic dyes in wastewater. It is convinced that there will be a broad market for the application of charged ceramic membrane in the field of dye removal or recovery from industry wastewater. Copyright © 2016. Published by Elsevier B.V.

  13. Charge Movement in a Fast Twitch Skeletal Muscle from Rat

    OpenAIRE

    Simon, B. J.; Beam, K. G.

    1983-01-01

    Voltage-dependent charge movement in the rat omohyoid muscle was investigated using the three microelectrode voltage clamp technique. The charge that moved during a depolarization from the holding potential (-90 mV) to the test potential, V, increased with increasing V, saturating around 0 mV. The charge vs. voltage relationship was well fitted by Q = Qmax/{1 + exp[-(V - V)/k]}, with Qmax = 28.5 nC/μF, V = -34.2 mV, and k = 8.7 mV. Repolarization of the fiber from the test potential back to t...

  14. Monte Carlo simulations of the distributions of intra- and extra-vesicular ions and membrane associated charges in hybrid liposomes composed of negatively charged tetraether and zwitterionic diester phospholipids

    Directory of Open Access Journals (Sweden)

    István P. Sugár

    2017-04-01

    Full Text Available Here, we model a negatively charged lipid vesicle, composed of a mixture of bipolar tetraether and diester (or diether phospholipid molecules, by a spherical shell that has zero ion permeability. We take into consideration all the charge-charge interactions between intra-vesicular ions, extra-vesicular ions, and membrane lipid associated charges. Monte Carlo simulations result in homogeneous and double-exponential ion distribution, respectively, in the intra- and extra-vesicular space. The extra-vesicular ion concentration close to the membrane surface is proportional to the total amount of the membrane charges (Nm and is independent of the partitioning of the membrane charges between the outer (Nom and inner membrane (Nim surface. This result shows that one should not disregard the effect of the charges on the inner membrane surface when calculating the ion distributions around a charged vesicle. If the partitioning of the membrane charges is not restricted (i.e., lipid flip-flop is allowed, then at different Nm, the Nom/Nim ratio remains constant and the value of Nom/Nim, as a consequence of the interaction between every charges of the model, is close to, but significantly higher than, the ratio of the outer to the inner surface area of the membrane. These results indicate that the amount and the orientation of the negatively-charged tetraether lipids in the membrane are important determinants of membrane properties in tetraether/zwitterionic diester phospholipid liposomes. Finally we compared the results of our discrete charge model and continuous models based on the solutions of the Poisson-Boltzmann equation and pointed out qualitative similarities and sometimes major quantitative differences between these two types of models.

  15. Effects of pressure and electrical charge on macromolecular transport across bovine lens basement membrane.

    Science.gov (United States)

    Ferrell, Nicholas; Cameron, Kathleen O; Groszek, Joseph J; Hofmann, Christina L; Li, Lingyan; Smith, Ross A; Bian, Aihua; Shintani, Ayumi; Zydney, Andrew L; Fissell, William H

    2013-04-02

    Molecular transport through the basement membrane is important for a number of physiological functions, and dysregulation of basement membrane architecture can have serious pathological consequences. The structure-function relationships that govern molecular transport in basement membranes are not fully understood. The basement membrane from the lens capsule of the eye is a collagen IV-rich matrix that can easily be extracted and manipulated in vitro. As such, it provides a convenient model for studying the functional relationships that govern molecular transport in basement membranes. Here we investigate the effects of increased transmembrane pressure and solute electrical charge on the transport properties of the lens basement membrane (LBM) from the bovine eye. Pressure-permeability relationships in LBM transport were governed primarily by changes in diffusive and convective contributions to solute flux and not by pressure-dependent changes in intrinsic membrane properties. The solute electrical charge had a minimal but statistically significant effect on solute transport through the LBM that was opposite of the expected electrokinetic behavior. The observed transport characteristics of the LBM are discussed in the context of established membrane transport modeling and previous work on the effects of pressure and electrical charge in other basement membrane systems. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal.

    Science.gov (United States)

    Meng, Xian; Liu, Zhimeng; Deng, Cheng; Zhu, Mengfu; Wang, Deyin; Li, Kui; Deng, Yu; Jiang, Mingming

    2016-12-15

    A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Cationic membranes complexed with oppositely charged microtubules: hierarchical self-assembly leading to bio-nanotubes

    International Nuclear Information System (INIS)

    Raviv, Uri; Needleman, Daniel J; Safinya, Cyrus R

    2006-01-01

    The self-assembly of microtubules and charged membranes has been studied, using x-ray diffraction and electron microscopy. Polyelectrolyte lipid complexes usually form structures templated by the lipid phase, when the polyelectrolyte curvature is much larger than the membrane spontaneous curvature. When the polyelectrolyte curvature approaches the membrane spontaneous curvature, as in microtubules, two types of new structures emerge. Depending on the conditions, vesicles either adsorb onto the microtubule, forming a 'beads on a rod' structure, or coat the microtubule, which now forms the template. Tubulin oligomers then coat the external lipid layer, forming a lipid protein nanotube. The tubulin oligomer coverage at the external layer is determined by the membrane charge density. The energy barrier between the beads on a rod and the lipid-protein nanotube states depends on the membrane bending rigidity and membrane charge density. By controlling the lipid/tubulin stoichiometry we can switch between lipid-protein nanotubes with open ends to lipid-protein nanotubes with closed end with lipid cups. This forms the basis for controlled drug encapsulation and release

  18. Charge collection characteristics of a super-thin diamond membrane detector measured with high-energy heavy ions

    International Nuclear Information System (INIS)

    Iwamoto, N.; Makino, T.; Onoda, S.; Ohshima, T.; Kamiya, T.; Kada, W.; Skukan, N.; Grilj, V.; Jaksic, M.; Pomorski, M.

    2014-01-01

    A transmission particle detector based on a super-thin diamond membrane film which can also be used simultaneously as a vacuum window for ion beam extraction has been developed. Charge collection characteristics of a μ-thick diamond membrane detector for high-energy heavy ions including 75 MeV Ne, 150 MeV Ar, 322 MeV Kr, and 454 MeV Xe have been investigated for the first time. Charge collection signals under single particle flux from the thin part are stable and are well distinguishable from background signals. This behavior suggests that the diamond membrane detector could be used for counting single ions. On the other hand, charge collection efficiency is found to decrease with increasing of charge generated in the diamond membrane detector. This suggests that the pulse height defect, which has been previously reported for Si and SiC detectors, also occurs in the diamond membrane detector. (authors)

  19. Negatively Charged Hyperbranched Polyglycerol Grafted Membranes for Osmotic Power Generation from Municipal Wastewater

    KAUST Repository

    Li, Xue; Cai, Tao; Chen, Chunyan; Chung, Neal Tai-Shung

    2015-01-01

    Osmotic power holds great promise as a clean, sustainable and largely unexploited energy resource. Recent membrane development for pressure-retarded osmosis (PRO) is making the osmotic power generation more and more realistic. However, severe performance declines have been observed because the porous layer of PRO membranes is fouled by the feed stream. To overcome it, a negatively charged antifouling PRO hollow fiber membrane has been designed and studied in this work. An antifouling polymer, derived from hyperbranched polyglycerol and functionalized by α-lipoic acid and succinic anhydride, was synthesized and grafted onto the polydopamine (PDA) modified poly(ether sulfone) (PES) hollow fiber membranes. In comparison to unmodified membranes, the charged hyperbranched polyglycerol (CHPG) grafted membrane is much less affected by organic deposition, such as bovine serum albumin (BSA) adsorption, and highly resistant to microbial growths, demonstrated by E. coli adhesion and S. aureus attachment. CHPG-g-TFC was also examined in PRO tests using a concentrated wastewater as the feed. Comparing to the plain PES-TFC and non-charged HPG-g-TFC, the newly developed membrane exhibits not only the smallest decline in water flux but also the highest recovery rate. When using 0.81 M NaCl and wastewater as the feed pair in PRO tests at 15 bar, the average power density remains at 5.6 W/m2 in comparison to an average value of 3.6 W/m2 for unmodified membranes after four PRO runs. In summary, osmotic power generation may be sustained by properly designing and anchoring the functional polymers to PRO membranes.

  20. Negatively Charged Hyperbranched Polyglycerol Grafted Membranes for Osmotic Power Generation from Municipal Wastewater

    KAUST Repository

    Li, Xue

    2015-11-18

    Osmotic power holds great promise as a clean, sustainable and largely unexploited energy resource. Recent membrane development for pressure-retarded osmosis (PRO) is making the osmotic power generation more and more realistic. However, severe performance declines have been observed because the porous layer of PRO membranes is fouled by the feed stream. To overcome it, a negatively charged antifouling PRO hollow fiber membrane has been designed and studied in this work. An antifouling polymer, derived from hyperbranched polyglycerol and functionalized by α-lipoic acid and succinic anhydride, was synthesized and grafted onto the polydopamine (PDA) modified poly(ether sulfone) (PES) hollow fiber membranes. In comparison to unmodified membranes, the charged hyperbranched polyglycerol (CHPG) grafted membrane is much less affected by organic deposition, such as bovine serum albumin (BSA) adsorption, and highly resistant to microbial growths, demonstrated by E. coli adhesion and S. aureus attachment. CHPG-g-TFC was also examined in PRO tests using a concentrated wastewater as the feed. Comparing to the plain PES-TFC and non-charged HPG-g-TFC, the newly developed membrane exhibits not only the smallest decline in water flux but also the highest recovery rate. When using 0.81 M NaCl and wastewater as the feed pair in PRO tests at 15 bar, the average power density remains at 5.6 W/m2 in comparison to an average value of 3.6 W/m2 for unmodified membranes after four PRO runs. In summary, osmotic power generation may be sustained by properly designing and anchoring the functional polymers to PRO membranes.

  1. Electrochemical charging of the single-layer graphene membrane

    Czech Academy of Sciences Publication Activity Database

    Komínková, Zuzana; Kalbáč, Martin

    2016-01-01

    Roč. 253, č. 12 (2016), s. 2331-2335 ISSN 0370-1972 R&D Projects: GA MŠk LL1301; GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388955 Keywords : electrochemical charging * graphene membrane * in situ Raman spectroelectrochemistry Subject RIV: CG - Electrochemistry Impact factor: 1.674, year: 2016

  2. Negatively charged hyperbranched polyglycerol grafted membranes for osmotic power generation from municipal wastewater.

    Science.gov (United States)

    Li, Xue; Cai, Tao; Chen, Chunyan; Chung, Tai-Shung

    2016-02-01

    Osmotic power holds great promise as a clean, sustainable and largely unexploited energy resource. Recent membrane development for pressure-retarded osmosis (PRO) is making the osmotic power generation more and more realistic. However, severe performance declines have been observed because the porous layer of PRO membranes is fouled by the feed stream. To overcome it, a negatively charged antifouling PRO hollow fiber membrane has been designed and studied in this work. An antifouling polymer, derived from hyperbranched polyglycerol and functionalized by α-lipoic acid and succinic anhydride, was synthesized and grafted onto the polydopamine (PDA) modified poly(ether sulfone) (PES) hollow fiber membranes. In comparison to unmodified membranes, the charged hyperbranched polyglycerol (CHPG) grafted membrane is much less affected by organic deposition, such as bovine serum albumin (BSA) adsorption, and highly resistant to microbial growths, demonstrated by Escherichia coli adhesion and Staphylococcus aureus attachment. CHPG-g-TFC was also examined in PRO tests using a concentrated wastewater as the feed. Comparing to the plain PES-TFC and non-charged HPG-g-TFC, the newly developed membrane exhibits not only the smallest decline in water flux but also the highest recovery rate. When using 0.81 M NaCl and wastewater as the feed pair in PRO tests at 15 bar, the average power density remains at 5.6 W/m(2) in comparison to an average value of 3.6 W/m(2) for unmodified membranes after four PRO runs. In summary, osmotic power generation may be sustained by properly designing and anchoring the functional polymers to PRO membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes.

    Science.gov (United States)

    Szekely, Or; Steiner, Ariel; Szekely, Pablo; Amit, Einav; Asor, Roi; Tamburu, Carmen; Raviv, Uri

    2011-06-21

    In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M(-1). One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar

  4. Microgravity and Charge Transfer in the Neuronal Membrane: Implications for Computational Neurobiology

    Science.gov (United States)

    Wallace, Ron

    1995-01-01

    Evidence from natural and artificial membranes indicates that the neural membrane is a liquid crystal. A liquid-to-gel phase transition caused by the application of superposed electromagnetic fields to the outer membrane surface releases spin-correlated electron pairs which propagate through a charge transfer complex. The propagation generates Rydberg atoms in the lipid bilayer lattice. In the present model, charge density configurations in promoted orbitals interact as cellular automata and perform computations in Hilbert space. Due to the small binding energies of promoted orbitals, their automata are highly sensitive to microgravitational perturbations. It is proposed that spacetime is classical on the Rydberg scale, but formed of contiguous moving segments, each of which displays topological equivalence. This stochasticity is reflected in randomized Riemannian tensor values. Spacetime segments interact with charge automata as components of a computational process. At the termination of the algorithm, an orbital of high probability density is embedded in a more stabilized microscopic spacetime. This state permits the opening of an ion channel and the conversion of a quantum algorithm into a macroscopic frequency code.

  5. Inversion of membrane surface charge by trivalent cations probed with a cation-selective channel.

    Science.gov (United States)

    Gurnev, Philip A; Bezrukov, Sergey M

    2012-11-13

    We demonstrate that the cation-selective channel formed by gramicidin A can be used as a reliable sensor for studying the multivalent ion accumulation at the surfaces of charged lipid membranes and the "charge inversion" phenomenon. In asymmetrically charged membranes with the individual leaflets formed from pure negative and positive lipids bathed by 0.1 M CsCl solutions the channel exhibits current rectification, which is comparable to that of a typical n/p semiconductor diode. We show that even at these highly asymmetrical conditions the channel conductance can be satisfactorily described by the electrodiffusion equation in the constant field approximation but, due to predictable limitations, only when the applied voltages do not exceed 50 mV. Analysis of the changes in the voltage-dependent channel conductance upon addition of trivalent cations allows us to gauge their interactions with the membrane surface. The inversion of the sign of the effective surface charge takes place at the concentrations, which correlate with the cation size. Specifically, these concentrations are close to 0.05 mM for lanthanum, 0.25 mM for hexaamminecobalt, and 4 mM for spermidine.

  6. The effects of surface-charged submicron polystyrene particles on the structure and performance of PSF forward osmosis membrane

    Science.gov (United States)

    Zuo, Hao-Ran; Fu, Jia-Bei; Cao, Gui-Ping; Hu, Nian; Lu, Hui; Liu, Hui-Qing; Chen, Peng-Peng; Yu, Jie

    2018-04-01

    Monodisperse surface-charged submicron polystyrene particles were designed, synthesized, and blended into polysulfone (PSF) support layer to prepare forward osmosis (FO) membrane with high performance. The membrane incorporated with particles were characterized with respect to morphology, porosity, and internal osmotic pressure (IOP). Results showed that the polymer particles not only increased the hydrophilicity and porosity of support layer, but also generated considerable IOP, which helped markedly decreasing the structure parameter from 1550 to 670 μm. The measured mass transfer parameters further confirmed the beneficial effects of the surface-charged submicron polymer particles on the performance of FO membrane. For instance, the water permeability coefficient (5.37 L m-2 h-1 bar-1) and water flux (49.7 L m-2 h-1) of the FO membrane incorporated with 5 wt% particles were almost twice as much as that of FO membrane without incorporation. This study suggests that monodisperse surface-charged submicron polymer particles are potential modifiers for improving the performance of FO membranes.

  7. Electrostatically Driven Assembly of Charged Amphiphiles Forming Crystallized Membranes, Vesicles and Nanofiber Arrays

    Science.gov (United States)

    Leung, Cheuk Yui Curtis

    Charged amphiphilic molecules can self-assemble into a large variety of objects including membranes, vesicles and fibers. These micro to nano-scale structures have been drawing increasing attention due to their broad applications, especially in biotechnology and biomedicine. In this dissertation, three self-assembled systems were investigated: +3/-1 self-assembled catanionic membranes, +2/-1 self-assembled catanionic membranes and +1 self-assembled nanofibers. Transmission electron microscopy (TEM) combined with synchrotron small and wide angle x-ray scattering (SAXS and WAXS) were used to characterize the coassembled structures from the mesoscopic to nanometer scale. We designed a system of +3 and -1 ionic amphiphiles that coassemble into crystalline ionic bilayer vesicles with large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions can be controlled by varying pH. The molecular packing of these membranes showed a hexagonal to rectangular-C to hexagonal phase transition with increasing pH, resulting in significant changes to the membrane morphology. A similar mixture of +2 and -1 ionic amphiphiles was also investigated. In addition to varying pH, which controls the headgroup attractions, we also adjust the tail length of the amphiphiles to control the van der Waals interactions between the tails. A 2D phase diagram was developed to show how pH and tail length can be used to control the intermolecular packing within the membranes. Another system of self-assembled nanofiber network formed by positively charged amphiphiles was also studied. These highly charged fibers repel each other and are packed in hexagonal lattice with lattice constant at least eight times of the fiber diameter. The d-spacing and the crystal structure can be controlled by varying the solution concentration and temperature.

  8. Effect of reagent charge on the labeling of erythrocyte membrane proteins by photoactivated reagents

    International Nuclear Information System (INIS)

    Schaeffer, J.C.; Hakimian, R.; Shimer, M.L.

    1986-01-01

    Leaky erythrocyte ghosts were labeled with 3 H-[2-(4-azido-2-nitroanilino)ethyl]trimethylammonium iodide (cationic label) or 3 H-N-(4-azido-2-nitrophenyl)-β-alanine (anionic label). After the membranes were thoroughly washed, seven times as much cationic label was associated with the membranes as anionic label at 5 μM, whereas at 50 μM the cationic label was favored 15-fold. The distribution of label in the membrane proteins was ascertain by SDS-gel electrophoresis followed by autoradiography. At 50 μM cationic label, erythrocyte membrane protein bands 1,2,3,4.2, and 5 were intensely labeled, while band 6 was labeled weakly. At 5 μM cationic label, bands 1 and 4.2 were heavily labeled, while 2,3 and 5 were labeled less well. At both 50 μM and 5 μM anionic label, bands 1 and 6 were most prominently labeled. Bands 2,3,4.2 and 5 were labeled also at 50 μM, but they were labeled only very weakly at 5 μM. Band 4.1 was labeled very poorly if at all by either reagent. A mixture of the reagents gave an additive pattern. Thus, the charge and concentration of these reagents appear to play a major role in their ability to label membrane proteins indiscriminately. Because these reagents contain the same chromophore, 4-azido-2-nitroaniline, and differ mainly only in their charge, they may prove useful in assessing the location of charged sites on proteins in supramolecular complexes

  9. Development and use of thin film composite based positively charged nanofiltration membranes in separation of aqueous streams and nuclear effluents

    International Nuclear Information System (INIS)

    Dey, T.K.; Bindal, R.C.; Prabhakar, S.; Tewari, P.K.

    2010-01-01

    A new, positively charged, thin film composite (TFC) type nanofiltration membrane has been developed and studied for its use in various aqueous stream separations. The membrane, containing fixed quaternary ammonium moieties, was developed by insitu interfacial polymerization of a functionalized amine (polyethyleneimine) and terephthaloyl chloride on a suitable base membrane. The nature of the charge on the membrane was established by ATR FT IR spectroscopy and was estimated by determination of its ion exchange capacity. The membrane was tested for its performance in single solute feed systems containing salts of various combinations of univalent and bivalent ions (NaCl, Na 2 SO 4 , CaCl 2 and MgSO 4 ) in test cell as well as in 2512 spiral modules. The membrane gave differential separation profile for these solutes with high rejection for CaCl 2 and low rejection for Na 2 SO 4 due to positive charge on the membrane and the type of charge constituting the salts. The membrane was also used for separation of simulated effluent solution containing uranyl nitrate in combination with ammonium nitrate which is a common effluent generated in nuclear industry. Here also the membrane gave differential separation profile for uranyl nitrate and ammonium nitrate in their mixture by concentrating the former salt and passing the later. This helped separation of these two solutes in the mixture into two different streams. (author)

  10. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements

    DEFF Research Database (Denmark)

    Lundby, Alicia; Mutoh, Hiroki; Dimitrov, Dimitar

    2008-01-01

    Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development...

  11. A metal ion charged mixed matrix membrane for selective adsorption of hemoglobin

    NARCIS (Netherlands)

    Tetala, K.K.R.; Skrzypek, K.; Levisson, M.; Stamatialis, D.F.

    2013-01-01

    In this work, we developed a mixed matrix membrane by incorporating 20–40 µm size iminodiacetic acid modified immobeads within porous Ethylene vinyl alcohol (EVAL) polymer matrix. The MMM were charged with copper ions for selective adsorption of bovine hemoglobin in presence of bovine serum albumin.

  12. A metal ion charged mixed matrix membrane for selective adsorption of hemoglobin

    NARCIS (Netherlands)

    Tetala, K.K.R.; Skrzypek, Katarzyna; Levisson, M.; Stamatialis, Dimitrios

    2013-01-01

    In this work, we developed a mixed matrix membrane by incorporating 20–40 μm size iminodiacetic acid modified immobeads within porous Ethylene vinyl alcohol (EVAL) polymer matrix. The MMM were charged with copper ions for selective adsorption of bovine hemoglobin in presence of bovine serum albumin.

  13. From charge-mosaic to micelle self-assembly: Block copolymer membranes in the last 40 years

    KAUST Repository

    Nunes, Suzana Pereira; Car, Anja

    2013-01-01

    Different strategies for membrane preparation based on block copolymers are reviewed in this paper, starting from early papers on charge-mosaic membranes and following with dense membranes for gas separation for applications like CO2 separation, pervaporation of aqueous solutions containing organic pollutants, low-fouling surfaces and finally tailoring porous membranes with very sharp pore size distribution. The approaches for manufacture of nanoporous films are summarized, including etching and preferential dissolution. The advantages of a new process based on micelle assembly and phase inversion are emphasized, confirming its perspective of up-scale and application at large scale. © 2012 American Chemical Society.

  14. From charge-mosaic to micelle self-assembly: Block copolymer membranes in the last 40 years

    KAUST Repository

    Nunes, Suzana Pereira

    2013-01-23

    Different strategies for membrane preparation based on block copolymers are reviewed in this paper, starting from early papers on charge-mosaic membranes and following with dense membranes for gas separation for applications like CO2 separation, pervaporation of aqueous solutions containing organic pollutants, low-fouling surfaces and finally tailoring porous membranes with very sharp pore size distribution. The approaches for manufacture of nanoporous films are summarized, including etching and preferential dissolution. The advantages of a new process based on micelle assembly and phase inversion are emphasized, confirming its perspective of up-scale and application at large scale. © 2012 American Chemical Society.

  15. Bifunctionalized organic-inorganic charged nanocomposite membrane for pervaporation dehydration of ethanol.

    Science.gov (United States)

    Tripathi, Bijay P; Kumar, Mahendra; Saxena, Arunima; Shahi, Vinod K

    2010-06-01

    Chitosan was modified into N-p-carboxy benzyl chitosan (NCBC) by introducing an aromatic ring grafted with acidic -COOH group and highly stable and cross-linked nanostructured NCBC-silica composite membranes were prepared for pervaporation dehydration of water-ethanol mixture. These membranes were tailored to comprise three regions namely: hydrophobic region, highly charged region and selective region, in which weak acidic group (-COOH) was grafted at organic segment while strong acidic group (-SO(3)H) was grafted at inorganic segment to achieve high stability and less swelling in water-ethanol mixture. Cross-linking density and NCBC-silica content in membrane matrix has been systematically optimized to control the nanostructure of the developed polymer matrix for studying the effects of molecular structure on the swelling, and PV performance. Among prepared membranes, nanocomposite membrane with 3h cross-linking time and 90% (w/w) of NCBC-silica content (PCS-3-3) exhibited 1.66×10(-4)cm(3)(STP) cm/cm(2) s cmHg water permeability (P(W)), while 1.35×10(-7) cm(3)(STP) cm/cm(2) s cmHg ethanol permeability (P(EtOH)) of developed membrane and 1231 PV selectivity factor at 30 °C for separating water from 90% (w/w) ethanol mixture. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Proton migration along the membrane surface in the absence of charged or titratable groups

    International Nuclear Information System (INIS)

    Springer, A.

    2011-01-01

    Proton diffusion along membrane surfaces is thought to be essential for many cellular processes such as energy transduction. For example, proton diffusion along membrane surfaces is considered to be the dominant mechanism of proton exchange between membrane sites of high and low proton concentrations. For the investigation of this mechanism, kinetic experiments on proton diffusion are evaluated to determine the ability of lipid membranes to retain protons on their surfaces. Experiments on different lipid bilayer membranes (DPhPC, DPhPE and GMO) are performed under the influence of two types of mobile buffer molecules (Capso, NH4CL). During these experiments the surface diffusion of photolytically released protons is visualized in terms of fluorescence changes of a lipid bound pH-sensitive dye (DHPE +fluorescein). The protons under investigation are released by flash photolysis of a hydrophobic caged compound (DMCM, caged diethyl phosphate). The experimental data confirm the existence of an energy barrier, which prevents the protons from escaping into the bulk. So far this effect was attributed to the proton binding to titrateable groups (e.g. ethanolamine) or electrostatic forces created by charged moieties (e.g. phosphate groups) on the membrane/water interface. However, upon removal of the titrateable groups and charged moieties from the membrane surface, a significant energy barrier remained as indicated by the experiments with glycerol monooleate (GMO) bilayers. To estimate the size of the barrier a semi-analytical model is presented that describes the two and three dimensional proton diffusion and the related physical and chemical processes. Common models describe surface proton diffusion as a series of subsequent hopping processes between membrane-anchored buffer molecules. Our experiments provide evidence for an alternative model. We released membrane-bound caged protons by UV flashes and monitored their arrival at distant sites s by fluorescence

  17. Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes.

    Science.gov (United States)

    Ulvatne, H; Haukland, H H; Olsvik, O; Vorland, L H

    2001-03-09

    Antimicrobial peptides have been extensively studied in order to elucidate their mode of action. Most of these peptides have been shown to exert a bactericidal effect on the cytoplasmic membrane of bacteria. Lactoferricin is an antimicrobial peptide with a net positive charge and an amphipatic structure. In this study we examine the effect of bovine lactoferricin (lactoferricin B; Lfcin B) on bacterial membranes. We show that Lfcin B neither lyses bacteria, nor causes a major leakage from liposomes. Lfcin B depolarizes the membrane of susceptible bacteria, and induces fusion of negatively charged liposomes. Hence, Lfcin B may have additional targets responsible for the antibacterial effect.

  18. Numerical calculation on a two-step subdiffusion behavior of lateral protein movement in plasma membranes

    Science.gov (United States)

    Sumi, Tomonari; Okumoto, Atsushi; Goto, Hitoshi; Sekino, Hideo

    2017-10-01

    A two-step subdiffusion behavior of lateral movement of transmembrane proteins in plasma membranes has been observed by using single-molecule experiments. A nested double-compartment model where large compartments are divided into several smaller ones has been proposed in order to explain this observation. These compartments are considered to be delimited by membrane-skeleton "fences" and membrane-protein "pickets" bound to the fences. We perform numerical simulations of a master equation using a simple two-dimensional lattice model to investigate the heterogeneous diffusion dynamics behavior of transmembrane proteins within plasma membranes. We show that the experimentally observed two-step subdiffusion process can be described using fence and picket models combined with decreased local diffusivity of transmembrane proteins in the vicinity of the pickets. This allows us to explain the two-step subdiffusion behavior without explicitly introducing nested double compartments.

  19. Mapping the membrane-aqueous border for the voltage-sensing domain of a potassium channel.

    Science.gov (United States)

    Neale, Edward J; Rong, Honglin; Cockcroft, Christopher J; Sivaprasadarao, Asipu

    2007-12-28

    Voltage-sensing domains (VSDs) play diverse roles in biology. As integral components, they can detect changes in the membrane potential of a cell and couple these changes to activity of ion channels and enzymes. As independent proteins, homologues of the VSD can function as voltage-dependent proton channels. To sense voltage changes, the positively charged fourth transmembrane segment, S4, must move across the energetically unfavorable hydrophobic core of the bilayer, which presents a barrier to movement of both charged species and protons. To reduce the barrier to S4 movement, it has been suggested that aqueous crevices may penetrate the protein, reducing the extent of total movement. To investigate this hypothesis in a system containing fully functional channels in a native environment with an intact membrane potential, we have determined the contour of the membrane-aqueous border of the VSD of KvAP in Escherichia coli by examining the chemical accessibility of introduced cysteines. The results revealed the contour of the membrane-aqueous border of the VSD in its activated conformation. The water-inaccessible regions of S1 and S2 correspond to the standard width of the membrane bilayer (~28 A), but those of S3 and S4 are considerably shorter (> or = 40%), consistent with aqueous crevices pervading both the extracellular and intracellular ends. One face of S3b and the entire S3a were water-accessible, reducing the water-inaccessible region of S3 to just 10 residues, significantly shorter than for S4. The results suggest a key role for S3 in reducing the distance S4 needs to move to elicit gating.

  20. Electrokinetics of nanochannels and porous membranes with dynamic surface charges

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo

    . Notably, we find that the conductance minimum is mainly caused by hydronium ions, and in our case almost exclusively due to carbonic acid generated from the dissolution of CO2 from the atmosphere. We carry out delicate experiments and measure the conductance of silica nanochannels as a function...... and consider strong out-of-equilibrium transport across the membrane. Our model predicts large pH variations in the electrodialysis system that in turn lowers the ion-selectivity of the membrane by protonation reactions. This opens up for significant over-limiting current. We use our model to investigate...... procedure that requires much attention to the comparability between the conditions in the model and in the experiment. Finally, we make a small digression and study induced-charge electro-osmosis (ICEO) and the validity of common EO slip formulae as a function of a finite Debye screening length...

  1. Nanofiltration of Mine Water: Impact of Feed pH and Membrane Charge on Resource Recovery and Water Discharge

    Directory of Open Access Journals (Sweden)

    Mark Mullett

    2014-03-01

    Full Text Available Two nanofiltration membranes, a Dow NF 270 polyamide thin film and a TriSep TS 80 polyamide thin film, were investigated for their retention of ionic species when filtering mine influenced water streams at a range of acidic pH values. The functional iso-electric point of the membranes, characterized by changes in retention over a small pH range, were examined by filtering solutions of sodium sulphate. Both membranes showed changes in retention at pH 3, suggesting a zero net charge on the membranes at this pH. Copper mine drainage and synthetic solutions of mine influenced water were filtered using the same membranes. These solutions were characterized by pH values within 2 and 5, thus crossing the iso-electric point of both membranes. Retention of cations was maximized when the feed solution pH was less than the iso-electric point of the membrane. In these conditions, the membrane has a net positive charge, reducing the transmission rate of cations. From the recoveries of a range of cations, the suitability of nanofiltration was discussed relative to the compliance with mine water discharge criteria and the recovery of valuable commodity metals. The nanofiltration process was demonstrated to offer advantages in metal recovery from mine waste streams, concomitantly enabling discharge criteria for the filtrate disposal to be met.

  2. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    Science.gov (United States)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  3. The electrically silent Kv6.4 subunit confers hyperpolarized gating charge movement in Kv2.1/Kv6.4 heterotetrameric channels.

    Directory of Open Access Journals (Sweden)

    Elke Bocksteins

    Full Text Available The voltage-gated K(+ (Kv channel subunit Kv6.4 does not form functional homotetrameric channels but co-assembles with Kv2.1 to form functional Kv2.1/Kv6.4 heterotetrameric channels. Compared to Kv2.1 homotetramers, Kv6.4 exerts a ~40 mV hyperpolarizing shift in the voltage-dependence of Kv2.1/Kv6.4 channel inactivation, without a significant effect on activation gating. However, the underlying mechanism of this Kv6.4-induced modulation of Kv2.1 channel inactivation, and whether the Kv6.4 subunit participates in the voltage-dependent gating of heterotetrameric channels is not well understood. Here we report distinct gating charge movement of Kv2.1/Kv6.4 heterotetrameric channels, compared to Kv2.1 homotetramers, as revealed by gating current recordings from mammalian cells expressing these channels. The gating charge movement of Kv2.1/Kv6.4 heterotetrameric channels displayed an extra component around the physiological K(+ equilibrium potential, characterized by a second sigmoidal relationship of the voltage-dependence of gating charge movement. This distinct gating charge displacement reflects movement of the Kv6.4 voltage-sensing domain and has a voltage-dependency that matches the hyperpolarizing shift in Kv2.1/Kv6.4 channel inactivation. These results provide a mechanistic basis for the modulation of Kv2.1 channel inactivation gating kinetics by silent Kv6.4 subunits.

  4. Mass-charge-heat coupled transfers in a single cell of a proton exchange membrane fuel cell; Transferts couples masse-charge-chaleur dans une cellule de pile a combustible a membrane polymere

    Energy Technology Data Exchange (ETDEWEB)

    Ramousse, J

    2005-11-15

    Understanding and modelling of coupled mass, charges and heat transfers phenomena are fundamental to analyze the electrical behaviour of the system. The aim of the present model is to describe electrical performances of a PEFMC according to the fluidic and thermal operating conditions. The water content of the membrane and the water distribution in the single cell are estimated according to the coupled simulations of mass transport in the thickness of the single cell and in the feeding channels of the bipolar plates. A microscopic model of a Gas Diffusion Electrode is built up to describe charges transfer phenomena occurring at the electrodes. Completed by a study of heat transfer in the Membrane Electrode Assembly, conditions and preferential sites of water vapor condensation can be highlighted. A set of measurements of the effective thermal conductivity of carbon felts used in fuel cells as porous backing layers have also been performed. Although the value of this parameter is essential for the study of heat transfer, it is still under investigation because of the strong thermal anisotropy of the medium. (author)

  5. High Current Ionic Diode Using Homogeneously Charged Asymmetric Nanochannel Network Membrane.

    Science.gov (United States)

    Choi, Eunpyo; Wang, Cong; Chang, Gyu Tae; Park, Jungyul

    2016-04-13

    A high current ionic diode is achieved using an asymmetric nanochannel network membrane (NCNM) constructed by soft lithography and in situ self-assembly of nanoparticles with uniform surface charge. The asymmetric NCNM exhibits high rectified currents without losing a rectification ratio because of its ionic selectivity gradient and differentiated electrical conductance. Asymmetric ionic transport is analyzed with diode-like I-V curves and visualized via fluorescent dyes, which is closely correlated with ionic selectivity and ion distribution according to variation of NCNM geometries.

  6. Exceptionally Slow Movement of Gold Nanoparticles at a Solid/Liquid Interface Investigated by Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Verch, Andreas; Pfaff, Marina; de Jonge, Niels

    2015-06-30

    Gold nanoparticles were observed to move at a liquid/solid interface 3 orders of magnitude slower than expected for the movement in a bulk liquid by Brownian motion. The nanoscale movement was studied with scanning transmission electron microscopy (STEM) using a liquid enclosure consisting of microchips with silicon nitride windows. The experiments involved a variation of the electron dose, the coating of the nanoparticles, the surface charge of the enclosing membrane, the viscosity, and the liquid thickness. The observed slow movement was not a result of hydrodynamic hindrance near a wall but instead explained by the presence of a layer of ordered liquid exhibiting a viscosity 5 orders of magnitude larger than a bulk liquid. The increased viscosity presumably led to a dramatic slowdown of the movement. The layer was formed as a result of the surface charge of the silicon nitride windows. The exceptionally slow motion is a crucial aspect of electron microscopy of specimens in liquid, enabling a direct observation of the movement and agglomeration of nanoscale objects in liquid.

  7. Virus movements on the plasma membrane support infection and transmission between cells.

    Directory of Open Access Journals (Sweden)

    Christoph J Burckhardt

    2009-11-01

    Full Text Available How viruses are transmitted across the mucosal epithelia of the respiratory, digestive, or excretory tracts, and how they spread from cell to cell and cause systemic infections, is incompletely understood. Recent advances from single virus tracking experiments have revealed conserved patterns of virus movements on the plasma membrane, including diffusive motions, drifting motions depending on retrograde flow of actin filaments or actin tail formation by polymerization, and confinement to submicrometer areas. Here, we discuss how viruses take advantage of cellular mechanisms that normally drive the movements of proteins and lipids on the cell surface. A concept emerges where short periods of fast diffusive motions allow viruses to rapidly move over several micrometers. Coupling to actin flow supports directional transport of virus particles during entry and cell-cell transmission, and local confinement coincides with either nonproductive stalling or infectious endocytic uptake. These conserved features of virus-host interactions upstream of infectious entry offer new perspectives for anti-viral interference.

  8. Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement.

    Science.gov (United States)

    Levy, Amit; Zheng, Judy Y; Lazarowitz, Sondra G

    2015-08-03

    Metazoan synaptotagmins are Ca(2+) sensors that regulate exocytosis and endocytosis in various cell types, notably in nerve and neuroendocrine cells [1, 2]. Recently, the structurally related extended synaptotagmins were shown to tether the cortical ER to the plasma membrane in human and yeast cells to maintain ER morphology and stabilize ER-plasma membrane (ER-PM) contact sites for intracellular lipid and Ca(2+) signaling [3, 4]. The Arabidopsis synaptotagmin SYTA regulates endocytosis and the ability of plant virus movement proteins (MPs) to alter plasmodesmata to promote virus cell-to-cell transport [5, 6]. Yet how MPs modify plasmodesmata, the cellular functions of SYTA and how these aid MP activity, and the proteins essential to form plant cell ER-PM contact sites remain unknown. We addressed these questions using an Arabidopsis SYTA knockdown line syta-1 and a Tobamovirus movement protein MP(TVCV) [5, 7]. We report here that SYTA localized to ER-PM contact sites. These sites were depleted and the ER network collapsed in syta-1, and both reformed upon rescue with SYTA. MP(TVCV) accumulation in plasmodesmata, but not secretory trafficking, was also inhibited in syta-1. During infection, MP(TVCV) recruited SYTA to plasmodesmata, and SYTA and the cortical ER were subsequently remodeled to form viral replication sites adjacent to plasmodesmata in which MP(TVCV) and SYTA directly interacted caged within ER membrane. SYTA also accumulated in plasmodesmata active in MP(TVCV) transport. Our findings show that SYTA is essential to form ER-PM contact sites and suggest that MPs interact with SYTA to recruit these sites to alter plasmodesmata for virus cell-to-cell movement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Monitoring voltage-dependent charge displacement of Shaker B-IR K+ ion channels using radio frequency interrogation.

    Directory of Open Access Journals (Sweden)

    Sameera Dharia

    2011-02-01

    Full Text Available Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR K(+ ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu(2+ addition to the external bath. Cu(2+ is known to bind to the ShB-IR ion channel and inhibit Shaker K(+ conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu(2+-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains--capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug-protein interactions.

  10. Monitoring voltage-dependent charge displacement of Shaker B-IR K+ ion channels using radio frequency interrogation.

    Science.gov (United States)

    Dharia, Sameera; Rabbitt, Richard D

    2011-02-28

    Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K(+) ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu(2+) addition to the external bath. Cu(2+) is known to bind to the ShB-IR ion channel and inhibit Shaker K(+) conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu(2+)-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains--capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug-protein interactions.

  11. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.

    Science.gov (United States)

    Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K

    2015-10-07

    Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.

  12. Comparison of the Volume Charge Density of Nanofiltration Membranes Obtained from Retention and Conductivity Experiments

    DEFF Research Database (Denmark)

    Benavente, J.; Silva, V.; Pradanos, P.

    2010-01-01

    A version of the Donnan steric-partitioning pore model with dielectrical exclusion (DSPM-DE) has been used to get information on the pore size and charge density of a commercial membrane, NF45 from FilmTec, from its retention of KCl solutions. The conductivity inside the pores has been measured b...

  13. Rapid preparative separation of monoclonal antibody charge variants using laterally-fed membrane chromatography.

    Science.gov (United States)

    Sadavarte, Rahul; Madadkar, Pedram; Filipe, Carlos Dm; Ghosh, Raja

    2018-01-15

    Monoclonal antibodies undergo various forms of chemical transformation which have been shown to cause loss in efficacy and alteration in pharmacokinetic properties of these molecules. Such modified antibody molecules are known as variants. They also display physical properties such as charge that are different from intact antibody molecules. However, the difference in charge is very subtle and separation based on it is quite challenging. Charge variants are usually separated using ion-exchange column chromatography or isoelectric focusing. In this paper, we report a rapid and scalable method for fractionating monoclonal antibody charge variants, based on the use of cation exchange laterally-fed membrane chromatography (LFMC). Starting with a sample of monoclonal antibody hIgG1-CD4, three well-resolved fractions were obtained using either pH or salt gradient. These fractions were identified as acidic, neutral and basic variants. Each of these fractions contained intact heavy and light chains and so antibody fragmentation had no role in variant generation. The separation was comparable to that using column chromatography but was an order of magnitude faster. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Plant virus cell-to-cell movement is not dependent on the transmembrane disposition of its movement protein.

    Science.gov (United States)

    Martínez-Gil, Luis; Sánchez-Navarro, Jesús A; Cruz, Antonio; Pallás, Vicente; Pérez-Gil, Jesús; Mingarro, Ismael

    2009-06-01

    The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline residue located in the middle of the HR constrains the structural conformation of this region at the membrane interface, and its replacement precludes virus movement.

  15. The roles of membranes and associated cytoskeleton in plant virus replication and cell-to-cell movement.

    Science.gov (United States)

    Pitzalis, Nicolas; Heinlein, Manfred

    2017-12-18

    The infection of plants by viruses depends on cellular mechanisms that support the replication of the viral genomes, and the cell-to-cell and systemic movement of the virus via plasmodesmata (PD) and the connected phloem. While the propagation of some viruses requires the conventional endoplasmic reticulum (ER)-Golgi pathway, others replicate and spread between cells in association with the ER and are independent of this pathway. Using selected viruses as examples, this review re-examines the involvement of membranes and the cytoskeleton during virus infection and proposes potential roles of class VIII myosins and membrane-tethering proteins in controlling viral functions at specific ER subdomains, such as cortical microtubule-associated ER sites, ER-plasma membrane contact sites, and PD. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    Science.gov (United States)

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability

  17. Plant Virus Cell-to-Cell Movement Is Not Dependent on the Transmembrane Disposition of Its Movement Protein▿ †

    Science.gov (United States)

    Martínez-Gil, Luis; Sánchez-Navarro, Jesús A.; Cruz, Antonio; Pallás, Vicente; Pérez-Gil, Jesús; Mingarro, Ismael

    2009-01-01

    The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline residue located in the middle of the HR constrains the structural conformation of this region at the membrane interface, and its replacement precludes virus movement. PMID:19321624

  18. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements.

    Science.gov (United States)

    Lundby, Alicia; Mutoh, Hiroki; Dimitrov, Dimitar; Akemann, Walther; Knöpfel, Thomas

    2008-06-25

    Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP) in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs.

  19. Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity.

    Science.gov (United States)

    Santhosh, Poornima Budime; Velikonja, Aljaž; Perutkova, Šarka; Gongadze, Ekaterina; Kulkarni, Mukta; Genova, Julia; Eleršič, Kristina; Iglič, Aleš; Kralj-Iglič, Veronika; Ulrih, Nataša Poklar

    2014-02-01

    The aim of this work is to investigate the effect of electrostatic interactions between the nanoparticles and the membrane lipids on altering the physical properties of the liposomal membrane such as fluidity and bending elasticity. For this purpose, we have used nanoparticles and lipids with different surface charges. Positively charged iron oxide (γ-Fe2O3) nanoparticles, neutral and negatively charged cobalt ferrite (CoFe2O4) nanoparticles were encapsulated in neutral lipid 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine lipid mixture. Membrane fluidity was assessed through the anisotropy measurements using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene. Though the interaction of both the types of nanoparticles reduced the membrane fluidity, the results were more pronounced in the negatively charged liposomes encapsulated with positively charged iron oxide nanoparticles due to strong electrostatic attractions. X-ray photoelectron spectroscopy results also confirmed the presence of significant quantity of positively charged iron oxide nanoparticles in negatively charged liposomes. Through thermally induced shape fluctuation measurements of the giant liposomes, a considerable reduction in the bending elasticity modulus was observed for cobalt ferrite nanoparticles. The experimental results were supported by the simulation studies using modified Langevin-Poisson-Boltzmann model. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.

    2014-08-26

    © the Partner Organisations 2014. Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The

  1. A porous ceramic membrane tailored high-temperature supercapacitor

    Science.gov (United States)

    Zhang, Xin; He, Benlin; Zhao, Yuanyuan; Tang, Qunwei

    2018-03-01

    The supercapacitor that can operate at high-temperature are promising for markedly increase in capacitance because of accelerated charge movement. However, the state-of-the-art polymer-based membranes will decompose at high temperature. Inspired by solid oxide fuel cells, we present here the experimental realization of high-temperature supercapacitors (HTSCs) tailored with porous ceramic separator fabricated by yttria-stabilized zirconia (YSZ) and nickel oxide (NiO). Using activated carbon electrode and supporting electrolyte from potassium hydroxide (KOH) aqueous solution, a category of symmetrical HTSCs are built in comparison with a conventional polymer membrane based device. The dependence of capacitance performance on temperature is carefully studied, yielding a maximized specific capacitance of 272 F g-1 at 90 °C for the optimized HTSC tailored by NiO/YSZ membrane. Moreover, the resultant HTSC has relatively high durability when suffer repeated measurement over 1000 cycles at 90 °C, while the polymer membrane based supercapacitor shows significant reduction in capacitance at 60 °C. The high capacitance along with durability demonstrates NiO/YSZ membrane tailored HTSCs are promising in future advanced energy storage devices.

  2. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements.

    Directory of Open Access Journals (Sweden)

    Alicia Lundby

    2008-06-01

    Full Text Available Ci-VSP contains a voltage-sensing domain (VSD homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs.

  3. The effect of polymer size and charge of molecules on permeation through synovial membrane and accumulation in hyaline articular cartilage.

    Science.gov (United States)

    Sterner, B; Harms, M; Wöll, S; Weigandt, M; Windbergs, M; Lehr, C M

    2016-04-01

    The treatment of joint related diseases often involves direct intra-articular injections. For rational development of novel delivery systems with extended residence time in the joint, detailed understanding of transport and retention phenomena within the joint is mandatory. This work presents a systematic study on the in vitro permeation, penetration and accumulation of model polymers with differing charges and molecular weights in bovine joint tissue. Permeation experiments with bovine synovial membrane were performed with PEG polymers (6-200 kDa) and methylene blue in customized diffusion chambers. For polyethylene glycol, 2-fold (PEG 6 kDa), 3-fold (PEG 10 kDa) and 13-fold (PEG 35 kDa) retention by the synovial membrane in reference to the small molecule methylene blue was demonstrated. No PEG 200 kDa was found in the acceptor in detectable amounts after 48 h. This showed the potential for a distinct extension of joint residence times by increasing molecular weights. In addition, experiments with bovine cartilage tissue were conducted. The ability for positively charged, high molecular weight chitosans and HEMA-Co-TMAP (HCT) polymers (up to 233 kDa) to distribute throughout the entire cartilage matrix was demonstrated. In contrast, a distribution into cartilage was not observed for neutral PEG polymers (6-200 kDa). Furthermore, the positive charge density of different compounds (chitosan, HEMA-Co-TMAP, methylene blue, MSC C1 (neutral NCE) and MSC D1 (positively charged NCE) was found to correlate with their accumulation in bovine cartilage tissue. In summary, the results offer pre-clinical in vitro data, indicating that the modification of molecular size and charge of a substance has the potential to decelerate its clearance through the synovial membrane and to promote accumulation inside the cartilage matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Conservation of Charge and Conservation of Current

    OpenAIRE

    Eisenberg, Bob

    2016-01-01

    Conservation of current and conservation of charge are nearly the same thing: when enough is known about charge movement, conservation of current can be derived from conservation of charge, in ideal dielectrics, for example. Conservation of current is enforced implicitly in ideal dielectrics by theories that conserve charge. But charge movement in real materials like semiconductors or ionic solutions is never ideal. We present an apparently universal derivation of conservation of current and ...

  5. Photo-cured pH-responsive polyampholyte-coated membranes for controlled release of drugs with different molecular weights and charges

    International Nuclear Information System (INIS)

    Ng, Loo-Teck; Ng, Kheng-Seong

    2008-01-01

    Intelligent drug delivery membranes were synthesised by photocuring poly(acrylic acid) (PAA) or polyampholytes comprised of copolymers of acrylic acid (AA)/2-(diethylamino)ethyl methacrylate (DEAEMA) with varying monomeric compositions onto poly(2-hydroxyethyl methacrylate) (PHEMA) membranes, each with model drugs of different molecular weights and charges being incorporated. pH-responsive release behaviours of the model drugs which included methylene blue (cationic), metanil yellow (anionic) and caffeine (neutral) were studied. Only membranes with methylene blue and caffeine incorporated displayed clear pH-responsive releases though all coatings. This study demonstrates that drug diffusion through pH-responsive membranes depends to a large extent on the attractive interaction between the drug and the appropriate functional group/s in the coating

  6. Two interesting cases in spatial charge movement

    International Nuclear Information System (INIS)

    Novellino, R.A.

    1983-01-01

    The relation between current and voltage in a dielectric under radiation is obtained, assuming only one carrier to be mobile, recombination and injection of the mobile charge from the electrode. For this last boundary condition a constant charge density at the electrode-dielectric interface was chosen. The other problem treated is a generalization of the classic transient problem studied by Many-Rakavy, using the constant charge density boundary condition. Analytic solutions were obtained during the first transit time and computed ones for larger times. Some attention was given to the damped current oscilations approaching the steady state value. (Author) [pt

  7. Modulation and interactions of charged biomimetic membranes with bivalent ions

    Science.gov (United States)

    Kazadi Badiambile, Adolphe

    biomolecules in a dynamic environment and the lack of appropriate physical and biochemical tools. In contrast, biomimetic membrane models that rely on the amphiphilic properties of phospholipids are powerful tools that enable the study of these molecules in vitro. By having control over the different experimental parameters such as temperature and pH, reliable and repeatable experimental conditions can be created. One of the key questions I investigated in this thesis is related to the clustering mechanism of PtdIns(4, 5)P2 into pools or aggregates that enable independent cellular control of this species by geometric separation. The lateral aggregation of PtdIns(4, 5)P2 and its underlying physical causes is still a matter of debate. In the first part of this thesis I introduce the general information on lipid membranes with a special focus on the PtdIns family and their associated signaling events. In addition, I explain the Langmuir-Blodgett film balance (LB) system as tool to study lipid membranes and lipid interactions. In the second chapter, I describe my work on the lateral compressibility of PtdIns(4, 5)P2, PtdIns and DOPG monolayers and its modulation by bivalent ions using Langmuir monolayers. In addition, a theoretical framework of compressibility that depends on a surface potential induced by a planar layer of charged molecules and ions in the bulk was provided. In the third part, I present my work on the excess Gibbs free energy of the lipid systems PtdIns(4, 5)P2 --POPC, PtdIns(4, 5)P2, and POPC as they are modulated by bivalent ions. In the fourth part, I report on my foray in engineering a light-based system that relies on different dye properties to simulate calcium induced calcium release (CICR) that occurs in many cell types. In the final chapter, I provide a general conclusion and present directions for future research that would build on my findings.

  8. Distribution of anionic sites in Bruch's membrane of the rabbit eye.

    Science.gov (United States)

    Essner, E; Pino, R M

    1982-06-01

    The organization of anionic (negatively charged) sites in Bruch's membrane of the rabbit eye at various stages of postnatal development was studied using the cationic polymer, polyethyleneimine (PEI). PEI-positive sites were demonstrable as rows of particles (diameter ca. 18 nm) located at intervals along either side of the basal laminae of the retinal pigment epithelium and choriocapillary endothelium. In tangential sections through Bruch's membrane, stained particles appeared to be arranged in a semi-regular, lattice-like pattern in which the sites were separated from each other by an interval of approximately 50 nm. PEI-positive particles were also observed on collagen fibers where they were distributed at regular intervals along the length of the fiber. In tangential sections, collagen fibers formed a loosely packed meshwork in the central zone of Bruch's membrane. In addition, individual fibers were frequently oriented so that one end was located close to or within the substance of the basal laminae, a result suggesting that the anionic sites on these fibers might contribute to the network present in the basal laminae. The findings lend further support to the suggestion that anionic sites in Bruch's membrane may serve as a charge barrier which retards the movement of anionic molecules that are in transit from the choriocapillaris to the retinal pigment epithelium and outer neural retina.

  9. Functionalized nanoparticle interactions with polymeric membranes.

    Science.gov (United States)

    Ladner, D A; Steele, M; Weir, A; Hristovski, K; Westerhoff, P

    2012-04-15

    A series of experiments was performed to measure the retention of a class of functionalized nanoparticles (NPs) on porous (microfiltration and ultrafiltration) membranes. The findings impact engineered water and wastewater treatment using membrane technology, characterization and analytical schemes for NP detection, and the use of NPs in waste treatment scenarios. The NPs studied were composed of silver, titanium dioxide, and gold; had organic coatings to yield either positive or negative surface charge; and were between 2 and 10nm in diameter. NP solutions were applied to polymeric membranes composed of different materials and pore sizes (ranging from ≈ 2 nm [3 kDa molecular weight cutoff] to 0.2 μm). Greater than 99% rejection was observed of positively charged NPs by negatively charged membranes even though pore diameters were up to 20 times the NP diameter; thus, sorption caused rejection. Negatively charged NPs were less well rejected, but behavior was dependent not only on surface functionality but on NP core material (Ag, TiO(2), or Au). NP rejection depended more upon NP properties than membrane properties; all of the negatively charged polymeric membranes behaved similarly. The NP-membrane interaction behavior fell into four categories, which are defined and described here. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The cell biology of Tobacco mosaic virus replication and movement

    Directory of Open Access Journals (Sweden)

    Chengke eLiu

    2013-02-01

    Full Text Available Successful systemic infection of a plant by Tobacco mosaic virus (TMV requires three processes that repeat over time: initial establishment and accumulation in invaded cells, intercellular movement and systemic transport. Accumulation and intercellular movement of TMV necessarily involves intracellular transport by complexes containing virus and host proteins and virus RNA during a dynamic process that can be visualized. Multiple membranes appear to assist TMV accumulation, while membranes, microfilaments and microtubules appear to assist TMV movement. Here we review cell biological studies that describe TMV-membrane, -cytoskeleton and -other host protein interactions which influence virus accumulation and movement in leaves and callus tissue. The importance of understanding the developmental phase of the infection in relationship to the observed virus-membrane or -host protein interaction is emphasized. Utilizing the latest observations of TMV-membrane and -host protein interactions within our evolving understanding of the infection ontogeny, a model for TMV accumulation and intracellular spread in a cell biological context is provided.

  11. Charge asymmetry of the purple membrane measured by uranyl quenching of dansyl fluorescence. [Halobacterium halobium

    Energy Technology Data Exchange (ETDEWEB)

    Renthal, R.; Cha, C.H.

    1984-05-01

    Purple membrane was covalently labeled with 5-(dimethylamino) naphthalene-1-sulfonyl hydrazine (dansyl hydrazine) by carbodiimide coupling to the cytoplasmic surface (carboxyl-terminal tail: 0.7 mol/mol bacteriorhodopsin) or by periodate oxidation and dimethylaminoborane reduction at the extracellular surface (glycolipids: 1 mol/mol). In 2 mM acetate buffer, pH 5.6, micromolar concentrations of UO/sub 2//sup 2 +/ were found to quench the dansyl groups on the cytoplasmic surface (maximum = 26%), while little quenching was observed at the extracellular surface (maximum = 4%). Uranyl ion quenched dansyl hydrazine in free solution at much higher concentrations. Uranyl also bound tightly to unmodified purple membrane, (apparent dissociation constant = 0.8 ..mu..M) as measured by a centrifugation assay. The maximum stoichiometry was 10 mol/mol of bacteriorhodopsin, which is close to the amount of phospholipid phosphorus in purple membrane. The results were analyzed on the assumptions that UO/sub 2//sup 2 +/ binds in a 1:1 complex with phospholipid phosphate and that the dansyl distributon and quenching mechanisms are the same at both surfaces. This indicates a 9:1 ratio of phosphate between the cytoplasmic and extracellular surfaces. Thus, the surface change density of the cytoplasmic side of the membrane is more negative than - 0.010 charges/A/sup 2/.

  12. Effect of Plasma Membrane Semipermeability in Making the Membrane Electric Double Layer Capacitances Significant.

    Science.gov (United States)

    Sinha, Shayandev; Sachar, Harnoor Singh; Das, Siddhartha

    2018-01-30

    Electric double layers (or EDLs) formed at the membrane-electrolyte interface (MEI) and membrane-cytosol interface (MCI) of a charged lipid bilayer plasma membrane develop finitely large capacitances. However, these EDL capacitances are often much larger than the intrinsic capacitance of the membrane, and all of these capacitances are in series. Consequently, the effect of these EDL capacitances in dictating the overall membrane-EDL effective capacitance C eff becomes negligible. In this paper, we challenge this conventional notion pertaining to the membrane-EDL capacitances. We demonstrate that, on the basis of the system parameters, the EDL capacitance for both the permeable and semipermeable membranes can be small enough to influence C eff . For the semipermeable membranes, however, this lowering of the EDL capacitance can be much larger, ensuring a reduction of C eff by more than 20-25%. Furthermore, for the semipermeable membranes, the reduction in C eff is witnessed over a much larger range of system parameters. We attribute such an occurrence to the highly nonintuitive electrostatic potential distribution associated with the recently discovered phenomena of charge-inversion-like electrostatics and the attainment of a positive zeta potential at the MCI for charged semipermeable membranes. We anticipate that our findings will impact the quantification and the identification of a large number of biophysical phenomena that are probed by measuring the plasma membrane capacitance.

  13. Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process.

    Science.gov (United States)

    Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina

    2006-05-19

    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.

  14. Studies on membrane for redox flow battery. 9. Crosslinking of the membrane by the electron radiation and durability of the membrane

    International Nuclear Information System (INIS)

    Ohya, Haruhiko; Minamihira, Kazunori; Hwang, Gab-Jin; Kawahara, Takashi; Aihara, Masahiko; Negishi, Youichi; Kang, An-Soo.

    1995-01-01

    Chlorosulfonated homogeneous and asymmetric cation exchange membranes were tested as separators for the all-vanadium redox flow battery. The membrane was prepared by chlorosulfonation of the polyethylene film in vapour phase. In the case of the polyethylene film of 20 μm thickness used for the homogeneous membrane, area resistivity of 0.5 Ω · cm 2 in 2M KCl aq. solution was reached at 120 min. chlorosulfonation time. In the case of heat laminated 20 μm thick PE film on a neutral porous polyolefin film of 200 μm thickness used for the asymmetric membrane, a minimum area resistivity of 1 Ω · cm 2 in 2M KCl was achieved at 120 min. chlorosulfonation time. The performance evaluation of the membranes as separators in the all-vanadium redox flow battery was also measured. The area resistivity of the membranes in the measuring-cell using charge-discharge current density 63.7 mA/cm 2 was 1.4 Ω · cm 2 and 2.2 Ω · cm 2 for charge and discharge respectively for the homogeneous membrane, and 3.6 Ω · cm 2 and 4.3 Ω · cm 2 for charge discharge cycles respectively for the asymmetric membrane. The chlorosulfonated homogeneous cation exchange membrane was cross-linked by the electron radiation to improve durability of the membrane. The crosslinked membrane which has the high degree of cross-linking, did not shown the mechanical breakage by swelling or shrinking in the acidic vanadium solution, but its area resistivity in the all-vanadium redox flow battery was increased. (author)

  15. Understanding optically stimulated charge movement in quartz and feldspar using time-resolved measurements

    International Nuclear Information System (INIS)

    Ankjaergaard, C.

    2010-02-01

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) from quartz and feldspar are widely used in accident dosimetry and luminescence dating. In order to improve already existing methods or to develop new methods towards extending the current limits of the technique, it is important to understand the charge movement within these materials. Earlier studies have primarily focussed on examination of the trap behaviour; however, this only tells half of the story as OSL is a combination of charge stimulation and recombination. By using time-resolved OSL (TR-OSL), one can directly examine the recombination route(s), and thus obtain insight into the other half of the process involved in luminescence emission. This thesis studies the TR-OSL and optically stimulated phosphorescence signals from quartz and feldspars spanning several orders of magnitude in time (few ns to the seconds time scale) in order to identify various charge transport mechanisms in the different time regimes. The techniques employed are time-resolved OSL, continuous-wave OSL, TL, optically stimulated exo-electron (OSE) emission and time-resolved OSE. These different techniques are used in combination with variable thermal or optical stimulation energy. The thesis first delves into three main methodological developments, namely (i) research and development of the equipment for TR-OSL measurements, (ii) finding the best method for multiple-exponential analysis of a TR-OSL curve, and (iii) optimisation of the pulsing configuration for the best separation of quartz OSL from a mixed quarts-feldspar sample. It then proceeds to study the different charge transport mechanisms subsequent to an optical stimulation pulse in quartz and feldspars. The results obtained for quartz conclude that the main lifetime component in quartz represents an excited state lifetime of the recombination centre, and the more slowly decaying components on the millisecond to seconds time scale arise from charge recycling

  16. Understanding optically stimulated charge movement in quartz and feldspar using time-resolved measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ankjaergaard, C.

    2010-02-15

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) from quartz and feldspar are widely used in accident dosimetry and luminescence dating. In order to improve already existing methods or to develop new methods towards extending the current limits of the technique, it is important to understand the charge movement within these materials. Earlier studies have primarily focussed on examination of the trap behaviour; however, this only tells half of the story as OSL is a combination of charge stimulation and recombination. By using time-resolved OSL (TR-OSL), one can directly examine the recombination route(s), and thus obtain insight into the other half of the process involved in luminescence emission. This thesis studies the TR-OSL and optically stimulated phosphorescence signals from quartz and feldspars spanning several orders of magnitude in time (few ns to the seconds time scale) in order to identify various charge transport mechanisms in the different time regimes. The techniques employed are time-resolved OSL, continuous-wave OSL, TL, optically stimulated exo-electron (OSE) emission and time-resolved OSE. These different techniques are used in combination with variable thermal or optical stimulation energy. The thesis first delves into three main methodological developments, namely (i) research and development of the equipment for TR-OSL measurements, (ii) finding the best method for multiple-exponential analysis of a TR-OSL curve, and (iii) optimisation of the pulsing configuration for the best separation of quartz OSL from a mixed quarts-feldspar sample. It then proceeds to study the different charge transport mechanisms subsequent to an optical stimulation pulse in quartz and feldspars. The results obtained for quartz conclude that the main lifetime component in quartz represents an excited state lifetime of the recombination centre, and the more slowly decaying components on the millisecond to seconds time scale arise from charge recycling

  17. Diffuse Charge Effects in Fuel Cell Membranes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Franco, A.A.; Bazant, M.Z.

    2009-01-01

    It is commonly assumed that electrolyte membranes in fuel cells are electrically neutral, except in unsteady situations, when the double-layer capacitance is heuristically included in equivalent circuit calculations. Indeed, the standard model for electron transfer kinetics at the membrane/electrode

  18. Negative Charge Neutralization in the Loops and Turns of Outer Membrane Phospholipase A Impacts Folding Hysteresis at Neutral pH.

    Science.gov (United States)

    McDonald, Sarah K; Fleming, Karen G

    2016-11-08

    Hysteresis in equilibrium protein folding titrations is an experimental barrier that must be overcome to extract meaningful thermodynamic quantities. Traditional approaches to solving this problem involve testing a spectrum of solution conditions to find ones that achieve path independence. Through this procedure, a specific pH of 3.8 was required to achieve path independence for the water-to-bilayer equilibrium folding of outer membrane protein OmpLA. We hypothesized that the neutralization of negatively charged side chains (Asp and Glu) at pH 3.8 could be the physical basis for path-independent folding at this pH. To test this idea, we engineered variants of OmpLA with Asp → Asn and Glu → Gln mutations to neutralize the negative charges within various regions of the protein and tested for reversible folding at neutral pH. Although not fully resolved, our results show that these mutations in the periplasmic turns and extracellular loops are responsible for 60% of the hysteresis in wild-type folding. Overall, our study suggests that negative charges impact the folding hysteresis in outer membrane proteins and their neutralization may aid in protein engineering applications.

  19. G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes.

    Science.gov (United States)

    O'Neill, Patrick R; Karunarathne, W K Ajith; Kalyanaraman, Vani; Silvius, John R; Gautam, N

    2012-12-18

    Activation of G-protein heterotrimers by receptors at the plasma membrane stimulates βγ-complex dissociation from the α-subunit and translocation to internal membranes. This intermembrane movement of lipid-modified proteins is a fundamental but poorly understood feature of cell signaling. The differential translocation of G-protein βγ-subunit types provides a valuable experimental model to examine the movement of signaling proteins between membranes in a living cell. We used live cell imaging, mathematical modeling, and in vitro measurements of lipidated fluorescent peptide dissociation from vesicles to determine the mechanistic basis of the intermembrane movement and identify the interactions responsible for differential translocation kinetics in this family of evolutionarily conserved proteins. We found that the reversible translocation is mediated by the limited affinity of the βγ-subunits for membranes. The differential kinetics of the βγ-subunit types are determined by variations among a set of basic and hydrophobic residues in the γ-subunit types. G-protein signaling thus leverages the wide variation in membrane dissociation rates among different γ-subunit types to differentially control βγ-translocation kinetics in response to receptor activation. The conservation of primary structures of γ-subunits across mammalian species suggests that there can be evolutionary selection for primary structures that confer specific membrane-binding affinities and consequent rates of intermembrane movement.

  20. Probing lipid membrane electrostatics

    Science.gov (United States)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful

  1. Membrane nanodomains in plants: capturing form, function, and movement.

    Science.gov (United States)

    Tapken, Wiebke; Murphy, Angus S

    2015-03-01

    The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Imaging of blood plasma coagulation at supported lipid membranes.

    Science.gov (United States)

    Faxälv, Lars; Hume, Jasmin; Kasemo, Bengt; Svedhem, Sofia

    2011-12-15

    The blood coagulation system relies on lipid membrane constituents to act as regulators of the coagulation process upon vascular trauma, and in particular the 2D configuration of the lipid membranes is known to efficiently catalyze enzymatic activity of blood coagulation factors. This work demonstrates a new application of a recently developed methodology to study blood coagulation at lipid membrane interfaces with the use of imaging technology. Lipid membranes with varied net charges were formed on silica supports by systematically using different combinations of lipids where neutral phosphocholine (PC) lipids were mixed with phospholipids having either positively charged ethylphosphocholine (EPC), or negatively charged phosphatidylserine (PS) headgroups. Coagulation imaging demonstrated that negatively charged SiO(2) and membrane surfaces exposing PS (obtained from liposomes containing 30% of PS) had coagulation times which were significantly shorter than those for plain PC membranes and EPC exposing membrane surfaces (obtained from liposomes containing 30% of EPC). Coagulation times decreased non-linearly with increasing negative surface charge for lipid membranes. A threshold value for shorter coagulation times was observed below a PS content of ∼6%. We conclude that the lipid membranes on solid support studied with the imaging setup as presented in this study offers a flexible and non-expensive solution for coagulation studies at biological membranes. It will be interesting to extend the present study towards examining coagulation on more complex lipid-based model systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. A tale of two charges: zwitterionic polyelectrolyte multilayer membranes

    NARCIS (Netherlands)

    de Grooth, Joris

    2015-01-01

    In this thesis, the development of selective membranes for water treatment facilities to cope with the aforementioned issues is covered. By using hollow fiber membranes, the water purification process can be simplified compared to using spiral wound membranes, a significant advantage for

  4. Failure of the Nernst-Einstein equation to correlate electrical resistances and rates of ionic self-exchange across certain fixed charge membranes.

    Science.gov (United States)

    Gottlieb, M H; Sollner, K

    1968-05-01

    The electrical resistances and rates of self-exchange of univalent critical ions across several types of collodion matrix membranes of high ionic selectivity were studied over a wide range of conditions. The relationship which was observed between these quantities with membranes of a certain type, namely those activated with poly-2-vinyl-N-methyl pyridinium bromide, cannot be explained on the basis of current concepts of the movement of ions across ion exchange membranes. Rates of self-exchange across these membranes were several times greater than those calculated from the electrical resistances of the membranes on the basis of an expression derived by the use of the Nernst-Einstein equation. The magnitude of the discrepancy was greatest at low concentrations of the ambient electrolyte solution and was independent of the species of both critical and noncritical ions. The data obtained with other types of collodion matrix membranes were, at least approximately, in agreement with the predictions based on the Nernst-Einstein equation. Self-exchange rates across the anion permeable protamine collodion membranes, and across the cation permeable polystyrene sulfonic acid collodion membranes, were about 20% less than those calculated from the electrical resistances. The direction and magnitude of these differences, also observed by other investigators, are qualitatively understood as an electroosmotic effect. With cation permeable membranes prepared by the oxidation of preformed collodion membranes, almost exact agreement was obtained between measured and calculated self-exchange rates; the cause of the apparent absence of an electroosmotic effect with these membranes is unknown.

  5. Microscale solution manipulation using photopolymerized hydrogel membranes and induced charge electroosmosis micropumps

    Science.gov (United States)

    Paustian, Joel Scott

    Microfluidic technology is playing an ever-expanding role in advanced chemical and biological devices, with diverse applications including medical diagnostics, high throughput research tools, chemical or biological detection, separations, and controlled particle fabrication. Even so, local (microscale) modification of solution properties within microchannels, such as pressure, solute concentration, and voltage remains a challenge, and improved spatiotemporal control would greatly enhance the capabilities of microfluidics. This thesis demonstrates and characterizes two microfluidic tools to enhance local solution control. I first describe a microfluidic pump that uses an electrokinetic effect, Induced-Charge Electroosmosis (ICEO), to generate pressure on-chip. In ICEO, steady flows are driven by AC fields along metal-electrolyte interfaces. I design and microfabricate a pump that exploits this effect to generate on-chip pressures. The ICEO pump is used to drive flow along a microchannel, and the pressure is measured as a function of voltage, frequency, and electrolyte composition. This is the first demonstration of chip-scale flows driven by ICEO, which opens the possibility for ICEO pumping in self-contained microfluidic devices. Next, I demonstrate a method to create thin local membranes between microchannels, which enables local diffusive delivery of solute. These ``Hydrogel Membrane Microwindows'' are made by photopolymerizing a hydrogel which serves as a local ``window'' for solute diffusion and electromigration between channels, but remains a barrier to flow. I demonstrate three novel experimental capabilities enabled by the hydrogel membranes: local concentration gradients, local electric currents, and rapid diffusive composition changes. I conclude by applying the hydrogel membranes to study solvophoresis, the migration of particles in solvent gradients. Solvent gradients are present in many chemical processes, but migration of particles within these

  6. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    to the variation in size of the proteins and a reasonable separation factor can be observed only when the size difference is in the order of 10 or more. This is partly caused by concentration polarization and membrane fouling which hinders an effective separation of the proteins. Application of an electric field...... across the porous membrane has been demonstrated to be an effective way to reduce concentration polarization and membrane fouling. In addition, this technique can also be used to separate the proteins based on difference in charge, which to some extent overcome the limitations of size difference...... of proteins on the basis of their charge, degree of hydrophobicity, affinity or size. Adequate purity is often not achieved unless several purification steps are combined thereby increasing cost and reducing product yield. Conventional fractionation of proteins using ultrafiltration membranes is limited...

  7. 49 CFR 229.9 - Movement of non-complying locomotives.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of non-complying locomotives. 229.9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.9 Movement of non... restrictions necessary for safely conducting the movement; (2)(i) The engineer in charge of the movement of the...

  8. The Balance of Fluid and Osmotic Pressures across Active Biological Membranes with Application to the Corneal Endothelium.

    Directory of Open Access Journals (Sweden)

    Xi Cheng

    Full Text Available The movement of fluid and solutes across biological membranes facilitates the transport of nutrients for living organisms and maintains the fluid and osmotic pressures in biological systems. Understanding the pressure balances across membranes is crucial for studying fluid and electrolyte homeostasis in living systems, and is an area of active research. In this study, a set of enhanced Kedem-Katchalsky (KK equations is proposed to describe fluxes of water and solutes across biological membranes, and is applied to analyze the relationship between fluid and osmotic pressures, accounting for active transport mechanisms that propel substances against their concentration gradients and for fixed charges that alter ionic distributions in separated environments. The equilibrium analysis demonstrates that the proposed theory recovers the Donnan osmotic pressure and can predict the correct fluid pressure difference across membranes, a result which cannot be achieved by existing KK theories due to the neglect of fixed charges. The steady-state analysis on active membranes suggests a new pressure mechanism which balances the fluid pressure together with the osmotic pressure. The source of this pressure arises from active ionic fluxes and from interactions between solvent and solutes in membrane transport. We apply the proposed theory to study the transendothelial fluid pressure in the in vivo cornea, which is a crucial factor maintaining the hydration and transparency of the tissue. The results show the importance of the proposed pressure mechanism in mediating stromal fluid pressure and provide a new interpretation of the pressure modulation mechanism in the in vivo cornea.

  9. Charge gradient microscopy

    Science.gov (United States)

    Roelofs, Andreas; Hong, Seungbum

    2018-02-06

    A method for rapid imaging of a material specimen includes positioning a tip to contact the material specimen, and applying a force to a surface of the material specimen via the tip. In addition, the method includes moving the tip across the surface of the material specimen while removing electrical charge therefrom, generating a signal produced by contact between the tip and the surface, and detecting, based on the data, the removed electrical charge induced through the tip during movement of the tip across the surface. The method further includes measuring the detected electrical charge.

  10. Characterization of the N-terminal segment used by the barley yellow dwarf virus movement protein to promote interaction with the nuclear membrane of host plant cells.

    Science.gov (United States)

    Dennison, Sarah Rachel; Harris, Frederick; Brandenburg, Klaus; Phoenix, David Andrew

    2007-11-01

    The barley yellow dwarf virus movement protein (BYDV-MP) requires its N-terminal sequence to promote the transport of viral RNA into the nuclear compartment of host plant cells. Here, graphical analysis predicts that this sequence would form a membrane interactive amphiphilic alpha-helix. Confirming this prediction, NT1, a peptide homologue of the BYDV-MP N-terminal sequence, was found to be alpha-helical (65%) in the presence of vesicles mimics of the nuclear membrane. The peptide increased the fluidity of these nuclear membrane mimics (rise in wavenumber of circa 0.5-1.0 cm(-1)) and induced surface pressure changes of 2 mN m(-1) in lipid monolayers with corresponding compositions. Taken with isotherm analysis these results suggest that BYDV-MP forms an N-terminal amphiphilic alpha-helix, which partitions into the nuclear membrane primarily through thermodynamically stable associations with the membrane lipid headgroup region. We speculate that these associations may play a role in targeting of the nuclear membrane by BYDM-MP.

  11. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  12. Influence of Active Layer on Separation Potentials of Nanofiltration Membranes for Inorganic Ions.

    Science.gov (United States)

    Wadekar, Shardul S; Vidic, Radisav D

    2017-05-16

    Active layers of two fully aromatic and two semi-aromatic nanofiltration membranes were studied along with surface charge at different electrolyte composition and effective pore size to elucidate their influence on separation mechanisms for inorganic ions by steric, charge, and dielectric exclusion. The membrane potential method used for pore size measurement is underlined as the most appropriate measurement technique for this application owing to its dependence on the diffusional potentials of inorganic ions. Crossflow rejection experiments with dilute feed composition indicate that both fully aromatic membranes achieved similar rejection despite the differences in surface charge, which suggests that rejection by these membranes is exclusively dependent on size exclusion and the contribution of charge exclusion is weak. Rejection experiments with higher ionic strength and different composition of the feed solution confirmed this hypothesis. On the other hand, increase in the ionic strength of feed solution when the charge exclusion effects are negligible due to charge screening strongly influenced ion rejection by semi-aromatic membranes. The experimental results confirmed that charge exclusion contributes significantly to the performance of semi-aromatic membranes in addition to size exclusion. The contribution of dielectric exclusion to overall ion rejection would be more significant for fully aromatic membranes.

  13. Ion-conducting membranes

    Science.gov (United States)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  14. Do plasma proteins distinguish between liposomes of varying charge density?

    KAUST Repository

    Capriotti, Anna Laura

    2012-03-01

    Cationic liposomes (CLs) are one of the most employed nonviral nanovector systems in gene therapy. However, their transfection efficiency is strongly affected by interactions with plasma components, that lead to the formation of a "protein corona" onto CL surface. The interactions between nanoparticles entering the body and biomolecules have an essential role for their biodistribution. Because the knowledge of proteins adsorbed onto vector surface could be useful in the screening of new, more efficient and more biocompatible liposomal formulations, the behavior of three CLs with different membrane charge densities was investigated. The proteins of the three coronas were identified by nano-liquid chromatography-tandem mass spectrometry, and quantified with label-free spectral counting strategy. Fibrinogen displayed higher association with CLs with high membrane charge density, while apolipoproteins and C4b-binding protein with CLs with low membrane charge density. These results are discussed in terms of the different lipid compositions of CLs and may have a deep biological impact for in vivo applications. Surface charge of nanoparticles is emerging as a relevant factor determining the corona composition after interaction with plasma proteins. Remarkably, it is also shown that the charge of the protein corona formed around CLs is strongly related to their membrane charge density. © 2012 Elsevier B.V.

  15. Smart membranes for nitrate removal, water purification, and selective ion transportation

    Science.gov (United States)

    Wilson, William D [Pleasanton, CA; Schaldach, Charlene M [Pleasanton, CA; Bourcier, William L [Livermore, CA; Paul, Phillip H [Livermore, CA

    2009-12-15

    A computer designed nanoengineered membrane for separation of dissolved species. One embodiment provides an apparatus for treatment of a fluid that includes ions comprising a microengineered porous membrane, a system for producing an electrical charge across the membrane, and a series of nanopores extending through the membrane. The nanopores have a pore size such that when the fluid contacts the membrane, the nanopores will be in a condition of double layer overlap and allow passage only of ions opposite to the electrical charge across the membrane.

  16. Constraints on voltage sensor movement in the shaker K+ channel.

    Science.gov (United States)

    Darman, Rachel B; Ivy, Allison A; Ketty, Vina; Blaustein, Robert O

    2006-12-01

    In nerve and muscle cells, the voltage-gated opening and closing of cation-selective ion channels is accompanied by the translocation of 12-14 elementary charges across the membrane's electric field. Although most of these charges are carried by residues in the S4 helix of the gating module of these channels, the precise nature of their physical movement is currently the topic of spirited debate. Broadly speaking, two classes of models have emerged: those that suggest that small-scale motions can account for the extensive charge displacement, and those that invoke a much larger physical movement. In the most recent incarnation of the latter type of model, which is based on structural and functional data from the archaebacterial K(+) channel KvAP, a "voltage-sensor paddle" comprising a helix-turn-helix of S3-S4 translocates approximately 20 A through the bilayer during the gating cycle (Jiang, Y., A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait, and R. MacKinnon. 2003. Nature. 423:33-41; Jiang, Y., V. Ruta, J. Chen, A. Lee, and R. MacKinnon. 2003. Nature. 423:42-48.; Ruta, V., J. Chen, and R. MacKinnon. 2005. Cell. 123:463-475). We used two methods to test for analogous motions in the Shaker K(+) channel, each examining the aqueous exposure of residues near S3. In the first, we employed a pore-blocking maleimide reagent (Blaustein, R.O., P.A. Cole, C. Williams, and C. Miller. 2000. Nat. Struct. Biol. 7:309-311) to probe for state-dependent changes in the chemical reactivity of substituted cysteines; in the second, we tested the state-dependent accessibility of a tethered biotin to external streptavidin (Qiu, X.Q., K.S. Jakes, A. Finkelstein, and S.L. Slatin. 1994. J. Biol. Chem. 269:7483-7488; Slatin, S.L., X.Q. Qiu, K.S. Jakes, and A. Finkelstein. 1994. Nature. 371:158-161). In both types of experiments, residues predicted to lie near the top of S3 did not exhibit any change in aqueous exposure during the gating cycle. This lack of state dependence argues against

  17. Charge- and Size-Selective Molecular Separation using Ultrathin Cellulose Membranes

    KAUST Repository

    Puspasari, Tiara

    2016-08-30

    To date, it is still a challenge to prepare high-flux and highselectivity microporous membranes thinner than 20 nm without introducing defects. In this work, we report for the first time the application of cellulose membranes for selective separation of small molecules. A freestanding cellulose membrane as thin as 10 nm has been prepared through regeneration of trimethylsilyl cellulose (TMSC). The freestanding membrane can be transferred to any desired substrate and shows a normalized flux as high as 700 L m−2 h−1 bar−1 when supported by a porous alumina disc. According to filtration experiments, the membrane exhibits precise size-sieving performances with an estimated pore size between 1.5–3.5 nm depending on the regeneration period and initial TMSC concentration. A perfect discrimination of anionic molecules over neutral species is demonstrated. Moreover, the membrane demonstrates high reproducibility, high scale-up potential, and excellent stability over two months.

  18. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations.

    Science.gov (United States)

    Kapus, András; Janmey, Paul

    2013-07-01

    From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions. © 2013 American Physiological Society.

  19. A direct and at nanometer scale study of electrical charge distribution on membranes of alive cells

    Directory of Open Access Journals (Sweden)

    Marlière Christian

    2016-01-01

    Full Text Available In this paper is presented an innovative method to map in-vivo and at nanometer scale the electrical charge distribution on membranes of alive cells. It relies on a new atomic force microscopy (AFM mode based on an electro-mechanical coupling effect. Furthermore, an additional electrical signal detected by both the deflection of the AFM cantilever and simultaneous direct current measurements was detected at low scanning rates. It was attributed to the detection of the current stemming from ionic channels. It opens a new way to directly investigate in situ biological electrical surface processes involved in bacterial adhesion, biofilm formation, microbial fuel cells, etc.

  20. PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin; Guo, Jiaxin; Lee, Eui-Jong; Jeong, Sanghyun; Zhao, Yanhua; Wang, Zuankai; Leiknes, TorOve

    2016-01-01

    .4°) and roughness (Ra = 1,285mm). The zeta potential of E-PDMS membrane surface showed a higher negative value than that of a commercial PVDF (C-PVDF) membrane. These properties of E-PDMS membrane provided an antifouling in treating of differently-charged dyes

  1. Effect of a radial space-charge field on the movement of particles in a magneto-static field and under the influence of a circularly polarized wave

    International Nuclear Information System (INIS)

    Buffa, A.

    1967-06-01

    The effect of a circularly polarized wave on a cylindrical plasma in a axial magnetostatic field and a radial space-charge field proportional to r is studied. Single particle motion is considered. The electrostatic field produces a shift in the cyclotron resonance frequency and,in case of high charge density, a radial movement of the off-resonance particles. In these conditions a radio-frequency-particle resonance is also possible called 'drift-resonance'. The drift resonance can be produced, with whistler mode, and may be employed in ion acceleration. Afterwards parametrical resonances produced by space-charge field oscillations and collisional limits of theory are studied. Cases in which ion acceleration is possible are considered on the basis of a quantitative analysis of results. (author) [fr

  2. Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener

    Directory of Open Access Journals (Sweden)

    Masato Yasuura

    2014-04-01

    Full Text Available Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  3. Development of a sweetness sensor for aspartame, a positively charged high-potency sweetener.

    Science.gov (United States)

    Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi

    2014-04-23

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  4. Comparison and analysis of membrane fouling between flocculent sludge membrane bioreactor and granular sludge membrane bioreactor.

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    Full Text Available The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs, two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.

  5. Modeling electrically active viscoelastic membranes.

    Directory of Open Access Journals (Sweden)

    Sitikantha Roy

    Full Text Available The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism.

  6. Electric Field Mediated Ion Transport Through Charged Mesoporous Membranes

    NARCIS (Netherlands)

    Schmuhl, R.; de Lint, W.B.S.; Keizer, Klaas; van den Berg, Albert; ten Elshof, Johan E.; Burganos, Vasilis N.; Noble, Richard D.; Asaeda, Masashi; Ayral, Andre; LeRoux, Johann D.

    2003-01-01

    The transport of ions from aqueous solutions through a stacked Au/alpha-alumina/gamma-alumina/Au membrane under the influence of a dc potential difference is reported. The membrane shows high cation permselectivity at ionic strengths of ~1 mM at pH 4.3-6.5, which is associated with a combination of

  7. Fouling control mechanisms of demineralized water backwash: Reduction of charge screening and calcium bridging effects

    KAUST Repository

    Li, Sheng

    2011-12-01

    This paper investigates the impact of the ionic environment on the charge of colloidal natural organic matter (NOM) and ultrafiltration (UF) membranes (charge screening effect) and the calcium adsorption/bridging on new and fouled membranes (calcium bridging effect) by measuring the zeta potentials of membranes and colloidal NOM. Fouling experiments were conducted with natural water to determine whether the reduction of the charge screening effect and/or calcium bridging effect by backwashing with demineralized water can explain the observed reduction in fouling. Results show that the charge of both membranes and NOM, as measured by the zeta potential, became more negative at a lower pH and a lower concentration of electrolytes, in particular, divalent electrolytes. In addition, calcium also adsorbed onto the membranes, and consequently bridged colloidal NOM and membranes via binding with functional groups. The charge screening effect could be eliminated by flushing NOM and membranes with demineralized water, since a cation-free environment was established. However, only a limited amount of the calcium bridging connection was removed with demineralized water backwashes, so the calcium bridging effect mostly could not be eliminated. As demineralized water backwash was found to be effective in fouling control, it can be concluded that the reduction of the charge screening is the dominant mechanism for this. © 2011 Elsevier Ltd.

  8. Modification of electrical properties of polymer membranes by ion implantation

    International Nuclear Information System (INIS)

    Dworecki, K.; Hasegawa, T.; Sudlitz, K.; Wasik, S.

    2000-01-01

    This paper presents an experimental study of the electrical properties of polymer ion irradiated polyethylene terephthalate (PET) membranes. The polymer samples have been implanted with a variety of ions (O 5+ , N 4+ , Kr 9+ ) by the energy of 10 keV/q up to doses of 10 15 ions/cm 2 and then they were polarized in an electric field of 4.16x10 6 V/m at non-isothermal conditions. The electrical properties and the changes in the chemical structure of implanted membrane were measured by conductivity and discharge currents and FTIR spectra. Electrical conductivity of the membranes PET increases to 1-3 orders of magnitude after implantation and is determined by the charge transport caused by free space charge and by thermal detrapping of charge carriers. The spectra of thermally induced discharge current (TDC) shows that ion irradiated PET membranes are characterized by high ability to accumulate charge

  9. Adsorption and transport of charged vs. neutral hydrophobic molecules at the membrane of murine erythroleukemia (MEL) cells.

    Science.gov (United States)

    Zeng, Jia; Eckenrode, Heather M; Dai, Hai-Lung; Wilhelm, Michael J

    2015-03-01

    The adsorption and transport of hydrophobic molecules at the membrane surface of pre- and post-DMSO induced differentiated murine erythroleukemia (MEL) cells were examined by time- and wavelength-resolved second harmonic light scattering. Two medium (MEL cell, neutral BCP does not. It is suggested that an electrostatic interaction between the opposite charges of the cation and the MEL cell surface is the primary driving force for adsorption. Comparisons of adsorption density and free energy, measured at different pH and cell morphology, indicate that the interaction is predominantly through sialic acid carboxyl groups. MG cation adsorption densities have been determined as (0.6±0.3)×10(6) μm(-2) on the surface of undifferentiated MEL cells, and (1.8±0.5)×10(7) μm(-2) on differentiated MEL cells, while the deduced adsorption free energies are effectively identical (ca. -10.9±0.1 and -10.8±0.1 kcal mol(-1), respectively). The measured MG densities indicate that the total number of surface carboxyl groups is largely conserved following differentiation, and therefore the density of carboxylic groups is much larger on the differentiated cell surface than the undifferentiated one. Finally, in contrast to synthetic liposomes and bacterial membranes, surface adsorbed MG cations are unable to traverse the MEL cell membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Current-Induced Membrane Discharge

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo; van Soestbergen, M.; Mani, A.

    2012-01-01

    . Salt depletion leads to a large electric field resulting in a local pH shift within the membrane with the effect that the membrane discharges and loses its ion selectivity. Since salt co-ions, H+ ions, and OH- ions contribute to OLC, CIMD interferes with electrodialysis (salt counterion removal...... neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by "current-induced membrane discharge'' (CIMD), even in the absence of fluid flow, in ion-exchange membranes much thicker than the local Debye screening length...

  11. Effect of electric charge on the transperitoneal transport of plasma proteins during CAPD

    NARCIS (Netherlands)

    Buis, B.; Koomen, G. C.; Imholz, A. L.; Struijk, D. G.; Reddingius, R. E.; Arisz, L.; Krediet, R. T.

    1996-01-01

    BACKGROUND: Controversy exists as to whether electric charges of plasma proteins influence their transport across the peritoneal membrane during CAPD. Fixed negative charges in the peritoneal membrane are diminished during peritonitis in rats. METHODS: Peritoneal clearances of 10 proteins and their

  12. Relating membrane potential to impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Eugen Gheorghiu

    2011-12-01

    Full Text Available Non-invasive, label-free assessment of membrane potential of living cells is still a challenging task. The theory linking membrane potential to the low frequency α dispersion exhibited by suspensions of spherical shelled particles (presenting a net charge distribution on the inner side of the shell has been pioneered in our previous studies with emphasis on the permittivity spectra. Whereas α dispersion is related to a rather large variation exhibited by the permittivity spectrum, we report that the related decrement presented by the impedance magnitude spectrum is either extremely small, or occurs (for large cells at very small frequencies (~mHz explaining the lack of experimental bioimpedance data on the matter. We stress that appropriate choice of the parameters (as revealed by the microscopic model may enable access to membrane potential as well as to other relevant parameters when investigating living cells and charged lipid vesicles. We analyse the effect on the low frequency of the permittivity and impedance spectra of: I. Parameters pertaining to cell membrane i.e. (i membrane potential (through the amount of the net charge on the inner side of the membrane, (ii size of the cells/vesicles, (iii conductivity of the membrane; II. Parameters of the extra cellular medium (viscosity and conductivity. The applicability of the study has far reaching implications for basic (life sciences (providing non-invasive access to the dynamics of relevant cell parameters as well as for biosensing applications, e.g. assessment of cytotoxicity of a wide range of stimuli. doi:10.5617/jeb.214 J Electr Bioimp, vol. 2, pp. 93-97, 2011

  13. Rapid, directed transport of DC-SIGN clusters in the plasma membrane.

    Science.gov (United States)

    Liu, Ping; Weinreb, Violetta; Ridilla, Marc; Betts, Laurie; Patel, Pratik; de Silva, Aravinda M; Thompson, Nancy L; Jacobson, Ken

    2017-11-01

    C-type lectins, including dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), are all-purpose pathogen receptors that exist in nanoclusters in plasma membranes of dendritic cells. A small fraction of these clusters, obvious from the videos, can undergo rapid, directed transport in the plane of the plasma membrane at average speeds of more than 1 μm/s in both dendritic cells and MX DC-SIGN murine fibroblasts ectopically expressing DC-SIGN. Surprisingly, instantaneous speeds can be considerably greater. In MX DC-SIGN cells, many cluster trajectories are colinear with microtubules that reside close to the ventral membrane, and the microtubule-depolymerizing drug, nocodazole, markedly reduced the areal density of directed movement trajectories, suggesting a microtubule motor-driven transport mechanism; by contrast, latrunculin A, which affects the actin network, did not depress this movement. Rapid, retrograde movement of DC-SIGN may be an efficient mechanism for bringing bound pathogen on the leading edge and projections of dendritic cells to the perinuclear region for internalization and processing. Dengue virus bound to DC-SIGN on dendritic projections was rapidly transported toward the cell center. The existence of this movement within the plasma membrane points to an unexpected lateral transport mechanism in mammalian cells and challenges our current concepts of cortex-membrane interactions.

  14. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto; Elimelech, Menachem

    2012-01-01

    groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact

  15. Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators.

    Science.gov (United States)

    Zhao, Pengfei; Soin, Navneet; Prashanthi, Kovur; Chen, Jinkai; Dong, Shurong; Zhou, Erping; Zhu, Zhigang; Narasimulu, Anand Arcot; Montemagno, Carlo D; Yu, Liyang; Luo, Jikui

    2018-02-14

    Electrospinning is a simple, versatile technique for fabricating fibrous nanomaterials with the desirable features of extremely high porosities and large surface areas. Using emulsion electrospinning, polytetrafluoroethylene/polyethene oxide (PTFE/PEO) membranes were fabricated, followed by a sintering process to obtain pure PTFE fibrous membranes, which were further utilized against a polyamide 6 (PA6) membrane for vertical contact-mode triboelectric nanogenerators (TENGs). Electrostatic force microscopy (EFM) measurements of the sintered electrospun PTFE membranes revealed the presence of both positive and negative surface charges owing to the transfer of positive charge from PEO which was further corroborated by FTIR measurements. To enhance the ensuing triboelectric surface charge, a facile negative charge-injection process was carried out onto the electrospun (ES) PTFE subsequently. The fabricated TENG gave a stabilized peak-to-peak open-circuit voltage (V oc ) of up to ∼900 V, a short-circuit current density (J sc ) of ∼20 mA m -2 , and a corresponding charge density of ∼149 μC m -2 , which are ∼12, 14, and 11 times higher than the corresponding values prior to the ion-injection treatment. This increase in the surface charge density is caused by the inversion of positive surface charges with the simultaneous increase in the negative surface charge on the PTFE surface, which was confirmed by using EFM measurements. The negative charge injection led to an enhanced power output density of ∼9 W m -2 with high stability as confirmed from the continuous operation of the ion-injected PTFE/PA6 TENG for 30 000 operation cycles, without any significant reduction in the output. The work thus introduces a relatively simple, cost-effective, and environmentally friendly technique for fabricating fibrous fluoropolymer polymer membranes with high thermal/chemical resistance in TENG field and a direct ion-injection method which is able to dramatically improve the

  16. Currents and radiation from the large D black hole membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Sayantani; Mandal, Anup Kumar [Department of Physics, Indian Institute of Technology Kanpur,Kalyanpur, Kanpur, Uttar Pradesh 208016 (India); Mandlik, Mangesh [Department of Theoretical Physics, Tata Institute of Fundamental Research,1, Homi Bhabha Road, Colaba, Mumbai, Maharashtra 400005 (India); Mehta, Umang [Department of Physics, Indian Institute of Technology Bombay,JVLR, Mumbai, Maharashtra 400076 (India); Minwalla, Shiraz [Department of Theoretical Physics, Tata Institute of Fundamental Research,1, Homi Bhabha Road, Colaba, Mumbai, Maharashtra 400005 (India); Sharma, Utkarsh [Department of Electrical Engineering, Indian Institute of Technology Bombay,JVLR, Mumbai, Maharashtra 400076 (India); Thakur, Somyadip [Department of Theoretical Physics, Tata Institute of Fundamental Research,1, Homi Bhabha Road, Colaba, Mumbai, Maharashtra 400005 (India)

    2017-05-18

    It has recently been demonstrated that black hole dynamics in a large number of dimensions D reduces to the dynamics of a codimension one membrane propagating in flat space. In this paper we define a stress tensor and charge current on this membrane and explicitly determine these currents at low orders in the expansion in (1/D). We demonstrate that dynamical membrane equations of motion derived in earlier work are simply conservation equations for our stress tensor and charge current. Through the paper we focus on solutions of the membrane equations which vary on a time scale of order unity. Even though the charge current and stress tensor are not parametrically small in such solutions, we show that the radiation sourced by the corresponding membrane currents is generically of order (1/(D{sup D})). In this regime it follows that the ‘near horizon’ membrane degrees of freedom are decoupled from asymptotic flat space at every perturbative order in the (1/D) expansion. We also define an entropy current on the membrane and use the Hawking area theorem to demonstrate that the divergence of the entropy current is point wise non negative. We view this result as a local form of the second law of thermodynamics for membrane motion.

  17. Charge transport in the electrospun nanofiber composite membrane's three-dimensional fibrous structure

    Science.gov (United States)

    DeGostin, Matthew B.; Peracchio, Aldo A.; Myles, Timothy D.; Cassenti, Brice N.; Chiu, Wilson K. S.

    2016-03-01

    In this paper, a Fiber Network (FN) ion transport model is developed to simulate the three-dimensional fibrous microstructural morphology that results from the electrospinning membrane fabrication process. This model is able to approximate fiber layering within a membrane as well as membrane swelling due to water uptake. The discrete random fiber networks representing membranes are converted to resistor networks and solved for current flow and ionic conductivity. Model predictions are validated by comparison with experimental conductivity data from electrospun anion exchange membranes (AEM) and proton exchange membranes (PEM) for fuel cells as well as existing theories. The model is capable of predicting in-plane and thru-plane conductivity and takes into account detailed membrane characteristics, such as volume fraction, fiber diameter, fiber conductivity, and membrane layering, and as such may be used as a tool for advanced electrode design.

  18. Modification of electrical properties of polymer membranes by ion implantation (II)

    International Nuclear Information System (INIS)

    Dworecki, K.; Hasegawa, T.; Sudlitz, K.; Slezak, A.; Wasik, S.

    2001-01-01

    In the present work we report on the results of an experimental study of the electrical properties of polymer ion irradiated polyethylene terephthalate (PET) membranes. The polymer samples have been implanted under vacuum at room temperature with a variety of ions (C 4+ , O 6+ , S 7+ ) at energy of 10 keV/q up to the dose of 10 15 ions/cm 2 and then they were polarized in an electric field of 4.16x10 6 V/m at non-isothermal conditions. The electrical properties and changes in chemical structure of ion implanted membranes were studied by the conductivity and discharge currents measurements, FTIR spectra and differential thermal analysis. The electrical conductivity of the PET membranes is determined by the charge transport caused by free space charge and by thermal releasing of charge carriers. The spectra of thermally induced discharge current (TDC) shows that ion irradiated PET membranes are characterized by high ability of charge accumulation

  19. Dermcidin, an anionic antimicrobial peptide: influence of lipid charge, pH and Zn2+ on its interaction with a biomimetic membrane.

    Science.gov (United States)

    Becucci, Lucia; Valensin, Daniela; Innocenti, Massimo; Guidelli, Rolando

    2014-01-28

    The mechanism of membrane permeabilization by dermcidin (DCD-1L), an antimicrobial peptide present in human sweat, was investigated at a mercury-supported monolayer of dioleoylphosphatidylcholine (DOPC) or dioleoylphosphatidylserine (DOPS) and at a mercury-supported tethered bilayer lipid membrane (tBLM) consisting of a thiolipid (DPTL) with a DOPC or DOPS monolayer self-assembled on top of it. In an unbuffered solution of pH 5.4, DCD-1L is almost neutral and permeabilizes a DPTL/DOPS tBLM at transmembrane potentials, ϕtrans, which are physiological. In a pH 7 buffer solution DCD-1L bears two negative charges and has no effect on a DPTL/DOPC tBLM, whereas it permeabilizes a DPTL/DOPS tBLM only outside the physiological ϕtrans range; however, the presence of zinc ion induces DCD-1L to permeabilize the DPTL/DOPS tBLM at physiological ϕtrans values. The effect of zinc ions suggests a DCD-1L conformation with its positive N-terminus embedded in the lipid bilayer and the negative C terminus floating on the membrane surface. This conformation can be stabilized by a zinc ion bridge between the His(38) residue of the C terminus and the carboxyl group of DOPS. Chronocoulometric potential jumps from ϕtrans ≅ +160 mV to sufficiently negative values yield charge transients exhibiting a sigmoidal shape preceded by a relatively long "foot". This behavior is indicative of ion-channel formation characterized by disruption of DCD-1L clusters adsorbed on top of the lipid bilayer, incorporation of the resulting monomers and their aggregation into hydrophilic pores by a mechanism of nucleation and growth.

  20. Slow sedimentation and deformability of charged lipid vesicles.

    Directory of Open Access Journals (Sweden)

    Iván Rey Suárez

    Full Text Available The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both experimentally and from the computer simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the presence of charge in the membrane increases its rigidity.

  1. Spontaneous charged lipid transfer between lipid vesicles.

    Science.gov (United States)

    Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul

    2017-10-03

    An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.

  2. Performance evaluation of carbon nanotube enhanced membranes for SWRO pretreatment application

    KAUST Repository

    Lee, Jieun

    2016-04-25

    Multi-wall carbon nanotube (MWCNT) membrane was tested for SWRO pretreatment. The MWCNT membrane itself showed a superior permeate flux (321.3 LMH/bar), which was 4-times as polyethersulfone ultrafiltration (PES-UF) membrane. Reduction of dissolved organic matter improved to 66% with fewer amounts of powder activated carbon (PAC) (0.5 g/L) in MWCNT membrane filtration maintaining a high permeate flux of 600 LMH/bar. It was due to the increased porosity (84.5%) and hydrophilicity (52.9°) by incorporating MWCNT/polyaniline into PES membrane. Ionic strength affected organic removal in seawater filtration by altering electrostatic interaction between organic matter and surface charge of the positively charged MWCNT membrane.

  3. Influence of Low Speed Rolling Movement on High Electrical Breakdown for Water Dielectric with Microsecond Charging

    International Nuclear Information System (INIS)

    Zhang Zicheng; Zhang Jiande; Yang Jianhua

    2006-01-01

    By means of a coaxial apparatus, high electrical breakdown experiments are carried out in the rest state and the low speed rolling state with microsecond charging and the experimental results are analyzed. The conclusions are: (1) the breakdown stress of water dielectric in the rolling state is in good agreement with that in Martin formula, and so is that in the rest state; (2) the breakdown stress of water dielectric in the rolling state is about 5% higher than that in the rest state; (3) the results simulated with ANSYS demonstrate that the breakdown stress of water dielectric decreases when the bubbles appear near the surface of electrodes; (4) the primary mechanism to increase the breakdown stress of water dielectric in the rolling state is that the bubbles are driven away and the number of bubbles near the surface of electrodes is decreased by rolling movement

  4. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-01-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  5. Actomyosin organisation for adhesion, spreading, growth and movement in chick fibroblasts

    DEFF Research Database (Denmark)

    Couchman, J R; Rees, D A

    1979-01-01

    for anchorage-dependent growth, rather than facilitate their movement. The fibroblasts specialized for movement from the explants, though equally well spread, make contact with substratum through extensive areas of relatively unspecialized membrane, have less well developed stress fibres and a low growth rate....

  6. Dosimeter charging apparatus

    International Nuclear Information System (INIS)

    Reuter, F.A.; Moorman, Ch.J.

    1985-01-01

    An apparatus for charging a dosimeter which has a capacitor connected between first and second electrodes and a movable electrode in a chamber electrically connected to the first electrode. The movable electrode deflects varying amounts depending upon the charge present on said capacitor. The charger apparatus includes first and second charger electrodes couplable to the first and second dosimeter electrodes. To charge the dosimeter, it is urged downwardly into a charging socket on the charger apparatus. The second dosimeter electrode, which is the dosimeter housing, is electrically coupled to the second charger electrode through a conductive ring which is urged upwardly by a spring. As the dosimeter is urged into the socket, the ring moves downwardly, in contact with the second charger electrode. As the dosimeter is further urged downwardly, the first dosimeter electrode and first charger electrode contact one another, and an insulator post carrying the first and second charger electrodes is urged downwardly. Downward movement of the post effects the application of a charging potential between the first and second charger electrodes. After the charging potential has been applied, the dosimeter is moved further into the charging socket against the force of a relatively heavy biasing spring until the dosimeter reaches a mechanical stop in the charging socket

  7. Membrane transport of anandamide through resealed human red blood cell membranes

    DEFF Research Database (Denmark)

    Bojesen, I.N.; Hansen, Harald S.

    2005-01-01

    The use of resealed red blood cell membranes (ghosts) allows the study of the transport of a compound in a nonmetabolizing system with a biological membrane. Transmembrane movements of anandamide (N-arachidonoylethanolamine, arachidonoylethanolamide) have been studied by exchange efflux experiments...... at 0°C and pH 7.3 with albumin-free and albumin-filled human red blood cell ghosts. The efflux kinetics is biexponential and is analyzed in terms of compartment models. The distribution of anandamide on the membrane inner to outer leaflet pools is determined to be 0.275 ± 0.023, and the rate constant...... of unidirectional flux from inside to outside is 0.361 ± 0.023 s. The rate constant of unidirectional flux from the membrane to BSA in the medium ([BSA]) increases with the square root of [BSA] in accordance with the theory of an unstirred layer around ghosts. Anandamide passed through the red blood cell membrane...

  8. Influence of the membrane environment on cholesterol transfer.

    Science.gov (United States)

    Breidigan, Jeffrey Michael; Krzyzanowski, Natalie; Liu, Yangmingyue; Porcar, Lionel; Perez-Salas, Ursula

    2017-12-01

    Cholesterol, an essential component in biological membranes, is highly unevenly distributed within the cell, with most localized in the plasma membrane while only a small fraction is found in the endoplasmic reticulum, where it is synthesized. Cellular membranes differ in lipid composition and protein content, and these differences can exist across their leaflets too. This thermodynamic landscape that cellular membranes impose on cholesterol is expected to modulate its transport. To uncover the role the membrane environment has on cholesterol inter- and intra-membrane movement, we used time-resolved small angle neutron scattering to study the passive movement of cholesterol between and within membranes with varying degrees of saturation content. We found that cholesterol moves systematically slower as the degree of saturation in the membranes increases, from a palmitoyl oleyl phosphotidylcholine membrane, which is unsaturated, to a dipalmitoylphosphatidylcholine (DPPC) membrane, which is fully saturated. Additionally, we found that the energetic barrier to move cholesterol in these phosphatidylcholine membranes is independent of their relative lipid composition and remains constant for both flip-flop and exchange at ∼100 kJ/mol. Further, by replacing DPPC with the saturated lipid palmitoylsphingomyelin, an abundant saturated lipid of the outer leaflet of the plasma membrane, we found the rates decreased by a factor of two. This finding is in stark contrast with recent molecular dynamic simulations that predict a dramatic slow-down of seven orders of magnitude for cholesterol flipping in membranes with a similar phosphocholine and SM lipid composition. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. On calculation of the electrostatic potential of a phosphatidylinositol phosphate-containing phosphatidylcholine lipid membrane accounting for membrane dynamics.

    Directory of Open Access Journals (Sweden)

    Jonathan C Fuller

    Full Text Available Many signaling events require the binding of cytoplasmic proteins to cell membranes by recognition of specific charged lipids, such as phosphoinositol-phosphates. As a model for a protein-membrane binding site, we consider one charged phosphoinositol phosphate (PtdIns(3P embedded in a phosphatidylcholine bilayer. As the protein-membrane binding is driven by electrostatic interactions, continuum solvent models require an accurate representation of the electrostatic potential of the phosphoinositol phosphate-containing membrane. We computed and analyzed the electrostatic potentials of snapshots taken at regular intervals from molecular dynamics simulations of the bilayer. We observe considerable variation in the electrostatic potential of the bilayer both along a single simulation and between simulations performed with the GAFF or CHARMM c36 force fields. However, we find that the choice of GAFF or CHARMM c36 parameters has little effect on the electrostatic potential of a given configuration of the bilayer with a PtdIns(3P embedded in it. From our results, we propose a remedian averaging method for calculating the electrostatic potential of a membrane system that is suitable for simulations of protein-membrane binding with a continuum solvent model.

  10. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.; Cassady, Harrison J.; Paul, Donald R.; Logan, Bruce E.; Hickner, Michael A.

    2014-01-01

    -ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity. This journal is

  11. Localization and movement of newly synthesized cholesterol in rat ovarian granulosa cells

    International Nuclear Information System (INIS)

    Lange, Y.; Schmit, V.M.; Schreiber, J.R.

    1988-01-01

    The distribution and movement of cholesterol were studied in granulosa cells from the ovaries of estrogen-stimulated hypophysectomized immature rats cultured in serum-free medium. Plasma membrane cholesterol was distinguished from intracellular cholesterol with cholesterol oxidase, an enzyme that converts cell surface cholesterol to cholestenone, leaving intracellular cholesterol untouched. Using this approach we showed that 82% of unesterified cholesterol was associated with the plasma membrane in granulosa cells cultured for 48 h in serum-free medium in both the presence and absence of added androstenedione and FSH. FSH and androstenedione stimulated a marked increase in steroid hormone (progestin) production. The movement of newly synthesized cholesterol to the plasma membrane also was followed using cholesterol oxidase. Newly synthesized cholesterol reached the plasma membrane too rapidly to be measured in unstimulated cells (t1/2 less than 20 min); however, in cells stimulated by FSH and androstenedione, this rate was considerably slower (t1/2 approximately 2h). Therefore, cholesterol movement to the plasma membrane appears to be regulated by gonadotropins in these cells. We tested whether steroid biosynthesis used all cell cholesterol pools equally. To this end we administered [3H]acetate and [14C]acetate at different times and determined their relative specific contents in various steroids after defined intervals. The relative ages of the steroids (youngest to oldest) were: lanosterol, progestins, intracellular cholesterol, and plasma membrane cholesterol. This finding suggests that progestins use newly synthesized intracellular cholesterol in preference to preexisting intracellular or cell surface cholesterol

  12. Smart coating process of proton-exchange membrane for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Leu, Hoang-Jyh; Chiu, Kuo-Feng; Lin, Chiu-Yue

    2013-01-01

    Highlights: ► Using oxygen plasma and smart coating technique for membrane modification. ► Oxygen plasma treatment can increase the reaction area of the membrane. ► AFM, SEM, FT-IR, XPS, EIS spectra can prove the surface treatment process. ► Nafion membrane modification can reduce Rct and enhance current density. - Abstract: The interfaces of electrolyte|catalyst|electrode play an important role in the performance of proton-exchange membrane fuel cells (PEMFCs). Increasing the interface effective area and lowering the charge transfer resistance of the interface are significant issues to promote the cell performance. In this study, oxygen plasma treatment was used to increase the surface roughness of Nafion®117 membrane, and then a smart coating process was applied to fabricate the initial Pt/C catalyst layer, which served to reduce the charge transfer resistance of the interface. The morphology and surface characteristics of membranes have been qualified by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. These results show that the plasma treatments and smart coating processes were effective in reducing the interface charge transfer resistance. At optimal condition, the interface charge transfer resistance was 0.45 Ω/cm 2 which was 1–2 order less than the untreated ones

  13. Tunable-Porosity Membranes From Discrete Nanoparticles

    Science.gov (United States)

    Marchetti, Patrizia; Mechelhoff, Martin; Livingston, Andrew G.

    2015-01-01

    Thin film composite membranes were prepared through a facile single-step wire-wound rod coating procedure in which internally crosslinked poly(styrene-co-butadiene) polymer nanoparticles self-assembled to form a thin film on a hydrophilic ultrafiltration support. This nanoparticle film provided a defect-free separation layer 130–150 nm thick, which was highly permeable and able to withstand aggressive pH conditions beyond the range of available commercial membranes. The nanoparticles were found to coalesce to form a rubbery film when heated above their glass transition temperature (Tg). The retention properties of the novel membrane were strongly affected by charge repulsion, due to the negative charge of the hydroxyl functionalized nanoparticles. Porosity was tuned by annealing the membranes at different temperatures, below and above the nanoparticle Tg. This enabled fabrication of membranes with varying performance. Nanofiltration properties were achieved with a molecular weight cut-off below 500 g mol−1 and a low fouling tendency. Interestingly, after annealing above Tg, memory of the interstitial spaces between the nanoparticles persisted. This memory led to significant water permeance, in marked contrast to the almost impermeable films cast from a solution of the same polymer. PMID:26626565

  14. Using Pre-Assessment and In-Class Questions to Change Student Understanding of Molecular Movements

    Directory of Open Access Journals (Sweden)

    Jia Shi

    2017-05-01

    Full Text Available Understanding how different types of molecules move through cell membranes is a fundamental part of cell biology. To identify and address student misconceptions surrounding molecular movement through cell membranes, we surveyed student understanding on this topic using pre-class questions, in-class clicker questions, and subsequent exam questions in a large introductory biology course. Common misconceptions identified in student responses to the pre-class assessment questions were used to generate distractors for clicker questions. Two-tier diagnostic clicker questions were used to probe incoming common student misconceptions (first tier and their reasoning (second tier. Two subsequent lectures with assessment clicker questions were used to help students construct a new framework to understand molecular movement through cell membranes. Comparison of pre-assessment and post-assessment (exam performance showed dramatic improvement in students’ understanding of molecular movement: student answers to exam questions were 74.6% correct with correct reasoning while only 1.3% of the student answers were correct with correct reasoning on the pre-class assessment. Our results show that students’ conceptual understanding of molecular movement through cell membranes progressively increases through discussions of a series of clicker questions and suggest that this clicker-based teaching strategy was highly effective in correcting common student misconceptions on this topic.

  15. Structure/property relationships in polymer membranes for water purification and energy applications

    Science.gov (United States)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  16. Permeability of cartilage to neutral and charged polysaccharides

    International Nuclear Information System (INIS)

    Haselton, F.R.; Fishman, A.P.; Sampson, P.M.

    1986-01-01

    The authors investigated macromolecular transport through a negatively charged membrane made from articular cartilage. Sections (150-1000 μ) of cartilage obtained at autopsy from a horse fetlock were clamped between two 15 ml chambers containing .15 M sodium chloride in pH 7.4, .004 M phosphate. Tracers were introduced into chamber A and transport was determined by radiolabel transferred to chamber B over time. Structural integrity was preserved as shown by histological staining. In three experiments, size selectivity was measured using polydisperse uncharged 3 H-dextran. The authors determined the elution patterns from a calibrated Sephadex S300 column of samples from each chamber. The relative transport of molecules over the size range of 1.0 to 10.0 nm was determined by comparing the two elution patterns. They found a sharp cutoff at an effective molecular radius of 2.5 nm. In an additional three experiments, charge selectivity was investigated by comparing the simultaneous transport of 3 H-inulin and 14 C-carboxy inulin. Both tracers have an effective molecular radius of 1.1 nm. The negatively charged carboxy inulin was transferred 15% faster than the uncharged inulin. They conclude: a) there is a maximum effective radius for uncharged dextrans that can be transferred across this membrane which is smaller than that reported for proteins and b) negatively charged cartilagenous membranes do not retard the transport of negatively charged inulin

  17. Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals.

    Directory of Open Access Journals (Sweden)

    R R Poznanski

    Full Text Available A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge 'soakage' is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge 'soakage' have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell's equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by

  18. Investigation on the conditions mitigating membrane fouling caused by TiO2 deposition in a membrane photocatalytic reactor (MPR) used for dye wastewater treatment

    International Nuclear Information System (INIS)

    Damodar, Rahul-Ashok; You, Sheng-Jie; Chiou, Guan-Wei

    2012-01-01

    Highlights: ► The charge differences between particle and membrane accelerate the intensity of fouling and binding of TiO 2 particles. ► Severe fouling at pH 5 and low fouling at pH ≥ 7 at all flux conditions. ► The presence of a very thin TiO 2 cake layer can alter the hydrophilicity of the membrane surface. ► The resistance offered by dense TiO 2 cake layer could dominate the hydrophilic effect of TiO 2 particles. - Abstract: In this study, the effects of MPR's operating conditions such as permeate flux, solution pH, and membrane hydrophobicity on separation characteristics and membrane fouling caused by TiO 2 deposition were investigated. The extent of fouling was measured in terms of TMP and tank turbidity variation. The results showed that, at mildly acidic conditions (pH ∼ 5), the turbidity within the tank decreased and the extent of turbidity drop increased with increasing flux for all the membranes. On the other hand, at pH ≥ 7, the turbidity remained constant at all flux and for all membranes tested. The fouling variation at different pH was closely linked with the surface charge (zeta potential) and hydrophilicity of both membrane and particles. It was observed that the charge differences between the particles and membranes accelerate the intensity of fouling and binding of TiO 2 particles on the membrane surface under different pH conditions. The presence of a very thin layer of TiO 2 can alter the hydrophilicity of the membranes and can slightly decrease the TMP (filtration resistance) of the fouled membranes. Besides, the resistance offered by the dense TiO 2 cake layer would dominate this hydrophilic effect of TiO 2 particles, and it may not alter the filtration resistance of the fouled membranes.

  19. Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

    Directory of Open Access Journals (Sweden)

    Pavel V. Komarov

    2013-09-01

    Full Text Available Atomistic and first-principles molecular dynamics simulations are employed to investigate the structure formation in a hydrated Nafion membrane and the solvation and transport of protons in the water channel of the membrane. For the water/Nafion systems containing more than 4 million atoms, it is found that the observed microphase-segregated morphology can be classified as bicontinuous: both majority (hydrophobic and minority (hydrophilic subphases are 3D continuous and organized in an irregular ordered pattern, which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25–50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion-conducting hydrophilic channel within the Nafion membrane and studied it with quantum molecular dynamics. The extensive 120 ps-long density functional theory (DFT-based simulations of charge migration in the 1200-atom model of the nanochannel consisting of Nafion chains and water molecules allowed us to observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping mechanism as a significant contributor to the proton conductivity.

  20. Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties.

    Science.gov (United States)

    Doktorova, Milka; Heberle, Frederick A; Kingston, Richard L; Khelashvili, George; Cuendet, Michel A; Wen, Yi; Katsaras, John; Feigenson, Gerald W; Vogt, Volker M; Dick, Robert A

    2017-11-07

    Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein's matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here, using a broad set of in vitro and in silico techniques we addressed molecular mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    DEFF Research Database (Denmark)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far...

  2. Polyamide desalination membrane characterization and surface modification to enhance fouling resistance.

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mukul M. (Univeristy of Texas at Austin, Austin, TX); Freeman, Benny D. (Univeristy of Texas at Austin, Austin, TX); Van Wagner, Elizabeth M. (Univeristy of Texas at Austin, Austin, TX); Hickner, Michael A. (Pennsylvania State University, University Park, PA); Altman, Susan Jeanne

    2010-08-01

    The market for polyamide desalination membranes is expected to continue to grow during the coming decades. Purification of alternative water sources will also be necessary to meet growing water demands. Purification of produced water, a byproduct of oil and gas production, is of interest due to its dual potential to provide water for beneficial use as well as to reduce wastewater disposal costs. However, current polyamide membranes are prone to fouling, which decreases water flux and shortens membrane lifetime. This research explored surface modification using poly(ethylene glycol) diglycidyl ether (PEGDE) to improve the fouling resistance of commercial polyamide membranes. Characterization of commercial polyamide membrane performance was a necessary first step before undertaking surface modification studies. Membrane performance was found to be sensitive to crossflow testing conditions. Concentration polarization and feed pH strongly influenced NaCl rejection, and the use of continuous feed filtration led to higher water flux and lower NaCl rejection than was observed for similar tests performed using unfiltered feed. Two commercial polyamide membranes, including one reverse osmosis and one nanofiltration membrane, were modified by grafting PEGDE to their surfaces. Two different PEG molecular weights (200 and 1000) and treatment concentrations (1% (w/w) and 15% (w/w)) were studied. Water flux decreased and NaCl rejection increased with PEGDE graft density ({micro}g/cm{sup 2}), although the largest changes were observed for low PEGDE graft densities. Surface properties including hydrophilicity, roughness and charge were minimally affected by surface modification. The fouling resistance of modified and unmodified membranes was compared in crossflow filtration studies using model foulant solutions consisting of either a charged surfactant or an oil in water emulsion containing n-decane and a charged surfactant. Several PEGDE-modified membranes demonstrated improved

  3. Ion transport restriction in mechanically strained separator membranes

    Science.gov (United States)

    Cannarella, John; Arnold, Craig B.

    2013-03-01

    We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the α and γ parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression.

  4. Non-enzymatic access to the plasma membrane of Medicago root hairs by laser microsurgery

    Energy Technology Data Exchange (ETDEWEB)

    Kurkdjian, A.; Leitz, G.; Manigault, P.; Harim, A.; Greulich, K. O.

    1993-07-01

    Using UV laser microsurgery, the cell walls of root hairs from Medicago sativa (alfalfa) were perforated under plasmolysing conditions, giving direct access to the plasma membrane without enzyme treatment. The opening in the cell wall of a few μm in diameter results in immediate movement of the protoplasm and partial or complete extrusion of the cell contents. The movement of the protoplasm is retarded by increases in calcium concentration. The calcium-dependency of the movement of the protoplasm allows us to obtain preferentially the extrusion of protoplasm, or to gain access to a small area of plasma membrane in situ. The complete protoplasm can be expelled, to form a protoplast. Fluorescein diacetate staining indicated esterase activity and membrane integrity of the protoplasts. Microscopic examination revealed organelle movement and the presence of a nucleus. The plasma membrane was free from cell wall fragments, as shown by Tinopal staining. Conditions for obtaining plasmolysis without disturbing the physiology of the root hairs too much were achieved by slow, stepwise and reversible plasmolysis. Cytoplasmic streaming in root hairs was maintained during plasmolysis and laser microperforation. This laser technique should be suitable for the performance of electrophysiological studies using the patch-clamp technique on plasma membrane from non-enzyme-treated cells. (author)

  5. Non-enzymatic access to the plasma membrane of Medicago root hairs by laser microsurgery

    International Nuclear Information System (INIS)

    Kurkdjian, A.; Leitz, G.; Manigault, P.; Harim, A.; Greulich, K.O.

    1993-01-01

    Using UV laser microsurgery, the cell walls of root hairs from Medicago sativa (alfalfa) were perforated under plasmolysing conditions, giving direct access to the plasma membrane without enzyme treatment. The opening in the cell wall of a few μm in diameter results in immediate movement of the protoplasm and partial or complete extrusion of the cell contents. The movement of the protoplasm is retarded by increases in calcium concentration. The calcium-dependency of the movement of the protoplasm allows us to obtain preferentially the extrusion of protoplasm, or to gain access to a small area of plasma membrane in situ. The complete protoplasm can be expelled, to form a protoplast. Fluorescein diacetate staining indicated esterase activity and membrane integrity of the protoplasts. Microscopic examination revealed organelle movement and the presence of a nucleus. The plasma membrane was free from cell wall fragments, as shown by Tinopal staining. Conditions for obtaining plasmolysis without disturbing the physiology of the root hairs too much were achieved by slow, stepwise and reversible plasmolysis. Cytoplasmic streaming in root hairs was maintained during plasmolysis and laser microperforation. This laser technique should be suitable for the performance of electrophysiological studies using the patch-clamp technique on plasma membrane from non-enzyme-treated cells. (author)

  6. Structure and hydration of membranes embedded with voltage-sensing domains.

    Science.gov (United States)

    Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J Alfredo; Schow, Eric V; Worcester, David L; Gawrisch, Klaus; Tobias, Douglas J; White, Stephen H; Swartz, Kenton J

    2009-11-26

    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.

  7. RETENTION OF HUMIC ACID FROM WATER BY NANOFILTRATION MEMBRANE AND INFLUENCE OF SOLUTION CHEMISTRY ON MEMBRANE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    M. A. Zazouli, S. Nasseri, A. H. Mahvi, M. Gholami, A. R. Mesdaghinia, M. Younesian

    2008-01-01

    Full Text Available The objectives of this research were to investigate the rejection efficiency of salt and hydrophobic fraction of natural organic matter, to study the flux decline behavior with a spiral wound nanofiltration membrane, and also to survey the influence of water chemistry on membrane performance. Experiments were conducted using a cross flow pilot-scale membrane unit with a full circulation mode. Humic acid was used as hydrophobic organic matter and NaCl as background electrolyte. Results showed that flux reduction increased with increasing ionic strength and humic acid concentration, and with lower pH. The rejection efficiency of organic and salt decreased with the decrease in pH and increase in ionic strength, because of osmotic pressure increase, leading to permeate flux decline and decrease in salt rejection. In addition, the improved salt rejection was likely due to Donnan exclusion by humic material close to membrane surfaces. The average rejection efficiency of humic acid and salt ranged between 91.2%-95.25% and 63.6%-80%, respectively. Dissolved organic carbon concentration was less than 0.57mg/L in permeate for all experiments. With increasing organic concentration, the charge of the membrane surface has become more negative due to the adsorption of organic foulants on the membrane surface, and thus increased the electrostatic repulsion. However, the increasing surface charge had the potential to result in a larger molecular weight cut-off of a fouled membrane due to membrane swelling which can lead to lower rejection solutes. Therefore, results of this study indicated that membrane fouling may significantly affect the rejection of organic and ion solute.

  8. Simulating charge transport in flexible systems

    Directory of Open Access Journals (Sweden)

    Timothy Clark

    2015-12-01

    Full Text Available Systems in which movements occur on two significantly different time domains, such as organic electronic components with flexible molecules, require different simulation techniques for the two time scales. In the case of molecular electronics, charge transport is complicated by the several different mechanisms (and theoretical models that apply in different cases. We cannot yet combine time scales of molecular and electronic movement in simulations of real systems. This review describes our progress towards this goal.

  9. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation.

    Science.gov (United States)

    Therrien, Alexandre; Fournier, Alain; Lafleur, Michel

    2016-05-05

    The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the resulting fragmentation. In order to detail the role played by the C-terminal charges, we prepared a melittin analogue for which the four cationic amino acids in positions 21-24 were substituted with the polar residue citrulline, providing a peptide with the same length and amphiphilicity but with a lower net charge (+2). We compared the peptide bilayer affinity and the membrane fragmentation for bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS) mixtures. It is shown that neutralization of the C-terminal considerably increased melittin affinity for zwitterionic membranes. The unfavorable contribution associated with transferring the cationic C-terminal in a less polar environment was reduced, leaving the hydrophobic interactions, which drive the peptide insertion in bilayers, with limited counterbalancing interactions. The presence of negatively charged lipids (DPPS) in bilayers increased melittin binding by introducing attractive electrostatic interactions, the augmentation being, as expected, greater for native melittin than for its citrullinated analogue. The membrane fragmentation power of the peptide was shown to be controlled by electrostatic interactions and could be modulated by the charge carried by both the membrane and the lytic peptide. The analysis of the lipid composition of the extracted fragments from DPPC/DPPS bilayers revealed no lipid specificity. It is proposed that extended phase separations are more susceptible to lead to the extraction of a lipid species in a specific manner

  10. Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, Andreas; Vetri, Valeria; Vestergaard, Bente

    2015-01-01

    composed of anionic lipids, while the more physiologically relevant zwitterionic lipids remain intact. We present experimental evidence for significant morphological changes in zwitterionic membranes containing cholesterol, induced by α-synuclein oligomers. Depending on the lipid composition, model...... of cholesterol for mediating interactions between physiologically relevant membranes and α-synuclein....

  11. Voltage-Gated Transport of Nanoparticles across Free-Standing All-Carbon-Nanotube-Based Hollow-Fiber Membranes.

    Science.gov (United States)

    Wei, Gaoliang; Quan, Xie; Chen, Shuo; Fan, Xinfei; Yu, Hongtao; Zhao, Huimin

    2015-07-15

    Understanding the mechanism underlying controllable transmembrane transport observed in biological membranes benefits the development of next-generation separation membranes for a variety of important applications. In this work, on the basis of common structural features of cell membranes, a very simple biomimetic membrane system exhibiting gated transmembrane performance has been constructed using all-carbon-nanotube (CNT)-based hollow-fiber membranes. The conductive CNT membranes with hydrophobic pore channels can be positively or negatively charged and are consequently capable of regulating the transport of nanoparticles across their pore channels by their "opening" or "closing". The switch between penetration and rejection of nanoparticles through/by CNT membranes is of high efficiency and especially allows dynamic control. The underlying mechanism is that CNT pore channels with different polarities can prompt or prevent the formation of their noncovalent interactions with charged nanoparticles, resulting in their rejection or penetration by/through the CNT membranes. The theory about noncovalent interactions and charged pore channels may provide new insight into understanding the complicated ionically and bimolecularly gated transport across cell membranes and can contribute to many other important applications beyond the water purification and resource recovery demonstrated in this study.

  12. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    Science.gov (United States)

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. Copyright © 2015. Published by Elsevier B.V.

  13. Effect of adsorption of charged macromolecules on streaming and membrane potential values measured with a microporous polysulfone membrane

    DEFF Research Database (Denmark)

    Benavente, J.; Jonsson, Gunnar Eigil

    1997-01-01

    with a polyanion (dextran sulfate or DS) and a polycation (diethylaminoethyl or DEAE-dextran). From electrokinetic and electrochemical measurements, information about characteristic membrane parameters (transport number and ionic permselectivity) and membrane/solution interactions (zeta potential) can be obtained...

  14. Enhanced separation of membranes during free flow zonal electrophoresis in plants.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2007-07-15

    Free flow zonal electrophoresis (FFZE) is a versatile technique that allows for the separation of cells, organelles, membranes, and proteins based on net surface charge during laminar flow through a thin aqueous layer. We have been optimizing the FFZE technique to enhance separation of plant vacuolar membranes (tonoplast) from other endomembranes to pursue a directed proteomics approach to identify novel tonoplast transporters. Addition of ATP to a mixture of endomembranes selectively enhanced electrophoretic mobility of acidic vesicular compartments during FFZE toward the positive electrode. This has been attributed to activation of the V-ATPase generating a more negative membrane potential outside the vesicles, resulting in enhanced migration of acidic vesicles, including tonoplast, to the anode (Morré, D. J.; Lawrence, J.; Safranski, K.; Hammond, T.; Morré, D. M. J. Chromatogr., A 1994, 668, 201-213). We confirm that ATP does induce a redistribution of membranes during FFZE of microsomal membranes isolated from several plant species, including Arabidopsis thaliana, Thellungiella halophila, Mesembryanthemum crystallinum, and Ananas comosus. However, we demonstrate, using V-ATPase-specific inhibitors, nonhydrolyzable ATP analogs, and ionophores to dissipate membrane potential, that the ATP-dependent migrational shift of membranes under FFZE is not due to activation of the V-ATPase. Addition of EDTA to chelate Mg2+, leading to the production of the tetravalent anionic form of ATP, resulted in a further enhancement of membrane migration toward the anode, and manipulation of cell surface charge by addition of polycations also influenced the ATP-dependent migration of membranes. We propose that ATP enhances the mobility of endomembranes by screening positive surface charges on the membrane surface.

  15. Electro-membrane processes for flue gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, T. F.

    1997-12-31

    Various techniques for NO removal in Membrane Contactor were considered. However the NO absorption in a liquid adsorbent with chemical enhancement and its ease for regeneration, was selected as the most practicable choice. Various different compounds for chemical enhancement were studied and Fe(II)-chelate enhanced adsorbent was selected for further studies. The technical feasibility of Fe(II)-chelate enhanced adsorbent for obtaining greater than 80% NO removal have been successfully established. Even though the membrane area required for greater than 80% NO removal has been found to be about 500 m{sup 2}/MW{sub c} (compared to 50 - 150 m{sup 2}/MW{sub c}, for 95% SO{sub 2} removal, depending on the membrane characteristics), suitable Membrane Contactor design has been proposed for carrying out the process at an acceptable gas side pressure drop. The electro-membrane processes for the regeneration of adsorbents have been studied both theoretically and experimentally. The theoretical studies have concerned the study of basic functions of both the bipolar membranes and charge laden (anion/cation) membranes. Suitable experimental techniques have been devised for studying of these basic parameters (e.g. charge transport number, salt diffusion through membranes, current-voltage characteristics of bipolar membranes and electrical resistance of charge laden membranes). These parameters have further been utilized in the mechanistic model of combined membranes in an ED cell (electrodialysis). Based on these fundamental studies and analysis of process requirements, suitable configuration of ED cell has been developed and verified by experimental studies. The effect of both the stack design parameters (e.g. number of cells, membrane type and spacer design) and the operational parameters (e.g. temperature, electrolyte concentration, liquid velocity and current density) have been studied for optimization of energy consumption for regeneration of loaded adsorbents. As a result

  16. Dynamics of transportan in bicelles is surface charge dependent

    Energy Technology Data Exchange (ETDEWEB)

    Barany-Wallje, Elsa; Andersson, August; Graeslund, Astrid; Maeler, Lena [Stockholm University, Department of Biochemistry and Biophysics, Arrhenius Laboratories (Sweden)], E-mail: lena.maler@dbb.su.se

    2006-06-15

    In this study we investigated the dynamic behavior of the chimeric cell-penetrating peptide transportan in membrane-like environments using NMR. Backbone amide {sup 15}N spin relaxation was used to investigate the dynamics in two bicelles: neutral DMPC bicelles and partly negatively charged DMPG-containing bicelles. The structure of the peptide as judged from CD and chemical shifts is similar in the two cases. Both the overall motion as well as the local dynamics is, however, different in the two types of bicelles. The overall dynamics of the peptide is significantly slower in the partly negatively charged bicelle environment, as evidenced by longer global correlation times for all measured sites. The local motion, as judged from generalized order parameters, is for all sites in the peptide more restricted when bound to negatively charged bicelles than when bound to neutral bicelles (increase in S{sup 2} is on average 0.11 {+-} 0.07). The slower dynamics of transportan in charged membrane model systems cause significant line broadening in the proton NMR spectrum, which in certain cases limits the observation of {sup 1}H signals for transportan when bound to the membrane. The effect of transportan on DMPC and DHPC motion in zwitterionic bicelles was also investigated, and the motion of both components in the bicelle was found to be affected.

  17. Dynamics of transportan in bicelles is surface charge dependent

    International Nuclear Information System (INIS)

    Barany-Wallje, Elsa; Andersson, August; Graeslund, Astrid; Maeler, Lena

    2006-01-01

    In this study we investigated the dynamic behavior of the chimeric cell-penetrating peptide transportan in membrane-like environments using NMR. Backbone amide 15 N spin relaxation was used to investigate the dynamics in two bicelles: neutral DMPC bicelles and partly negatively charged DMPG-containing bicelles. The structure of the peptide as judged from CD and chemical shifts is similar in the two cases. Both the overall motion as well as the local dynamics is, however, different in the two types of bicelles. The overall dynamics of the peptide is significantly slower in the partly negatively charged bicelle environment, as evidenced by longer global correlation times for all measured sites. The local motion, as judged from generalized order parameters, is for all sites in the peptide more restricted when bound to negatively charged bicelles than when bound to neutral bicelles (increase in S 2 is on average 0.11 ± 0.07). The slower dynamics of transportan in charged membrane model systems cause significant line broadening in the proton NMR spectrum, which in certain cases limits the observation of 1 H signals for transportan when bound to the membrane. The effect of transportan on DMPC and DHPC motion in zwitterionic bicelles was also investigated, and the motion of both components in the bicelle was found to be affected

  18. Investigation on the conditions mitigating membrane fouling caused by TiO{sub 2} deposition in a membrane photocatalytic reactor (MPR) used for dye wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Damodar, Rahul-Ashok [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, Chung li 320, Taiwan, ROC (China); You, Sheng-Jie, E-mail: sjyou@cycu.edu.tw [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, Chung li 320, Taiwan, ROC (China); Chiou, Guan-Wei [Department of Civil Engineering, Chung Yuan Christian University, Chung li 320, Taiwan, ROC (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The charge differences between particle and membrane accelerate the intensity of fouling and binding of TiO{sub 2} particles. Black-Right-Pointing-Pointer Severe fouling at pH 5 and low fouling at pH {>=} 7 at all flux conditions. Black-Right-Pointing-Pointer The presence of a very thin TiO{sub 2} cake layer can alter the hydrophilicity of the membrane surface. Black-Right-Pointing-Pointer The resistance offered by dense TiO{sub 2} cake layer could dominate the hydrophilic effect of TiO{sub 2} particles. - Abstract: In this study, the effects of MPR's operating conditions such as permeate flux, solution pH, and membrane hydrophobicity on separation characteristics and membrane fouling caused by TiO{sub 2} deposition were investigated. The extent of fouling was measured in terms of TMP and tank turbidity variation. The results showed that, at mildly acidic conditions (pH {approx} 5), the turbidity within the tank decreased and the extent of turbidity drop increased with increasing flux for all the membranes. On the other hand, at pH {>=} 7, the turbidity remained constant at all flux and for all membranes tested. The fouling variation at different pH was closely linked with the surface charge (zeta potential) and hydrophilicity of both membrane and particles. It was observed that the charge differences between the particles and membranes accelerate the intensity of fouling and binding of TiO{sub 2} particles on the membrane surface under different pH conditions. The presence of a very thin layer of TiO{sub 2} can alter the hydrophilicity of the membranes and can slightly decrease the TMP (filtration resistance) of the fouled membranes. Besides, the resistance offered by the dense TiO{sub 2} cake layer would dominate this hydrophilic effect of TiO{sub 2} particles, and it may not alter the filtration resistance of the fouled membranes.

  19. Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes.

    Science.gov (United States)

    de Lannoy, Charles-François; Jassby, David; Gloe, Katie; Gordon, Alexander D; Wiesner, Mark R

    2013-03-19

    Electrically conductive polymer-nanocomposite (ECPNC) tight nanofiltration (NF) thin film membranes were demonstrated to have biofilm-preventing capabilities under extreme bacteria and organic material loadings. A simple route to the creation and application of these polyamide-carbon nanotube thin films is also reported. These thin films were characterized with SEM and TEM as well as FTIR to demonstrate that the carbon nanotubes are embedded within the polyamide and form ester bonds with trimesoyl chloride, one of the monomers of polyamide. These polymer nanocomposite thin film materials boast high electrical conductivity (∼400 S/m), good NaCl rejection (>95%), and high water permeability. To demonstrate these membranes' biofouling capabilities, we designed a cross-flow water filtration vessel with insulated electrical leads connecting the ECPNC membranes to an arbitrary waveform generator. In all experiments, conducted in highly bacterially contaminated LB media, flux tests were run until fluxes decreased by 45 ± 3% over initial flux. Biofilm-induced, nonreversible flux decline was observed in all control experiments and a cross-flow rinse with the feed solution failed to induce flux recovery. In contrast, flux decrease for the ECPNC membranes with an electric potential applied to their surface was only caused by deposition of bacteria rather than bacterial attachment, and flux was fully recoverable following a short rinse with the feed solution and no added cleaning agents. The prevention of biofilm formation on the ECPNC membranes was a long-term effect, did not decrease with use, and was highly reproducible.

  20. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase.

    Science.gov (United States)

    Villalba-Galea, Carlos A; Frezza, Ludivine; Sandtner, Walter; Bezanilla, Francisco

    2013-11-01

    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.

  1. Electrodialytic separation of alkali-element ions with the aid of ion-exchange membranes

    International Nuclear Information System (INIS)

    Gurskii, V.S.; Moskvin, L.N.

    1988-01-01

    Electrodialytic separation of ions bearing charges of the same sign with the aid of ion-exchange membranes has been examined in the literature in relation to the so-called ideal membranes, which do not exhibit selectivity with respect to one ion type in ion exchange. It has been shown that separation on such membranes is effective only for counterions differing in size of charge. A matter of greater importance from the practical standpoint is the possibility of using electrodialysis for separating ions bearing like charges and having similar properties, including ionic forms of isotopes of the same element. In this paper they report a comparative study of ion separation, with reference to the Cs-Na pair, by electrodialysis through various types of cation-exchange membranes. Changes of the solution concentration in the cathode compartment were monitored by measurement of 22 Na and 137 Cs activities

  2. Spectral studies of Lanthanide interactions with membrane surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Karukstis, K.K.; Kao, M.Y.; Savin, D.A.; Bittker, R.A.; Kaphengst, K.J.; Emetarom, C.M.; Naito, N.R.; Takamoto, D.Y. [Harvey Mudd College, Claremont, CA (United States)

    1995-03-23

    We have monitored the interactions of the series of trivalent lanthanide cations with the thylakoid membrane surface of spinach chloroplasts using two complementary spectral techniques. Measurements of the fluorescence emission of the extrinsic probe 2-p-toluidinonaphthalene-6-sulfonate (TNS) and the absorbance of the intrinsic chromophore chlorophyll provide two sensitive means of characterizing the dependence of the cation-membrane interaction on the nature of the cation. In these systems, added lanthanide cations adsorb onto the membrane surface to neutralize exposed segments of membrane-embedded protein complexes. The lanthanide-induced charge neutralization increases the proximity of added TNS anion to the membrane surface as evidenced by variations in the TNS fluorescence level and wavelength of maximum emission. Our results reveal a strong dependence of TNS fluorescence parameters on both lanthanide size and total orbital angular momentum L value. Lanthanides with greater charge density (small size and/or low L value) enhance the TNS fluorescence level to a greater extent. A possible origin for the lanthanide-dependent TNS fluorescence levels is suggested in terms of a heterogeneity in the number and type of TNS binding sites. The data are consistent with the proposal that larger lanthanides with smaller enthalpies of hydration induce more significant membrane appression. 59 refs., 9 figs., 2 tabs.

  3. Electrolyte transport in neutral polymer gels embedded with charged inclusions

    Science.gov (United States)

    Hill, Reghan

    2005-11-01

    Ion permeable membranes are the basis of a variety of molecular separation technologies, including ion exchange, gel electrophoresis and dialysis. This work presents a theoretical model of electrolyte transport in membranes comprised of a continuous polymer gel embedded with charged spherical inclusions, e.g., biological cells and synthetic colloids. The microstructure mimics immobilized cell cultures, where electric fields have been used to promote nutrient transport. Because several important characteristics can, in principle, be carefully controlled, the theory provides a quantitative framework to help tailor the bulk properties for enhanced molecular transport, microfluidic pumping, and physicochemical sensing applications. This talk focuses on the electroosmotic flow driven by weak electric fields and electrolyte concentration gradients. Also of importance is the influence of charge on the effective ion diffusion coefficients, bulk electrical conductivity, and membrane diffusion potential.

  4. Ion selection of charge-modified large nanopores in a graphene sheet

    Science.gov (United States)

    Zhao, Shijun; Xue, Jianming; Kang, Wei

    2013-09-01

    Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl- while enhance the transport of K+, which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl- can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity.

  5. Vanadium Redox Flow Batteries Using meta-Polybenzimidazole-Based Membranes of Different Thicknesses.

    Science.gov (United States)

    Noh, Chanho; Jung, Mina; Henkensmeier, Dirk; Nam, Suk Woo; Kwon, Yongchai

    2017-10-25

    15, 25, and 35 μm thick meta-polybenzimidazole (PBI) membranes are doped with H 2 SO 4 and tested in a vanadium redox flow battery (VRFB). Their performances are compared with those of Nafion membranes. Immersed in 2 M H 2 SO 4 , PBI absorbs about 2 mol of H 2 SO 4 per mole of repeat unit. This results in low conductivity and low voltage efficiency (VE). In ex-situ tests, meta-PBI shows a negligible crossover of V 3+ and V 4+ ions, much lower than that of Nafion. This is due to electrostatic repulsive forces between vanadium cations and positively charged protonated PBI backbones, and the molecular sieving effect of PBI's nanosized pores. It turns out that charge efficiency (CE) of VRFBs using meta-PBI-based membranes is unaffected by or slightly increases with decreasing membrane thickness. Thick meta-PBI membranes require about 100 mV larger potentials to achieve the same charging current as thin meta-PBI membranes. This additional potential may increase side reactions or enable more vanadium ions to overcome the electrostatic energy barrier and to enter the membrane. On this basis, H 2 SO 4 -doped meta-PBI membranes should be thin to achieve high VE and CE. The energy efficiency of 15 μm thick PBI reaches 92%, exceeding that of Nafion 212 and 117 (N212 and N117) at 40 mA cm -2 .

  6. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.

    Science.gov (United States)

    Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi

    2014-10-01

    All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the

  7. APM_GUI: analyzing particle movement on the cell membrane and determining confinement.

    Science.gov (United States)

    Menchón, Silvia A; Martín, Mauricio G; Dotti, Carlos G

    2012-02-20

    Single-particle tracking is a powerful tool for tracking individual particles with high precision. It provides useful information that allows the study of diffusion properties as well as the dynamics of movement. Changes in particle movement behavior, such as transitions between Brownian motion and temporary confinement, can reveal interesting biophysical interactions. Although useful applications exist to determine the paths of individual particles, only a few software implementations are available to analyze these data, and these implementations are generally not user-friendly and do not have a graphical interface,. Here, we present APM_GUI (Analyzing Particle Movement), which is a MatLab-implemented application with a Graphical User Interface. This user-friendly application detects confined movement considering non-random confinement when a particle remains in a region longer than a Brownian diffusant would remain. In addition, APM_GUI exports the results, which allows users to analyze this information using software that they are familiar with. APM_GUI provides an open-source tool that quantifies diffusion coefficients and determines whether trajectories have non-random confinements. It also offers a simple and user-friendly tool that can be used by individuals without programming skills.

  8. APM_GUI: analyzing particle movement on the cell membrane and determining confinement

    Directory of Open Access Journals (Sweden)

    Menchón Silvia A

    2012-02-01

    Full Text Available Abstract Background Single-particle tracking is a powerful tool for tracking individual particles with high precision. It provides useful information that allows the study of diffusion properties as well as the dynamics of movement. Changes in particle movement behavior, such as transitions between Brownian motion and temporary confinement, can reveal interesting biophysical interactions. Although useful applications exist to determine the paths of individual particles, only a few software implementations are available to analyze these data, and these implementations are generally not user-friendly and do not have a graphical interface,. Results Here, we present APM_GUI (Analyzing Particle Movement, which is a MatLab-implemented application with a Graphical User Interface. This user-friendly application detects confined movement considering non-random confinement when a particle remains in a region longer than a Brownian diffusant would remain. In addition, APM_GUI exports the results, which allows users to analyze this information using software that they are familiar with. Conclusions APM_GUI provides an open-source tool that quantifies diffusion coefficients and determines whether trajectories have non-random confinements. It also offers a simple and user-friendly tool that can be used by individuals without programming skills.

  9. Study of molecular movements in some organic crystals by NMR

    International Nuclear Information System (INIS)

    Alexandre, M.

    1971-01-01

    After a discussion on molecular crystals (generalities, movements within molecular solids, study of movements, complexes by charge transfer) and some specific ones (molecular complexes of trinitrobenzene or TNB), this research thesis reports the use of nuclear magnetic resonance (NMR) to study molecular movements: generalities on broadband NMR, spin relaxation and strong field network, observation of the absorption signal and measurement of the second moment. The last part reports and discusses experimental results obtained on TNB-naphthalene, on TNB-azulene, on TNB-benzothiophene, and on TNB-indole

  10. Mechanisms of Membrane Binding of Small GTPase K-Ras4B Farnesylated Hypervariable Region*

    Science.gov (United States)

    Jang, Hyunbum; Abraham, Sherwin J.; Chavan, Tanmay S.; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I.; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. PMID:25713064

  11. Electrokinetic transport of nanoparticles to opening of nanopores on cell membrane during electroporation

    Energy Technology Data Exchange (ETDEWEB)

    Movahed, Saeid [University of Toronto, Department of Chemistry (Canada); Li Dongqing, E-mail: dongqing@mme.uwaterloo.ca [University of Waterloo, Department of Mechanical and Mechatronics Engineering (Canada)

    2013-04-15

    Nanoparticle transport to the opening of the single nanopore created on the cell membrane during the electroporation is studied. First, the permeabilization of a single cell located in a microchannel is investigated. When the nanopores are created, the transport of the nanoparticles from the surrounding liquid to the opening of one of the created nanopores is examined. It was found that the negatively charged nanoparticles preferably move into the nanopores from the side of the cell membrane that faces the negative electrode. Opposite to the electro-osmotic flow effect, the electrophoretic force tends to draw the negatively charged nanoparticles into the opening of the nanopores. The effect of the Brownian force is negligible in comparison with the electro-osmosis and the electrophoresis. Smaller nanoparticles with stronger surface charge transport more easily to the opening of the nanopores. Positively charged nanoparticles preferably enter the nanopores from the side of the cell membrane that faces the positive electrode. On this side, both the electrophoretic and the electro-osmotic forces are in the same directions and contribute to bring the positively charged particles into the nanopores.

  12. Drug binding and mobility relating to the thermal fluctuation in fluid lipid membranes

    Science.gov (United States)

    Okamura, Emiko; Yoshii, Noriyuki

    2008-12-01

    Drug binding and mobility in fluid lipid bilayer membranes are quantified in situ by using the multinuclear solution NMR combined with the pulsed-field-gradient technique. One-dimensional and pulsed-field-gradient F19 and H1 NMR signals of an anticancer drug, 5-fluorouracil (5FU) are analyzed at 283-313 K in the presence of large unilamellar vesicles (LUVs) of egg phosphatidylcholine (EPC) as model cell membranes. The simultaneous observation of the membrane-bound and free 5FU signals enables to quantify in what amount of 5FU is bound to the membrane and how fast 5FU is moving within the membrane in relation to the thermal fluctuation of the soft, fluid environment. It is shown that the mobility of membrane-bound 5FU is slowed down by almost two orders of magnitude and similar to the lipid movement in the membrane, the movement closely related to the intramembrane fluidity. The mobility of 5FU and EPC is, however, not similar at 313 K; the 5FU movement is enhanced in the membrane as a result of the loose binding of 5FU in the lipid matrices. The membrane-bound fraction of 5FU is ˜0.1 and almost unaltered over the temperature range examined. It is also independent of the 5FU concentration from 2 to 30 mM with respect to the 40-50 mM LUV. The free energy of the 5FU binding is estimated at -4 to -2 kJ/mol, the magnitude always close to the thermal fluctuation, 2.4-2.6 kJ/mol.

  13. Study of the Photocatalytic Property of Polysulfone Membrane Incorporating TiO2 Nanoparticles

    Science.gov (United States)

    Chen, Xingxing; Zhou, Weiqi; Chen, Zhe; Yao, Lei

    In order to investigate the effect of the incorporated nanoparticles on the photocatalytic property of the hybrid membranes, the uncovered and covered polysulfone/TiO2 hybrid membranes were prepared. Positron annihilation γ-ray spectroscopy coupled with a positron beam was utilized to examine the depth profiles of the two membranes. The photocatalytic activities of the membranes were evaluated by the degradation of Rhodamine B (RhB) aqueous solution under the irradiation of Xe lamp. UV-Vis spectroscopy was applied to study the UV transmission through the polysulfone layer. Electrochemical impedance spectroscopy was used to detect the photo-generated charges by the covered membrane during the irradiation. It can be found that UV light can penetrate through the covered layer (about 230nm), and the incorporated nanoparticles can still generate charges under irradiation, which endows the photocatalytic ability of the covered membrane.

  14. Turing Incompleteness of Asynchronous P Systems with Active Membranes

    OpenAIRE

    Leporati, Alberto; Manzoni, Luca; Porreca, Antonio E.

    2013-01-01

    We prove that asynchronous P systems with active membranes without divi- sion rules can be simulated by place/transition Petri nets, and hence are computationally weaker than Turing machines. This result holds even if the synchronisation mechanisms provided by electrical charges and membrane dissolution are exploited.

  15. Prediction of power consumption and performance in ultrafiltration of simulated latex effluent using non-uniform pore sized membranes

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrasoul, Amira; Doan, Huu; Lohi, Ali; Cheng, Chil-Hung [Ryerson University, 350 Victoria Street, Toronto (Canada)

    2016-03-15

    Tha aim of the present study was to develop a series of numerical models for an accurate prediction of the power consumption in ultrafiltration of simulated latex effluent. The developed power consumption model incorporated fouling attachment, as well as chemical and physical factors in membrane fouling, in order to ensure accurate prediction and scale-up. This model was applied to heterogeneous membranes with non-uniform pore sizes at a given operating conditions and membrane surface charges. Polysulfone flat membrane, with a membrane molecular weight cutoff (MWCO) of 60,000 dalton, at different surface charges was used under a constant flow rate and cross-flow mode. In addition, the developed models were examined using various membranes at a variety of surface charges so as to test the overall reliability and accuracy of these models. The power consumption predicted by the models corresponded to the calculated values from the experimental data for various hydrophilic and hydrophobic membranes with an error margin of 6.0% up to 19.1%.

  16. An ezrin-rich, rigid uropod-like structure directs movement of amoeboid blebbing cells.

    Science.gov (United States)

    Lorentzen, Anna; Bamber, Jeffrey; Sadok, Amine; Elson-Schwab, Ilan; Marshall, Christopher J

    2011-04-15

    Melanoma cells can switch between an elongated mesenchymal-type and a rounded amoeboid-type migration mode. The rounded 'amoeboid' form of cell movement is driven by actomyosin contractility resulting in membrane blebbing. Unlike elongated A375 melanoma cells, rounded A375 cells do not display any obvious morphological front-back polarisation, although polarisation is thought to be a prerequisite for cell movement. We show that blebbing A375 cells are polarised, with ezrin (a linker between the plasma membrane and actin cytoskeleton), F-actin, myosin light chain, plasma membrane, phosphatidylinositol (4,5)-bisphosphate and β1-integrin accumulating at the cell rear in a uropod-like structure. This structure does not have the typical protruding shape of classical leukocyte uropods, but, as for those structures, it is regulated by protein kinase C. We show that the ezrin-rich uropod-like structure (ERULS) is an inherent feature of polarised A375 cells and not a consequence of cell migration, and is necessary for cell invasion. Furthermore, we demonstrate that membrane blebbing is reduced at this site, leading to a model in which the rigid ezrin-containing structure determines the direction of a moving cell through localised inhibition of membrane blebbing.

  17. Electric field-induced reorganization of two-component supported bilayer membranes.

    Science.gov (United States)

    Groves, J T; Boxer, S G; McConnell, H M

    1997-12-09

    Application of electric fields tangent to the plane of a confined patch of fluid bilayer membrane can create lateral concentration gradients of the lipids. A thermodynamic model of this steady-state behavior is developed for binary systems and tested with experiments in supported lipid bilayers. The model uses Flory's approximation for the entropy of mixing and allows for effects arising when the components have different molecular areas. In the special case of equal area molecules the concentration gradient reduces to a Fermi-Dirac distribution. The theory is extended to include effects from charged molecules in the membrane. Calculations show that surface charge on the supporting substrate substantially screens electrostatic interactions within the membrane. It also is shown that concentration profiles can be affected by other intermolecular interactions such as clustering. Qualitative agreement with this prediction is provided by comparing phosphatidylserine- and cardiolipin-containing membranes.

  18. Specific membrane binding of factor VIII is mediated by O-phospho-L-serine, a moiety of phosphatidylserine.

    Science.gov (United States)

    Gilbert, G E; Drinkwater, D

    1993-09-21

    Phosphatidylserine, a negatively charged lipid, is exposed on the platelet membrane following cell stimulation, correlating with the expression of factor VIII receptors. We have explored the importance of the negative electrostatic potential of phosphatidylserine vs chemical moieties of phosphatidylserine for specific membrane binding of factor VIII. Fluorescein-labeled factor VIII bound to membranes containing 15% phosphatidic acid, a negatively charged phospholipid, with low affinity compared to phosphatidylserine-containing membranes. Binding was not specific as it was inhibited by other proteins in plasma. Factor VIII bound to membranes containing 10% phosphatidylserine in spite of a varying net charge provided by 0-15% stearylamine, a positively charged lipid. The soluble phosphatidylserine moiety, O-phospho-L-serine, inhibited factor VIII binding to phosphatidylserine-containing membranes with a Ki of 20 mM, but the stereoisomer, O-phospho-D-serine, was 5-fold less effective. Furthermore, binding of factor VIII to membranes containing synthetic phosphatidyl-D-serine was 5-fold less than binding to membranes containing phosphatidyl-L-serine. Membranes containing synthetic phosphatidyl-L-homoserine, differing from phosphatidylserine by a single methylene, supported high-affinity binding, but it was not specific as factor VIII was displaced by other plasma proteins. O-Phospho-L-serine also inhibited the binding of factor VIII to platelet-derived microparticles with a Ki of 20 mM, and the stereoisomer was 4-fold less effective. These results indicate that membrane binding of factor VIII is mediated by a stereoselective recognition O-phospho-L-serine of phosphatidylserine and that negative electrostatic potential is of lesser importance.

  19. Recent Advances in the Fabrication of Membranes Containing “Ion Pairs” for Nanofiltration Processes

    Directory of Open Access Journals (Sweden)

    Yan-Li Ji

    2017-12-01

    Full Text Available In the face of serious environmental pollution and water scarcity problems, the membrane separation technique, especially high efficiency, low energy consumption, and environmental friendly nanofiltration, has been quickly developed. Separation membranes with high permeability, good selectivity, and strong antifouling properties are critical for water treatment and green chemical processing. In recent years, researchers have paid more and more attention to the development of high performance nanofiltration membranes containing “ion pairs”. In this review, the effects of “ion pairs” characteristics, such as the super-hydrophilicity, controllable charge character, and antifouling property, on nanofiltration performances are discussed. A systematic survey was carried out on the various approaches and multiple regulation factors in the fabrication of polyelectrolyte complex membranes, zwitterionic membranes, and charged mosaic membranes, respectively. The mass transport behavior and antifouling mechanism of the membranes with “ion pairs” are also discussed. Finally, we present a brief perspective on the future development of advanced nanofiltration membranes with “ion pairs”.

  20. Matrix-operator method for calculation of dynamics of intense beams of charged particles

    International Nuclear Information System (INIS)

    Kapchinskij, M.I.; Korenev, I.L.; Rinskij, L.A.

    1989-01-01

    Calculation algorithm for particle dynamics in high-current cyclic and linear accelerators is suggested. Particle movement in six-dimensional phase space is divided into coherent and incoherent components. Incoherent movement is described by envelope method; particle cluster is considered to be even-charged by tri-axial ellipsoid. Coherent movement is described in para-axial approximation; each structure element of the accelerator transport channel is characterized by six-dimensional matrix of phase coordinate transformation of cluster centre and by shift vector resulting from deviation of focusing element parameters from calculated values. Effect of space charge reflected forces is taken into account in the element matrix. Algorithm software is realized using well-known TRANSPORT program

  1. Influence of unbalanced voltages on the movement of metallic ...

    Indian Academy of Sciences (India)

    Simulation is carried out on particle movement with balanced and unbalanced voltages and the ... dust, meteorological difficulties and safety. Hence ... work reported deals with the charge acquired by the particle due to macroscopic field at the.

  2. Electrostatic charge bounds for ball lightning models

    International Nuclear Information System (INIS)

    Stephan, Karl D

    2008-01-01

    Several current theories concerning the nature of ball lightning predict a substantial electrostatic charge in order to account for its observed motion and shape (Turner 1998 Phys. Rep. 293 1; Abrahamson and Dinniss 2000 Nature 403 519). Using charged soap bubbles as a physical model for ball lightning, we show that the magnitude of charge predicted by some of these theories is too high to allow for the types of motion commonly observed in natural ball lightning, which includes horizontal motion above the ground and movement near grounded conductors. Experiments show that at charge levels of only 10-15 nC, 3-cm-diameter soap bubbles tend to be attracted by induced charges to the nearest grounded conductor and rupture. We conclude with a scaling rule that can be used to extrapolate these results to larger objects and surroundings

  3. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    Science.gov (United States)

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Aromatic amino acids and ultraviolet induced photoelectric effects in bilayer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, J S; Arrieta, R T [University of North Florida, Jacksonville (USA); Naval Medical Research Inst., Bethesda, MD (USA))

    1982-04-01

    Ultraviolet light flashes induced voltage transients across bilayer lipid membranes when aromatic amino acids were adsorbed to one side of the membrane. These photo-effects varied with the chromophore structure, the aqueous solution salt concentration, pH and oxygen partial pressure. These photo-effects are attributed to the migration of electrically charged photochemical intermediates in the membrane, and provide a new method for studying the effects of UV light on membranes.

  5. Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region.

    Science.gov (United States)

    Jang, Hyunbum; Abraham, Sherwin J; Chavan, Tanmay S; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I; Nussinov, Ruth; Gaponenko, Vadim

    2015-04-10

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. ELECTROLYTIC MEMBRANE DIALYSIS FOR TREATING WASTEWATER STREAMS - TASK 1.7

    International Nuclear Information System (INIS)

    Timpe, Ronald C.

    2000-01-01

    This project will determine whether electrolytic dialysis has promise in the separation of charged particles in an aqueous solution. The ability to selectively move ions from one aqueous solution to another through a semipermeable membrane will be studied as a function of emf, amperage, and particle electrical charge. The ions selected for the study are Cl - and SO 4 2- . These ions are of particular interest because of their electrical conduction properties in aqueous solution resulting with their association with the corrosive action of metals. The studies will be performed with commercial membranes on solutions prepared in the laboratory from reagent salts. pH adjustments will be made with dilute reagent acid and base. Specific objectives of the project include testing a selected membrane currently available for electrolytic dialysis, membrane resistance to extreme pH conditions, the effectiveness of separating a mixture of two ions selected on the basis of size, the efficiency of the membranes in separating chloride (Cl 1- ) from sulfate (SO 4 2- ), and separation efficiency as a function of electromotive force (emf)

  7. Theory of Ion and Water Transport in Reverse-Osmosis Membranes

    Science.gov (United States)

    Oren, Y. S.; Biesheuvel, P. M.

    2018-02-01

    We present a theory for ion and water transport through reverse-osmosis (RO) membranes based on a Maxwell-Stefan framework combined with hydrodynamic theory for the reduced motion of particles in thin pores. We take into account all driving forces and frictions both on the fluid (water) and on the ions including ion-fluid friction and ion-wall friction. By including the acid-base characteristic of the carbonic acid system, the boric acid system, H3O+/OH- , and the membrane charge, we locally determine p H , the effective charge of the membrane, and the dissociation degree of carbonic acid and boric acid. We present calculation results for an experiment with fixed feed concentration, where effluent composition is a self-consistent function of fluxes through the membrane. A comparison with experimental results from literature for fluid flow vs pressure, and for salt and boron rejection, shows that our theory agrees very well with the available data. Our model is based on realistic assumptions for the effective size of the ions and makes use of a typical pore size of a commercial RO membrane.

  8. Effect of Adsorbed Protein on the Hydraulic Permeability, Membrane and Streaming Potential Values Measured across a Microporous Membrane

    DEFF Research Database (Denmark)

    Benavente, Juana; Jonsson, Gunnar Eigil

    1998-01-01

    permeability decreases strongly when the pH decreases, having its minimum value at the isoelectric point of the protein; the apparent zeta potential values are also dependent on both pH and salt concentration. Differences in the streaming potential coefficient determined for two membranes fouled under......The effect of the adsorption of a protein, bovine serum albumin (BSA), on the membrane potential, flux reduction and streaming potential measured across a microporous polysulphone membrane with different NaCl solutions and pH values is studied. From electrokinetic phenomena, information about...... the electrical properties of the membrane (fixed charge concentration and ionic transport numbers) or the membrane/solute interactions (streaming and zeta potentials) can be obtained. The influence of pH and ionic strength on volume flux and streaming potential values is considered. Results show that hydraulic...

  9. Physical stage of photosynthesis charge separation

    Science.gov (United States)

    Yakovlev, A. G.; Shuvalov, V. A.

    2016-06-01

    An analytical review is given concerning the biophysical aspects of light-driven primary charge separation in photosynthesis reaction centers (RCs) which are special pigment-protein complexes residing in a cell membrane. The primary (physical) stage of charge separation occurs in the pico- and femtosecond ranges and consists of transferring an electron along the active A-branch of pigments. The review presents vast factual material on both the general issues of primary photosynthesis and some more specific topics, including (1) the role of the inactive B-branch of pigments, (2) the effect of the protein environment on the charge separation, and (3) the participation of monomeric bacteriochlorophyll BA in primary electron acceptance. It is shown that the electron transfer and stabilization are strongly influenced by crystallographic water and tyrosine M210 molecules from the nearest environment of BA. A linkage between collective nuclear motions and electron transfer upon charge separation is demonstrated. The nature of the high quantum efficiency of primary charge separation reactions is discussed.

  10. Interface for Light-Driven Electron Transfer by Photosynthetic Complexes Across Block Copolymer Membranes.

    Science.gov (United States)

    Kuang, Liangju; Olson, Tien L; Lin, Su; Flores, Marco; Jiang, Yunjiang; Zheng, Wan; Williams, JoAnn C; Allen, James P; Liang, Hongjun

    2014-03-06

    Incorporation of membrane proteins into nanodevices to mediate recognition and transport in a collective and scalable fashion remains a challenging problem. We demonstrate how nanoscale photovoltaics could be designed using robust synthetic nanomembranes with incorporated photosynthetic reaction centers (RCs). Specifically, RCs from Rhodobacter sphaeroides are reconstituted spontaneously into rationally designed polybutadiene membranes to form hierarchically organized proteopolymer membrane arrays via a charge-interaction-directed reconstitution mechanism. Once incorporated, the RCs are fully active for prolonged periods based upon a variety of spectroscopic measurements, underscoring preservation of their 3D pigment configuration critical for light-driven charge transfer. This result provides a strategy to construct solar conversion devices using structurally versatile proteopolymer membranes with integrated RC functions to harvest broad regions of the solar spectrum.

  11. Surface Functionalization of Thin-Film Composite Membranes with Copper Nanoparticles for Antimicrobial Surface Properties

    KAUST Repository

    Ben-Sasson, Moshe

    2014-01-07

    Biofouling is a major operational challenge in reverse osmosis (RO) desalination, motivating a search for improved biofouling control strategies. Copper, long known for its antibacterial activity and relatively low cost, is an attractive potential biocidal agent. In this paper, we present a method for loading copper nanoparticles (Cu-NPs) on the surface of a thin-film composite (TFC) polyamide RO membrane. Cu-NPs were synthesized using polyethyleneimine (PEI) as a capping agent, resulting in particles with an average radius of 34 nm and a copper content between 39 and 49 wt.%. The positive charge of the Cu-NPs imparted by the PEI allowed a simple electrostatic functionalization of the negatively charged RO membrane. We confirmed functionalization and irreversible binding of the Cu-NPs to the membrane surface with SEM and XPS after exposing the membrane to bath sonication. We also demonstrated that Cu-NP functionalization can be repeated after the Cu-NPs dissolve from the membrane surface. The Cu-NP functionalization had minimal impact on the intrinsic membrane transport parameters. Surface hydrophilicity and surface roughness were also maintained, and the membrane surface charge became positive after functionalization. The functionalized membrane exhibited significant antibacterial activity, leading to an 80-95% reduction in the number of attached live bacteria for three different model bacterial strains. Challenges associated with this functionalization method and its implementation in RO desalination are discussed. © 2013 American Chemical Society.

  12. Surface Functionalization of Thin-Film Composite Membranes with Copper Nanoparticles for Antimicrobial Surface Properties

    KAUST Repository

    Ben-Sasson, Moshe; Zodrow, Katherine R.; Genggeng, Qi; Kang, Yan; Giannelis, Emmanuel P.; Elimelech, Menachem

    2014-01-01

    Biofouling is a major operational challenge in reverse osmosis (RO) desalination, motivating a search for improved biofouling control strategies. Copper, long known for its antibacterial activity and relatively low cost, is an attractive potential biocidal agent. In this paper, we present a method for loading copper nanoparticles (Cu-NPs) on the surface of a thin-film composite (TFC) polyamide RO membrane. Cu-NPs were synthesized using polyethyleneimine (PEI) as a capping agent, resulting in particles with an average radius of 34 nm and a copper content between 39 and 49 wt.%. The positive charge of the Cu-NPs imparted by the PEI allowed a simple electrostatic functionalization of the negatively charged RO membrane. We confirmed functionalization and irreversible binding of the Cu-NPs to the membrane surface with SEM and XPS after exposing the membrane to bath sonication. We also demonstrated that Cu-NP functionalization can be repeated after the Cu-NPs dissolve from the membrane surface. The Cu-NP functionalization had minimal impact on the intrinsic membrane transport parameters. Surface hydrophilicity and surface roughness were also maintained, and the membrane surface charge became positive after functionalization. The functionalized membrane exhibited significant antibacterial activity, leading to an 80-95% reduction in the number of attached live bacteria for three different model bacterial strains. Challenges associated with this functionalization method and its implementation in RO desalination are discussed. © 2013 American Chemical Society.

  13. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    International Nuclear Information System (INIS)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen; Hu, Wenhan; Li, Yi; Li, Xinsong

    2016-01-01

    Highlights: • Amino acids have been successfully grafted onto the surface of PES membranes via amino groups induced epoxy ring opening. • Zwitterionic PES ultrafiltration membranes exhibit excellent antifouling performance and improved permeation properties. • A facile strategy to combat fouling of PES ultrafiltration membranes is developed by grafting natural amino acids. - Abstract: In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption

  14. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China); Hu, Wenhan; Li, Yi [Suzhou Faith & Hope Membrane Technology Co., Ltd., Suzhou, 215000 (China); Li, Xinsong, E-mail: lixs@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China)

    2016-11-01

    Highlights: • Amino acids have been successfully grafted onto the surface of PES membranes via amino groups induced epoxy ring opening. • Zwitterionic PES ultrafiltration membranes exhibit excellent antifouling performance and improved permeation properties. • A facile strategy to combat fouling of PES ultrafiltration membranes is developed by grafting natural amino acids. - Abstract: In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption

  15. Hierarchical Composite Membranes with Robust Omniphobic Surface Using Layer-By-Layer Assembly Technique

    KAUST Repository

    Woo, Yun Chul

    2018-01-17

    In this study, composite membranes were fabricated via layer-by-layer (LBL) assembly of negatively-charged silica aerogel (SiA) and 1H, 1H, 2H, 2H – Perfluorodecyltriethoxysilane (FTCS) on a polyvinylidene fluoride phase inversion membrane, and interconnecting them with positively-charged poly(diallyldimethylammonium chloride) (PDDA) via electrostatic interaction. The results showed that the PDDA-SiA-FTCS coated membrane had significantly enhanced the membrane structure and properties. New trifluoromethyl and tetrafluoroethylene bonds appeared at the surface of the coated membrane, which led to lower surface free energy of the composite membrane. Additionally, the LBL membrane showed increased surface roughness. The improved structure and property gave the LBL membrane an omniphobic property, as indicated by its good wetting resistance. The membrane performed a stable air gap membrane distillation (AGMD) flux of 11.22 L/m2h with very high salt rejection using reverse osmosis brine from coal seam gas produced water as feed with the addition of up to 0.5 mM SDS solution. This performance was much better compared to those of the neat membrane. The present study suggests that the enhanced membrane properties with good omniphobicity via LBL assembly make the porous membranes suitable for long-term AGMD operation with stable permeation flux when treating challenging saline wastewater containing low surface tension organic contaminants.

  16. Guanidinium Pairing Facilitates Membrane Translocation

    Czech Academy of Sciences Publication Activity Database

    Allolio, Christoph; Baxová, Katarína; Vazdar, M.; Jungwirth, Pavel

    2016-01-01

    Roč. 120, č. 1 (2016), s. 143-153 ISSN 1520-6106 R&D Projects: GA ČR GA13-06181S Institutional support: RVO:61388963 Keywords : ab initio molecular dynamics * guanidinium * like charge pairing * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.177, year: 2016

  17. Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization.

    Science.gov (United States)

    Chen, Sheng-Han; Chang, Yung; Lee, Kueir-Rarn; Wei, Ta-Chin; Higuchi, Akon; Ho, Feng-Ming; Tsou, Chia-Chun; Ho, Hsin-Tsung; Lai, Juin-Yih

    2012-12-21

    In this work, the hemocompatibility of zwitterionic polypropylene (PP) fibrous membranes with varying grafting coverage of poly(sulfobetaine methacrylate) (PSBMA) via plasma-induced surface polymerization was studied. Charge neutrality of PSBMA-grafted layers on PP membrane surfaces was controlled by the low-pressure and atmospheric plasma treatment in this study. The effects of grafting composition, surface hydrophilicity, and hydration capability on blood compatibility of the membranes were determined. Protein adsorption onto the different PSBMA-grafted PP membranes from human fibrinogen solutions was measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Blood platelet adhesion and plasma clotting time measurements from a recalcified platelet-rich plasma solution were used to determine if platelet activation depends on the charge bias of the grafted PSBMA layer. The charge bias of PSBMA layer deviated from the electrical balance of positively and negatively charged moieties can be well-controlled via atmospheric plasma-induced interfacial zwitterionization and was further tested with human whole blood. The optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and keeps its original blood-inert property of antifouling, anticoagulant, and antithrmbogenic activities when it comes into contact with human blood. This work suggests that the hemocompatible nature of grafted PSBMA polymers by controlling grafting quality via atmospheric plasma treatment gives a great potential in the surface zwitterionization of hydrophobic membranes for use in human whole blood.

  18. Effects of charge density and hydrophobicity of poly(amido amine)s for non-viral gene delivery

    NARCIS (Netherlands)

    Piest, Martin; Engbersen, Johannes F.J.

    2010-01-01

    High cationic charge densities in polymeric vectors result in tight DNA condensation, leading to small highly positively charged polyplexes which show generally high cellular uptake in vitro. However, high cationic charge densities also introduce membrane-disruptive properties to the polymers,

  19. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  20. Functionalized membranes for environmental remediation and selective separation

    Science.gov (United States)

    Xiao, Li

    ) between UF and RO presents selectivity controlled by both steric and electrostatic repulsions, which are widely used to reject charged species, particularly multivalent ions. In this work, selective permeation of CaCl2 and high sucrose retention are obtained through the modification of nanofiltration membranes with lower charge compared to commercial nanofiltration membrane. The membrane module also shows high stability with constant water permeability in a long-term (two months) test. Extended Nernst-Planck equation were further used to evaluate the experimental results and it fits well. KEY WORDS: Functionalized Membrane, Dechlorination, Responsive, Tunable, Full-scale.

  1. Structure and electrochemical properties of the track membranes modified by tetrafluoroethane plasma

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Goryacheva, T.A.; Satulu, V.; Mitu, B.; Dinescu, G.

    2010-01-01

    A structure and charge transport properties of the poly(ethylene terephthalate) track membrane modified by the 1,1,1,2-tetrafluoroethane plasma have been studied. It has been found that the polymer deposition on the surface of a track membrane via the plasma polymerization of 1,1,1,2-tetrafluoroethane results in the creation of bilayered composite membranes that possess a conductivity asymmetry in electrolyte solutions - a rectification effect similar to that of p-n junction in semiconductors. This effect is caused by an important reduction of the pore diameter in the polymer layer that leads to changing the pore geometry as well as by existence of an interface between two layers with different concentrations of carboxyl groups. Information about the charge transport in the studied membranes has been obtained by the method of impedance spectroscopy

  2. Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.

    Directory of Open Access Journals (Sweden)

    Jose L S Lopes

    Full Text Available Diacylglycerol acyltransferase 1 (DGAT1 is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.

  3. Flexible InGaN nanowire membranes for enhanced solar water splitting

    KAUST Repository

    Elafandy, Rami T.

    2018-05-30

    III-Nitride nanowires (NWs) have recently emerged as potential photoelectrodes for efficient solar hydrogen generation. While InGaN NWs epitaxy over silicon is required for high crystalline quality and economic production, it leads to the formation of the notorious silicon nitride insulating interface as well as low electrical conductivity which both impede excess charge carrier dynamics and overall device performance. We tackle this issue by developing, for the first time, a substrate-free InGaN NWs membrane photoanodes, through liftoff and transfer techniques, where excess charge carriers are efficiently extracted from the InGaN NWs through a proper ohmic contact formed with a high electrical conductivity metal stack membrane. As a result, compared to conventional InGaN NWs on silicon, the fabricated free-standing flexible membranes showed a 10-fold increase in the generated photocurrent as well as a 0.8 V cathodic shift in the onset potential. Through electrochemical impedance spectroscopy, accompanied with TEM-based analysis, we further demonstrated the detailed enhancement within excess charge carrier dynamics of the photoanode membranes. This novel configuration in photoelectrodes demonstrates a novel pathway for enhancing the performance of III-nitrides photoelectrodes to accelerate their commercialization for solar water splitting.

  4. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes

    Science.gov (United States)

    Mazzuca, James W.; Haut, Nathaniel K.

    2018-06-01

    It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.

  5. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes.

    Science.gov (United States)

    Mazzuca, James W; Haut, Nathaniel K

    2018-06-14

    It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.

  6. Corrugated Membrane Nonlinear Deformation Process Calculation

    Directory of Open Access Journals (Sweden)

    A. S. Nikolaeva

    2015-01-01

    Full Text Available Elastic elements are widely used in instrumentation. They are used to create a particular interference between the parts, for accumulating mechanical energy, as the motion transmission elements, elastic supports, and sensing elements of measuring devices. Device reliability and quality depend on the calculation accuracy of the elastic elements. A corrugated membrane is rather common embodiment of the elastic element.The corrugated membrane properties depend largely on its profile i.e. a generatrix of the meridian surface.Unlike other types of pressure elastic members (bellows, tube spring, the elastic characteristics of which are close to linear, an elastic characteristic of the corrugated membrane (typical movement versus external load is nonlinear. Therefore, the corrugated membranes can be used to measure quantities, nonlinearly related to the pressure (e.g., aircraft air speed, its altitude, pipeline fluid or gas flow rate. Another feature of the corrugated membrane is that significant movements are possible within the elastic material state. However, a significant non-linearity of membrane characteristics leads to severe complicated calculation.This article is aimed at calculating the corrugated membrane to obtain the elastic characteristics and the deformed shape of the membrane meridian, as well as at investigating the processes of buckling. As the calculation model, a thin-walled axisymmetric shell rotation is assumed. The material properties are linearly elastic. We consider a corrugated membrane of sinusoidal profile. The membrane load is a uniform pressure.The algorithm for calculating the mathematical model of an axisymmetric corrugated membrane of constant thickness, based on the Reissner’s theory of elastic thin shells, was realized as the author's program in C language. To solve the nonlinear problem were used a method of changing the subspace of control parameters, developed by S.S., Gavriushin, and a parameter marching method

  7. Effect of Membrane Tension on the Electric Field and Dipole Potential of Lipid Bilayer Membrane

    Science.gov (United States)

    Warshaviak, Dora Toledo; Muellner, Michael J.; Chachisvilis, Mirianas

    2011-01-01

    The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45 mV in the physiologically relevant range of membrane tension values (0 to 15 dyn/cm). The electrostatic field exhibits a peak (~0.8×109 V/m) near the water/lipid interface which shifts by 0.9 Å towards the bilayer center at 15 dyn/cm. Maximum membrane tension of 15 dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states. PMID:21722624

  8. The actin homologue MreB organizes the bacterial cell membrane.

    Science.gov (United States)

    Strahl, Henrik; Bürmann, Frank; Hamoen, Leendert W

    2014-03-07

    The eukaryotic cortical actin cytoskeleton creates specific lipid domains, including lipid rafts, which determine the distribution of many membrane proteins. Here we show that the bacterial actin homologue MreB displays a comparable activity. MreB forms membrane-associated filaments that coordinate bacterial cell wall synthesis. We noticed that the MreB cytoskeleton influences fluorescent staining of the cytoplasmic membrane. Detailed analyses combining an array of mutants, using specific lipid staining techniques and spectroscopic methods, revealed that MreB filaments create specific membrane regions with increased fluidity (RIFs). Interference with these fluid lipid domains (RIFs) perturbs overall lipid homeostasis and affects membrane protein localization. The influence of MreB on membrane organization and fluidity may explain why the active movement of MreB stimulates membrane protein diffusion. These novel MreB activities add additional complexity to bacterial cell membrane organization and have implications for many membrane-associated processes.

  9. Ion Transport across Biological Membranes by Carborane-Capped Gold Nanoparticles.

    Science.gov (United States)

    Grzelczak, Marcin P; Danks, Stephen P; Klipp, Robert C; Belic, Domagoj; Zaulet, Adnana; Kunstmann-Olsen, Casper; Bradley, Dan F; Tsukuda, Tatsuya; Viñas, Clara; Teixidor, Francesc; Abramson, Jonathan J; Brust, Mathias

    2017-12-26

    Carborane-capped gold nanoparticles (Au/carborane NPs, 2-3 nm) can act as artificial ion transporters across biological membranes. The particles themselves are large hydrophobic anions that have the ability to disperse in aqueous media and to partition over both sides of a phospholipid bilayer membrane. Their presence therefore causes a membrane potential that is determined by the relative concentrations of particles on each side of the membrane according to the Nernst equation. The particles tend to adsorb to both sides of the membrane and can flip across if changes in membrane potential require their repartitioning. Such changes can be made either with a potentiostat in an electrochemical cell or by competition with another partitioning ion, for example, potassium in the presence of its specific transporter valinomycin. Carborane-capped gold nanoparticles have a ligand shell full of voids, which stem from the packing of near spherical ligands on a near spherical metal core. These voids are normally filled with sodium or potassium ions, and the charge is overcompensated by excess electrons in the metal core. The anionic particles are therefore able to take up and release a certain payload of cations and to adjust their net charge accordingly. It is demonstrated by potential-dependent fluorescence spectroscopy that polarized phospholipid membranes of vesicles can be depolarized by ion transport mediated by the particles. It is also shown that the particles act as alkali-ion-specific transporters across free-standing membranes under potentiostatic control. Magnesium ions are not transported.

  10. Monitoring voltage-sensitive membrane impedance change using radio frequency interrogation.

    Science.gov (United States)

    Dharia, Sameera; Rabbitt, Richard D

    2010-01-01

    Here we present a new technique to monitor dynamic conformational changes in voltage-sensitive membrane-bound proteins using radio frequency (RF) impedance measurements. Xenopus oocytes were transfected to express ShakerB-IR K(+) ion channels, and step changes in membrane potential were applied using two-electrode voltage clamp (TEVC). Simultaneously, bipolar extracellular electrodes were used to measure the RF electrical impedance across the cell (300 kHz - 1 MHz). RF current will either pass through the media, around the cell, or displace charge across the cell membrane. The change in displacement current in the cell membrane during voltage clamp resulted in measurable RF impedance change. RF impedance change during DC membrane depolarization was significantly greater in ShakerB-IR expressing oocytes than in endogenous controls at 300 kHz, 500 kHz and, to a lesser extent, 1 MHz. Since the RF were too high to modulate ShakerB-IR protein conformational state (e.g. open channel probability), impedance changes are interpreted as reflections of voltage-dependent protein conformation and associated biophysics such as ion-channel dipole interactions, fluctuations in bound water, or charged lipid head-group rotations.

  11. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.

    Science.gov (United States)

    Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal

    2014-04-01

    This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Boron Removal from Seawater by Thin-Film Composite Reverse Osmosis Membranes

    KAUST Repository

    Al Sunbul, Yasmeen

    2018-04-01

    Reverse Osmosis membranes have been successfully proven to remove almost 99% of chemicals dissolved in seawater. However, removal of certain trace elements, such as boron is challenging and relatively low for seawater reverse osmosis desalination plants compared to thermal desalination plants. Boron is naturally occurring and is present in seawater at an average concentration of 4.5-5 mg/L. While boron is a vital element, its toxicity has been proven on crops, animals and possibly humans. Additionally, boron should be removed to comply with the current guideline value of 0.5 mg/L, for drinking water, issued by the World Health Organization (WHO), which is barely attained by a single-pass process seawater reverse osmosis plant. Currently, multipass reverse osmosis membrane operations with pH modifications are the only valid method for boron removal. However, this is not economically efficient as it requires higher energy and chemicals consumptions. The objective of this study was to investigate boron removal by commercial TFC RO membranes in addition to custom-made KAUST-synthesized TFC membrane. Five membrane samples were examined: Toray, Sepro, Koch, and KAUST in-house synthesized membrane. Three different feed pH conditions were used: pH6, pH8, and pH10. Filtration experiments were conducted in two parts. In experiment 1, all five membranes were examined for boron rejection in a dead-end permeation system, whereas in experiment 2 the two membranes with the highest boron rejection from experiment 1 were tested in a cross-flow system. Permeate and feed samples were taken continuously and analyzed for boron concentration, rejection calculation. Membrane surfaces were characterized according to hydrophilicity, roughness and surface charge. The results showed for all the tested membranes that boron rejection increased as the feed pH increased. KAUST, defect-free TFC, showed the highest performance for boron rejection for all pH conditions, although, it shows the

  13. Mobility of drugs in lipid membranes by NMR

    International Nuclear Information System (INIS)

    Yoshii, Noriyuki; Okamura, Emiko

    2011-01-01

    Mobility of drugs and biomembrane constituents is a key to elucidate the membrane transport mechanism in the cell. Lipid bilayer membrane is a dynamic structure where molecules are always fluctuating under physiological conditions. The mechanism of drug transport is related to the molecular dynamics in such soft, fluid membrane interface. To gain insight into molecular movements in membranes, we develop a noninvasive method to monitor dynamics properties of drugs and lipid components in membranes by applying multinuclear high-resolution solution NMR in combination with the pulsed-field-gradient (PFG) technique. We have quantified the diffusivity, the kinetics of membrane binding, and the bound fraction of the drug in situ by using large unilamellar vesicles of egg phosphatidylcholine as model cell membranes. The combination of 1D and PFG NMR serves to quantify the kinetics of membrane binding where the bound and the free components are unable to distinguish because of the rapid exchange on the NMR timescale. A small-sized 5-fluorouracil and fluorinated bisphenol A are used as model drug. (author)

  14. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S. Assiyeh Alizadeh; Leiknes, TorOve

    2016-01-01

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR), and acid yellow 36 (AY

  15. Computational and experimental study of nanoporous membranes for water desalination and decontamination.

    Energy Technology Data Exchange (ETDEWEB)

    Hickner, Michael A. (Penn State University, University Park, PA); Chinn, Douglas Alan (Sandia National Laboratories, Albuquerque, NM); Adalsteinsson, Helgi; Long, Kevin R. (Texas Tech University, Lubbock, TX); Kent, Michael Stuart (Sandia National Laboratories, Albuquerque, NM); Debusschere, Bert J.; Zendejas, Frank J.; Tran, Huu M.; Najm, Habib N.; Simmons, Blake Alexander

    2008-11-01

    Fundamentals of ion transport in nanopores were studied through a joint experimental and computational effort. The study evaluated both nanoporous polymer membranes and track-etched nanoporous polycarbonate membranes. The track-etched membranes provide a geometrically well characterized platform, while the polymer membranes are more closely related to ion exchange systems currently deployed in RO and ED applications. The experimental effort explored transport properties of the different membrane materials. Poly(aniline) membranes showed that flux could be controlled by templating with molecules of defined size. Track-etched polycarbonate membranes were modified using oxygen plasma treatments, UV-ozone exposure, and UV-ozone with thermal grafting, providing an avenue to functionalized membranes, increased wettability, and improved surface characteristic lifetimes. The modeling effort resulted in a novel multiphysics multiscale simulation model for field-driven transport in nanopores. This model was applied to a parametric study of the effects of pore charge and field strength on ion transport and charge exclusion in a nanopore representative of a track-etched polycarbonate membrane. The goal of this research was to uncover the factors that control the flux of ions through a nanoporous material and to develop tools and capabilities for further studies. Continuation studies will build toward more specific applications, such as polymers with attached sulfonate groups, and complex modeling methods and geometries.

  16. Printing-assisted surface modifications of patterned ultrafiltration membranes

    International Nuclear Information System (INIS)

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; Snyder, Seth W.

    2016-01-01

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted in all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.

  17. One-dimensional Brownian motion of charged nanoparticles along microtubules: a model system for weak binding interactions.

    Science.gov (United States)

    Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko

    2010-04-21

    Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. The Membrane Modulates Internal Proton Transfer in Cytochrome c Oxidase

    DEFF Research Database (Denmark)

    Öjemyr, Linda Nasvik; Ballmoos, Christoph von; Faxén, Kristina

    2012-01-01

    The functionality of membrane proteins is often modulated by the surrounding membrane. Here, we investigated the effect of membrane reconstitution of purified cytochrome c oxidase (CytcO) on the kinetics and thermodynamics of internal electron and proton-transfer reactions during O-2 reduction...... DOPC lipids. In conclusion, the data show that the membrane significantly modulates internal charge-transfer reactions and thereby the function of the membrane-bound enzyme.......-glycerol) (DOPG). In addition, a small Change in the internal Cu-A-heme a electron equilibrium constant was observed. This effect was lipid-dependent and explained in terms of a lower electrostatic potential within the membrane-spanning part of the protein with the anionic DOPG lipids than with the zwitterionic...

  19. A Quaternized Polysulfone Membrane for Zinc-Bromine Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Mingqiang Li

    2014-01-01

    Full Text Available A quaternized polysulfone (QNPSU composite membrane is fabricated for zinc-bromine redox flow battery. The structure of the membrane is examined by FT-IR spectra and SEM. The conductivity of the membrane is tested by electrochemical analyzer. After a zinc-bromine battery with this composite membrane is operated at different voltage while charging and at different current while discharging to examine the performance of the membrane, it is found that the discharge voltage was 0.9672 V and the power density was 6 mW/cm2 at a current of 0.1 A, which indicated that the novel composite membrane is a promising material for the flow battery.

  20. Selective adsorption of ions in charged slit-systems

    Directory of Open Access Journals (Sweden)

    M.Valiskó

    2013-01-01

    Full Text Available We study the selective adsorption of various cations into a layered slit system using grand canonical Monte Carlo simulations. The slit system is formed by a series of negatively charged membranes. The electrolyte contains two kinds of cations with different sizes and valences modeled by charged hard spheres immersed in a continuum dielectric solvent. We present results for various cases depending on the combinations of the properties of the competing cations. We concentrate to the case when the divalent cations are larger than the monovalent cations. In this case, size and charge have counterbalancing effects, which results in interesting selectivity phenomena.

  1. The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel.

    Science.gov (United States)

    Mishima, Eriko; Sato, Yoko; Nanatani, Kei; Hoshi, Naomi; Lee, Jong-Kook; Schiller, Nina; von Heijne, Gunnar; Sakaguchi, Masao; Uozumi, Nobuyuki

    2016-12-01

    Voltage-dependent K + (K V ) channels control K + permeability in response to shifts in the membrane potential. Voltage sensing in K V channels is mediated by the positively charged transmembrane domain S4. The best-characterized K V channel, KvAP, lacks the distinct hydrophilic region corresponding to the S3-S4 extracellular loop that is found in other K + channels. In the present study, we evaluated the topogenic properties of the transmembrane regions within the voltage-sensing domain in KvAP. S3 had low membrane insertion activity, whereas S4 possessed a unique type-I signal anchor (SA-I) function, which enabled it to insert into the membrane by itself. S4 was also found to function as a stop-transfer signal for retention in the membrane. The length and structural nature of the extracellular S3-S4 loop affected the membrane insertion of S3 and S4, suggesting that S3 membrane insertion was dependent on S4. Replacement of charged residues within the transmembrane regions with residues of opposite charge revealed that Asp 72 in S2 and Glu 93 in S3 contributed to membrane insertion of S3 and S4, and increased the stability of S4 in the membrane. These results indicate that the SA-I function of S4, unique among K + channels studied to date, promotes the insertion of S3 into the membrane, and that the charged residues essential for voltage sensing contribute to the membrane-insertion of the voltage sensor domain in KvAP. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  2. Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization.

    Science.gov (United States)

    Zhu, Lijing; Song, Haiming; Zhang, Dawei; Wang, Gang; Zeng, Zhixiang; Xue, Qunji

    2017-07-15

    Polysulfone (PSf) membrane has been widely used in water separation and purification, although, membrane fouling is still a serious problem limiting its potential. We aim to improve the antifouling of PSf membranes via a very simple and efficient method. In this work, antifouling PSf membranes were fabricated via in situ cross-linked polymerization coupled with non-solvent induced phase separation. In brief, acrylic acid (AA) and vinyltriethoxysilane (VTEOS) were copolymerized in PSf solution, then directly casted into membranes without purification. With the increase of monomers concentration, the morphology of the as-cast membranes changed from a finger-like morphology to a fully sponge-like structure due to the increased viscosity and decreased precipitation rate of the polymer solutions. Meanwhile, the hydrophilicity and electronegativity of modified membranes were highly improved leading to inhibited protein adsorption and improved antifouling property. Furthermore, in order to further find out the different roles player by AA and VTESO, the modified membrane without VTEOS was prepared and characterized. The results indicated that AA is more effective in the membrane hydrophilicity improvement, VTEOS is more crucial to improve membrane stability. This work provides valuable guidance for fabricating PSf membranes with hydrophilicity and antifouling property via in situ cross-linked polymerization. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cytoskeletal Components Define Protein Location to Membrane Microdomains*

    Science.gov (United States)

    Szymanski, Witold G.; Zauber, Henrik; Erban, Alexander; Gorka, Michal; Wu, Xu Na; Schulze, Waltraud X.

    2015-01-01

    The plasma membrane is an important compartment that undergoes dynamic changes in composition upon external or internal stimuli. The dynamic subcompartmentation of proteins in ordered low-density (DRM) and disordered high-density (DSM) membrane phases is hypothesized to require interactions with cytoskeletal components. Here, we systematically analyzed the effects of actin or tubulin disruption on the distribution of proteins between membrane density phases. We used a proteomic screen to identify candidate proteins with altered submembrane location, followed by biochemical or cell biological characterization in Arabidopsis thaliana. We found that several proteins, such as plasma membrane ATPases, receptor kinases, or remorins resulted in a differential distribution between membrane density phases upon cytoskeletal disruption. Moreover, in most cases, contrasting effects were observed: Disruption of actin filaments largely led to a redistribution of proteins from DRM to DSM membrane fractions while disruption of tubulins resulted in general depletion of proteins from the membranes. We conclude that actin filaments are necessary for dynamic movement of proteins between different membrane phases and that microtubules are not necessarily important for formation of microdomains as such, but rather they may control the protein amount present in the membrane phases. PMID:26091700

  4. Molecular Design of Nanofiltration Membranes for the Recovery of Phosphorus from Sewage Sludge

    KAUST Repository

    Thong, Zhiwei; Cui, Yue; Ong, Yee Kang; Chung, Neal Tai-Shung

    2016-01-01

    and the operating pH is around 2. Because the performance of commercially available thin film composite (TFC) NF membranes reported thus far has great room for improvement, the development of highly permeable positively charged NF membranes is recommended

  5. Positive, Neutral, and Negative Mass-Charges in General Relativity

    Directory of Open Access Journals (Sweden)

    Borissova L.

    2006-07-01

    Full Text Available As shown, any four-dimensional proper vector has two observable projections onto time line, attributed to our world and the mirror world (for a mass-bearing particle, the projections posses are attributed to positive and negative mass-charges. As predicted, there should be a class of neutrally mass-charged particles that inhabit neither our world nor the mirror world. Inside the space-time area (membrane the space rotates at the light speed, and all particles move at as well the light speed. So, the predicted particles of the neutrally mass-charged class should seem as light-like vortices.

  6. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    International Nuclear Information System (INIS)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y.; Taub, H.; Miskowiec, A.

    2016-01-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10 8 –10 9 V m −1 , which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10 8 V m −1 ) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10 8 V m −1 ) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3

  7. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y., E-mail: flemming@kemi.dtu.dk [Department of Chemistry, Technical University of Denmark, IK 207 DTU, DK-2800 Lyngby (Denmark); Taub, H.; Miskowiec, A. [Department of Physics and Astronomy and the University of Missouri Research Reactor,University of Missouri, Columbia, Missouri 65211 (United States)

    2016-04-14

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10{sup 8}–10{sup 9} V m{sup −1}, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10{sup 8} V m{sup −1}) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10{sup 8} V m{sup −1}) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1

  8. Electrodiffusion of lipids on membrane surfaces.

    Science.gov (United States)

    Zhou, Y C

    2012-05-28

    Lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when the random lateral motion is mediated by the electrostatic interactions and membrane curvature. Although the lateral diffusion rates of lipids on membranes of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregation and the evolution to the electrostatically favorable states remain largely undetermined. Here we propose an electrodiffusion model, based on the variational principle of the free energy functional, for the self-consistent lateral drift-diffusion of multiple species of charged lipids on membrane surfaces. Finite sizes of lipids are modeled to enforce the geometrical constraint of the lipid concentration on membrane surfaces. A surface finite element method is developed to appropriate the Laplace-Beltrami operators in the partial differential equations of the model. Our model properly describes the saturation of lipids on membrane surfaces, and correctly predicts that the MARCKS peptide can consistently sequester three multivalent phosphatidylinositol 4,5-bisphosphate lipids through its basic amino acid residues, regardless of a wide range of the percentage of monovalent phosphatidylserine in the membrane.

  9. Glucose oxidase as a biocatalytic enzyme-based bio-fuel cell using Nafion membrane limiting crossover

    International Nuclear Information System (INIS)

    Naidoo, S; Blottnitz, H; Naidoo, Q; Vaivars, G

    2013-01-01

    A novel combination for an Enzyme-based Biofuel cell included a Nafion membrane as an ion transporter that maintained a working cell charge and inhibited membrane degradation. The prototype cell chamber used oxygen (O 2 ) in the cathode cell and glucose in the anode. The Nafion membrane stability studied here was evidently in the region of 0% loss of conductivity as the charge was constant and increased after the addition of glucose. The prototype cell chamber used NaCl in the cathode cell and glucose oxidase (GOx) in the anodic chamber was successfully studied for membrane stability showed in this study no evidence of poisoning from membrane leakage in a controlled pH environment. There was no crossover at the anaerobic operating ambient temperatures and under physiological pH 5 – 7 conditions. In this research we have successfully used a Nafion membrane together with GOx and under controlled conditions produced respectable power densities

  10. PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin

    2016-10-21

    Fouling in membrane distillation (MD) results in an increase in operation costs and deterioration in a water quality. In this work, a poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) electrospun (E-PH) membrane was fabricated by hybridizing polydimethylsiloxane (PDMS) polymeric microspheres with superhydrophobicity onto the E-PH membrane via electrospinning. The resulting hybrid PDMS with E-PH (E-PDMS) membrane showed a significant enhancement in surface hydrophobicity (contact angle, CA = 155.4°) and roughness (Ra = 1,285mm). The zeta potential of E-PDMS membrane surface showed a higher negative value than that of a commercial PVDF (C-PVDF) membrane. These properties of E-PDMS membrane provided an antifouling in treating of differently-charged dyes and generated a flake-like dye–dye (loosely bound foulant) structure on the membrane surface rather than in the membrane pores. This also led to a high productivity of E-PDMS membrane (34 Lm-2h-1, 50% higher than that of C-PVDF membrane) without fouling or wetting. In addition, complete color removal and pure water production were achieved during a long-term operation. An application of intermittent water flushing (WF) in direct contact MD (DCMD) operation led to a 99% CA recovery of E-PDMS membrane indicating its sustainability. Therefore, the E-PDMS membrane is a promising candidate for MD application in dyeing wastewater treatment.

  11. Influence of the dialyzer membrane material on sodium transport in hemodialysis.

    Science.gov (United States)

    Lopot, F; Kotyk, P; Bláha, J; Válek, A

    1995-11-01

    Traditionally Gibbs-Donnan coefficients based on the mean charge of plasma proteins are used as the only correction factor in equations describing sodium transport across the dialyzer membrane. This ignores the possible impact of the membrane material. Correction coefficients (CC) of the whole dialyzer were measured during in vivo dialysis as a quotient of dialysate to plasma sodium in an equilibrated state for different membrane materials used in commercially available dialyzers. Their mean value and correlation with total plasma protein content (TPP) were evaluated. CC for the six materials evaluated differed both in the intercept and slope of the regression line CC versus TPP: Cuprophan 1: CC = 1.0253 - 0.00017 x TPP; Hemophan 1: CC = 1.119 - 0.00175 x TPP; Hemophan 2: CC = 1.095 - 0.00111 x TPP; PMMA: CC = 1.0353 - 0.00044 x TPP; SCE:CC = 1.114 - 0.00145 x TPP; and Cuprophan 1:CC = 1.0562 - 0.00065 x TPP. The observed differences are attributed to the different charge densities of the membrane materials and suggest that for a precise description of sodium transport, the role of the membrane material needs to be considered.

  12. High-performance ionic diode membrane for salinity gradient power generation.

    Science.gov (United States)

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-03

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.

  13. Surface and anti-fouling properties of a polyampholyte hydrogel grafted onto a polyethersulfone membrane.

    Science.gov (United States)

    Zhang, Wei; Yang, Zhe; Kaufman, Yair; Bernstein, Roy

    2018-05-01

    Zwitterion polymers have anti-fouling properties; therefore, grafting new zwitterions to surfaces, particularly as hydrogels, is one of the leading research directions for preventing fouling. Specifically, polyampholytes, polymers of random mixed charged subunits with a net-electric charge, offer a synthetically easy alternative for studying new zwitterions with a broad spectrum of charged moieties. Here, a novel polyampholyte hydrogel was grafted onto the surface of polyethersulfone membrane by copolymerizing a mixture of vinylsulfonic acid (VSA) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METMAC) as the negatively and positively charged monomers, respectively, using various monomer ratios in the polymerization solution, and with N,N'-methylenebisacrylamide as the crosslinker. The physicochemical, morphological and anti-fouling properties of the modified membranes were systematically investigated. Hydrophilic hydrogels were successfully grafted using monomers at different molar ratios. A thin-film zwitterion hydrogel (∼90 nm) was achieved at a 3:1 [VSA:METMAC] molar ratio in the polymerization solution. Among all examined membranes, the zwitterion polyampholyte-modified membrane demonstrated the lowest adsorption of proteins, humic acid, and sodium alginate. It also had low fouling and high flux recovery following filtration with a protein or with an extracellular polymeric substance solution. These findings suggest that this polyampholyte hydrogel is applicable as a low fouling surface coating. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Insights into plant plasma membrane aquaporin trafficking.

    Science.gov (United States)

    Hachez, Charles; Besserer, Arnaud; Chevalier, Adrien S; Chaumont, François

    2013-06-01

    Plasma membrane intrinsic proteins (PIPs) are plant aquaporins that facilitate the diffusion of water and small uncharged solutes through the cell membrane. Deciphering the network of interacting proteins that modulate PIP trafficking to and activity in the plasma membrane is essential to improve our knowledge about PIP regulation and function. This review highlights the most recent advances related to PIP subcellular routing and dynamic redistribution, identifies some key molecular interacting proteins, and indicates exciting directions for future research in this field. A better understanding of the mechanisms by which plants optimize water movement might help in identifying new molecular players of agronomical relevance involved in the control of cellular water uptake and drought tolerance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Porous polybenzimidazole membranes doped with phosphoric acid: Preparation and application in high-temperature proton-exchange-membrane fuel cells

    International Nuclear Information System (INIS)

    Li, Jin; Li, Xiaojin; Yu, Shuchun; Hao, Jinkai; Lu, Wangting; Shao, Zhigang; Yi, Baolian

    2014-01-01

    Highlights: • Porous polybenzimidazole membrane was prepared with glucose as porogen. • Phosphoric acid content was as high as 15.7 mol H 3 PO 4 per PBI repeat unit. • 200 h Constant current density test was carried out at 150 °C. • Degradation was due to the gap between membrane and catalyst layer. - Abstract: In this paper, the preparation and characterization of porous polybenzimidazole membranes doped with phosphoric acid were reported. For the preparation of porous polybenzimidazole membranes, glucose and saccharose were selected as porogen and added into PBI resin solution before solvent casting. The prepared porous PBI membranes had high proton conductivity and high content of acid doping at room temperature with 15.7 mol H 3 PO 4 per PBI repeat unit, much higher than pure PBI membrane at the same condition. Further, the performance and stability of the porous PBI membrane in high-temperature proton-exchange-membrane fuel cells was tested. It was found that the cell performance remained stable during 200 h stability test under a constant current discharge of 0.5 A cm −2 except for the last fifty hours. The decay in the last fifty hours was ascribed to the delamination between the catalyst layer and membrane increasing the charge-transfer resistance

  16. BMS invariance and the membrane paradigm

    International Nuclear Information System (INIS)

    Penna, Robert F.

    2016-01-01

    The Bondi-van der Burg-Metzner-Sachs (BMS) group is the asymptotic symmetry group of asymptotically flat spacetime. It is infinite dimensional and entails an infinite number of conservation laws. According to the black hole membrane paradigm, null infinity (in asymptotically flat spacetime) and black hole event horizons behave like fluid membranes. The fluid dynamics of the membrane is governed by an infinite set of symmetries and conservation laws. Our main result is to point out that the infinite set of symmetries and conserved charges of the BMS group and the membrane paradigm are the same. This relationship has several consequences. First, it sheds light on the physical interpretation of BMS conservation laws. Second, it generalizes the BMS conservation laws to arbitrary subregions of arbitrary null surfaces. Third, it clarifies the identification of the superrotation subgroup of the BMS group. We briefly comment on the black hole information problem.

  17. Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions.

    Science.gov (United States)

    Freites, J Alfredo; Tobias, Douglas J

    2015-06-01

    Voltage-sensing domains (VSDs) are integral membrane protein units that sense changes in membrane electric potential, and through the resulting conformational changes, regulate a specific function. VSDs confer voltage-sensitivity to a large superfamily of membrane proteins that includes voltage-gated Na[Formula: see text], K[Formula: see text], Ca[Formula: see text] ,and H[Formula: see text] selective channels, hyperpolarization-activated cyclic nucleotide-gated channels, and voltage-sensing phosphatases. VSDs consist of four transmembrane segments (termed S1 through S4). Their most salient structural feature is the highly conserved positions for charged residues in their sequences. S4 exhibits at least three conserved triplet repeats composed of one basic residue (mostly arginine) followed by two hydrophobic residues. These S4 basic side chains participate in a state-dependent internal salt-bridge network with at least four acidic residues in S1-S3. The signature of voltage-dependent activation in electrophysiology experiments is a transient current (termed gating or sensing current) upon a change in applied membrane potential as the basic side chains in S4 move across the membrane electric field. Thus, the unique structural features of the VSD architecture allow for competing requirements: maintaining a series of stable transmembrane conformations, while allowing charge motion, as briefly reviewed here.

  18. Do plasma proteins distinguish between liposomes of varying charge density?

    KAUST Repository

    Capriotti, Anna Laura; Caracciolo, Giulio; Cavaliere, Chiara; Foglia, Patrizia; Pozzi, Daniela; Samperi, Roberto; Laganà , Aldo

    2012-01-01

    efficient and more biocompatible liposomal formulations, the behavior of three CLs with different membrane charge densities was investigated. The proteins of the three coronas were identified by nano-liquid chromatography-tandem mass spectrometry

  19. Adsorptive removal of phenolic compounds using cellulose acetate phthalate–alumina nanoparticle mixed matrix membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Raka; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2014-01-30

    Highlights: • Composite membrane of cellulose–acetate–phthalate and alumina nanoparticle is cast. • Surface charge of the membrane changes with nanoparticle concentration and pH. • Separation of phenolic compounds occurs due to adsorption. • The removal efficiency is maximum for 20% nanoparticle with 91% removal of catechol. • Transmembrane pressure drop has negligible effect on solute separation. -- Abstract: Mixed matrix membranes (MMMs) were prepared using alumina nanoparticles and cellulose acetate phthalate (CAP) by varying concentration of nanoparticles in the range of 10 to 25 wt%. The membranes were characterized by scanning electron micrograph, porosity, permeability, molecular weight cut off, contact angle, surface zeta potential, mechanical strength. Addition of nanoparticles increased the porosity, permeability of the membrane up to 20 wt% of alumina. pH at point of zero charge of the membrane was 5.4. Zeta potential of the membrane became more negative up to 20 wt% of nanoparticles. Adsorption of phenolic derivatives, catechol, paranitrophenol, phenol, orthochloro phenol, metanitrophenol, by MMMs were investigated. Variation of rejection and permeate flux profiles were studied for different solutes as a function of various operating conditions, namely, solution pH, solute concentration in feed and transmembrane pressure drop. Difference in rejection of phenolic derivatives is consequence of interplay of surface charge and adsorption by alumina. Adsorption isotherm was fitted for different solutes and effects of pH were investigated. Catechol showed the maximum rejection 91% at solution pH 9. Addition of electrolyte reduced the rejection of solutes. Transmembrane pressure drop has insignificant effects on solute rejection. Competitive adsorption reduced the rejection of individual solute.

  20. Dual-Bioinspired Design for Constructing Membranes with Superhydrophobicity for Direct Contact Membrane Distillation.

    Science.gov (United States)

    Zhu, Zhigao; Liu, Yuanren; Hou, Haoqing; Shi, Wenxin; Qu, Fangshu; Cui, Fuyi; Wang, Wei

    2018-03-06

    Water flux and durability are the two critical parameters that are closely associated with the practical application of membrane distillation (MD). Herein, we report a facile approach to fabricate superhydrophobic polyimide nanofibrous membranes (PI NFMs) with hierarchical structures, interconnected pores, and high porosity, which was derived from the electrospinning, dual-bioinspired design, and fluorination processes. Bioinspired adhesive based on polydopamine /polyethylenimine (PDA/PEI) composite was first linked onto membrane substrates and then assembled lotus leaf hierarchical structure by binding the negatively charged silica nanoparticles (SiO 2 NPs) via electrostatic attraction. The resultant superhydrophobic PI NFMs exhibit a water contact angle of 152°, robust hot water resistance of 85 °C, and high water entry pressure of 42 kPa. Moreover, the membrane with omniphobicity presents high water flux over 31 L m -2 h -1 and high salts rejection of ∼100% as well as robust durability for treating high salinity wastewater containing typical low surface tension and dissolved contaminants (Δ T = 40 °C). Significantly, the novel dual-bioinspired method can be used as a universal tool to modify various materials with hierarchical structures, which is expected to provide more effective alternative membranes for MD and even for other selective wetting separation fields.

  1. Cationic peptide exposure enhances pulsed-electric-field-mediated membrane disruption.

    Science.gov (United States)

    Kennedy, Stephen M; Aiken, Erik J; Beres, Kaytlyn A; Hahn, Adam R; Kamin, Samantha J; Hagness, Susan C; Booske, John H; Murphy, William L

    2014-01-01

    The use of pulsed electric fields (PEFs) to irreversibly electroporate cells is a promising approach for destroying undesirable cells. This approach may gain enhanced applicability if the intensity of the PEF required to electrically disrupt cell membranes can be reduced via exposure to a molecular deliverable. This will be particularly impactful if that reduced PEF minimally influences cells that are not exposed to the deliverable. We hypothesized that the introduction of charged molecules to the cell surfaces would create regions of enhanced transmembrane electric potential in the vicinity of each charged molecule, thereby lowering the PEF intensity required to disrupt the plasma membranes. This study will therefore examine if exposure to cationic peptides can enhance a PEF's ability to disrupt plasma membranes. We exposed leukemia cells to 40 μs PEFs in media containing varying concentrations of a cationic peptide, polyarginine. We observed the internalization of a membrane integrity indicator, propidium iodide (PI), in real time. Based on an individual cell's PI fluorescence versus time signature, we were able to determine the relative degree of membrane disruption. When using 1-2 kV/cm, exposure to >50 μg/ml of polyarginine resulted in immediate and high levels of PI uptake, indicating severe membrane disruption, whereas in the absence of peptide, cells predominantly exhibited signatures indicative of no membrane disruption. Additionally, PI entered cells through the anode-facing membrane when exposed to cationic peptide, which was theoretically expected. Exposure to cationic peptides reduced the PEF intensity required to induce rapid and irreversible membrane disruption. Critically, peptide exposure reduced the PEF intensities required to elicit irreversible membrane disruption at normally sub-electroporation intensities. We believe that these cationic peptides, when coupled with current advancements in cell targeting techniques will be useful tools in

  2. Antioxidants, mechanisms, and recovery by membrane processes.

    Science.gov (United States)

    Bazinet, Laurent; Doyen, Alain

    2017-03-04

    Antioxidants molecules have a great interest for bio-food and nutraceutical industries since they play a vital role for their capacity to reduce oxidative processes. Consequently, these molecules, generally present in complex matrices, have to be fractionated and purified to characterize them and to test their antioxidant activity. However, as natural or synthetics antioxidant molecules differ in terms of structural composition and physico-chemical properties, appropriate separation technologies must be selected. Different fractionation technologies are available but the most commonly used are filtration processes. Indeed, these technologies allow fractionation according to molecular size (pressure-driven processes), charge, or both size and charge (electrically driven processes). In this context, and after summarizing the reaction mechanisms of the different classes and nature of antioxidants as well as membrane fractionation technologies, this manuscript presents the specific applications of these membranes processes for the recovery of antioxidant molecules.

  3. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH.

    Science.gov (United States)

    Yu, Wenzheng; Liu, Teng; Crawshaw, John; Liu, Ting; Graham, Nigel

    2018-08-01

    The fouling of ultrafiltration (UF) and nanofiltration (NF) membranes during the treatment of surface waters continues to be of concern and the particular role of natural organic matter (NOM) requires further investigation. In this study the effect of pH and surface charge on membrane fouling during the treatment of samples of a representative surface water (Hyde Park recreational lake) were evaluated, together with the impact of pre-ozonation. While biopolymers in the surface water could be removed by the UF membrane, smaller molecular weight (MW) fractions of NOM were poorly removed, confirming the importance of membrane pore size. For NF membranes the removal of smaller MW fractions (800 Da-10 kDa) was less than expected from their pore size; however, nearly all of the hydrophobic, humic-type substances could be removed by the hydrophilic NF membranes for all MW distributions (greater than 90%). The results indicated the importance of the charge and hydrophilic nature of the NOM. Thus, the hydrophilic NF membrane could remove the hydrophobic organic matter, but not the hydrophilic substances. Increasing charge effects (more negative zeta potentials) with increasing solution pH were found to enhance organics removal and reduce fouling (flux decline), most likely through greater membrane surface repulsion. Pre-ozonation of the surface water increased the hydrophilic fraction and anionic charge of NOM and altered their size distributions. This resulted in a decreased fouling (less flux decline) for the UF and smaller pore NF, but a slight increase in fouling for the larger pore NF. The differences in the NF behavior are believed to relate to the relative sizes of ozonated organic fractions and the NF pores; a similar size of ozonated organic fractions and the NF pores causes significant membrane fouling. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Microtubule Protofilament Number Is Modulated in a Step-Wise Fashion By the Charge of Density of An Enveloping Layer

    International Nuclear Information System (INIS)

    Raviv, U.; Nguyen, T.; Ghafouri, R.; Needleman, D.J.; Li, Y.; Miller, H.P.; Wilson, L.; Bruinsma, R.F.; Safinya, C.R.; UC, Santa Barbara; UCLA

    2007-01-01

    Microtubules are able to adjust their protofilament (PF) number and, as a consequence, their dynamics and function, to the assembly conditions and presence of cofactors. However, the principle behind such variations is poorly understood. Using synchrotron x-ray scattering and transmission electron microscopy, we studied how charged membranes, which under certain conditions can envelop preassembled MTs, regulate the PF number of those MTs. We show that the mean PF number, , is modulated primarily by the charge density of the membranes. decreases in a stepwise fashion with increasing membrane charge density. does not depend on the membrane-protein stoichiometry or the solution ionic strength. We studied the effect of taxol and found that increases logarithmically with taxol/tubulin stoichiometry. We present a theoretical model, which by balancing the electrostatic and elastic interactions in the system accounts for the trends in our findings and reveals an effective MT bending stiffness of order 10-100 k B T/nm, associated with the observed changes in PF number

  5. Aspartate tightens the anchoring of staphylococcal lipoproteins to the cytoplasmic membrane.

    Science.gov (United States)

    Kumari, Nimerta; Götz, Friedrich; Nguyen, Minh-Thu

    2017-12-01

    In gram-negative bacteria, the ABC transporter LolCDE complex translocates outer membrane-specific lipoproteins (Lpp) from the inner membrane to the outer membrane. Lpp possessing aspartate (Asp) at position +2 are not translocated because it functions as a LolCDE avoidance signal. In gram-positive bacteria, lacking an outer membrane and the Lol system, Lpp are only anchored at the outer leaflet of the cytoplasmic membrane. However, the release of Lpp particularly in pathogenic or commensal species is crucial for immune modulation. Here, we provide evidence that in Staphylococcus aureus Asp at position +2 plays a role in withholding Lpp to the cytoplasmic membrane. Screening of published exoproteomic data of S. aureus revealed that Lpp mainly with Gly or Ser at position +2 were found in exoproteome, but there was no Lpp with Asp+2. The occurrence of Lpp with Asp+2 is infrequent in gram-positive bacteria. In S. aureus USA300 only seven of the 67 Lpp possess Asp+2; among them five Lpp represented Lpl lipoproteins involved in host cell invasion. Our study demonstrated that replacing the Asp+2 present in Lpl8 with a Ser enhances its release into the supernatant. However, there is no different release of Asp+2 and Ser+2 in mprF mutant that lacks the positive charge of lysyl-phosphatidylglycerol (Lys-PG). Moreover, substitution of Ser+2 by Asp in SitC (MntC) did not lead to a decreased release indicating that in staphylococci positions +3 and +4 might also be important for a tighter anchoring of Lpp. Here, we show that Asp in position +2 and adjacent amino acids contribute in tightening the anchoring of Lpp by interaction of the negative charged Asp with the positive charged Lys-PG. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  6. Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators

    International Nuclear Information System (INIS)

    Ma, Xiaojing; Kolla, Praveen; Yang, Ruidong; Wang, Zhao; Zhao, Yong; Smirnova, Alevtina L.; Fong, Hao

    2017-01-01

    Highlights: • Nine types of electrospun polyacrylonitrile nanofibrous membranes were prepared. • These membranes had varied fiber diameters and different membrane porosities. • The membranes were explored as innovative Li-ion battery (LIB) separators. • The hot-pressed membrane with thin fibers had superior performance as LIB separator. - Abstract: In this study, nine types of polyacrylonitrile (PAN) nanofibrous membranes with varied fiber diameters and different membrane porosities are prepared by electrospinning followed by hot-pressing. Subsequently, these membranes are explored as Li-ion battery (LIB) separators. The impacts of fiber diameter and membrane porosity on electrolyte uptake, Li"+ ion transport through the membrane, electrochemical oxidation potential, and membrane performance as LIB separator (during charge/discharge cycling and rate capability tests of a cathodic half-cell) have been investigated. When compared to commercial Celgard PP separator, hot-pressed electrospun PAN nanofibrous membranes exhibit larger electrolyte uptake, higher thermal stability, wider electrochemical potential window, higher Li"+ ion permeability, and better electrochemical performance in LiMn_2O_4/separator/Li half-cell. The results also indicate that the PAN-based membrane/separator with small fiber diameters of 200–300 nm and hot-pressed under high pressure of 20 MPa surpasses all other membranes/separators and demonstrates the best performance, leading to the highest discharge capacity (89.5 mA h g"−"1 at C/2 rate) and cycle life (with capacity retention ratio being 97.7%) of the half-cell. In summary, this study has revealed that the hot-pressed electrospun PAN nanofibrous membranes (particularly those consisting of thin nanofibers) are promising as high-performance LIB separators.

  7. A novel reverse osmosis membrane by ferrous sulfate assisted controlled oxidation of polyamide layer

    Science.gov (United States)

    Raval, Hiren D.; Raviya, Mayur R.; Gauswami, Maulik V.

    2017-11-01

    With growing desalination capacity, it is very important to evaluate the performance of thin film composite reverse osmosis (TFC RO) membrane in terms of energy consumption for desalination. There is a trade-off between salt rejection and water-flux of TFC RO membrane. This article presents a novel approach of analyzing the effect of mixture of an oxidizing agent sodium hypochlorite and a reducing agent ferrous sulfate on virgin TFC RO membrane. Experiments were carried out by varying the concentrations of both sodium hypochlorite and ferrous sulfate. The negative charge was induced on the membrane due to the treatment of combination of sodium hypochlorite and ferrous sulfate, thereby resulting in higher rejection of negative ions due to repulsive force. Membrane treated with 1000 mg l-1 sodium hypochlorite and 2000 mg l-1 ferrous sulfate showed the best salt rejection i.e. 96.23%. The characterization was carried out to understand the charge on the membrane surface by Zeta potential, morphology of membrane surface by scanning electron microscope (SEM), surface roughness features by atomic force microscope (AFM) and chemical structural changes by nuclear magnetic resonance (NMR) analysis.

  8. Specificity and kinetics of alpha-synuclein binding to model membranes determined with fluorescent excited state intramolecular proton transfer (ESIPT) probe.

    Science.gov (United States)

    Shvadchak, Volodymyr V; Falomir-Lockhart, Lisandro J; Yushchenko, Dmytro A; Jovin, Thomas M

    2011-04-15

    Parkinson disease is characterized cytopathologically by the deposition in the midbrain of aggregates composed primarily of the presynaptic neuronal protein α-synuclein (AS). Neurotoxicity is currently attributed to oligomeric microaggregates subjected to oxidative modification and promoting mitochondrial and proteasomal dysfunction. Unphysiological binding to membranes of these and other organelles is presumably involved. In this study, we performed a systematic determination of the influence of charge, phase, curvature, defects, and lipid unsaturation on AS binding to model membranes using a new sensitive solvatochromic fluorescent probe. The interaction of AS with vesicular membranes is fast and reversible. The protein dissociates from neutral membranes upon thermal transition to the liquid disordered phase and transfers to vesicles with higher affinity. The binding of AS to neutral and negatively charged membranes occurs by apparently different mechanisms. Interaction with neutral bilayers requires the presence of membrane defects; binding increases with membrane curvature and rigidity and decreases in the presence of cholesterol. The association with negatively charged membranes is much stronger and much less sensitive to membrane curvature, phase, and cholesterol content. The presence of unsaturated lipids increases binding in all cases. These findings provide insight into the relation between membrane physical properties and AS binding affinity and dynamics that presumably define protein localization in vivo and, thereby, the role of AS in the physiopathology of Parkinson disease.

  9. Alternative movement : collaborative project has researchers looking to ceramic membranes to improve produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wells, P.

    2009-10-15

    Ceramic membranes have high chemical and thermal stability coupled with mechanical strength and are therefore used in a range of microfiltration, ultrafiltration and nanofiltration applications. This article described a new technology that involves the use of ceramic membranes in the treatment of produced water in thermal heavy oil recovery operations. The efficacy of advanced ceramic nano-membrane technology (CMT) is being examined in bench-scale experiments at the Southern Alberta Institute of Technology (SAIT) in collaboration with the department of chemical and petroleum engineering at the University of Calgary. In one project, next-generation ceramic membrane technology is being used as part of the overall treatment process of produced water. The project is funded through a Canadian Association of Petroleum Producers fund and the Alberta Department of Energy. It is facilitated by the Petroleum Technology Alliance Canada in an effort to find cost-effective treatment solutions for recycling produced water for the conventional oil and gas industry. The key objective is to increase the amount of produced water that can be reused rather than disposed into deep saline aquifers. The research focuses on the pre-treatment of produced water and related salt impacted water by using ceramic membranes for the removal of organic compounds for beneficial reuse downstream. Ceramic membranes consist of a multilayer system and their performance depends on the separation and permeation properties of the membrane as well as its mechanical integrity. It was concluded that the CMT findings will be beneficial to the oil and gas industry in providing practical solutions for the challenging issues associated with de-oiling and produced water treatment. 2 figs.

  10. The relationship between critical flux and fibre movement induced by bubbling in a submerged hollow fibre system.

    Science.gov (United States)

    Wicaksana, F; Fan, A G; Chen, V

    2005-01-01

    Bubbling has been used to enhance various processes. In this paper we deal with the effect of bubbling on submerged hollow fibre membranes, where bubbling is applied to prevent severe membrane fouling. Previous work with submerged hollow fibres has observed that significant fibre movement can be induced by bubbling and that there is a qualitative relationship between fibre movement and filtration performance. Therefore, the aim of the present research has been to analyse the link between bubbling, fibre movement and critical flux, identified as the flux at which the transmembrane pressure (TMP) starts to rise. Tests were performed on vertical isolated fibres with a model feed of yeast suspension. The fibres were subject to steady bubbling from below. The parameters of interest were the fibre characteristics, such as tightness, diameter and length, as well as feed concentration. The results confirmed that the critical fluxes are affected by the fibre characteristics and feed concentration. Higher critical flux values can be achieved by using loose fibres, smaller diameters and longer fibres. The enhancement is partially linked to fibre movement and this is confirmed by improved performance when fibres are subject to mechanical movement in the absence of bubbling.

  11. Zwitterionic materials for antifouling membrane surface construction.

    Science.gov (United States)

    He, Mingrui; Gao, Kang; Zhou, Linjie; Jiao, Zhiwei; Wu, Mengyuan; Cao, Jialin; You, Xinda; Cai, Ziyi; Su, Yanlei; Jiang, Zhongyi

    2016-08-01

    Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Copyright © 2016 Acta Materialia Inc

  12. Free and membrane-bound calcium in microgravity and microgravity effects at the membrane level

    Science.gov (United States)

    Belyavskaya, N. A.

    The changes of [Ca^2+]_i controlled is known to play a key regulatory role in numerous cellular processes especially associated with membranes. Previous studies from our laboratory have demonstrated an increase in calcium level in root cells of pea seedlings grown aboard orbital station ``Salyut 6'' /1/. These results: 1) indicate that observed Ca^2+-binding sites of membranes also consist in proteins and phospholipids; 2) suggest that such effects of space flight in membrane Ca-binding might be due to the enhancement of Ca^2+ influx through membranes. In model presented, I propose that Ca^2+-activated channels in plasma membrane in response to microgravity allow the movement of Ca^2+ into the root cells, causing a rise in cytoplasmic free Ca^2+ levels. The latter, in its turn, may induce the inhibition of a Ca^2+ efflux by Ca^2+-activated ATPases and through a Ca^2+/H^+ antiport. It is possible that increased cytosolic levels of Ca^2+ ions have stimulated hydrolysis and turnover of phosphatidylinositols, with a consequent elevation of cytosolic [Ca^2+]_i. Plant cell can response to such a Ca^2+ rise by an enhancement of membranous Ca^2+-binding activities to rescue thus a cell from an abundance of a cytotoxin. A Ca^2+-induced phase separation of membranous lipids assists to appear the structure nonstable zones with high energy level at the boundary of microdomains which are rich by some phospholipid components; there is mixing of molecules of the membranes contacted in these zones, the first stage of membranous fusion, which was found in plants exposed to microgravity. These results support the hypothesis that a target for microgravity effect is the flux mechanism of Ca^2+ to plant cell.

  13. Removal of bacteriophages with different surface charges by diverse ceramic membrane materials in pilot spiking tests.

    Science.gov (United States)

    Hambsch, B; Bösl, M; Eberhagen, I; Müller, U

    2012-01-01

    This study examines mechanisms for removal of bacteriophages (MS2 and phiX174) by ceramic membranes without application of flocculants. The ceramic membranes considered included ultra- and microfiltration membranes of different materials. Phages were spiked into the feed water in pilot scale tests in a waterworks. The membranes with pore sizes of 10 nm provided a 2.5-4.0 log removal of the phages. For pore sizes of 50 nm, the log removal dropped to 0.96-1.8. The membrane with a pore size of 200 nm did not remove phages. So, the removal of both MS2- and phiX174-phages depended on the pore size of the membranes. But apart from pore size also other factors influence the removal of phages. Removal was 0.5-0.9 log higher for MS2-phages compared with phiX174-phages. Size exclusion seems to be the major but not the only mechanism which influences the efficiency of phage removal by ceramic membranes.

  14. Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis.

    Science.gov (United States)

    Fassioli, Francesca; Olaya-Castro, Alexandra; Scheuring, Simon; Sturgis, James N; Johnson, Neil F

    2009-11-04

    In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.

  15. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.

    Science.gov (United States)

    Platre, Matthieu Pierre; Jaillais, Yvon

    2017-02-01

    A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.

  16. Ionic Resistance and Permselectivity Tradeoffs in Anion Exchange Membranes

    KAUST Repository

    Geise, Geoffrey M.; Hickner, Michael A.; Logan, Bruce E.

    2013-01-01

    (sulfone) and poly(phenylene oxide) polymer backbones and developed structure-property relationships between the transport properties and the water content and fixed charge concentration of the membranes. Ion transport and ion exclusion properties depend

  17. Ion trajectories calculation in a three dimensional beam subjected to a space charge

    International Nuclear Information System (INIS)

    Tauth, T.

    1978-04-01

    Physical and geometrical conditions allowing a first approximation of necessary sizes to numerical integration of the ions movement equations subjected to electrical and magnetic crossed fields and space charge action are investigated here. To take into consideration the effect of the last one, two artifices are put forward: replacing charged particles by equivalent particles in calculating the coulomb force, electrical field calculation produced in different points situated on the beam envelope by the uniform charges distribution [fr

  18. Theory of the formation of the electric double layer at the ion exchange membrane-solution interface.

    Science.gov (United States)

    Moya, A A

    2015-02-21

    This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.

  19. Nanosecond pulsed electric field (nsPEF) enhance cytotoxicity of cisplatin to hepatocellular cells by microdomain disruption on plasma membrane.

    Science.gov (United States)

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang; Zhou, Lin; Guo, Danjing; Xu, Yuning; Wu, Liming; Zheng, Shusen

    2016-08-15

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatin for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Nanosecond pulsed electric field (nsPEF) enhance cytotoxicity of cisplatin to hepatocellular cells by microdomain disruption on plasma membrane

    International Nuclear Information System (INIS)

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang; Zhou, Lin; Guo, Danjing; Xu, Yuning; Wu, Liming; Zheng, Shusen

    2016-01-01

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatin for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge.

  1. Nanosecond pulsed electric field (nsPEF) enhance cytotoxicity of cisplatin to hepatocellular cells by microdomain disruption on plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang; Zhou, Lin [Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, The Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003 (China); Guo, Danjing; Xu, Yuning [Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, The Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003 (China); Wu, Liming, E-mail: wlm@zju.edu.cn [Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, The Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003 (China); Zheng, Shusen, E-mail: shusenzheng@zju.edu.cn [Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, The Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003 (China)

    2016-08-15

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatin for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge.

  2. Data on flow cell optimization for membrane-based electrokinetic energy conversion

    Directory of Open Access Journals (Sweden)

    David Nicolas Østedgaard-Munck

    2017-12-01

    Full Text Available This article elaborates on the design and optimization of a specialized flow cell for the measurement of direct conversion of pressure into electrical energy (Electrokinetic Energy Conversion, EKEC which has been presented in Østedgaard-Munck et al. (2017 [1]. Two main flow cell parameters have been monitored and optimized: A the hydraulic pressure profile on each side of the membrane introduced by pumps recirculating the electrolyte solution through the flow fields and B the electrical resistance between the current collectors across the combined flow cell. The latter parameter has been measured using four-point Electrochemical Impedance spectroscopy (EIS for different flow rates and concentrations. The total cell resistance consists of contributions from different components: the membrane (Rmem, anode charge transfer (RA, cathode charge transfer (RC, and ion diffusion in the porous electrodes (RD.The intrinsic membrane properties of Nafion 117 has been investigated experimentally in LiI/I2 solutions with concentrations ranging between 0.06 and 0.96 M and used to identify the preferred LiI/I2 solution concentration. This was achieved by measuring the solution uptake, internal solution concentration and ion exchange capacity. The membrane properties were further used to calculate the transport coefficients and electrokinetic Figure of merit in terms of the Uniform potential and Space charge models. Special attention has been put on the streaming potential coefficient which is an intrinsic property. Keywords: Electrokinetic energy conversion, Electrochemical flow cell, Conversion efficiency

  3. Coupled Membrane Transport Parameters for Ionic Species in All-Vanadium Redox Flow Batteries

    International Nuclear Information System (INIS)

    Ashraf Gandomi, Yasser; Aaron, D.S.; Mench, M.M.

    2016-01-01

    Highlights: • Real-time crossover of vanadium species was investigated with a novel system. • Concentration and electrostatic potential gradient-induced crossover was separated. • Interaction coefficients were introduced to account for state of charge dependence. • Electric-field-induced crossover is asymmetric for charge and discharge processes. • Net vanadium crossover is from negative to positive half-cell at open-circuit. - Abstract: One of the major sources of capacity loss in all-vanadium redox flow batteries (VRFBs) is the undesired transport of active vanadium species across the ion-exchange membrane, generically termed crossover. In this work, a novel system has been designed and built to investigate the concentration- and electrostatic potential gradient-driven crossover for all vanadium species through the membrane in real-time. For this study, a perfluorosulphonic acid membrane separator (Nafion ® 117) was used. The test system utilizes ultraviolet/visible (UV/Vis) spectroscopy to differentiate vanadium ion species and separates contributions to crossover stemming from concentration and electrostatic potential gradients. It is shown that the rate of species transport through the ion-exchange membrane is state of charge dependent and, as a result, interaction coefficients have been deduced which can be used to better estimate expected crossover over a range of operating conditions. The electric field was shown to increase the negative-to-positive transport of V(II)/V(III) and suppress the positive-to-negative transport of V(IV)/V(V) during discharge, with an inverse trend during charging conditions. Electric-field-induced transport coefficients were deduced directly from experimental data.

  4. Binding of the radioprotective agent cysteamine with the phospholipidic membrane headgroup-interface region

    Energy Technology Data Exchange (ETDEWEB)

    Berleur, F; Roman, V; Jaskierowicz, D; Fatome, M; Leterrier, F; Ter-Minassian-Saraga, L; Madelmont, G

    1985-09-01

    The interaction of the aminothiol radioprotector cysteamine (..beta..-mercaptoethylamine)(CYST) with dipalmitoylphosphatidylcholine (DPPC) artificial membranes has been studied by differential scanning calorimetry (DSC), turbidimetry and spin labeling. This hydrophilic molecule displays a biphasic, concentration-dependent binding to the phospholipidic head groups at neutral pH. In the CYST/DPPC molar ratio 1:160-1:2 (mole/mole) an increasing ordering effect is observed. At high concentrations (over 3:1 ratio), this ordering effect decreases. With the symmetric disulfide dimer cystamine, the biphasic effect is not shown and the membrane rigidity decrease is obtained only at concentration ratio higher than 1:1. The charge repartition of the cysteamine molecule has been shown to be disymmetric, +0.52 e on the NH/sub 3/ group and +0.19 e on the SH extremity, whereas the cystamine molecule is electrostatically symmetrical. These properties could be related to their membrane effects. With cysteamine, at a low concentration, an electrostatic bridging between the negatively charged phosphate groups of the polar heads induces the increase in membrane stability: the molecules behave like a divalent cation. At high concentration a displacement of the slightly charged SH extremity by the amine disrupts the bridges and induces the decrease in rigidity: the drug behaves like a monovalent cation. Due to its symmetric charge and its double length, such an effect is not observed with cystamine. This study could bring further information about the interactions between cysteamine and polyelectrolytic structures (ADN for example) and about the radioprotective properties of this drug.

  5. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement.

    Science.gov (United States)

    Carmen Herranz, Ma; Sanchez-Navarro, Jesús-Angel; Saurí, Ana; Mingarro, Ismael; Pallás, Vicente

    2005-08-15

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.

  6. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement

    International Nuclear Information System (INIS)

    Carmen Herranz, Ma; Sanchez-Navarro, Jesus-Angel; Sauri, Ana; Mingarro, Ismael; Pallas, Vicente

    2005-01-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed

  7. Plasma membrane translocation of a protein needle based on a triple-stranded β-helix motif.

    Science.gov (United States)

    Sanghamitra, Nusrat J M; Inaba, Hiroshi; Arisaka, Fumio; Ohtan Wang, Dan; Kanamaru, Shuji; Kitagawa, Susumu; Ueno, Takafumi

    2014-10-01

    Plasma membrane translocation is challenging due to the barrier of the cell membrane. Contrary to the synthetic cell-penetrating materials, tailed bacteriophages use cell-puncturing protein needles to puncture the cell membranes as an initial step of the DNA injection process. Cell-puncturing protein needles are thought to remain functional in the native phages. In this paper, we found that a bacteriophage T4 derived protein needle of 16 nm length spontaneously translocates through the living cell membrane. The β-helical protein needle (β-PN) internalizes into human red blood cells that lack endocytic machinery. By comparing the cellular uptake of β-PNs with modified surface charge, it is shown that the uptake efficiency is maximum when it has a negative charge corresponding to a zeta potential value of -16 mV. In HeLa cells, uptake of β-PN incorporates endocytosis independent mechanisms with partial macropinocytosis dependence. The endocytosis dependence of the uptake increases when the surface charges of β-PNs are modified to positive or negative. Thus, these results suggest that natural DNA injecting machinery can serve as an inspiration to design new class of cell-penetrating materials with a tailored mechanism.

  8. DNA nanotubes for NMR structure determination of membrane proteins.

    Science.gov (United States)

    Bellot, Gaëtan; McClintock, Mark A; Chou, James J; Shih, William M

    2013-04-01

    Finding a way to determine the structures of integral membrane proteins using solution nuclear magnetic resonance (NMR) spectroscopy has proved to be challenging. A residual-dipolar-coupling-based refinement approach can be used to resolve the structure of membrane proteins up to 40 kDa in size, but to do this you need a weak-alignment medium that is detergent-resistant and it has thus far been difficult to obtain such a medium suitable for weak alignment of membrane proteins. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400-nm-long six-helix bundles, each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, toward collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes using counter ions and small DNA-binding molecules. This detergent-resistant liquid-crystal medium offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility and structural programmability. Production of sufficient nanotubes for four or five NMR experiments can be completed in 1 week by a single individual.

  9. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation

    International Nuclear Information System (INIS)

    Dumée, Ludovic F.; Alglave, Hortense; Chaffraix, Thomas; Lin, Bao; Magniez, Kevin; Schütz, Jürg

    2016-01-01

    than 99.99%. This is the first time that an investigation demonstrates how the permeation characteristics of these membranes is directly related to data from spectral, morphological and surface charge analyses, which provide new insights on the impact of plasma treatments on both, the surface charge and roughness, of PTFE porous materials.

  10. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation

    Energy Technology Data Exchange (ETDEWEB)

    Dumée, Ludovic F., E-mail: ludovic.dumee@deakin.edu.au [Deakin University, Geelong Victoria–Australia - Institute for Frontier Materials (Australia); Alglave, Hortense; Chaffraix, Thomas; Lin, Bao; Magniez, Kevin [Deakin University, Geelong Victoria–Australia - Institute for Frontier Materials (Australia); Schütz, Jürg [CSIRO, Manufacturing Flagship, 75 Pigdons Road, 3216 Waurn Ponds, Victoria (Australia)

    2016-02-15

    than 99.99%. This is the first time that an investigation demonstrates how the permeation characteristics of these membranes is directly related to data from spectral, morphological and surface charge analyses, which provide new insights on the impact of plasma treatments on both, the surface charge and roughness, of PTFE porous materials.

  11. pMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins.

    Directory of Open Access Journals (Sweden)

    Priyanka Prakash

    2015-10-01

    Full Text Available Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation.

  12. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization.

    Science.gov (United States)

    Chang, Yung; Chang, Wan-Ju; Shih, Yu-Ju; Wei, Ta-Chin; Hsiue, Ging-Ho

    2011-04-01

    Development of nonfouling membranes to prevent nonspecific protein adsorption and platelet adhesion is critical for many biomedical applications. It is always a challenge to control the surface graft copolymerization of a highly polar monomer from the highly hydrophobic surface of a fluoropolymer membrane. In this work, the blood compatibility of poly(vinylidene fluoride) (PVDF) membranes with surface-grafted electrically neutral zwitterionic poly(sulfobetaine methacrylate) (PSBMA), from atmospheric plasma-induced surface copolymerization, was studied. The effect of surface composition and graft morphology, electrical neutrality, hydrophilicity and hydration capability on blood compatibility of the membranes were determined. Blood compatibility of the zwitterionic PVDF membranes was systematically evaluated by plasma protein adsorption, platelet adhesion, plasma-clotting time, and blood cell hemolysis. It was found that the nonfouling nature and hydration capability of grafted PSBMA polymers can be effectively controlled by regulating the grafting coverage and charge balance of the PSBMA layer on the PVDF membrane surface. Even a slight charge bias in the grafted zwitterionic PSBMA layer can induce electrostatic interactions between proteins and the membrane surfaces, leading to surface protein adsorption, platelet activation, plasma clotting and blood cell hemolysis. Thus, the optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and the best antifouling, anticoagulant, and antihemolytic activities when comes into contact with human blood. © 2011 American Chemical Society

  13. Antifouling Ultrafiltration Membranes via Post-Fabrication Grafting of Biocidal Nanomaterials

    KAUST Repository

    Mauter, Meagan S.; Wang, Yue; Okemgbo, Kaetochi C.; Osuji, Chinedum O.; Giannelis, Emmanuel P.; Elimelech, Menachem

    2011-01-01

    Figure Presented: Ultrafiltration (UF) membranes perform critical pre-treatment functions in advanced water treatment processes. In operational systems, however, biofouling decreases membrane performance and increases the frequency and cost of chemical cleaning. The present work demonstrates a novel technique for covalently or ionically tethering antimicrobial nanoparticles to the surface of UF membranes. Silver nanoparticles (AgNPs) encapsulated in positively charged polyethyleneimine (PEI) were reacted with an oxygen plasma modified polysulfone UF membrane with and without 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide hydrochloride (EDC) present. The nucleophilic primary amines of the PEI react with the electrophilic carboxyl groups on the UF membrane surface to form electrostatic and covalent bonds. The irreversible modification process imparts significant antimicrobial activity to the membrane surface. Post-synthesis functionalization methods, such as the one presented here, maximize the density of nanomaterials at the membrane surface and may provide a more efficient route for fabricating diverse array of reactive nanocomposite membranes. © 2011 American Chemical Society.

  14. Antifouling Ultrafiltration Membranes via Post-Fabrication Grafting of Biocidal Nanomaterials

    KAUST Repository

    Mauter, Meagan S.

    2011-08-24

    Figure Presented: Ultrafiltration (UF) membranes perform critical pre-treatment functions in advanced water treatment processes. In operational systems, however, biofouling decreases membrane performance and increases the frequency and cost of chemical cleaning. The present work demonstrates a novel technique for covalently or ionically tethering antimicrobial nanoparticles to the surface of UF membranes. Silver nanoparticles (AgNPs) encapsulated in positively charged polyethyleneimine (PEI) were reacted with an oxygen plasma modified polysulfone UF membrane with and without 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide hydrochloride (EDC) present. The nucleophilic primary amines of the PEI react with the electrophilic carboxyl groups on the UF membrane surface to form electrostatic and covalent bonds. The irreversible modification process imparts significant antimicrobial activity to the membrane surface. Post-synthesis functionalization methods, such as the one presented here, maximize the density of nanomaterials at the membrane surface and may provide a more efficient route for fabricating diverse array of reactive nanocomposite membranes. © 2011 American Chemical Society.

  15. Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Hooshyari, Khadijeh; Javanbakht, Mehran; Adibi, Mina

    2016-01-01

    Two types of innovative composite membranes based on polybenzimidazole (PBI) containing dicationic ionic liquid 1,3-di(3-methylimidazolium) propane bis (trifluoromethylsulfonyl) imide (PDC 3 ) and monocationic ionic liquid 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (PMC 6 ) are prepared as electrolyte for high temperature fuel cells applications under anhydrous conditions. The analyses of results display promising characteristics such as high proton conductivity and thermal stability. Moreover the fuel cell performance of PA doped PDC 3 composite membranes is enhanced in comparison with PA doped PMC 6 and PA doped PBI membranes at high temperatures. Dicationic ionic liquid with high number of charge carriers provides well-developed ionic channels which form facile pathways and considerably develop the anhydrous proton conductivity. The highest proton conductivity of 81 mS/cm is achieved for PA doped PDC 3 composite membranes with PBI/IL mole ratio: 4 at 180 °C. A power density of 0.44 W/cm 2 is obtained at 0.5 V and 180 °C for PA doped PDC 3 composite membranes, which proves that these developed composite membranes can be considered as most promising candidates for high temperature fuel cell applications with enhanced proton conductivity.

  16. Novel adsorptive ultrafiltration membranes derived from polyvinyltetrazole-co-polyacrylonitrile for Cu(II) ions removal

    KAUST Repository

    Kumar, Mahendra; Shevate, Rahul; Hilke, Roland; Peinemann, Klaus-Viktor

    2016-01-01

    Novel adsorptive ultrafiltration membranes were manufactured from synthesized polyvinyltetrazole−co−polyacrylonitrile (PVT−co−PAN) by nonsolvent induced phase separation (NIPS). PVT−co−PAN with various degree of functionalization (DF) was synthesized via a [3+2] cycloaddition reaction at 60°C using a commercial PAN. PVT−co−PAN with varied DF was then explored to prepare adsorptive membranes. The membranes were characterized by surface zeta potential and static water contact angle measurements, scanning electron microscopy as well as atomic force microscopy (AFM) techniques. It was shown that PVT segments contributed to alter the pore size, charge and hydrophilic behavior of the membranes. The membranes became more negatively charged and hydrophilic after addition of PVT segments. The PVT segments in the membranes served as the major binding sites for adsorption of Cu(II) ions from aqueous solution. The maximum adsorption of Cu(II) ions by the membranes in static condition and in a continuous ultrafiltration of 10 ppm solution was attained at pH = 5. The adsorption data suggest that the Freundlich isotherm model describes well Cu(II) ions adsorption on the membranes from aqueous solution. The adsorption capacity obtained from the Freundlich isotherm model was 44.3 mg g−1; this value is higher than other membrane adsorption data reported in the literature. Overall, the membranes fabricated from PVT−co−PAN are attractive for efficient removal of heavy metal ions under the optimized conditions.

  17. Novel adsorptive ultrafiltration membranes derived from polyvinyltetrazole-co-polyacrylonitrile for Cu(II) ions removal

    KAUST Repository

    Kumar, Mahendra

    2016-05-04

    Novel adsorptive ultrafiltration membranes were manufactured from synthesized polyvinyltetrazole−co−polyacrylonitrile (PVT−co−PAN) by nonsolvent induced phase separation (NIPS). PVT−co−PAN with various degree of functionalization (DF) was synthesized via a [3+2] cycloaddition reaction at 60°C using a commercial PAN. PVT−co−PAN with varied DF was then explored to prepare adsorptive membranes. The membranes were characterized by surface zeta potential and static water contact angle measurements, scanning electron microscopy as well as atomic force microscopy (AFM) techniques. It was shown that PVT segments contributed to alter the pore size, charge and hydrophilic behavior of the membranes. The membranes became more negatively charged and hydrophilic after addition of PVT segments. The PVT segments in the membranes served as the major binding sites for adsorption of Cu(II) ions from aqueous solution. The maximum adsorption of Cu(II) ions by the membranes in static condition and in a continuous ultrafiltration of 10 ppm solution was attained at pH = 5. The adsorption data suggest that the Freundlich isotherm model describes well Cu(II) ions adsorption on the membranes from aqueous solution. The adsorption capacity obtained from the Freundlich isotherm model was 44.3 mg g−1; this value is higher than other membrane adsorption data reported in the literature. Overall, the membranes fabricated from PVT−co−PAN are attractive for efficient removal of heavy metal ions under the optimized conditions.

  18. X-radiation effects on muscle cell membrane electrical parameters

    International Nuclear Information System (INIS)

    Portela, A.; Vaccari, J.G.; Llobera, O.; Campi, M.; Delbue, M.A.; Perez, J.C.; Stewart, P.A.; Gosztonyi, A.E.; Brown Univ., Providence, R.I.

    1975-01-01

    Early effects of 100 Kilorads of X-rays on muscle cell membrane properties have been measured in sartorius muscles from Leptodactylus ocellatus. Threshold strength for rectangular current pulses increased 10% after irradiation, and action potential propagation velocity decreased 10%. Passive membrane parameters were calculated from potential responses to sub-threshold current pulses, assuming conventional cable theory. Specific membrane conductance increased to 18% after irradiation, membrane capacitance increased 14%, and length constant decreased 10% but membrane time constant was unchanged. Cell diameter decreased 5%, and resting membrane potential decreased 8%. Membrane parameters during an action potential were also evaluated by the phase-plane and current-voltage plot techniques. Irradiation significantly decreased the action potential amplitude, the excitation potential, and the maximum rates of rise and fall of membrane potential. Increases were observed in dynamic sodium and potassium conductances, peak sodium current, and net charge accumulation per action potential. This X-ray dose also produced signficant changes in the timing of peak events during the action potential; in general the whole action potential process is slower after irradiation

  19. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments

    Science.gov (United States)

    Kocourková, Lucie; Novotná, Pavlína; Čujová, Sabína; Čeřovský, Václav; Urbanová, Marie; Setnička, Vladimír

    2017-01-01

    Antimicrobial peptides have long been considered as promising compounds against drug-resistant pathogens. In this work, we studied the secondary structure of antimicrobial peptides melectin and antapin using electronic (ECD) and vibrational circular dichroism (VCD) spectroscopies that are sensitive to peptide secondary structures. The results from quantitative ECD spectral evaluation by Dichroweb and CDNN program and from the qualitative evaluation of the VCD spectra were compared. The antimicrobial activity of the selected peptides depends on their ability to adopt an amphipathic α-helical conformation on the surface of the bacterial membrane. Hence, solutions of different zwitterionic and negatively charged liposomes and micelles were used to mimic the eukaryotic and bacterial biological membranes. The results show a significant content of α-helical conformation in the solutions of negatively charged liposomes mimicking the bacterial membrane, thus correlating with the antimicrobial activity of the studied peptides. On the other hand in the solutions of zwitterionic liposomes used as models of the eukaryotic membranes, the fraction of α-helical conformation was lower, which corresponds with their moderate hemolytic activity.

  20. Modeling water flux and salt rejection of mesoporous γ-alumina and microporous organosilica membranes

    NARCIS (Netherlands)

    Farsi, A.; Boffa, V.; Qureshi, H.F.; Nijmeijer, Arian; Winnubst, Aloysius J.A.; Lykkegaard Christensen, M.

    2014-01-01

    The water and ion transport through a mesoporous γ-alumina membrane and a microporous organosilica membrane was simulated using the extended Nernst Planck equation combined with models for Donnan, steric and dielectric interfacial exclusion mechanisms. Due to the surface charge within the pore, the

  1. Dynamical and structural properties of lipid membranes in relation to liposomal drug delivery systems

    DEFF Research Database (Denmark)

    Jørgensen, Kent; Høyrup, Lise Pernille Kristine; Pedersen, Tina B.

    2001-01-01

    The structural and dynamical properties of DPPC liposomes containing lipopolymers (PEG-lipids) and charged DPPS lipids have been,studied in relation to the lipid membrane interaction of enzymes and peptides. The results suggest that both the lipid membrane structure and dynamics and in particular...

  2. Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Saito, Hiroyuki

    2018-01-01

    Arginine-rich cell penetrating peptides (CPPs) are very promising drug carriers to deliver membrane-impermeable pharmaceuticals, such as siRNA, bioactive peptides and proteins. CPPs directly penetrate into cells across cell membranes via a spontaneous energy-independent process, in which CPPs appear to interact with acidic lipids in the outer leaflet of the cell membrane. However, acidic lipids represent only 10 to 20% of the total membrane lipid content and in mammalian cell membranes they are predominantly located in the inner leaflet. Alternatively, CPPs favorably bind in a charge density- dependent manner to negatively charged, sulfated glycosaminoglycans (GAGs), such as heparan sulfate and chondroitin sulfate, which are abundant on the cell surface and are involved in many biological functions. We have recently demonstrated that the interaction of CPPs with sulfated GAGs plays a critical role in their direct cell membrane penetration: the favorable enthalpy contribution drives the high-affinity binding of arginine-rich CPPs to sulfated GAGs, initiating an efficient cell membrane penetration. The favorable enthalpy gain is presumably mainly derived from a unique property of the guanidino group of arginine residues forming multidentate hydrogen bonding with sulfate and carboxylate groups in GAGs. Such interactions can be accompanied with charge neutralization of arginine-rich CPPs, promoting their partition into cell membranes. This review summarizes the current understanding of the physicochemical mechanism for lipid membrane penetration of CPPs, and discusses the role of the GAG interactions on the cell membrane penetration of CPPs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Self-Sustained Oscillatory Sliding Movement of Doublet Microtubules and Flagellar Bend Formation.

    Directory of Open Access Journals (Sweden)

    Sumio Ishijima

    Full Text Available It is well established that the basis for flagellar and ciliary movements is ATP-dependent sliding between adjacent doublet microtubules. However, the mechanism for converting microtubule sliding into flagellar and ciliary movements has long remained unresolved. The author has developed new sperm models that use bull spermatozoa divested of their plasma membrane and midpiece mitochondrial sheath by Triton X-100 and dithiothreitol. These models enable the observation of both the oscillatory sliding movement of activated doublet microtubules and flagellar bend formation in the presence of ATP. A long fiber of doublet microtubules extruded by synchronous sliding of the sperm flagella and a short fiber of doublet microtubules extruded by metachronal sliding exhibited spontaneous oscillatory movements and constructed a one beat cycle of flagellar bending by alternately actuating. The small sliding displacement generated by metachronal sliding formed helical bends, whereas the large displacement by synchronous sliding formed planar bends. Therefore, the resultant waveform is a half-funnel shape, which is similar to ciliary movements.

  4. Voltammetry for the charge transfer at two immiscible electrolyte solutions interface

    International Nuclear Information System (INIS)

    Kihara, S.; Suzuki, M.; Maeda, K.; Ogura, K.; Matsui, M.; Yoshida, Z.

    1989-01-01

    The voltammetry for the charge transfer (VCT) at the interface of immicible solutions is a very powerful method for understanding the dynamic features of the charge transfer because of its unmatched advantage that the transfer energy and the number of charges transferred can be measured simultaneously and in situ. In the present paper, several novel systems for electron transfer are outlined, and the following topics are discussed based on results obtained by the current scan polarography at the solution dropping electrode developed as a technique for VCT: the relation between the half-wave potential in VCT for ion transfer and the characteristics of the ion transferred; the relation between the half-wave potential in VCT for electron transfer and the electrochemical nature of a redox couple added in water and that added in organic solution; and the ion transfer through a liquid membrane promoted by electron transfer. Observations are presented and discussion is made on the characteristics of ion transfer polarograms, those of electron transfer polarograms, and ion transfer promoted by electron transfer at a liquid/membrane interface. (N.K.)

  5. Cholesterol asymmetry in synaptic plasma membranes.

    Science.gov (United States)

    Wood, W Gibson; Igbavboa, Urule; Müller, Walter E; Eckert, Gunter P

    2011-03-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  6. Performances of nanofiltration and low pressure reverse osmosis membranes for desalination: characterization and modelling

    Science.gov (United States)

    Boussouga, Y. A.; Lhassani, A.

    2017-03-01

    The nanofiltration and the reverse osmosis processes are the most common techniques for the desalination of water contaminated by an excess of salts. In this present study, we were interested in the characterization of commercial, composite and asymmetric membranes of nanofiltration (NF90, NF270) and low pressure reverse osmosis (BW30LE). The two types of characterization that we opted for our study: (i) characterization of electrical proprieties, in terms of the surface charge of various membranes studied by the measurement of the streaming potential, (ii) hydrodynamic characterization in terms of hydraulic permeability with pure water, mass transfer and phenomenological parameters for each system membrane/salt using hydrodynamic approaches. The irreversible thermodynamics allowed us to model the observed retention Robs of salts (NaCl and Na2SO4) for the different membranes studied, to understand and to predict a good filtration with a membrane. A study was conducted on the type of mass transfer for each system membrane/salt: convection and diffusion. The results showed that all tested membranes are negatively charged for the solutions at neutral pH, this is explained by their material composition. The results also showed competitiveness between the different types of membranes. In view of that the NF remains effective in terms of selective retention with less energy consumption than LPRO.

  7. High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery.

    Science.gov (United States)

    Boo, Chanhee; Wang, Yunkun; Zucker, Ines; Choo, Youngwoo; Osuji, Chinedum O; Elimelech, Menachem

    2018-05-31

    We demonstrate the fabrication of a loose, negatively charged nanofiltration (NF) membrane with tailored selectivity for the removal of perfluoroalkyl substances with reduced scaling potential. A selective polyamide layer was fabricated on top of a polyethersulfone support via interfacial polymerization of trimesoyl chloride and a mixture of piperazine and bipiperidine. Incorporating high molecular weight bipiperidine during the interfacial polymerization enables the formation of a loose, nanoporous selective layer structure. The fabricated NF membrane possessed a negative surface charge and had a pore diameter of ~1.2 nm, much larger than a widely used commercial NF membrane (i.e., NF270 with pore diameter of ~0.8 nm). We evaluated the performance of the fabricated NF membrane for the rejection of different salts (i.e., NaCl, CaCl2, and Na2SO4) and perfluorooctanoic acid (PFOA). The fabricated NF membrane exhibited a high retention of PFOA (~90%) while allowing high passage of scale-forming cations (i.e., calcium). We further performed gypsum scaling experiments to demonstrate lower scaling potential of the fabricated loose porous NF membrane compared to NF membranes having a dense selective layer under solution conditions simulating high water recovery. Our results demonstrate that properly designed NF membranes are a critical component of a high recovery NF system, which provide an efficient and sustainable solution for remediation of groundwater contaminated with perfluoroalkyl substances.

  8. Water Transport Mediated by Other Membrane Proteins.

    Science.gov (United States)

    Huang, Boyue; Wang, Hongkai; Yang, Baoxue

    2017-01-01

    Water transport through membrane is so intricate that there are still some debates. (Aquaporins) AQPs are entirely accepted to allow water transmembrane movement depending on osmotic gradient. Cotransporters and uniporters , however, are also concerned in water homeotatsis. Urea transporter B (UT-B) has a single-channel water permeability that is similar to AQP1. Cystic fibrosis transmembrane conductance regulator (CFTR ) was initially thought as a water channel but now not believed to transport water directly. By cotranporters, water is transported by water osmosis coupling with substrates, which explains how water is transported across the isolated small intestine. This chapter provides information about water transport mediated by other membrane proteins except AQPs .

  9. Temporal Changes in Extracellular Polymeric Substances on Hydrophobic and Hydrophilic Membrane Surfaces in a Submerged Membrane Bioreactor

    KAUST Repository

    Matar, Gerald Kamil

    2016-03-02

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m2.h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m2.h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be considered

  10. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Directory of Open Access Journals (Sweden)

    Siekierka Anna

    2017-01-01

    Full Text Available Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  11. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Science.gov (United States)

    Siekierka, Anna; Bryjak, Marek

    2017-11-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  12. Novel Fouling-Reducing Coatings for Ultrafiltration, Nanofiltration, and Reverse Osmosis Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Benny Freeman

    2008-08-31

    Polymeric membranes could potentially be the most flexible and viable long-term strategy for treatment of produced water from oil and gas production. However, widespread use of membranes, including reverse osmosis (RO) membranes, for produced water purification is hindered due to fouling caused by the impurities present in the water. Fouling of RO membranes is likely caused by surface properties including roughness, hydrophilicity, and charge, so surface modification is the most widely considered approach to improve the fouling properties of current RO membranes. This project focuses on two main approaches to surface modification: coating and grafting. Hydrophilic coating and grafting materials based on poly(ethylene glycol) (PEG) are applied to commercial RO membranes manufactured by Dow FilmTec and GE. Crossflow filtration experiments are used to determine the fouling resistance of modified membranes, and compare their performance to that of unmodified commercial RO membranes. Grafting and coating are shown to be two alternative methods of producing modified membranes with improved fouling resistance.

  13. A charge-driven molecular water pump.

    Science.gov (United States)

    Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping

    2007-11-01

    Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient.

  14. Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge

    International Nuclear Information System (INIS)

    Baek, M; Kim, M K; Cho, H J; Lee, J A; Yu, J; Chung, H E; Choi, S J

    2011-01-01

    Zinc oxide (ZnO) nanoparticle is one of the most important materials in diverse applications, since it has UV light absorption, antimicrobial, catalytic, semi-conducting, and magnetic properties. However, there is little information about the toxicological effects of ZnO nanoparticles with respect to physicochemical properties. The aim of this study was, therefore, to evaluate the relationships between cytotoxicity and physicochemical properties of ZnO nanoparticle such as particle size and surface charge in human lung cells. Two different sizes of ZnO nanoparticles (20 and 70 nm) were prepared with positive (+) or negative (-) charge, and then, cytotoxicity of different ZnO nanoparticles was evaluated by measuring cell proliferation in short-term and long-term, membrane integrity, and generation of reactive oxygen species (ROS). The results demonstrated that smaller particles exhibited high cytotoxic effects compared to larger particles in terms of inhibition of cell proliferation, membrane damage, and ROS generation. In addition, positively charged ZnO showed greater ROS production than ZnO with negative charge. These findings suggest that the cytoxicity of ZnO nanoparticles are strongly affected by their particle size and surface charge, highlighting the role of the physicochemical properties of nanoparticles to understand and predict their potential adverse effects on human.

  15. Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge

    Energy Technology Data Exchange (ETDEWEB)

    Baek, M; Kim, M K; Cho, H J; Lee, J A; Yu, J; Chung, H E; Choi, S J, E-mail: sjchoi@swu.ac.kr [Department of Food Science and Technology, Seoul Women' s University, 126 Gongneung 2-dong, Nowon-gu, Seoul 139-774 (Korea, Republic of)

    2011-07-06

    Zinc oxide (ZnO) nanoparticle is one of the most important materials in diverse applications, since it has UV light absorption, antimicrobial, catalytic, semi-conducting, and magnetic properties. However, there is little information about the toxicological effects of ZnO nanoparticles with respect to physicochemical properties. The aim of this study was, therefore, to evaluate the relationships between cytotoxicity and physicochemical properties of ZnO nanoparticle such as particle size and surface charge in human lung cells. Two different sizes of ZnO nanoparticles (20 and 70 nm) were prepared with positive (+) or negative (-) charge, and then, cytotoxicity of different ZnO nanoparticles was evaluated by measuring cell proliferation in short-term and long-term, membrane integrity, and generation of reactive oxygen species (ROS). The results demonstrated that smaller particles exhibited high cytotoxic effects compared to larger particles in terms of inhibition of cell proliferation, membrane damage, and ROS generation. In addition, positively charged ZnO showed greater ROS production than ZnO with negative charge. These findings suggest that the cytoxicity of ZnO nanoparticles are strongly affected by their particle size and surface charge, highlighting the role of the physicochemical properties of nanoparticles to understand and predict their potential adverse effects on human.

  16. Thermo-osmosis in Membrane Systems: A Review

    Science.gov (United States)

    Barragán, V. María; Kjelstrup, Signe

    2017-06-01

    We give a first review of experimental results for a phenomenon little explored in the literature, namely thermal osmosis or thermo-osmosis. Such systems are now getting increased attention because of their ability to use waste heat for separation purposes. We show that this volume transport of a solution or a pure liquid caused by a temperature difference across a membrane can be understood as a property of the membrane system, i. e. the membrane with its adjacent solutions. We present experimental values found in the literature of thermo-osmotic coefficients of neutral and hydrophobic as well as charged and hydrophilic membranes, with water and other permeant fluids as well as electrolyte solutions. We propose that the coefficient can be qualitatively explained by a formula that contains the entropy of adsorption of permeant into the membrane, the hydraulic permeability, and a factor that depends on the interface resistance to heat transfer. A variation in the entropy of adsorption with hydrophobic/hydrophilic membranes and structure breaking/structure making cations could then explain the sign of the permeant flux. Systematic experiments in the field are lacking and we propose an experimental program to mend this situation.

  17. Amphipathic motifs in BAR domains are essential for membrane curvature sensing

    DEFF Research Database (Denmark)

    Bhatia, Vikram K; Madsen, Kenneth L; Bolinger, Pierre-Yves

    2009-01-01

    BAR (Bin/Amphiphysin/Rvs) domains and amphipathic alpha-helices (AHs) are believed to be sensors of membrane curvature thus facilitating the assembly of protein complexes on curved membranes. Here, we used quantitative fluorescence microscopy to compare the binding of both motifs on single...... nanosized liposomes of different diameters and therefore membrane curvature. Characterization of members of the three BAR domain families showed surprisingly that the crescent-shaped BAR dimer with its positively charged concave face is not able to sense membrane curvature. Mutagenesis on BAR domains showed...... that membrane curvature sensing critically depends on the N-terminal AH and furthermore that BAR domains sense membrane curvature through hydrophobic insertion in lipid packing defects and not through electrostatics. Consequently, amphipathic motifs, such as AHs, that are often associated with BAR domains...

  18. Crystalline polymorphism induced by charge regulation in ionic membranes.

    Science.gov (United States)

    Leung, Cheuk-Yui; Palmer, Liam C; Kewalramani, Sumit; Qiao, Baofu; Stupp, Samuel I; Olvera de la Cruz, Monica; Bedzyk, Michael J

    2013-10-08

    The crystallization of molecules with polar and hydrophobic groups, such as ionic amphiphiles and proteins, is of paramount importance in biology and biotechnology. By coassembling dilysine (+2) and carboxylate (-1) amphiphiles of various tail lengths into bilayer membranes at different pH values, we show that the 2D crystallization process in amphiphile membranes can be controlled by modifying the competition of long-range and short-range interactions among the polar and the hydrophobic groups. The pH and the hydrophobic tail length modify the intermolecular packing and the symmetry of their crystalline phase. For hydrophobic tail lengths of 14 carbons (C14), we observe the coassembly into crystalline bilayers with hexagonal molecular ordering via in situ small- and wide-angle X-ray scattering. As the tail length increases, the hexagonal lattice spacing decreases due to an increase in van der Waals interactions, as demonstrated by atomistic molecular dynamics simulations. For C16 and C18 we observe a reentrant crystalline phase transition sequence, hexagonal-rectangular-C-rectangular-P-rectangular-C-hexagonal, as the solution pH is increased from 3 to 10.5. The stability of the rectangular phases, which maximize tail packing, increases with increasing tail length. As a result, for very long tails (C22), the possibility of observing packing symmetries other than rectangular-C phases diminishes. Our work demonstrates that it is possible to systematically exchange chemical and mechanical energy by changing the solution pH value within a range of physiological conditions at room temperature in bilayers of molecules with ionizable groups.

  19. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation

    Science.gov (United States)

    Deng, Chao; Zhang, Qiu Gen; Han, Guang Lu; Gong, Yi; Zhu, Ai Mei; Liu, Qing Lin

    2013-10-01

    Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles.Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than

  20. Exploring the structure-properties relationships of novel polyamide thin film composite membranes

    DEFF Research Database (Denmark)

    Briceño, Kelly; Javakhishvili, Irakli; Guo, Haofei

    Polysulfone (PSU) is a material widely used in the fabrication of membranes for ultrafiltration and as a support for nanofiltration and reverse osmosis membranes. Interfacial polymerization usually combines amine and acid chloride monomers for the fabrication of thin film composite membranes[1......] . However, only few publications describe it’s usage for the modification of supports for the fabrication of ultrafiltration membranes [2]. This research focuses on the modification of PSU supports to produce new ultrafiltration membranes. The advantages of interfacial polymerization in the fabrication...... of UF membranes includes: Negatively charged PSF surfaces that could be less prone to biofouling Scale up process for the modification of PSU. An alternative to costly and technically challenging processes as in situ interfacial polymerization [3]....

  1. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries

    DEFF Research Database (Denmark)

    Miao, Ruiying; Liu, Bowen; Zhu, Zhongzheng

    2008-01-01

    As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) was prepared by a phase inversion method. The casting solution, effects of the solvent and non-solvent and addition of micron scale TiO2...... particles were investigated. The membranes were characterized by SEM, XRD, AC impedance, and charge/discharge tests. By using acetone as the solvent and water as the non-solvent, the prepared membranes showed good ability to absorb and retain the lithium ion containing electrolyte. Addition of micron TiO2...

  2. Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.

    Science.gov (United States)

    Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael

    2015-08-04

    The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Erythrocyte membrane modified janus polymeric motors for thrombus therapy

    NARCIS (Netherlands)

    Shao, Jingxin; Abdelghani, Mona; Shen, Guizhi; Cao, Shoupeng; Williams, David S.; van Hest, Jan C.M.

    2018-01-01

    We report the construction of erythrocyte membrane-cloaked Janus polymeric motors (EM-JPMs) which are propelled by near-infrared (NIR) laser irradiation and are successfully applied in thrombus ablation. Chitosan (a natural polysaccharide with positive charge, CHI) and heparin (glycosaminoglycan

  4. Modification of Nafion® Membrane via a Sol-Gel Route for Vanadium Redox Flow Energy Storage Battery Applications

    Directory of Open Access Journals (Sweden)

    Shu-Ling Huang

    2017-01-01

    Full Text Available Nafion 117(N-117/SiO2-SO3H modified membranes were prepared using the 3-Mercaptopropyltrimethoxysilane (MPTMS to react with H2O2 via in situ sol-gel route. Basic properties including water uptake, contact angle, ion exchange capacity (IEC, vanadium ion permeability, impedance, and conductivity were measured to investigate how they affect the charge-discharge characteristics of a cell. Furthermore, we also set a vanadium redox flow energy battery (VRFB single cell by the unmodified/modified N-117 membranes as a separated membrane to test its charge/discharge performance and compare the relations among the impedance and efficiency. The results show that the appropriate amount of SiO2-SO3H led into the N-117 membrane contributive to the improvement of proton conductivity and vanadium ion selectivity. The permeability was effectively decreased from original 3.13 × 10−6 cm2/min for unmodified N-117 to 0.13 × 10−6 cm2/min for modified membrane. The IEC was raised from original 0.99 mmol/g to 1.24 mmol/g. The modified membrane showed a good cell performance in the VRFB charge/discharge experiment, and the maximum coulombic efficiency was up to 94%, and energy efficiency was 82%. In comparison with unmodified N-117, the energy efficiency of modified membrane had increased more than around 10%.

  5. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Zhensheng; Bi, Cheng; Dai, Hua [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Huamin; Li, Xianfeng [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China)

    2011-01-01

    Sulfonated poly(tetramethydiphenyl ether ether ketone) (SPEEK) with various degree of sulfonation is prepared and first used as ion exchange membrane for vanadium redox flow battery (VRB) application. The vanadium ion permeability of SPEEK40 membrane is one order of magnitude lower than that of Nafion 115 membrane. The low cost SPEEK membranes exhibit a better performance than Nafion at the same operating condition. VRB single cells with SPEEK membranes show very high energy efficiency (>84%), comparable to that of the Nafion, but at much higher columbic efficiency (>97%). In the self-discharge test, the duration of the cell with the SPEEK membrane is two times longer than that with Nafion 115. The membrane keeps a stable performance after 80-cycles charge-discharge test. (author)

  6. Effect of free calcium concentration and ionic strength on alginate fouling in cross-flow membrane filtration

    NARCIS (Netherlands)

    Brink, van den P.; Zwijnenburg, A.; Smith, G.; Temmink, B.G.; Loosdrecht, van M.C.

    2009-01-01

    Extracellular polymeric substances (EPS) are generally negatively charged polymers. Membrane fouling in membrane bioreactors (MBRs) by EPS is therefore influenced by the water chemistry of the mixed liquor (calcium concentration, foulant concentration and ionic strength). We used alginate as a model

  7. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Ma, Jun

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater.

  8. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets

    KAUST Repository

    Lu, Dongwei

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater. © 2015 American Chemical Society.

  9. Characterizing the surface charge of synthetic nanomembranes by the streaming potential method

    OpenAIRE

    Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo

    2010-01-01

    The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt conc...

  10. Simulation of polyethylene glycol and calcium-mediated membrane fusion

    International Nuclear Information System (INIS)

    Pannuzzo, Martina; De Jong, Djurre H.; Marrink, Siewert J.; Raudino, Antonio

    2014-01-01

    We report on the mechanism of membrane fusion mediated by polyethylene glycol (PEG) and Ca 2+ by means of a coarse-grained molecular dynamics simulation approach. Our data provide a detailed view on the role of cations and polymer in modulating the interaction between negatively charged apposed membranes. The PEG chains cause a reduction of the inter-lamellar distance and cause an increase in concentration of divalent cations. When thermally driven fluctuations bring the membranes at close contact, a switch from cis to trans Ca 2+ -lipid complexes stabilizes a focal contact acting as a nucleation site for further expansion of the adhesion region. Flipping of lipid tails induces subsequent stalk formation. Together, our results provide a molecular explanation for the synergistic effect of Ca 2+ and PEG on membrane fusion

  11. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.

    Science.gov (United States)

    Kim, T; Dykstra, J E; Porada, S; van der Wal, A; Yoon, J; Biesheuvel, P M

    2015-05-15

    Capacitive deionization (CDI) is an electrochemical method for water desalination using porous carbon electrodes. A key parameter in CDI is the charge efficiency, Λ, which is the ratio of salt adsorption over charge in a CDI-cycle. Values for Λ in CDI are typically around 0.5-0.8, significantly less than the theoretical maximum of unity, due to the fact that not only counterions are adsorbed into the pores of the carbon electrodes, but at the same time coions are released. To enhance Λ, ion-exchange membranes (IEMs) can be implemented. With membranes, Λ can be close to unity because the membranes only allow passage for the counterions. Enhancing the value of Λ is advantageous as this implies a lower electrical current and (at a fixed charging voltage) a reduced energy use. We demonstrate how, without the need to include IEMs, the charge efficiency can be increased to values close to the theoretical maximum of unity, by increasing the cell voltage during discharge, with only a small loss of salt adsorption capacity per cycle. In separate constant-current CDI experiments, where after some time the effluent salt concentration reaches a stable value, this value is reached earlier with increased discharge voltage. We compare the experimental results with predictions of porous electrode theory which includes an equilibrium Donnan electrical double layer model for salt adsorption in carbon micropores. Our results highlight the potential of modified operational schemes in CDI to increase charge efficiency and reduce energy use of water desalination. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Calibrating the X-ray attenuation of liquid water and correcting sample movement artefacts during in operando synchrotron X-ray radiographic imaging of polymer electrolyte membrane fuel cells.

    Science.gov (United States)

    Ge, Nan; Chevalier, Stéphane; Hinebaugh, James; Yip, Ronnie; Lee, Jongmin; Antonacci, Patrick; Kotaka, Toshikazu; Tabuchi, Yuichiro; Bazylak, Aimy

    2016-03-01

    Synchrotron X-ray radiography, due to its high temporal and spatial resolutions, provides a valuable means for understanding the in operando water transport behaviour in polymer electrolyte membrane fuel cells. The purpose of this study is to address the specific artefact of imaging sample movement, which poses a significant challenge to synchrotron-based imaging for fuel cell diagnostics. Specifically, the impact of the micrometer-scale movement of the sample was determined, and a correction methodology was developed. At a photon energy level of 20 keV, a maximum movement of 7.5 µm resulted in a false water thickness of 0.93 cm (9% higher than the maximum amount of water that the experimental apparatus could physically contain). This artefact was corrected by image translations based on the relationship between the false water thickness value and the distance moved by the sample. The implementation of this correction method led to a significant reduction in false water thickness (to ∼0.04 cm). Furthermore, to account for inaccuracies in pixel intensities due to the scattering effect and higher harmonics, a calibration technique was introduced for the liquid water X-ray attenuation coefficient, which was found to be 0.657 ± 0.023 cm(-1) at 20 keV. The work presented in this paper provides valuable tools for artefact compensation and accuracy improvements for dynamic synchrotron X-ray imaging of fuel cells.

  13. A common pathway for charge transport through voltage-sensing domains.

    Science.gov (United States)

    Chanda, Baron; Bezanilla, Francisco

    2008-02-07

    Voltage-gated ion channels derive their voltage sensitivity from the movement of specific charged residues in response to a change in transmembrane potential. Several studies on mechanisms of voltage sensing in ion channels support the idea that these gating charges move through a well-defined permeation pathway. This gating pathway in a voltage-gated ion channel can also be mutated to transport free cations, including protons. The recent discovery of proton channels with sequence homology to the voltage-sensing domains suggests that evolution has perhaps exploited the same gating pathway to generate a bona fide voltage-dependent proton transporter. Here we will discuss implications of these findings on the mechanisms underlying charge (and ion) transport by voltage-sensing domains.

  14. Dynamics of membrane nanotubes coated with I-BAR

    Science.gov (United States)

    Barooji, Younes F.; Rørvig-Lund, Andreas; Semsey, Szabolcs; Reihani, S. Nader S.; Bendix, Poul M.

    2016-07-01

    Membrane deformation is a necessary step in a number of cellular processes such as filopodia and invadopodia formation and has been shown to involve membrane shaping proteins containing membrane binding domains from the IRSp53-MIM protein family. In reconstituted membranes the membrane shaping domains can efficiently deform negatively charged membranes into tubules without any other proteins present. Here, we show that the IM domain (also called I-BAR domain) from the protein ABBA, forms semi-flexible nanotubes protruding into Giant Unilamellar lipid Vesicles (GUVs). By simultaneous quantification of tube intensity and tubular shape we find both the diameter and stiffness of the nanotubes. I-BAR decorated tubes were quantified to have a diameter of ~50 nm and exhibit no stiffening relative to protein free tubes of the same diameter. At high protein density the tubes are immobile whereas at lower density the tubes diffuse freely on the surface of the GUV. Bleaching experiments of the fluorescently tagged I-BAR confirmed that the mobility of the tubes correlates with the mobility of the I-BAR on the GUV membrane. Finally, at low density of I-BAR the protein upconcentrates within tubes protruding into the GUVs. This implies that I-BAR exhibits strong preference for negatively curved membranes.

  15. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets

    KAUST Repository

    Lu, Dongwei; Zhang, Tao; Ma, Jun

    2015-01-01

    of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged

  16. Selective effects of charge on G protein activation by FSH-receptor residues 551-555 and 650-653.

    Science.gov (United States)

    Grasso, P; Deziel, M R; Reichert, L E

    1995-01-01

    Two cytosolic regions of the rat testicular FSH receptor (FSHR), residues 533-555 and 645-653, have been identified as G protein-coupling domains. We localized the activity in these domains to their C-terminal sequences, residues 551-555 (KIAKR, net charge +3) and 650-653 (RKSH, net charge +3), and examined the effects of charge on G protein activation by the C-terminal peptides, using synthetic analogs containing additions, through alanine (A) linkages, of arginine (R, +), histidine (H, +) or both. RA-KIAKR (net charge +4) mimicked the effect of FSHR-(551-555) on guanine nucleotide exchange in rat testis membranes, but reduced its ability to inhibit FSH-stimulated estradiol biosynthesis in cultured rat Sertoli cells. Further increasing net charge by the addition of H (HARA-KIAKR, net charge +5) increased guanosine 5'-triphosphate (GTP) binding, but eliminated FSHR-(551-555) effects on FSH-stimulated steroidogenesis. HA-RKSH (net charge +4) significantly inhibited guanine nucleotide exchange in rat testis membranes, but stimulated basal and potentiated FSH-induced estradiol biosynthesis in cultured rat Sertoli cells. Addition of two H residues (HAHA-RKSH, net charge +5) restored GTP binding and further potentiated basal and FSH-stimulated steroidogenesis. These results suggest that positive charges in G protein-coupling domains of the FSHR play a role in modulating G protein activation and postbinding effects of FSH, such as steroidogenesis.

  17. Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.

    Science.gov (United States)

    Romo, Tod D; Bradney, Laura A; Greathouse, Denise V; Grossfield, Alan

    2011-08-01

    One approach to the growing health problem of antibiotic resistant bacteria is the development of antimicrobial peptides (AMPs) as alternative treatments. The mechanism by which these AMPs selectively attack the bacterial membrane is not well understood, but is believed to depend on differences in membrane lipid composition. N-acylation of the small amidated hexapeptide, RRWQWR-NH(2) (LfB6), derived from the 25 amino acid bovine lactoferricin (LfB25) can be an effective means to improve its antimicrobial properties. Here, we investigate the interactions of C6-LfB6, N-acylated with a 6 carbon fatty acid, with model lipid bilayers with two distinct compositions: 3:1 POPE:POPG (negatively charged) and POPC (zwitterionic). Results from solid-state (2)H and (31)P NMR experiments are compared with those from an ensemble of all-atom molecular dynamic simulations running in aggregate more than 8.6ms. (2)H NMR spectra reveal no change in the lipid acyl chain order when C6-LfB6 is bound to the negatively charged membrane and only a slight decrease in order when it is bound to the zwitterionic membrane. (31)P NMR spectra show no significant perturbation of the phosphate head groups of either lipid system in the presence of C6-LfB6. Molecular dynamic simulations show that for the negatively charged membrane, the peptide's arginines drive the initial association with the membrane, followed by attachment of the tryptophans at the membrane-water interface, and finally by the insertion of the C6 tails deep into the bilayer. In contrast, the C6 tail leads the association with the zwitterionic membrane, with the tryptophans and arginines associating with the membrane-water interface in roughly the same amount of time. We find similar patterns in the order parameters from our simulations. Moreover, we find in the simulations that the C6 tail can insert 1-2Å more deeply into the zwitterionic membrane and can exist in a wider range of angles than in the negatively charged membrane. We

  18. Transient and Partial Nuclear Lamina Disruption Promotes Chromosome Movement in Early Meiotic Prophase.

    Science.gov (United States)

    Link, Jana; Paouneskou, Dimitra; Velkova, Maria; Daryabeigi, Anahita; Laos, Triin; Labella, Sara; Barroso, Consuelo; Pacheco Piñol, Sarai; Montoya, Alex; Kramer, Holger; Woglar, Alexander; Baudrimont, Antoine; Markert, Sebastian Mathias; Stigloher, Christian; Martinez-Perez, Enrique; Dammermann, Alexander; Alsheimer, Manfred; Zetka, Monique; Jantsch, Verena

    2018-04-23

    Meiotic chromosome movement is important for the pairwise alignment of homologous chromosomes, which is required for correct chromosome segregation. Movement is driven by cytoplasmic forces, transmitted to chromosome ends by nuclear membrane-spanning proteins. In animal cells, lamins form a prominent scaffold at the nuclear periphery, yet the role lamins play in meiotic chromosome movement is unclear. We show that chromosome movement correlates with reduced lamin association with the nuclear rim, which requires lamin phosphorylation at sites analogous to those that open lamina network crosslinks in mitosis. Failure to remodel the lamina results in delayed meiotic entry, altered chromatin organization, unpaired or interlocked chromosomes, and slowed chromosome movement. The remodeling kinases are delivered to lamins via chromosome ends coupled to the nuclear envelope, potentially enabling crosstalk between the lamina and chromosomal events. Thus, opening the lamina network plays a role in modulating contacts between chromosomes and the nuclear periphery during meiosis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. The long-range organization of a native photosynthetic membrane

    NARCIS (Netherlands)

    Frese, Raoul N.; Siebert, C. Alistair; Niederman, Robert A.; Hunter, C. Neil; Otto, Cees; van Grondelle, Rienk

    2004-01-01

    Photosynthesis relies on the delicate interplay between a specific set of membrane-bound pigment–protein complexes that harvest and transport solar energy, execute charge separation, and conserve the energy. We have investigated the organization of the light-harvesting (LH) and reaction-center (RC)

  20. The long-range organization of a native photosynthetic membrane

    NARCIS (Netherlands)

    Frese, R.N.; Siebert, C.A.; Niederman, R.A.; Hunter, C.N.; Otto, C.; van Grondelle, R.

    2004-01-01

    Photosynthesis relies on the delicate interplay between a specific set of membrane-bound pigment-protein complexes that harvest and transport solar energy, execute charge separation, and conserve the energy. We have investigated the organization of the light-harvesting (LH) and reaction-center (RC)

  1. Movement of a charged particle beam in the Earth magnetosphere

    International Nuclear Information System (INIS)

    Veselovskij, I.S.

    1977-01-01

    The motion of a charged particle beam injected into the Earth magnetosphere in a dipole magnetic field was investigated. Examined were the simplest stationary distributions of particles. The evolution of the distribution function after pulse injection of the beam into the magnetosphere was studied. It was shown that the pulse shape depends on its starting duration. A long pulse spreads on the base and narrows on the flat top with the distance away from the point of injection. A short pulse spreads both on the base and along the height. The flat top is not present. An analytical expression for the pulse shape as a time function is given

  2. Effect of surface topography and morphology on space charge packets in polyethylene

    International Nuclear Information System (INIS)

    Zhou Yuanxiang; Wang Yunshan; Sun Qinghua; Wang Ninghua

    2009-01-01

    Polyethylene (PE) is a major kind of internal insulating material. With great progresses of space charge measurement technologies in the last three decades, lots of researches are focused on space charge in PE. The heat pressing and annealing condition of polyethylene affect its morphology obviously. During the heat pressing, the surface of PE forms different surface topographies because of different substrate materials. Surface topography has great relation to the epitaxial crystallization layer and influences the space charge characteristic of PE dramatically. This paper studied the formation process of different surface topographies and their micrographic characters in low density polyethylene (LDPE). pulsed electro-acoustic (PEA) method was used to measure the space charge distribution of samples with different surface topographies and morphologies in LDPE. The effect of surface topography and morphology to space charge packet were studied. The surface topography has great influence on space charge packet polarity and morphology has influence on both movement speed rate and polarity of space charge packet.

  3. Position sensitive proportional counter for measurement of tritium labelled gas movement

    International Nuclear Information System (INIS)

    Mori, Chizuo; Nakamoto, Makihiko; Uritani, Akira; Watanabe, Tamaki

    1984-01-01

    A position sensitive proportional counter of a charge division type with a single resistive anode wire was constructed for the measurement of the movement of 3 H labelled gas which is flowing or diffusing in a pipe. The introduction of resistors between the anode wire and pre-amplifiers brought a uniform detection efficiency for 3 H β-rays throughout the counter. The position resolution was 3.1 mm FWHM. Detection efficiency was almost 100% uniformly over about 700 mm in the total anode length of 740 mm. The movement of 3 H labelled gas could be measured effectively. (author)

  4. Interaction of Melittin with Negatively Charged Lipid Bilayers Supported on Gold Electrodes

    International Nuclear Information System (INIS)

    Juhaniewicz, Joanna; Sek, Slawomir

    2016-01-01

    ABSTRACT: The interactions of melittin, a cationic antimicrobial peptide, with model lipid membranes consisting of negatively charged phospholipids: 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) or 1,2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS) were investigated using electrochemical techniques and atomic force microscopy. Lipid bilayers were deposited on gold electrodes using a combination of Langmuir-Blodgett and Langmuir-Schaefer methods and the resulting membranes established a barrier for electron transfer between the electrode and the redox probe in the solution. After exposure to melittin, the blocking properties of the membranes were monitored using cyclic voltammetry and electrochemical impedance spectroscopy. It was observed that after treatment with peptide, the charge transfer through lipid bilayer is initially strongly inhibited. However, after longer exposure to melittin, the structure of the lipid film becomes less compact and the electrode reactions are facilitated due to the presence of numerous defect sites exposing bare substrate. We have assumed that such behavior reflects initial adsorption of melittin on top of the membrane and its further insertion which leads to formation of the pores or partial micellization of the lipid film. AFM imaging revealed that the exposure to 10 μM melittin solution induces significant structural changes in DMPG and DMPS membranes. However, melittin seems to affect their organization in a different manner. DMPG film appears to be more susceptible to peptide action compared with DMPS bilayer. In the latter case, long-time exposure to melittin does not result in the rupture of the membrane but rather leads to formation of pore-like defects. This observation is explained in terms of different nanomechanical properties of DMPG and DMPS films and different barrier for the reorientation and insertion of the peptide molecules into the membranes.

  5. Charge immobilization of the voltage sensor in domain IV is independent of sodium current inactivation.

    Science.gov (United States)

    Sheets, Michael F; Hanck, Dorothy A

    2005-02-15

    Recovery from fast inactivation in voltage-dependent Na+ channels is associated with a slow component in the time course of gating charge during repolarization (i.e. charge immobilization), which results from the slow movement of the S4 segments in domains III and IV (S4-DIII and S4-DIV). Previous studies have shown that the non-specific removal of fast inactivation by the proteolytic enzyme pronase eliminated charge immobilization, while the specific removal of fast inactivation (by intracellular MTSET modification of a cysteine substituted for the phenylalanine in the IFM motif, ICMMTSET, in the inactivation particle formed by the linker between domains III and IV) only reduced the amount of charge immobilization by nearly one-half. To investigate the molecular origin of the remaining slow component of charge immobilization we studied the human cardiac Na+ channel (hH1a) in which the outermost arginine in the S4-DIV, which contributes approximately 20% to total gating charge (Qmax), was mutated to a cysteine (R1C-DIV). Gating charge could be fully restored in R1C-DIV by exposure to extracellular MTSEA, a positively charged methanethiosulphonate reagent. The RIC-DIV mutation was combined with ICMMTSET to remove fast inactivation, and the gating currents of R1C-DIV-ICM(MTSET) were recorded before and after modification with MTSEAo. Prior to MTSEAo, the time course of the gating charge during repolarization (off-charge) was best described by a single fast time constant. After MTSEA, the off-charge had both fast and slow components, with the slow component accounting for nearly 35% of Qmax. These results demonstrate that the slow movement of the S4-DIV during repolarization is not dependent upon the normal binding of the inactivation particle.

  6. Salt splitting using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  7. Antimicrobial membrane surfaces via efficient polyethyleneimine immobilization and cationization

    Science.gov (United States)

    Qiu, Wen-Ze; Zhao, Zi-Shu; Du, Yong; Hu, Meng-Xin; Xu, Zhi-Kang

    2017-12-01

    Biofouling control is a major task in membrane separation processes for water treatment and biomedical applications. In this work, N-alkylated polyethylenimine (PEI) is facilely and efficiently introduced onto the membrane surfaces via the co-deposition of catechol (CCh) and PEI, followed by further grafting of PEIs (600 Da, 70 kDa and 750 kDa) and cationization with methyl iodide (CH3I). The physical and chemical properties of the constructed membrane surfaces are characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential and water contact angle measurements. Antibacterial assay reveals that the optimized membrane surfaces possess around 95% antibacterial efficiency against Gram-positive Staphylococcus aureus (S. aureus) with weak adhesion of bacteria cells after 24 h of bacterial contact. Additionally, the membrane surfaces also exhibit much enhanced antifouling property during the filtration of opposite charged bovine serum albumin (BSA). These results demonstrate a useful strategy for the surface modification of separation membranes by a kind of antimicrobial and antifouling coating.

  8. Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy.

    Science.gov (United States)

    Soblosky, Lauren; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2015-04-01

    Supported lipid bilayers are used as a convenient model cell membrane system to study biologically important molecule-lipid interactions in situ. However, the lipid bilayer models are often simple and the acquired results with these models may not provide all pertinent information related to a real cell membrane. In this work, we use sum frequency generation (SFG) vibrational spectroscopy to study molecular-level interactions between the antimicrobial peptides (AMPs) MSI-594, ovispirin-1 G18, magainin 2 and a simple 1,2-dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. We compared such interactions to those between the AMPs and a more complex dDPPG/Escherichia coli (E. coli) polar lipid extract bilayer. We show that to fully understand more complex aspects of peptide-bilayer interaction, such as interaction kinetics, a heterogeneous lipid composition is required, such as the E. coli polar lipid extract. The discrepancy in peptide-bilayer interaction is likely due in part to the difference in bilayer charge between the two systems since highly negative charged lipids can promote more favorable electrostatic interactions between the peptide and lipid bilayer. Results presented in this paper indicate that more complex model bilayers are needed to accurately analyze peptide-cell membrane interactions and demonstrates the importance of using an appropriate lipid composition to study AMP interaction properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    Science.gov (United States)

    Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda

    2005-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.

  10. Single molecule tracking fluorescence microscopy in mitochondria reveals highly dynamic but confined movement of Tom40

    Science.gov (United States)

    Kuzmenko, Anton; Tankov, Stoyan; English, Brian P.; Tarassov, Ivan; Tenson, Tanel; Kamenski, Piotr; Elf, Johan; Hauryliuk, Vasili

    2011-12-01

    Tom40 is an integral protein of the mitochondrial outer membrane, which as the central component of the Translocase of the Outer Membrane (TOM) complex forms a channel for protein import. We characterize the diffusion properties of individual Tom40 molecules fused to the photoconvertable fluorescent protein Dendra2 with millisecond temporal resolution. By imaging individual Tom40 molecules in intact isolated yeast mitochondria using photoactivated localization microscopy with sub-diffraction limited spatial precision, we demonstrate that Tom40 movement in the outer mitochondrial membrane is highly dynamic but confined in nature, suggesting anchoring of the TOM complex as a whole.

  11. Supercapacitive bioelectrochemical solar cells using thylakoid membranes and carbon nanotubes

    DEFF Research Database (Denmark)

    Pankratov, Dmitrii; Pankratova, G.; Åkerlund, H.-E.

    and storage in the form of electric charge within a singular contrivance, we have developed and investigated supercapacitive photo-bioanodes based on the carboxilized and amidized multiwalled carbon nanotubes (MWСNTs) in direct electron transfer (DET) communication with adsorbed thylakoid membranes...

  12. Arabidopsis SNAREs SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2;7 to modulate the cell membrane water permeability.

    Science.gov (United States)

    Hachez, Charles; Laloux, Timothée; Reinhardt, Hagen; Cavez, Damien; Degand, Hervé; Grefen, Christopher; De Rycke, Riet; Inzé, Dirk; Blatt, Michael R; Russinova, Eugenia; Chaumont, François

    2014-07-01

    Plant plasma membrane intrinsic proteins (PIPs) are aquaporins that facilitate the passive movement of water and small neutral solutes through biological membranes. Here, we report that post-Golgi trafficking of PIP2;7 in Arabidopsis thaliana involves specific interactions with two syntaxin proteins, namely, the Qc-SNARE SYP61 and the Qa-SNARE SYP121, that the proper delivery of PIP2;7 to the plasma membrane depends on the activity of the two SNAREs, and that the SNAREs colocalize and physically interact. These findings are indicative of an important role for SYP61 and SYP121, possibly forming a SNARE complex. Our data support a model in which direct interactions between specific SNARE proteins and PIP aquaporins modulate their post-Golgi trafficking and thus contribute to the fine-tuning of the water permeability of the plasma membrane. © 2014 American Society of Plant Biologists. All rights reserved.

  13. Membrane binding properties of EBV gp110 C-terminal domain; evidences for structural transition in the membrane environment

    International Nuclear Information System (INIS)

    Park, Sung Jean; Seo, Min-Duk; Lee, Suk Kyeong; Lee, Bong Jin

    2008-01-01

    Gp110 of Epstein-Barr virus (EBV) mainly localizes on nuclear/ER membranes and plays a role in the assembly of EBV nucleocapsid. The C-terminal tail domain (gp110 CTD) is essential for the function of gp110 and the nuclear/ER membranes localization of gp110 is ruled by its C-terminal unique nuclear localization signal (NLS), consecutive four arginines. In the present study, the structural properties of gp110 CTD in membrane mimics were investigated using CD, size-exclusion chromatography, and NMR, to elucidate the effect of membrane environment on the structural transition and to compare the structural feature of the protein in the solution state with that of the membrane-bound form. CD and NMR analysis showed that gp110 CTD in a buffer solution appears to adopt a stable folding intermediate which lacks compactness, and a highly helical structure is formed only in membrane environments. The helical content of gp110 CTD was significantly affected by the negative charge as well as the size of membrane mimics. Based on the elution profiles of the size-exclusion chromatography, we found that gp110 CTD intrinsically forms a trimer, revealing that a trimerization region may exist in the C-terminal domain of gp110 like the ectodomain of gp110. The mutation of NLS (RRRR) to RTTR does not affect the overall structure of gp110 CTD in membrane mimics, while the helical propensity in a buffer solution was slightly different between the wild-type and the mutant proteins. This result suggests that not only the helicity induced in membrane environment but also the local structure around NLS may be related to trafficking to the nuclear membrane. More detailed structural difference between the wild-type and the mutant in membrane environment was examined using synthetic two peptides including the wild-type NLS and the mutant NLS

  14. Tight ceramic UF membrane as RO pre-treatment: The role of electrostatic interactions on phosphate rejection

    NARCIS (Netherlands)

    Shang, R.; Verliefde, A.R.D.; Hu, J.; Zeng, Z; Lu, L.; Lu, L.; Kemperman, Antonius J.B.; Deng, H.; Nijmeijer, Dorothea C.; Heijman, S.G.J.; Rietveld, L.C.

    2014-01-01

    Phosphate limitation has been reported as an effective approach to inhibit biofouling in reverse osmosis (RO) systems for water purification. The rejection of dissolved phosphate by negatively charged TiO2 tight ultrafiltration (UF) membranes (1 kDa and 3 kDa) was observed. These membranes can

  15. Green Modification of Outer Selective P84 Nanofiltration (NF) Hollow Fiber Membranes for Cadmium Removal

    KAUST Repository

    Gao, Jie

    2015-10-26

    Outer-selective thin-film composite (TFC) hollow fiber membranes are normally made from interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl chloride (TMC). However, the removal of excess MPD solution and the large consumption of alkane solvents are their technical bottlenecks. In this study, green methods to prepare the outer selective TFC hollow fiber membranes were explored by firstly modifying the membrane substrate with polyethyleneimine (PEI) and then by water soluble small molecules such as glutaraldehyde (GA) and epichlorohydrin (ECH). Using P84 polyimide as the substrate, not only do these modifications decrease substrate\\'s pore size, but also vary surface charge by making the membranes less positively charged. As a result, the resultant membranes have higher rejections against salts such as Na2SO4, NaCl and MgSO4. The PEI and then GA modified membrane has the best separation performance with a NaCl rejection over 90% and a pure water permeability (PWP) of 1.74±0.01 Lm−2bar−1h−1. It also shows an impressive rejection to CdCl2 (94%) during long-term stability tests. The CdCl2 rejection remains higher than 90% at operating temperatures from 5 to 60 °C. This study may provide useful insights for green manufacturing of outer-selective nanofiltration (NF) hollow fiber membranes.

  16. High quality single crystal Ge nano-membranes for opto-electronic integrated circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Shah, V. A., E-mail: vishal.shah@warwick.ac.uk; Gammon, P. M. [Department of Engineering, The University of Warwick, Coventry CV4 7AL (United Kingdom); Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Rhead, S. D.; Halpin, J. E.; Trushkevych, O.; Wilson, N. R.; Myronov, M.; Edwards, R. S.; Patchett, D. H.; Allred, P. S.; Prest, M. J.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R. [Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Chávez-Ángel, E. [ICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Department of Physics, UAB, 08193 Bellaterra (Barcelona) (Spain); Shchepetov, A.; Prunnila, M. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Kachkanov, V.; Dolbnya, I. P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Reparaz, J. S. [ICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); and others

    2014-04-14

    A thin, flat, and single crystal germanium membrane would be an ideal platform on which to mount sensors or integrate photonic and electronic devices, using standard silicon processing technology. We present a fabrication technique compatible with integrated-circuit wafer scale processing to produce membranes of thickness between 60 nm and 800 nm, with large areas of up to 3.5 mm{sup 2}. We show how the optical properties change with thickness, including appearance of Fabry-Pérot type interference in thin membranes. The membranes have low Q-factors, which allow the platforms to counteract distortion during agitation and movement. Finally, we report on the physical characteristics showing sub-nm roughness and a homogenous strain profile throughout the freestanding layer, making the single crystal Ge membrane an excellent platform for further epitaxial growth or deposition of materials.

  17. High quality single crystal Ge nano-membranes for opto-electronic integrated circuitry

    International Nuclear Information System (INIS)

    Shah, V. A.; Gammon, P. M.; Rhead, S. D.; Halpin, J. E.; Trushkevych, O.; Wilson, N. R.; Myronov, M.; Edwards, R. S.; Patchett, D. H.; Allred, P. S.; Prest, M. J.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R.; Chávez-Ángel, E.; Shchepetov, A.; Prunnila, M.; Kachkanov, V.; Dolbnya, I. P.; Reparaz, J. S.

    2014-01-01

    A thin, flat, and single crystal germanium membrane would be an ideal platform on which to mount sensors or integrate photonic and electronic devices, using standard silicon processing technology. We present a fabrication technique compatible with integrated-circuit wafer scale processing to produce membranes of thickness between 60 nm and 800 nm, with large areas of up to 3.5 mm 2 . We show how the optical properties change with thickness, including appearance of Fabry-Pérot type interference in thin membranes. The membranes have low Q-factors, which allow the platforms to counteract distortion during agitation and movement. Finally, we report on the physical characteristics showing sub-nm roughness and a homogenous strain profile throughout the freestanding layer, making the single crystal Ge membrane an excellent platform for further epitaxial growth or deposition of materials

  18. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kuroda, Kenichi, E-mail: kkuroda@umich.edu [Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109 (United States)

    2014-08-28

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  19. Ion transport through biological membranes an integrated theoretical approach

    CERN Document Server

    Mackey, Michael C

    1975-01-01

    This book illustrates some of the ways physics and mathematics have been, and are being, used to elucidate the underlying mechan­ isms of passive ion movement through biological membranes in general, and the membranes of excltable cells in particular. I have made no effort to be comprehensive in my introduction of biological material and the reader interested in a brief account of single cell electro­ physlology from a physically-oriented biologists viewpoint will find the chapters by Woodbury (1965) an excellent introduction. Part I is introductory in nature, exploring the basic electrical properties of inexcitable and excitable cell plasma membranes. Cable theory is utilized to illustrate the function of the non-decrementing action potential as a signaling mechanism for the long range trans­ mission of information in the nervous system, and to gain some in­ sight into the gross behaviour of neurons. The detailed analysis of Hodgkin and Huxley on the squid giant axon membrane ionic conductance properties...

  20. Chitosan derivatives targeting lipid bilayers: Synthesis, biological activity and interaction with model membranes.

    Science.gov (United States)

    Martins, Danubia Batista; Nasário, Fábio Domingues; Silva-Gonçalves, Laiz Costa; de Oliveira Tiera, Vera Aparecida; Arcisio-Miranda, Manoel; Tiera, Marcio José; Dos Santos Cabrera, Marcia Perez

    2018-02-01

    The antimicrobial activity of chitosan and derivatives to human and plant pathogens represents a high-valued prospective market. Presently, two low molecular weight derivatives, endowed with hydrophobic and cationic character at different ratios were synthesized and characterized. They exhibit antimicrobial activity and increased performance in relation to the intermediate and starting compounds. However, just the derivative with higher cationic character showed cytotoxicity towards human cervical carcinoma cells. Considering cell membranes as targets, the mode of action was investigated through the interaction with model lipid vesicles mimicking bacterial, tumoral and erythrocyte membranes. Intense lytic activity and binding are demonstrated for both derivatives in anionic bilayers. The less charged compound exhibits slightly improved selectivity towards bacterial model membranes, suggesting that balancing its hydrophobic/hydrophilic character may improve efficiency. Observing the aggregation of vesicles, we hypothesize that the "charge cluster mechanism", ascribed to some antimicrobial peptides, could be applied to these chitosan derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Combined effects of headgroup charge and tail unsaturation of lipids on lateral organization and diffusion of lipids in model biomembranes

    International Nuclear Information System (INIS)

    Chen Xiao-Jie; Liang Qing

    2017-01-01

    Lateral organization and dynamics of lipids in plasma membranes are crucial for several cellular processes such as signal transduction across the membrane and still remain elusive. In this paper, using coarse-grained molecular dynamics simulation, we theoretically study the combined effects of headgroup charge and tail unsaturation of lipids on the lateral organization and diffusion of lipids in ternary lipid bilayers. In neutral ternary lipid bilayers composed of saturated lipids, unsaturated lipids, and cholesterols, under the conditions of given temperature and components, the main factor for the phase separation is the unsaturation of unsaturated lipids and the bilayers can be separated into liquid-ordered domains enriched in saturated lipids and cholesterols and liquid-disordered domains enriched in unsaturated lipids. Once the headgroup charge is introduced, the electrostatic repulsion between the negatively charged lipid headgroups will increase the distance between the charged lipids. We find that the lateral organization and diffusion of the lipids in the (partially) charged ternary lipid bilayers are determined by the competition between the headgroup charge and the unsaturation of the unsaturated lipids. In the bilayers containing unsaturated lipids with lower unsaturation, the headgroup charge plays a crucial role in the lateral organization and diffusion of lipids. The headgroup charge may make the lipid domains unstable and even can suppress phase separation of the lipids in some systems. However, in the bilayers containing highly unsaturated lipids, the lateral organization and diffusion of lipids are mainly dominated by the unsaturation of the unsaturated lipids. This work may provide some theoretical insights into understanding the formation of nanosized domains and lateral diffusion of lipids in plasma membranes. (paper)

  2. Mechanical compression of a fibrous membrane surrounding bone causes bone resorption

    NARCIS (Netherlands)

    van der Vis, H. M.; Aspenberg, P.; Tigchelaar, W.; van Noorden, C. J.

    1999-01-01

    Early micromovement and migration of a prosthesis of a hip or knee predicts late clinical loosening of the prosthesis. Such migration is likely to be associated with mechanical compression of the fibrous membrane interpositioned between bone and prosthesis during movement. Compression of the fibrous

  3. Interaction of MreB-derived antimicrobial peptides with membranes.

    Science.gov (United States)

    Saikia, Karabi; Chaudhary, Nitin

    2018-03-25

    Antimicrobial peptides are critical components of defense systems in living forms. The activity is conferred largely by the selective membrane-permeabilizing ability. In our earlier work, we derived potent antimicrobial peptides from the 9-residue long, N-terminal amphipathic helix of E. coli MreB protein. The peptides display broad-spectrum activity, killing not only Gram-positive and Gram-negative bacteria but opportunistic fungus, Candida albicans as well. These results proved that membrane-binding stretches of bacterial proteins could turn out to be self-harming when applied from outside. Here, we studied the membrane-binding and membrane-perturbing potential of these peptides. Steady-state tryptophan fluorescence studies with tryptophan extended peptides, WMreB 1-9 and its N-terminal acetylated analog, Ac-WMreB 1-9 show preferential binding to negatively-charged liposomes. Both the peptides cause permeabilization of E. coli inner and outer-membranes. Tryptophan-lacking peptides, though permeabilize the outer-membrane efficiently, little permeabilization of the inner-membrane is observed. These data attest membrane-destabilization as the mechanism of rapid bacterial killing. This study is expected to motivate the research in identifying microbes' self-sequences to combat them. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Nanoelectropulse-driven membrane perturbation and small molecule permeabilization

    Directory of Open Access Journals (Sweden)

    Sun Yinghua

    2006-10-01

    Full Text Available Abstract Background Nanosecond, megavolt-per-meter pulsed electric fields scramble membrane phospholipids, release intracellular calcium, and induce apoptosis. Flow cytometric and fluorescence microscopy evidence has associated phospholipid rearrangement directly with nanoelectropulse exposure and supports the hypothesis that the potential that develops across the lipid bilayer during an electric pulse drives phosphatidylserine (PS externalization. Results In this work we extend observations of cells exposed to electric pulses with 30 ns and 7 ns durations to still narrower pulse widths, and we find that even 3 ns pulses are sufficient to produce responses similar to those reported previously. We show here that in contrast to unipolar pulses, which perturb membrane phospholipid order, tracked with FM1-43 fluorescence, only at the anode side of the cell, bipolar pulses redistribute phospholipids at both the anode and cathode poles, consistent with migration of the anionic PS head group in the transmembrane field. In addition, we demonstrate that, as predicted by the membrane charging hypothesis, a train of shorter pulses requires higher fields to produce phospholipid scrambling comparable to that produced by a time-equivalent train of longer pulses (for a given applied field, 30, 4 ns pulses produce a weaker response than 4, 30 ns pulses. Finally, we show that influx of YO-PRO-1, a fluorescent dye used to detect early apoptosis and activation of the purinergic P2X7 receptor channels, is observed after exposure of Jurkat T lymphoblasts to sufficiently large numbers of pulses, suggesting that membrane poration occurs even with nanosecond pulses when the electric field is high enough. Propidium iodide entry, a traditional indicator of electroporation, occurs with even higher pulse counts. Conclusion Megavolt-per-meter electric pulses as short as 3 ns alter the structure of the plasma membrane and permeabilize the cell to small molecules. The dose

  5. In Situ Blotting : A Novel Method for Direct Transfer of Native Proteins from Sectioned Tissue to Blotting Membrane

    NARCIS (Netherlands)

    Okabe, Masashi; Nyakas, Csaba; Buwalda, Bauke; Luiten, Paul G.M.

    1993-01-01

    We describe a novel technique for direct transfer of native proteins from unfixed frozen tissue sections to an immobilizing matrix, e.g., nitrocellulose, polyvinyliden difluoride, or positively charged nylon membranes. Proteins are directly blotted onto the membrane, providing optimal accessibility

  6. Atomic Force Microscopy Study on the Stiffness of Nanosized Liposomes Containing Charged Lipids.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Goda, Yukihiro; Sakai-Kato, Kumiko

    2018-06-18

    It has recently been recognized that the mechanical properties of lipid nanoparticles play an important role during in vitro and in vivo behaviors such as cellular uptake, blood circulation, and biodistribution. However, there have been no quantitative investigations of the effect of commonly used charged lipids on the stiffness of nanosized liposomes. In this study, by means of atomic force microscopy (AFM), we quantified the stiffness of nanosized liposomes composed of neutrally charged lipids combined with positively or negatively charged lipids while simultaneously imaging the liposomes in aqueous medium. Our results showed that charged lipids, whether negatively or positively charged, have the effect of reducing the stiffness of nanosized liposomes, independently of the saturation degree of the lipid acyl chains; the measured stiffness values of liposomes containing charged lipids are 30-60% lower than those of their neutral counterpart liposomes. In addition, we demonstrated that the Laurdan generalized polarization values, which are related to the hydration degree of the liposomal membrane interface and often used as a qualitative indicator of liposomal membrane stiffness, do not directly correlate with the physical stiffness values of the liposomes prepared in this study. However, our results indicate that direct quantitative AFM measurement is a valuable method to gain molecular-scale information about how the hydration degree of liposomal interfaces reflects (or does not reflect) liposome stiffness as a macroscopic property. Our AFM method will contribute to the quantitative characterization of the nano-bio interaction of nanoparticles and to the optimization of the lipid composition of liposomes for clinical use.

  7. Cell adhesion and spreading at a charged interface: Insight into the mechanism using surface techniques and mathematical modelling

    International Nuclear Information System (INIS)

    DeNardis, Nadica Ivošević; Ilić, Jadranka Pečar; Ružić, Ivica; Pletikapić, Galja

    2015-01-01

    Highlights: • Kinetics of adhesion and spreading of the algal cell at a charged interface is explored. • Amperometric signals are analyzed using extended methodology and the reaction kinetics model. • The model reconstructs and quantifies individual states of the three-step adhesion process. • Adhesion kinetics of the algal cell is slower than that of its plasma membrane vesicle. • Slow spreading of organic film at the interface could be due to the attenuated effect of the potential. - Abstract: We study the kinetics of adhesion and spreading of an algal cell and its plasma membrane vesicle at the charged interface. A simple system of an isolated plasma membrane vesicle without internal content has been developed and characterized by atomic force microscopy (AFM). We extend the methodology based on the reaction kinetics model and empirical fitting for the analysis of amperometric signals, and demonstrate its validity and pertinence in a wide range of surface charge densities. Adhesion kinetics of the algal cell is slower than that of its plasma membrane vesicle. Isolated plasma membrane contributes about one quarter to the cell contact area. The model reconstructs and quantifies individual states of the three-step adhesion process of the algal cell and makes it possible to associate them with various features of amperometric signal. At the time of current amplitude, the ruptured state predominates and the cell spread contact area is larger than its initial area as well as the contact area of the plasma membrane vesicle. These results suggest that a major structural disruption of the cell membrane, collapse of cytoskeleton and leakage of intracellular material could appear close to the time of current amplitude. Further, slow kinetics of the organic film spreading at the interface to its maximal extent is considered as the rate determining step, which could be a consequence of the attenuated effect of potential at the modified interface, stronger

  8. MEMBRANE ACTION IN PROFILED STEEL SHEETING DRY BOARD (PSSDB FLOOR SLAB SYSTEM

    Directory of Open Access Journals (Sweden)

    MAHMOOD SERAJI

    2013-02-01

    Full Text Available Profiled steel sheeting dry board (PSSDB system is a lightweight composite structural system that made of the profiled steel sheeting (PSS connected to the dry board (DB by self-drilling and self-tapping screws. The objective of this paper is to study the effect of membrane action in improving the flexural capacities of the PSSDB system. According to the literatures, common failure of the PSSDB floor is due to local buckling in the top flanges of steel sheeting at the centre of a simply supported slab. Restraining the horizontal movement at supports may develop the membrane action (MA in the slab that can remarkably enhance the flexural rigidities of the floor. Experimental tests were conducted along with developing nonlinear finite element model to explore the effect of MA in the PSSDB floor. Experimental results of the PSSDB panel with simply end support were exploited to verify the nonlinear finite element results. The developed finite element model was then modified by restraining the horizontal movement of the slab at the supports. The obtained results disclosed that the developed compressive membrane action enhanced the stiffness of the slab at serviceability load by about 240%.

  9. Interaction of N-terminal peptide analogues of the Na+,K+-ATPase with membranes.

    Science.gov (United States)

    Nguyen, Khoa; Garcia, Alvaro; Sani, Marc-Antoine; Diaz, Dil; Dubey, Vikas; Clayton, Daniel; Dal Poggetto, Giovanni; Cornelius, Flemming; Payne, Richard J; Separovic, Frances; Khandelia, Himanshu; Clarke, Ronald J

    2018-06-01

    The Na + ,K + -ATPase, which is present in the plasma membrane of all animal cells, plays a crucial role in maintaining the Na + and K + electrochemical potential gradients across the membrane. Recent studies have suggested that the N-terminus of the protein's catalytic α-subunit is involved in an electrostatic interaction with the surrounding membrane, which controls the protein's conformational equilibrium. However, because the N-terminus could not yet be resolved in any X-ray crystal structures, little information about this interaction is so far available. In measurements utilising poly-l-lysine as a model of the protein's lysine-rich N-terminus and using lipid vesicles of defined composition, here we have identified the most likely origin of the interaction as one between positively charged lysine residues of the N-terminus and negatively charged headgroups of phospholipids (notably phosphatidylserine) in the surrounding membrane. Furthermore, to isolate which segments of the N-terminus could be involved in membrane binding, we chemically synthesized N-terminal fragments of various lengths. Based on a combination of results from RH421 UV/visible absorbance measurements and solid-state 31 P and 2 H NMR using these N-terminal fragments as well as MD simulations it appears that the membrane interaction arises from lysine residues prior to the conserved LKKE motif of the N-terminus. The MD simulations indicate that the strength of the interaction varies significantly between different enzyme conformations. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Controlling the rejection of protein during membrane filtration by adding selected polyelectrolytes

    DEFF Research Database (Denmark)

    Pinelo, Manuel; Ferrer Roca, Carme; Meyer, Anne S.

    2012-01-01

    Electrostatic interactions among the charged groups on proteins and/or between proteins and other solutes significantly affect the aggregation/deposition phenomena that induce fouling and decrease permeate flux during membrane purification of proteins. Such interactions can be turned...... help enhance the performance of membrane filtration for fractionation/purification of a target protein by significantly reducing fouling and modifying rejection/selectivity.......) changing the pH, on the permeate flux and membrane transmission of bovin serum albumina (BSA) through a PVDF membrane. The addition of PS-co-AA to the feed solution resulted in significant increases of the BSA transmission at pH 7.4 as compared to the transmission of a pure BSA solution (1g...

  11. Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems.

    Science.gov (United States)

    Harnisch, Falk; Warmbier, Robert; Schneider, Ralf; Schröder, Uwe

    2009-06-01

    An explicit numerical model for the charge balancing ion transfer across monopolar ion exchange membranes under conditions of bioelectrochemical systems is presented. Diffusion and migration equations have been solved according to the Nernst-Planck Equation and the resulting ion concentrations, pH values and the resistance values of the membrane for different conditions were computed. The modeling results underline the principle limitations of the application of ion exchange membranes in biological fuel cells and electrolyzers, caused by the inherent occurrence of a pH-gradient between anode and cathode compartment, and an increased ohmic membrane resistance at decreasing electrolyte concentrations. Finally, the physical and numerical limitations of the model are discussed.

  12. Polymer-Induced Swelling of Solid-Supported Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Martin Kreuzer

    2015-12-01

    Full Text Available In this paper, we study the interaction of charged polymers with solid-supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC membranes by in-situ neutron reflectivity. We observe an enormous swelling of the oligolamellar lipid bilayer stacks after incubation in solutions of poly(allylamine hydrochloride (PAH in D2O. The positively charged polyelectrolyte molecules interact with the lipid bilayers and induce a drastic increase in their d-spacing by a factor of ~4. Temperature, time, and pH influence the swollen interfacial lipid linings. From our study, we conclude that electrostatic interactions introduced by the adsorbed PAH are the main cause for the drastic swelling of the lipid coatings. The DMPC membrane stacks do not detach from their solid support at T > Tm. Steric interactions, also introduced by the PAH molecules, are held responsible for the stabilizing effect. We believe that this novel system offers great potential for fundamental studies of biomembrane properties, keeping the membrane’s natural fluidity and freedom, decoupled from a solid support at physiological conditions.

  13. Membrane interactions and antimicrobial effects of layered double hydroxide nanoparticles

    DEFF Research Database (Denmark)

    Malekkhaiat Häffner, S; Nyström, L; Nordström, R

    2017-01-01

    Membrane interactions are critical for the successful use of inorganic nanoparticles as antimicrobial agents and as carriers of, or co-actives with, antimicrobial peptides (AMPs). In order to contribute to an increased understanding of these, we here investigate effects of particle size (42-208 nm...... into size-dependent synergistic effects with the antimicrobial peptide LL-37. Due to strong interactions with anionic lipopolysaccharide and peptidoglycan layers, direct membrane disruption of both Gram-negative and Gram-positive bacteria is suppressed. However, LDH nanoparticles cause size-dependent charge...

  14. Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions.

    Science.gov (United States)

    Kang, Bok Eum; Baker, Bradley J

    2016-04-04

    An in silico search strategy was developed to identify potential voltage-sensing domains (VSD) for the development of genetically encoded voltage indicators (GEVIs). Using a conserved charge distribution in the S2 α-helix, a single in silico search yielded most voltage-sensing proteins including voltage-gated potassium channels, voltage-gated calcium channels, voltage-gated sodium channels, voltage-gated proton channels, and voltage-sensing phosphatases from organisms ranging from mammals to bacteria and plants. A GEVI utilizing the VSD from a voltage-gated proton channel identified from that search was able to optically report changes in membrane potential. In addition this sensor was capable of manipulating the internal pH while simultaneously reporting that change optically since it maintains the voltage-gated proton channel activity of the VSD. Biophysical characterization of this GEVI, Pado, demonstrated that the voltage-dependent signal was distinct from the pH-dependent signal and was dependent on the movement of the S4 α-helix. Further investigation into the mechanism of the voltage-dependent optical signal revealed that inhibiting the dimerization of the fluorescent protein greatly reduced the optical signal. Dimerization of the FP thereby enabled the movement of the S4 α-helix to mediate a fluorescent response.

  15. Modulating activity of vancomycin and daptomycin on the expression of autolysis cell-wall turnover and membrane charge genes in hVISA and VISA strains.

    Directory of Open Access Journals (Sweden)

    Viviana Cafiso

    Full Text Available Glycopeptides are still the gold standard to treat MRSA (Methicillin Resistant Staphylococcus aureus infections, but their widespread use has led to vancomycin-reduced susceptibility [heterogeneous Vancomycin-Intermediate-Staphylococcus aureus (hVISA and Vancomycin-Intermediate-Staphylococcus aureus (VISA], in which different genetic loci (regulatory, autolytic, cell-wall turnover and cell-envelope positive charge genes are involved. In addition, reduced susceptibility to vancomycin can influence the development of resistance to daptomycin. Although the phenotypic and molecular changes of hVISA/VISA have been the focus of different papers, the molecular mechanisms responsible for these different phenotypes and for the vancomycin and daptomycin cross-resistance are not clearly understood. The aim of our study was to investigate, by real time RT-PCR, the relative quantitative expression of genes involved in autolysis (atl-lytM, cell-wall turnover (sceD, membrane charges (mprF-dltA and regulatory mechanisms (agr-locus-graRS-walKR, in hVISA and VISA cultured with or without vancomycin and daptomycin, in order to better understand the molecular basis of vancomycin-reduced susceptibility and the modulating activity of vancomycin and daptomycin on the expression of genes implicated in their reduced susceptibility mechanisms. Our results show that hVISA and VISA present common features that distinguish them from Vancomycin-Susceptible Staphylococcus aureus (VSSA, responsible for the intermediate glycopeptide resistance i.e. an increased cell-wall turnover, an increased positive cell-wall charge responsible for a repulsion mechanism towards vancomycin and daptomycin, and reduced agr-functionality. Indeed, VISA emerges from hVISA when VISA acquires a reduced autolysis caused by a down-regulation of autolysin genes, atl/lytM, and a reduction of the net negative cell-envelope charge via dltA over-expression. Vancomycin and daptomycin, acting in a similar

  16. Monitoring Voltage-Dependent Charge Displacement of Shaker B-IR K+ Ion Channels Using Radio Frequency Interrogation

    OpenAIRE

    Dharia, Sameera; Rabbitt, Richard D.

    2011-01-01

    Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K(+) ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential a...

  17. Mechanism underlying the inner membrane retention of Escherichia coli lipoproteins caused by Lol avoidance signals.

    Science.gov (United States)

    Hara, Takashi; Matsuyama, Shin-ichi; Tokuda, Hajime

    2003-10-10

    Escherichia coli lipoproteins are localized to either the inner or outer membrane depending on the residue at position 2. The inner membrane retention signal, Asp at position 2 in combination with certain residues at position 3, functions as a Lol avoidance signal, i.e. the signal inhibits the recognition of lipoproteins by LolCDE that releases lipoproteins from the inner membrane. To understand the role of the residue at position 2, outer membrane-specific lipoproteins with Cys at position 2 were subjected to chemical modification followed by the release reaction in reconstituted proteoliposomes. Sulfhydryl-specific introduction of nonprotein molecules or a negative charge to Cys did not inhibit the LolCDE-dependent release. In contrast, oxidation of Cys to cysteic acid resulted in generation of the Lol avoidance signal, indicating that the Lol avoidance signal requires a critical length of negative charge at the second residue. Furthermore, not only modification of the carboxylic acid of Asp at position 2 but also that of the amine of phosphatidylethanolamine abolished the Lol avoidance function. Based on these results, the Lol avoidance mechanism is discussed.

  18. Thermodynamic Charge-to-Mass Sensor for Colloids, Proteins, and Polyelectrolytes

    NARCIS (Netherlands)

    van Rijssel, Jos; Costo, Rocio; Vrij, Agienus; Philipse, Albert P.; Erne, Ben H.

    2016-01-01

    A sensor is introduced that gauges the ratio of charge z to mass m of macro-ions in liquid media. The conductivity is measured in a small volume of salt solution, separated from the macro-ions by a semipermeable membrane. The mobile counterions released by the macro-ions increase the measured salt

  19. Islamic Puritanism Movements in Indonesia as Transnational Movements

    Directory of Open Access Journals (Sweden)

    Benny Baskara

    2017-04-01

    Full Text Available Islamic puritanism movements are the movements compelling to return to the teachings of Quran and Sunnah, as the pure teachings of Islam and abandon even abolish other teachings outside the teachings of Quran and Sunnah. The movements of Islamic puritanism can be considered as transnational movements because they spread their teachings and ideologies, create organizations, networks, and provide financial supports across nations. This paper describes Islamic puritanism movements in Indonesia and their transnational connections. Some Islamic puritanism movements in Indonesia can be considered as part of Islamic transnational movements, in which most of the movements are centered in the Middle East. In Indonesia, Islamic puritanism movements firstly appeared in the beginning of the nineteenth century, called Padri movement in West Sumatra. It was then continued to the emergence of Islamic organizations in the twentieth century. Recently, Islamic puritanism movements in Indonesia mostly take form as Salafism-Wahabism movements.

  20. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo; Li, Zhenyu; Sarp, Sarper; Park, Y. G.; Amy, Gary L.; Vrouwenvelder, Johannes S.

    2014-01-01

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  1. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-07-17

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  2. Evidence for the existence of multiple heparan sulfate proteoglycans in the human glomerular basement membrane and mesangial matrix

    NARCIS (Netherlands)

    Groffen, Alexander J A; Hop, Frank W H; Tryggvason, Karl; Dijkman, Henri; Assmann, Karel J M; Veerkamp, Jacques H.; Monnens, Leo A H; Van Den Heuvel, Lambert P W J

    1997-01-01

    Heparan sulfate proteoglycans (HSPGs) are essential components of the glomerular basement membrane (GBM) carrying a strong anionic charge. A well- characterized extracellular HSPG is perlecan, ubiquitously expressed in basement membranes. A cDNA construct encoding domains I and II of human perlecan

  3. Hereditary spastic paraplegias: membrane traffic and the motor pathway.

    Science.gov (United States)

    Blackstone, Craig; O'Kane, Cahir J; Reid, Evan

    2011-01-01

    Voluntary movement is a fundamental way in which animals respond to, and interact with, their environment. In mammals, the main CNS pathway controlling voluntary movement is the corticospinal tract, which encompasses connections between the cerebral motor cortex and the spinal cord. Hereditary spastic paraplegias (HSPs) are a group of genetic disorders that lead to a length-dependent, distal axonopathy of fibres of the corticospinal tract, causing lower limb spasticity and weakness. Recent work aimed at elucidating the molecular cell biology underlying the HSPs has revealed the importance of basic cellular processes — especially membrane trafficking and organelle morphogenesis and distribution— in axonal maintenance and degeneration.

  4. Fast iodide-SAD phasing for high-throughput membrane protein structure determination.

    Science.gov (United States)

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A; Gordeliy, Valentin; Popov, Alexander

    2017-05-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide-single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins-the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein-coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques.

  5. Sulfonated poly(ether ether ketone) membranes for electric double layer capacitors

    International Nuclear Information System (INIS)

    Kim, Wan Ju; Kim, Dong-Won

    2008-01-01

    Sulfonated poly(ether ether ketone) (S-PEEK) with different degree of sulfonation (DS) has been prepared and evaluated as a proton conducting membrane for electric double layer capacitor (EDLC). The polymer electrolytes prepared with S-PEEK membrane exhibited ionic conductivities about 1.2 x 10 -3 -4.5 x 10 -3 S cm -1 at room temperature, which depended on both soaking solvent and degree of sulfonation. The quasi-solid-state EDLCs consisted of activated carbon electrodes and S-PEEK membrane were assembled, and their electrochemical characteristics were studied by cyclic voltammetry and charge-discharge cycle tests. The effect of DS on the electrochemical performances of EDLCs has been investigated

  6. Regulation of multispanning membrane protein topology via post-translational annealing.

    Science.gov (United States)

    Van Lehn, Reid C; Zhang, Bin; Miller, Thomas F

    2015-09-26

    The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual-topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic shifts in its topology. We use coarse-grained simulations to investigate the Sec-facilitated membrane integration of EmrE and its mutants on realistic biological timescales. This work reveals a mechanism for regulating membrane-protein topogenesis, in which initially misintegrated configurations of the proteins undergo post-translational annealing to reach fully integrated multispanning topologies. The energetic barriers associated with this post-translational annealing process enforce kinetic pathways that dictate the topology of the fully integrated proteins. The proposed mechanism agrees well with the experimentally observed features of EmrE topogenesis and provides a range of experimentally testable predictions regarding the effect of translocon mutations on membrane protein topogenesis.

  7. Lateral Membrane Waves Constitute a Universal Dynamic Pattern of Motile Cells

    Science.gov (United States)

    Döbereiner, Hans-Günther; Dubin-Thaler, Benjamin J.; Hofman, Jake M.; Xenias, Harry S.; Sims, Tasha N.; Giannone, Grégory; Dustin, Michael L.; Wiggins, Chris H.; Sheetz, Michael P.

    2006-07-01

    We have monitored active movements of the cell circumference on specifically coated substrates for a variety of cells including mouse embryonic fibroblasts and T cells, as well as wing disk cells from fruit flies. Despite having different functions and being from multiple phyla, these cell types share a common spatiotemporal pattern in their normal membrane velocity; we show that protrusion and retraction events are organized in lateral waves along the cell membrane. These wave patterns indicate both spatial and temporal long-range periodic correlations of the actomyosin gel.

  8. Water transport and desalination through double-layer graphyne membranes.

    Science.gov (United States)

    Akhavan, Mojdeh; Schofield, Jeremy; Jalili, Seifollah

    2018-05-16

    Non-equilibrium molecular dynamics simulations of water-salt solutions driven through single and double-layer graphyne membranes by a pressure difference created by rigid pistons are carried out to determine the relative performance of the membranes as filters in a reverse osmosis desalination process. It is found that the flow rate of water through a graphyne-4 membrane is twice that of a graphyne-3 membrane for both single and double-layer membranes. Although the addition of a second layer to a single-layer membrane reduces the membrane permeability, the double-layer graphyne membranes are still two or three orders of magnitude more permeable than commercial reverse osmosis membranes. The minimum reduction in flow rate for double-layer membranes occurs at a layer spacing of 0.35 nm with an AA stacking configuration, while at a spacing of 0.6 nm the flow rate is close to zero due to a high free energy barrier for permeation. This is caused by the difference in the environments on either side of the membrane sheets and the formation of a compact two-dimensional layer of water molecules in the interlayer space which slows down water permeation. The distribution of residence times of water molecules in the interlayer region suggests that at the critical layer spacing of 0.6 nm, a cross-over occurs in the mechanism of water flow from the collective movement of hydrogen-bonded water sheets to the permeation of individual water molecules. All membranes are demonstrated to have a high salt rejection fraction and the double-layered graphyne-4 membranes can further increase the salt rejection by trapping ions that have passed through the first membrane from the feed solution in the interlayer space.

  9. ?Breakthrough? osmosis and unusually high power densities in Pressure-Retarded Osmosis in non-ideally semi-permeable supported membranes

    OpenAIRE

    Yaroshchuk, Andriy

    2017-01-01

    Osmosis is the movement of solvent across a membrane induced by a solute-concentration gradient. It is very important for cell biology. Recently, it has started finding technological applications in the emerging processes of Forward Osmosis and Pressure-Retarded Osmosis. They use ultrathin and dense membranes supported mechanically by much thicker porous layers. Until now, these processes have been modelled by assuming the membrane to be ideally-semipermeable. We show theoretically that allow...

  10. Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater

    KAUST Repository

    Jeong, Yeongmi

    2018-02-28

    The feasibility of an anaerobic ceramic membrane bioreactor (AnCMBR) was investigated by comparison with a conventional anaerobic membrane bioreactor (AnMBR). With regard to treatment performance, the AnCMBR achieved higher organic removal rates than the AnMBR because the ceramic membranes retained a high concentration of biomass in the reactor. Despite a high mixed liquor suspended solid (MLSS) concentration, the AnCMBR exhibited lower membrane fouling. To elucidate effects of sludge properties on membrane fouling in the AnCMBR and AnMBR, soluble microbial products (SMPs) and extracellular polymeric substances (EPSs) were analyzed. The SMP and EPS concentrations in the AnCMBR were higher than in the AnMBR. This may be because some suspended solids bio-degraded and likely released protein-like SMPs in the AnCMBR. Hydrophobicity and surface charges were analyzed; the sludge in the AnCMBR was found to be more hydrophobic and less negative than in the AnMBR because protein was abundant in the AnCMBR. Despite the adverse properties of the sludge in the AnCMBR, it showed more stable filtration performance than the AnMBR. This is because the alumina-based ceramic membrane had a superhydrophilic surface and could thus mitigate membrane fouling by hydrophilic-hydrophobic repulsion. The findings from this study have significant implications for extending the application of AnCMBRs to, for example, treatment of high-strength organic waste such as food waste or livestock manure.

  11. Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater

    KAUST Repository

    Jeong, Yeongmi; Kim, Youngjin; Jin, Yongxun; Hong, Seungkwan; Park, Chanhyuk

    2018-01-01

    The feasibility of an anaerobic ceramic membrane bioreactor (AnCMBR) was investigated by comparison with a conventional anaerobic membrane bioreactor (AnMBR). With regard to treatment performance, the AnCMBR achieved higher organic removal rates than the AnMBR because the ceramic membranes retained a high concentration of biomass in the reactor. Despite a high mixed liquor suspended solid (MLSS) concentration, the AnCMBR exhibited lower membrane fouling. To elucidate effects of sludge properties on membrane fouling in the AnCMBR and AnMBR, soluble microbial products (SMPs) and extracellular polymeric substances (EPSs) were analyzed. The SMP and EPS concentrations in the AnCMBR were higher than in the AnMBR. This may be because some suspended solids bio-degraded and likely released protein-like SMPs in the AnCMBR. Hydrophobicity and surface charges were analyzed; the sludge in the AnCMBR was found to be more hydrophobic and less negative than in the AnMBR because protein was abundant in the AnCMBR. Despite the adverse properties of the sludge in the AnCMBR, it showed more stable filtration performance than the AnMBR. This is because the alumina-based ceramic membrane had a superhydrophilic surface and could thus mitigate membrane fouling by hydrophilic-hydrophobic repulsion. The findings from this study have significant implications for extending the application of AnCMBRs to, for example, treatment of high-strength organic waste such as food waste or livestock manure.

  12. Mechanism of action of anions on the electron transport chain in thylakoid membranes of higher plants.

    Science.gov (United States)

    Singh-Rawal, Pooja; Zsiros, Ottó; Bharti, Sudhakar; Garab, Gyozo; Jajoo, Anjana

    2011-04-01

    With an aim to improve our understanding of the mechanisms behind specific anion effects in biological membranes, we have studied the effects of sodium salts of anions of varying valency in thylakoid membranes. Rates of electron transport of PS II and PS I, 77K fluorescence emission and excitation spectra, cyclic electron flow around PS I and circular dichroism (CD) spectra were measured in thylakoid membranes in order to elucidate a general mechanism of action of inorganic anions on photosynthetic electron transport chain. Re-distribution of absorbed excitation energy has been observed as a signature effect of inorganic anions. In the presence of anions, such as nitrite, sulphate and phosphate, distribution of absorbed excitation energy was found to be more in favor of Photosystem I (PS I). The amount of energy distributed towards PS I depended on the valency of the anion. In this paper, we propose for the first time that energy re-distribution and its valence dependence may not be the effect of anions per se. The entry of negative charge (anion) is accompanied by influx of positive charge (protons) to maintain a balance of charge across the thylakoid membranes. As reflected by the CD spectra, the observed energy re-distribution could be a result of structural rearrangements of the protein complexes of PS II caused by changes in the ionic environment of the thylakoid lumen.

  13. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction

    Science.gov (United States)

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M.; Elzatahry, Ahmed A.; Zheng, Gengfeng

    2015-08-01

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g-1, with excellent capacitance retention (>90%) at 10 A g-1 for over 10 000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm-2 at 1.65 V vs. the RHE.A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific

  14. Structural and dynamical insights into the membrane-bound α-synuclein.

    Directory of Open Access Journals (Sweden)

    Neha Jain

    Full Text Available Membrane-induced disorder-to-helix transition of α-synuclein, a presynaptic protein, has been implicated in a number of important neuronal functions as well as in the etiology of Parkinson's disease. In order to obtain structural insights of membrane-bound α-synuclein at the residue-specific resolution, we took advantage of the fact that the protein is devoid of tryptophan and incorporated single tryptophan at various residue positions along the sequence. These tryptophans were used as site-specific markers to characterize the structural and dynamical aspects of α-synuclein on the negatively charged small unilamellar lipid vesicles. An array of site-specific fluorescence readouts, such as the spectral-shift, quenching efficiency and anisotropy, allowed us to discern various features of the conformational rearrangements occurring at different locations of α-synuclein on the lipid membrane. In order to define the spatial localization of various regions of the protein near the membrane surface, we utilized a unique and sensitive indicator, namely, red-edge excitation shift (REES, which originates when a fluorophore is located in a highly ordered micro-environment. The extent of REES observed at different residue positions allowed us to directly identify the residues that are localized at the membrane-water interface comprising a thin (∼ 15 Å layer of motionally restrained water molecules and enabled us to construct a dynamic hydration map of the protein. The combination of site-specific fluorescence readouts allowed us to unravel the intriguing molecular details of α-synuclein on the lipid membrane in a direct model-free fashion. Additionally, the combination of methodologies described here are capable of distinguishing subtle but important structural alterations of α-synuclein bound to different negatively charged lipids with varied head-group chemistry. We believe that the structural modulations of α-synuclein on the membrane could

  15. Exclusive photorelease of signalling lipids at the plasma membrane.

    Science.gov (United States)

    Nadler, André; Yushchenko, Dmytro A; Müller, Rainer; Stein, Frank; Feng, Suihan; Mulle, Christophe; Carta, Mario; Schultz, Carsten

    2015-12-21

    Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems.

  16. Studies of radiation induced membrane damage in lymphocytes using fluorescent probes

    International Nuclear Information System (INIS)

    Nikesch, W.

    1974-01-01

    The fluorescent probes perylene (PER), 1-anilino-8-naphthalene sulfonic acid (ANS), and fluorescein diacetate (FDA) were used to investigate membrane changes caused by ionizing radiation. Probe response to various other perturbations (variation of pH, temperature, and salt concentration, and treatment with phythohemagglutinin (PHA) and saponins) was also investigated to better understand membrane-probe interactions. ANS was used to probe the membrane surface, PER to probe the membrane interior, and FDA to investigate membrane integrity. Polarization of fluorescent light from ANS and PER was used to investigate the microviscosity and order of the membrane surface and interior respectively. Irradiated cells (600 R) were shown to have a decreased rate of hydrolysis of FDA probably due to cytoplasmic changes effecting the enzymatic reaction. Also evident was an increase in loss of intracellular fluorescein and a decrease in PER polarization indicating that the cells have a decreased membrane integrity, possibly the result of an increased disorganization of the phospholipid hydrocarbon chains in the membrane interior. Experiments with PHA link the decreased membrane integrity with the eventual interphase death of the cells. In general it is shown that the fluorescent probes ANS, PER, and FDA provide useful ways to investigate order and microviscosity in the cell membrane surface and interior, membrane surface charges, internal membrane polarity changes, and membrane integrity. (U.S.)

  17. Functional polyelectrolyte multilayer membranes for water purification applications

    International Nuclear Information System (INIS)

    Tripathi, Bijay P.; Dubey, Nidhi C.; Stamm, M.

    2013-01-01

    Highlights: ► LBL film on the surface and in to the pores was prepared via flow through method. ► The membranes showed high rejection of Congo Red with sufficiently high flux. ► High antifouling ability in terms of both organic and bio fouling was observed. -- Abstract: A diverse set of supported multilayer assemblies with controllable surface charge, hydrophilicity, and permeability to water and solute was fabricated by pressure driven permeation of poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDDA) solution through poly(ethylene terephthalate) (PET) track-etched membranes. The polyelectrolyte multilayer fabrication was confirmed by means of FTIR, SEM, AFM, ellipsometry, zetapotential, and contact angle characterization. The prepared membranes were characterized in terms of their pure water permeability, flux recovery, and resistance to organic and biofouling properties. The antifouling behavior of the membranes was assessed in terms of protein adsorption and antibacterial behavior. Finally, the membranes were tested for rejection of selected water soluble dyes to establish their usefulness for organic contaminant removal from water. The membranes were highly selective and capable of nearly complete rejection of congo red with sufficiently high fluxes. The feasibility of regenerating the prepared membranes fouled by protein was also demonstrated and good flux recovery was obtained. In summary, the multilayer approach to surface and pore modification was shown to enable the design of membranes with the unique combination of desirable separation characteristics, regenerability of the separation layer, and antifouling behavior

  18. Functional polyelectrolyte multilayer membranes for water purification applications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Bijay P., E-mail: bijayptripathi@yahoo.com [Department of Nanostructured Materials, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany); Dubey, Nidhi C. [Department of Nanostructured Materials, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany); Technische Universität Dresden, Department of Chemistry, 01069 Dresden (Germany); Stamm, M., E-mail: stamm@ipfdd.de [Department of Nanostructured Materials, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany); Technische Universität Dresden, Department of Chemistry, 01069 Dresden (Germany)

    2013-05-15

    Highlights: ► LBL film on the surface and in to the pores was prepared via flow through method. ► The membranes showed high rejection of Congo Red with sufficiently high flux. ► High antifouling ability in terms of both organic and bio fouling was observed. -- Abstract: A diverse set of supported multilayer assemblies with controllable surface charge, hydrophilicity, and permeability to water and solute was fabricated by pressure driven permeation of poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDDA) solution through poly(ethylene terephthalate) (PET) track-etched membranes. The polyelectrolyte multilayer fabrication was confirmed by means of FTIR, SEM, AFM, ellipsometry, zetapotential, and contact angle characterization. The prepared membranes were characterized in terms of their pure water permeability, flux recovery, and resistance to organic and biofouling properties. The antifouling behavior of the membranes was assessed in terms of protein adsorption and antibacterial behavior. Finally, the membranes were tested for rejection of selected water soluble dyes to establish their usefulness for organic contaminant removal from water. The membranes were highly selective and capable of nearly complete rejection of congo red with sufficiently high fluxes. The feasibility of regenerating the prepared membranes fouled by protein was also demonstrated and good flux recovery was obtained. In summary, the multilayer approach to surface and pore modification was shown to enable the design of membranes with the unique combination of desirable separation characteristics, regenerability of the separation layer, and antifouling behavior.

  19. Selective transport and incorporation of highly charged metal and metal complex ions in self-assembled polyelectrolyte multilayer membranes

    International Nuclear Information System (INIS)

    Toutianoush, Ali; Tieke, Bernd

    2002-01-01

    The transport of aqueous salts containing mono-, di- and trivalent metal and tetravalent metal complex ions across ultrathin polyvinylammonium/polyvinylsulphate (PVA/PVS) membranes is described. The membranes were prepared by electrostatic layer-by-layer (LBL) assembly of the two polyelectrolytes. Using spectroscopic measurements and permeability studies, it is demonstrated that the transport of copper(II) chloride, lanthanum(III) chloride, barium chloride and potassium hexacyanoferrate(II) is accompanied by the permanent incorporation of the metal and metal complex ions in the membrane. Upon the uptake of copper, lanthanum and hexacyanoferrate ions, the membranes become cross-linked so that the permeation rates of other salts not taken up by the membrane, e.g. sodium chloride, potassium chloride and magnesium chloride, are decreased. The uptake of barium ions leads to a decrease of the cross-linking density of the membrane so that the permeation rate of NaCl is increased. Possible mechanisms for the ion uptake are discussed

  20. Electro-osmotic flow through nanopores in thin and ultrathin membranes

    Science.gov (United States)

    Melnikov, Dmitriy V.; Hulings, Zachery K.; Gracheva, Maria E.

    2017-06-01

    We theoretically study how the electro-osmotic fluid velocity in a charged cylindrical nanopore in a thin solid state membrane depends on the pore's geometry, membrane charge, and electrolyte concentration. We find that when the pore's length is comparable to its diameter, the velocity profile develops a concave shape with a minimum along the pore axis unlike the situation in very long nanopores with a maximum velocity along the central pore axis. This effect is attributed to the induced pressure along the nanopore axis due to the fluid flow expansion and contraction near the exit or entrance to the pore and to the reduction of electric field inside the nanopore. The induced pressure is maximal when the pore's length is about equal to its diameter while decreasing for both longer and shorter nanopores. A model for the fluid velocity incorporating these effects is developed and shown to be in a good agreement with numerically computed results.

  1. Design of polyelectrolyte multilayer membranes for ion rejection and wastewater effluent treatment

    Science.gov (United States)

    Sanyal, Oishi

    Polyelectrolyte multilayer (PEM) membranes present a special class of nanostructured membranes which have potential applications in a variety of water treatment operations. These membranes are fabricated by the layer-by-layer (LbL) assembly of alternately charged polyelectrolytes on commercial membrane surfaces. A large variety of polyelectrolytes and their varied deposition conditions (pH, number of bilayers etc.) allow very fine tuning of the membrane performance in terms of permeability and rejection. The first part of this thesis is about the application of PEM membranes to the removal of perchlorate ion from water. Being a monovalent ion, it is most effectively removed by a reverse osmosis (RO) membrane. However, these membranes inherently have very low fluxes which lead to high pressure requirements. In our work, we modified the surface of a nanofiltration (NF) membrane by the LbL assembly of oppositely charged polyelectrolytes. The appropriate tuning of the LbL conditions led to the development of a membrane with significantly higher flux than RO membranes but with equivalent perchlorate rejection. This was one of the best trade-offs offered by PEM membranes for monovalent ion rejection as has been reported in literature so far. While PEM membranes have mostly shown great potential in ion-rejection studies, they have seldom been tested for real wastewater effluents. The second part of this thesis, therefore, deals with evaluating the applicability of PEM membranes to treating an electrocoagulation (EC)-treated high strength wastewater. Two types of very commonly used polyelectrolyte combinations were tried out -- one of which was an ionically crosslinked system and the other one was covalently crosslinked. Both the types of PEM membranes showed a high level of COD reduction from the feed stream with higher fluxes than commercial RO membranes. One major challenge in using membranes for wastewater treatment is their fouling propensity. Like many other

  2. Balance and Self-Efficacy of Balance in Children with CHARGE Syndrome

    Science.gov (United States)

    Haibach, Pamela S.; Lieberman, Lauren J.

    2013-01-01

    Introduction: Balance is a critical component of daily living, because it affects all movements and the ability to function independently. Children with CHARGE syndrome have sensory and motor impairments that could negatively affect their balance and postural control. The purpose of the study presented in this article was to assess the balance and…

  3. Vesicle fusion with bilayer lipid membrane controlled by electrostatic interaction

    Directory of Open Access Journals (Sweden)

    Azusa Oshima

    2017-09-01

    Full Text Available The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs to control the fusion process. We combined large unilamellar vesicles (LUVs containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.

  4. Annexins are instrumental for efficient plasma membrane repair in cancer cells.

    Science.gov (United States)

    Lauritzen, Stine Prehn; Boye, Theresa Louise; Nylandsted, Jesper

    2015-09-01

    Plasma membrane stress can cause damage to the plasma membrane, both when imposed by the extracellular environment and by enhanced oxidative stress. Cells cope with these injuries by rapidly activating their plasma membrane repair system, which is triggered by Ca(2+) influx at the wound site. The repair system is highly dynamic, depends on both lipid and protein components, and include cytoskeletal reorganization, membrane replacements, and membrane fusion events. Cancer cells experience enhanced membrane stress when navigating through dense extracellular matrix, which increases the frequency of membrane injuries. In addition, increased motility and oxidative stress further increase the risk of plasma membrane lesions. Cancer cells compensate by overexpressing Annexin proteins including Annexin A2 (ANXA2). Annexin family members can facilitate membrane fusion events and wound healing by binding to negatively charged phospholipids in the plasma membrane. Plasma membrane repair in cancer cells depends on ANXA2 protein, which is recruited to the wound site and forms a complex with the Ca(2+)-binding EF-hand protein S100A11. Here they regulate actin accumulation around the wound perimeter, which is required for wound closure. In this review, we will discuss the requirement for Annexins, S100 proteins and actin cytoskeleton in the plasma membrane repair response of cancer cells, which reveals a novel avenue for targeting metastatic cancers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Tight ceramic UF membrane as RO pre-treatment: the role of electrostatic interactions on phosphate rejection.

    Science.gov (United States)

    Shang, Ran; Verliefde, Arne R D; Hu, Jingyi; Zeng, Zheyi; Lu, Jie; Kemperman, Antoine J B; Deng, Huiping; Nijmeijer, Kitty; Heijman, Sebastiaan G J; Rietveld, Luuk C

    2014-01-01

    Phosphate limitation has been reported as an effective approach to inhibit biofouling in reverse osmosis (RO) systems for water purification. The rejection of dissolved phosphate by negatively charged TiO2 tight ultrafiltration (UF) membranes (1 kDa and 3 kDa) was observed. These membranes can potentially be adopted as an effective process for RO pre-treatment in order to constrain biofouling by phosphate limitation. This paper focuses on electrostatic interactions during tight UF filtration. Despite the larger pore size, the 3 kDa ceramic membrane exhibited greater phosphate rejection than the 1 kDa membrane, because the 3 kDa membrane has a greater negative surface charge and thus greater electrostatic repulsion against phosphate. The increase of pH from 6 to 8.5 led to a substantial increase in phosphate rejection by both membranes due to increased electrostatic repulsion. At pH 8.5, the maximum phosphate rejections achieved by the 1 kDa and 3 kDa membrane were 75% and 86%, respectively. A Debye ratio (ratio of the Debye length to the pore radius) is introduced in order to evaluate double layer overlapping in tight UF membranes. Threshold Debye ratios were determined as 2 and 1 for the 1 kDa and 3 kDa membranes, respectively. A Debye ratio below the threshold Debye ratio leads to dramatically decreased phosphate rejection by tight UF membranes. The phosphate rejection by the tight UF, in combination with chemical phosphate removal by coagulation, might accomplish phosphate-limited conditions for biological growth and thus prevent biofouling in the RO systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane.

    Science.gov (United States)

    Elazar, Assaf; Weinstein, Jonathan; Biran, Ido; Fridman, Yearit; Bibi, Eitan; Fleishman, Sarel Jacob

    2016-01-29

    Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers.

  7. Effect of positively charged short peptides on stability of cubic phases of monoolein/dioleoylphosphatidic acid mixtures.

    Science.gov (United States)

    Masum, Shah Md; Li, Shu Jie; Awad, Tarek S; Yamazaki, Masahito

    2005-06-07

    To elucidate the stability and phase transition of cubic phases of biomembranes with infinite periodic minimal surface is indispensable from biological and physicochemical aspects. In this report, we investigated the effect of positively charged peptide-3K (LLKKK) and poly(L-lysine) on the phase stability of monoolein (MO) membranes containing negatively charged dioleoylphosphatidic acid (DOPA) (i.e., DOPA/MO membranes) using small-angle X-ray scattering. At first, the effect of peptide-3K on 10% DOPA/90% MO membrane in excess water, which is in the Q229 phase, was investigated. At 3.4 mM peptide-3K, a Q229 to Q230 phase transition occurred, and at >3.4 mM peptide-3K, the membrane was in the Q230 phase. Poly(L-lysine) (M(w) 1K-4K) also induced the Q230 phase, but peptide-2K (LLKK) could not induce it in the same membrane. We also investigated the effect of peptide-3K on the multilamellar vesicle (MLV) of 25% DOPA/75% MO membrane, which is in L(alpha) phase. In the absence of peptide, the spacing of MLV was very large (11.3 nm), but at > or = 8 mM peptide-3K, it greatly decreased to a constant value (5.2 nm), irrespective of the peptide concentration, indicating that peptide-3K and the membranes form an electrostatically stabilized aggregation with low water content. Poly(L-lysine) also decreased greatly the spacing of the 25% DOPA/75% MO MLV, indicating the formation of a similar aggregation. To compare the effects of peptide-3K and poly(L-lysine) with that of osmotic stress on stability of the cubic phase, we investigated the effect of poly(ethylene glycol) with molecular weight 7500 (PEG-6K) on the phase stability of 10% DOPA/90% MO membrane. With an increase in PEG-6K concentration, i.e., with an increase in osmotic stress, the most stable phase changed as follows; Q229 (Schwartz's P surface) --> Q224 (D) --> Q230 (G). On the basis of these results, we discuss the mechanism of the effects of the positively charged short peptides (peptide-3K) and poly

  8. Planar screening by charge polydisperse counterions

    Science.gov (United States)

    Trulsson, M.; Trizac, E.; Šamaj, L.

    2018-01-01

    We study how a neutralising cloud of counterions screens the electric field of a uniformly charged planar membrane (plate), when the counterions are characterised by a distribution of charges (or valence), n(q) . We work out analytically the one-plate and two-plate cases, at the level of non-linear Poisson-Boltzmann theory. The (essentially asymptotic) predictions are successfully compared to numerical solutions of the full Poisson-Boltzmann theory, but also to Monte Carlo simulations. The counterions with smallest valence control the long-distance features of interactions, and may qualitatively change the results pertaining to the classic monodisperse case where all counterions have the same charge. Emphasis is put on continuous distributions n(q) , for which new power-laws can be evidenced, be it for the ionic density or the pressure, in the one- and two-plates situations respectively. We show that for discrete distributions, more relevant for experiments, these scaling laws persist in an intermediate but yet observable range. Furthermore, it appears that from a practical point of view, hallmarks of the continuous n(q) behaviour are already featured by discrete mixtures with a relatively small number of constituents.

  9. Numerical modelling of needle-grid electrodes for negative surface corona charging system

    International Nuclear Information System (INIS)

    Zhuang, Y; Chen, G; Rotaru, M

    2011-01-01

    Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.

  10. Free Flow Zonal Electrophoresis for Fractionation of Plant Membrane Compartments Prior to Proteomic Analysis.

    Science.gov (United States)

    Barkla, Bronwyn J

    2018-01-01

    Free flow zonal electrophoresis (FFZE) is a versatile, reproducible, and potentially high-throughput technique for the separation of plant organelles and membranes by differences in membrane surface charge. It offers considerable benefits over traditional fractionation techniques, such as density gradient centrifugation and two-phase partitioning, as it is relatively fast, sample recovery is high, and the method provides unparalleled sample purity. It has been used to successfully purify chloroplasts and mitochondria from plants but also, to obtain highly pure fractions of plasma membrane, tonoplast, ER, Golgi, and thylakoid membranes. Application of the technique can significantly improve protein coverage in large-scale proteomics studies by decreasing sample complexity. Here, we describe the method for the fractionation of plant cellular membranes from leaves by FFZE.

  11. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    DEFF Research Database (Denmark)

    Rønnest, A. K.; Peters, Günther H.J.; Hansen, Flemming Yssing

    2016-01-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid...... compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have...... the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic...

  12. Sensing Phosphatidylserine in Cellular Membranes

    Directory of Open Access Journals (Sweden)

    Jason G. Kay

    2011-01-01

    Full Text Available Phosphatidylserine, a phospholipid with a negatively charged head-group, is an important constituent of eukaryotic cellular membranes. On the plasma membrane, rather than being evenly distributed, phosphatidylserine is found preferentially in the inner leaflet. Disruption of this asymmetry, leading to the appearance of phosphatidylserine on the surface of the cell, is known to play a central role in both apoptosis and blood clotting. Despite its importance, comparatively little is known about phosphatidylserine in cells: its precise subcellular localization, transmembrane topology and intracellular dynamics are poorly characterized. The recent development of new, genetically-encoded probes able to detect phosphatidylserine within live cells, however, is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of the current methods for phosphatidylserine detection within cells, and some of the recent realizations derived from their use.

  13. Detecting rapid mass movements using electrical self-potential measurements

    Science.gov (United States)

    Heinze, Thomas; Limbrock, Jonas; Pudasaini, Shiva P.; Kemna, Andreas

    2017-04-01

    Rapid mass movements are a latent danger for lives and infrastructure in almost any part of the world. Often such mass movements are caused by increasing pore pressure, for example, landslides after heavy rainfall or dam breaking after intrusion of water in the dam. Among several other geophysical methods used to observe water movement, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing and for earthquake prediction. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than the pressure diffusion. We will present results of laboratory experiments under drained and undrained conditions with fluid triggered as well as manually triggered mass movements, monitored with self-potential measurements. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. We will discuss results of numerical simulations reproducing the observed effect. Our

  14. Argon and nitrogen beams influencing membrane permeate fluxes and microbial growth

    International Nuclear Information System (INIS)

    Wanichapichart, P.; Taweepreeda, W.; Choomgan, P.; Yu, L.D.

    2010-01-01

    Porous cellulose and dense chitosan membranes were bombarded with argon and nitrogen-ion beams using two energy levels, 30 and 120 keV, of the same fluency of 5x10 14 ions/cm 2 for a comparison study. The results revealed that both beam types reduced the hydraulic permeability of the membranes. Using a NaCl solution of 4000 ppm concentration as feed, the ability to reject salt of dense chitosan membrane was reduced only if it was pretreated with 120 keV nitrogen-ion beams. A Fourier Transform Infrared Spectroscopy study showed that molecular weight of chitosan was possibly decreased after the bombardment with 120 keV beams. The analysis of the cellulose membranes revealed that a dense structure was created without affecting the OH functional groups. This study found that only chitosan membranes possessed an anti-fungi property if being implanted with positive charges of nitrogen or argon ions of 120 keV.

  15. Boron removal efficiency from Red Sea water using different SWRO/BWRO membranes

    KAUST Repository

    Rahmawati, Karina; Ghaffour, NorEddine; Aubry, Cyril; Amy, Gary L.

    2012-01-01

    Seawater reverse osmosis (SWRO) desalination process provides high quality of fresh water. However, due to some operational constraints mainly scaling control some trace contaminant removal, such as acceptable boron concentration, cannot be achieved in a single pass SWRO system. The objective of this study was to investigate the efficiency of five difference reverse osmosis (RO) membranes (seawater SW and brackish water BW) provided by different manufacturers for boron removal. RO experiments using pretreated real Red Sea water were conducted in parallel to compare membrane performance under the same operating conditions. As expected, results showed that boron rejection increased as the feed pH increased. This was caused by dissociation of boric acid to negatively charged borate ions and more negatively charged membrane surface at elevated pH which enhanced boron rejection. Single pass RO system, with and without elevating the pH, may not be sufficient for two reasons. First, boron concentration in permeate does not fulfill local regulations (<0.5ppm). Second, severe scaling occurs due to operation in alkaline condition, since Ca 2+ and Mg 2+ concentrations are still high to cause salts precipitation. Techno-economical study was performed to select the best configuration and membrane giving the highest performance in terms of boron and TDS rejections and energy consumption. © 2012 Elsevier B.V.

  16. Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Qiujun; Song, Wei-Li; Wang, Luning; Song, Yu; Shi, Qiao; Fan, Li-Zhen

    2014-01-01

    Polymer electrolytes based on electrospun polyimide (PI) membranes are incorporated with electrolyte solution containing 1 mol L −1 LiPF 6 /ethylene carbonate/ethylmethyl carbonate/dimethyl carbonate to examine their potential application for lithium ion batteries. The as-electrospun non-woven membranes demonstrate a uniformly interconnected structure with an average fiber diameter of 800 nm. The membranes, showing superior thermal stability and flame retardant property compared to the commercial Celgard® membranes, exhibit high porosity and high uptake when activated with the liquid electrolyte. The resulting PI electrolytes (PIs) have a high ionic conductivity up to 2.0 × 10 −3 S cm −1 at 25 °C, and exhibit a high electrochemical stability potential more than 5.0 V (vs. Li/Li + ). They also possess excellent charge/discharge performance and capacity retention. The initial discharge capacities of the Li/PIs/Li 4 Ti 5 O 12 cells are 178.4, 167.4, 160.3, 148.3 and 135.9 mAh g −1 at the charge/discharge rates of 0.2 C, 1 C, 2 C, 5 C and 10 C, respectively. After 200 cycles at 5 C, a capacity around ∼146.8 mAh g −1 can be still achieved. The PI-based polymer electrolytes with strong mechanical properties and good electrochemical performance are proved to be promising electrolytes for lithium ion batteries

  17. Boron removal efficiency from Red Sea water using different SWRO/BWRO membranes

    KAUST Repository

    Rahmawati, Karina

    2012-12-01

    Seawater reverse osmosis (SWRO) desalination process provides high quality of fresh water. However, due to some operational constraints mainly scaling control some trace contaminant removal, such as acceptable boron concentration, cannot be achieved in a single pass SWRO system. The objective of this study was to investigate the efficiency of five difference reverse osmosis (RO) membranes (seawater SW and brackish water BW) provided by different manufacturers for boron removal. RO experiments using pretreated real Red Sea water were conducted in parallel to compare membrane performance under the same operating conditions. As expected, results showed that boron rejection increased as the feed pH increased. This was caused by dissociation of boric acid to negatively charged borate ions and more negatively charged membrane surface at elevated pH which enhanced boron rejection. Single pass RO system, with and without elevating the pH, may not be sufficient for two reasons. First, boron concentration in permeate does not fulfill local regulations (<0.5ppm). Second, severe scaling occurs due to operation in alkaline condition, since Ca 2+ and Mg 2+ concentrations are still high to cause salts precipitation. Techno-economical study was performed to select the best configuration and membrane giving the highest performance in terms of boron and TDS rejections and energy consumption. © 2012 Elsevier B.V.

  18. Mechanisms of collective cell movement lacking a leading or free front edge in vivo.

    Science.gov (United States)

    Uechi, Hiroyuki; Kuranaga, Erina

    2017-08-01

    Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell-cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.

  19. Bias-Exchange Metadynamics Simulation of Membrane Permeation of 20 Amino Acids.

    Science.gov (United States)

    Cao, Zanxia; Bian, Yunqiang; Hu, Guodong; Zhao, Liling; Kong, Zhenzhen; Yang, Yuedong; Wang, Jihua; Zhou, Yaoqi

    2018-03-16

    Thermodynamics of the permeation of amino acids from water to lipid bilayers is an important first step for understanding the mechanism of cell-permeating peptides and the thermodynamics of membrane protein structure and stability. In this work, we employed bias-exchange metadynamics simulations to simulate the membrane permeation of all 20 amino acids from water to the center of a dipalmitoylphosphatidylcholine (DPPC) membrane (consists of 256 lipids) by using both directional and torsion angles for conformational sampling. The overall accuracy for the free energy profiles obtained is supported by significant correlation coefficients (correlation coefficient at 0.5-0.6) between our results and previous experimental or computational studies. The free energy profiles indicated that (1) polar amino acids have larger free energy barriers than nonpolar amino acids; (2) negatively charged amino acids are the most difficult to enter into the membrane; and (3) conformational transitions for many amino acids during membrane crossing is the key for reduced free energy barriers. These results represent the first set of simulated free energy profiles of membrane crossing for all 20 amino acids.

  20. Membrane aggregation and perturbation induced by antimicrobial peptide of S-thanatin

    International Nuclear Information System (INIS)

    Wu, Guoqiu; Wu, Hongbin; Li, Linxian; Fan, Xiaobo; Ding, Jiaxuan; Li, Xiaofang; Xi, Tao; Shen, Zilong

    2010-01-01

    Thanatin, a 21-residue peptide, is an inducible insect peptide. In our previous study, we have identified a novel thanatin analog of S-thanatin, which exhibited a broad antimicrobial activity against bacteria and fungi with low hemolytic activity. This study was aimed to delineate the antimicrobial mechanism of S-thanatin and identify its interaction with bacterial membranes. In this study, membrane phospholipid was found to be the target for S-thanatin. In the presence of vesicles, S-thanatin interestingly led to the aggregation of anionic vesicles and sonicated bacteria. Adding S-thanatin to Escherichia coli suspension would result in the collapse of membrane and kill bacteria. The sensitivity assay of protoplast elucidated the importance of outer membrane (OM) for S-thanatin's antimicrobial activity. Compared with other antimicrobial peptide, S-thanatin produced chaotic membrane morphology and cell debris in electron microscopic appearance. These results supported our hypothesis that S-thanatin bound to negatively charged LPS and anionic lipid, impeded membrane respiration, exhausted the intracellular potential, and released periplasmic material, which led to cell death.

  1. Bias-Exchange Metadynamics Simulation of Membrane Permeation of 20 Amino Acids

    Directory of Open Access Journals (Sweden)

    Zanxia Cao

    2018-03-01

    Full Text Available Thermodynamics of the permeation of amino acids from water to lipid bilayers is an important first step for understanding the mechanism of cell-permeating peptides and the thermodynamics of membrane protein structure and stability. In this work, we employed bias-exchange metadynamics simulations to simulate the membrane permeation of all 20 amino acids from water to the center of a dipalmitoylphosphatidylcholine (DPPC membrane (consists of 256 lipids by using both directional and torsion angles for conformational sampling. The overall accuracy for the free energy profiles obtained is supported by significant correlation coefficients (correlation coefficient at 0.5–0.6 between our results and previous experimental or computational studies. The free energy profiles indicated that (1 polar amino acids have larger free energy barriers than nonpolar amino acids; (2 negatively charged amino acids are the most difficult to enter into the membrane; and (3 conformational transitions for many amino acids during membrane crossing is the key for reduced free energy barriers. These results represent the first set of simulated free energy profiles of membrane crossing for all 20 amino acids.

  2. Electroviscous Effects in Ceramic Nanofiltration Membranes.

    Science.gov (United States)

    Farsi, Ali; Boffa, Vittorio; Christensen, Morten Lykkegaard

    2015-11-16

    Membrane permeability and salt rejection of a γ-alumina nanofiltration membrane were studied and modeled for different salt solutions. Salt rejection was predicted by using the Donnan-steric pore model, in which the extended Nernst-Planck equation was applied to predict ion transport through the pores. The solvent flux was modeled by using the Hagen-Poiseuille equation by introducing electroviscosity instead of bulk viscosity. γ-Alumina particles were used for ζ-potential measurements. The ζ-potential measurements show that monovalent ions did not adsorb on the γ-alumina surface, whereas divalent ions were highly adsorbed. Thus, for divalent ions, the model was modified, owing to pore shrinkage caused by ion adsorption. The ζ-potential lowered the membrane permeability, especially for membranes with a pore radius lower than 3 nm, a ζ-potential higher than 20 mV, and an ionic strength lower than 0.01 m. The rejection model showed that, for a pore radius lower than 3 nm and for solutions with ionic strengths lower than 0.01 m, there is an optimum ζ-potential for rejection, because of the concurrent effects of electromigration and convection. Hence, the model can be used as a prediction tool to optimize membrane perm-selectivity by designing a specific pore size and surface charge for application at specific ionic strengths and pH levels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Binding to membrane proteins within the endoplasmic reticulum cannot explain the retention of the glucose-regulated protein GRP78 in Xenopus oocytes.

    Science.gov (United States)

    Ceriotti, A; Colman, A

    1988-03-01

    We have studied the compartmentation and movement of the rat 78-kd glucose-regulated protein (GRP78) and other secretory and membrane proteins in Xenopus oocytes. Full length GRP78, normally found in the lumen of rat endoplasmic reticulum (ER), is localized to a membraneous compartment in oocytes and is not secreted. A truncated GRP78 lacking the C-terminal (KDEL) ER retention signal is secreted, although at a slow rate. When the synthesis of radioactive GRP78 is confined to a polar (animal or vegetal) region of the oocyte and the subsequent movement across the oocyte monitored, we find that both full-length and truncated GRP78 move at similar rates and only slightly slower than a secretory protein, chick ovalbumin. In contrast, a plasma membrane protein (influenza haemagglutinin) and two ER membrane proteins (rotavirus VP10 and a mutant haemagglutinin) remained confined to their site of synthesis. We conclude that the retention of GRP78 in the ER is not due to its tight binding to a membrane-bound receptor.

  4. Evaluation of transport properties of nanofiltration membranes exposed to radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Elizabeth E.M.; Barbosa, Celina C.R.; Bastos, Edna T.R., E-mail: eemo@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeira, RJ (Brazil); Afonso, Julio C., E-mail: Julio@iq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica

    2011-07-01

    The application of membrane separation processes (PSM) for treatment of radioactive waste requires the selection of a suitable membrane for the treatment of waste, as the membrane will be directly exposed to the radioactive liquid waste, and also exposed to ionizing radiation. The nanofiltration membrane is most suitable for treatment of radioactive waste, since it has high rejection of multivalent ions. Usually the membranes are made of polymers and depending on the composition of the waste, type and dose of radiation absorbed may be changes in the structure of the membrane, resulting in loss of its transport properties. We tested two commercial nanofiltration membranes: NF and SW Dow/Filmtec. The waste liquid used was obtained in the process of conversion of uranium hexafluoride gas to solid uranium dioxide, known as 'carbonated water'. The membranes were characterized as their transport properties (hydraulic permeability, permeate flux and salt rejection) before and after their immersion in the waste for 24 hours. The surface of the membranes was also evaluated by SEM and FTIR. It was observed that in both the porosity of the membrane selective layer was altered, but not the membrane surface charge, which is responsible for the selectivity of the membrane. The NF membranes and SW showed uranium ion rejection of 64% and 55% respectively. (author)

  5. Ionic Resistance and Permselectivity Tradeoffs in Anion Exchange Membranes

    KAUST Repository

    Geise, Geoffrey M.

    2013-10-23

    Salinity gradient energy technologies, such as reverse electrodialysis (RED) and capacitive mixing based on Donnan potential (Capmix CDP), could help address the global need for noncarbon-based energy. Anion exchange membranes (AEMs) are a key component in these systems, and improved AEMs are needed in order to optimize and extend salinity gradient energy technologies. We measured ionic resistance and permselectivity properties of quaternary ammonium-functionalized AEMs based on poly(sulfone) and poly(phenylene oxide) polymer backbones and developed structure-property relationships between the transport properties and the water content and fixed charge concentration of the membranes. Ion transport and ion exclusion properties depend on the volume fraction of water in the polymer membrane, and the chemical nature of the polymer itself can influence fine-tuning of the transport properties to obtain membranes with other useful properties, such as chemical and dimensional stability. The ionic resistance of the AEMs considered in this study decreased by more than 3 orders of magnitude (i.e., from 3900 to 1.6 Ω m) and the permselectivity decreased by 6% (i.e., from 0.91 to 0.85) as the volume fraction of water in the polymer was varied by a factor of 3.8 (i.e., from 0.1 to 0.38). Water content was used to rationalize a tradeoff relationship between the permselectivity and ionic resistance of these AEMs whereby polymers with higher water content tend to have lower ionic resistance and lower permselectivity. The correlation of ion transport properties with water volume fraction and fixed charge concentration is discussed with emphasis on the importance of considering water volume fraction when interpreting ion transport data. © 2013 American Chemical Society.

  6. Electro-oxidation of methanol diffused through proton exchange membrane on Pt surface: crossover rate of methanol

    International Nuclear Information System (INIS)

    Jung, Inhwa; Kim, Doyeon; Yun, Yongsik; Chung, Suengyoung; Lee, Jaeyoung; Tak, Yongsug

    2004-01-01

    Methanol crossover rate through proton exchange membrane (Nafion 117) was investigated with a newly designed electrochemical stripping cell. Nanosize Pt electrode was prepared by the electroless deposition. Distinct electrocatalytic oxidation behaviors of methanol inside membrane were similar to the methanol oxidation in aqueous electrolyte, except adsorption/desorption of hydrogen. The amount of methanol diffused through membrane was calculated from the charge of methanol oxidation during repetitive cyclic voltammetry (CV) and methanol crossover rate was estimated to be 0.69 nmol/s

  7. α-Synuclein oligomers induced by docosahexaenoic acid affect membrane integrity.

    Directory of Open Access Journals (Sweden)

    Chiara Fecchio

    Full Text Available A key feature of Parkinson disease is the aggregation of α-synuclein and its intracellular deposition in fibrillar form. Increasing evidence suggests that the pathogenicity of α-synuclein is correlated with the activity of oligomers formed in the early stages of its aggregation process. Oligomers toxicity seems to be associated with both their ability to bind and affect the integrity of lipid membranes. Previously, we demonstrated that α-synuclein forms oligomeric species in the presence of docosahexaenoic acid and that these species are toxic to cells. Here we studied how interaction of these oligomers with membranes results in cell toxicity, using cellular membrane-mimetic and cell model systems. We found that α-synuclein oligomers are able to interact with large and small unilamellar negatively charged vesicles acquiring an increased amount of α-helical structure, which induces small molecules release. We explored the possibility that oligomers effects on membranes could be due to pore formation, to a detergent-like effect or to fibril growth on the membrane. Our biophysical and cellular findings are consistent with a model where α-synuclein oligomers are embedded into the lipid bilayer causing transient alteration of membrane permeability.

  8. Electrically driven ion separations and nanofiltration through membranes coated with polyelectrolyte multilayers

    Science.gov (United States)

    White, Nicholas

    Polyelectrolyte multilayer (PEM) films deposited using the layer-by-layer (LBL) method are attractive for their simple deposition, tailorable nature, scalability, and charge or size-based selectivity for solutes. This dissertation explores ion separations in electrodialysis (ED) and solute removal through nanofiltration with PEMs deposited on polymer membranes. ED membranes typically exhibit modest selectivities between monovalent and divalent ions. In contrast, this work shows that K+/Mg 2+ ED selectivities reach values >1000 when using Nafion 115 cation-exchange membranes coated with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For comparison, the corresponding K+ /Mg2+ selectivity of bare Nafion 115 is salt concentrations, the K+ transference number approaches unity and the K+/Mg2+ selectivity is >20,000, presumably because the applied current is below the limiting value for K+ and H+ transport is negligible at this high K+ concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. The high ED selectivities of (PAH/PSS)5PAH-coated Nafion membranes translate to separations with Li+/Co2+ and K +/La3+. Even with adsorption of only 3 polyelectrolyte layers, Nafion membranes exhibit a Li+/Co2+ selectivity >23. However, the resistance to monovalent-ion passage does not decrease significantly with fewer polyelectrolyte layers. At overlimiting currents, hydroxides from water splitting form insoluble metal hydroxides to foul the membrane. With 0.1 M source-phase salt concentrations, transference numbers for monovalent cations approach unity and selectivities are >5000 because the diffusion-limited K+ or Li+ currents exceed the applied current. However, ED selectivities gradually decline with time. Thus, future research should aim to increase membrane stability and limiting currents to fully exploit the remarkable selectivity

  9. Binding of chloroquine to ionic micelles: Effect of pH and micellar surface charge

    Energy Technology Data Exchange (ETDEWEB)

    Souza Santos, Marcela de, E-mail: marcelafarmausp77@gmail.com [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Perpétua Freire de Morais Del Lama, Maria, E-mail: mpemdel@fcfrp.usp.br [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Departamento de Química Analítica, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, s/n, Campinas, São Paulo 13083-970 (Brazil); Siuiti Ito, Amando, E-mail: amandosi@ffclrp.usp.br [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901 (Brazil); and others

    2014-03-15

    The pharmacological action of chloroquine relies on its ability to cross biological membranes in order to accumulate inside lysosomes. The present work aimed at understanding the basis for the interaction between different chloroquine species and ionic micelles of opposite charges, the latter used as a simple membrane model. The sensitivity of absorbance and fluorescence of chloroquine to changes in its local environment was used to probe its interaction with cetyltrimethylammonium micelles presenting bromide (CTAB) and sulfate (CTAS) as counterions, in addition to dodecyl sulfate micelles bearing sodium (SDS) and tetramethylammonium (TMADS) counterions. Counterion exchange was shown to have little effect on drug–micelle interaction. Chloroquine first dissociation constant (pKa{sub 1}) shifted to opposite directions when anionic and cationic micelles were compared. Chloroquine binding constants (K{sub b}) revealed that electrostatic forces mediate charged drug–micelle association, whereas hydrophobic interactions allowed neutral chloroquine to associate with anionic and cationic micelles. Fluorescence quenching studies indicated that monoprotonated chloroquine is inserted deeper into the micelle surface of anionic micelles than its neutral form, the latter being less exposed to the aqueous phase when associated with cationic over anionic assemblies. The findings provide further evidence that chloroquine–micelle interaction is driven by a tight interplay between the drug form and the micellar surface charge, which can have a major effect on the drug biological activity. -- Highlights: • Chloroquine (CQ) pKa{sub 1} increased for SDS micelles and decreased for CTAB micelles. • CQ is solubilized to the surface of both CTAB and SDS micelles. • Monoprotonated CQ is buried deeper into SDS micelles than neutral CQ. • Neutral CQ is less exposed to aqueous phase in CTAB over SDS micelles. • Local pH and micellar surface charge mediate interaction of CQ with

  10. Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nafion membrane with nacre-like nanoarchitectures

    Science.gov (United States)

    Zhang, Lesi; Ling, Ling; Xiao, Min; Han, Dongmei; Wang, Shuanjin; Meng, Yuezhong

    2017-06-01

    A novel self-assembled composite membrane, Nafion-[PDDA/ZrP]n with nacre-like nanostructures was successfully fabricated by a layer-by-layer (LbL) method and used as proton exchange membrane for vanadium redox flow battery applications. Poly(diallyldimethylammonium chloride) (PDDA) with positive charges and zirconium phosphate (ZrP) nanosheets with negative charges can form ultra-thin nacre-like nanostructure on the surface of Nafion membrane via the ionic crosslinking of tightly folded macromolecules. The lamellar structure of ZrP nanosheets and Donnan exclusion effect of PDDA can greatly decrease the vanadium ion permeability and improve the selectivity of proton conductivity. The fabricated Nafion-[PDDA/ZrP]4 membrane shows two orders of magnitude lower vanadium ion permeability (1.05 × 10-6 cm2 min-1) and 12 times higher ion selectivity than those of pristine Nafion membrane at room temperature. Consequently, the performance of vanadium redox flow batteries (VRFBs) assembled with Nafion-[PDDA/ZrP]3 membrane achieved a highly coulombic efficiency (CE) and energy efficiency (EE) together with a very slow self-discharge rate. When comparing with pristine Nafion VRFB, the CE and EE values of Nafion-[PDDA/ZrP]3 VRFB are 10% and 7% higher at 30 mA cm-2, respectively.

  11. Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Kwon, Kyungjung; Park, Jung Ock; Yoo, Duck Young; Yi, Jung S.

    2009-01-01

    The ionomer content in electrode is one of the most important parameters for the high performance of fuel cells. The high temperature PEMFC based on phosphoric acid (PA)-doped polymer membrane with unhumidified reactant gases has a difficulty in controlling the liquid state PA ionomer content in electrode. To evaluate the PA content in electrode, the three techniques of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and acid-base titration (ABT) are carried out in situ or ex situ. The properties of membrane electrode assembly (MEA) such as electrochemical surface area (ESA), ohmic resistance, charge transfer resistance, double layer capacitance and the amount of PA in MEA components (anode, cathode and membrane) are extracted by each technique. Ex situ CV with the usage of dry gases has a limitation in assessing the reliable ESA of unhumidified PEMFC. While in situ EIS presents some informative values of resistance and capacitance for understanding the PA distribution in MEA, its sensitivity to the PA content in MEA components needs to be higher for detecting a subtle change in PA distribution. Ex situ ABT supplies a clear PA distribution in MEA at room temperature but does not seem to reflect the operating state well at high temperatures. However, it can be used as a detection tool for the loss of the initial acid content in membrane during a long-term MEA durability study.

  12. Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kyungjung [Fuel Cell Group, Energy Lab, SAIT, Samsung Electronics Co., Ltd., San 14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-712 (Korea, Republic of)], E-mail: kfromberk@gmail.com; Park, Jung Ock; Yoo, Duck Young; Yi, Jung S. [Fuel Cell Group, Energy Lab, SAIT, Samsung Electronics Co., Ltd., San 14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-712 (Korea, Republic of)

    2009-11-01

    The ionomer content in electrode is one of the most important parameters for the high performance of fuel cells. The high temperature PEMFC based on phosphoric acid (PA)-doped polymer membrane with unhumidified reactant gases has a difficulty in controlling the liquid state PA ionomer content in electrode. To evaluate the PA content in electrode, the three techniques of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and acid-base titration (ABT) are carried out in situ or ex situ. The properties of membrane electrode assembly (MEA) such as electrochemical surface area (ESA), ohmic resistance, charge transfer resistance, double layer capacitance and the amount of PA in MEA components (anode, cathode and membrane) are extracted by each technique. Ex situ CV with the usage of dry gases has a limitation in assessing the reliable ESA of unhumidified PEMFC. While in situ EIS presents some informative values of resistance and capacitance for understanding the PA distribution in MEA, its sensitivity to the PA content in MEA components needs to be higher for detecting a subtle change in PA distribution. Ex situ ABT supplies a clear PA distribution in MEA at room temperature but does not seem to reflect the operating state well at high temperatures. However, it can be used as a detection tool for the loss of the initial acid content in membrane during a long-term MEA durability study.

  13. Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis

    Science.gov (United States)

    Yunxiao, CAO; Zhiqiang, WANG; Jinjun, WANG; Guofeng, LI

    2018-05-01

    Electrostatic separation has been extensively used in mineral processing, and has the potential to separate gangue minerals from raw talcum ore. As for electrostatic separation, the particle charging status is one of important influence factors. To describe the talcum particle charging status in a parallel plate electrostatic separator accurately, this paper proposes a modern images processing method. Based on the actual trajectories obtained from sequence images of particle movement and the analysis of physical forces applied on a charged particle, a numerical model is built, which could calculate the charge-to-mass ratios represented as the charging status of particle and simulate the particle trajectories. The simulated trajectories agree well with the experimental results obtained by images processing. In addition, chemical composition analysis is employed to reveal the relationship between ferrum gangue mineral content and charge-to-mass ratios. Research results show that the proposed method is effective for describing the particle charging status in electrostatic separation.

  14. INSITU BLOTTING - A NOVEL METHOD FOR DIRECT TRANSFER OF NATIVE PROTEINS FROM SECTIONED TISSUE TO BLOTTING MEMBRANE - PROCEDURE AND SOME APPLICATIONS

    NARCIS (Netherlands)

    OKABE, M; NYAKAS, C; BUWALDA, B; LUITEN, PGM

    We describe a novel technique for direct transfer of native proteins from unfixed frozen tissue sections to an immobilizing matrix, e.g., nitrocellulose, polyvinyliden difluoride, or positively charged nylon membranes. Proteins are directly blotted onto the membrane, providing optimal accessibility

  15. Accurate potentiometric determination of lipid membrane-water partition coefficients and apparent dissociation constants of ionizable drugs: electrostatic corrections.

    Science.gov (United States)

    Elsayed, Mustafa M A; Vierl, Ulrich; Cevc, Gregor

    2009-06-01

    Potentiometric lipid membrane-water partition coefficient studies neglect electrostatic interactions to date; this leads to incorrect results. We herein show how to account properly for such interactions in potentiometric data analysis. We conducted potentiometric titration experiments to determine lipid membrane-water partition coefficients of four illustrative drugs, bupivacaine, diclofenac, ketoprofen and terbinafine. We then analyzed the results conventionally and with an improved analytical approach that considers Coulombic electrostatic interactions. The new analytical approach delivers robust partition coefficient values. In contrast, the conventional data analysis yields apparent partition coefficients of the ionized drug forms that depend on experimental conditions (mainly the lipid-drug ratio and the bulk ionic strength). This is due to changing electrostatic effects originating either from bound drug and/or lipid charges. A membrane comprising 10 mol-% mono-charged molecules in a 150 mM (monovalent) electrolyte solution yields results that differ by a factor of 4 from uncharged membranes results. Allowance for the Coulombic electrostatic interactions is a prerequisite for accurate and reliable determination of lipid membrane-water partition coefficients of ionizable drugs from potentiometric titration data. The same conclusion applies to all analytical methods involving drug binding to a surface.

  16. One-step extraction of polar drugs from plasma by Parallel Artificial Liquid Membrane Extraction

    DEFF Research Database (Denmark)

    Pilařová, Veronika; Sultani, Mumtaz; Ask, Kristine Skoglund

    2017-01-01

    in the pores of a thin polymeric membrane, a well-known extraction principle also used in hollow fiber liquid-phase microextraction (HF-LPME). However, the new PALME technique offers a more user-friendly setup in which the supported liquid membrane is incorporated in a 96 well plate system. Thus, high......The new microextraction technique named parallel artificial liquid membrane extraction (PALME) was introduced as an alternative approach to liquid-liquid extraction of charged analytes from aqueous samples. The concept is based on extraction of analytes across a supported liquid membrane sustained...... for extraction of polar basic drugs was developed in the present work. The basic drugs hydralazine, ephedrine, metaraminol, salbutamol, and cimetidine were used as model analytes, and were extracted from alkalized human plasma into an aqueous solution via the supported liquid membrane. The extraction...

  17. HAMLET interacts with lipid membranes and perturbs their structure and integrity.

    Science.gov (United States)

    Mossberg, Ann-Kristin; Puchades, Maja; Halskau, Øyvind; Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger

    2010-02-23

    Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded alpha-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLA(all-Ala)). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.

  18. The KAC family of kinesin-like proteins is essential for the association of chloroplasts with the plasma membrane in land plants.

    Science.gov (United States)

    Suetsugu, Noriyuki; Sato, Yoshikatsu; Tsuboi, Hidenori; Kasahara, Masahiro; Imaizumi, Takato; Kagawa, Takatoshi; Hiwatashi, Yuji; Hasebe, Mitsuyasu; Wada, Masamitsu

    2012-11-01

    Chloroplasts require association with the plasma membrane for movement in response to light and for appropriate positioning within the cell to capture photosynthetic light efficiently. In Arabidopsis, CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1), KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT 1 (KAC1) and KAC2 are required for both the proper movement of chloroplasts and the association of chloroplasts with the plasma membrane, through the reorganization of short actin filaments located on the periphery of the chloroplasts. Here, we show that KAC and CHUP1 orthologs (AcKAC1, AcCHUP1A and AcCHUP1B, and PpKAC1 and PpKAC2) play important roles in chloroplast positioning in the fern Adiantum capillus-veneris and the moss Physcomitrella patens. The knockdown of AcKAC1 and two AcCHUP1 genes induced the aggregation of chloroplasts around the nucleus. Analyses of A. capillus-veneris mutants containing perinuclear-aggregated chloroplasts confirmed that AcKAC1 is required for chloroplast-plasma membrane association. In addition, P. patens lines in which two KAC genes had been knocked out showed an aggregated chloroplast phenotype similar to that of the fern kac1 mutants. These results indicate that chloroplast positioning and movement are mediated through the activities of KAC and CHUP1 proteins, which are conserved in land plants.

  19. Solution structure and elevator mechanism of the membrane electron transporter CcdA.

    Science.gov (United States)

    Zhou, Yunpeng; Bushweller, John H

    2018-02-01

    Membrane oxidoreductase CcdA plays a central role in supplying reducing equivalents from the bacterial cytoplasm to the envelope. It transports electrons across the membrane using a single pair of cysteines by a mechanism that has not yet been elucidated. Here we report an NMR structure of the Thermus thermophilus CcdA (TtCcdA) in an oxidized and outward-facing state. CcdA consists of two inverted structural repeats of three transmembrane helices (2 × 3-TM). We computationally modeled and experimentally validated an inward-facing state, which suggests that CcdA uses an elevator-type movement to shuttle the reactive cysteines across the membrane. CcdA belongs to the LysE superfamily, and thus its structure may be relevant to other LysE clan transporters. Structure comparisons of CcdA, semiSWEET, Pnu, and major facilitator superfamily (MFS) transporters provide insights into membrane transporter architecture and mechanism.

  20. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liang; Mccrate, Joseph M; Li Hao [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211 (United States); Lee, James C-M, E-mail: liha@missouri.edu [Department of Biological Engineering, University of Missouri, Columbia, MO 65211 (United States)

    2011-03-11

    The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles' surface charge was varied by surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FT-IR) confirmed the adsorption and binding of the carboxylic acids on the HAP nanoparticles' surfaces; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate the cell membrane due to their larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles showed the strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular

  1. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells

    International Nuclear Information System (INIS)

    Chen Liang; Mccrate, Joseph M; Li Hao; Lee, James C-M

    2011-01-01

    The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles' surface charge was varied by surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FT-IR) confirmed the adsorption and binding of the carboxylic acids on the HAP nanoparticles' surfaces; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate the cell membrane due to their larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles showed the strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular uptake of

  2. Cellulose nanocrystals with tunable surface charge for nanomedicine

    Science.gov (United States)

    Hosseinidoust, Zeinab; Alam, Md Nur; Sim, Goeun; Tufenkji, Nathalie; van de Ven, Theo G. M.

    2015-10-01

    Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge.Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For

  3. Development of membranes and a study of their interfaces for rechargeable lithium-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jitendra; Kumar, Binod [Electrochemical Power Group, Metals and Ceramics Division, University of Dayton Research Institute, OH 45469-0171 (United States)

    2009-12-01

    This paper describes an investigation with an objective to screen and select high performance membrane materials for a working, rechargeable lithium-air battery. Membrane laminates comprising glass-ceramic (GC) and polymer-ceramic (PC) membranes were assembled, evaluated and analyzed. A superionic conducting GC membrane with a chemical composition of Li{sub 1+x}Al{sub x}Ge{sub 2-x}(PO{sub 4}){sub 3} (x = 0.5) was used. Polymer membranes comprising of PC(BN), PC(AlN), PC(Si{sub 3}N{sub 4}) and PC(Li{sub 2}O) electrochemically coupled the GC membrane with the lithium anode. The cell and membrane laminates were characterized by determining cell conductivity, open circuit voltage and carrier concentration and its mobility. The measurements identified Li{sub 2}O and BN as suitable dopants in polymer matrix which catalyzed anodic charge transfer reaction, formed stable SEI layer and provided high lithium ion conductivity. (author)

  4. Charge Transfer Resistance and Differential Capacity of the Plasticized PVC Membrane/Water Interface

    Czech Academy of Sciences Publication Activity Database

    Langmaier, Jan; Stejskalová, Květoslava; Samec, Zdeněk

    2002-01-01

    Roč. 521, 1/2 (2002), s. 81-86 ISSN 0022-0728 R&D Projects: GA AV ČR IAA4040902 Institutional research plan: CEZ:AV0Z4040901 Keywords : impedance * PVC plasticized membrane * ion transfer kinetics Subject RIV: CG - Electrochemistry Impact factor: 2.027, year: 2002

  5. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles

    Directory of Open Access Journals (Sweden)

    Fröhlich E

    2012-11-01

    Full Text Available Eleonore FröhlichCenter for Medical Research, Medical University of Graz, Graz, AustriaAbstract: Many types of nanoparticles (NPs are tested for use in medical products, particularly in imaging and gene and drug delivery. For these applications, cellular uptake is usually a prerequisite and is governed in addition to size by surface characteristics such as hydrophobicity and charge. Although positive charge appears to improve the efficacy of imaging, gene transfer, and drug delivery, a higher cytotoxicity of such constructs has been reported. This review summarizes findings on the role of surface charge on cytotoxicity in general, action on specific cellular targets, modes of toxic action, cellular uptake, and intracellular localization of NPs. Effects of serum and intercell type differences are addressed. Cationic NPs cause more pronounced disruption of plasma-membrane integrity, stronger mitochondrial and lysosomal damage, and a higher number of autophagosomes than anionic NPs. In general, nonphagocytic cells ingest cationic NPs to a higher extent, but charge density and hydrophobicity are equally important; phagocytic cells preferentially take up anionic NPs. Cells do not use different uptake routes for cationic and anionic NPs, but high uptake rates are usually linked to greater biological effects. The different uptake preferences of phagocytic and nonphagocytic cells for cationic and anionic NPs may influence the efficacy and selectivity of NPs for drug delivery and imaging.Keywords: endocytosis, plasma membrane, lysosomes, polystyrene particles, quantum dots, dendrimers

  6. Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide

    Science.gov (United States)

    Wu, Songmei; Wildhaber, Fabien; Vazquez-Mena, Oscar; Bertsch, Arnaud; Brugger, Juergen; Renaud, Philippe

    2012-08-01

    Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3 (positive) and SiO2 (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion.Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3

  7. Development of PVDF Membrane Nanocomposites via Various Functionalization Approaches for Environmental Applications

    Directory of Open Access Journals (Sweden)

    Douglas M. Davenport

    2016-01-01

    Full Text Available Membranes are finding wide applications in various fields spanning biological, water, and energy areas. Synthesis of membranes to provide tunable flux, metal sorption, and catalysis has been done through pore functionalization of microfiltration (MF type membranes with responsive behavior. This methodology provides an opportunity to improve synthetic membrane performance via polymer fabrication and surface modification. By optimizing the polymer coagulation conditions in phase inversion fabrication, spongy polyvinylidene fluoride (PVDF membranes with high porosity and large internal pore volume were created in lab and full scale. This robust membrane shows a promising mechanical strength as well as high capacity for loading of adsorptive and catalytic materials. By applying surface modification techniques, synthetic membranes with different functionality (carboxyl, amine, and nanoparticle-based were obtained. These functionalities provide an opportunity to fine-tune the membrane surface properties such as charge and reactivity. The incorporation of stimuli-responsive acrylic polymers (polyacrylic acid or sodium polyacrylate in membrane pores also results in tunable pore size and ion-exchange capacity. This provides the added benefits of adjustable membrane permeability and metal capture efficiency. The equilibrium and dynamic binding capacity of these functionalized spongy membranes were studied via calcium ion-exchange. Iron/palladium catalytic nanoparticles were immobilized in the polymer matrix in order to perform the challenging degradation of the environmental pollutant trichloroethylene (TCE.

  8. Cellulose Nanocrystal Membranes as Excipients for Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Ananda M. Barbosa

    2016-12-01

    Full Text Available In this work, cellulose nanocrystals (CNCs were obtained from flax fibers by an acid hydrolysis assisted by sonochemistry in order to reduce reaction times. The cavitation inducted during hydrolysis resulted in CNC with uniform shapes, and thus further pretreatments into the cellulose are not required. The obtained CNC exhibited a homogeneous morphology and high crystallinity, as well as typical values for surface charge. Additionally, CNC membranes were developed from CNC solution to evaluation as a drug delivery system by the incorporation of a model drug. The drug delivery studies were carried out using chlorhexidine (CHX as a drug and the antimicrobial efficiency of the CNC membrane loaded with CHX was examined against Gram-positive bacteria Staphylococcus aureus (S. Aureus. The release of CHX from the CNC membranes is determined by UV-Vis. The obtaining methodology of the membranes proved to be simple, and these early studies showed a potential use in antibiotic drug delivery systems due to the release kinetics and the satisfactory antimicrobial activity.

  9. Large membrane deflection via capillary force actuation

    Science.gov (United States)

    Barth, Christina A.; Hu, Xiaoyu; Mibus, Marcel A.; Reed, Michael L.; Knospe, Carl R.

    2018-06-01

    Experimental results from six prototype devices demonstrate that pressure changes induced in a liquid bridge via electrowetting can generate large deflections (20–75 µm) of an elastomeric membrane similar to those used in lab-on-a-chip microfluidic devices. In all cases deflections are obtained with a low voltage (20 V) and very small power consumption (<1 µW). The effects of variations in the bridge size and membrane dimensions on measured displacements are examined. Theoretical predictions are in good agreement with the measured displacements in those cases where the liquid contact angles could be measured within the devices during electrowetting. Contact angle hysteresis and charge injection into the dielectric layers limited the repeatability of deflection behavior during repeated cycling. Approaches for achieving greater deflections and improved repeatability are discussed.

  10. Effects of 4-aminopyridine on organelle movement in cultured mouse dorsal root ganglion neurites.

    Science.gov (United States)

    Hiruma, Hiromi; Kawakami, Tadashi

    2010-03-01

    Aminopyridines, widely used as a K(+) channel blocker, are membrane-permeable weak bases and have the ability to form vacuoles in the cytoplasm. The vacuoles originate from acidic organelles such as lysosomes. Here, we investigated the effects of 4-aminopyridine (4-AP) on organelle movement in neurites of cultured mouse dorsal root ganglion (DRG) neurons by using video-enhanced microscopy. Some experiments were carried out using fluorescent dyes for lysosomes and mitochondria and confocal microscopy. Treatment of DRG neurons with 4 mM 4-AP caused Brownian movement of some lysosomes within 5 min. The Brownian movement gradually became rapid and vacuoles were formed around individual lysosomes 10-20 min after the start of treatment. Axonal transport of organelles was inhibited by 4-AP. Lysosomes showing Brownian movement were not transported in longitudinal direction of the neurite and the transport of mitochondria was interrupted by vacuoles. The 4-AP-induced Brownian movement of lysosomes with vacuole formation and inhibition of axonal transport were prevented by the simultaneous treatment with vacuolar H(+) ATPase inhibitor bafilomycin A1 or in Cl(-)-free SO(4)(2-) medium. These results indicate that changes in organelle movement by 4-AP are related to vacuole formation and the vacuolar H(+) ATPase and Cl(-) are required for the effects of 4-AP.

  11. meta-PBI/methylated PBI-OO blend membranes for acid doped HT PEMFC

    DEFF Research Database (Denmark)

    Cho, Hyeongrae; Hur, Eun; Henkensmeier, Dirk

    2014-01-01

    Methylation of polybenzimidazole leads to positively charged polymer backbones, and moveable anions. Ion exchange of methylated PBI-OO in phosphoric acid (PA) shows that the resulting polymers dissolve. meta-PBI, however, absorbs about 400wt% PA while remaining a self supported membrane. We inves...

  12. Ionomer design for augmented charge transport in novel ionic polymer transducers

    International Nuclear Information System (INIS)

    Duncan, Andrew J; Akle, Barbar J; Long, Timothy E; Leo, Donald J

    2009-01-01

    Ionic polymer transducers are devices that display electromechanical transduction and are projected to have extensive applications as actuators and sensors. This study employs novel, highly branched sulfonated polysulfones (sBPS) as part of an investigation into the contribution of polymer topology to electromechanical transduction. Specifically, the ionomers are combined with an ionic liquid to determine the optimal ratio and method for maximizing ionic conductivity, where charge transport is essential to device performance. Two uptake methods are assessed for introduction of ionic liquid into the central ionomeric membrane. The effects of casting membranes in the presence of ionic liquid and swelling preformed membranes in ionic liquid on film stability and ionic conductivity are examined. Membranes cast from a solution of the ionomer and ionic liquid allow for direct targeting of the component ratio and a single-step process for membrane formation. Swelling conditions for preformed neat membranes combine time, temperature, and the presence of organic co-diluents to achieve the maximum stable uptake of ionic liquid. Comparison of optimal conditions for the various methods reveals that swelling with co-diluents achieves ionic conductivity of the imbibed membrane per uptake higher than the levels achieved with the casting process for highly sulfonated sBPS. However, for less sulfonated sBPS the casting process successfully produced membranes with ionic conductivities unreachable with the co-diluent process. Both methods will enable the production of high performance ionic polymer transducers constructed from novel sBPS ionomers and ionic liquids

  13. A movement ecology paradigm for unifying organismal movement research.

    Science.gov (United States)

    Nathan, Ran; Getz, Wayne M; Revilla, Eloy; Holyoak, Marcel; Kadmon, Ronen; Saltz, David; Smouse, Peter E

    2008-12-09

    Movement of individual organisms is fundamental to life, quilting our planet in a rich tapestry of phenomena with diverse implications for ecosystems and humans. Movement research is both plentiful and insightful, and recent methodological advances facilitate obtaining a detailed view of individual movement. Yet, we lack a general unifying paradigm, derived from first principles, which can place movement studies within a common context and advance the development of a mature scientific discipline. This introductory article to the Movement Ecology Special Feature proposes a paradigm that integrates conceptual, theoretical, methodological, and empirical frameworks for studying movement of all organisms, from microbes to trees to elephants. We introduce a conceptual framework depicting the interplay among four basic mechanistic components of organismal movement: the internal state (why move?), motion (how to move?), and navigation (when and where to move?) capacities of the individual and the external factors affecting movement. We demonstrate how the proposed framework aids the study of various taxa and movement types; promotes the formulation of hypotheses about movement; and complements existing biomechanical, cognitive, random, and optimality paradigms of movement. The proposed framework integrates eclectic research on movement into a structured paradigm and aims at providing a basis for hypothesis generation and a vehicle facilitating the understanding of the causes, mechanisms, and spatiotemporal patterns of movement and their role in various ecological and evolutionary processes. "Now we must consider in general the common reason for moving with any movement whatever." (Aristotle, De Motu Animalium, 4th century B.C.).

  14. Sequential multipoint motion of the tympanic membrane measured by laser Doppler vibrometry: preliminary results for normal tympanic membrane.

    Science.gov (United States)

    Kunimoto, Yasuomi; Hasegawa, Kensaku; Arii, Shiro; Kataoka, Hideyuki; Yazama, Hiroaki; Kuya, Junko; Kitano, Hiroya

    2014-04-01

    Numerous studies have reported sound-induced motion of the tympanic membrane (TM). To demonstrate sequential motion characteristics of the entire TM by noncontact laser Doppler vibrometry (LDV), we have investigated multipoint TM measurement. A laser Doppler vibrometer was mounted on a surgical microscope. The velocity was measured at 33 points on the TM using noncontact LDV without any reflectors. Measurements were performed with tonal stimuli of 1, 3, and 6 kHz. Amplitudes were calculated from these measurements, and time-dependent changes in TM motion were described using a graphics application. TM motions were detected more clearly and stably at 1 and 3 kHz than at other frequencies. This is because the external auditory canal acted as a resonant tube near 3 kHz. TM motion displayed 1 peak at 1 kHz and 2 peaks at 3 kHz. Large amplitudes were detected in the posterosuperior quadrant (PSQ) at 1 kHz and in the PSQ and anteroinferior quadrant (AIQ) at 3 kHz. The entire TM showed synchronized movement centered on the PSQ at 1 kHz, with phase-shifting between PSQ and AIQ movement at 3 kHz. Amplitude was smaller at the umbo than at other parts. In contrast, amplitudes at high frequencies were too small and complicated to detect any obvious peaks. Sequential multipoint motion of the tympanic membrane showed that vibration characteristics of the TM differ according to the part and frequency.

  15. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croué, Jean-Philippe

    2016-05-03

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  16. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croue, Jean-Philippe

    2016-01-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  17. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-04-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  18. Effect of hydrogen charging on the stability of SAE 10B22 steel surface in alkaline solutions

    International Nuclear Information System (INIS)

    Modiano, S.; Carreno, J.A.; Fugivara, C.S.; Benedetti, A.V.; Mattos, O.R.

    2005-01-01

    The influence of hydrogen charging into a quenched and tempered boron steel membrane electrode (SAE 10B22) was studied using borate buffer (pH 8.4) and NaOH solutions (pH 12.7), with or without the addition of 0.01 M EDTA. At the hydrogen input side, hydrogen charging influenced cyclic voltammograms increasing the anodic charge of iron(II) hydroxide formation, and decreasing the donor density of passive films. These results suggest that the hydrogen ingress caused instability of metallic surface, increasing the surface area activity

  19. Structural adaptations of proteins to different biological membranes

    Science.gov (United States)

    Pogozheva, Irina D.; Tristram-Nagle, Stephanie; Mosberg, Henry I.; Lomize, Andrei L.

    2013-01-01

    To gain insight into adaptations of proteins to their membranes, intrinsic hydrophobic thicknesses, distributions of different chemical groups and profiles of hydrogen-bonding capacities (α and β) and the dipolarity/polarizability parameter (π*) were calculated for lipid-facing surfaces of 460 integral α-helical, β-barrel and peripheral proteins from eight types of biomembranes. For comparison, polarity profiles were also calculated for ten artificial lipid bilayers that have been previously studied by neutron and X-ray scattering. Estimated hydrophobic thicknesses are 30-31 Å for proteins from endoplasmic reticulum, thylakoid, and various bacterial plasma membranes, but differ for proteins from outer bacterial, inner mitochondrial and eukaryotic plasma membranes (23.9, 28.6 and 33.5 Å, respectively). Protein and lipid polarity parameters abruptly change in the lipid carbonyl zone that matches the calculated hydrophobic boundaries. Maxima of positively charged protein groups correspond to the location of lipid phosphates at 20-22 Å distances from the membrane center. Locations of Tyr atoms coincide with hydrophobic boundaries, while distributions maxima of Trp rings are shifted by 3-4 Å toward the membrane center. Distributions of Trp atoms indicate the presence of two 5-8 Å-wide midpolar regions with intermediate π* values within the hydrocarbon core, whose size and symmetry depend on the lipid composition of membrane leaflets. Midpolar regions are especially asymmetric in outer bacterial membranes and cell membranes of mesophilic but not hyperthermophilic archaebacteria, indicating the larger width of the central nonpolar region in the later case. In artificial lipid bilayers, midpolar regions are observed up to the level of acyl chain double bonds. PMID:23811361

  20. Weak glycolipid binding of a microdomain-tracer peptide correlates with aggregation and slow diffusion on cell membranes.

    Directory of Open Access Journals (Sweden)

    Tim Lauterbach

    Full Text Available Organized assembly or aggregation of sphingolipid-binding ligands, such as certain toxins and pathogens, has been suggested to increase binding affinity of the ligand to the cell membrane and cause membrane reorganization or distortion. Here we show that the diffusion behavior of the fluorescently tagged sphingolipid-interacting peptide probe SBD (Sphingolipid Binding Domain is altered by modifications in the construction of the peptide sequence that both result in a reduction in binding to ganglioside-containing supported lipid membranes, and at the same time increase aggregation on the cell plasma membrane, but that do not change relative amounts of secondary structural features. We tested the effects of modifying the overall charge and construction of the SBD probe on its binding and diffusion behavior, by Surface Plasmon Resonance (SPR; Biacore analysis on lipid surfaces, and by Fluorescence Correlation Spectroscopy (FCS on live cells, respectively. SBD binds preferentially to membranes containing the highly sialylated gangliosides GT1b and GD1a. However, simple charge interactions of the peptide with the negative ganglioside do not appear to be a critical determinant of binding. Rather, an aggregation-suppressing amino acid composition and linker between the fluorophore and the peptide are required for optimum binding of the SBD to ganglioside-containing supported lipid bilayer surfaces, as well as for interaction with the membrane. Interestingly, the strength of interactions with ganglioside-containing artificial membranes is mirrored in the diffusion behavior by FCS on cell membranes, with stronger binders displaying similar characteristic diffusion profiles. Our findings indicate that for aggregation-prone peptides, aggregation occurs upon contact with the cell membrane, and rather than giving a stronger interaction with the membrane, aggregation is accompanied by weaker binding and complex diffusion profiles indicative of heterogeneous

  1. Sleep staging with movement-related signals.

    Science.gov (United States)

    Jansen, B H; Shankar, K

    1993-05-01

    Body movement related signals (i.e., activity due to postural changes and the ballistocardiac effort) were recorded from six normal volunteers using the static-charge-sensitive bed (SCSB). Visual sleep staging was performed on the basis of simultaneously recorded EEG, EMG and EOG signals. A statistical classification technique was used to determine if reliable sleep staging could be performed using only the SCSB signal. A classification rate of between 52% and 75% was obtained for sleep staging in the five conventional sleep stages and the awake state. These rates improved from 78% to 89% for classification between awake, REM and non-REM sleep and from 86% to 98% for awake versus asleep classification.

  2. Evaluation of Removal Mechanisms in a Graphene Oxide-Coated Ceramic Ultrafiltration Membrane for Retention of Natural Organic Matter, Pharmaceuticals, and Inorganic Salts.

    Science.gov (United States)

    Chu, Kyoung Hoon; Fathizadeh, Mahdi; Yu, Miao; Flora, Joseph R V; Jang, Am; Jang, Min; Park, Chang Min; Yoo, Sung Soo; Her, Namguk; Yoon, Yeomin

    2017-11-22

    Functionalized graphene oxide (GO), derived from pure graphite via the modified Hummer method, was used to modify commercially available ceramic ultrafiltration membranes using the vacuum method. The modified ceramic membrane functionalized with GO (ceramic GO ) was characterized using a variety of analysis techniques and exhibited higher hydrophilicity and increased negative charge compared with the pristine ceramic membrane. Although the pure water permeability of the ceramic GO membrane (14.4-58.6 L/m 2 h/bar) was slightly lower than that of the pristine membrane (25.1-62.7 L/m 2 h/bar), the removal efficiencies associated with hydrophobic attraction and charge effects were improved significantly after GO coating. Additionally, solute transport in the GO nanosheets of the ceramic GO membrane played a vital role in the retention of target compounds: natural organic matter (NOM; humic acid and tannic acid), pharmaceuticals (ibuprofen and sulfamethoxazole), and inorganic salts (NaCl, Na 2 SO 4 , CaCl 2 , and CaSO 4 ). While the retention efficiencies of NOM, pharmaceuticals, and inorganic salts in the pristine membrane were 74.6%, 15.3%, and 2.9%, respectively, these increased to 93.5%, 51.0%, and 31.4% for the ceramic GO membrane. Consequently, the improved removal mechanisms of the membrane modified with functionalized GO nanosheets can provide efficient retention for water treatment under suboptimal environmental conditions of pH and ionic strength.

  3. Independence of Movement Preparation and Movement Initiation.

    Science.gov (United States)

    Haith, Adrian M; Pakpoor, Jina; Krakauer, John W

    2016-03-09

    Initiating a movement in response to a visual stimulus takes significantly longer than might be expected on the basis of neural transmission delays, but it is unclear why. In a visually guided reaching task, we forced human participants to move at lower-than-normal reaction times to test whether normal reaction times are strictly necessary for accurate movement. We found that participants were, in fact, capable of moving accurately ∼80 ms earlier than their reaction times would suggest. Reaction times thus include a seemingly unnecessary delay that accounts for approximately one-third of their duration. Close examination of participants' behavior in conventional reaction-time conditions revealed that they generated occasional, spontaneous errors in trials in which their reaction time was unusually short. The pattern of these errors could be well accounted for by a simple model in which the timing of movement initiation is independent of the timing of movement preparation. This independence provides an explanation for why reaction times are usually so sluggish: delaying the mean time of movement initiation relative to preparation reduces the risk that a movement will be initiated before it has been appropriately prepared. Our results suggest that preparation and initiation of movement are mechanistically independent and may have a distinct neural basis. The results also demonstrate that, even in strongly stimulus-driven tasks, presentation of a stimulus does not directly trigger a movement. Rather, the stimulus appears to trigger an internal decision whether to make a movement, reflecting a volitional rather than reactive mode of control. Copyright © 2016 the authors 0270-6474/16/363007-10$15.00/0.

  4. D-branes and coherent topological charge structure in QCD

    Science.gov (United States)

    Thacker, Hank

    2006-12-01

    Monte Carlo studies of pure glue SU(3) gauge theory using the overlap-based topological charge operator have revealed a laminar structure in the QCD vacuum consisting of extended, thin, co- herent, locally 3-dimensional sheets of topological charge embedded in 4D space, with opposite sign sheets interleaved. Studies of localization properties of Dirac eigenmodes have also shown evidence for the delocalization of low-lying modes on effectively 3-dimensional surfaces. In this talk, I review some theoretical ideas which suggest the possibility of 3-dimensionally coherent topological charge structure in 4-dimensional gauge theory and provide a possible interpretation of the observed structure. I begin with Luscher's "Wilson bag" integral over the 3-index Chern- Simons tensor. The analogy with a Wilson loop as a charged world line in 2-dimensional CP N-1 sigma models suggests that the Wilson bag surface represents the world volume of a physical membrane. The large-N chiral Lagrangian arguments of Witten also indicate the existence of multiple "k-vacuum" states with discontinuous transitions between k-vacua at θ = odd multi- ples of π. The domain walls between these vacua have the properties of a Wilson bag surface. Finally, I review the AdS/CFT duality view of θ dependence in QCD. The dual realtionship be- tween topological charge in gauge theory and Ramond-Ramond charge in type IIA string theory suggests that the coherent topological charge sheets observed on the lattice are the holographic image of wrapped D6 branes.

  5. Ovalbumin with Glycated Carboxyl Groups Shows Membrane-Damaging Activity

    Directory of Open Access Journals (Sweden)

    Ching-Chia Tang

    2017-02-01

    Full Text Available The aim of the present study was to investigate whether glycated ovalbumin (OVA showed novel activity at the lipid-water interface. Mannosylated OVA (Man-OVA was prepared by modification of the carboxyl groups with p-aminophenyl α-dextro (d-mannopyranoside. An increase in the number of modified carboxyl groups increased the membrane-damaging activity of Man-OVA on cell membrane-mimicking vesicles, whereas OVA did not induce membrane permeability in the tested phospholipid vesicles. The glycation of carboxyl groups caused a notable change in the gross conformation of OVA. Moreover, owing to their spatial positions, the Trp residues in Man-OVA were more exposed, unlike those in OVA. Fluorescence quenching studies suggested that the Trp residues in Man-OVA were located on the interface binds with the lipid vesicles, and their microenvironment was abundant in positively charged residues. Although OVA and Man-OVA showed a similar binding affinity for lipid vesicles, the lipid-interacting feature of Man-OVA was distinct from that of OVA. Chemical modification studies revealed that Lys and Arg residues, but not Trp residues, played a crucial role in the membrane-damaging activity of Man-OVA. Taken together, our data suggest that glycation of carboxyl groups causes changes in the structural properties and membrane-interacting features of OVA, generating OVA with membrane-perturbing activities at the lipid-water interface.

  6. Engineering lipid structure for recognition of the liquid ordered membrane phase

    International Nuclear Information System (INIS)

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; Stachowiak, Jeanne C.; Sasaki, Darryl Y.

    2016-01-01

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L_o) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the L_o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L_d). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve L_o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L_o phase.

  7. Computational movement analysis

    CERN Document Server

    Laube, Patrick

    2014-01-01

    This SpringerBrief discusses the characteristics of spatiotemporal movement data, including uncertainty and scale. It investigates three core aspects of Computational Movement Analysis: Conceptual modeling of movement and movement spaces, spatiotemporal analysis methods aiming at a better understanding of movement processes (with a focus on data mining for movement patterns), and using decentralized spatial computing methods in movement analysis. The author presents Computational Movement Analysis as an interdisciplinary umbrella for analyzing movement processes with methods from a range of fi

  8. Funding initiates production of tunable nano-porous block copolymer membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2013-06-01

    Researchers in Saudi Arabia at King Abdullah University of Science & Technology have created a membrane comprising a thin layer of densely packed, highly ordered cylindrical channels with uniform pore sizes - oriented perpendicular to its surface - on top of a non-ordered sponge-like layer. It is fabricated in a fast, one-step process by combining the self-assembly of an amphiphilic block copolymer (PS- b-P4VP) with non-solvent-induced phase separation. The university\\'s "Seed Fund" has helped the researchers to start manufacturing this membrane, which is particularly suited to size-selective and charge-based separation of bio-molecules. © 2013 Elsevier Ltd.

  9. Tackling capacity fading in vanadium flow batteries with amphoteric membranes

    Science.gov (United States)

    Oldenburg, Fabio J.; Schmidt, Thomas J.; Gubler, Lorenz

    2017-11-01

    Capacity fading and poor electrolyte utilization caused by electrolyte imbalance effects are major drawbacks for the commercialization of vanadium flow batteries (VFB). The influence of membrane type (cationic, anionic, amphoteric) on these effects is studied by determining the excess and net flux of each vanadium ion in an operating VFB assembled with a cation exchange membrane (CEM), Nafion® NR212, an anion exchange membrane (AEM), Fumatech FAP-450, and an amphoteric ion exchange membrane (AIEM) synthesized in-house. It is shown that the net vanadium flux, accompanied by water transport, is directed towards the positive side for the CEM and towards the negative side for the AEM. The content of cation and anion exchange groups in the AIEM is adjusted via radiation grafting to balance the vanadium flux between the two electrolyte sides. With the AIEM the net vanadium flux is significantly reduced and capacity fading due to electrolyte imbalances can be largely eliminated. The membrane's influence on electrolyte imbalance effects is characterized and quantified in one single charge-discharge cycle by analyzing the content of the four different vanadium species in the two electrolytes. The experimental data recorded herewith conclusively explains the electrolyte composition after 80 cycles.

  10. Morphological, Chemical Surface, and Diffusive Transport Characterizations of a Nanoporous Alumina Membrane

    Directory of Open Access Journals (Sweden)

    María I. Vázquez

    2015-12-01

    Full Text Available Synthesis of a nanoporous alumina membrane (NPAM by the two-step anodization method and its morphological and chemical surface characterization by analyzing Scanning Electron Microscopy (SEM micrographs and X-Ray Photoelectron Spectroscopy (XPS spectra is reported. Influence of electrical and diffusive effects on the NaCl transport across the membrane nanopores is determined from salt diffusion measurements performed with a wide range of NaCl concentrations, which allows the estimation of characteristic electrochemical membrane parameters such as the NaCl diffusion coefficient and the concentration of fixed charges in the membrane, by using an appropriated model and the membrane geometrical parameters (porosity and pore length. These results indicate a reduction of ~70% in the value of the NaCl diffusion coefficient through the membrane pores with respect to solution. The transport number of ions in the membrane pores (Na+ and Cl−, respectively were determined from concentration potential measurements, and the effect of concentration-polarization at the membrane surfaces was also considered by comparing concentration potential values obtained with stirred solutions (550 rpm and without stirring. From both kinds of results, a value higher than 0.05 M NaCl for the feed solution seems to be necessary to neglect the contribution of electrical interactions in the diffusive transport.

  11. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kralj, Slavko, E-mail: slavko.kralj@ijs.si [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia); Rojnik, Matija [University of Ljubljana, Faculty of Pharmacy (Slovenia); Romih, Rok [University of Ljubljana, Faculty of Medicine, Institute of Cell Biology (Slovenia); Jagodic, Marko [Institute of Mathematics, Physics and Mechanics (Slovenia); Kos, Janko [University of Ljubljana, Faculty of Pharmacy (Slovenia); Makovec, Darko [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia)

    2012-10-15

    We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles' surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500 {mu}g/cm{sup 3} in 24 h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.

  12. Evidence for Amino Acid Snorkeling from a High-Resolution, In Vivo Analysis of Fis1 Tail-Anchor Insertion at the Mitochondrial Outer Membrane.

    Science.gov (United States)

    Keskin, Abdurrahman; Akdoğan, Emel; Dunn, Cory D

    2017-02-01

    Proteins localized to mitochondria by a carboxyl-terminal tail anchor (TA) play roles in apoptosis, mitochondrial dynamics, and mitochondrial protein import. To reveal characteristics of TAs that may be important for mitochondrial targeting, we focused our attention upon the TA of the Saccharomyces cerevisiae Fis1 protein. Specifically, we generated a library of Fis1p TA variants fused to the Gal4 transcription factor, then, using next-generation sequencing, revealed which Fis1p TA mutations inhibited membrane insertion and allowed Gal4p activity in the nucleus. Prompted by our global analysis, we subsequently analyzed the ability of individual Fis1p TA mutants to localize to mitochondria. Our findings suggest that the membrane-associated domain of the Fis1p TA may be bipartite in nature, and we encountered evidence that the positively charged patch at the carboxyl terminus of Fis1p is required for both membrane insertion and organelle specificity. Furthermore, lengthening or shortening of the Fis1p TA by up to three amino acids did not inhibit mitochondrial targeting, arguing against a model in which TA length directs insertion of TAs to distinct organelles. Most importantly, positively charged residues were more acceptable at several positions within the membrane-associated domain of the Fis1p TA than negatively charged residues. These findings, emerging from the first high-resolution analysis of an organelle targeting sequence by deep mutational scanning, provide strong, in vivo evidence that lysine and arginine can "snorkel," or become stably incorporated within a lipid bilayer by placing terminal charges of their side chains at the membrane interface. Copyright © 2017 by the Genetics Society of America.

  13. Fouling control mechanisms of demineralized water backwash: Reduction of charge screening and calcium bridging effects

    KAUST Repository

    Li, Sheng; Heijman, Bas G J; Verberk, J. Q J C; Le-Clech, Pierre; Lu, Jie; Kemperman, Antoine J B; Amy, Gary L.; Van Dijk, Johannis C.

    2011-01-01

    with demineralized water can explain the observed reduction in fouling. Results show that the charge of both membranes and NOM, as measured by the zeta potential, became more negative at a lower pH and a lower concentration of electrolytes, in particular, divalent

  14. Single-Molecule Fluorescence Studies of Membrane Transporters Using Total Internal Reflection Microscopy.

    Science.gov (United States)

    Goudsmits, Joris M H; van Oijen, Antoine M; Slotboom, Dirk J

    2017-01-01

    Cells are delineated by a lipid bilayer that physically separates the inside from the outer environment. Most polar, charged, or large molecules require proteins to reduce the energetic barrier for passage across the membrane and to achieve transport rates that are relevant for life. Here, we describe techniques to visualize the functioning of membrane transport proteins with fluorescent probes at the single-molecule level. First, we explain how to produce membrane-reconstituted transporters with fluorescent labels. Next, we detail the construction of a microfluidic flow cell to image immobilized proteoliposomes on a total internal reflection fluorescence microscope. We conclude by describing the methods that are needed to analyze fluorescence movies and obtain useful single-molecule data. © 2017 Elsevier Inc. All rights reserved.

  15. The homeodomain derived peptide Penetratin induces curvature of fluid membrane domains.

    Directory of Open Access Journals (Sweden)

    Antonin Lamazière

    Full Text Available BACKGROUND: Protein membrane transduction domains that are able to cross the plasma membrane are present in several transcription factors, such as the homeodomain proteins and the viral proteins such as Tat of HIV-1. Their discovery resulted in both new concepts on the cell communication during development, and the conception of cell penetrating peptide vectors for internalisation of active molecules into cells. A promising cell penetrating peptide is Penetratin, which crosses the cell membranes by a receptor and metabolic energy-independent mechanism. Recent works have claimed that Penetratin and similar peptides are internalized by endocytosis, but other endocytosis-independent mechanisms have been proposed. Endosomes or plasma membranes crossing mechanisms are not well understood. Previously, we have shown that basic peptides induce membrane invaginations suggesting a new mechanism for uptake, "physical endocytosis". METHODOLOGY/PRINCIPAL FINDINGS: Herein, we investigate the role of membrane lipid phases on Penetratin induced membrane deformations (liquid ordered such as in "raft" microdomains versus disordered fluid "non-raft" domains in membrane models. Experimental data show that zwitterionic lipid headgroups take part in the interaction with Penetratin suggesting that the external leaflet lipids of cells plasma membrane are competent for peptide interaction in the absence of net negative charges. NMR and X-ray diffraction data show that the membrane perturbations (tubulation and vesiculation are associated with an increase in membrane negative curvature. These effects on curvature were observed in the liquid disordered but not in the liquid ordered (raft-like membrane domains. CONCLUSIONS/SIGNIFICANCE: The better understanding of the internalisation mechanisms of protein transduction domains will help both the understanding of the mechanisms of cell communication and the development of potential therapeutic molecular vectors. Here we

  16. Modeling of RO/NF membrane rejections of PhACs and organic compounds: a statistical analysis

    Directory of Open Access Journals (Sweden)

    G. Amy

    2008-07-01

    Full Text Available Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Primidone, Phenacetin and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Carbontetrachloride, Carbontetrabromide by NF (Filmtec, Saehan and RO (Filmtec, Saehan, Toray, Koch membranes were studied. Chloroform presented the lowest rejection due to small molar volume, equivalent width and length. Diclofenac and Primidone showed high rejections related to high molar volume and length. Dichloroacetic acid and Trichloroacetic acid presented good rejections caused by charge exclusion instead of steric hindrance mechanism influencing rejection. Bromoform and Trichloroethene showed low rejections due to small length and equivalent width. Carbontetrabromide, Perchloroethene and Carbontetrachloride with higher equivalent width than BF and TCE presented better rejections. A qualitative analysis of variables using Principal Component Analysis was successfully implemented for reduction of physical-chemical compound properties that influence membrane rejection of PhACs and organic compounds. Properties such as dipole moment, molar volume, hydrophobicity/hydrophilicity, molecular length and equivalent width were found to be important descriptors for simulation of membrane rejection. For membranes used in the experiments, we may conclude that charge repulsion was an important mechanism of rejection for ionic compounds. After analysis with Multiple Linear Regression, we also may conclude that membrane rejection of neutral compounds was well predicted by molar volume, length, equivalent width, hydrophobicity/hydrophilicity and dipole moment. Molecular weight was a poor descriptor variable for rejection modelling. We were able to provide acceptable statistical significance for important results.

  17. Field test of methane fermentation incorporating with membrane module for sewage sludge. Bunrimaku wo fukugoshita gesui odei no methane hakko

    Energy Technology Data Exchange (ETDEWEB)

    Kiriyama, K.; Tanaka, Y. (Ebara Corp., Tokyo (Japan)); Adachi, T. (Nitto Denko Corp., Osaka (Japan))

    1993-02-01

    Field test results of methane fermentation incorporating with a membrane module were reported for sewage sludge. The methane fermentation was conducted at 25[degree]C using only raw sludge charged from a suspended solid (SS) separating device until the mid-stage of experiments and adding gradually concentrated backwash of a biological aerated filter after the mid-stage. As a result, the reduction rate of volatile SS (VSS) charged into the reactor increased from 76.8% to 84.8% until the mid-stage, while from 52% to 70% even after the mid-stage giving the effect of the membrane module. Stable operation of the membrane module was achieved at 20,000-25,000 mg/l in SS concentration at its inlet and 0.6 m/s in membrane linear velocity, together with the easy recovery of flux by back washing. The power consumption in membrane separation at 23,000 mg/l in SS concentration was estimated to be 2.15 kWh per m[sup 3] of permeant at both motor and pump efficiencies of 1.0, suggesting possible energy saving. 3 refs., 9 figs., 2 tabs.

  18. Preparation, characterization, biological activity, and transport study of polystyrene based calcium–barium phosphate composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Mohammad Mujahid Ali; Rafiuddin,, E-mail: rafi_amu@rediffmail.com

    2013-10-15

    Calcium–barium phosphate (CBP) composite membrane with 25% polystyrene was prepared by co-precipitation method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR), and Thermogravimetric analysis (TGA) were used to characterize the membrane. The membrane was found to be crystalline in nature with consistent arrangement of particles and no indication of visible cracks. The electrical potentials measured across the composite membrane in contact with univalent electrolytes (KCl, NaCl and LiCl), have been found to increase with decrease in concentrations. Thus the membrane was found to be cation-selective. Transport properties of developed membranes may be utilized for the efficient desalination of saline water and more importantly demineralization process. The antibacterial study of this composite membrane shows good results for killing the disease causing bacteria along with waste water treatment. Highlights: • Transport properties of composite membrane are evaluated. • The composite membrane was found to be stable in all media. • TMS method is used for electrochemical characterization. • The membrane was found to be cation selective. • The order of surface charge density was found to be LiCl < NaCl < KCl.

  19. Methods for studying plasma charge transport across a magnetic field

    International Nuclear Information System (INIS)

    Popovich, A.S.

    1978-01-01

    A comparative analysis of experimental methods for the diffusion transfer of plasma charged particles accross the magnetic field at the study of its confinement effectiveness, instability effect is carried out. Considered are the methods based on the analysis of particle balance in the charge and possibilities of diffusion coefficient determination according to measuring parameters of density gradient and particle flow on the wall, rate of plasma decay after switching off ionization source radial profile of plasma density outside the active region of stationary charge. Much attension is payed to the research methods of diffusion transfer, connected with the study of propagation of periodic and aperiodic density perturbation in a plasma. Analysed is the Golubev and Granovsky method of diffusion waves and its different modifications, phase analysis method of ''test charges'' movement, as well as different modifications of correlation methods. Considered are physical preconditions of the latter and criticized is unilateral interpretation of correlation measurings, carried out in a number of works. The analysis of study possibilities of independent (non-ambipolar) diffusion of electrons and ions in a plasma in the magnetic field is executed

  20. Separation of xylose and glucose using an integrated membrane system for enzymatic cofactor regeneration and downstream purification

    DEFF Research Database (Denmark)

    Morthensen, Sofie Thage; Sigurdardóttir, Sigyn Björk; Meyer, Anne S.

    2017-01-01

    Mixtures of xylose, glucose and pyruvate were fed to a membrane bioreactor equipped with a charged NF membrane (NTR 7450). Value-added products were obtained in the reactor via enzymatic cofactor-dependent catalysis of glucose to gluconic acid and pyruvate to lactic acid, respectively. The initial...... cofactor (NADH) concentration could be decreased to 10% of the stoichiometric value (relative to glucose) without compromising process time and substrate conversion via i) efficient cofactor regeneration and ii) high retention of cofactor (R=0.98) in the membrane bioreactor. Furthermore, accumulation...

  1. The mechanism of uncoupling by picrate in Escherichia coli K-12 membrane systems.

    Science.gov (United States)

    Michels, M; Bakker, E P

    1981-06-01

    The mechanism of action of the uncoupler picrate on intact cells and everted membrane vesicles of Escherichia coli K-12 was investigated. Like in mitochondria [Hanstein, W. G. and Hatefi, Y. (1974) Proc. Natl Acad. Sci. USA, 71, 288-292], it was observed that picrate uncoupled energy-linked functions only in everted, but not in intact membrane systems. In the vesicles picrate also decreased the magnitude of the transmembrane proton-motive force at concentrations similar to those at which it caused uncoupling. Experiments with 14C-labelled picrate showed that this compound bound both to deenergized intact cells and everted vesicles. However, upon energization of the membrane, picrate was extruded from the intact cell and taken up to a larger extent by the vesicles. These energy-dependent changes in picrate uptake correlated with the magnitude of the transmembrane electrical potential, delta psi. It is therefore proposed that picrate is a permeant uncoupler, that delta psi is the driving force for picrate movement across biological membranes, and that the uncoupling activity of picrate in everted membrane systems is due to its protonophoric action.

  2. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  3. Gypsum (CaSO42H2O) scaling on polybenzimidazole and cellulose acetate hollow fiber membranes under forward osmosis

    KAUST Repository

    Chen, Si Cong

    2013-11-08

    We have examined the gypsum (CaSO42H2O) scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO) processes. Three hollow fiber membranes made of (1) cellulose acetate (CA), (2) polybenzimidazole (PBI)/polyethersulfone (PES) and (3) PBI-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) were studied. For the first time in FO processes, we have found that surface ionic interactions dominate gypsum scaling on the membrane surface. A 70% flux reduction was observed on negatively charged CA and PBI membrane surfaces, due to strong attractive forces. The PBI membrane surface also showed a slightly positive charge at a low pH value of 3 and exhibited a 30% flux reduction. The atomic force microscopy (AFM) force measurements confirmed a strong repulsive force between gypsum and PBI at a pH value of 3. The newly developed PBI-POSS/PAN membrane had ridge morphology and a contact angle of 51.42 14.85 after the addition of hydrophilic POSS nanoparticles and 3 min thermal treatment at 95 C. Minimal scaling and an only 1.3% flux reduction were observed at a pH value of 3. Such a ridge structure may reduce scaling by not providing a locally flat surface to the crystallite at a pH value of 3; thus, gypsum would be easily washed away from the surface. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  4. Foam films as thin liquid gas separation membranes.

    Science.gov (United States)

    Ramanathan, Muruganathan; Müller, Hans Joachim; Möhwald, Helmuth; Krastev, Rumen

    2011-03-01

    In this letter, we testify the feasibility of using freestanding foam films as a thin liquid gas separation membrane. Diminishing bubble method was used as a tool to measure the permeability of pure gases like argon, nitrogen, and oxygen in addition to atmospheric air. All components of the foam film including the nature of the tail (fluorocarbon vs hydrocarbon), charge on the headgroup (anionic, cationic, and nonionic) and the thickness of the water core (Newton black film vs Common black film) were systematically varied to understand the permeation phenomena of pure gases. Overall results indicate that the permeability values for different gases are in accordance with magnitude of their molecular diameter. A smaller gaseous molecule permeates faster than the larger ones, indicating a new realm of application for foam films as size selective separation membranes.

  5. Integration of membrane filtration and photoelectrocatalysis using a TiO{sub 2}/carbon/Al{sub 2}O{sub 3} membrane for enhanced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guanlong; Chen, Shuo, E-mail: shuochen@dlut.edu.cn; Yu, Hongtao; Quan, Xie

    2015-12-15

    Highlights: • Membrane filtration was integrated with photoelectrocatalysis for water treatment. • This integrated process (PECM) displays good antifouling capacity in NOMs removal. • PECM process enables efficient removal of chemical contaminants (e.g., RhB). • Enhanced charge separation of PECM process leads to its improved performance. - Abstract: Coupling membrane filtration with photocatalysis provides multifunction involving filtration and photocatalytic degradation for removing pollutants from water, but the performance of photocatalytic membrane is limited due to the quick recombination of photogenerated electron-holes in photocatalytic layer. Herein, a TiO{sub 2}/carbon/Al{sub 2}O{sub 3} membrane was designed and constructed through sequentially depositing graphitic carbon layer with good electro-conductivity and TiO{sub 2} nanoparticles layer with photocatalytic activity on Al{sub 2}O{sub 3} membrane support. When light irradiated on the membrane with a voltage supply, the photogenerated electrons could be drained from photocatalytic layer and separated with holes efficiently, thus endowing the membrane with photoelectrocatalytic function. Membrane performance tests indicated that the photoelectrocatalytic membrane filtration (PECM) showed improved removal of natural organic matters (NOMs) and permeate flux with increasing voltage supply. For PECM process at 1.0 V, its NOMs removal was 1.2 or 1.7 times higher than that of filtration with UV irradiation or filtration alone, and its stable permeate flux was 1.3 or 3 times higher than that of filtration with UV irradiation or filtration alone. Moreover, the PECM process exhibited special advantage in removing organic chemicals (e.g., Rhodamine B), which displayed 1.3 or 3 times higher removal than that of filtration with UV irradiation or filtration alone.

  6. Role of amphipathic helix of a herpesviral protein in membrane deformation and T cell receptor downregulation.

    Directory of Open Access Journals (Sweden)

    Chan-Ki Min

    2008-11-01

    Full Text Available Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip of T lymphotropic Herpesvirus saimiri (HVS is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip's transmembrane (TM domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip's lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation.

  7. Behavior of micro-particles in monolith ceramic membrane filtration with pre-coagulation.

    Science.gov (United States)

    Yonekawa, H; Tomita, Y; Watanabe, Y

    2004-01-01

    This paper is intended to clarify the characteristics unique to monolith ceramic membranes with pre-coagulation by referring to the behavior of micro-particles. Flow analysis and experiments have proved that monolith ceramic membranes show a unique flow pattern in the channels within the element, causing extremely rapid flocculation in the channel during dead-end filtration. It was assumed that charge-neutralized micro-particles concentrated near the membrane surface grow in size due to flocculation, and as a result, coarse micro-particles were taken up by the shearing force to flow out. As the dead end points of flow in all the channels are located near the end of the channels with higher filterability, most of the flocculated coarse particles are formed to a columnar cake intensively at the dead end point. Therefore cake layer forming on the membrane other than around the dead end point is alleviated. This behavior of particle flocculation and cake formation at the dead end point within the channels are unique characteristics of monolith ceramic membranes. This is why all monolith ceramic membrane water purification systems operating in Japan do not have pretreatment equipment for flocculation and sedimentation.

  8. Membranolytic Activity of Bile Salts: Influence of Biological Membrane Properties and Composition

    Directory of Open Access Journals (Sweden)

    Alfred Blume

    2007-10-01

    Full Text Available The two main steps of the membranolytic activity of detergents: 1 the partitioning of detergent molecules in the membrane and 2 the solubilisation of the membrane are systematically investigated. The interactions of two bile salt molecules, sodium cholate (NaC and sodium deoxycholate (NaDC with biological phospholipid model membranes are considered. The membranolytic activity is analysed as a function of the hydrophobicity of the bile salt, ionic strength, temperature, membrane phase properties, membrane surface charge and composition of the acyl chains of the lipids. The results are derived from calorimetric measurements (ITC, isothermal titration calorimetry. A thermodynamic model is described, taking into consideration electrostatic interactions, which is used for the calculation of the partition coefficient as well as to derive the complete thermodynamic parameters describing the interaction of detergents with biological membranes (change in enthalpy, change in free energy, change in entropy etc. The solubilisation properties are described in a so-called vesicle-to-micelle phase transition diagram. The obtained results are supplemented and confirmed by data obtained from other biophysical techniques (DSC differential scanning calorimetry, DLS dynamic light scattering, SANS small angle neutron scattering.

  9. Demonstration of biased membrane static figure mapping by optical beam subpixel centroid shift

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Fabrizio, E-mail: fpinto@jazanu.edu.sa [Laboratory for Quantum Vacuum Applications, Department of Physics, Faculty of Science, Jazan University, P.O. Box 114, Gizan 45142 (Saudi Arabia)

    2016-06-10

    The measurement of Casimir forces by means of condenser microphones has been shown to be quite promising since its early introduction almost half-a-century ago. However, unlike the remarkable progress achieved in characterizing the vibrating membrane in the dynamical case, the accurate determination of the membrane static figure under electrostatic bias remains a challenge. In this paper, we discuss our first data obtained by measuring the centroid shift of an optical beam with subpixel accuracy by charge coupled device (CCD) and by an extensive analysis of noise sources present in the experimental setup.

  10. Role of cardiolipins in the inner mitochondrial membrane: insight gained through atom-scale simulations

    DEFF Research Database (Denmark)

    Róg, Tomasz; Martinez-Seara, Hector; Munck, Nana

    2009-01-01

    , the exceptional nature of cardiolipins is characterized by their small charged head group connected to typically four hydrocarbon chains. In this work, we present atomic-scale molecular dynamics simulations of the inner mitochondrial membrane modeled as a mixture of cardiolipins (CLs), phosphatidylcholines (PCs...

  11. A comparison of sulfur mustard and heptane penetrating a dipalmitoylphosphatidylcholine bilayer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Thomas J., E-mail: t.mueller@theo.chemie.tu-darmstadt.de [Theoretische Physikalische Chemie, Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie, Technische Universitaet Darmstadt, Petersenstrasse 20, 64287 Darmstadt (Germany); Mueller-Plathe, Florian [Theoretische Physikalische Chemie, Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie, Technische Universitaet Darmstadt, Petersenstrasse 20, 64287 Darmstadt (Germany)

    2009-08-30

    In the present molecular dynamics simulations we study the chemical warfare agent sulfur mustard (bis(2-chloroethyl) sulfide) and the alkane heptane inserted into a dipalmitoylphosphatidylcholine (DPPC) bilayer, a generic model for a biological membrane. We investigate the diffusion, the orientation, the preferred positioning, and the end-to-end distance of the solutes within the membrane as well as the corresponding coupling times. We compare results of equilibrium simulations and simulation at different external forces, which drag the solutes through the membrane. These properties lead to a general comparison of the rotational and translational behaviors of the two solutes during the penetration of the membrane. We show that sulfur mustard, due to its atomic charge polarization, its bigger flexibility and its smaller molecular volume, is the faster moving molecule within the membrane. In last consequence, we show that this leads to different limits for the transport mechanism as observed in these simulations. For heptane the hindrance to penetrate into the membrane is significantly higher than for sulfur mustard. In contrast to heptane molecules, which spend the most of the time penetrating the tail groups, sulfur mustard needs more time to escape the tail group-head group interface of the membrane.

  12. Mapping of Residues Forming the Voltage Sensor of the Voltage-Dependent Anion-Selective Channel

    Science.gov (United States)

    Thomas, Lorie; Blachly-Dyson, Elizabeth; Colombini, Marco; Forte, Michael

    1993-06-01

    Voltage-gated ion-channel proteins contain "voltage-sensing" domains that drive the conformational transitions between open and closed states in response to changes in transmembrane voltage. We have used site-directed mutagenesis to identify residues affecting the voltage sensitivity of a mitochondrial channel, the voltage-dependent anion-selective channel (VDAC). Although charge changes at many sites had no effect, at other sites substitutions that increased positive charge also increased the steepness of voltage dependance and substitutions that decreased positive charge decreased voltage dependance by an appropriate amount. In contrast to the plasma membrane K^+ and Na^+ channels, these residues are distributed over large parts of the VDAC protein. These results have been used to define the conformational transitions that accompany voltage gating of an ion channel. This gating mechanism requires the movement of large portions of the VDAC protein through the membrane.

  13. Analysis of mass transfer characteristics in a tubular membrane using CFD modeling.

    Science.gov (United States)

    Yang, Jixiang; Vedantam, Sreepriya; Spanjers, Henri; Nopens, Ingmar; van Lier, Jules B

    2012-10-01

    In contrast to the large amount of research into aerobic membrane bioreactors, little work has been reported on anaerobic membrane bioreactors (AMBRs). As to the application of membrane bioreactors, membrane fouling is a key issue. Membrane fouling generally occurs more seriously in AMBRs than in aerobic membrane bioreactors. However, membrane fouling could be managed through the application of suitable shear stress that can be introduced by the application of a two-phase flow. When the two-phase flow is applied in AMBRs, little is known about the mass transfer characteristics, which is of particular importance, in tubular membranes of AMBRs. In our present work, we have employed fluid dynamic modeling to analyze the mass transfer characteristics in the tubular membrane of a side stream AMBR in which, gas-lift two-phase flow was applied. The modeling indicated that the mass transfer capacity at the membrane surface at the noses of gas bubbles was higher than the mass transfer capacity at the tails of the bubbles, which is in contrast to the results when water instead of sludge is applied. At the given mass transfer rate, the filterability of the sludge was found to have a strong influence on the transmembrane pressure at a steady flux. In addition, the model also showed that the shear stress in the internal space of the tubular membrane was mainly around 20 Pa but could be as high as about 40 Pa due to gas bubble movements. Nonetheless, at these shear stresses a stable particle size distribution was found for sludge particles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Social-movement analysis of the American antinuclear movement

    International Nuclear Information System (INIS)

    Ladd, A.E.

    1981-01-01

    Utilizing data from a survey of participants at the May 6, 1979 antinuclear rally in Washington, DC (N = 420), this dissertation explored some of the major structural and ideological characteristics of the American Antinuclear Movement. By organizing the data around three of the key analytical concepts in the study of social movements - mobilization, recruitment, and ideology - the author was able to derive from the demonstration sample a descriptive and illustrative analysis of those individuals, organizations, and processes involved in the national antinuclear crusade. Given that few researchers have actively studied the antinuclear movement beyond the scope of local or regional protests, this work constitutes the only empirical study to date examining a cross section of the movement's participants from a sociological perspective. It is also one of the few attempts to use a national demonstration as a social laboratory for the study of a social movement in general. In terms of the mobilization variables examined in the study, it was found that organizational networks, past movement activism, and individual resources were important factors in the May 6 mobilization effort. While less than one-half of the demonstrators were part of the antinuclear organizational network per se, most of them had been active in the major protest movements of the 1960's and 1970's. The demonstrators were relatively high in socio-economic resources and had occupational or educational schedules conducive to creating the necessary discretionary time for movement participation

  15. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  16. Effect of PVP Intermediate Layer on the Properties of SAPO 34 Membrane

    Directory of Open Access Journals (Sweden)

    Jugal K. Das

    2012-01-01

    Full Text Available SAPO 34 zeolite membranes were prepared on a tubular mullite support. Before membrane preparation, the support surfaces were coated with seed crystals. Seeds particles were prepared by hydrothermal synthesis. Before seeding, the substrates were treated with polyvinylpyrrolidone (PVP to orient the seeds. Both the treated and untreated supports were seeded, and membranes were synthesized on those support tubes by ex situ hydrothermal method. The PVP molecule exists in the two resonance structures. Hence the acylamino bond –N+ = C–O-– acts as intermediate linker between support surface and seed surface. Due to charge interaction, the seed crystals were anchored strongly to support surface. The synthesized membranes along with seed crystals were characterized by XRD, FESEM, and EDAX analysis. The single-gas permeation with CO2 and H2 was investigated. Up to 5 bar of feed pressure, the permselectivity of CO2 and H2 was as high as 4.2.

  17. Non linear seismic analysis of charge/discharge machine

    International Nuclear Information System (INIS)

    Dostal, M.; Trbojevic, V.M.; Nobile, M.

    1987-01-01

    The main conclusions of the seismic analysis of the Latina CDM are: i. The charge machine has been demonstrated to be capable of withstanding the effects of a 0.1 g earthquake. Stresses and displacements were all within allowable limits and the stability criteria were fully satisfied for all positions of the cross-travel bogie on the gantry. ii. Movements due to loss of friction between the cross-travel bogie wheels and the rail was found to be small, i.e. less than 2 mm for all cases considered. The modes of rocking of the fixed and hinged legs preclude any possibility of excessive movement between the long travel bogie wheels and the rail. iii. The non-linear analysis incorporating contact and friction has given more realistic results than any of the linear verification analyses. The method of analysis indicates that even the larger structures can be efficiently solved on a mini computer for a long forcing input (16 s). (orig.)

  18. Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong-Jik [Hankyong National University, Department of Bioresources and Rural Systems Engineering (Korea, Republic of); Cheedrala, Ravi Kumar; Diallo, Mamadou S., E-mail: mdiallo@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of); Kim, Changmin; Kim, In S. [Gwangju Institute of Science and Technology (GIST), Department of Environmental Science and Engineering (Korea, Republic of); Goddard, William A. [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of)

    2012-07-15

    In this article, we describe the synthesis of new and ion-selective nanofiltration (NF) membranes using polyvinylidene fluoride (PVDF) nanofibers and hyperbranched polyethylenimine (PEI) as building blocks. These new nanofibrous composite (NFC) membranes consist of crosslinked hyperbranched PEI networks supported by PVDF nanofibrous scaffolds that are electrospun onto commercial PVDF microfiltration (MF) membranes. A major objective of our study was to fabricate positively charged NF membranes that can be operated at low pressure with high water flux and improved rejection for monovalent cations. To achieve this, we investigated the effects of crosslinker chemistry on membrane properties (morphology, composition, hydrophobicity, and zeta potential) and membrane performance (salt rejection and permeate flux) in aqueous solutions (2,000 mg/L) of four salts (NaCl, MgCl{sub 2}, Na{sub 2}SO{sub 4}, and MgSO{sub 4}) at pH 4, 6, and 8. We found that an NFC-PVDF membrane with a network of PEI macromolecules crosslinked with trimesoyl chloride has a high water flux ({approx}30 L m{sup -2} h{sup -1}) and high rejections for MgCl{sub 2} ({approx}88 %) and NaCl ({approx}65 %) at pH 6 using a pressure of 7 bar. The overall results of our study suggest that PVDF nanofibers and hyperbranched PEI are promising building blocks for the fabrication of high performance NF membranes for water purification.

  19. Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks

    International Nuclear Information System (INIS)

    Park, Seong-Jik; Cheedrala, Ravi Kumar; Diallo, Mamadou S.; Kim, Changmin; Kim, In S.; Goddard, William A.

    2012-01-01

    In this article, we describe the synthesis of new and ion-selective nanofiltration (NF) membranes using polyvinylidene fluoride (PVDF) nanofibers and hyperbranched polyethylenimine (PEI) as building blocks. These new nanofibrous composite (NFC) membranes consist of crosslinked hyperbranched PEI networks supported by PVDF nanofibrous scaffolds that are electrospun onto commercial PVDF microfiltration (MF) membranes. A major objective of our study was to fabricate positively charged NF membranes that can be operated at low pressure with high water flux and improved rejection for monovalent cations. To achieve this, we investigated the effects of crosslinker chemistry on membrane properties (morphology, composition, hydrophobicity, and zeta potential) and membrane performance (salt rejection and permeate flux) in aqueous solutions (2,000 mg/L) of four salts (NaCl, MgCl 2 , Na 2 SO 4 , and MgSO 4 ) at pH 4, 6, and 8. We found that an NFC–PVDF membrane with a network of PEI macromolecules crosslinked with trimesoyl chloride has a high water flux (∼30 L m −2 h −1 ) and high rejections for MgCl 2 (∼88 %) and NaCl (∼65 %) at pH 6 using a pressure of 7 bar. The overall results of our study suggest that PVDF nanofibers and hyperbranched PEI are promising building blocks for the fabrication of high performance NF membranes for water purification.

  20. Characterization of nitride hole lateral transport in a charge trap flash memory by using a random telegraph signal method

    Science.gov (United States)

    Liu, Yu-Heng; Jiang, Cheng-Min; Lin, Hsiao-Yi; Wang, Tahui; Tsai, Wen-Jer; Lu, Tao-Cheng; Chen, Kuang-Chao; Lu, Chih-Yuan

    2017-07-01

    We use a random telegraph signal method to investigate nitride trapped hole lateral transport in a charge trap flash memory. The concept of this method is to utilize an interface oxide trap and its associated random telegraph signal as an internal probe to detect a local channel potential change resulting from nitride charge lateral movement. We apply different voltages to the drain of a memory cell and vary a bake temperature in retention to study the electric field and temperature dependence of hole lateral movement in a nitride. Thermal energy absorption by trapped holes in lateral transport is characterized. Mechanisms of hole lateral transport in retention are investigated. From the measured and modeled results, we find that thermally assisted trap-to-band tunneling is a major trapped hole emission mechanism in nitride hole lateral transport.