WorldWideScience

Sample records for membrane adhesion kinetics

  1. Image Restoration and Analysis of Influenza Virions Binding to Membrane Receptors Reveal Adhesion-Strengthening Kinetics.

    Directory of Open Access Journals (Sweden)

    Donald W Lee

    Full Text Available With the development of single-particle tracking (SPT microscopy and host membrane mimics called supported lipid bilayers (SLBs, stochastic virus-membrane binding interactions can be studied in depth while maintaining control over host receptor type and concentration. However, several experimental design challenges and quantitative image analysis limitations prevent the widespread use of this approach. One main challenge of SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching. These situations could render current particle tracking software to yield biased binding kinetic data caused by intermittent tracking error. Hence, we developed an effective image restoration algorithm for SPT applications called STAWASP that reveals particles with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our improvements to the SPT binding assay experiment and imaging procedures by monitoring X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight changes to the peripheral oligosaccharide structures can affect the binding rate and residence times of viruses. We were able to detect viruses binding weakly to a glycolipid called GM3, which was undetected via assays such as surface plasmon resonance. The binding rate was around 28 folds higher when the virus bound to a different glycolipid called GD1a, which has a sialic acid group extending further away from the bilayer surface than GM3. The improved imaging allowed us to obtain binding residence time distributions that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically fitted these distributions using a time-dependent unbinding rate parameter, koff, which diverges from standard treatment of koff as a constant. We further explain how to convert these models to fit ensemble-averaged binding data

  2. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory

    Science.gov (United States)

    Weikl, Thomas R.; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-01-01

    ABSTRACT The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant K2D and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between K2D and the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D). PMID:27294442

  3. Microbial Adhesion in Hollow Fiber Membrane Bioreactors for Wastewater Processing

    Data.gov (United States)

    National Aeronautics and Space Administration — This work examined novel modification techniques for polydimethylsiloxane (PDMS) fibers in order to promote microbial adhesion for use in Membrane Aerated Bioeactors...

  4. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    Science.gov (United States)

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. © 2015 John Wiley & Sons Ltd.

  5. Kinetics of Peptide Folding in Lipid Membranes

    Science.gov (United States)

    Oh, Kwang-Im; Smith-Dupont, Kathryn B.; Markiewicz, Beatrice N.; Gai, Feng

    2015-01-01

    Despite our extensive understanding of water-soluble protein folding kinetics, much less is known about the folding dynamics and mechanisms of membrane proteins. However, recent studies have shown that for relatively simple systems, such as peptides that form a transmembrane α-helix, helical dimer, or helix-turn-helix, it is possible to assess the kinetics of several important steps, including peptide binding to the membrane from aqueous solution, peptide folding on the membrane surface, helix insertion into the membrane, and helix-helix association inside the membrane. Herein, we provide a brief review of these studies and also suggest new initiation and probing methods that could lead to improved temporal and structural resolution in future experiments. PMID:25808575

  6. Large Deformation and Adhesive Contact Studies of Axisymmetric Membranes

    Science.gov (United States)

    Laprade, Evan J.; Long, Rong; Pham, Jonathan; Lawrence, Jimmy; Emrick, Todd; Crosby, Alfred; Hui, Chung-Yuen; Shull, Kenneth R.

    2013-01-01

    A model membrane contact system consisting of an acrylic copolymer membrane and polydimethyl-siloxane substrate was utilized to evaluate a recently developed nonlinear large-deformation adhesive contact analysis. Direct measurements of the local membrane apex strain during non-contact inflation indicated that the neo-Hookean model provides an accurate measure of membrane strain and supports its use as the strain energy function for the analysis. A time dependent modulus emerges from the analysis, with principal tensions obtained from a comparison of predicted and experimental membrane profiles. A displacement controlled geometry was more easily modeled than the pressure controlled geometry, the applicability of the analysis was limited by wrinkling instabilities. The substantial viscoelastic behavior of these membranes made it difficult to describe the entire membrane with a single modulus, given the nonuniform deformation history of the membranes. Given the difficulty in determining membrane tension from the measured pressure and profile fits using the model, the peel energy was used as a simpler measure of adhesion. Using an analytical balance in the displacement controlled geometry, the membrane tension at the contact line was directly measured. Coupled with contact angle imaging, the peel energy was determined. For the model membranes studied, this peel energy described the membrane/substrate adhesive interactions quite well, giving well-defined peel energies that were independent of the detailed strain state of the membrane. PMID:23289644

  7. Kinetics and Thermodynamics of Membrane Protein Folding

    Directory of Open Access Journals (Sweden)

    Ernesto A. Roman

    2014-03-01

    Full Text Available Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.

  8. Large deformation and adhesive contact studies of axisymmetric membranes.

    Science.gov (United States)

    Laprade, Evan J; Long, Rong; Pham, Jonathan T; Lawrence, Jimmy; Emrick, Todd; Crosby, Alfred J; Hui, Chung-Yuen; Shull, Kenneth R

    2013-02-05

    A model membrane contact system consisting of an acrylic copolymer membrane and a PDMS substrate was utilized to evaluate a recently developed nonlinear large-deformation adhesive contact analysis. Direct measurements of the local membrane apex strain during noncontact inflation indicated that the neo-Hookean model provides an accurate measure of membrane strain and supports its use as the strain energy function for the analysis. Two membrane contact geometries, exhibiting significantly different strain distributions during withdrawal, were investigated. The first examines the wet contact of an air pressurized membrane. The second looks at the dry contact of a fluid deformed membrane in which a stepper motor controls membrane-substrate separation. A time-dependent modulus emerges from the analysis, with principal tensions obtained from a comparison of predicted and experimental membrane profiles. The applicability of this numerical analysis for determining membrane tension, however, is limited by wrinkling instabilities and viscoelasticity. For this reason, a conceptually simpler method, based on the direct measurement of the membrane tension and contact angle, was also utilized. The traditional peel energy defined with this direct measurement accurately described the membrane/substrate adhesive interactions, giving well-defined peel energies that were independent of the detailed strain state of the membrane.

  9. Large deformation contact mechanics of a pressurized long rectangular membrane. II. Adhesive contact

    Science.gov (United States)

    Srivastava, Abhishek; Hui, Chung-Yuen

    2013-01-01

    In part I of this work, we presented a theory for adhesionless contact of a pressurized neo-Hookean plane-strain membrane to a rigid substrate. Here, we extend our theory to include adhesion using a fracture mechanics approach. This theory is used to study contact hysteresis commonly observed in experiments. Detailed analysis is carried out to highlight the differences between frictionless and no-slip contact. Membrane detachment is found to be strongly dependent on adhesion: for low adhesion, the membrane ‘pinches-off’, whereas for large adhesions, it detaches unstably at finite contact (‘pull-off’). Expressions are derived for the critical adhesion needed for pinch-off to pull-off transition. Above a threshold adhesion, the membrane exhibits bistability, two stable states at zero applied pressure. The condition for bistability for both frictionless and no-slip boundary conditions is obtained explicitly. PMID:24353472

  10. Membrane tension controls adhesion positioning at the leading edge of cells

    Science.gov (United States)

    Pontes, Bruno; Gole, Laurent; Kosmalska, Anita Joanna; Tam, Zhi Yang; Luo, Weiwei; Kan, Sophie; Viasnoff, Virgile; Roca-Cusachs, Pere; Tucker-Kellogg, Lisa

    2017-01-01

    Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II–independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells. PMID:28687667

  11. Study on surface adhesion of Plasma modified Polytetrafluoroethylene hollow fiber membrane

    Science.gov (United States)

    Chen, Jiangrong; Zhang, Huifeng; Liu, Guochang; Guo, Chungang; Lv, Jinglie; Zhangb, Yushan

    2018-01-01

    Polytetrafluoroethylene (PTFE) is popular membrane material because of its excellent thermal stability, chemical stability and mechanical stability. However, the low surface energy and non-sticky property of PTFE present challenges for modification. In the present study, plasma treatment was performed to improve the surface adhesion of PTFE hollow fiber membrane. The effect of discharge voltage, treatment time on the adhesion of PTFE hollow fiber membrane was symmetrically evaluated. Results showed that the plasma treatment method contributed to improve the surface activity and roughness of PTFE hollow fiber membrane, and the adhesion strength depend significantly on discharge voltage, which was beneficial to seepage pressure of PTFE hollow fiber membrane module. The adhesion strength of PTFE membrane by plasma treated at 220V for 3min reached as high as 86.2 N, far surpassing the adhesion strength 12.7 N of pristine membrane. Furthermore, improvement of content of free radical and composition analysis changes of the plasma modified PTFE membrane were investigated. The seepage pressure of PTFE membrane by plasma treated at 220V for 3min was 0.375 MPa, which means that the plasma treatment is an effective technique to improve the adhesion strength of membrane.

  12. Amyloid protein unfolding and insertion kinetics on neuronal membrane mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2010-03-01

    Atomistic details of beta-amyloid (Aβ ) protein unfolding and lipid interaction kinetics mediated by the neuronal membrane surface are important for developing new therapeutic strategies to prevent and cure Alzheimer's disease. Using all-atom MD simulations, we explored the early unfolding and insertion kinetics of 40 and 42 residue long Aβ in binary lipid mixtures with and without cholesterol that mimic the cholesterol-depleted and cholesterol-enriched lipid nanodomains of neurons. The protein conformational transition kinetics was evaluated from the secondary structure profile versus simulation time plot. The extent of membrane disruption was examined by the calculated order parameters of lipid acyl chains and cholesterol fused rings as well as the density profiles of water and lipid headgroups at defined regions across the lipid bilayer from our simulations. Our results revealed that both the cholesterol content and the length of the protein affect the protein-insertion and membrane stability in our model lipid bilayer systems.

  13. Investigating the effects of membrane deformability on artificial capsule adhesion to the functionalized surface.

    Science.gov (United States)

    Balsara, Hiren D; Banton, Rohan J; Eggleton, Charles D

    2016-10-01

    Understanding, manipulating and controlling cellular adhesion processes can be critical in developing biomedical technologies. Adhesive mechanisms can be used to the target, pattern and separate cells such as leukocytes from whole blood for biomedical applications. The deformability response of the cell directly affects the rolling and adhesion behavior under viscous linear shear flow conditions. To that end, the primary objective of the present study was to investigate numerically the influence of capsule membrane's nonlinear material behavior (i.e. elastic-plastic to strain hardening) on the rolling and adhesion behavior of representative artificial capsules. Specifically, spherical capsules with radius of [Formula: see text] were represented using an elastic membrane governed by a Mooney-Rivlin strain energy functions. The surfaces of the capsules were coated with P-selectin glycoprotein-ligand-1 to initiate binding interaction with P-selectin-coated planar surface with density of [Formula: see text] under linear shear flow varying from 100 to [Formula: see text]. The numerical model is based on the Immersed Boundary Method for rolling of deformable capsule in shear flow coupled with Monte Carlo simulation for receptor/ligand interaction modeled using Bell model. The results reveal that the mechanical properties of the capsule play an important role in the rolling behavior and the binding kinetics between the capsule contact surface and the substrate. The rolling behavior of the strain hardening capsules is relatively smoother and slower compared to the elastic-plastic capsules. The strain hardening capsules exhibits higher contact area at any given shear rate compared to elastic-plastic capsules. The increase in contact area leads to decrease in rolling velocity. The capsule contact surface is not in complete contact with the substrate because of thin lubrication film that is trapped between the capsule and substrate. This creates a concave shape on the bottom

  14. The kinetics of crossflow dynamic membrane bioreactor | Li | Water SA

    African Journals Online (AJOL)

    Crossflow dynamic membrane bioreactor (CDMBR) kinetics was investigated by treating caprolactam wastewater over a period of 180 d. The removal efficiencies of organic substances and nitrogen averaged over 99% and 80%, respectively. The observed sludge yield was only 0.14 g SS·g-1 COD·d-1 at an SRT of 30 d ...

  15. Single Molecule Kinetics of ENTH Binding to Lipid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rozovsky, Sharon [Univ. of Delaware, Newark, DE (United States); Forstner, Martin B. [Syracuse Univ., NY (United States); Sondermann, Holger [Cornell Univ., Ithaca, NY (United States); Groves, Jay T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-04-03

    Transient recruitment of proteins to membranes is a fundamental mechanism by which the cell exerts spatial and temporal control over proteins’ localization and interactions. Thus, the specificity and the kinetics of peripheral proteins’ membrane residence are an attribute of their function. In this article, we describe the membrane interactions of the interfacial epsin N-terminal homology (ENTH) domain with its target lipid phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2). The direct visualization and quantification of interactions of single ENTH molecules with supported lipid bilayers is achieved using total internal reflection fluorescence microscopy (TIRFM) with a time resolution of 13 ms. This enables the recording of the kinetic behavior of ENTH interacting with membranes with physiologically relevant concentrations of PtdIns(4,5)P2 despite the low effective binding affinity. Subsequent single fluorophore tracking permits us to build up distributions of residence times and to measure ENTH dissociation rates as a function of membrane composition. In addition, due to the high time resolution, we are able to resolve details of the motion of ENTH associated with a simple, homogeneous membrane. In this case ENTH’s diffusive transport appears to be the result of at least three different diffusion processes.

  16. Specific Adhesion of Lipid Membranes Can Simultaneously Produce Two Types of Lipid and Protein Heterogeneities

    Science.gov (United States)

    Shindell, Orrin; Micah, Natalie; Ritzer, Max; Gordon, Vernita

    2015-03-01

    Living cells adhere to one another and their environment. Adhesion is associated with re-organization of the lipid and protein components of the cell membrane. The resulting heterogeneities are functional structures involved in biological processes. We use artificial lipid membranes that contain a single type of binding protein. Before adhesion, the lipid, protein, and dye components in the membrane are well-mixed and constitute a single disordered-liquid phase (Ld) . After adhesion, two distinct types of heterogeneities coexist in the adhesion zone: a central domain of ordered lipid phase that excludes both binding proteins and membrane dye, and a peripheral domain of disordered lipid phase that is densely packed with adhesion proteins and enriched in membrane dye relative to the non-adhered portion of the vesicle. Thus, we show that adhesion that is mediated by only one type of protein can organize the lipid and protein components of the membranes into heterogeneities that resemble those found in biology, for example the immune synapse.

  17. Effect of amniotic membrane to reduce postlaminectomy epidural adhesion on a rat model.

    Science.gov (United States)

    Choi, Hyu Jin; Kim, Kyoung Beom; Kwon, Young-Min

    2011-06-01

    Epidural fibrosis and adhesion are the main reasons for post-laminectomy sustained pain and functional disability. In this study, the authors investigate the effect of irradiated freeze-dried human amniotic membrane on reducing epidural adhesion after laminectomy on a rat model. A total of 20 rats were divided into two groups. The group A did not receive human amniotic membrane implantation after laminectomy and group B underwent human amniotic membrane implantation after laminectomy. Gross and microscopic findings were evaluated and compared at postoperative 1, 3 and 8 weeks. The amount of scar tissue and tenacity were reduced grossly in group of rats with human amniotic membrane implantation (group B). On a microscopic evaluation, there were less inflammatory cell infiltration and fibroblast proliferation in group B. This experimental study shows that implantation of irradiated freeze-dried human amniotic membrane reduce epidural fibrosis and adhesion after spinal laminectomy in a rat model.

  18. Contact studies of weak adhesive interactions in water with membrane enhanced surface acoustic wave analysis

    Science.gov (United States)

    Brass, David Alan

    The measurement of weak adhesive energies has previously been difficult to obtain. To measure these energies, I designed a technique that uses the combined sensitivities of both a quartz crystal resonator and the inflation of an elastomeric polymer membrane. The surfaces of the quartz crystal and/or the membrane are modified with water swollen polymer brushes, which are used to eliminate nonspecific adhesion. These brushes are then end-modified with adhesive functional groups. An analysis is developed for the frequency response of a quartz crystal resonator as the membrane layer is placed in contact with the surface of these swollen brushes. The shear wave generated at the resonator surface couples into the membrane layer with an efficiency that is strongly dependent on the thickness of the swollen brush layer. The calculated shift decreases substantially for increases in the brush thickness of ten to twenty nanometers, giving a net frequency response that is extremely sensitive to the degree of swelling of the brush. An optimum capping layer thickness is determined by balancing the resonant frequency shift against dissipative effects that weaken the crystal resonance. Detailed calculations are presented for the specific case of poly(ethylene glycol) (PEG) brushes swollen by water and capped by a poly(styrene-ethylene/butene-styrene) (SEBS) elastomeric, water-permeable membrane. These calculations show that the method is sensitive to the properties of the brush layer. This surface acoustic wave technique was coupled with an inflation method that enabled quantification of the adhesion between the membrane and the brush coated surface. This adhesive interaction is obtained from the contact angle made between the quartz and membrane surfaces and the tension on the membrane. An analysis of the membrane profile based on the numerical solution of the axisymmetric Laplace equation is developed and used to investigate both adhesive and non-adhesive situations with both an

  19. Adhesive coatings based on melanin-like nanoparticles for surgical membranes.

    Science.gov (United States)

    Scognamiglio, Francesca; Travan, Andrea; Turco, Gianluca; Borgogna, Massimiliano; Marsich, Eleonora; Pasqua, Mattia; Paoletti, Sergio; Donati, Ivan

    2017-07-01

    Adhesive coatings for implantable biomaterials can be designed to prevent material displacement from the site of implant. In this paper, a strategy based on the use of melanin-like nanoparticles (MNPs) for the development of adhesive coatings for polysaccharidic membranes was devised. MNPs were synthesized in vitro and characterized in terms of dimensions and surface potential, as a function of pH and ionic strength. The in vitro biocompatibility of MNPs was investigated on fibroblast cells, while the antimicrobial properties of MNPs in suspension were evaluated on E. coli and S. aureus cultures. The manufacturing of the adhesive coatings was carried out by spreading MNPs over the surface of polysaccharidic membranes; the adhesive properties of the nano-engineered coating to the target tissue (intestinal serosa) were studied in simulated physiological conditions. Overall, this study opens for novel approaches in the design of naturally inspired nanostructured adhesive systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Bacterial adhesion to antibiotic-loaded guided tissue regeneration membranes – A scanning electron microscopy study

    Directory of Open Access Journals (Sweden)

    Chi-Fang Cheng

    2015-01-01

    Conclusion: Incorporation of tetracycline or amoxicillin greatly reduced adhesion of S. mutans or A. actinomycetemcomitans on the ePTFE, glycolide fiber, or collagen membranes. This finding indicates that it is valuable and effective to use the antibiotic-loaded GTR membranes for periodontal regeneration therapy.

  1. Membrane Surface Nanostructures and Adhesion Property of T Lymphocytes Exploited by AFM

    Directory of Open Access Journals (Sweden)

    Lu Hongsong

    2009-01-01

    Full Text Available Abstract The activation of T lymphocytes plays a very important role in T-cell-mediated immune response. Though there are many related literatures, the changes of membrane surface nanostructures and adhesion property of T lymphocytes at different activation stages have not been reported yet. However, these investigations will help us further understand the biophysical and immunologic function of T lymphocytes in the context of activation. In the present study, the membrane architectures of peripheral blood T lymphocytes were obtained by AFM, and adhesion force of the cell membrane were measured by acquiring force–distance curves. The results indicated that the cell volume increased with the increases of activation time, whereas membrane surface adhesion force decreased, even though the local stiffness for resting and activated cells is similar. The results provided complementary and important data to further understand the variation of biophysical properties of T lymphocytes in the context of in vitro activation.

  2. Evaluation of the potential anti-adhesion effect of the PVA/Gelatin membrane.

    Science.gov (United States)

    Bae, Sang-Ho; Son, So-Ra; Kumar Sakar, Swapan; Nguyen, Thi-Hiep; Kim, Shin-Woo; Min, Young-Ki; Lee, Byong-Taek

    2014-05-01

    A common and prevailing complication for patients with abdominal surgery is the peritoneal adhesion that follows during the post-operative recovery period. Biodegradable polymers have been suggested as a barrier to prevent the peritoneal adhesion. In this work, as a preventive method, PVA/Gelatin hydrogel-based membrane was investigated with various combinations of PVA and gelatin (50/50, 30/70/, and 10/90). Membranes were made by casting method using hot PVA-gelatin solution and the gelatin was cross-linked by exposing UV irradiation for 5 days to render stability of the produced sheathed form in the physiological environment. Physical crosslinking was chosen to avoid the problems of potential cytotoxic effect of chemical crosslinking. Their materials characterization and mechanical properties were evaluated by SEM surface characterization, hydrophilicity, biodegradation rate, and so forth. Cytocompatibility was observed by in vitro experiments with cell proliferation using confocal laser scanning microscopy and the MTT assay by L-929 mouse fibroblast cells. The fabricated PVA/Gel membranes were implanted between artificially defected cecum and peritoneal wall in rats and were sacrificed after 1 and 2 weeks post-operative to compare their tissue adhesion extents with that of control group where the defected surface was not separated by PVA/Gel membrane. The PVA/Gel membrane (10/90) significantly reduced the adhesion extent and showed to be a potential candidate for the anti-adhesion application. Copyright © 2013 Wiley Periodicals, Inc.

  3. Platelet adhesion on to polyamide microcapsules coated with lipid bilayer membrane.

    Science.gov (United States)

    Kono, K; Ito, Y; Kimura, S; Imanishi, Y

    1989-09-01

    Polyamide microcapsules with diameters of 3-4 microns were coated with lipid bilayer membrane and their interaction with canine platelets was investigated. Platelet adhesion on to the microcapsules was significantly suppressed by the lipid-coating. Coating with dimyristoylphosphatidylcholine (liquid-crystalline state) reduced platelet adhesion on to the microcapsules to a greater extent than that with dipalmitoylphosphatidylcholine (gel state) at 37 degrees C. The surface properties of the microcapsule in adsorption of plasma proteins were also changed by lipid coating. The amount of gamma-globulin and fibrinogen adsorbed on to the microcapsule was slightly decreased by lipid coating, while the amount of adsorbed albumin was increased. Platelet adhesion on to the lipid-coated microcapsules was suppressed most strongly in the presence of gamma-globulin. Apparently platelet adhesion on to the polyamide microcapsules is controlled by the nature of lipid membrane and gamma-globulin adsorbed on to the microcapsules.

  4. Alterations in adhesion, transport, and membrane characteristics in an adhesion-deficient pseudomonad

    Energy Technology Data Exchange (ETDEWEB)

    DeFlaun, M.F.; Streger, S.; Condee, C.W. [Envirogen, Inc., Lawrenceville, NJ (United States). Princeton Research Center; Oppenheimer, S.R.; Fletcher, M. [Univ. of Maryland Biotechnology Inst., Baltimore, MD (United States). Center of Marine Biotechnology

    1999-02-01

    A stable adhesion-deficient mutant of Burkholderia cepacia G4, a soil pseudomonad, was selected in a sand column assay. This mutant (ENV435) was compared to the wild-type strain by examining the adhesion of the organisms to silica sand and their transport through two aquifer sediments that differed in their sand, silt, and clay contents. The authors compared the longitudinal transport of the wild type and the adhesion mutant to the transport of a conservative chloride tracer in 25-cm-long glass columns. The transport of the wild-type strain was severely retarded compared to the transport of the conservative tracer in a variety of aquifer sediments, while the adhesion mutant and the conservative tracer traveled at similar rates. An intact sediment core study produced similar results; ENV435 was transported at a faster rate and in much greater numbers than G4. The results of hydrophobic interaction chromatography revealed that G4 was significantly more hydrophobic than ENV435, and polyacrylamide gel electrophoresis revealed significant differences in the lipopolysaccharide O-antigens of the adhesion mutant and the wild type. Differences in this cell surface polymer may explain the decreased adhesion of strain ENV435.

  5. Kinetics of Procalcitonin in Pediatric Patients on Extracorporeal Membrane Oxygenation.

    Science.gov (United States)

    Bobillo, Sara; Rodríguez-Fanjul, Javier; Solé, Anna; Moreno, Julio; Balaguer, Mònica; Esteban, Elisabeth; Cambra, Francisco José; Jordan, Iolanda

    2018-01-01

    To assess the kinetics of procalcitonin (PCT) and C-reactive protein (CRP) in pediatric patients who required extracorporeal membrane oxygenation (ECMO) and to analyze its relationship with morbidity and mortality. Prospective observational study including pediatric patients who required ECMO. Both PCT and CRP were sequentially drawn before ECMO (P0) and until 72 hours after ECMO. A total of 40 patients were recruited. Two cohorts were established based on the value of the P0 PCT (>10 ng/mL). Comparing the kinetics of PCT and CRP in these cohorts, the described curves were the expected for each clinical situation. The cutoff for P0 PCT to predict multiple organ dysfunction syndrome was 2.55 ng/mL (sensibility 83%, specificity 100%). Both PCT and CRP did not predict risk of neurologic sequelae or mortality in any group. Procalcitonin does not seem to be modified by ECMO and could be a good biomarker of evolution.

  6. An adhesion-based method for plasma membrane isolation: evaluating cholesterol extraction from cells and their membranes.

    Science.gov (United States)

    Bezrukov, Ludmila; Blank, Paul S; Polozov, Ivan V; Zimmerberg, Joshua

    2009-11-15

    A method to isolate large quantities of directly accessible plasma membrane from attached cells is presented. The method is based on the adhesion of cells to an adsorbed layer of polylysine on glass plates, followed by hypotonic lysis with ice-cold distilled water and subsequent washing steps. Optimal conditions for coating glass plates and time for cell attachment were established. No additional chemical or mechanical treatments were used. Contamination of the isolated plasma membrane by cell organelles was less than 5%. The method uses inexpensive, commercially available polylysine and reusable glass plates. Plasma membrane preparations can be made in 15 min. Using this method, we determined that methyl-beta-cyclodextrin differentially extracts cholesterol from fibroblast cells and their plasma membranes and that these differences are temperature dependent. Determination of the cholesterol/phospholipid ratio from intact cells does not reflect methyl-beta-cyclodextrin plasma membrane extraction properties.

  7. Multiple targeted drugs carrying biodegradable membrane barrier: anti-adhesion, hemostasis, and anti-infection.

    Science.gov (United States)

    Wang, Heran; Li, Min; Hu, Jianming; Wang, Chenhong; Xu, Shanshan; Han, Charles C

    2013-04-08

    A multiple targeted drug carrying bilayer membrane for preventing an abdominal adhesion is prepared by electrospinning. Two bioactive drugs were successfully incorporated into this bilayer membrane and can be independently released from nanofibrous scaffolds without losing structural integrity and functionality of the anti-adhesion membrane. Besides, the drug release profile could be easily adjusted by optimizing the swelling behavior of the fibrous scaffold. The inner layer of the bilayered fibrous membranes loaded with carbazochrome sodium sulfonate (CA) showed an excellent vascular hemostatic efficacy and formed little clot during in vivo experiment. The outer layer loaded with tinidazole (TI) had outstanding antibacterial effect against the anaerobe. We believe this approach could serve as a model technique to guide the design of implants with drug delivery functions.

  8. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion

    NARCIS (Netherlands)

    Younes, Jessica A.; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J.; Reid, Gregor; van der Mei, Henny C.

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether

  9. Cell-substrate interaction with cell-membrane-stress dependent adhesion.

    Science.gov (United States)

    Jiang, H; Yang, B

    2012-01-10

    Cell-substrate interaction is examined in a two-dimensional mechanics model. The cell and substrate are treated as a shell and an elastic solid, respectively. Their interaction through adhesion is treated using nonlinear springs. Compared to previous cell mechanics models, the present model introduces a cohesive force law that is dependent not only on cell-substrate distance but also on internal cell-membrane stress. It is postulated that a living cell would establish focal adhesion sites with density dependent on the cell-membrane stress. The formulated mechanics problem is numerically solved using coupled finite elements and boundary elements for the cell and the substrate, respectively. The nodes in the adhesion zone from either side are linked by the cohesive springs. The specific cases of a cell adhering to a homogeneous substrate and a heterogeneous bimaterial substrate are examined. The analyses show that the substrate stiffness affects the adhesion behavior significantly and regulates the direction of cell adhesion, in good agreement with the experimental results in the literature. By introducing a reactive parameter (i.e., cell-membrane stress) linking biological responses of a living cell to a mechanical environment, the present model offers a unified mechanistic vehicle for characterization and prediction of living cell responses to various kinds of mechanical stimuli including local extracellular matrix and neighboring cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Kinetic study of seawater reverse osmosis membrane fouling

    KAUST Repository

    Khan, Muhammad

    2013-10-01

    Reverse osmosis (RO) membrane fouling is not a static state but a dynamic phenomenon. The investigation of fouling kinetics and dynamics of change in the composition of the foulant mass is essential to elucidate the mechanism of fouling and foulant-foulant interactions. The aim of this work was to study at a lab scale the fouling process with an emphasis on the changes in the relative composition of foulant material as a function of operating time. Fouled membrane samples were collected at 8 h, and 1, 2, and 4 weeks on a lab-scale RO unit operated in recirculation mode. Foulant characterization was performed by CLSM, AFM, ATR-FTIR, pyrolysis GC-MS, and ICP-MS techniques. Moreover, measurement of active biomass and analysis of microbial diversity were performed by ATP analysis and DNA extraction, followed by pyro-sequencing, respectively. A progressive increase in the abundance of almost all the foulant species was observed, but their relative proportion changed over the age of the fouling layer. Microbial population in all the membrane samples was dominated by specific groups/species belonging to Proteobacteria and Actinobacteria phyla; however, similar to abiotic foulant, their relative abundance also changed with the biofilm age. © 2013 American Chemical Society.

  11. Chitosan-Coated Collagen Membranes Promote Chondrocyte Adhesion, Growth, and Interleukin-6 Secretion

    Directory of Open Access Journals (Sweden)

    Nabila Mighri

    2015-11-01

    Full Text Available Designing scaffolds made from natural polymers may be highly attractive for tissue engineering strategies. We sought to produce and characterize chitosan-coated collagen membranes and to assess their efficacy in promoting chondrocyte adhesion, growth, and cytokine secretion. Porous collagen membranes were placed in chitosan solutions then crosslinked with glutaraldehyde vapor. Fourier transform infrared (FTIR analyses showed elevated absorption at 1655 cm-1 of the carbon–nitrogen (N=C bonds formed by the reaction between the (NH2 of the chitosan and the (C=O of the glutaraldehyde. A significant peak in the amide II region revealed a significant deacetylation of the chitosan. Scanning electron microscopy (SEM images of the chitosan-coated membranes exhibited surface variations, with pore size ranging from 20 to 50 µm. X-ray photoelectron spectroscopy (XPS revealed a decreased C–C groups and an increased C–N/C–O groups due to the reaction between the carbon from the collagen and the NH2 from the chitosan. Increased rigidity of these membranes was also observed when comparing the chitosan-coated and uncoated membranes at dried conditions. However, under wet conditions, the chitosan coated collagen membranes showed lower rigidity as compared to dried conditions. Of great interest, the glutaraldehyde-crosslinked chitosan-coated collagen membranes promoted chondrocyte adhesion, growth, and interleukin (IL-6 secretion. Overall results confirm the feasibility of using designed chitosan-coated collagen membranes in future applications, such as cartilage repair.

  12. Stable Free-Standing Lipid Bilayer Membranes in Norland Optical Adhesive 81 Microchannels

    NARCIS (Netherlands)

    Marin, Victor; Kieffer, R.Y.; Padmos, Raymond; Aubin-Tam, M.E.

    2016-01-01

    We report a simple, cost-effective, and reproducible method to form free-standing lipid bilayer membranes in microdevices made with Norland Optical Adhesive 81 (NOA81). Surface treatment with either alkylsilane or fluoroalkylsilane enables the self-assembly of stable

  13. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ryan, E-mail: rbwagner@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States); Pittendrigh, Barry R. [Department of Entomology, University of Illinois, Champaign (United States); Raman, Arvind, E-mail: raman@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We studied the wing membrane of Drosophila melanogaster with atomic force microscopy. Black-Right-Pointing-Pointer We report the structure, elasticity, and adhesion on the wing membrane in air and nitrogen environments. Black-Right-Pointing-Pointer Results provide insight into the nature of the wing membrane enabling the development of biomimetic surface and micro air vehicles. - Abstract: Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10-20 {mu}m long, 0.5-1 {mu}m diameter hair, and at a much smaller scale, 100 nm diameter and 30-60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m{sup 2}, these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  14. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    International Nuclear Information System (INIS)

    Wagner, Ryan; Pittendrigh, Barry R.; Raman, Arvind

    2012-01-01

    Highlights: ► We studied the wing membrane of Drosophila melanogaster with atomic force microscopy. ► We report the structure, elasticity, and adhesion on the wing membrane in air and nitrogen environments. ► Results provide insight into the nature of the wing membrane enabling the development of biomimetic surface and micro air vehicles. - Abstract: Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10–20 μm long, 0.5–1 μm diameter hair, and at a much smaller scale, 100 nm diameter and 30–60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m 2 , these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  15. Kinetics of Endophilin N-BAR Domain Dimerization and Membrane Interactions*

    Science.gov (United States)

    Capraro, Benjamin R.; Shi, Zheng; Wu, Tingting; Chen, Zhiming; Dunn, Joanna M.; Rhoades, Elizabeth; Baumgart, Tobias

    2013-01-01

    The recruitment to plasma membrane invaginations of the protein endophilin is a temporally regulated step in clathrin-mediated endocytosis. Endophilin is believed to sense or stabilize membrane curvature, which in turn likely depends on the dimeric structure of the protein. The dynamic nature of the membrane association and dimerization of endophilin is thus functionally important and is illuminated herein. Using subunit exchange Förster resonance energy transfer (FRET), we determine dimer dissociation kinetics and find a dimerization equilibrium constant orders of magnitude lower than previously published values. We characterize N-BAR domain membrane association kinetics under conditions where the dimeric species predominates, by stopped flow, observing prominent electrostatic sensitivity of membrane interaction kinetics. Relative to membrane binding, we find that protein monomer/dimer species equilibrate with far slower kinetics. Complementary optical microscopy studies reveal strikingly slow membrane dissociation and an increase of dissociation rate constant for a construct lacking the amphipathic segment helix 0 (H0). We attribute the slow dissociation kinetics to higher-order protein oligomerization on the membrane. We incorporate our findings into a kinetic scheme for endophilin N-BAR membrane binding and find a significant separation of time scales for endophilin membrane binding and subsequent oligomerization. This separation may facilitate the regulation of membrane trafficking phenomena. PMID:23482561

  16. Kinetic energy budget for electroconvective flows near ion selective membranes

    Science.gov (United States)

    Wang, Karen; Mani, Ali

    2017-11-01

    Electroconvection occurs when ions are driven from a bulk fluid through an ion-selective surface. When the driving voltage is beyond a threshold, this process undergoes a hydrodynamic instability called electroconvection, which can become chaotic due to nonlinear coupling between ion-transport, fluid flow, and electrostatic forces. Electroconvection significantly enhances ion transport and plays an important role in a wide range of electrochemical applications. We investigate this phenomenon by considering a canonical geometry consisting of a symmetric binary electrolyte between an ion-selective membrane and a reservoir using 2D direct numerical simulation (DNS). Our simulations reveal that for most practical regimes, DNS of electroconvection is expensive. Thus, a plan towards development of reduced-order models is necessary to facilitate the adoption of analysis of this phenomenon in industry. Here we use DNS to analyze the kinetic energy budget to shed light into the mechanisms sustaining flow and mixing in electroconvective flows. Our analysis reveals the relative dominance of kinetic energy sources, dissipation, and transport mechanisms sustaining electroconvection at different distances from the interface and over a wide range of input parameters. Karen Wang was supported by the National Defense Science & Engineering Graduate Fellowship (NDSEG). Ali Mani was supported by the National Science Foundation Award.

  17. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    Science.gov (United States)

    Wagner, Ryan; Pittendrigh, Barry R.; Raman, Arvind

    2012-10-01

    Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10-20 μm long, 0.5-1 μm diameter hair, and at a much smaller scale, 100 nm diameter and 30-60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m2, these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  18. Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly(L-lactide) fibrous membrane

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shen [Department of Orthopaedics, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China); Zhao, Jingwen [Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215007 (China); School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China); Ruan, Hongjiang; Wang, Wei [Department of Orthopaedics, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China); Wu, Tianyi [Department of Orthopaedic Surgery, 2nd Affiliated hospital of Nanjing Medical University, Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011 (China); Cui, Wenguo, E-mail: wgcui80@hotmail.com [Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215007 (China); School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China); Fan, Cunyi, E-mail: fancunyi888@hotmail.com [Department of Orthopaedics, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China)

    2013-04-01

    The complications of tendon injury are frequently compromised by peritendinous adhesions and tendon sheath infection. Physical barriers for anti-adhesion may increase the incidence of postoperative infection. This study was designed to evaluate the potential of silver nanoparticles (AgNPs)-loaded poly(L-lactide) (PLLA) electrospun fibrous membranes to prevent adhesion formation and infection. Results of an in vitro drug release study showed that a burst release was followed by sustained release from electrospun fibrous membranes with a high initial silver content. Fewer fibroblasts adhered to and proliferated on the AgNP-loaded PLLA electrospun fibrous membranes compared with pure PLLA electrospun fibrous membrane. In the antibacterial test, the AgNP-loaded PLLA electrospun fibrous membranes can prevent the adhesion of Gram-positive Staphylococcus aureus and Staphylococcus epidermidis and Gram-negative Pseudomonas aeruginosa. Taken together, these results demonstrate that AgNP-loaded PLLA electrospun fibrous membranes have the convenient practical medical potential of reduction of infection and adhesion formation after tendon injury. - Highlights: ► Silver nanoparticles are directly electrospun into PLLA fibrous membrane. ► Long-lasting release of Ag + ions is achieved. ► Cytotoxicity of silver ions benefits the anti-proliferation of physical barriers. ► Broad anti-microbial effect of drug-loaded fibrous membrane is revealed. ► Antibacterial and anti-adhesion effects of the physical barriers are combined.

  19. Time-Dependent Effect of Refrigeration on Viscosity and Conversion Kinetics of Dental Adhesive Resins

    Science.gov (United States)

    Faria-e-Silva, André L; Piva, Evandro; Moraes, Rafael R

    2010-01-01

    Objectives: This study evaluated the effect of refrigeration at 4°C and post-refrigeration times (immediate, 5, 10, 15, or 20 min) on the viscosity and conversion kinetics of adhesive bonding resins. Methods: Scotchbond Dual-Cure (3M ESPE) and Clearfil SE Bond (Kuraray) were tested. Control samples were kept at 25°C for 24 h. At each post-refrigeration time, the temperature was checked with a K-type thermocouple. Viscosity measurements as a function of temperature were performed using a cone-plate viscometer. Real-time polymerization was monitored by infrared spectroscopy. Degree of conversion (DC) was calculated for each second during polymerization, and the rate of polymerization analyzed. Data were separately submitted to two-way ANOVA and Tukey’s test (Prefrigerated groups (68.8–69.5%). Clearfil always showed significantly higher DC than Scotchbond. Conclusions: Refrigeration presented a significant time- and material-dependent effect on the viscosity and polymerization kinetics of the bonding resins. Under clinical conditions, adhesive agents should be removed from the refrigerator at least 20 min before being used. PMID:20396445

  20. Surgical wound management with adhesive polyurethane membrane: a preferred method for routine usage.

    Science.gov (United States)

    Tinckler, L.

    1983-01-01

    The author gives an account of his experience of the use in some 1600 patients of adhesive polyurethane membrane, marketed as Op-site, both for skin closure and wound dressing, in combination, as a routine method of surgical wound management in a wide variety of surgical operations. The technique of utilising this method is described in detail, as also are the advantages for patients, nursing and medical staff. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:6870136

  1. Lidocaine/ketorolac-loaded biodegradable nanofibrous anti-adhesive membranes that offer sustained pain relief for surgical wounds.

    Science.gov (United States)

    Kao, Ching-Wei; Lee, Demei; Wu, Min-Hsuan; Chen, Jan-Kan; He, Hong-Lin; Liu, Shih-Jung

    2017-01-01

    The aim of this study was to develop and evaluate the effectiveness of biodegradable nanofibrous lidocaine/ketorolac-loaded anti-adhesion membranes to sustainably release analgesics on abdominal surgical wounds. The analgesic-eluting membranes with two polymer-to-drug ratios (6:1 and 4:1) were produced via an electrospinning technique. A high-performance liquid chromatography (HPLC) assay was employed to characterize the in vivo and in vitro release behaviors of the pharmaceuticals from the membranes. It was found that all biodegradable anti-adhesion nanofibers released effective concentrations of lidocaine and ketorolac for over 20 days post surgery. In addition, a transverse laparotomy was setup in a rat model for an in vivo assessment of activity of postoperative recovery. No tissue adhesion was observed at 2 weeks post surgery, demonstrating the potential anti-adhesion capability of the drug-eluting nanofibrous membrane. The postoperative activities were recorded for two groups of rats as follows: rats that did not have any membrane implanted (group A) and rats that had the analgesic-eluting membrane implanted (group B). Rats in group B exhibited faster recovery times than those in group A with regard to postoperative activities, confirming the pain relief effectiveness of the lidocaine- and ketorolac-loaded nanofibrous membranes. The experimental results suggested that the anti-adhesion nanofibrous membranes with sustainable elution of lidocaine and ketorolac are adequately effective and durable for the purposes of postoperative pain relief in rats.

  2. Halofuginone- and Chitosan-Coated Amnion Membranes Demonstrate Improved Abdominal Adhesion Prevention

    Directory of Open Access Journals (Sweden)

    Scott Washburn

    2010-01-01

    Full Text Available Our objective was to determine whether coating the amniotic membrane with halofuginone, a type 1 collagen synthase inhibitor, with or without the hemostasis-inducing substance chitosan, reduced the number and severity of adhesions in the rat uterine horn injury model. Sixty retired breeder Sprague-Dawley rats underwent midline laparotomy and a zone of ischemia was created in the left uterine horn of each animal. Rats were randomized to one of six treatment groups: (1 untreated control, (2 oxidized regenerated cellulose (Interceed® (ORC, (3 plain amnion, (4 amnion coated on both sides with 0.5% solution of halofuginone (HAH, (5 amnion coated on one side with 0.5% halofuginone and on the other side with chitosan (CAH, or (6 amnion coated on both sides with chitosan (CAC. The zone of ischemia in each left uterine horn was wrapped in each treatment. Rats were sacrificed 2 weeks after laparotomy, and adhesions were counted and scored for severity. Data were analyzed using Chi square and a p <0.05 was considered significant. Our results showed that there were no differences in the percentage of animals with adhesions in the untreated, ORC, plain amnion, or CAC groups. No adhesions formed in any animal in the HAH group and only 14% of the animals developed adhesions to the uterine horn in the CAH group (p < 0.05. The percentage of animals with moderate and severe adhesions did not differ between untreated controls and the ORC groups, but were significantly reduced in all four of the amnion groups: plain amnion, HAH, CAH, and CAC (p < 0.05. Amnion coated with halofuginone alone or in combination with chitosan reduced the percentage of animals with adhesions, as well as the percentage of animals with moderate and severe adhesions compared to untreated controls and the ORC group in the rat uterine horn injury model. Amnion alone or coated with chitosan reduced the percentage of rats with moderate and severe adhesions, but not the percentage of rats with

  3. In vivo kinetic evaluation of an adhesive capsulitis model in rats.

    Science.gov (United States)

    Villa-Camacho, Juan C; Okajima, Stephen; Perez-Viloria, Miguel E; Walley, Kempland C; Zurakowski, David; Rodriguez, Edward K; Nazarian, Ara

    2015-11-01

    We hypothesized that extra-articular, internal fixation of the shoulder in rats would result in a subsequent decrease in rotational range of motion (ROM) and an increase in joint stiffness. We further hypothesized that residual kinematic changes would still be present at 8 weeks after immobilization. Extra-articular, internal fixation of the shoulder has been used to induce adhesive capsulitis in rats; however, the effects on in vivo kinematics have not been assessed. Baseline measurements of rotational torque and ROM were acquired (n = 10 rats), and the left forelimb of each animal was immobilized with sutures passed between the scapula and the humeral shaft. After 8 weeks, the sutures were removed, and changes in kinematics and kinetics were longitudinally quantified in the follow-up period. Changes in stiffness, defined as the area under the angle-torque curve, were also quantified. Immediately after suture removal, there was a 63% decrease in total ROM compared with baseline (51° ± 10° vs. 136° ± 0°; P adhesive capsulitis rendered lasting effects on in vivo kinematics of the shoulder. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Adhesion and removal kinetics of Bacillus cereus biofilms on Ni-PTFE modified stainless steel.

    Science.gov (United States)

    Huang, Kang; McLandsborough, Lynne A; Goddard, Julie M

    2016-01-01

    Biofilm control remains a challenge to food safety. A well-studied non-fouling coating involves codeposition of polytetrafluoroethylene (PTFE) during electroless plating. This coating has been reported to reduce foulant build-up during pasteurization, but opportunities remain in demonstrating its efficacy in inhibiting biofilm formation. Herein, the initial adhesion, biofilm formation, and removal kinetics of Bacillus cereus on Ni-PTFE-modified stainless steel (SS) are characterized. Coatings lowered the surface energy of SS and reduced biofilm formation by > 2 log CFU cm(-2). Characterization of the kinetics of biofilm removal during cleaning demonstrated improved cleanability on the Ni-PTFE coated steel. There was no evidence of biofilm after cleaning by either solution on the Ni-PTFE coated steel, whereas more than 3 log and 1 log CFU cm(-2) of bacteria remained on the native steel after cleaning with water and an alkaline cleaner, respectively. This work demonstrates the potential application of Ni-PTFE non-fouling coatings on SS to improve food safety by reducing biofilm formation and improving the cleaning efficiency of food processing equipment.

  5. Segregation of receptor-ligand complexes in cell adhesion zones: Phase diagrams and role of thermal membrane roughness

    OpenAIRE

    Rozycki, Bartosz; Lipowsky, Reinhard; Weikl, Thomas R.

    2010-01-01

    The adhesion zone of immune cells, the 'immunological synapse', exhibits characteristic domains of receptor-ligand complexes. The domain formation is likely caused by a length difference of the receptor-ligand complexes, and has been investigated in experiments in which T cells adhere to supported membranes with anchored ligands. For supported membranes with two types of anchored ligands, MHCp and ICAM1, that bind to the receptors TCR and LFA1 in the cell membrane, the coexistence of domains ...

  6. Segregation of receptor-ligand complexes in cell adhesion zones: phase diagrams and the role of thermal membrane roughness

    Science.gov (United States)

    Różycki, B.; Lipowsky, R.; Weikl, T. R.

    2010-09-01

    The adhesion zone of immune cells, the 'immunological synapse', exhibits characteristic domains of receptor-ligand complexes. The domain formation is probably caused by a length difference of the receptor-ligand complexes, and has been investigated in experiments in which T cells adhere to supported membranes with anchored ligands. For supported membranes with two types of anchored ligands, MHCp and ICAM1, which bind to the T-cell receptor (TCR) and the receptor LFA1 in the cell membrane, the coexistence of domains of the TCR-MHCp and LFA1-ICAM1 complexes in the cell adhesion zone has been observed for a wide range of ligand concentrations and affinities. For supported membranes with long and short ligands that bind to the same cell receptor CD2, in contrast, domain coexistence has been observed for a quite narrow ratio of ligand concentrations. In this paper, we determine detailed phase diagrams for cells adhering to supported membranes with a statistical-physical model of cell adhesion. We find a characteristic difference between the adhesion scenarios in which two types of ligands in a supported membrane bind (i) to the same cell receptor or (ii) to two different cell receptors, which helps us to explain the experimental observations. Our phase diagrams fully include thermal shape fluctuations of the cell membranes on nanometer scales, which lead to a critical point for the domain formation and to a cooperative binding of the receptors and ligands.

  7. Kinetics of structural reorganizations in multilamellarphotosynthetic membranes monitored by small-angle neutronscattering

    DEFF Research Database (Denmark)

    Nagy, Gergely; Kovacs, Laszlo; Unnep, Renata

    2013-01-01

    We demonstrate the power of time-resolved small-angle neutron scattering experiments for the investigation of the structure and structural reorganizations of multilamellar photosynthetic membranes. In addition to briefly summarizing our results on thylakoid membranes isolated from higher plants...... and in unicellular organisms, we discuss the advantages and technical and methodological limitations of timeresolved SANS. We present a detailed and more systematical investigation of the kinetics of light-induced structural reorganizations in isolated spinach thylakoid membranes, which show how changes...

  8. Helicobacter pylori outer membrane protein Q genotypes and their susceptibility to anti-adhesive phytotherapeutic agents.

    Science.gov (United States)

    Yakoob, Javed; Abbas, Zaigham; Mehmood, Malik Hassan; Tariq, Kanwal; Saleem, Saima Azhar; Awan, Safia; Malik, Abdul; Hamid, Saeed; Khan, Rustam; Jafri, Wasim

    2017-09-01

    Helicobacter pylori is a Gram-negative organism. Its outer membrane protein Q (HopQ) mediates host-pathogen interactions; HopQ genotypes 1 and 2 are found associating with gastroduodenal pathologies. The authors measured the anti-adhesion effects of the extracts of Abelmoschus esculentus, Zingiber officinale, Trachyspermum ammi, Glycyrrhiza glabra, Curcuma longa and Capsicum annum against HopQ genotypes and H. pylori cytotoxin-associated gene A (CagA). DNA was extracted by polymerase chain reaction of the HopQ genotypes (i.e., type 1, type 2 and CagA) from 115 H. pylori strains. The effect of the extracts from selected dietary ingredients was determined using a gastric adenocarcinoma cell line and a quantitative DNA fragmentation assay. The anti-adhesive effect of these extracts on H. pylori was tested using an anti-adhesion analysis. C. annum, C. longa and A. esculentus showed prominent anti-adhesion effects with resultant values of 17.3% ± 2.9%, 14.6% ± 3.7%, 13.8% ± 3.6%, respectively, against HopQ type 1 and 13.1% ± 1.7%, 12.1% ± 2%, 11.1% ± 1.6%, respectively, against HopQ type 2. C. longa (93%), C. annum (89%) and A. esculentus (75%) had better anti-adhesive activity against H. pylori with HopQ type 1 compared to HopQ type 2 with respective values of 70%, 64% and 51%. Extracts of C. annum (14.7% ± 4.1%), A. esculentus (12.3% ± 4.1%) and Z. officinale (8.4% ± 2.8%) had an anti-adhesion effect against CagA-positive H. pylori strains compared to CagA-negative strains. The anti-adhesion properties of the tested phytotherapeutic dietary ingredients were varied with HopQ genotypes. HopQ type 1 was found to be more sensitive to extracts of C. annum, C. longa and A. esculentus compared to the HopQ type 2 genotype.

  9. The kinetics of antibody binding to Plasmodium falciparum VAR2CSA PfEMP1 antigen and modelling of PfEMP1 antigen packing on the membrane knobs

    DEFF Research Database (Denmark)

    Joergensen, Lars M; Salanti, Ali; Dobrilovic, Tina

    2010-01-01

    ABSTRACT: BACKGROUND: Infected humans make protective antibody responses to the PfEMP1 adhesion antigens exported by Plasmodium falciparum parasites to the erythrocyte membrane, but little is known about the kinetics of this antibody-receptor binding reaction or how the topology of PfEMP1...... on the parasitized erythrocyte membrane influences antibody association with, and dissociation from, its antigenic target. METHODS: A Quartz Crystal Microbalance biosensor was used to measure the association and dissociation kinetics of VAR2CSA PfEMP1 binding to human monoclonal antibodies. Immuno......-fluorescence microscopy was used to visualize antibody-mediated adhesion between the surfaces of live infected erythrocytes and atomic force microscopy was used to obtain higher resolution images of the membrane knobs on the infected erythrocyte to estimate knob surface areas and model VAR2CSA packing density on the knob...

  10. Alterations of epithelial adhesion molecules and basement membrane components in lattice corneal dystrophy (LCD).

    Science.gov (United States)

    Resch, Miklós D; Schlötzer-Schrehardt, Ursula; Hofmann-Rummelt, Carmen; Kruse, Friedrich E; Seitz, Berthold

    2009-08-01

    The aim of the study was to investigate the histopathological and ultrastructural correlate of delayed epithelial healing in eyes with lattice corneal dystrophy (LCD). Corneal buttons from 4 patients with LCD (two with subepithelial, two with stromal amyloid deposits) and 2 control corneas were examined. Cell-matrix adhesion molecules and basement membrane components of the corneal epithelium were analyzed by immunohistochemistry and hemidesmosomes between epithelium and stroma were quantified by transmission electron microscopy (TEM). By TEM well-developed hemidesmosomes anchored the basal epithelial cells to the underlying basement membrane in all normal and LCD corneas. Hemidesmosome density was not significantly different in subepithelial (224.7 +/- 34.1/100 microm) and stromal (234.3 +/- 36.3/100 microm) LCD compared to controls (241.3 +/- 26.8/100 microm). The basement membrane was interrupted in subepithelial, but continuous in stromal LCD. Integrin alpha6 and beta4 staining formed a continuous line along the basal surface of the corneal epithelium in control corneas, whereas it appeared discontinuous and patchy both in subepithelial and stromal forms of LCD. Staining for alphaV integrin showed irregular staining patterns, i.e. enhanced labelling intensity in subepithelial and interrupted pattern in stromal LCD, respectively. Integrins alpha3, beta1, beta2, and beta5, dystroglycan, and plectin were not markedly different in dystrophic corneas. Type VII collagen showed a discontinuous staining in subepithelial forms of LCD. In stromal forms of LCD, type VII collagen staining occurred in additional patches underneath the epithelial basement membrane zone. Type XVII collagen staining was reduced in subepithelial LCD. Laminin-1, laminin-5 and laminin gamma2 showed variable irregular staining patterns in dystrophic corneas with focal interruptions, focal thickenings, and reduplications of basement membrane. Some irregularities in corneas with subepithelial

  11. Emdogain effect on gingival fibroblast adhesion in bioabsorbable and non-resorbable barrier membranes: An in vitro study

    Directory of Open Access Journals (Sweden)

    Mehrdad Barekatain

    2014-01-01

    Full Text Available Background: Tissue engineering represents very exciting advances in regenerative medicine; however, periodontal literature only contains few reports. Emdogain (EMD consists of functional molecules that have shown many advantages in regenerative treatments. This study investigated EMD effect on gingival fibroblast adhesion to different membranes. Materials and Methods: Two dense polytetrafluoroethylene membranes (GBR-200, TXT-200, Alloderm and a collagenous membrane (RTM Collagen were used in this experimental study. Each membrane was cut into four pieces and placed at the bottom of a well in a 48-well plate. 10 μg/mL of EMD was added to two wells of each group.Two wells were left EMD free. Gingival fibroblasts were seeded to all the wells. Cell adhesion was evaluated by means of a Field Emission Scanning Electron Microscope after 24 hours incubation. Data was analyzed by independent t-test, one-way and two-way ANOVA and post hoc LSD test. P < 0.05 in independent t-test analysis and P < 0.001 in one-way ANOVA, two-way ANOVA and post hoc LSD analysis was considered statistically significant. Results: Alloderm had the highest cell adhesion capacity in EMD+ group and the difference was statistically significant (P < 0.001. In EMD- group, cell adhesion to TXT-200 and Alloderm was significantly higher than GBR-200 and collagenous membrane (P < 0.001. Conclusion: This study showed that EMD may decrease the cell adhesion efficacy of GBR-200, TXT-200 and collagenous membrane but it can promote this efficacy in Alloderm. It also showed the composition of biomaterials, their surface textures and internal structures can play an important role in their cell adhesion efficacy.

  12. Emdogain effect on gingival fibroblast adhesion in bioabsorbable and non-resorbable barrier membranes: An in vitro study.

    Science.gov (United States)

    Barekatain, Mehrdad; Mafi, Morvarid; Amini, Shirin; Farhad, Shirin Zahra

    2014-07-01

    Tissue engineering represents very exciting advances in regenerative medicine; however, periodontal literature only contains few reports. Emdogain (EMD) consists of functional molecules that have shown many advantages in regenerative treatments. This study investigated EMD effect on gingival fibroblast adhesion to different membranes. Two dense polytetrafluoroethylene membranes (GBR-200, TXT-200), Alloderm and a collagenous membrane (RTM Collagen) were used in this experimental study. Each membrane was cut into four pieces and placed at the bottom of a well in a 48-well plate. 10 μg/mL of EMD was added to two wells of each group. Two wells were left EMD free. Gingival fibroblasts were seeded to all the wells. Cell adhesion was evaluated by means of a Field Emission Scanning Electron Microscope after 24 hours incubation. Data was analyzed by independent t-test, one-way and two-way ANOVA and post hoc LSD test. P < 0.05 in independent t-test analysis and P < 0.001 in one-way ANOVA, two-way ANOVA and post hoc LSD analysis was considered statistically significant. Alloderm had the highest cell adhesion capacity in EMD+ group and the difference was statistically significant (P < 0.001). In EMD- group, cell adhesion to TXT-200 and Alloderm was significantly higher than GBR-200 and collagenous membrane (P < 0.001). This study showed that EMD may decrease the cell adhesion efficacy of GBR-200, TXT-200 and collagenous membrane but it can promote this efficacy in Alloderm. It also showed the composition of biomaterials, their surface textures and internal structures can play an important role in their cell adhesion efficacy.

  13. Kinetic Mechanism and Rate-Limiting Steps of Focal Adhesion Kinase-1

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, Jessica L.; Briand, Jacques; Chen, Stephanie; Lehr, Ruth; McDevitt, Patrick; Zhao, Baoguang; Smallwood, Angela; Concha, Nestor; Oza, Khyati; Kirkpatrick, Robert; Yan, Kang; Villa, James P.; Meek, Thomas D.; Thrall, Sara H. (Chemizon); (GSKPA)

    2010-12-07

    Steady-state kinetic analysis of focal adhesion kinase-1 (FAK1) was performed using radiometric measurement of phosphorylation of a synthetic peptide substrate (Ac-RRRRRRSETDDYAEIID-NH{sub 2}, FAK-tide) which corresponds to the sequence of an autophosphorylation site in FAK1. Initial velocity studies were consistent with a sequential kinetic mechanism, for which apparent kinetic values k{sub cat} (0.052 {+-} 0.001 s{sup -1}), K{sub MgATP} (1.2 {+-} 0.1 {micro}M), K{sub iMgATP} (1.3 {+-} 0.2 {micro}M), K{sub FAK-tide} (5.6 {+-} 0.4 {micro}M), and K{sub iFAK-tide} (6.1 {+-} 1.1 {micro}M) were obtained. Product and dead-end inhibition data indicated that enzymatic phosphorylation of FAK-tide by FAK1 was best described by a random bi bi kinetic mechanism, for which both E-MgADP-FAK-tide and E-MgATP-P-FAK-tide dead-end complexes form. FAK1 catalyzed the {beta}{gamma}-bridge:{beta}-nonbridge positional oxygen exchange of [{gamma}-{sup 18}O{sub 4}]ATP in the presence of 1 mM [{gamma}-{sup 18}O{sub 4}]ATP and 1.5 mM FAK-tide with a progressive time course which was commensurate with catalysis, resulting in a rate of exchange to catalysis of k{sub x}/k{sub cat} = 0.14 {+-} 0.01. These results indicate that phosphoryl transfer is reversible and that a slow kinetic step follows formation of the E-MgADP-P-FAK-tide complex. Further kinetic studies performed in the presence of the microscopic viscosogen sucrose revealed that solvent viscosity had no effect on k{sub cat}/K{sub FAK-tide}, while k{sub cat} and k{sub cat}/K{sub MgATP} were both decreased linearly at increasing solvent viscosity. Crystallographic characterization of inactive versus AMP-PNP-liganded structures of FAK1 showed that a large conformational motion of the activation loop upon ATP binding may be an essential step during catalysis and would explain the viscosity effect observed on k{sub cat}/K{sub m} for MgATP but not on k{sub cat}/K{sub m} for FAK-tide. From the positional isotope exchange, viscosity, and

  14. Fundamental Studies of Novel Zwitterionic Hybrid Membranes: Kinetic Model and Mechanism Insights into Strontium Removal

    OpenAIRE

    Wen Zhu; Junsheng Liu; Meng Li

    2014-01-01

    A series of zwitterionic hybrid membranes were prepared via the ring opening of 1,3-propanesultone with the amine groups in the chains of TMSPEDA and a subsequent sol-gel process. Their kinetic models for strontium removal were investigated using three two-parameter kinetic equations (i.e., Lagergren pseudo-first order, pseudo-second order, and Elovich models). Adsorption mechanism was evaluated using intraparticle diffusion model, diffusion-chemisorption model, and Boyd equation. It was foun...

  15. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane.

    Science.gov (United States)

    Vitriol, Eric A; Zheng, James Q

    2012-03-22

    Growth cones, found at the tip of axonal projections, are the sensory and motile organelles of developing neurons that enable axon pathfinding and target recognition for precise wiring of the neural circuitry. To date, many families of conserved guidance molecules and their corresponding receptors have been identified that work in space and time to ensure billions of axons to reach their targets. Research in the past two decades has also gained significant insight into the ways in which growth cones translate extracellular signals into directional migration. This review aims to examine new progress toward understanding the cellular mechanisms underlying directional motility of the growth cone and to discuss questions that remain to be addressed. Specifically, we will focus on the cellular ensemble of cytoskeleton, adhesion, and membrane and examine how the intricate interplay between these processes orchestrates the directed movement of growth cones. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Platelet adhesion and cellular interaction with poly(ethylene oxide) immobilized onto silicone rubber membrane surfaces.

    Science.gov (United States)

    Hsiue, G H; Lee, S D; Chang, P C

    1996-01-01

    Cellular interaction and platelet adsorption were investigated on poly(ethylene oxide) (PEO) immobilized silicone rubber membrane (SR) which has polyacrylic acid grafts on the surfaces. Polyacrylic acid (PAA) had been introduced to the SR surface after Ar plasma treatment of SR surfaces to introduce peroxide groups. Surface characterizations were made using ATR-FTIR, ESCA, SEM, and contact angle measurements. Experimental results obtained by ESCA high resolution curve fitting spectra indicated that the amount of bisamino PEO of different molecular weights immobilized onto SR surfaces were similar, which showed that the influence of the length of molecular chains (-C-C-O-) on the reactivity of terminal amino group is negligible. The wettability of modified SR surfaces increased with an increase in PEO molecular weight. Biological studies such as corneal epithelial cell culture and blood platelet adhesion were performed to understand the biocompatibility of modified SR surfaces. Biological studies using corneal epithelial cells showed that cell migration, attachment and proliferation onto PEO-20000 immobilized SR surface were suppressed, whereas these biological activities on PEO-600 were enhanced. Another study on platelet adhesion revealed that many platelets attached to PEO-600 immobilized SR, while platelet deposition was rarely observed on SR grafted with PEO-3350. The effects of different PEO molecular chains on biological response were discussed.

  17. Bilateral PLA/alginate membranes for the prevention of postsurgical adhesions.

    Science.gov (United States)

    Kessler, Martina; Esser, Eva; Groll, Jürgen; Tessmar, Jörg

    2016-11-01

    A bilateral barrier membrane for the prevention of postsurgical adhesions was developed. Thereby, a smooth PLA side was supposed to keep the affected tissues glidingly separated, while a mucoadhesive side made of alginate was meant to keep the barrier resident on the site of injury so that suturing becomes redundant or at least the membrane stays long enough to facilitate surgical handling. Because hydrophilic alginate and lipophilic PLA films show only low cohesion, solution electrospun meshes of PLA and PLA-PEG-PLA triblock copolymers with varying poly(ethylene glycol) [PEG] content were investigated as cohesion promoter to avoid an easy separation of the functionally different layers. Using direct electrospinning onto the PLA film, a modified contact surface of the mesh was created, which allowed the tested alginate solutions (3%, 5%) to infiltrate to different extents. Thereby, an increasing content of hydrophilic PEG within the mesh copolymer and a lower alginate concentration facilitated the infiltration. As a result, the PLA film with a PLA35k-PEG10k-PLA35k (racemic PLA chains) mesh and an alginate layer cast from a 3% alginate solution appeared to be the most effective combination as examined by means of a t peel test, a mucoadhesion test, a tensile test and optical evaluations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1563-1570, 2016. © 2015 Wiley Periodicals, Inc.

  18. Study of Asorption Kinetics of Surfactants onto Polyethersulfone Membrane Surface Using QCM-D

    Science.gov (United States)

    The adsorption kinetics of surfactants onto the crystal surface spin-coated with a thin layer of a model membrane material, polyethersulfone was monitored through measurements of frequency and dissipation shifts simultaneously using a quartz crystal microbalance with dissipation (QCM-D) device. In ...

  19. CO2 adsorption using TiO2 composite polymeric membranes: A kinetic study.

    Science.gov (United States)

    Hafeez, Sarah; Fan, X; Hussain, Arshad; Martín, C F

    2015-09-01

    CO2 is the main greenhouse gas which causes global climatic changes on larger scale. Many techniques have been utilised to capture CO2. Membrane gas separation is a fast growing CO2 capture technique, particularly gas separation by composite membranes. The separation of CO2 by a membrane is not just a process to physically sieve out of CO2 through the controlled membrane pore size. It mainly depends upon diffusion and solubility of gases, particularly for composite dense membranes. The blended components in composite membranes have a high capability to adsorb CO2. The adsorption kinetics of the gases may directly affect diffusion and solubility. In this study, we have investigated the adsorption behaviour of CO2 in pure and composite membranes to explore the complete understanding of diffusion and solubility of CO2 through membranes. Pure cellulose acetate (CA) and cellulose acetate-titania nanoparticle (CA-TiO2) composite membranes were fabricated and characterised using SEM and FTIR analysis. The results indicated that the blended CA-TiO2 membrane adsorbed more quantity of CO2 gas as compared to pure CA membrane. The high CO2 adsorption capacity may enhance the diffusion and solubility of CO2 in the CA-TiO2 composite membrane, which results in a better CO2 separation. The experimental data was modelled by Pseudo first-order, pseudo second order and intra particle diffusion models. According to correlation factor R(2), the Pseudo second order model was fitted well with experimental data. The intra particle diffusion model revealed that adsorption in dense membranes was not solely consisting of intra particle diffusion. Copyright © 2015. Published by Elsevier B.V.

  20. Kinetic Defects Induced by Melittin in Model Lipid Membranes: A Solution Atomic Force Microscopy Study.

    Science.gov (United States)

    Pan, Jianjun; Khadka, Nawal K

    2016-05-26

    Quantitative characterization of membrane defects (pores) is important for elucidating the molecular basis of many membrane-active peptides. We study kinetic defects induced by melittin in vesicular and planar lipid bilayers. Fluorescence spectroscopy measurements indicate that melittin induces time-dependent calcein leakage. Solution atomic force microscopy (AFM) is used to visualize melittin-induced membrane defects. After initial equilibration, the most probable defect radius is ∼3.8 nm in 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) bilayers. Unexpectedly, defects become larger with longer incubation, accompanied by substantial shape transformation. The initial defect radius is ∼4.7 nm in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers. Addition of 30 mol % cholesterol to DOPC bilayers suppresses defect kinetics, although the inhibitory impact is negated by longer incubation. Overall, the kinetic rate of defect development follows DLPC > DOPC > DOPC/cholesterol. Kinetic defects are also observed when anionic lipids are present. Based on the observation that defects can occupy as large as 40% of the bilayer surface, we propose a kinetic defect growth model. We also study the effect of melittin on the phase behavior of DOPC/egg-sphingomyelin/cholesterol bilayers. We find that melittin initially suppresses or eliminates liquid-ordered (Lo) domains; Lo domains gradually emerge and become the dominant species with longer incubation; and defects in phase-coexisting bilayers have a most probable radius of ∼5 nm and are exclusively localized in the liquid-disordered (Ld) phase. Our experimental data highlight that melittin-induced membrane defects are not static; conversely, spontaneous defect growth is intrinsically associated with membrane permeabilization exerted by melittin.

  1. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics

    Science.gov (United States)

    Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; ur Rehman, Aziz

    2015-01-01

    The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) were calculated for the adsorption of congo red, indicating an exothermic process. PMID:28793430

  2. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics.

    Science.gov (United States)

    Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; Rehman, Aziz Ur

    2015-07-08

    The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy ( ∆G° ), enthalpy ( ∆H° ) and entropy ( ∆S° ) were calculated for the adsorption of congo red, indicating an exothermic process.

  3. Validation of kinetic modeling of progesterone release from polymeric membranes

    Directory of Open Access Journals (Sweden)

    Analia Irma Romero

    2018-01-01

    Full Text Available Mathematical modeling in drug release systems is fundamental in development and optimization of these systems, since it allows to predict drug release rates and to elucidate the physical transport mechanisms involved. In this paper we validate a novel mathematical model that describes progesterone (Prg controlled release from poly-3-hydroxybutyric acid (PHB membranes. A statistical analysis was conducted to compare the fitting of our model with six different models and the Akaike information criterion (AIC was used to find the equation with best-fit. A simple relation between mass and drug released rate was found, which allows predicting the effect of Prg loads on the release behavior. Our proposed model was the one with minimum AIC value, and therefore it was the one that statistically fitted better the experimental data obtained for all the Prg loads tested. Furthermore, the initial release rate was calculated and therefore, the interface mass transfer coefficient estimated and the equilibrium distribution constant of Prg between the PHB and the release medium was also determined. The results lead us to conclude that our proposed model is the one which best fits the experimental data and can be successfully used to describe Prg drug release in PHB membranes.

  4. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    Directory of Open Access Journals (Sweden)

    L. Vanysacker

    2013-01-01

    Full Text Available Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development.

  5. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    Science.gov (United States)

    Vanysacker, L.; Denis, C.; Declerck, P.; Piasecka, A.; Vankelecom, I. F. J.

    2013-01-01

    Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development. PMID:23986906

  6. Association of membrane/lipid rafts with the platelet cytoskeleton and the caveolin PY14: participation in the adhesion process.

    Science.gov (United States)

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Maldonado-García, Deneb; Hernández-González, Enrique; Winder, Steve J

    2015-11-01

    Platelets are the most prominent elements of blood tissue involved in hemostasis at sites of blood vessel injury. Platelet cytoskeleton is responsible for their shape modifications observed during activation and adhesion to the substratum; therefore the interactions between cytoskeleton and plasma membrane are critical to modulate blood platelet functions. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to membrane/lipid rafts (MLR) and regulate lateral diffusion of membrane proteins and lipids. Resting, thrombin-activated, and adherent human platelets were processed for biochemical studies including western-blot and immunprecipitation assays and confocal analysis were performed to characterize the interaction of MLR with the main cytoskeleton elements and β-dystroglycan as well as with the association of caveolin-1 PY14 with focal adhesion proteins. We transfected a megakaryoblast cell line (Meg-01) to deplete β-dystroglycan, subsequent to their differentiation to the platelet progenitors. Our data showed a direct interaction of the MLR with cytoskeleton to regulate platelet shape, while an association of caveolin-1 PY14 with vinculin is needed to establish focal adhesions, which are modulated for β-dystroglycan. In conclusion, caveolin-1 PY14 in association with platelet cytoskeleton participate in focal adhesions dynamics. © 2015 Wiley Periodicals, Inc.

  7. Release of membrane-bound vesicles and inhibition of tumor cell adhesion by the peptide Neopetrosiamide A.

    Directory of Open Access Journals (Sweden)

    Pamela Austin

    2010-05-01

    Full Text Available Neopetrosiamide A (NeoA is a 28-amino acid tricyclic peptide originally isolated from a marine sponge as a tumor cell invasion inhibitor whose mechanism of action is unknown.We show that NeoA reversibly inhibits tumor cell adhesion, disassembles focal adhesions in pre-attached cells, and decreases the level of beta1 integrin subunits on the cell surface. NeoA also induces the formation of dynamic, membrane-bound protrusions on the surface of treated cells and the release of membrane-bound vesicles into the culture medium. Proteomic analysis indicates that the vesicles contain EGF and transferrin receptors as well as a number of proteins involved in adhesion and migration including: beta1 integrin and numerous alpha integrin subunits; actin and actin-binding proteins such as cofilin, moesin and myosin 1C; and membrane modulating eps15 homology domain (EHD proteins. Surface labeling, trafficking inhibition, and real-time imaging experiments all suggest that beta1 integrin-containing vesicles are released directly from NeoA-induced cell surface protrusions rather than from vesicles generated intracellularly. The biological activity of NeoA is dependent on its disulfide bond pattern and NMR spectroscopy indicates that the peptide is globular with a continuous ridge of hydrophobic groups flanked by charged amino acid residues that could facilitate a simultaneous interaction with lipids and proteins in the membrane.NeoA is an anti-adhesive peptide that decreases cell surface integrin levels through a novel, yet to be elucidated, mechanism that involves the release of adhesion molecule-containing vesicles from the cell surface.

  8. Kinetic resolution of chiral amines with omega-transaminase using an enzyme-membrane reactor.

    Science.gov (United States)

    Shin, J S; Kim, B G; Liese, A; Wandrey, C

    2001-05-05

    A kinetic resolution process for the production of chiral amines was developed using an enzyme-membrane reactor (EMR) and a hollow-fiber membrane contactor with (S)-specific omega-transaminases (omega-TA) from Vibrio fluvialis JS17 and Bacillus thuringiensis JS64. The substrate solution containing racemic amine and pyruvate was recirculated through the EMR and inhibitory ketone product was selectively extracted by the membrane contactor until enantiomeric excess of (R)-amine exceeded 95%. Using the reactor set-up with flat membrane reactor (10-mL working volume), kinetic resolutions of alpha-methylbenzylamine (alpha-MBA) and 1-aminotetralin (200 mM, 50 mL) were carried out. During the operation, concentration of ketone product, i.e., acetophenone or alpha-tetralone, in a substrate reservoir was maintained below 0.1 mM, suggesting efficient removal of the inhibitory ketone by the membrane contactor. After 47 and 32.5 h of operation using 5 U/mL of enzyme, 98.0 and 95.5% ee of (R)-alpha-MBA and (R)-1-aminotetralin were obtained at 49.5 and 48.8% of conversion, respectively. A hollow-fiber membrane reactor (39-mL working volume) was used for a preparative-scale kinetic resolution of 1-aminotetralin (200 mM, 1 L). After 133 h of operation, enantiomeric excess reached 95.6% and 14.3 g of (R)-1-aminotetralin was recovered (97.4% of yield). Mathematical modeling of the EMR process including the membrane contactor was performed to evaluate the effect of residence time. The simulation results suggest that residence time should be short to maintain the concentration of the ketone product in EMR sufficiently low so as to decrease conversion per cycle and, in turn, reduce the inhibition of the omega-TA activity. Copyright 2001 John Wiley & Sons, Inc.

  9. Start-up of membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor: kinetic study.

    Science.gov (United States)

    Leyva-Díaz, J C; Poyatos, J M

    2015-01-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) system was studied as an alternative solution to conventional activated sludge processes and membrane bioreactors. This paper shows the results obtained from three laboratory-scale wastewater treatment plants working in parallel in the start-up and steady states. The first wastewater treatment plant was a MBR, the second one was a hybrid MBBR-MBR system containing carriers both in anoxic and aerobic zones of the bioreactor (hybrid MBBR-MBRa), and the last one was a hybrid MBBR-MBR system which contained carriers only in the aerobic zone (hybrid MBBR-MBRb). The reactors operated with a hydraulic retention time of 30.40 h. A kinetic study for characterizing heterotrophic biomass was carried out and organic matter and nutrients removals were evaluated. The heterotrophic biomass of the hybrid MBBR-MBRb showed the best kinetic performance in the steady state, with yield coefficient for heterotrophic biomass=0.30246 mg volatile suspended solids per mg chemical oxygen demand, maximum specific growth rate for heterotrophic biomass=0.00308 h(-1) and half-saturation coefficient for organic matter=3.54908 mg O2 L(-1). The removal of organic matter was supported by the kinetic study of heterotrophic biomass.

  10. FERMT2 links cortical actin structures, plasma membrane tension and focal adhesion function to stabilize podocyte morphology.

    Science.gov (United States)

    Yasuda-Yamahara, M; Rogg, M; Frimmel, J; Trachte, P; Helmstaedter, M; Schroder, P; Schiffer, M; Schell, C; Huber, T B

    2018-01-11

    Simplification and retraction of podocyte protrusions, generally termed as foot process effacement, is a uniform pathological pattern observed in the majority of glomerular disease, including focal segmental glomerulosclerosis. However, it is still incompletely understood how the interaction of cortical actin structures, actomyosin contractility and focal adhesions, is being orchestrated to control foot process morphology in health and disease. By uncovering the functional role of fermitin family member 2 (FERMT2 or kindlin-2) in podocytes, we provide now evidence, how cell-extracellular matrix (ECM) interactions modulate membrane tension and actomyosin contractility. A genetic modeling approach was applied by deleting FERMT2 in a set of in vivo systems as well as in CRISPR/Cas9 modified human podocytes. Loss of FERMT2 results in altered cortical actin composition, cell cortex destabilization associated with plasma membrane blebbing and a remodeling of focal adhesions. We further show that FERMT2 knockout podocytes have high levels of RhoA activation and concomitantly increased actomyosin contractility. Inhibition of actomyosin tension reverses the membrane blebbing phenotype. Thus, our findings establish a direct link between cell-matrix adhesions, cortical actin structures and plasma membrane tension allowing to better explain cell morphological changes in foot process effacement. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Compensation effect in H 2 permeation kinetics of PdAg membranes

    KAUST Repository

    Zeng, Gaofeng

    2012-08-30

    Knowledge about the (inter)dependence of permeation kinetic parameters on the stoichiometry of H 2-selective alloys is still rudimentary, although uncovering the underlying systematic correlations will greatly facilitate current efforts into the design of novel high-performance H 2 separation membranes. Permeation measurements with carefully engineered, 2-7 μm thick supported Pd 100-xAg x membranes reveal that the activation energy and pre-exponential factor of H 2 permeation laws vary systematically with alloy composition, and both kinetic parameters are strongly correlated for x ≤ 50. We show that this permeation kinetic compensation effect corresponds well with similar correlations in the hydrogen solution thermodynamics and diffusion kinetics of PdAg alloys that govern H 2 permeation rates. This effect enables the consistent description of permeation characteristics over wide temperature and alloy stoichiometry ranges, whereas hydrogen solution thermodynamics may play a role, too, as a yet unrecognized source of kinetic compensation in, for example, H 2-involving reactions over metal catalysts or hydrogenation/ dehydrogenation of hydrogen storage materials. © 2012 American Chemical Society.

  12. Fundamental studies of novel zwitterionic hybrid membranes: kinetic model and mechanism insights into strontium removal.

    Science.gov (United States)

    Zhu, Wen; Liu, Junsheng; Li, Meng

    2014-01-01

    A series of zwitterionic hybrid membranes were prepared via the ring opening of 1,3-propanesultone with the amine groups in the chains of TMSPEDA and a subsequent sol-gel process. Their kinetic models for strontium removal were investigated using three two-parameter kinetic equations (i.e., Lagergren pseudo-first order, pseudo-second order, and Elovich models). Adsorption mechanism was evaluated using intraparticle diffusion model, diffusion-chemisorption model, and Boyd equation. It was found that the adsorption of strontium ions on these zwitterionic hybrid membranes fitted well with the Lagergren pseudo-second order model. Mechanism insights suggested that diffusion-chemisorption was one of the main adsorption mechanisms. Boyd equation exhibited that film-diffusion mechanism might be the control process during the starting period. These findings are very useful in strontium removal from the stimulated radioactive wastewater.

  13. Fundamental Studies of Novel Zwitterionic Hybrid Membranes: Kinetic Model and Mechanism Insights into Strontium Removal

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2014-01-01

    Full Text Available A series of zwitterionic hybrid membranes were prepared via the ring opening of 1,3-propanesultone with the amine groups in the chains of TMSPEDA and a subsequent sol-gel process. Their kinetic models for strontium removal were investigated using three two-parameter kinetic equations (i.e., Lagergren pseudo-first order, pseudo-second order, and Elovich models. Adsorption mechanism was evaluated using intraparticle diffusion model, diffusion-chemisorption model, and Boyd equation. It was found that the adsorption of strontium ions on these zwitterionic hybrid membranes fitted well with the Lagergren pseudo-second order model. Mechanism insights suggested that diffusion-chemisorption was one of the main adsorption mechanisms. Boyd equation exhibited that film-diffusion mechanism might be the control process during the starting period. These findings are very useful in strontium removal from the stimulated radioactive wastewater.

  14. Actin filaments regulate the adhesion between the plasma membrane and the cell wall of tobacco guard cells.

    Science.gov (United States)

    Yu, Qin; Ren, Jing-Jing; Kong, Lan-Jing; Wang, Xiu-Ling

    2018-01-01

    During the opening and closing of stomata, guard cells undergo rapid and reversible changes in their volume and shape, which affects the adhesion of the plasma membrane (PM) to the cell wall (CW). The dynamics of actin filaments in guard cells are involved in stomatal movement by regulating structural changes and intracellular signaling. However, it is unclear whether actin dynamics regulate the adhesion of the PM to the CW. In this study, we investigated the relationship between actin dynamics and PM-CW adhesion by the hyperosmotic-induced plasmolysis of tobacco guard cells. We found that actin filaments in guard cells were depolymerized during mannitol-induced plasmolysis. The inhibition of actin dynamics by treatment with latrunculin B or jasplakinolide and the disruption of the adhesion between the PM and the CW by treatment with RGDS peptide (Arg-Gly-Asp-Ser) enhanced guard cell plasmolysis. However, treatment with latrunculin B alleviated the RGDS peptide-induced plasmolysis and endocytosis. Our results reveal that the actin depolymerization is involved in the regulation of the PW-CW adhesion during hyperosmotic-induced plasmolysis in tobacco guard cells.

  15. A kinetic study of mercury(II transport through a membrane assisted by new transport reagent

    Directory of Open Access Journals (Sweden)

    Görgülü Ahmet

    2011-07-01

    Full Text Available Abstract Background A new organodithiophosphorus derivative, namely O-(1,3-Bispiperidino-2-propyl-4-methoxy phenyldithiophosphonate, was synthesized and then the kinetic behavior of the transport process as a function of concentration, temperature, stirring rate and solvents was investigated. Results The compound 1 was characterized by elemental analysis, IR, 1H and 31P NMR spectroscopies. The transport of mercury(II ion by a zwitterionic dithiophosphonate 1 in the liquid membrane was studied and the kinetic behavior of the transport process as a function of concentration, temperature, stirring rate and solvents was investigated. The compound 1 is expected to serve as a model liquid membrane transport with mercury(II ions. Conclusion A kinetic study of mercury(II transport through a membrane assisted by O-(1,3-Bispiperidino-2-propyl-4-methoxy phenyldithiophosphonate was performed. It can be concluded that the compound 1 can be provided a general and straightforward route to remove toxic metals ions such as mercury(II ion from water or other solution.

  16. Kinetics and activity distribution of urease coencapsulated with hemoglobin within polyamide membranes.

    Science.gov (United States)

    Monshipouri, M; Neufeld, R J

    1992-01-01

    A 91.5% mass yield of urease and hemoglobin (Hb), co-encapsulated within polyamide membranes, was determined spectrophotometrically. The specific activity yield of microencapsulation was 84%, twofold higher than values previously reported, as a result of optimization of encapsulation conditions. The kinetic parameters and pH activity profiles of intracapsular urease were determined to be similar to those corresponding to the free enzyme. Similar activities were also observed for intact and microcapsule homogenate, indicating minimal mass transfer and diffusional limitation. The active configuration of the enzyme appears to remain intact upon microencapsulation. The application of a kinetic model for encapsulated urease further indicated that the kinetics were reaction-controlled with minimal mass transfer restrictions.

  17. Tris(trimethylsilyl)silane as a co-initiator for dental adhesive: Photo-polymerization kinetics and dynamic mechanical property.

    Science.gov (United States)

    Song, Linyong; Ye, Qiang; Ge, Xueping; Misra, Anil; Spencer, Paulette

    2016-01-01

    The purpose of this study was to evaluate the polymerization behavior of a model dentin adhesive with tris(trimethylsilyl)silane (TTMSS) as a co-initiator, and to investigate the polymerization kinetics and mechanical properties of copolymers in dry and wet conditions. A co-monomer mixture based on HEMA/BisGMA (45/55, w/w) was used as a model dentin adhesive. The photoinitiator system included camphorquinone (CQ) as the photosensitizer and the co-initiator was ethyl-4-(dimethylamino) benzoate (EDMAB) or TTMSS. Iodonium salt, diphenyliodonium hexafluorophosphate (DPIHP) serving as a catalyst, was selectively added into the adhesive formulations. The control and the experimental formulations were characterized with regard to the degree of conversion (DC) and dynamic mechanical properties under dry and wet conditions. In two-component photoinitiator system (CQ/TTMSS), with an increase of TTMSS concentration, the polymerization rate and DC of CC double bond increased, and showed a dependence on the irradiation time and curing light intensity. The copolymers that contained the three-component photoinitiator system (CQ/TTMSS/DPIHP) showed similar dynamic mechanical properties, under both dry and wet conditions, to the EDMAB-containing system. The DC of formulations using TTMSS as co-initiator showed a strong dependence on irradiation time. With the addition of TTMSS, the maximum polymerization rate can be adjusted and the network structure became more homogenous. The results indicated that the TTMSS could be used as a substitute for amine-type co-initiator in visible-light induced free radical polymerization of methacrylate-based dentin adhesives. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. The kinetics of nitrogen removal and biogas production in an anammox non-woven membrane reactor.

    Science.gov (United States)

    Ni, Shou-Qing; Lee, Po-Heng; Sung, Shihwu

    2010-08-01

    The anammox non-woven membrane reactor (ANMR) is a novel reactor configuration to culture the slowly growing anammox bacteria. Different mathematical models were used to study the process kinetics of the nitrogen removal in the ANMR. The kinetics of nitrogen gas production of anammox process was first evaluated in this paper. For substrate removal kinetics, the modified Stover-Kincannon model and the Grau second-order model were more applicable to the ANMR than the first-order model and the Monod model. For nitrogen gas production kinetics, the Van der Meer and Heertjes model was more appropriate than the modified Stover-Kincannon model. Model evaluation was carried out by comparing experimental data with predicted values calculated from suitable models. Both model kinetics study and model testing showed that the Grau second-order model and the Van der Meer and Heertjes model seemed to be the best models to describe the nitrogen removal and nitrogen gas production in the ANMR, respectively. (c) 2010 Elsevier Ltd. All rights reserved.

  19. A Theoretical Characterization of Curvature Controlled Adhesive Properties of Bio-Inspired Membranes

    DEFF Research Database (Denmark)

    Afferante, Luciano; Heepe, Lars; Casdorff, Kirstin

    2016-01-01

    Some biological systems, such as the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima, have developed the ability to control adhesion by changing the curvature of their pads. Active control systems of adhesion inspired by these biological models can be very attractive...

  20. Kinetic and thermodynamic analysis of Bradyrhizobium japonicum PutA-membrane associations.

    Science.gov (United States)

    Zhang, Weimin; Krishnan, Navasona; Becker, Donald F

    2006-01-01

    In Escherichia coli, proline induces tight membrane binding of the PutA flavoenzyme and transforms PutA from a transcriptional repressor to a membrane-associated proline catabolic enzyme. In other gram-negative bacteria such as Bradyrhizobium japonicum, PutA lacks DNA binding activity and functions only as a proline catabolic enzyme. Here, we characterize the membrane binding properties of PutA from B. japonicum (BjPutA) to address whether proline regulates BjPutA-lipid binding similar to Escherichia coli PutA (EcPutA). Surface plasmon resonance (SPR) kinetic measurements of BjPutA-lipid binding show BjPutA forms a complex with lipids in the absence and presence of proline with similar dissociation constant (K(D)) values of 2.5 and 1.7nM, respectively. SPR experiments using differently charged lipid bilayers indicate BjPutA selectively binds negatively charged lipids, which contrasts with the charge independent membrane binding of EcPutA. Analysis of BjPutA-lipid binding by isothermal titration calorimetry at 25 degrees C revealed an endothermic binding reaction that is entropically driven. This work shows that BjPutA-membrane associations vary significantly from EcPutA.

  1. CX3CL1, a chemokine finely tuned to adhesion: critical roles of the stalk glycosylation and the membrane domain

    Directory of Open Access Journals (Sweden)

    Mariano A. Ostuni

    2014-11-01

    Full Text Available The multi-domain CX3CL1 transmembrane chemokine triggers leukocyte adherence without rolling and migration by presenting its chemokine domain (CD to its receptor CX3CR1. Through the combination of functional adhesion assays with structural analysis using FRAP, we investigated the functional role of the other domains of CX3CL1, i.e., its mucin stalk, transmembrane domain, and cytosolic domain. Our results indicate that the CX3CL1 molecular structure is finely adapted to capture CX3CR1 in circulating cells and that each domain has a specific purpose: the mucin stalk is stiffened by its high glycosylation to present the CD away from the membrane, the transmembrane domain generates the permanent aggregation of an adequate amount of monomers to guarantee adhesion and prevent rolling, and the cytosolic domain ensures adhesive robustness by interacting with the cytoskeleton. We propose a model in which quasi-immobile CX3CL1 bundles are organized to quickly generate adhesive patches with sufficiently high strength to capture CX3CR1+ leukocytes but with sufficiently low strength to allow their patrolling behavior.

  2. Dynamic bio-adhesion of polymer nanoparticles on MDCK epithelial cells and its impact on bio-membranes, endocytosis and paracytosis.

    Science.gov (United States)

    He, Bing; Yuan, Lan; Dai, Wenbing; Gao, Wei; Zhang, Hua; Wang, Xueqing; Fang, Weigang; Zhang, Qiang

    2016-03-21

    Nowadays, concern about the use of nanotechnology for biomedical application is unprecedentedly increasing. In fact, nanosystems applied for various potential clinical uses always have to cross the primary biological barrier consisting of epithelial cells. However, little is really known currently in terms of the influence of the dynamic bio-adhesion of nanosystems on bio-membranes as well as on endocytosis and transcytosis. This was investigated here using polymer nanoparticles (PNs) and MDCK epithelial cells as the models. Firstly, the adhesion of PNs on cell membranes was found to be time-dependent with a shift of both location and dispersion pattern, from the lateral adhesion of mainly mono-dispersed PNs initially to the apical coverage of the PN aggregate later. Then, it was interesting to observe in this study that the dynamic bio-adhesion of PNs only affected their endocytosis but not their transcytosis. It was important to find that the endocytosis of PNs was not a constant process. A GM1 dependent CDE (caveolae dependent endocytosis) pathway was dominant in the preliminary stage, followed by the co-existence of a CME (clathrin-mediated endocytosis) pathway for the PN aggregate at a later stage, in accordance with the adhesion features of PNs, suggesting the modification of PN adhesion patterns on the endocytosis pathways. Next, the PN adhesion was noticed to affect the structure of cell junctions, via altering the extra- and intra-cellular calcium levels, leading to the enhanced paracellular transport of small molecules, but not favorably enough for the obviously increased passing of PNs themselves. Finally, FRAP and other techniques all demonstrated the obvious impact of PN adhesion on the membrane confirmation, independent of the adhesion location and time, which might lower the threshold for the internalization of PNs, even their aggregates. Generally, these findings confirm that the transport pathway mechanism of PNs through epithelial cells is rather

  3. Dynamic bio-adhesion of polymer nanoparticles on MDCK epithelial cells and its impact on bio-membranes, endocytosis and paracytosis

    Science.gov (United States)

    He, Bing; Yuan, Lan; Dai, Wenbing; Gao, Wei; Zhang, Hua; Wang, Xueqing; Fang, Weigang; Zhang, Qiang

    2016-03-01

    Nowadays, concern about the use of nanotechnology for biomedical application is unprecedentedly increasing. In fact, nanosystems applied for various potential clinical uses always have to cross the primary biological barrier consisting of epithelial cells. However, little is really known currently in terms of the influence of the dynamic bio-adhesion of nanosystems on bio-membranes as well as on endocytosis and transcytosis. This was investigated here using polymer nanoparticles (PNs) and MDCK epithelial cells as the models. Firstly, the adhesion of PNs on cell membranes was found to be time-dependent with a shift of both location and dispersion pattern, from the lateral adhesion of mainly mono-dispersed PNs initially to the apical coverage of the PN aggregate later. Then, it was interesting to observe in this study that the dynamic bio-adhesion of PNs only affected their endocytosis but not their transcytosis. It was important to find that the endocytosis of PNs was not a constant process. A GM1 dependent CDE (caveolae dependent endocytosis) pathway was dominant in the preliminary stage, followed by the co-existence of a CME (clathrin-mediated endocytosis) pathway for the PN aggregate at a later stage, in accordance with the adhesion features of PNs, suggesting the modification of PN adhesion patterns on the endocytosis pathways. Next, the PN adhesion was noticed to affect the structure of cell junctions, via altering the extra- and intra-cellular calcium levels, leading to the enhanced paracellular transport of small molecules, but not favorably enough for the obviously increased passing of PNs themselves. Finally, FRAP and other techniques all demonstrated the obvious impact of PN adhesion on the membrane confirmation, independent of the adhesion location and time, which might lower the threshold for the internalization of PNs, even their aggregates. Generally, these findings confirm that the transport pathway mechanism of PNs through epithelial cells is rather

  4. Setting kinetics and shrinkage of self-adhesive resin cements depend on cure-mode and temperature.

    Science.gov (United States)

    Kitzmüller, Karin; Graf, Alexandra; Watts, David; Schedle, Andreas

    2011-06-01

    To investigate the influence of curing mode and temperature on the shrinkage kinetics of self-adhesive resin cements in comparison to a conventional multi-step resin cement. The shrinkage of self-adhesive resin cements Maxcem Elite (MX), Speedcem (SPC), Smartcem2 (SMC), iCem (IC) and RelyX Unicem (RX) and Nexus Third Generation (NX3) as a multi-step resin cement was measured continuously for 1h using the bonded disk method. All materials were tested with dual-curing (dc) and self-curing (sc) mode. All measurements (n=5 per group) were conducted at room temperature (23°C) as well as at body temperature (37°C). Shrinkage time constants were obtained from a simple exponential growth model. Data were statistically analyzed by ANOVA and the p-values were adjusted for multiplicity according to Hothorn et al. (2008) using the R-package "multcomp". Shrinkages ranged between 1.84 (RX sc23) and 7.09 (IC sc37). The curing-mode changing from sc to dc had the dominant effect for several materials, especially RX, both on final shrinkage and time constant for setting. Temperature increase had an effect on setting and shrinkage for all materials except RX. Final shrinkage for SPC, SMC and NX3 was statistically equivalent (p>0.05). The 3-fold variation in final shrinkage for these materials is significant for clinical material selection. Light curing can lead to a 10-fold increase in the rate of setting. A self-adhesive universal resin cement (RX) had the lowest shrinkage in the groups examined. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. FLOW CHAMBER STUDY OF THE ADHESION OF PREVOTELLA-INTERMEDIA TO GLASS AFTER PRECONDITIONING WITH MUTANS STREPTOCOCCAL SPECIES - KINETICS AND SPATIAL ARRANGEMENT

    NARCIS (Netherlands)

    COWAN, M; BUSSCHER, HJ

    1993-01-01

    The adhesion kinetics and spatial arrangement of a clinical isolate of Prevotella intermedia on bare glass and on glass which had been previously exposed to Streptococcus rattus or Streptococcus cricetus were studied using a parallel plate flow system and image analysis. When S. cricetus was the

  6. Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control

    KAUST Repository

    Miller, Daniel J.

    2012-08-01

    Ultrafiltration, nanofiltration membranes and feed spacers were hydrophilized with polydopamine and polydopamine- g-poly(ethylene glycol) surface coatings. The fouling propensity of modified and unmodified membranes was evaluated by short-term batch protein and bacterial adhesion tests. The fouling propensity of modified and unmodified membranes and spacers was evaluated by continuous biofouling experiments in a membrane fouling simulator. The goals of the study were: 1) to determine the effectiveness of polydopamine and polydopamine- g-poly(ethylene glycol) membrane coatings for biofouling control and 2) to compare techniques commonly used in assessment of membrane biofouling propensity with biofouling experiments under practical conditions. Short-term adhesion tests were carried out under static, no-flow conditions for 1 h using bovine serum albumin, a common model globular protein, and Pseudomonas aeruginosa, a common model Gram-negative bacterium. Biofouling tests were performed in a membrane fouling simulator (MFS) for several days under flow conditions similar to those encountered in industrial modules with the autochthonous drinking water population and acetate dosage as organic substrate. Polydopamine- and polydopamine- g-poly(ethylene glycol)-modified membranes showed significantly reduced adhesion of bovine serum albumin and P. aeruginosa in the short-term adhesion tests, but no reduction of biofouling was observed during longer biofouling experiments with modified membranes and spacers. These results demonstrate that short-term batch adhesion experiments using model proteins or bacteria under static conditions are not indicative of biofouling, while continuous biofouling experiments showed that membrane surface modification by polydopamine and polydopamine- g-poly(ethylene glycol) is not effective for biofouling control. © 2012 Elsevier Ltd.

  7. Mimicking cell/extracellular matrix adhesion with lipid membranes and solid substrates: requirements, pitfalls and proposals

    Science.gov (United States)

    Cuvelier, Damien; Vezy, Cyrille; Viallat, Annie; Bassereau, Patricia; Nassoy, Pierre

    2004-07-01

    The interest in physical approaches to the study of cell adhesion has generated numerous recent works on the development of substrates mimicking the extracellular matrix and the use of giant synthetic liposomes, commonly considered as basic models of living cells. The use of well-characterized bioactive substrates and artificial cells should allow us to gain new insight into the cell-extracellular matrix interactions, provided that their biomimetic relevance has been really proved. The aim of this paper is to define some minimal requirements for effective biomimetic features and to propose simple adhesion assays. We show, for instance, that immobilization of specific ligands is sometimes not sufficient to ensure specific adhesion of cells expressing the corresponding receptors. By investigating comparatively the adhesive behaviour of decorated erythrocytes and vesicles, we also discuss the potentialities and limitations of synthetic vesicles as test cells.

  8. Use of "Gore-Tex surgical membrane" to minimize surgical adhesions in multistaged extrathoracic esophageal elongation for esophageal atresia.

    Science.gov (United States)

    Dessanti, A; Caccia, G; Iannuccelli, M; Dettori, G

    2000-04-01

    The procedure of choice in the surgical correction of "long gap" esophageal atresia should, when possible, preserve the native esophagus. We present a modification of "the multistaged extrathoracic esophageal elongation method," designed to facilitate esophageal elongation and use of a Gore-Tex (W.L. Gore and Associates, Flagstaff, AZ) surgical membrane to minimize surgical adhesions. We used this technique to successfully treat a 1-kg infant, with type A esophageal atresia, associated aortic coartation, and severe necrotizing enterocolitis with multiple perforations. Multistaged extrathoracic esophageal elongation was begun at the age of 9 months and concluded at 17 months.

  9. Enhancement of growth and osteogenic differentiation of MC3T3-E1 cells via facile surface functionalization of polylactide membrane with chitooligosaccharide based on polydopamine adhesive coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huihua [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Luo, Chuang [Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Luo, Binghong, E-mail: tluobh@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Wen, Wei [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Wang, Xiaoying [Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Ding, Shan [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2016-01-01

    Graphical abstract: - Highlights: • COS was conveniently immobilized on PDLLA membrane based on PDOPA adhesive layer. • The hydrophilicity of PDLLA membrane was improved by modified with PDOPA and COS. • COS-functionalized PDLLA membrane is favorable to cell adhesion and proliferation. • COS-coated PDLLA membrane notably promote osteogenic differentiation of MC3T3-E1. - Abstract: To develop a chitooligosaccharide(COS)-functionalized poly(D,L-lactide) (PDLLA) membrane to enhance growth and osteogenic differentiation of MC3T3-E1 cells, firstly a thin polydopamine (PDOPA) layer was adhered to the PDLLA membrane via the self-polymerization and strong adhesion behavior of dopamine. Subsequently, COS was immobilized covalently on the resultant PDLLA/PDOPA composite membrane by coupling with PDOPA active coating. The successful immobilization of the PDOPA and COS was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) results indicated that the surface topography and roughness of the membranes were changed, and the root mean square increased from 0.613 nm to 6.96 and 7.12 nm, respectively after coating PDOPA and COS. Water contact angle and surface energy measurements revealed that the membrane hydrophilicity was remarkably improved by surface modification. In vitro cells culture results revealed that the PDOPA- and COS-functionalized surfaces showed a significant increase in MC3T3-E1 cells adhesion, proliferation, osteogenic differentiation and alkaline phosphate activity compared to the pristine PDLLA substrate. Furthermore the COS-functionalized PDLLA membrane was more effectively at enhancing osteoblast activity than the PDOPA-functionalized PDLLA membrane.

  10. Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp

    Science.gov (United States)

    Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Urbana, IL; Lee, Keon Jae [Tokyo, JP; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Champaign, IL; Meitl, Matthew [Champaign, IL; Zhu, Zhengtao [Urbana, IL

    2011-05-17

    The present invention provides methods, systems and system components for transferring, assembling and integrating features and arrays of features having selected nanosized and/or microsized physical dimensions, shapes and spatial orientations. Methods of the present invention utilize principles of `soft adhesion` to guide the transfer, assembly and/or integration of features, such as printable semiconductor elements or other components of electronic devices. Methods of the present invention are useful for transferring features from a donor substrate to the transfer surface of an elastomeric transfer device and, optionally, from the transfer surface of an elastomeric transfer device to the receiving surface of a receiving substrate. The present methods and systems provide highly efficient, registered transfer of features and arrays of features, such as printable semiconductor element, in a concerted manner that maintains the relative spatial orientations of transferred features.

  11. Roles of specific membrane lipid domains in EGF receptor activation and cell adhesion molecule stabilization in a developing olfactory system.

    Science.gov (United States)

    Gibson, Nicholas J; Tolbert, Leslie P; Oland, Lynne A

    2009-09-29

    Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-beta-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons.

  12. Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle.

    Science.gov (United States)

    Herbst, E A F; Paglialunga, S; Gerling, C; Whitfield, J; Mukai, K; Chabowski, A; Heigenhauser, G J F; Spriet, L L; Holloway, G P

    2014-03-15

    Studies have shown increased incorporation of omega-3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate-supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate-supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega-3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post-translational modification of ATP synthase and ANT isoforms. Omega-3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega-3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity.

  13. Inhibition kinetics of nitritation and half-nitritation of old landfill leachate in a membrane bioreactor.

    Science.gov (United States)

    Li, Yun; Wang, Zhaozhao; Li, Jun; Wei, Jia; Zhang, Yanzhuo; Zhao, Baihang

    2017-04-01

    Nitritation can be used as a pretreatment for anaerobic ammonia oxidation (anammox). Various control strategies for nitritation and half-nitritation of old landfill leachate in a membrane bioreactor were investigated in this study and the inhibition kinetics of substrate, product and old landfill leachate on nitritation were analyzed via batch tests. The results demonstrated that old landfill leachate nitritation in the membrane bioreactor can be achieved by adjusting the influent loading and dissolved oxygen (DO). From days 105-126 of the observation period, the average effluent concentration was 871.3 mg/L and the accumulation rate of [Formula: see text] was 97.2%. Half-nitritation was realized quickly by adjusting hydraulic retention time and DO. A low-DO control strategy appeared to best facilitate long-term and stable operation. Nitritation inhibition kinetic experiments showed that the inhibition of old landfill leachate was stronger than that of the substrate [Formula: see text] or product [Formula: see text] . The ammonia oxidation rate dropped by 22.2% when the concentration of old landfill leachate (calculated in chemical oxygen demand) was 1600.2 mg/L; further, when only free ammonia or free nitrous acid were used as a single inhibition factor, the ammonia oxidation rate dropped by 4.7-6.5% or 14.5-15.9%, respectively. Haldane, Aiba, and a revised inhibition kinetic model were adopted to separately fit the experimental data. The R 2 correlation coefficient values for these three models were 0.982, 0.996, and 0.992, respectively. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase.

    Science.gov (United States)

    Aminian, Alieh; Shirzadi, Bahareh; Azizi, Zahra; Maedler, Kathrin; Volkmann, Eike; Hildebrand, Nils; Maas, Michael; Treccani, Laura; Rezwan, Kurosch

    2016-12-01

    Functional bone and dental implant materials are required to guide cell response, offering cues that provide specific instructions to cells at the implant/tissue interface while maintaining full biocompatibility as well as the desired structural requirements and functions. In this work we investigate the influence of covalently immobilized alkaline phosphatase (ALP), an enzyme involved in bone mineralization, on the first contact and initial cell adhesion. To this end, ALP is covalently immobilized by carbodiimide-mediated chemoligation on two highly bioinert ceramics, alpha-alumina (Al2O3) and yttria-stabilized zirconia (Y-TZP) that are well-established for load-bearing applications. The physicochemical surface properties are evaluated by profilometry, zeta potential and water contact angle measurements. The initial cell adhesion of human osteoblasts (HOBs), human osteoblast-like cells (MG-63) and mesenchymal stromal cells (hMSCs) was investigated. Cell adhesion was assessed at serum free condition via quantification of percentage of adherent cells, adhesion area and staining of the focal adhesion protein vinculin. Our findings show that after ALP immobilization, the Al2O3 and Y-TZP surfaces gained a negative charge and their hydrophilicity was increased. In the presence of surface-immobilized ALP, a higher cell adhesion, more pronounced cell spreading and a higher number of focal contact points were found. Thereby, this work gives evidence that surface functionalization with ALP can be utilized to modify inert materials for biological conversion and faster bone regeneration on inert and potentially load-bearing implant materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Novel secreted isoform of adhesion molecule ICAM-4: Potential regulator of membrane-associated ICAM-4 interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gloria; Spring, Frances A.; Parons, Stephen F.; Mankelow, Tosti J.; Peters, Luanne L.; Koury, Mark J.; Mohandas, Narla; Anstee, David J.; Chasis, Joel Anne

    2003-02-18

    ICAM-4, a newly characterized adhesion molecule, is expressed early in human erythropoiesis and functions as a ligand for binding a4b1 and aV integrin-expressing cells. Within the bone marrow, erythroblasts surround central macrophages forming erythroblastic islands. Evidence suggests that these islands are highly specialized subcompartments where cell adhesion events, in concert with cytokines, play critical roles in regulating erythropoiesis and apoptosis. Since erythroblasts express a4b1 and ICAM-4 and macrophages exhibit aV, ICAM-4 is an attractive candidate for mediating cellular interactions within erythroblastic islands. To determine whether ICAM-4 binding properties are conserved across species, we first cloned and sequenced the murine homologue. The translated amino acid sequence showed 68 percent overall identity with human ICAM-4. Using recombinant murine ICAM-4 extracellular domains, we discovered that hematopoietic a4b1-expressing HEL cells and non-hematopoietic aV-expressing FLY cells adhered to mouse ICAM-4. Cell adhesion studies showed that FLY and HEL cells bound to mouse and human proteins with similar avidity. These data strongly suggest conservation of integrin-binding properties across species. Importantly, we characterized a novel second splice cDNA that would be predicted to encode an ICAM-4 isoform, lacking the membrane-spanning domain. Erythroblasts express both isoforms of ICAM-4. COS-7 cells transfected with GFP constructs of prototypic or novel ICAM-4 cDNA showed different cellular localization patterns. Moreover, analysis of tissue culture medium revealed that the novel ICAM-4 cDNA encodes a secreted protein. We postulate that secretion of this newly described isoform, ICAM-4S, may modulate binding of membrane-associated ICAM-4 and could thus play a critical regulatory role in erythroblast molecular attachments.

  16. Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor

    DEFF Research Database (Denmark)

    Borch, Jonas; Torta, Federico; Sligar, Stephen G

    2008-01-01

    nanodiscs and their incorporated membrane receptors can be attached to surface plasmon resonance sensorchips and used to measure the kinetics of the interaction between soluble molecules and membrane receptors inserted in the bilayer of nanodiscs. Cholera toxin and its glycolipid receptor G(M1) constitute...... partner cholera toxin B subunit to the receptor with the sensorchip-based surface plasmon resonance (SPR) technology. The measured stoichiometric and kinetic values of the interaction are in agreement with those reported by previous studies, thus providing proof-of-principle that nanodiscs can be employed...

  17. Fluorinated hyperbranched polyurethane electrospun nanofibrous membrane: fluorine-enriching surface and superhydrophobic state with high adhesion to water.

    Science.gov (United States)

    Zheng, Fei; Deng, Hongtao; Zhao, Xinjun; Li, Xia; Yang, Can; Yang, Yunyan; Zhang, Aidong

    2014-05-01

    The fluorination of hyperbranched polyurethane (HPU) was achieved by atom transfer radical grafting polymerization (ATRgP) of dodecafluoroheptyl methacrylate that was initiated from 2-bromoisobutyryl bromide-modified end groups of HPU. The nanofibrous membrane of fluorinated HPU was prepared by electrospinning. The structure of fluorinated HPU was characterized by Fourier-transform infrared spectroscopy (FTIR) and (1)H nuclear magnetic resonance spectrum (1H NMR). The surface of nanofibrous membrane was investigated with scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) analysis, respectively. The results suggested that compared with the reported linear fluorine-containing polyurethane materials, rather high fluorine content up to 29.14% was achieved on the surface of fluorinated HPU nanofibrous membrane. Meanwhile, a superhydrophobic surface (WCA 159.7°) with high adhesion to water was successfully fabricated via a convenient electrospinning process. The prepared material is promising for the application in microfluidic devices. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. CCN2/connective tissue growth factor is essential for pericyte adhesion and endothelial basement membrane formation during angiogenesis.

    Directory of Open Access Journals (Sweden)

    Faith Hall-Glenn

    Full Text Available CCN2/Connective Tissue Growth Factor (CTGF is a matricellular protein that regulates cell adhesion, migration, and survival. CCN2 is best known for its ability to promote fibrosis by mediating the ability of transforming growth factor β (TGFβ to induce excess extracellular matrix production. In addition to its role in pathological processes, CCN2 is required for chondrogenesis. CCN2 is also highly expressed during development in endothelial cells, suggesting a role in angiogenesis. The potential role of CCN2 in angiogenesis is unclear, however, as both pro- and anti-angiogenic effects have been reported. Here, through analysis of Ccn2-deficient mice, we show that CCN2 is required for stable association and retention of pericytes by endothelial cells. PDGF signaling and the establishment of the endothelial basement membrane are required for pericytes recruitment and retention. CCN2 induced PDGF-B expression in endothelial cells, and potentiated PDGF-B-mediated Akt signaling in mural (vascular smooth muscle/pericyte cells. In addition, CCN2 induced the production of endothelial basement membrane components in vitro, and was required for their expression in vivo. Overall, these results highlight CCN2 as an essential mediator of vascular remodeling by regulating endothelial-pericyte interactions. Although most studies of CCN2 function have focused on effects of CCN2 overexpression on the interstitial extracellular matrix, the results presented here show that CCN2 is required for the normal production of vascular basement membranes.

  19. Adhesion strength and spreading characteristics of EPS on membrane surfaces during lateral and central growth.

    Science.gov (United States)

    Tansel, Berrin; Tansel, Derya Z

    2013-11-01

    Deposition of extracellular polymeric substances (EPS) on membrane surfaces is a precursor step for bacterial attachment. The purpose of this study was to analyze the morphological changes on a clean polysulfone ultrafilration membrane after exposure to effluent from a membrane bioreactor. The effluent was filtered to remove bacteria before exposing the membrane. The morphological characterization was performed by atomic force microscopy (AFM). The lateral (2D) and central growth characteristics (3D) of the EPS deposits were evaluated by section and topographical analyses of the height images. The contact angle of single EPS units was 9.07 ± 0.50° which increased to 24.41 ± 1.00° for large clusters (over 10 units) and decreased to 18.68 ± 1.00° for the multilayered clusters. The surface tension of the single EPS units was 49.34 ± 1.70 mNm(-1). The surface tension of single layered small and large EPS clusters were 51.26 ± 2.05 and 53.48 ± 2.01 mNm(-1), respectively. For the multilayered clusters, the surface tension was 51.43 ± 2.05 mNm(-1). The spreading values were negative for all deposits on the polysulfone membrane indicating that the EPS clusters did not have tendency to spread but preferred to retain their shapes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  1. Adhesion force sensing and activation of a membrane-bound sensor to activate nisin efflux pumps in Staphylococcus aureus under mechanical and chemical stresses

    NARCIS (Netherlands)

    Carniello, Vera; Harapanahalli, Akshay K.; Busscher, Henk J.; van der Mei, Henny C.

    2018-01-01

    Nisin-associated-sensitivity-response-regulator (NsaRS) in Staphylococcus aureus is important for its adhesion to surfaces and resistance against antibiotics, like nisin. NsaRS consists of an intra-membrane-located sensor NsaS and a cytoplasmatically-located response-regulator NsaR, which becomes

  2. Kinetics of the Formation of Tethered Black Lipid Membranes on Ultraflat Gold Supports: A QCM-D and AFM Study

    Science.gov (United States)

    Dorvel, Brian

    2005-11-01

    The cell membrane is recognized as the foundation to which most essential cellular processes originate and occur; thus elucidation of the structure, dynamics, and function of biomembranes is of fundamental importance if we are to mimic nature. Supported, freestanding lipid bilayers known as black lipid membranes (BLM's) are commonly used as stable biomimetic systems and exist as supported BLM's (sBLM's) and tethered BLM's (tBLM's). Although much work has been done on the kinetics of formation in sBLM's on several substrates, very little is known on the kinetics of tBLM's. By using Quartz Crystal Microbalance with Dissipation Factor (QCM-D) we were able to monitor both the kinetics and viscoelastic properties of tether adsorption and liposome fusion. Atomic Force Microscopy pictures taken complement the QCM-D data, showing the major stages of tBLM formation and pathways of liposome fusion.

  3. Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation.

    Science.gov (United States)

    Shalumon, K T; Sheu, Chialin; Chen, Chih-Hao; Chen, Shih-Heng; Jose, Gils; Kuo, Chang-Yi; Chen, Jyh-Ping

    2018-04-05

    The possibility of endowing an electrospun anti-adhesive barrier membrane with multi-functionality, such as lubrication, prevention of fibroblast attachment and anti-infection and anti-inflammation properties, is highly desirable for the management of post-surgical tendon adhesion. To this end, we fabricated core-shell nanofibrous membranes (CSNMs) with embedded silver nanoparticles (Ag NPs) in the poly(ethylene glycol) (PEG)/poly(caprolactone) (PCL) shell and hyaluronic acid (HA)/ibuprofen in the core. HA imparted a lubrication effect for smooth tendon gliding and reduced fibroblast attachment, while Ag NPs and ibuprofen functioned as anti-infection and anti-inflammation agents, respectively. CSNMs with a PEG/PCL/Ag shell (PPA) and HA core containing 0% (H/PPA), 10% (HI10/PPA), 30% (HI30/PPA) and 50% (HI50/PPA) ibuprofen were fabricated through co-axial electrospinning and assessed through microscopic, spectroscopic, thermal, mechanical and drug release analyses. Considering nutrient passage through the barrier, the microporous CSNMs exerted the same barrier effect but drastically increased the mass transfer coefficients of bovine serum albumin compared with the commercial anti-adhesive membrane SurgiWrap®. Cell attachment/focal adhesion formation of fibroblasts revealed effective reduction of initial cell attachment on the CSNM surface with minimum cytotoxicity (except HI50/PPA). The anti-bacterial effect against both Gram-negative and Gram-positive bacteria was verified to be due to the Ag NPs in the membranes. In vivo studies using H/PPA and HI30/PPA CSNMs and SurgiWrap® in a rabbit flexor tendon rupture model demonstrated the improved efficacy of HI30/PPA CSNMs in reducing inflammation and tendon adhesion formation based on gross observation, histological analysis and functional assays. We conclude that HI30/PPA CSNMs can act as a multifunctional barrier membrane to prevent peritendinous adhesion after tendon surgery. A multi-functional anti-adhesion barrier

  4. Evaluating adhesion reduction efficacy of type I/III collagen membrane and collagen-GAG resorbable matrix in primary flexor tendon repair in a chicken model.

    Science.gov (United States)

    Turner, John B; Corazzini, Rubina L; Butler, Timothy J; Garlick, David S; Rinker, Brian D

    2015-09-01

    Reduction of peritendinous adhesions after injury and repair has been the subject of extensive prior investigation. The application of a circumferential barrier at the repair site may limit the quantity of peritendinous adhesions while preserving the tendon's innate ability to heal. The authors compare the effectiveness of a type I/III collagen membrane and a collagen-glycosaminoglycan (GAG) resorbable matrix in reducing tendon adhesions in an experimental chicken model of a "zone II" tendon laceration and repair. In Leghorn chickens, flexor tendons were sharply divided using a scalpel and underwent repair in a standard fashion (54 total repairs). The sites were treated with a type I/III collagen membrane, collagen-GAG resorbable matrix, or saline in a randomized fashion. After 3 weeks, qualitative and semiquantitative histological analysis was performed to evaluate the "extent of peritendinous adhesions" and "nature of tendon healing." The data was evaluated with chi-square analysis and unpaired Student's t test. For both collagen materials, there was a statistically significant improvement in the degree of both extent of peritendinous adhesions and nature of tendon healing relative to the control group. There was no significant difference seen between the two materials. There was one tendon rupture observed in each treatment group. Surgical handling characteristics were subjectively favored for type I/III collagen membrane over the collagen-GAG resorbable matrix. The ideal method of reducing clinically significant tendon adhesions after injury remains elusive. Both materials in this study demonstrate promise in reducing tendon adhesions after flexor tendon repair without impeding tendon healing in this model.

  5. Kinetics of PTEN-mediated PI(3,4,5)P3 hydrolysis on solid supported membranes.

    Science.gov (United States)

    Liu, Chun; Deb, Sanghamitra; Ferreira, Vinicius S; Xu, Eric; Baumgart, Tobias

    2018-01-01

    Phosphatidylinositides play important roles in cellular signaling and migration. Phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) is an important phosphatidylinositide because it acts as a secondary messenger to trigger cell movement and proliferation. A high level of PI(3,4,5)P3 at the plasma membrane is known to contribute to tumorigenesis. One key enzyme that regulates PI(3,4,5)P3 levels at the plasma membrane is phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which dephosphorylates PI(3,4,5)P3 through hydrolysis to form phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). It has been reported that PI(4,5)P2 is involved in positive feedback in the PI(3,4,5)P3 hydrolysis by PTEN. However, how PI(3,4,5)P3 dephosphorylation by PTEN is regulated, is still under debate. How other PI(3,4,5)P3-binding proteins affect the dephosphorylation kinetics catalyzed by PTEN also remains unclear. Here, we develop a fluorescent-protein biosensor approach to study how PI(3,4,5)P3 dephosphorylation is regulated by PTEN as well as its membrane-mediated feedback mechanisms. Our observation of sigmoidal kinetics of the PI(3,4,5)P3 hydrolysis reaction supports the notion of autocatalysis in PTEN function. We developed a kinetic model to describe the observed reaction kinetics, which allowed us to i) distinguish between membrane-recruitment and allosteric activation of PTEN by PI(4,5)P2, ii) account for the influence of the biosensor on the observed reaction kinetics, and iii) demonstrate that all of these mechanisms contribute to the kinetics of PTEN-mediated catalysis.

  6. Intact transmembrane isoforms of the neural cell adhesion molecule are released from the plasma membrane

    DEFF Research Database (Denmark)

    Olsen, M; Krog, L; Edvardsen, K

    1993-01-01

    . By density-gradient centrifugation it was shown that shed transmembrane NCAM-B was present in fractions of high, as well as low, density, indicating that a fraction of the shed NCAM is associated with minor plasma membrane fragments. Finally, it was shown that isolated soluble NCAM inhibited cell binding......-s1 and NCAM-s2 and the function of soluble NCAM forms were investigated. It was shown that all three soluble forms could be released from brain membranes with M(r) values identical to the three major membrane-associated forms: the large transmembrane 190,000-M(r) form (NCAM-A), the smaller...... intact soluble form from membranes of cells transfected with this isoform. Thus, NCAM-s1 and NCAM-s2 probably represent intact released transmembrane NCAM-A and NCAM-B. The soluble transmembrane forms are likely to exist in vivo, as NCAM-s1 and NCAM-s2 were readily demonstrated in cerebrospinal fluid...

  7. Flip-flop of phospholipids in proteoliposomes reconstituted from detergent extract of chloroplast membranes: kinetics and phospholipid specificity.

    Directory of Open Access Journals (Sweden)

    Archita Rajasekharan

    Full Text Available Eukaryotic cells are compartmentalized into distinct sub-cellular organelles by lipid bilayers, which are known to be involved in numerous cellular processes. The wide repertoire of lipids, synthesized in the biogenic membranes like the endoplasmic reticulum and bacterial cytoplasmic membranes are initially localized in the cytosolic leaflet and some of these lipids have to be translocated to the exoplasmic leaflet for membrane biogenesis and uniform growth. It is known that phospholipid (PL translocation in biogenic membranes is mediated by specific membrane proteins which occur in a rapid, bi-directional fashion without metabolic energy requirement and with no specificity to PL head group. A recent study reported the existence of biogenic membrane flippases in plants and that the mechanism of plant membrane biogenesis was similar to that found in animals. In this study, we demonstrate for the first time ATP independent and ATP dependent flippase activity in chloroplast membranes of plants. For this, we generated proteoliposomes from Triton X-100 extract of intact chloroplast, envelope membrane and thylakoid isolated from spinach leaves and assayed for flippase activity using fluorescent labeled phospholipids. Half-life time of flipping was found to be 6 ± 1 min. We also show that: (a intact chloroplast and envelope membrane reconstituted proteoliposomes can flip fluorescent labeled analogs of phosphatidylcholine in ATP independent manner, (b envelope membrane and thylakoid reconstituted proteoliposomes can flip phosphatidylglycerol in ATP dependent manner, (c Biogenic membrane ATP independent PC flipping activity is protein mediated and (d the kinetics of PC translocation gets affected differently upon treatment with protease and protein modifying reagents.

  8. Effects of fiber density and plasma modification of nanofibrous membranes on the adhesion and growth of HaCaT keratinocytes.

    Science.gov (United States)

    Bacakova, Marketa; Lopot, Frantisek; Hadraba, Daniel; Varga, Marian; Zaloudkova, Margit; Stranska, Denisa; Suchy, Tomas; Bacakova, Lucie

    2015-01-01

    It may be possible to regulate the cell colonization of biodegradable polymer nanofibrous membranes by plasma treatment and by the density of the fibers. To test this hypothesis, nanofibrous membranes of different fiber densities were treated by oxygen plasma with a range of plasma power and exposure times. Scanning electron microscopy and mechanical tests showed significant modification of nanofibers after plasma treatment. The intensity of the fiber modification increased with plasma power and exposure time. The exposure time seemed to have a stronger effect on modifying the fiber. The mechanical behavior of the membranes was influenced by the plasma treatment, the fiber density, and their dry or wet state. Plasma treatment increased the membrane stiffness; however, the membranes became more brittle. Wet membranes displayed significantly lower stiffness than dry membranes. X-ray photoelectron spectroscopy (XPS) analysis showed a slight increase in oxygen-containing groups on the membrane surface after plasma treatment. Plasma treatment enhanced the adhesion and growth of HaCaT keratinocytes on nanofibrous membranes. The cells adhered and grew preferentially on membranes of lower fiber densities, probably due to the larger area of void spaces between the fibers. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Adhesion kinetics of human primary monocytes, dendritic cells, and macrophages: Dynamic cell adhesion measurements with a label-free optical biosensor and their comparison with end-point assays.

    Science.gov (United States)

    Orgovan, Norbert; Ungai-Salánki, Rita; Lukácsi, Szilvia; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Szabó, Bálint; Horvath, Robert

    2016-09-01

    obtained with the high-temporal-resolution Epic BT, but could only provide end-point data. In contrast, complex, nonmonotonic cell adhesion kinetics measured by the high-throughput optical biosensor is expected to open a window on the hidden background of the immune cell-extracellular matrix interactions.

  10. [Clinical application of hydrogel membrane of silicone rubber for preventing adhesion in orthopedics].

    Science.gov (United States)

    Fang, Y E; Shi, T; Mei, B; Yin, Z; Su, J

    1998-09-01

    Grafting hydrogels onto silicone rubber membranes were prepared by radiation technique for medical application. This material is characterized by high purity, hydrophilia, formation of stable hydrogel after water absorption, good biocompatibility, etc. Clinical application was initiated on the basis of animal experiments. The material was used in 47 cases of joint and tendon injuries, in 9 cases of rheumatoid arthritis, and in 4 other cases; totaling 60 cases. All patients were followed up for three and a half years after surgical operation. A general effectiveness of above 86% was noted.

  11. Nano silver entrapped in phospholipids membrane: synthesis, characteristics and antibacterial kinetics.

    Science.gov (United States)

    Barani, Hossein; Montazer, Majid; Samadi, Nasrin; Toliyat, Tayebeh

    2011-05-01

    The antimicrobial property of stabilized silver nanoparticles (AgNPs) with phospholipid membrane was investigated on both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial strains. The influence of phospholipid concentrations on antibacterial kinetics actions of AgNPs was studied with two different methodologies in order to understand the bactericidal and bacteriostatic effects. The bacterial inactivation of synthesized AgNPs fitted well to the Chick-Watson model with a high regression coefficient, R(2) > 0.91. The antibacterial properties of AgNPs depend on the particle size, stabilizer and lecithin concentrations. Only the stabilized AgNPs that have the K(lec/Ag) values of 1 and 2 presented the inhabitation zone, while unstabilized AgNPs agglomerated quickly, settled on the wells and did not diffuse in agar. In addition, the specific coefficient of lethality depends on the lecithin concentration. An increase in lecithin concentration caused multilayer creation on the AgNPs' surface and reduced the release of AgNPs which led to low bacterial killing rate.

  12. Study of Kinetic coefficients of a Membrane Bioreactor (MBR for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ali Naghizadeh

    2013-08-01

    Full Text Available Background & Aims of the Study: In order to design membrane bioreactors (MBR properly, it is essential to comprehend the behavior of microorganisms in such wastewater treatment processes. Materials & Methods: In this study, a lab-scale MBR process was operated to determine the biokinetic coefficients of the MBR system under different MLSS concentrations of 6800, 7000, 7400, and 7800 mg/l and organic loading rates of 0.5 kg COD/m3/day. Results: The results of this study showed that the yield of microorganisms (Y, the endogenous decay coefficient (kd, the maximum specific growth rate (μmax and the saturation constant (Ks were in the range of 0.67 g VSS/g COD, 0.56 d−1, 1.86 d−1 and 6.65 mg COD/l, respectively. Conclusions: The kinetic coefficients in this study can be used to improve the operation and design the MBR system in full scale.

  13. Effects of Cholesterol on the Thermodynamics and Kinetics of Passive Transport of Water through Lipid Membranes.

    Science.gov (United States)

    Issack, Bilkiss B; Peslherbe, Gilles H

    2015-07-23

    While it has long been known that cholesterol reduces the permeability of biological membranes to water, the exact mechanism by which cholesterol influences transmembrane permeation is still unclear. The thermodynamic and kinetic contributions to the transport of water across mixed DPPC/cholesterol bilayers of different composition are thus examined by molecular dynamics simulations. Our analyses show that cholesterol decreases transmembrane permeability to water mainly by altering the thermodynamics of water transport. In particular, the free-energy barrier to permeation is magnified in the dense bilayer interior and the partitioning of water is significantly lowered. The changes are observed to correlate quantitatively well with the cholesterol-dependent density and thickness of the bilayers. In contrast, diffusion coefficients are relatively insensitive to cholesterol concentration, except in the sparsely populated center of the bilayer. Diffusion of water in cholesterol-containing bilayers appears to be related to changes in the free area in the middle of the bilayer and to the solute cross-sectional area in the denser hydrophobic regions. Overall, cholesterol is found to have an inhibitory effect on the permeation of water at all concentrations investigated, although bilayers containing cholesterol concentrations up to 20 mol % display a more dramatic dependence on cholesterol content than at higher concentrations. Our results show that it is possible to quantitatively reproduce the relative effects of cholesterol on lipid bilayer permeability from molecular dynamics simulations.

  14. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  15. Macrophage adhesion on fibronectin evokes an increase in the elastic property of the cell membrane and cytoskeleton: an atomic force microscopy study.

    Science.gov (United States)

    Souza, Samuel T; Agra, Laís C; Santos, Cássio E A; Barreto, Emiliano; Hickmann, Jandir M; Fonseca, Eduardo J S

    2014-12-01

    Interactions between cells and microenvironments are essential to cellular functions such as survival, exocytosis and differentiation. Cell adhesion to the extracellular matrix (ECM) evokes a variety of biophysical changes in cellular organization, including modification of the cytoskeleton and plasma membrane. In fact, the cytoskeleton and plasma membrane are structures that mediate adherent contacts with the ECM; therefore, they are closely correlated. Considering that the mechanical properties of the cell could be affected by cell adhesion-induced changes in the cytoskeleton, the purpose of this study was to investigate the influence of the ECM on the elastic properties of fixed macrophage cells using atomic force microscopy. The results showed that there was an increase (~50%) in the Young's modulus of macrophages adhered to an ECM-coated substrate as compared with an uncoated glass substrate. In addition, cytochalasin D-treated cells had a 1.8-fold reduction of the Young's modulus of the cells, indicating the contribution of the actin cytoskeleton to the elastic properties of the cell. Our findings show that cell adhesion influences the mechanical properties of the plasma membrane, providing new information toward understanding the influence of the ECM on elastic alterations of macrophage cell membranes.

  16. The membrane protein melanoma cell adhesion molecule (MCAM) is a novel tumor marker that stimulates tumorigenesis in hepatocellular carcinoma.

    Science.gov (United States)

    Wang, J; Tang, X; Weng, W; Qiao, Y; Lin, J; Liu, W; Liu, R; Ma, L; Yu, W; Yu, Y; Pan, Q; Sun, F

    2015-11-19

    Yes-associated protein (YAP) is overexpressed and has an oncogenic role in hepatocellular carcinoma (HCC). However, whether membrane protein can serve not only as a tumor marker that reflects YAP function but also as a therapeutic target that stimulates tumorigenesis in HCC remains unknown. Here we report that the membrane protein melanoma cell adhesion molecule (MCAM) was under positive regulation by YAP and was highly elevated in HCC cells. Within the MCAM promoter, we found the presence of a cAMP Response Element (CRE; -32 to -25 nt), which is conserved among species and is essential for YAP- and CREB-dependent regulation. Moreover, the interaction between CREB and YAP at the CRE site was dependent on PTPIY-WW domain interactions. However, MCAM expression was low and could not be regulated by YAP in breast and colon cancer cells because of the low levels of the acetyltransferase p300. In HCC cells, high levels of p300 facilitated the binding of YAP to the MCAM promoter, which in turn enhanced histone acetylation and polymerase II recruitment through the dissociation of the deacetylase Sirt1. These results suggest that MCAM is an HCC-specific target of YAP. In clinical serum samples, we found that the serum levels of MCAM were highly elevated in patients with HCC compared with healthy controls and with patients with cirrhosis, hepatitis, colon cancer and breast cancer. MCAM levels were shown to be a slightly better indicator than serum alpha-fetoprotein for predicting HCC. We further demonstrated that MCAM is essential for the survival and transformation of HCC. Mechanistically, MCAM induced translation initiation and the transcriptional activities of c-Jun/c-Fos. In addition, AKT activation had an essential role in the MCAM-promoted binding of eukaryotic initiation factor 4E to c-Jun/c-Fos mRNA. In conclusion, we demonstrated that MCAM may be a potential tumor marker and therapeutic target for the diagnosis and treatment of HCC.

  17. ASM1-based activated sludge model with biopolymer kinetics for integrated simulation of membrane bioreactors for wastewater treatment

    OpenAIRE

    Janus, Tomasz; Ulanicki, Bogumil

    2015-01-01

    This paper presents an activated sludge model suitable for modelling membrane bioreactors (MBRs) for wastewater treatment. The model, later referred to as combined EPS and SMP production ASM1-based model (CES-ASM1), extends Activated Sludge Model No. 1 (ASM1) with biokinetics of two types of bacterial biopolymers: soluble microbial products (SMP) and extracellular polymeric substances (EPS). The biopolymer kinetics in CES-ASM1 are, in their majority, borrowed from Laspidou and Rittmann[1] ...

  18. Elucidation of the Oxygen Surface Kinetics in a Coated Dual-Phase Membrane for Enhancing Oxygen Permeation Flux.

    Science.gov (United States)

    Na, Beom Tak; Park, Jeong Hwan; Park, Jong Hyuk; Yu, Ji Haeng; Joo, Jong Hoon

    2017-06-14

    The dual-phase membrane has received much attention as the solution to the instability of the oxygen permeation membrane. It has been reported that the oxygen flux of the dual-phase membrane is greatly enhanced by the active coating layer. However, there has been little discussion about the enhancement mechanism by surface coating in the dual-phase membrane. This study investigates the oxygen flux of the Ce 0.9 Gd 0.1 O 2-δ -La 0.7 Sr 0.3 MnO 3±δ (GDC 80 vol %/LSM 20 vol %) composite membrane depending on the oxygen partial pressure (P O 2 ) to elucidate the mechanism of enhanced oxygen flux by the surface modification in the fluorite-rich phase dual-phase membrane. The oxygen permeation resistances were obtained from the oxygen flux as a function of P O 2 using the oxygen permeation model. The surface exchange coefficient (k) and the bulk diffusion coefficient (D) were calculated from these resistances. According to the calculated k and D values, we concluded that the active coating layer (La 0.6 Sr 0.4 CoO 3-δ ) significantly increased the k value of the membrane. Furthermore, the surface exchange reaction on the permeate side was more sluggish than that at the feed side under operating conditions (feed: 0.21 atm/permeate side: 4.7 × 10 -4 atm). Therefore, the enhancement of the oxygen surface exchange kinetics at the permeate side is more important in improving the oxygen permeation flux of the thin film-based fluorite-rich dual-phase membrane. These results provide new insight about the function of the surface coating to enhance the oxygen permeation flux of the dual-phase membrane.

  19. Arp2/3 inhibition induces amoeboid-like protrusions in MCF10A epithelial cells by reduced cytoskeletal-membrane coupling and focal adhesion assembly.

    Directory of Open Access Journals (Sweden)

    Yvonne Beckham

    Full Text Available Here we demonstrate that Arp2/3 regulates a transition between mesenchymal and amoeboid protrusions in MCF10A epithelial cells. Using genetic and pharmacological means, we first show Arp2/3 inhibition impairs directed cell migration. Arp2/3 inhibition results in a dramatically impaired cell adhesion, causing deficient cell attachment and spreading to ECM as well as an 8-fold decrease in nascent adhesion assembly at the leading edge. While Arp2/3 does not play a significant role in myosin-dependent adhesion growth, mature focal adhesions undergo large scale movements against the ECM suggesting reduced coupling to the ECM. Cell edge protrusions occur at similar rates when Arp2/3 is inhibited but their morphology is dramatically altered. Persistent lamellipodia are abrogated and we observe a markedly increased incidence of blebbing and unstable pseuodopods. Micropipette-aspiration assays indicate that Arp2/3-inhibited cells have a weak coupling between the cell cortex and the plasma membrane, and suggest a potential mechanism for increased pseudopod and bleb formation. Pseudopods are not sensitive to reduced in formin or myosin II activity. Collectively, these results indicate that Arp2/3 is not necessary for rapid protrusion of the cell edge but plays a crucial role in assembling focal adhesions required for its stabilization.

  20. Arp2/3 inhibition induces amoeboid-like protrusions in MCF10A epithelial cells by reduced cytoskeletal-membrane coupling and focal adhesion assembly.

    Science.gov (United States)

    Beckham, Yvonne; Vasquez, Robert J; Stricker, Jonathan; Sayegh, Kareem; Campillo, Clement; Gardel, Margaret L

    2014-01-01

    Here we demonstrate that Arp2/3 regulates a transition between mesenchymal and amoeboid protrusions in MCF10A epithelial cells. Using genetic and pharmacological means, we first show Arp2/3 inhibition impairs directed cell migration. Arp2/3 inhibition results in a dramatically impaired cell adhesion, causing deficient cell attachment and spreading to ECM as well as an 8-fold decrease in nascent adhesion assembly at the leading edge. While Arp2/3 does not play a significant role in myosin-dependent adhesion growth, mature focal adhesions undergo large scale movements against the ECM suggesting reduced coupling to the ECM. Cell edge protrusions occur at similar rates when Arp2/3 is inhibited but their morphology is dramatically altered. Persistent lamellipodia are abrogated and we observe a markedly increased incidence of blebbing and unstable pseuodopods. Micropipette-aspiration assays indicate that Arp2/3-inhibited cells have a weak coupling between the cell cortex and the plasma membrane, and suggest a potential mechanism for increased pseudopod and bleb formation. Pseudopods are not sensitive to reduced in formin or myosin II activity. Collectively, these results indicate that Arp2/3 is not necessary for rapid protrusion of the cell edge but plays a crucial role in assembling focal adhesions required for its stabilization.

  1. Ric-8a, a guanine nucleotide exchange factor for heterotrimeric G proteins, regulates bergmann glia-basement membrane adhesion during cerebellar foliation.

    Science.gov (United States)

    Ma, Shang; Kwon, Hyo Jun; Huang, Zhen

    2012-10-24

    The cerebellum consists of an intricate array of lobules that arises during the process of foliation. Foliation not only increases surface area, but may also facilitate organization of cerebellar neural circuitry. Defects in cerebellar foliation are associated with a number of diseases. Yet, little is known about how foliation, a process involving large-scale and simultaneous movement of several different cell types, is coordinated by cell-cell signaling at the molecular level. Here we show that Ric-8a, a guanine nucleotide exchange factor in the G-protein-coupled receptor pathway, is specifically required in Bergmann glia during cerebellar foliation. We find that ric-8a mutation in mice results in disorganized Bergmann glial scaffolding, defective granule cell migration, and disrupted Purkinje cell positioning. These abnormalities result from primary defects in Bergmann glia since mutations in granule cells do not show similar effects. They first arise during late embryogenesis, at the onset of foliation, when ric-8a mutant Bergmann glia fail to maintain adhesion to the basement membrane specifically at emerging fissures. This suggests that Ric-8a is essential for the enhanced Bergmann glia-basement membrane adhesion required for fissure formation. Indeed, we find that ric-8a-deficient cerebellar glia show decreased affinity for basement membrane components. We also find that weakening Bergmann glia-basement membrane interaction by β1 integrin deletion results in a similar phenotype. These results thus reveal a novel role of Ric-8a in modulating Bergmann glia-basement membrane adhesion during foliation, and provide new insights into the signaling pathways that coordinate cellular movement during cerebellar morphogenesis.

  2. Spatial distribution of mechanical forces and ionic flux in electro-kinetic instability near a permselective membrane

    Science.gov (United States)

    Magnico, Pierre

    2018-01-01

    This paper is devoted to the numerical investigation of electro-kinetic instability in a polarization layer next to a cation-exchange membrane. An analysis of some properties of the electro-kinetic instability is followed by a detailed description of the fluid flow structure and of the spatial distribution of the ionic flux. In this aim, the Stokes-Poisson-Nernst-Planck equation set is solved until the Debye length scale. The results show that the potential threshold of the marginal instability and the current density depend on the logarithm of the concentration at the membrane surface. The size of the stable vortices seems to be an increasing function of the potential drop. The fluid motion is induced by the electric force along the maximum concentration in the extended space charge (ESC) region and by the pressure force in the region around the inner edge of the ESC layer. Two spots of kinetic energy are located in the ESC region and between the vortices. The cationic motion, controlled by the electric field and the convection, presents counter-rotating vortices in the stagnation zone located in the fluid ejection region. The anion transport is also characterized by two independent layers which contain counter-rotating vortices. The first one is in contact with the stationary reservoir. In the second layer against the membrane, the convection, and the electric field control, the transversal motion, the Fickian diffusion, and the convection are dominant in the longitudinal direction. Finally, the longitudinal disequilibrium of potential and pressure along the membrane is analyzed.

  3. Fine structure of bacterial adhesion to the epithelial cell membranes of the filiform papillae of tongue and palatine mucosa of rodents: a morphometric, TEM, and HRSEM study.

    Science.gov (United States)

    Watanabe, Ii-Sei; Ogawa, Koichi; Cury, Diego Pulzatto; Dias, Fernando José; Sosthenes, Marcia Consentino Kronka; Issa, João Paulo Mardegan; Iyomasa, Mamie Mizusaki

    2013-12-01

    The palatine mucosa and filiform papillae of the dorsal tongue mucosae of rodents were examined using transmission electron microscopy (TEM) and high resolution scanning electron microscopy (HRSEM). In the HRSEM method, the samples were fixed in 2% osmium tetroxide, dehydrated in alcohol, critical point-dried, and coated with gold-palladium. In addition, the HRSEM technique was used for morphometric analysis (length, width, and length/width ratio of cocci and bacilli). For the TEM method, the tissues were fixed in modified Karnovsky solution (2.5% glutaraldehyde, 2% formalin in 0.1M sodium phosphate buffer, pH 7.4) and embedded in Spurr resin. The results demonstrated that there are thick polygonal keratinized epithelial cells where groups of bacteria are revealed in three-dimensional images on the surface of filiform papillae in these animals. The bacterial membranes are randomly attached to the microplicae surface of epithelial cells. Morphometrics showed higher values of length and width of cocci in newborn (0 day) as compared to newborn (7 days) and adults animals, the bacilli showed no differences in these measurements. At high magnification, the TEM images revealed the presence of glycocalyx microfilaments that constitute a fine adhesion area between bacterial membranes and the membranes of epithelial microplicae cells. In conclusion, the present data revealed the fine fibrillar structures of bacteria that facilitate adhesion to the epithelial cell membranes of the oral cavity and morphometric changes in newborn (0 day) rats as compared with other periods. Copyright © 2013 Wiley Periodicals, Inc.

  4. Coordination kinetics of different metal ions with the amidoximated polyacrylonitrile nanofibrous membranes and catalytic behaviors of their complexes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fu; Dong, Yong Chun; Kang, Wei Min; Cheng, Bowen; Qu, Xiang; Cui, Guixin [School of Textiles, Tianjin Polytechnic University, Tianjin (China)

    2016-12-15

    Two transition metal ions (Fe{sup 3+} and Cu{sup 2+}) and a rare earth metal ion (Ce{sup 3+}) were selected to coordinate with amidoximated polyacrylonitrile (PAN) nanofibrous membrane for preparing three metal modified PAN nanofibrous membrane complexes (M-AO-n-PANs, M = Fe, Cu, or Ce) as the heterogeneous Fenton catalysts for the dye degradation in water under visible irradiation. The coordination kinetics of three metal ions with modified PAN nanofibrous membranes was studied and the catalytic properties of the resulting complexes were also compared. The results indicated that increasing metal ion concentrations in solution or higher coordination temperature led to a significant increase in metal content, particularly in Fe and Cu contents of the complexes. Their coordination process could be described using Langmuir isotherm and pseudo-second-order kinetic equations. Moreover, Fe-AO-n-PAN had the best photocatalytic efficiency for the dye degradation in acidic medium, but a lower photocatalytic activity than Cu-AO-n-PAN in alkali medium.

  5. A kinetic model for voltage-gated ion channels in cell membranes based on the path integral method

    Science.gov (United States)

    Erdem, Rıza; Ekiz, Cesur

    2005-04-01

    A kinetic model of cell membrane ion channels is proposed based on the path integral method. From the Pauli-type master equations valid on a macroscopic time scale, we derive a first-order differential equation or the kinetic equation which governs temporal evolution of the channel system along the paths of extreme probability. Using known parameters for the batrachotoxin (BTX)-modified sodium channels in squid giant axon, the time dependence of the channel activation and the voltage dependence of the corresponding time constants ( τ) are examined numerically. It is found that the channel activation relaxes to the steady (or equilibrium)-state values for a given membrane potential and the corresponding time constant reaches a maximum at a certain potential and thereafter decreases in magnitude as the membrane potential increases. A qualitative comparison between these results and the results of Hodgkin-Huxley theory, path probability method and thermodynamic models as well as the cut-open axon technique is presented. Good agreement is achieved.

  6. The effect of photopolymerization on the degree of conversion, polymerization kinetic, biaxial flexure strength, and modulus of self-adhesive resin cements.

    Science.gov (United States)

    Aguiar, Thaiane R; de Oliveira, Michele; Arrais, César A G; Ambrosano, Glaucia M B; Rueggeberg, Frederick; Giannini, Marcelo

    2015-02-01

    Understanding the effect of the degree of conversion on the mechanical properties of auto- and dual-polymerizing self-adhesive resin cements leads to a better estimation of their performance in different clinical scenarios. The purpose of this study was to evaluate the effect of photopolymerization on the degree of conversion (DC) and polymerization kinetic of 4 dual-polymerized resin cements, 20 minutes after mixing, and its effects on the mechanical properties (biaxial flexural strength [FS] and modulus [FM]) after short-term aging. Conventional (RelyX ARC and Clearfil Esthetic Cement) and self-adhesive resin cements (RelyX Unicem and Clearfil SA Cement) were applied to a Fourier infrared spectrometer to assess the DC (n=5) under the following 3 polymerization conditions: direct light exposure (dual-polymerizing mode), exposure through the prepolymerized disk, or autopolymerizing. The polymerization kinetic was recorded for 20 minutes. Then, disk-shaped specimens (n=11) were prepared to evaluate the effect of polymerization on the FS and FM in both extreme polymerization conditions (dual-polymerizing or autopolymerizing). Data were statistically analyzed by 2-way repeated measure ANOVA (DC) and by 2-way ANOVA (FS and FM), followed by the Tukey-Kramer post hoc test (α=.05). Autopolymerizing groups exhibited reduced DC means, whereas intermediate values were observed when resin cements were polymerized through the disk. All groups exhibited higher DC at the end of 20 minutes. The polymerization kinetic revealed a rising curve, and materials, when directly photopolymerized, reached a plateau immediately after light exposure. Regarding the flexural biaxial testing, most of the resin cements were affected by polymerization mode and differences among groups were product dependent. The resin cements achieved immediate higher DC and mechanical properties when photopolymerized. The total absence of photoactivation may still impair their mechanical properties even

  7. Osteoblasts Interaction with PLGA Membranes Functionalized with Titanium Film Nanolayer by PECVD. In vitro Assessment of Surface Influence on Cell Adhesion during Initial Cell to Material Interaction

    Science.gov (United States)

    Terriza, Antonia; Vilches-Pérez, José I.; González-Caballero, Juan L.; de la Orden, Emilio; Yubero, Francisco; Barranco, Angel; Gonzalez-Elipe, Agustín R.; Vilches, José; Salido, Mercedes

    2014-01-01

    New biomaterials for Guided Bone Regeneration (GBR), both resorbable and non-resorbable, are being developed to stimulate bone tissue formation. Thus, the in vitro study of cell behavior towards material surface properties turns a prerequisite to assess both biocompatibility and bioactivity of any material intended to be used for clinical purposes. For this purpose, we have developed in vitro studies on normal human osteoblasts (HOB®) HOB® osteoblasts grown on a resorbable Poly (lactide-co-glycolide) (PLGA) membrane foil functionalized by a very thin film (around 15 nm) of TiO2 (i.e., TiO2/PLGA membranes), designed to be used as barrier membrane. To avoid any alteration of the membranes, the titanium films were deposited at room temperature in one step by plasma enhanced chemical vapour deposition. Characterization of the functionalized membranes proved that the thin titanium layer completely covers the PLGA foils that remains practically unmodified in their interior after the deposition process and stands the standard sterilization protocols. Both morphological changes and cytoskeletal reorganization, together with the focal adhesion development observed in HOB osteoblasts, significantly related to TiO2 treated PLGA in which the Ti deposition method described has revealed to be a valuable tool to increase bioactivity of PLGA membranes, by combining cell nanotopography cues with the incorporation of bioactive factors. PMID:28788538

  8. Osteoblasts Interaction with PLGA Membranes Functionalized with Titanium Film Nanolayer by PECVD. In vitro Assessment of Surface Influence on Cell Adhesion during Initial Cell to Material Interaction

    Directory of Open Access Journals (Sweden)

    Antonia Terriza

    2014-03-01

    Full Text Available New biomaterials for Guided Bone Regeneration (GBR, both resorbable and non-resorbable, are being developed to stimulate bone tissue formation. Thus, the in vitro study of cell behavior towards material surface properties turns a prerequisite to assess both biocompatibility and bioactivity of any material intended to be used for clinical purposes. For this purpose, we have developed in vitro studies on normal human osteoblasts (HOB® HOB® osteoblasts grown on a resorbable Poly (lactide-co-glycolide (PLGA membrane foil functionalized by a very thin film (around 15 nm of TiO2 (i.e., TiO2/PLGA membranes, designed to be used as barrier membrane. To avoid any alteration of the membranes, the titanium films were deposited at room temperature in one step by plasma enhanced chemical vapour deposition. Characterization of the functionalized membranes proved that the thin titanium layer completely covers the PLGA foils that remains practically unmodified in their interior after the deposition process and stands the standard sterilization protocols. Both morphological changes and cytoskeletal reorganization, together with the focal adhesion development observed in HOB osteoblasts, significantly related to TiO2 treated PLGA in which the Ti deposition method described has revealed to be a valuable tool to increase bioactivity of PLGA membranes, by combining cell nanotopography cues with the incorporation of bioactive factors.

  9. First study on gene expression of cement proteins and potential adhesion-related genes of a membranous-based barnacle as revealed from Next-Generation Sequencing technology

    KAUST Repository

    Lin, Hsiu Chin

    2013-12-12

    This is the first study applying Next-Generation Sequencing (NGS) technology to survey the kinds, expression location, and pattern of adhesion-related genes in a membranous-based barnacle. A total of 77,528,326 and 59,244,468 raw sequence reads of total RNA were generated from the prosoma and the basis of Tetraclita japonica formosana, respectively. In addition, 55,441 and 67,774 genes were further assembled and analyzed. The combined sequence data from both body parts generates a total of 79,833 genes of which 47.7% were shared. Homologues of barnacle cement proteins - CP-19K, -52K, and -100K - were found and all were dominantly expressed at the basis where the cement gland complex is located. This is the main area where transcripts of cement proteins and other potential adhesion-related genes were detected. The absence of another common barnacle cement protein, CP-20K, in the adult transcriptome suggested a possible life-stage restricted gene function and/or a different mechanism in adhesion between membranous-based and calcareous-based barnacles. © 2013 © 2013 Taylor & Francis.

  10. A combined kinetic push and thermodynamic pull as driving forces for outer membrane protein sorting and folding in bacteria.

    Science.gov (United States)

    Fleming, Karen G

    2015-10-05

    In vitro folding studies of outer membrane beta-barrels have been invaluable in revealing the lipid effects on folding rates and efficiencies as well as folding free energies. Here, the biophysical results are summarized, and these kinetic and thermodynamic findings are considered in terms of the requirements for folding in the context of the cellular environment. Because the periplasm lacks an external energy source the only driving forces for sorting and folding available within this compartment are binding or folding free energies and their associated rates. These values define functions for periplasmic chaperones and suggest a biophysical mechanism for the BAM complex. © 2015 The Author(s).

  11. Kinetic stability and membrane structure of liposomes during in vitro infant intestinal digestion: Effect of cholesterol and lactoferrin.

    Science.gov (United States)

    Liu, Weilin; Wei, Fuqiang; Ye, Aiqian; Tian, Mengmeng; Han, Jianzhong

    2017-09-01

    The effects of cholesterol and lactoferrin on the kinetic stability and membrane structural integrity of negatively charged liposomes under in vitro infant intestinal digestion conditions were elucidated using dynamic light scattering, pH-stat titration, Fourier transform infrared spectroscopy, and pyrene steady state fluorescence probes. The liposomes had a smaller particle diameter, a wider size distribution, and a greater negative charge after digestion. The incorporation of cholesterol into the phospholipid bilayers resulted in a more ordered conformation in the aliphatic tail region and reduced micropolarity, indicating that cholesterol can improve the structural stability of liposomal membranes against intestinal environmental stress. Lactoferrin coverage facilitated the release of free fatty acids and increased the microfluidity of the bilayers, reducing the structural integrity of the liposomes. This study provides useful information on the design of liposomes and other microcapsules with improved and controlled release properties during digestion for particular groups of people. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Membrane Permeabilization in Relation to Inactivation Kinetics of Lactobacillus Species due to Pulsed Electric Fields

    Science.gov (United States)

    Wouters, Patrick C.; Bos, Ad P.; Ueckert, Joerg

    2001-01-01

    Membrane permeabilization due to pulsed electric field (PEF) treatment of gram-positive Lactobacillus cells was investigated by using propidium iodide uptake and single-cell analysis with flow cytometry. Electric field strength, energy input, treatment time, and growth phase affected membrane permeabilization of Lactobacillus plantarum during PEF treatment. A correlation between PEF inactivation and membrane permeabilization of L. plantarum cells was demonstrated, whereas no relationship was observed between membrane permeabilization and heat inactivation. The same results were obtained with a Lactobacillus fermentum strain, but the latter organism was more PEF resistant and exhibited less membrane permeabilization, indicating that various bacteria have different responses to PEF treatment. While membrane permeabilization was the main factor involved in the mechanism of inactivation, the growth phase and the acidity of the environment also influenced inactivation. By using flow cytometry it was possible to sort cells in the L. plantarum population based on different cell sizes and shapes, and the results were confirmed by image analysis. An apparent effect of morphology on membrane permeabilization was observed, and larger cells were more easily permeabilized than smaller cells. In conclusion, our results indicate that the ability of PEF treatment to cause membrane permeabilization is an important factor in determining inactivation. This finding should have an effect on the final choice of the processing parameters used so that all microorganisms can be inactivated and, consequently, on the use of PEF treatment as an alternative method for preserving food products. PMID:11425727

  13. Dynamics of Bio-Polymeric Brushes Growing from a Cellular Membrane: Tentative Modelling of the Actin Turnover within an Adhesion Unit; the Podosome.

    Science.gov (United States)

    Biben, Thierry; Géminard, Jean-Christophe; Melo, Francisco

    2005-01-01

    Podosomes are involved in the adhesion process of various cells to a solid substrate. They have been proven to consist of a dense actin core surrounded by an actin cloud. The podosomes, which nucleate when the cell comes in the vicinity of a substrate, contribute to link the membrane to the solid surface, but rather than frozen links, collective dynamical behaviors are experimentally observed. Depending on the differentiation stage, podosomes assemble and form clusters, rings or belts. Considering the dynamics of a polymeric brush, we design a simple model aiming at the description of a single podosome, the basic unit of these complex adhesion-structures and compare our theoretical conclusions to recent experimental results. Particularly, we explain, by solving the diffusion problem around the podosome, why the structure is likely to have a finite life-span.

  14. In-vitro adhesion of endometrium to autologous peritoneal membranes: effect of the cycle phase and the stage of endometriosis.

    Science.gov (United States)

    Debrock, Sophie; Vander Perre, Sarah; Meuleman, Christel; Moerman, Philippe; Hill, Joseph A; D'Hooghe, Thomas M

    2002-10-01

    Endometrium can adhere to autologous peritoneum. This study was undertaken to determine the effect of the menstrual cycle phase and the presence and stage of endometriosis on in-vitro adhesion of endometrium onto autologous peritoneum. This was performed in an academic medical research centre. Sixty-seven subfertile women with a visually normal pelvis (n = 18) and with biopsy-proven endometriosis (n = 49) were included. Endometrial and peritoneal biopsies were obtained at laparoscopy during menstrual, follicular and luteal phase. Endometrium was cultured in vitro with autologous peritoneum, followed by fixation, paraffin embedding, serial sectioning, hematoxylin-eosin and immunohistochemical staining. Endometrial-peritoneal adhesion was evaluated using light microscopy. Endometrial-peritoneal adhesion was observed in approximately 80% of the adhesion assays and was not affected by the phase of the cycle, or by the presence and stage of endometriosis. The continuity of the mesothelial layer was disrupted at the attachment sites. Epithelialization was observed along the edges to integrate the endometrial implant. After adhesion, histological changes were observed within and below the implant. Endometrium obtained during menstrual, follicular or luteal phase appears to have a similar potential to implant in vitro on autologous peritoneum, and this adhesion process is not affected by the stage of endometriosis.

  15. A structural and kinetic link between membrane association and amyloid fibril formation of α-Synuclein

    OpenAIRE

    Heise, Henrike; Etzkorn, Manuel; Hoyer, Wolfgang; Buell, Alexander; Strodel, Birgit; Willbold, Dieter; Shaykhalishahi, Hamed; Poojari, Chetan; Uluca, Boran; Wördehoff, Michael; Viennet, Thibault

    2017-01-01

    The protein α-Synuclein (αS) is linked to Parkinson's disease through its abnormal aggregation, which is thought to involve an interplay between cytosolic and membrane-bound forms of αS. Therefore, better insights into the molecular determinants of membrane association and their implications for protein aggregation may help deciphering the pathogenesis of Parkinson's disease. Following previous studies using micelles and vesicles, we present a comprehensive study of αS interaction with phosph...

  16. Disposable micro-fluidic biosensor array for online parallelized cell adhesion kinetics analysis on quartz crystal resonators

    DEFF Research Database (Denmark)

    Cama, G.; Jacobs, T.; Dimaki, Maria

    2010-01-01

    among all the sensors of the array. As well, dedicated sensor interface electronics were developed and optimized for fast spectra acquisition of all 16 QCRs with a miniaturized impedance analyzer. This allowed performing cell cultivation experiments for the observation of fast cellular reaction kinetics...

  17. Continuous esterification to produce biodiesel by SPES/PES/NWF composite catalytic membrane in flow-through membrane reactor: experimental and kinetic studies.

    Science.gov (United States)

    Shi, Wenying; He, Benqiao; Cao, Yuping; Li, Jianxin; Yan, Feng; Cui, Zhenyu; Zou, Zhiqun; Guo, Shiwei; Qian, Xiaomin

    2013-02-01

    A novel composite catalytic membrane (CCM) was prepared from sulfonated polyethersulfone (SPES) and polyethersulfone (PES) blend supported by non-woven fabrics, as a heterogeneous catalyst to produce biodiesel from continuous esterification of oleic acid with methanol in a flow-through mode. A kinetic model of esterification was established based on a plug-flow assumption. The effects of the CCM structure (thickness, area, porosity, etc.), reaction temperature and the external and internal mass transfer resistances on esterification were investigated. The results showed that the CCM structure had a significant effect on the acid conversion. The external mass transfer resistance could be neglected when the flow rate was over 1.2 ml min(-1). The internal mass transfer resistance impacted on the conversion when membrane thickness was over 1.779 mm. An oleic acid conversion kept over 98.0% for 500 h of continuous running. The conversions obtained from the model are in good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Confining domains lead to reaction bursts: reaction kinetics in the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Ziya Kalay

    Full Text Available Confinement of molecules in specific small volumes and areas within a cell is likely to be a general strategy that is developed during evolution for regulating the interactions and functions of biomolecules. The cellular plasma membrane, which is the outermost membrane that surrounds the entire cell, was considered to be a continuous two-dimensional liquid, but it is becoming clear that it consists of numerous nano-meso-scale domains with various lifetimes, such as raft domains and cytoskeleton-induced compartments, and membrane molecules are dynamically trapped in these domains. In this article, we give a theoretical account on the effects of molecular confinement on reversible bimolecular reactions in a partitioned surface such as the plasma membrane. By performing simulations based on a lattice-based model of diffusion and reaction, we found that in the presence of membrane partitioning, bimolecular reactions that occur in each compartment proceed in bursts during which the reaction rate is sharply and briefly increased even though the asymptotic reaction rate remains the same. We characterized the time between reaction bursts and the burst amplitude as a function of the model parameters, and discussed the biological significance of the reaction bursts in the presence of strong inhibitor activity.

  19. H2-assisted CO2 thermochemical reduction on La0.9Ca0.1FeO3-δ membranes: a kinetics study

    KAUST Repository

    Wu, Xiao-Yu

    2017-11-04

    Kinetics data for CO2 thermochemical reduction in an isothermal membrane reactor is required to identify the rate-limiting steps. Here, we report a detailed reaction kinetics study on this process supported by an La0.9Ca0.1FeO3-δ (LCF-91) membrane. The dependence of CO2 reduction rate on various operating conditions is examined such as CO2 concentration on the feed side, fuel concentrations on the sweep side and temperatures. CO2 reduction rate is proportional to the oxygen flux across the membrane, and the measured maximum fluxes are 0.191 and 0.164 μmol cm-2 s-1 with 9.5% H2 and 11.6% CO on the sweep side at 990oC, respectively. Fuel is used to maintain the chemical potential gradient across the membrane and CO is used by construction to derive the surface reaction kinetics. This membrane also exhibits stable performances for 106 hours. A resistance-network model is developed to describe the oxygen transport process and the kinetics data are parameterized using the experimental values. The model shows a transition of the rate limiting step between the surface reactions on the feed side and the sweep side depending on the operating conditions.

  20. Relationships between membrane water molecules and Patman equilibration kinetics at temperatures far above the phosphatidylcholine melting point.

    Science.gov (United States)

    Vaughn, Alexandra R; Bell, Thomas A; Gibbons, Elizabeth; Askew, Caitlin; Franchino, Hannabeth; Hirsche, Kelsey; Kemsley, Linea; Melchor, Stephanie; Moulton, Emma; Schwab, Morgan; Nelson, Jennifer; Bell, John D

    2015-04-01

    The naphthalene-based fluorescent probes Patman and Laurdan detect bilayer polarity at the level of the phospholipid glycerol backbone. This polarity increases with temperature in the liquid-crystalline phase of phosphatidylcholines and was observed even 90°C above the melting temperature. This study explores mechanisms associated with this phenomenon. Measurements of probe anisotropy and experiments conducted at 1M NaCl or KCl (to reduce water permittivity) revealed that this effect represents interactions of water molecules with the probes without proportional increases in probe mobility. Furthermore, comparison of emission spectra to Monte Carlo simulations indicated that the increased polarity represents elevation in probe access to water molecules rather than increased mobility of relevant bilayer waters. Equilibration of these probes with the membrane involves at least two steps which were distinguished by the membrane microenvironment reported by the probe. The difference in those microenvironments also changed with temperature in the liquid-crystalline phase in that the equilibrium state was less polar than the initial environment detected by Patman at temperatures near the melting point, more polar at higher temperatures, and again less polar as temperature was raised further. Laurdan also displayed this level of complexity during equilibration, although the relationship to temperature differed quantitatively from that experienced by Patman. This kinetic approach provides a novel way to study in molecular detail basic principles of what happens to the membrane environment around an individual amphipathic molecule as it penetrates the bilayer. Moreover, it provides evidence of unexpected and interesting membrane behaviors far from the phase transition. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Kinetic aspects of Donnan membrane technique for measuring free trace cation concentration

    NARCIS (Netherlands)

    Weng, L.P.; Riemsdijk, van W.H.; Temminghoff, E.J.M.

    2005-01-01

    Addition of ion complexation ligands in the acceptor solution in the Donnan membrane technique (DMT) can lower its detection limit for free metal ion concentration in natural samples. In this paper, the influence of added ligands on the transport behavior of trace ions in DMT was studied using

  2. Sensing pH via p-cyanophenylalanine fluorescence: Application to determine peptide pKa and membrane penetration kinetics.

    Science.gov (United States)

    Pazos, Ileana M; Ahmed, Ismail A; Berríos, Mariana I León; Gai, Feng

    2015-08-15

    We expand the spectroscopic utility of a well-known infrared and fluorescence probe, p-cyanophenylalanine, by showing that it can also serve as a pH sensor. This new application is based on the notion that the fluorescence quantum yield of this unnatural amino acid, when placed at or near the N-terminal end of a polypeptide, depends on the protonation status of the N-terminal amino group of the peptide. Using this pH sensor, we are able to determine the N-terminal pKa values of nine tripeptides and also the membrane penetration kinetics of a cell-penetrating peptide. Taken together, these examples demonstrate the applicability of using this unnatural amino acid fluorophore to study pH-dependent biological processes or events that accompany a pH change. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Kinetics of the lamellar gel-fluid transition in phosphatidylcholine membranes in the presence of sugars

    Energy Technology Data Exchange (ETDEWEB)

    Lenné, Thomas; Garvey, Christopher J.; Koster, Karen L.; Bryant, Gary [ANSTO; (USD); (RMIT)

    2014-09-24

    Phase diagrams are presented for dipalmitoylphosphatidylcholine (DPPC) in the presence of sugars (sucrose) over a wide range of relative humidities (RHs). The phase information presented here, determined by small angle X-ray scattering (SAXS), is shown to be consistent with previous results achieved by differential scanning calorimetry (DSC). Both techniques show a significant effect of sucrose concentration on the phase behaviour of this phospholipid bilayer. An experimental investigation into the effect of sugars on the kinetic behaviour of the gel to fluid transition is also presented showing that increasing the sugar content appears to slightly increase the rate at which the transition occurs.

  4. Kinetics of the lamellar gel-fluid transition in phosphatidylcholine membranes in the presence of sugars

    Energy Technology Data Exchange (ETDEWEB)

    Lenné, Thomas; Garvey, Christopher J; Koster, Karen L; Bryant, Gary [ANSTO; (USD); (RMIT)

    2010-08-04

    Phase diagrams are presented for dipalmitoylphosphatidylcholine (DPPC) in the presence of sugars (sucrose) over a wide range of relative humidities (RHs). The phase information presented here, determined by small angle X-ray scattering (SAXS), is shown to be consistent with previous results achieved by differential scanning calorimetry (DSC). Both techniques show a significant effect of sucrose concentration on the phase behaviour of this phospholipid bilayer. An experimental investigation into the effect of sugars on the kinetic behaviour of the gel to fluid transition is also presented showing that increasing the sugar content appears to slightly increase the rate at which the transition occurs.

  5. Binding kinetics of Clostridium difficile toxins A and B to intestinal brush border membranes from infant and adult hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Rolfe, R.D. (Texas Tech Univ. Health Sciences Center, Lubbock (USA))

    1991-04-01

    This study was undertaken to determine if the relative resistance of neonates and infants to Clostridium difficile-associated intestinal disease can be related to age-dependent differences in intestinal receptors for C. difficile toxins A and B. Brush border membranes (BBMs) from the small intestines of adult and infant hamsters were examined for their ability to bind radiolabeled toxins A and B. (125I)toxin A bound to both infant and adult hamster BBMs at physiological temperature, whereas (125I)toxin B did not bind to the BBMs under any of the conditions examined. The number of (125I)toxin A molecules bound at saturation was approximately 4 x 10(10) per micrograms of membrane protein for adult BBMs and 1 x 10(11) per micrograms of membrane protein for infant BBMs. Scatchard plot analysis suggested the presence of a single class of toxin A binding sites on both infant and adult hamster BBMs. Maximal binding capacity and Kd values were 0.63 pmol/mg of protein and 66.7 nM, respectively, for the infant BBMs, and 0.24 pmol/mg of protein and 27 nM, respectively, for the adult BBMs. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analyses of extracted BBM proteins revealed differences in the proteins of infant and adult BBMs. However, there were not any detectable differences in the protein bands which bound (125I)toxin A between infant and adult hamsters. The results from these investigations indicate that differences in the binding kinetics of toxins A and/or B to infant and adult hamster BBMs do not account for the observed differences in their susceptibility to C. difficile-associated intestinal disease.

  6. Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility.

    LENUS (Irish Health Repository)

    O'Dushlaine, C

    2011-03-01

    Susceptibility to schizophrenia and bipolar disorder may involve a substantial, shared contribution from thousands of common genetic variants, each of small effect. Identifying whether risk variants map to specific molecular pathways is potentially biologically informative. We report a molecular pathway analysis using the single-nucleotide polymorphism (SNP) ratio test, which compares the ratio of nominally significant (P<0.05) to nonsignificant SNPs in a given pathway to identify the \\'enrichment\\' for association signals. We applied this approach to the discovery (the International Schizophrenia Consortium (n=6909)) and validation (Genetic Association Information Network (n=2729)) of schizophrenia genome-wide association study (GWAS) data sets. We investigated each of the 212 experimentally validated pathways described in the Kyoto Encyclopaedia of Genes and Genomes in the discovery sample. Nominally significant pathways were tested in the validation sample, and five pathways were found to be significant (P=0.03-0.001); only the cell adhesion molecule (CAM) pathway withstood conservative correction for multiple testing. Interestingly, this pathway was also significantly associated with bipolar disorder (Wellcome Trust Case Control Consortium (n=4847)) (P=0.01). At a gene level, CAM genes associated in all three samples (NRXN1 and CNTNAP2), which were previously implicated in specific language disorder, autism and schizophrenia. The CAM pathway functions in neuronal cell adhesion, which is critical for synaptic formation and normal cell signaling. Similar pathways have also emerged from a pathway analysis of autism, suggesting that mechanisms involved in neuronal cell adhesion may contribute broadly to neurodevelopmental psychiatric phenotypes.

  7. Electrostatics at the membrane define MscL channel mechanosensitivity and kinetics.

    Science.gov (United States)

    Zhong, Dalian; Blount, Paul

    2014-12-01

    The bacterial mechanosensitive channel of large conductance (MscL) serves as a biological emergency release valve, preventing the occurrence of cell lysis caused by acute osmotic stress. Its tractable nature allows it to serve as a paradigm for how a protein can directly sense membrane tension. Although much is known of the importance of the hydrophobicity of specific residues in channel gating, it has remained unclear whether electrostatics at the membrane plays any role. We studied MscL chimeras derived from functionally distinct orthologues: Escherichia coli and Staphylococcus aureus. Dissection of one set led to an observation that changing the charge of a single residue, K101, of E. coli (Ec)-MscL, effects a channel phenotype: when mutated to a negative residue, the channel is less mechanosensitive and has longer open dwell times. Assuming electrostatic interactions, we determined whether they are due to protein-protein or protein-lipid interactions by performing site-directed mutagenesis elsewhere in the protein and reconstituting channels into defined lipids, with and without negative head groups. We found that although both interactions appear to play some role, the primary determinant of the channel phenotype seems to be protein-lipid electrostatics. The data suggest a model for the role of electrostatic interactions in the dynamics of MscL gating. © FASEB.

  8. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    Science.gov (United States)

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.

  9. Enhanced H2/CH4 and H2/CO2 Separation by Carbon Molecular Sieve Membrane Coated on Titania Modified Alumina Support: Effects of TiO2 Intermediate Layer Preparation Variables on Interfacial Adhesion.

    Czech Academy of Sciences Publication Activity Database

    Tseng, H.-H.; Wang, Ch.-T.; Zhuang, G.-L.; Uchytil, Petr; Řezníčková Čermáková, Jiřina; Setničková, Kateřina

    2016-01-01

    Roč. 510, JUL 15 (2016), s. 391-404 ISSN 0376-7388 Grant - others:NSC(TW) NSC100-2221-E- 040-004-MY3 Institutional support : RVO:67985858 Keywords : carbon membrane * intermediate layer * adhesion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 6.035, year: 2016

  10. Enhanced H2/CH4 and H2/CO2 Separation by Carbon Molecular Sieve Membrane Coated on Titania Modified Alumina Support: Effects of TiO2 Intermediate Layer Preparation Variables on Interfacial Adhesion.

    Czech Academy of Sciences Publication Activity Database

    Tseng, H.-H.; Wang, Ch.-T.; Zhuang, G.-L.; Uchytil, Petr; Řezníčková Čermáková, Jiřina; Setničková, Kateřina

    2016-01-01

    Roč. 510, JUL 15 (2016), s. 391-404 ISSN 0376-7388 Grant - others:NSC(TW) NSC100-2221-E- 040-004-MY3 Institutional support: RVO:67985858 Keywords : carbon membrane * intermediate layer * adhesion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 6.035, year: 2016

  11. Kinetics of plasma membrane electron transport in a pulmonary endothelial cell-column.

    Science.gov (United States)

    Olson, L E; Merker, M P; Bongard, R D; Brantmeier, B M; Audi, S H; Linehan, J H; Dawson, C A

    1998-01-01

    Thiazine dyes such as toluidine blue O (TBO) are reduced at the luminal endothelial surface. The purpose of this study was to determine the rate of this reaction in endothelial cells in culture. A multiple indicator dilution method was used to measure the reaction kinetics during transient passage of a TBO-containing bolus through a chromatographic column filled with bovine pulmonary arterial endothelial cells grown on microcarrier beads (cell-column). A bolus containing TBO and an inert extracellular reference indicator (FITC-Dextran) was injected upstream of the cell-column, and the indicator concentrations were measured downstream using on-line photodetection. The effects of column flow rate, PO2, and TBO concentration were studied. The fraction of TBO reduced upon passage through the cell-column decreased with increasing flow indicating that the reaction rate rather than TBO delivery controlled TBO reduction. The fraction of TBO reduced did not change with PO2 or dose in the ranges studied. TBO reduction was about 10 times that for steady state TBO sequestration by these cells which, along with the lack of a PO2 effect indicates that the rapid rate of reduction is not the rate-limiting step in steady state sequestration.

  12. Study of the kinetics of the transport of Cu(II), Cd(II) and Ni(II) ions through a liquid membrane.

    Science.gov (United States)

    Granado-Castro, María D; Galindo-Riaño, María D; Domínguez-Lledó, F C; Díaz-López, C; García-Vargas, M

    2008-06-01

    The coupled transport of Cu(II), Cd(II) and Ni(II) ions through a bulk liquid membrane (BLM) containing pyridine-2-acetaldehyde benzoylhydrazone (2-APBH) as carrier dissolved in toluene has been studied. Once the optimal conditions of extraction of each metal were established, a comparative study of the transport kinetics for these metals was performed by means of a kinetic model involving two consecutive irreversible first-order reactions. The kinetic parameters (apparent rate constants of the metal extraction and re-extraction reactions (k(1), k(2)), the maximum reduced concentration of the metal in the liquid membrane (R(o)max), the time of the maximum value of R(o)(t(max)) and the maximum entry and exit fluxes of the metal through the liquid membrane (J(f)max and J(s)max) of the extraction and stripping reactions were evaluated and results showed good agreement between experimental data and theoretical predictions. Complete transport through the membrane took place according to the following order: Cd(II)>Cu(II)>Ni(II), with similar kinetic parameters obtained for Cu(II) and Cd(III). The transport behaviour of Ni(II) was different to that of Cu(II) and Cd(III), probably due to the different stoichiometry of the nickel complex compared to those of the other metal ions and the different chemical conditions required for its formation. The influence of the sample salinity on the transport kinetics was studied. k(1) values decreased slightly when the feed solution salinity was increased for Cu(II) and Ni(II), but not for Cd(II). Values of k(2) were practically unaffected. The proposed BLM was applied to the preconcentration and separation of metal ions (prior to their determination) in water samples with different saline matrices (CRM, river water and seawater), and good agreement with the certified values was obtained.

  13. A kinetic study of the interactions between amino acids and monosaccharides at the intestinal brush-border membrane.

    Science.gov (United States)

    Alvarado, F; Robinson, J W

    1979-10-01

    1. The influx of amino acids into guinea-pig intestinal rings in vitro is inhibited by monosaccharides, and that of monosaccharides by amino acids. Two hypotheses have been proposed to account for these heterologous interactions. According to the first, the cis hypothesis, there is an allosteric interaction between substrates binding to separate but related sites at the outer face of the brush-border membrane matrix. In contrast, the trans hypothesis envisages the interaction to result from a partial dissipation of the electrochemical sodium gradient due to the cotransport of each substrate with sodium ions. 2. In an attempt to distinguish between the merits of the two hypotheses, we examined the kinetics of the inhibition of phenylalanine influx by two sugars of widely different affinities, galactose and beta-methylglucoside. Since beta-methylglucoside carries more sodium into the cell than galactose, the trans hypothesis would predict it to be the stronger inhibitor, but in fact the opposite result is found. 3. Equations were developed to describe the inhibitions in accordance with the cis hypothesis. The satisfactory agreement between experimental observations and theoretical predictions provides support for the applicability of the model. Further implications of the polyfunctional carrier model are discussed.

  14. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    Science.gov (United States)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  15. Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate.

    Science.gov (United States)

    Ramseier, Maaike K; von Gunten, Urs; Freihofer, Pietro; Hammes, Frederik

    2011-01-01

    Drinking water was treated with ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate to investigate the kinetics of membrane damage of native drinking water bacterial cells. Membrane damage was measured by flow cytometry using a combination of SYBR Green I and propidium iodide (SGI+PI) staining as indicator for cells with permeabilized membranes and SGI alone to measure total cell concentration. SGI+PI staining revealed that the cells were permeabilized upon relatively low oxidant exposures of all tested oxidants without a detectable lag phase. However, only ozonation resulted in a decrease of the total cell concentrations for the investigated reaction times. Rate constants for the membrane damage reaction varied over seven orders of magnitude in the following order: ozone > chlorine > chlorine dioxide ≈ ferrate > permanganate > chloramine. The rate constants were compared to literature data and were in general smaller than previously measured rate constants. This confirmed that membrane integrity is a conservative and therefore safe parameter for disinfection control. Interestingly, the cell membranes of high nucleic acid (HNA) content bacteria were damaged much faster than those of low nucleic acid (LNA) content bacteria during treatment with chlorine dioxide and permanganate. However, only small differences were observed during treatment with chlorine and chloramine, and no difference was observed for ferrate treatment. Based on the different reactivity of these oxidants it was suggested that HNA and LNA bacterial cell membranes have a different chemical constitution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Softening of phospholipid membranes by the adhesion of silica nanoparticles - as seen by neutron spin-echo (NSE)

    Science.gov (United States)

    Hoffmann, Ingo; Michel, Raphael; Sharp, Melissa; Holderer, Olaf; Appavou, Marie-Sousai; Polzer, Frank; Farago, Bela; Gradzielski, Michael

    2014-05-01

    The interactions between nanoparticles and vesicles are of significant interest both from a fundamental as well as from a practical point of view, as vesicles can serve as a model system for cell membranes. Accordingly the effect of nanoparticles that bind to the vesicle bilayer is very important with respect to understanding their biological impact and also may shed some light on the mechanisms behind the effect of nanotoxicity. In this study we have investigated the influence of small adsorbed silica nanoparticles (SiNPs) on the structure of zwitterionic DOPC vesicles. By a combination of SANS, cryo-TEM, and DLS, we observed that the SiNPs are bound to the outer vesicle surface without significantly affecting the vesicle structure. Most interestingly, by means of neutron spin-echo (NSE) local bilayer fluctuations were studied and one finds a small but marked decrease of the membrane rigidity upon binding of the nanoparticles. This surprising finding may be a relevant aspect for the further understanding of the effects that nanoparticles have on phospholipid bilayers.The interactions between nanoparticles and vesicles are of significant interest both from a fundamental as well as from a practical point of view, as vesicles can serve as a model system for cell membranes. Accordingly the effect of nanoparticles that bind to the vesicle bilayer is very important with respect to understanding their biological impact and also may shed some light on the mechanisms behind the effect of nanotoxicity. In this study we have investigated the influence of small adsorbed silica nanoparticles (SiNPs) on the structure of zwitterionic DOPC vesicles. By a combination of SANS, cryo-TEM, and DLS, we observed that the SiNPs are bound to the outer vesicle surface without significantly affecting the vesicle structure. Most interestingly, by means of neutron spin-echo (NSE) local bilayer fluctuations were studied and one finds a small but marked decrease of the membrane rigidity upon

  17. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms...

  18. Membrane-type I matrix metalloproteinase-dependent ectodomain shedding of mucin16/ CA-125 on ovarian cancer cells modulates adhesion and invasion of peritoneal mesothelium.

    Science.gov (United States)

    Bruney, Lana; Conley, Kaitlynn C; Moss, Natalie M; Liu, Yueying; Stack, M Sharon

    2014-10-01

    Mucin16 [MUC16/cancer antigen 125 (CA-125)], a high-molecular-weight glycoprotein expressed on the ovarian tumor cell surface, potentiates metastasis via selective binding to mesothelin on peritoneal mesothelial cells. Shed MUC16/CA-125 is detectable in sera from ovarian cancer patients. We investigated the potential role of membrane type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane collagenase highly expressed in ovarian cancer cells, in MUC16/CA-125 ectodomain shedding. An inverse correlation between MT1-MMP and MUC16 immunoreactivity was observed in human ovarian tumors and cells. Further, when MUC16-expressing OVCA433 cells were engineered to overexpress MT1-MMP, surface expression of MUC16/CA-125 was lost, whereas cells expressing the inactive E240A mutant retained surface MUC16/CA-125. As a functional consequence, decreased adhesion of cells expressing catalytically active MT1-MMP to three-dimensional meso-mimetic cultures and intact ex vivo peritoneal tissue explants was observed. Nevertheless, meso-mimetic invasion is enhanced in MT1-MMP-expressing cells. Together, these data support a model wherein acquisition of catalytically active MT1-MMP expression in ovarian cancer cells induces MUC16/CA-125 ectodomain shedding, reducing adhesion to meso-mimetic cultures and to intact peritoneal explants. However, proteolytic clearing of MUC16/CA-125, catalyzed by MT1-MMP, may then expose integrins for high-affinity cell binding to peritoneal tissues, thereby anchoring metastatic lesions for subsequent proliferation within the collagen-rich sub-mesothelial matrix.

  19. Softening of phospholipid membranes by the adhesion of silica nanoparticles--as seen by neutron spin-echo (NSE).

    Science.gov (United States)

    Hoffmann, Ingo; Michel, Raphael; Sharp, Melissa; Holderer, Olaf; Appavou, Marie-Sousai; Polzer, Frank; Farago, Bela; Gradzielski, Michael

    2014-06-21

    The interactions between nanoparticles and vesicles are of significant interest both from a fundamental as well as from a practical point of view, as vesicles can serve as a model system for cell membranes. Accordingly the effect of nanoparticles that bind to the vesicle bilayer is very important with respect to understanding their biological impact and also may shed some light on the mechanisms behind the effect of nanotoxicity. In this study we have investigated the influence of small adsorbed silica nanoparticles (SiNPs) on the structure of zwitterionic DOPC vesicles. By a combination of SANS, cryo-TEM, and DLS, we observed that the SiNPs are bound to the outer vesicle surface without significantly affecting the vesicle structure. Most interestingly, by means of neutron spin-echo (NSE) local bilayer fluctuations were studied and one finds a small but marked decrease of the membrane rigidity upon binding of the nanoparticles. This surprising finding may be a relevant aspect for the further understanding of the effects that nanoparticles have on phospholipid bilayers.

  20. Kinetics of the flash-induced P515 response in relation to the H+-permeability of the membrane bound ATPase in spinach chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.L.; van Kooten, O.; Vredenberg, W.J.

    1985-08-01

    The effect of dicyclohexylcarbodiimide (DCCD) on the kinetics of the flash-induced P515 response and on the activity of the ATPase was investigated in isolated spinach chloroplasts. It was found that after the addition of 5 X 10(-8)mol DCCD the rate of ATP hydrolysis induced by a period of 60 sec illumination was decreased to less than 5% of its original value. At this concentration, hardly any effect, if at all, could be detected on the kinetics of the flash-induced P515 response, neither in dark-adapted nor in light-activated chloroplasts. It was concluded that the presence of concentrations of DCCD, sufficiently high to affect the ATPase activity, does not affect the kinetics of the flash-induced P515 response. Since DCCD decreases the H+ permeability of the membrane-bound ATPase, it was concluded that this permeability coefficient for protons is not an important factor in the regulation of the flash-induced membrane potential and, therefore, does not affect the kinetics of the flash-induced P515 response.

  1. Effect of Film Diffusion on the Ion-Exchange Kinetics of a Tracer Ion in Nafion-117 Membrane from a Mixture of Salt Solution.

    Science.gov (United States)

    Naik, Apurva N; Agarwal, Chhavi; Chaudhury, Sanhita; Goswami, A

    2017-11-02

    The ion-exchange kinetics of a tracer ion (Cs + and Ba 2+ ) in presence of a bulk ion (Na + /H + ) has been measured in Nafion-117 membrane for a range of concentrations of NaCl/HNO 3 using the nonstationary radiotracer method. A systematic increase in the ion-exchange rate and decrease in the partition coefficients of the tracer ions between membrane and solution have been observed with the increase in bulk ion concentration. The sigmoidal nature of experimental profiles indicates film-diffusion-controlled kinetics even for well-stirred solutions. In the absence of an existing analytical or numerical solution, a simple empirical approach has been proposed to find the variable membrane surface concentration and has been used to solve the membrane diffusion equation by the finite difference method. The fitting of the experimental curves with a single diffusion coefficient for Cs + /Ba 2+ has been achieved. The exchange rate has been found to be independent of the stirring speed beyond a limiting speed.

  2. Slow Phospholipid Exchange between a Detergent-Solubilized Membrane Protein and Lipid-Detergent Mixed Micelles: Brominated Phospholipids as Tools to Follow Its Kinetics.

    Science.gov (United States)

    Montigny, Cédric; Dieudonné, Thibaud; Orlowski, Stéphane; Vázquez-Ibar, José Luis; Gauron, Carole; Georgin, Dominique; Lund, Sten; le Maire, Marc; Møller, Jesper V; Champeil, Philippe; Lenoir, Guillaume

    2017-01-01

    Membrane proteins are largely dependent for their function on the phospholipids present in their immediate environment, and when they are solubilized by detergent for further study, residual phospholipids are critical, too. Here, brominated phosphatidylcholine, a phospholipid which behaves as an unsaturated phosphatidylcholine, was used to reveal the kinetics of phospholipid exchange or transfer from detergent mixed micelles to the environment of a detergent-solubilized membrane protein, the paradigmatic P-type ATPase SERCA1a, in which Trp residues can experience fluorescence quenching by bromine atoms present on phospholipid alkyl chains in their immediate environment. Using dodecylmaltoside as the detergent, exchange of (brominated) phospholipid was found to be much slower than exchange of detergent under the same conditions, and also much slower than membrane solubilization, the latter being evidenced by light scattering changes. The kinetics of this exchange was strongly dependent on temperature. It was also dependent on the total concentration of the mixed micelles, revealing the major role for such exchange of the collision of detergent micelles with the detergent-solubilized protein. Back-transfer of the brominated phospholipid from the solubilized protein to the detergent micelle was much faster if lipid-free DDM micelles instead of mixed micelles were added for triggering dissociation of brominated phosphatidylcholine from the solubilized protein, or in the additional presence of C12E8 detergent during exchange, also emphasizing the role of the chemical nature of the micelle/protein interface. This protocol using brominated lipids appears to be valuable for revealing the possibly slow kinetics of phospholipid transfer to or from detergent-solubilized membrane proteins. Independently, continuous recording of the activity of the protein can also be used in some cases to correlate changes in activity with the exchange of a specific phospholipid, as shown here

  3. Multiscale approaches to protein-mediated interactions between membranes—relating microscopic and macroscopic dynamics in radially growing adhesions

    International Nuclear Information System (INIS)

    Bihr, Timo; Smith, Ana-Suncana; Seifert, Udo

    2015-01-01

    Macromolecular complexation leading to coupling of two or more cellular membranes is a crucial step in a number of biological functions of the cell. While other mechanisms may also play a role, adhesion always involves the fluctuations of deformable membranes, the diffusion of proteins and the molecular binding and unbinding. Because these stochastic processes couple over a multitude of time and length scales, theoretical modeling of membrane adhesion has been a major challenge. Here we present an effective Monte Carlo scheme within which the effects of the membrane are integrated into local rates for molecular recognition. The latter step in the Monte Carlo approach enables us to simulate the nucleation and growth of adhesion domains within a system of the size of a cell for tens of seconds without loss of accuracy, as shown by comparison to 10 6 times more expensive Langevin simulations. To perform this validation, the Langevin approach was augmented to simulate diffusion of proteins explicitly, together with reaction kinetics and membrane dynamics. We use the Monte Carlo scheme to gain deeper insight to the experimentally observed radial growth of micron sized adhesion domains, and connect the effective rate with which the domain is growing to the underlying microscopic events. We thus demonstrate that our technique yields detailed information about protein transport and complexation in membranes, which is a fundamental step toward understanding even more complex membrane interactions in the cellular context. (paper)

  4. Multiscale approaches to protein-mediated interactions between membranes—relating microscopic and macroscopic dynamics in radially growing adhesions

    Science.gov (United States)

    Bihr, Timo; Seifert, Udo; Smith, Ana-Sunčana

    2015-08-01

    Macromolecular complexation leading to coupling of two or more cellular membranes is a crucial step in a number of biological functions of the cell. While other mechanisms may also play a role, adhesion always involves the fluctuations of deformable membranes, the diffusion of proteins and the molecular binding and unbinding. Because these stochastic processes couple over a multitude of time and length scales, theoretical modeling of membrane adhesion has been a major challenge. Here we present an effective Monte Carlo scheme within which the effects of the membrane are integrated into local rates for molecular recognition. The latter step in the Monte Carlo approach enables us to simulate the nucleation and growth of adhesion domains within a system of the size of a cell for tens of seconds without loss of accuracy, as shown by comparison to 106 times more expensive Langevin simulations. To perform this validation, the Langevin approach was augmented to simulate diffusion of proteins explicitly, together with reaction kinetics and membrane dynamics. We use the Monte Carlo scheme to gain deeper insight to the experimentally observed radial growth of micron sized adhesion domains, and connect the effective rate with which the domain is growing to the underlying microscopic events. We thus demonstrate that our technique yields detailed information about protein transport and complexation in membranes, which is a fundamental step toward understanding even more complex membrane interactions in the cellular context.

  5. kinetic decompositionof La0.3Sr0.7CoO3-d perovskite membranes during oxygen permeation

    NARCIS (Netherlands)

    van Doorn, R.H.E.; van Doorn, R.H.E.; Bouwmeester, Henricus J.M.; Burggraaf, Anthonie; Burggraaf, A.J.

    1998-01-01

    In this paper, a study is presented towards the stability of oxygen permeable membranes of perovskite La0.3Sr0.7CoO3−δ in an oxygen pressure gradient. It is shown that phase separation occurs at the oxygen-lean side of the membrane, at 900°C, when the membrane is exposed to streams of air and inert

  6. Numerical simulation of kinetic demixing and decomposition in a LaCoO3-δ oxygen membrane under an oxygen potential gradient

    DEFF Research Database (Denmark)

    Ta, Na; Chen, Ming; Zhang, Lijun

    2018-01-01

    A composition- and temperature-dependent mobility database of all ionic species in the LaCoO3-δ phase was developed and combined with a La-Co-O thermodynamic database to simulate kinetic demixing and partial decomposition in LaCoO3-δ oxygen membranes operated under a 0.0001/0.21 bar oxygen partia...... by the mobility of oxygen ions, and the latter is determined by the higher mobility of Co ions as compared to the La ion in the ABO3-type perovskite. A drift motion of both oxide surfaces towards the high PO2 side occurs with the movement of cations....

  7. Influence of Irradiance, Flow Rate, Reactor Geometry, and Photopromoter Concentration in Mineralization Kinetics of Methane in Air and in Aqueous Solutions by Photocatalytic Membranes Immobilizing Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ignazio Renato Bellobono

    2008-01-01

    Full Text Available Photomineralization of methane in air (10.0–1000 ppm (mass/volume of C at 100% relative humidity (dioxygen as oxygen donor was systematically studied at 318±3 K in an annular laboratory-scale reactor by photocatalytic membranes immobilizing titanium dioxide as a function of substrate concentration, absorbed power per unit length of membrane, reactor geometry, and concentration of a proprietary vanadium alkoxide as photopromoter. Kinetics of both substrate disappearance, to yield intermediates, and total organic carbon (TOC disappearance, to yield carbon dioxide, were followed. At a fixed value of irradiance (0.30 W⋅cm-1, the mineralization experiments in gaseous phase were repeated as a function of flow rate (4–400 m3⋅h−1. Moreover, at a standard flow rate of 300 m3⋅h−1, the ratio between the overall reaction volume and the length of the membrane was varied, substantially by varying the volume of reservoir, from and to which circulation of gaseous stream took place. Photomineralization of methane in aqueous solutions was also studied, in the same annular reactor and in the same conditions, but in a concentration range of 0.8–2.0 ppm of C, and by using stoichiometric hydrogen peroxide as an oxygen donor. A kinetic model was employed, from which, by a set of differential equations, four final optimised parameters, k1 and K1, k2 and K2, were calculated, which is able to fit the whole kinetic profile adequately. The influence of irradiance on k1 and k2, as well as of flow rate on K1 and K2, is rationalized. The influence of reactor geometry on k values is discussed in view of standardization procedures of photocatalytic experiments. Modeling of quantum yields, as a function of substrate concentration and irradiance, as well as of concentration of photopromoter, was carried out very satisfactorily. Kinetics of hydroxyl radicals reacting between themselves, leading to hydrogen peroxide, other than with substrate or

  8. Kinetic imaging of NPC1L1 and sterol trafficking between plasma membrane and recycling endosomes in hepatoma cells

    DEFF Research Database (Denmark)

    Hartwig Petersen, Nicole; Færgeman, Nils J; Yu, Liqing

    2008-01-01

    fluorescent protein (NPC1L1-EGFP) and cholesterol analogues in hepatoma cells. At steady state about 42% of NPC1L1 resided in the transferrin (Tf) positive, sterol enriched endocytic recycling compartment (ERC), while time-lapse microscopy demonstrated NPC1L1 traffic between plasma membrane and ERC...... the ERC to the plasma membrane. NPC1L1-EGFP facilitated transport of fluorescent sterols from the plasma membrane to the ERC. Insulin induced translocation of vesicles containing NPC1L1 and fluorescent sterol from the ERC to the cell membrane. Upon polarization of hepatoma cells NPC1L1 resided almost...... exclusively in the canalicular membrane, where the protein is highly mobile. Our study demonstrates dynamic trafficking of NPC1L1 between cell surface and intracellular compartments and suggests that this transport is involved in NPC1L1 mediated cellular sterol uptake....

  9. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers

    Science.gov (United States)

    Zhang, Guojie; Müller, Marcus

    2017-08-01

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.

  10. Wastewater treatment by means of thermophilic aerobic membrane reactors: respirometric tests and numerical models for the determination of stoichiometric/kinetic parameters.

    Science.gov (United States)

    Collivignarelli, Maria Cristina; Bertanza, Giorgio; Abbà, Alessandro; Torretta, Vincenzo; Katsoyiannis, Ioannis Anastasios

    2017-10-09

    Existing wastewater/aqueous waste treatment plants often need to be upgraded in order to improve their performance. The satisfactory operation of biological treatment plants requires appropriate monitoring, and respirometric techniques are needed to determine the kinetic parameters that regulate biological processes. Innovative technologies are treating industrial wastewater/aqueous waste, such as thermophilic aerobic treatments. Thermophilic aerobic biological systems operate at temperatures higher than 45°C. Such temperature levels can be reached, at a reasonable cost, using wastewater with a high organic loading and reactors, which are appropriately thermally insulated. This kind of treatment shows high removal kinetics of biodegradable substrates and a very low sludge production. This paper describes the application of respirometric tests in thermophilic conditions on the biomass derived from a thermophilic aerobic membrane reactor in order to model the process, with a particular focus on the rapidly biodegradable chemical oxygen demand (rbCOD). The utility of rbCOD determination is related to the optimal treatment that the aqueous waste should undergo. Calculating the kinetic parameters is critical to the biological modelling used in the management and control of wastewater treatment plants.

  11. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2003-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...... to rewriting on arbitrary adhesive categories....

  12. Protein adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  13. Modification of sodium and potassium channel kinetics by diethyl ether and studies on sodium channel inactivation in the crayfish giant axon membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Bruce Palmer [Univ. of Rochester, NY (United States)

    1979-01-01

    The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in the hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.

  14. Sensing pH via p-Cyanophenylalanine Fluorescence: Application to Determine Peptide pKa and Membrane-Penetration Kinetics

    Science.gov (United States)

    Pazos, Ileana M.; Ahmed, Ismail A.; León Berríos, Mariana I.; Gai, Feng

    2015-01-01

    We expand the spectroscopic utility of a well-known infrared and fluorescence probe, p-cyanophenylalanine, by showing that it can also serve as a pH sensor. This new application is based on the notion that the fluorescence quantum yield of this unnatural amino acid, when placed at or near the N-terminal end of a polypeptide, depends on the protonation status of the N-terminal amino group of the peptide. Using this pH sensor, we are able to determine the N-terminal pKa values of nine tripeptides and also the membrane penetration kinetics of a cell-penetrating peptide. Taken together, these examples demonstrate the applicability of using this unnatural amino acid fluorophore to study pH-dependent biological processes or events that accompany a pH change. PMID:25935260

  15. Study on optimal conditions and adsorption kinetics of copper from water by collodion membrane cross-linked poly-γ-glutamic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiangting; Wang, Aiyin; Li, Guoxing; Dong, Xinjiao; Wu, Mingjiang [Wenzhou University, Wenzhou (China); Zheng, Xiaojie [Wenzhou Vocational College of Technology and Science, Wenzhou (China)

    2013-06-15

    Poly-γ-glutamic acid (γ-PGA) is a novel polyamino acid formed through microorganism fermentation and biosynthesis. In the present test, membrane (PGA-C) formation by γ-PGA and collodion was performed by using 0.1% glutaraldehyde as a cross-linking agent. A study was conducted on the PGA-C adsorption of Cu{sup 2+}, specifically the related adsorption equilibrium and kinetics, desorption and regeneration. The results show that with an initial solution pH=5.5 and at 318 K, the static adsorption isotherm behavior of PGA-C is in compliance with the Langmuir model and is beneficial to the adsorption of the metal. Meanwhile, with the reaction lasting for 30min, adsorption equilibrium was reached with a maximum adsorption capacity up to 7.431 mg/g. The entire reaction process follows the pseudo-second-order kinetics. By using PGA-C, good regeneration results were obtained after adsorption-generation-adsorption cycling with an HCl solution (0.1 mol/L) as regeneration liquid.

  16. Experimental, kinetic and numerical modeling of hydrogen production by catalytic reforming of crude ethanol over a commercial catalyst in packed bed tubular reactor and packed bed membrane reactor

    International Nuclear Information System (INIS)

    Aboudheir, Ahmed; Akande, Abayomi; Idem, Raphael

    2006-01-01

    reactor. The model was based on the coupling of mass, momentum and energy balance equations as well as our new kinetic model developed for this process.The simulation results for crude ethanol conversion were found to be in accordance with the experimental data obtained at various operating conditions. In addition, the predicted variations of the concentration and temperature profiles for our process. In the radial direction indicate that the assumption of plug flow and isothermal behaviour is justified within certain kinetics operating conditions. However, even within these operating conditions, our results have proven that the axial dispersion terms in the balance equations (mass, momentum and energy) cannot be neglected, especially in the hypothetical industrial case presented in this work for the reforming of crude ethanol. In addition, in the experimental study of the application of a porous membrane reactor for the crude ethanol reforming process conducted to compare with that for the packed bed tubular reactor, it was found that the membrane reactor outperformed the packed bed tubular reactor in terms of crude ethanol conversion and hydrogen production. This is due to the function of the membrane reactor to shift the thermodynamic equilibrium in favour of the conversion of crude ethanol to hydrogen according to Le Catelier-Braun's law.(Author)

  17. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  18. Bacterial adhesion

    NARCIS (Netherlands)

    Loosdrecht, van M.C.M.

    1988-01-01

    As mentioned in the introduction of this thesis bacterial adhesion has been studied from a variety of (mostly practice oriented) starting points. This has resulted in a range of widely divergent approaches. In order to elucidate general principles in bacterial adhesion phenomena, we felt it

  19. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2004-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...

  20. α2-macroglobulin can crosslink multiple Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) molecules and may facilitate adhesion of parasitized erythrocytes

    DEFF Research Database (Denmark)

    Stevenson, Liz; Laursen, Erik; Cowan, Graeme J

    2015-01-01

    . Together, our results are evidence that P. falciparum parasites exploit α2M (and IgM) to expand the repertoire of host receptors available for PfEMP1-mediated IE adhesion, such as the erythrocyte carbohydrate moieties that lead to formation of rosettes. It is likely that this mechanism also affects IE...

  1. Análise cinética da cura de adesivos de taninos das cascas de três espécies de Eucalyptus por calorimetria diferencial exploratória (DSC Kinetic analysis of bark tannin adhesives from three species of Eucalyptus by differential scanning calorimetry (DSC

    Directory of Open Access Journals (Sweden)

    Fábio Akira Mori

    2002-08-01

    Full Text Available O objetivo deste trabalho foi analisar a cinética de cura de adesivos à base de taninos de Eucalyptus grandis, Eucalyptus saligna e Eucalyptus urophylla por calorimetria diferencial exploratória (DSC, comparando-a com a cinética de cura de adesivos comerciais: fenol-formaldeído e de taninos de acácia-negra (Acacia mollissima D.Wild. Verificou-se que o adesivo de taninos de Eucalyptus urophylla apresentou os parâmetros cinéticos (energia de ativação, entalpia, temperatura de pico e ordem de reação mais próximos aos do adesivo comercial de taninos de acácia-negra, que foram totalmente diferentes do adesivo à base de fenol-formaldeído. Com base nestes parâmetros constatou-se que, em relação aos outros dois, o adesivo de taninos de Eucalyptus urophylla é o mais adequado para colagem, uma vez que em condições industriais ele necessitará de uso mínimo de energia e de tempo de prensagem durante o processo de colagem.This work aimed to analyze the cure kinetics of Eucalyptus grandis, Eucalyptus saligna and Eucalyptus urophylla tannins based adhesives by differential scanning calorimetry (DSC. Another objective was to compare cure kinetics of Eucalyptus tannin adhesives with the cure kinetics of phenol-formaldehyde and Wattle black (Acacia mollissima D. Wild tannin commercial adhesives. It was observed that the Eucalyptus urophylla tannin adhesives presented kinetic parameters (activation energy, entalpia, peak temperature and reaction order similar to the Wattle black commercial tannin adhesives but were different from the phenol-formaldehyde adhesives. Based on these parameters it was concluded that the Eucalyptus urophylla tannin adhesives are more adequate for wood bonding than the other two Eucalyptus tannin adhesives. Under industrial conditions, Eucalyptus urophylla tannin adhesive will need a minimum energy and pressing.

  2. Kinetic and spectroscopic studies of cytochrome b-563 in isolated cytochrome b/f complex and in thylakoid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hind, G.; Clark, R.D.; Houchins, J.P.

    1983-01-01

    Extensive studies, performed principally by Hauska, Hurt and collaborators, have shown that a cytochrome (cyt) b/f complex isolated from photosynthetic membranes of spinach or Anabaena catalyzes electron transport from plastoquinol (PQH/sub 2/) to plastocyanin or algal cyt c-552. The complex from spinach thylakoids generated a membrane potential when reconstituted into liposomes, and although the electrogenic mechanism remains unknown, a key role for cyt b-563 is widely accepted. Electrogenesis by a Q-cycle mechanism requires a plastoquinone (PQ) reductase to be associated with the stromal side of the thylakoid b/f complex though this activity has yet to be demonstrated. It seemed possible that more gentle isolation of the complex might yield a form containing additional polypeptides, perhaps including a PQ reductase or a component involved in returning electrons from reduced ferredoxin to the complex in cyclic electron flow. Optimization of the isolation of cyt b/f complex for Hybrid 424 spinach from a growth room was also required. The procedure we devised is compared to the protocol of Hurt and Hauska (1982). 13 references.

  3. Platelet adhesion onto artificial red blood cells.

    Science.gov (United States)

    Muramatsu, N; Kondo, T

    1980-05-01

    Several kinds of polyamide microcapsules containing mammalian hemolysate were prepared by making use of the interfacial polycondensation reaction between diamines and terephthaloyl dichloride and their blood compatibility in terms of platelet adhesion was examined aiming at their ultimate clinical use as artificial red blood cells. It was found that rabbit platelets adhere onto the hemolysate-loaded microcapsules in the presence of the plasma, while no platelet adhesion takes place in the absence of the plasma. This was interpreted as indicating an important role of plasma components in platelet adhesion. Moreover, platelet adhesion was observed to be facilitated by negative charges on the surface of the hemolysate-loaded microcapsules; the more negatively the surface was charge, the more easily the platelets adhered onto the surface. Finally, the present method of assessing platelet adhesion suggested the possibility of its use for kinetic study of platelet adhesion since it allowedus to make numerical evaluation of platelet adhesion as a function of time.

  4. Denture Adhesives

    Science.gov (United States)

    ... prevent overuse if zinc is an ingredient. (Some companies include graphics of the amount of adhesive to ... and adequate directions for use or a clear definition of an unsafe dosage or methods or duration ...

  5. Transport of polyamines in Drosophila S2 cells: kinetics, pharmacology and dependence on the plasma membrane proton gradient.

    Science.gov (United States)

    Romero-Calderón, Rafael; Krantz, David E

    2006-01-15

    Polyamine transport activities have been described in diverse multicellular systems, but their bioenergetic mechanisms and molecular identity remain unclear. In the present paper, we describe a high-affinity spermine/spermidine transport activity expressed in Drosophila S2 cells. Ion-replacement experiments indicate that polyamine uptake across the cell membrane is Na+-, K+-, Cl-- and Ca2+-independent, but pH-sensitive. Additional experiments using ionophores suggest that polyamine uptake may be H+-coupled. Pharmacological experiments show that polyamine uptake in S2 cells is selectively blocked by MGBG {methylglyoxal bis(guanylhydrazone) or 1,1'-[(methylethanediylidine)-dinitrilo]diguanidine} and paraquat (N,N-dimethyl-4,4'-bipyridylium), two known inhibitors of polyamine uptake in mammalian cells. In addition, inhibitors known to block the Slc22 (solute carrier 22) family of organic anion/cation transporters inhibit spermine uptake in S2 cells. These data and the genetic tools available in Drosophila will facilitate the molecular identification and further characterization of this activity.

  6. Arsenite Regulates Prolongation of Glycan Residues of Membrane Glycoprotein: A Pivotal Study via Wax Physisorption Kinetics and FTIR Imaging

    Directory of Open Access Journals (Sweden)

    Chih-Hung Lee

    2016-03-01

    Full Text Available Arsenic exposure results in several human cancers, including those of the skin, lung, and bladder. As skin cancers are the most common form, epidermal keratinocytes (KC are the main target of arsenic exposure. The mechanisms by which arsenic induces carcinogenesis remains unclear, but aberrant cell proliferation and dysregulated energy homeostasis play a significant role. Protein glycosylation is involved in many key physiological processes, including cell proliferation and differentiation. To evaluate whether arsenite exposure affected protein glycosylation, the alteration of chain length of glycan residues in arsenite treated skin cells was estimated. Herein we demonstrated that the protein glycosylation was adenosine triphosphate (ATP-dependent and regulated by arsenite exposure by using Fourier transform infrared (FTIR reflectance spectroscopy, synchrotron-radiation-based FTIR (SR-FTIR microspectroscopy, and wax physisorption kinetics coupled with focal-plane-array-based FTIR (WPK-FPA-FTIR imaging. We were able to estimate the relative length of surface protein-linked glycan residues on arsenite-treated skin cells, including primary KC and two skin cancer cell lines, HSC-1 and HaCaT cells. Differential physisorption of wax adsorbents adhered to long-chain (elongated type and short-chain (regular type glycan residues of glycoprotein of skin cell samples treated with various concentration of arsenite was measured. The physisorption ratio of beeswax remain/n-pentacosane remain for KC cells was increased during arsenite exposure. Interestingly, this increase was reversed after oligomycin (an ATP synthase inhibitor pretreatment, suggesting the chain length of protein-linked glycan residues is likely ATP-dependent. This is the first study to demonstrate the elongation and termination of surface protein-linked glycan residues using WPK-FPA-FTIR imaging in eukaryotes. Herein the result may provide a scientific basis to target surface protein

  7. Prenatal diagnostic procedure for leukocyte adhesion deficiency

    NARCIS (Netherlands)

    Weening, R. S.; Bredius, R. G.; Wolf, H.; van der Schoot, C. E.

    1991-01-01

    Leukocyte adhesion deficiency (LAD) is a rare autosomal recessive disorder which leads to recurrent severe infections due to impaired leukocyte functions. The disorder is caused by an absence or deficiency of leukocyte cell adhesion molecules (LeuCAMs) on the leukocyte membranes. The diagnosis is

  8. Cell fitting to adhesive surfaces: A prerequisite to firm attachment and subsequent events

    Directory of Open Access Journals (Sweden)

    Pierres A.

    2002-06-01

    Full Text Available Cell adhesion usually involves extensive shape reorganization. This process is important because i it is required for efficient cross-linking of interacting surfaces by adhesion receptors the length of which does not exceed several tens of nanometers and ii it influences subsequent cell differentiation and activation. This review focuses on the initial phase of cell deformation, preceding the extensive reorganization process known as spreading. This first phase includes local flattening at the micrometer scale and membrane alignment at the nanometer level, resulting in fitting of the cell to an adhesive surface. Three main points are considered. First, experimental methods available to study cell apposition to a surface are described, with an emphasis on interference reflection microscopy. Second, selected experimental evidence is presented to show that there is a quantitative relationship between "adhesiveness" and "contact extension", and some theoretical models aimed at relating these parameters are briefly sketched. Third, experimental data on the kinetics of initial contact extension are described and possible mechanisms for driving this extension are discussed, including nonspecific forces, receptor-mediated interactions, active cell movements or passive membrane fluctuations. It is concluded that both passive physical phenomena and random active cell movements are possible candidates for the initial triggering of contact extension.

  9. A hybrid total internal reflection fluorescence and optical tweezers microscope to study cell adhesion and membrane protein dynamics of single living cells

    NARCIS (Netherlands)

    Snijder-van As, M.I.; Rieger, B.; Joosten, B.; Subramaniam, Vinod; Figdor, Carl; Kanger, Johannes S.

    2009-01-01

    The dynamics of cell surface membrane proteins plays an important role in cell–cell interactions. The onset of the interaction is typically not precisely controlled by current techniques, making especially difficult the visualization of early-stage dynamics. We have developed a novel method where

  10. Adhesion molecules

    CERN Document Server

    Preedy, Victor R

    2016-01-01

    This book covers the structure and classification of adhesion molecules in relation to signaling pathways and gene expression. It discusses immunohistochemical localization, neutrophil migration, and junctional, functional, and inflammatory adhesion molecules in pathologies such as leukocyte decompression sickness and ischemia reperfusion injury. Highlighting the medical applications of current research, chapters cover diabetes, obesity, and metabolic syndrome; hypoxia; kidney disease; smoking, atrial fibrillation, and heart disease, the brain and dementia; and tumor proliferation. Finally, it looks at molecular imaging and bioinformatics, high-throughput technologies, and chemotherapy.

  11. 76 FR 51925 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Adhesives and Sealants Rule

    Science.gov (United States)

    2011-08-19

    ... with other equipment reactors, distillation columns, evaporators, strippers and other similar [[Page... membrane installation and repair adhesives, single-ply roof membrane sealants, and single-ply roof membrane...

  12. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    reduce or delay bacterial biofilm formation of a range of urinary tract infectious E.coli and Klebsiella isolates. Several other proteinaceous coatings were also found to display anti-adhesive properties, possibly providing a measure for controlling the colonization of implant materials. Several other...... components. These substances may both mediate and stabilize the bacterial biofilm. Finally, several adhesive structures were examined, and a novel physiological biofilm phenotype in E.coli biofilms was characterized, namely cell chain formation. The autotransporter protein, antigen 43, was implicated...

  13. Acetylated Rhamnogalacturonans from Immature Fruits of Abelmoschus esculentus Inhibit the Adhesion of Helicobacter pylori to Human Gastric Cells by Interaction with Outer Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Christian Thöle

    2015-09-01

    Full Text Available Polysaccharide containing extracts from immature fruits of okra (Abelmoschus esculentus are known to exhibit antiadhesive effects against bacterial adhesion of Helicobacter pylori (H. pylori to stomach tissue. The present study investigates structural and functional features of polymers responsible for this inhibition of bacterial attachment to host cells. Ammonium sulfate precipitation of an aqueous extract yielded two fractions at 60% and 90% saturation with significant antiadhesive effects against H. pylori, strain J99, (FE60% 68% ± 15%; FE90% 75% ± 11% inhibition rates after preincubation of the bacteria at 1 mg/mL. Sequential extraction of okra fruits yielded hot buffer soluble solids (HBSS with dose dependent antiadhesive effects against strain J99 and three clinical isolates. Preincubation of H. pylori with HBSS (1 mg/mL led to reduced binding to 3ʹ-sialyl lactose, sialylated Lea and Lex. A reduction of bacterial binding to ligands complementary to BabA and SabA was observed when bacteria were pretreated with FE90%. Structural analysis of the antiadhesive polysaccharides (molecular weight, monomer composition, linkage analysis, stereochemistry, and acetylation indicated the presence of acetylated rhamnogalacturonan-I polymers, decorated with short galactose side chains. Deacetylation of HBSS and FE90% resulted in loss of the antiadhesive activity, indicating esterification being a prerequisite for antiadhesive activity.

  14. Adhesive plasters

    Science.gov (United States)

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  15. Adhesion and Cohesion

    Directory of Open Access Journals (Sweden)

    J. Anthony von Fraunhofer

    2012-01-01

    Full Text Available The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed.

  16. From biological membranes to biomimetic model membranes

    Directory of Open Access Journals (Sweden)

    Eeman, M.

    2010-01-01

    Full Text Available Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997 and Brown et al. (1997 who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level.

  17. The membrane-associated MUC1 improves adhesion of salivary MUC5B on buccal cells. Application to development of an in vitro cellular model of oral epithelium.

    Science.gov (United States)

    Ployon, Sarah; Belloir, Christine; Bonnotte, Aline; Lherminier, Jeannine; Canon, Francis; Morzel, Martine

    2016-01-01

    The mucosal pellicle is a thin layer of salivary proteins, mostly MUC5B mucins, anchored to epithelial oral cells. This pellicle is involved in protection of oral mucosae against abrasion, pathogenic microorganisms or chemical xenobiotics. The present study aimed at studying the involvement of MUC1 in mucosal pellicle formation and more specifically in salivary MUC5B binding using a cell-based model of oral epithelium. MUC1 mRNAs were not detected in TR146 cells, and therefore a stable cell line named TR146/MUC1 expressing this protein was developed by transfection. TR146 and TR146/MUC1 were incubated with human saliva in order to evaluate retention of MUC5B by epithelial cells. The cell surface of both TR146 and TR146/MUC1 was typical of a squamous non-keratinized epithelium, with the presence of numerous microplicae. After incubation for 2h with saliva diluted in culture medium (1:1) and two washes with PBS, saliva deposits on cells appeared as a loose filamentous thin network. MUC5B fluorescent immunostaining evidenced a heterogeneous lining of confluent cell cultures by this salivary mucin but with higher fluorescence on TR146/MUC1 cells. Semi-quantification of MUC5B bound to cells confirmed a better retention by TR146/MUC1, evaluated by Dot Blot (+34.1%, p<0.05) or by immunocytochemistry (+44%, p<0.001). The membrane-bound mucin MUC1 is a factor enhancing the formation of the mucosal pellicle by increasing the binding of salivary MUC5B to oral epithelial cells. An in vitro model suitable to study specifically the function and properties of the mucosal pellicle is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically

    Science.gov (United States)

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-02-01

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity.

  19. Development of composite metallic membranes for hydrogen purification

    International Nuclear Information System (INIS)

    Gaillard, F.

    2003-12-01

    Fuel cells are able to convert chemical energy into electric power. There are different types of cells; the best for automotive applications are Proton Exchange Membrane Fuel Cells. But, these systems need hydrogen of high purity. However, fuel reforming generates a mixture of gases, from which hydrogen has to be extracted before supplying the electrochemical cell. The best way for the purification of hydrogen is the membrane separation technology. Palladium is selectively permeable to hydrogen and this is the reason why this metal is largely used for the membrane development. This work deals with the development of hydrogen-selective membranes by deposition of a thin film of palladium onto a porous mechanical support. For this, we have used the electroless plating technique: a palladium salt and a reducing agent are mixed and the deposition takes place onto the catalytic surface of the substrate. After bibliographic investigations, experimental studies have been performed first with a dense metallic substrate in order to better understand the different parameters controlling the deposition. First of all, potentiometric measurements have been carried out to follow the electrochemical reactions in the bath. Then, kinetic measurements of the coating thickness have been recorded to understand the effect of the bath conditions on the yield and the adhesion of the film. Finally, the electroless plating method has been applied to deposit palladium membranes onto porous stainless steel substrates. After optimisation, the resulting membranes were tested for their hydrogen permeation properties. (author)

  20. Advanced adhesives in electronics

    CERN Document Server

    Bailey, C

    2011-01-01

    Adhesives are widely used in the manufacture of electronic devices to act as passive and active components. Recently there has been considerable interest in the use of conductive adhesives. This book reviews key types of conductive adhesives, processing methods, properties and the way they can be modelled as well as potential applications.$bAdhesives for electronic applications serve important functional and structural purposes in electronic components and packaging, and have developed significantly over the last few decades. Advanced adhesives in electronics reviews recent developments in adhesive joining technology, processing and properties. The book opens with an introduction to adhesive joining technology for electronics. Part one goes on to cover different types of adhesive used in electronic systems, including thermally conductive adhesives, isotropic and anisotropic conductive adhesives and underfill adhesives for flip-chip applications. Part two focuses on the properties and processing of electronic ...

  1. Evaluation of physicochemical and biological properties of chitosan/poly (vinyl alcohol) polymer blend membranes and their correlation for Vero cell growth.

    Science.gov (United States)

    Sharma, Parul; Mathur, Garima; Dhakate, Sanjay R; Chand, Subhash; Goswami, Navendu; Sharma, Sanjeev K; Mathur, Ashwani

    2016-02-10

    The blend membranes with varying weight ratios of chitosan/poly (vinyl alcohol) (CS/PVA) (1:0, 1:1, 1:2.5, 1.5:1, 1.5: 2.5) were prepared using solvent casting method and were evaluated for their potential application in single-use membrane bioreactors (MBRs). The physicochemical properties of the prepared membranes were investigated for chemical interactions (FTIR), surface morphology (SEM), water uptake, protein sorption (qe), ammonia sorption and growth kinetics of Vero cells. CS/PVA blend membrane having weight ratio of 1.5:1 had shown enhanced membrane flexibility, reduced water uptake, less protein sorption and no ammonium sorption compared to CS membrane. This blend membrane also showed comparatively enhanced higher specific growth rate (0.82/day) of Vero cells. Improved physicochemical properties and growth kinetics obtrude CS/PVA (1.5:1) as a potential surface for adhesion and proliferation with possible application in single use membrane bioreactors. Additionally, new insight explaining correlation between water holding (%) of CS/PVA (1.5:1) blend membrane and doubling time (td) of Vero cells is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Integrin LFA-1 regulates cell adhesion via transient clutch formation.

    Science.gov (United States)

    Ishibashi, Munenori; Miyanaga, Yukihiro; Matsuoka, Satomi; Kozuka, Jun; Togashi, Yuichi; Kinashi, Tatsuo; Ueda, Masahiro

    2015-08-21

    Integrin LFA-1 regulates immune cell adhesion and trafficking by binding to ICAM-1 upon chemokine stimulation. Integrin-mediated clutch formation between extracellular ICAM-1 and the intracellular actin cytoskeleton is important for cell adhesion. We applied single-molecule tracking analysis to LFA-1 and ICAM-1 in living cells to examine the ligand-binding kinetics and mobility of the molecular clutch under chemokine-induced physiological adhesion and Mn(2+)-induced tight adhesion. Our results show a transient LFA-1-mediated clutch formation that lasts a few seconds and leads to a transient lower-mobility is sufficient to promote cell adhesion. Stable clutch formation was observed for Mn(2+)-induced high affinity LFA-1, but was not required for physiological adhesion. We propose that fast cycling of the clutch formation by intermediate-affinity integrin enables dynamic cell adhesion and migration. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  4. Adhesion Control between Resist and Photomask Blank

    Science.gov (United States)

    Kurihara, Masaaki; Hatakeyama, Sho; Yoshida, Kouji; Abe, Makoto; Totsukawa, Daisuke; Morikawa, Yasutaka; Mohri, Hiroshi; Hoga, Morihisa; Hayashi, Naoya; Ohtani, Hiroyuki; Fujihira, Masamichi

    2009-06-01

    Most problems in photomask fabrication such as pattern collapse, haze, and cleaning damage are related to the behavior of surfaces and interfaces of resists, opaque layers, and quartz substrates. Therefore, it is important to control the corresponding surface and interface energies in photomask fabrication processes. In particular, adhesion analysis in microscopic regions is strongly desirable to optimize material and process designs in photomask fabrication. We applied the direct peeling (DP) method with a scanning probe microscope (SPM) tip and measured the adhesion of resist patterns on Cr and quartz surfaces for photomask process optimization. We also studied the effect of tip shape on the reproducibility of adhesion measurements and the dependence of collapse behavior on the resist profile. We measured lateral forces between the resulting collapsed resist pillar and the Cr or the quartz surface before and after the sliding and related these observed lateral forces to the static and kinetic frictional forces, respectively. We also studied the effect of surface modification of the Cr and quartz surfaces with silanization reagents on adhesion measured with the DP method. Resist adhesion could be controlled by surface modification using silanes. We also discuss the relationship between the adhesion observed with the DP method and the properties of the modified surfaces including water contact angles and local adhesive forces measured from force-distance curves with an SPM.

  5. Antibodies against Shigella flexneri adhesion molecule outer ...

    African Journals Online (AJOL)

    Milliana et al. Trop J Pharm Res, February 2017; 16(2): 256. Outer membrane proteins (OMPs) include proteins that mediate the attachment of bacteria to the host cell more closely than do pili [6,7]. A 49.8. kDa Shigella dysenteriae hemagglutinin pili protein that serves as an adhesion protein was found previously [8]. Oral.

  6. Genistein Modified Polymer Blends for Hemodialysis Membranes

    Science.gov (United States)

    Chang, Teng; Kyu, Thein; Define, Linda; Alexander, Thomas

    2012-02-01

    A soybean-derived phytochemical called genistein was used as a modifying agent to polyether sulfone/polyvinyl pyrrolidone (PES/PVP) blends to produce multi-functional hemodialysis membranes. With the aid of phase diagrams of PES/PVP/genistein blends, asymmetric porous membranes were fabricated by coagulating in non-solvent. Both unmodified and genistein modified PES/PVP membranes were shown to be non-cytotoxic to the blood cells. Unmodified PES/PVP membranes were found to reduce reactive oxygen species (ROS) levels, whereas the genistein modified membranes exhibited suppression for ˜60% of the ROS levels. Also, the genistein modified membranes revealed significant suppression of pro-inflammatory cytokines: IL-1β, IL-6, and TNF-α. Moreover, addition of PVP to PES showed the reduced trend of platelet adhesion and then leveled off. However, the modified membranes exhibited suppression of platelet adhesion at low genistein loading, but beyond 15 wt%, the platelet adhesion level rised up.

  7. Adhesion in hydrogels and model glassy polymers

    Science.gov (United States)

    Guvendiren, Murat

    Two main topics are addressed in this dissertation: (1) adhesion in hydrogels; (2) interfacial interactions between model glassy polymers. A self-assembly technique for the formation of hydrogels from acrylic triblock copolymer solutions was developed, based on vapor phase solvent exchange. Structure formation in the gels was characterized by small angle X-ray scattering, and swelling was measured in controlled pH buffer solutions. Strong gels are formed with polymer weight fractions between 0.01 and 0.15, and with shear moduli between 0.6 kPa and 3.5 kPa. Adhesive functionality, based on 3,4-dihydroxy-L-phenylalanine (DOPA) was also incorporated into the triblock copolymers. The effect of DOPA concentration on gel formation and swelling was investigated in detail. The adhesive properties of DOPA-functionalized hydrogels on TiO2 were investigated with an axisymmetric adhesion method. It was shown that the presence of DOPA enhances the adhesive properties of the hydrogels, but that the effect is minimized at pH values below 10, where the DOPA groups are hydrophobic. Thin film membranes were produced in order to study the specific interactions between DOPA and TiO2 and DOPA and tissue, using a membrane inflation method. The presence of DOPA in the membranes enhances the adhesion on TiO 2 and tissue, although adhesion to tissue requires that the DOPA groups be oxidized while in contact with the tissue of interest. Porous hydrogel scaffolds for tissue engineering applications were formed by adding salt crystals to the triblock copolymer solution prior to solvent exchange. Salt was then leached out by immersing the gel into water. Structures of the porous hydrogels were characterized by confocal laser scanning microscopy. These hydrogels were shown to be suitable for tissue regeneration and drug delivery applications. Diffusion-mediated adhesion between two component miscible polymer systems having very different glassy temperatures was also investigated. Axisymmetric

  8. Proteomic analysis of integrin adhesion complexes.

    Science.gov (United States)

    Byron, Adam; Humphries, Jonathan D; Bass, Mark D; Knight, David; Humphries, Martin J

    2011-04-05

    Integrin receptors regulate cell fate by coupling the binding of extracellular adhesion proteins to the assembly of intracellular cytoskeletal and signaling complexes. A detailed, integrative view of adhesion complexes will provide insight into the molecular mechanisms that control cell morphology, survival, movement, and differentiation. To date, membrane receptor-associated signaling complexes have been refractory to proteomic analysis because of their inherent lability and inaccessibility. We developed a methodology to isolate ligand-induced integrin adhesion complexes, and we used this technique to analyze the composition of complexes associated with multiple receptor-ligand pairs and define core and receptor-specific subnetworks. In particular, we identified regulator of chromosome condensation-2 (RCC2) as a component of fibronectin-activated signaling pathways that regulate directional cell movement. The development of this proteomics pipeline provides the means to investigate the molecular composition and function of various adhesion complexes.

  9. Application of honeymoon cold-set adhesive systems for structural end joints in North America

    Science.gov (United States)

    Roland E. Kreibich; Richard W. Hemingway; William T. Nearn

    1993-01-01

    High quality, structural end joints can be cold-set at mill speed using a two-component honeymoon adhesive system composed of southern pine bark or pecan shell membrane tannin and a modified, commercially available. phenol-resorcinol-formaldehyde resin. Adhesive costs of a fully waterproof glueline are approximately $0.60/lb. of applied adhesive mix compared to $0.80/...

  10. Is DRM lipid composition relevant in cell-extracellular matrix adhesion structures?

    Science.gov (United States)

    Márquez, María Gabriela; Sterin-Speziale, Norma Beatriz

    2008-01-01

    Focal adhesions mediate cell-extracellular matrix adhesion. They are inserted in detergent-resistant membrane microdomains enriched in phosphatidylinositol-4,5-bisphosphate. In spite of the relevance that membrane lipids appear to have on cell adhesion structures, to our knowledge, there are no previous reports on the membrane lipid composition where focal adhesions are located in vivo or on how changes in local membrane composition contribute to focal adhesion maintenance. This may be due to the fact that the explosion of information in the fields of genomics and proteomics has not been matched by a corresponding advancement of knowledge in the field of lipids. The physiological importance of lipids is illustrated by the numerous diseases to which lipid abnormalities contribute. To gain insight into the role of membrane lipid composition in the preservation of epithelial cell adhesion to the substratum, how specific changes in the membrane lipid composition in vivo affect the maintenance of focal adhesions in renal papillae collecting duct cells has been previously studied. It is currently considered that phosphatidylinositol-4,5-bisphosphate plays a crucial role in the maintenance of assembled focal adhesion. However, such pool of polyphosphoinositides has to be part of a domain of a specific lipid composition to serve as a membrane lipid stabilizing the focal adhesion plaque.

  11. Adhesive wafer bonding

    Science.gov (United States)

    Niklaus, F.; Stemme, G.; Lu, J.-Q.; Gutmann, R. J.

    2006-02-01

    Wafer bonding with intermediate polymer adhesives is an important fabrication technique for advanced microelectronic and microelectromechanical systems, such as three-dimensional integrated circuits, advanced packaging, and microfluidics. In adhesive wafer bonding, the polymer adhesive bears the forces involved to hold the surfaces together. The main advantages of adhesive wafer bonding include the insensitivity to surface topography, the low bonding temperatures, the compatibility with standard integrated circuit wafer processing, and the ability to join different types of wafers. Compared to alternative wafer bonding techniques, adhesive wafer bonding is simple, robust, and low cost. This article reviews the state-of-the-art polymer adhesive wafer bonding technologies, materials, and applications.

  12. A novel c-Src recruitment pathway from the cytosol to focal adhesions.

    Science.gov (United States)

    Machiyama, Hiroaki; Yamaguchi, Tomoyuki; Watanabe, Tomonobu M; Fujita, Hideaki

    2017-07-01

    The role of myristoylation in the localization and catalytic activity of Src at focal adhesions was investigated by live-cell imaging and site-directed mutagenesis. Although the majority of activated Src molecules are localized at focal adhesions, it is unclear how activated Src molecules are recruited to focal adhesions. Because Src is activated at the cell membrane, translocation of Src to cell membranes is considered to be essential for its recruitment to focal adhesions. Membrane-targeting-deficient Src mutant SrcG2A localizes at focal adhesions, indicating direct recruitment of Src from cytosol to focal adhesions. Furthermore, directly recruited Src molecules are shown to enhance paxillin dynamics at focal adhesions. These results reveal that the regulation of Src activation and translocation is more complex than previously suggested. © 2017 Federation of European Biochemical Societies.

  13. Adhesive Elastomeric Proteins

    OpenAIRE

    Mansour, Haefa; Liu, Julie

    2013-01-01

    Sutures and staples commonly used to close surgical wounds tend to be much stiffer than the surrounding tissue, often resulting in external tissue damage. Surgical adhesives provide a promising alternative to these sutures and staples. Ideal surgical adhesives are biocompatible, able to set well and remain sticky in moist conditions, possess strong adhesive and cohesive properties, and exhibit mechanical properties that mimic those of the surrounding tissue. Unfortunately, the adhesives avail...

  14. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  15. Real Time Extraction Kinetics of Electro Membrane Extraction Verified by Comparing Drug Metabolism Profiles Obtained from a Flow-Flow Electro Membrane Extraction-Mass Spectrometry System with LC-MS.

    Science.gov (United States)

    Fuchs, David; Jensen, Henrik; Pedersen-Bjergaard, Stig; Gabel-Jensen, Charlotte; Hansen, Steen Honoré; Petersen, Nickolaj Jacob

    2015-06-02

    A simple to construct and operate, "dip-in" electromembrane extraction (EME) probe directly coupled to electrospray ionization-mass spectrometry (ESI-MS) for rapid extraction and real time analysis of various analytes was developed. The setup demonstrated that EME-MS can be used as a viable alternative to conventional protein precipitation followed by liquid chromatography-mass spectrometry (LC-MS) for studying drug metabolism. Comparison of EME-MS with LC-MS for drug metabolism analysis demonstrated for the first time that real time extraction of analytes by EME is possible. Metabolism kinetics were investigated for three different drugs: amitriptyline, promethazine, and methadone. By comparing the EME-MS extraction profiles of the drug substances and formed drug metabolites with the metabolism profiles obtained by conventional protein precipitation followed by LC-MS good correlation was obtained with only very limited time delay in the extraction. The results indicate that, by tuning the electromembrane properties, for example, by optimizing the extraction voltage, extremely fast extraction kinetics can be obtained. A metabolic profile could be generated while the drug was metabolized offering a significant time saving as compared to conventional LC-MS where laborious protein precipitation or other sample pretreatments are required before analysis. This makes the developed EME-MS setup a highly promising sample preparation method for various kinds of applications where fast and real-time analysis of analytes is of interest.

  16. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  17. Kinetic Typography

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Djonov, Emilia

    2014-01-01

    After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....

  18. Real Time Extraction Kinetics of Electro Membrane Extraction Verified by Comparing Drug Metabolism Profiles Obtained from a Flow-Flow Electro Membrane Extraction-Mass Spectrometry System with LC-MS

    DEFF Research Database (Denmark)

    Fuchs, David; Jensen, Henrik; Pedersen-Bjergaard, Stig

    2015-01-01

    A simple to construct and operate, "dip-in" electromembrane extraction (EME) probe directly coupled to electrospray ionization-mass spectrometry (ESI-MS) for rapid extraction and real time analysis of various analytes was developed. The setup demonstrated that EME-MS can be used as a viable...... alternative to conventional protein precipitation followed by liquid chromatography-mass spectrometry (LC-MS) for studying drug metabolism. Comparison of EME-MS with LC-MS for drug metabolism analysis demonstrated for the first time that real time extraction of analytes by EME is possible. Metabolism kinetics...... were investigated for three different drugs: amitriptyline, promethazine, and methadone. By comparing the EME-MS extraction profiles of the drug substances and formed drug metabolites with the metabolism profiles obtained by conventional protein precipitation followed by LC-MS good correlation...

  19. Kinetic Typography

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Djonov, Emilia

    2014-01-01

    After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images.......After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....

  20. Adhesion toughness of multilayer graphene films.

    Science.gov (United States)

    Wood, Joseph D; Harvey, Christopher M; Wang, Simon

    2017-12-05

    Interface adhesion toughness between multilayer graphene films and substrates is a major concern for their integration into functional devices. Results from the circular blister test, however, display seemingly anomalous behaviour as adhesion toughness depends on number of graphene layers. Here we show that interlayer shearing and sliding near the blister crack tip, caused by the transition from membrane stretching to combined bending, stretching and through-thickness shearing, decreases fracture mode mixity G II /G I , leading to lower adhesion toughness. For silicon oxide substrate and pressure loading, mode mixity decreases from 232% for monolayer films to 130% for multilayer films, causing the adhesion toughness G c to decrease from 0.424 J m -2 to 0.365 J m -2 . The mode I and II adhesion toughnesses are found to be G Ic  = 0.230 J m -2 and G IIc  = 0.666 J m -2 , respectively. With point loading, mode mixity decreases from 741% for monolayer films to 262% for multilayer films, while the adhesion toughness G c decreases from 0.543 J m -2 to 0.438 J m -2 .

  1. Glycosynapses: microdomains controlling carbohydrate-dependent cell adhesion and signaling

    OpenAIRE

    Hakomori Senitiroh

    2004-01-01

    The concept of microdomains in plasma membranes was developed over two decades, following observation of polarity of membrane based on clustering of specific membrane components. Microdomains involved in carbohydrate-dependent cell adhesion with concurrent signal transduction that affect cellular phenotype are termed "glycosynapse". Three types of glycosynapse have been distinguished: "type 1" having glycosphingolipid associated with signal transducers (small G-proteins, cSrc, Src family kina...

  2. Kinetics of B Cell responses to Plasmodium falciparum erythrocyte membrane protein 1 in Ghanaian women naturally exposed to malaria parasites

    DEFF Research Database (Denmark)

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F

    2014-01-01

    acquisition of clinical protection takes years to develop, but it probably involves a range of immune-evasive parasite features, not least of which are PfEMP1 polymorphism and clonal variation. Parasite-induced subversion of immunological memory and expansion of "atypical" memory B cells may also contribute......Naturally acquired protective immunity to Plasmodium falciparum malaria takes years to develop. It relies mainly on Abs, particularly IgG specific for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins on the infected erythrocyte surface. It is only partially understood why...... confirmed earlier reports of high atypical memory B cell frequencies among residents of P. falciparum-endemic areas, and indicated an additional effect of pregnancy. Our study provides new knowledge regarding immunity to P. falciparum malaria and underpins efforts to develop PfEMP1-based vaccines against...

  3. γ-aminobutyric acid (GABA) mediated transmembrane chloride flux with membrane vesicles from rat brain measured by quench flow technique: kinetic homogeneity of ion flux and receptor desensitization

    International Nuclear Information System (INIS)

    Cash, D.J.; Subbarao, K.

    1987-01-01

    Transmembrane chloride flux mediated by the GABA/sub A/ receptor and the desensitization of the receptor were followed using quench flow technique with 36 Cl - and a membrane preparation from rat cerebral cortex. Measurements in short times allowed these two processes to be resolved. In general the ion-flux activity was desensitized in two phases. A fast phase took place in circa 200 ms (100 μM GABA) followed by a slower phase in several seconds. A minority of the membrane preparations did not display the fast phase. It is desirable to be able to separate these two phases of desensitization to facilitate analysis of the responses of the receptor. A short preincubation with GABA removed the fast phase from a subsequent measurement. In the absence of the fast phase the whole ion-flux equilibrium was seen as a single phase. The measurements presented covering a time range of 0.01 seconds to 10 seconds show a single phase of ion flux which can be described by a first order ion influx process and a single first order desensitization process with a halt time of circa 1 s (100 μM GABA). The results imply a single population of vesicles containing a single population of GABA receptor (remaining active) with a single phase of desensitization. An understanding of this homogeneity, and how to ensure it, gives a basis for quantitatively testing the effects of drugs on these responses. Ion flux measurements with quench flow technique are a suitable tool for investigation of the mechanism of action of neurotransmitter receptors from brain. 37 references, 3 figures

  4. Temperature-dependent gas transport and its correlation with kinetic ...

    Indian Academy of Sciences (India)

    dependent gas transport and its correlation with kinetic diameter in polymer nanocomposite membrane. N K ACHARYA ... For the first time, the permeability and selectivity for nanocomposite membrane are reported as a function of temperature.

  5. The adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  6. Kinetic characterization, optimum conditions for catalysis and substrate preference of secretory phospholipase A2 from Glycine max in model membrane systems.

    Science.gov (United States)

    Mariani, María Elisa; Madoery, Ricardo Román; Fidelio, Gerardo Daniel

    2015-01-01

    Two secretory phospholipase A2 (sPLA2s) from Glycine max, GmsPLA2-IXA-1 and GmsPLA2-XIB-2, have been purified as recombinant proteins and the activity was evaluated in order to obtain the optimum conditions for catalysis using mixed micelles and lipid monolayers as substrate. Both sPLA2s showed a maximum enzyme activity at pH 7 and a requirement of Ca(2+) in the micromolar range. These parameters were similar to those found for animal sPLA2s but a surprising optimum temperature for catalysis at 60 °C was observed. The effect of negative interfacial charges on the hydrolysis of organized substrates was evaluated through initial rate measurements using short chain phospholipids with different head groups. The enzymes showed subtle differences in the specificity for phospholipids with different head groups (DLPC, DLPG, DLPE, DLPA) in presence or absence of NaCl. Both recombinant enzymes showed lower activity toward anionic phospholipids and a preference for the zwitterionic ones. The values of the apparent kinetic parameters (Vmax and KM) demonstrated that these enzymes have more affinity for phosphatidylcholine compared with phosphatidylglycerol, in contrast with the results observed for pancreatic sPLA2. A hopping mode of catalysis was proposed for the action of these sPLA2 on mixed phospholipid/triton micelles. On the other hand, Langmuir-monolayers assays indicated an optimum lateral surface pressure for activity in between 13 and 16 mN/m for both recombinant enzymes. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  7. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  8. Preparation of an Adhesive in Emulsion for Maxillofacial Prosthetic

    Directory of Open Access Journals (Sweden)

    Joaquín Palacios-Alquisira

    2010-10-01

    Full Text Available Maxillofacial prostheses is a dental medicine specialty aimed at restoring anatomical facial defects caused by cancer, trauma or congenital malformations through an artificial device, which is commonly attached to the skin with the help of an adhesive. The purpose of our research was to develop a pressure-sensitive adhesive (PSA based on acrylic monomers, characterizing and determining its drying kinetics, that is to say the time it takes to lose 50 to 90% of its moisture. The adhesive synthesis was realized by means of emulsion polymerization; the composition of formulations was: (AA‑MMA‑EA and (AA‑MMA‑2EHA with different molar ratios. The formulation based on (AA‑MMA‑2EHA with 50 w% of solids, presented good adhesive properties such as tack, bond strength, and short drying time. We propose this formulation as a PSA, because it offers an alternative for systemically compromised patients, by less irritation compared to organic solvent-based adhesives.

  9. Kinetic analysis of antagonist-occupied adenosine-A3 receptors within membrane microdomains of individual cells provides evidence of receptor dimerization and allosterism.

    Science.gov (United States)

    Corriden, Ross; Kilpatrick, Laura E; Kellam, Barrie; Briddon, Stephen J; Hill, Stephen J

    2014-10-01

    In our previous work, using a fluorescent adenosine-A3 receptor (A3AR) agonist and fluorescence correlation spectroscopy (FCS), we demonstrated high-affinity labeling of the active receptor (R*) conformation. In the current study, we used a fluorescent A3AR antagonist (CA200645) to study the binding characteristics of antagonist-occupied inactive receptor (R) conformations in membrane microdomains of individual cells. FCS analysis of CA200645-occupied A3ARs revealed 2 species, τD2 and τD3, that diffused at 2.29 ± 0.35 and 0.09 ± 0.03 μm(2)/s, respectively. FCS analysis of a green fluorescent protein (GFP)-tagged A3AR exhibited a single diffusing species (0.105 μm(2)/s). The binding of CA200645 to τD3 was antagonized by nanomolar concentrations of the A3 antagonist MRS 1220, but not by the agonist NECA (up to 300 nM), consistent with labeling of R. CA200645 normally dissociated slowly from the A3AR, but inclusion of xanthine amine congener (XAC) or VUF 5455 during washout markedly accelerated the reduction in the number of particles exhibiting τD3 characteristics. It is notable that this effect was accompanied by a significant increase in the number of particles with τD2 diffusion. These data show that FCS analysis of ligand-occupied receptors provides a unique means of monitoring ligand A3AR residence times that are significantly reduced as a consequence of allosteric interaction across the dimer interface © FASEB.

  10. Kinetic sculpture

    OpenAIRE

    Joneta Witabora; Jonata Witabora

    2014-01-01

    Kinetic Sculpture was born from a long process of searching new approach in sculpture. The artists tried to escape from 'static' paradigm and tried to implement movement into their works: a sculpture that is mobile. Movement is always a fascinating phenomenon to eyes. Kinetic sculpture strength lies in its unique character in combining science and art. Kinetic Sculptures are really interesting pieces of art. It succeeds to fascinate human everytime. 

  11. Leukocyte adhesion and polarization: Role of glycosylphosphatidylinositol-anchored proteins.

    Science.gov (United States)

    Richardson, Dion D; Fernandez-Borja, Mar

    2015-01-01

    Leukocyte traffic out of the blood stream is crucial for an adequate immune response. Leukocyte extravasation is critically dependent on the binding of leukocyte integrins to their endothelial counterreceptors. This interaction enables the firm adhesion of leukocytes to the luminal side of the vascular wall and allows for leukocyte polarization, crawling and diapedesis. Leukocyte adhesion, polarization and migration requires the orchestrated regulation of integrin adhesion/de-adhesion dynamics and actin cytoskeleton rearrangements. Adhesion strength depends on conformational changes of integrin molecules (affinity) as well as the number of integrin molecules engaged at adhesion sites (valency). These two processes can be independently regulated and several molecules modulate either one or both processes. Cholesterol-rich membrane domains (lipid rafts) participate in integrin regulation and play an important role in leukocyte adhesion, polarization and motility. In particular, lipid raft-resident glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs) have been reported to regulate leukocyte adhesion, polarization and motility in both integrin-dependent and independent manners. Here, we present our recent discovery concerning the novel role of the GPI-AP prion protein (PrP) in the regulation of β1 integrin-mediated monocyte adhesion, migration and shape polarization in the context of existing literature on GPI-AP-dependent regulation of integrins.

  12. The influence of tobacco smoking on adhesion molecule profiles

    Directory of Open Access Journals (Sweden)

    Palmer RM

    2003-01-01

    Full Text Available Abstract Sequential interactions between several adhesion molecules and their ligands regulate lymphocyte circulation and leukocyte recruitment to inflammatory foci. Adhesion molecules are, therefore, central and critical components of the immune and inflammatory system. We review the evidence that tobacco smoking dysregulates specific components of the adhesion cascade, which may be a common factor in several smoking-induced diseases. Smoking causes inappropriate leukocyte activation, leukocyte-endothelial adhesion, and neutrophil entrapment in the microvasculature, which may help initiate local tissue destruction. Appropriate inflammatory reactions may thus be compromised. In addition to smoke-induced alterations to membrane bound endothelial and leukocyte adhesion molecule expression, which may help explain the above phenomena, smoking has a profound influence on circulating adhesion molecule profiles, most notably sICAM-1 and specific sCD44 variants. Elevated concentrations of soluble adhesion molecules may simply reflect ongoing inflammatory processes. However, increasing evidence suggests that specific soluble adhesion molecules are immunomodulatory, and that alterations to soluble adhesion molecule profiles may represent a significant risk factor for several diverse diseases. This evidence is discussed herein.

  13. The influence of tobacco smoking on adhesion molecule profiles

    Directory of Open Access Journals (Sweden)

    Palmer RM

    2002-01-01

    Full Text Available Abstract Sequential interactions between several adhesion molecules and their ligands regulate lymphocyte circulation and leukocyte recruitment to inflammatory foci. Adhesion molecules are, therefore, central and critical components of the immune and inflammatory system. We review the evidence that tobacco smoking dysregulates specific components of the adhesion cascade, which may be a common factor in several smoking-induced diseases. Smoking causes inappropriate leukocyte activation, leukocyte-endothelial adhesion, and neutrophil entrapment in the microvasculature, which may help initiate local tissue destruction. Appropriate inflammatory reactions may thus be compromised. In addition to smoke-induced alterations to membrane bound endothelial and leukocyte adhesion molecule expression, which may help explain the above phenomena, smoking has a profound influence on circulating adhesion molecule profiles, most notably sICAM-1 and specific sCD44 variants. Elevated concentrations of soluble adhesion molecules may simply reflect ongoing inflammatory processes. However, increasing evidence suggests that specific soluble adhesion molecules are immunomodulatory, and that alterations to soluble adhesion molecule profiles may represent a significant risk factor for several diverse diseases. This evidence is discussed herein.

  14. Soy protein adhesives

    Science.gov (United States)

    Charles R. Frihart

    2010-01-01

    In the quest to manufacture and use building materials that are more environmentally friendly, soy adhesives can be an important component. Trees fix and store carbon dioxide in the atmosphere. After the trees are harvested, machinery converts the wood into strands, which are then bonded together with adhesives to form strandboard, used in constructing long-lasting...

  15. Adhesive compositions and methods

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Sendijarevic, Vahid; O' Connor, James

    2017-12-05

    The present invention encompasses polyurethane adhesive compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane adhesives derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure:. In another aspect, the invention provides articles comprising the inventive polyurethane compositions as well as methods of making such compositions.

  16. adhesive intestinal obstruction

    African Journals Online (AJOL)

    2006-06-01

    Jun 1, 2006 ... ABSTRACT. Background: Adhesions after abdominal and pelvic surgery are a major cause of intestinal obstruction in the western world and the pathology is steadily gaining prominence in our practice. Objective: To determine the magnitude of adhesive intestinal obstruction; to determine the types.

  17. Instant acting adhesive system

    Science.gov (United States)

    Davis, T. R.; Haines, R. C.

    1971-01-01

    Adhesive developes 80 percent of minimum bond strength of 250 psi less than 30 sec after activation is required. Adhesive is stable, handles easily, is a low toxic hazard, and is useful in industrial and domestic prototype bonding and clamping operations.

  18. Determination of the Strength of Adhesion between Lipid Vesicles

    Directory of Open Access Journals (Sweden)

    Tomáš Mareš

    2012-01-01

    Full Text Available A commonly used method to determine the strength of adhesion between adhering lipid vesicles is measuring their effective contact angle from experimental images. The aim of this paper is to estimate the interobserver variations in vesicles effective contact angle measurements and to propose a new method for estimating the strength of membrane vesicle adhesion. Theoretical model shows for the old and for the new measure a monotonic dependence on the strength of adhesion. Results obtained by both measuring techniques show statistically significant correlation and high interobserver reliability for both methods. Therefore the conventional method of measuring the effective contact angle gives qualitatively relevant results as the measure of the lipid vesicle adhesion. However, the new measuring technique provides a lower variation of the measured values than the conventional measures using the effective contact angle. Moreover, obtaining the adhesion angle can be automatized more easily than obtaining the effective contact angle.

  19. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach...... that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  20. Kinetic approach

    Indian Academy of Sciences (India)

    Collapse of a Bose gas: Kinetic approach ... Thermodynamical, statistical and static properties of condensates; Ultracold and trapped gases; matter waves. ... of a harmonically trapped attractively interacting Bose gas below the condensation point by introducing a kinetic approach within the Hartee-Fock approximation.

  1. Heparin kinetics

    International Nuclear Information System (INIS)

    Swart, C.A.M. de.

    1983-01-01

    The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35 S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125 I-radiolabelled antithrombin III and various 35 S-radiolabelled heparin fractions. (Auth.)

  2. Effects of fractal roughness of membrane surfaces on interfacial interactions associated with membrane fouling in a membrane bioreactor.

    Science.gov (United States)

    Feng, Shushu; Yu, Genying; Cai, Xiang; Eulade, Mahoro; Lin, Hongjun; Chen, Jianrong; Liu, Yong; Liao, Bao-Qiang

    2017-11-01

    Fractal roughness is one of the most important properties of a fractal surface. In this study, it was found that, randomly rough membrane surface was a fractal surface, which could be digitally modeled by a modified two-variable Weierstrass-Mandelbrot (WM) function. Fractal roughness of membrane surfaces has a typical power function relation with the statistical roughness of the modeled surface. Assessment of interfacial interactions showed that an increase in fractal roughness of membrane surfaces will strengthen and prolong the interfacial interactions between membranes and foulants, and under conditions in this study, will significantly increase the adhesion propensity of a foulant particle on membrane surface. This interesting result can be attributed to that increase in fractal roughness simultaneously improves separation distance and interaction surface area for adhesion of a foulant particle. This study gives deep insights into interfacial interactions and membrane fouling in MBRs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. EB curable laminating adhesives

    International Nuclear Information System (INIS)

    Matsuyama, Asao; Kobayashi, Masahide; Gotoh, Sakiko

    1992-01-01

    New developed solvent free EB curable laminating adhesives have two liquid components, A with hydroxy and acryloyl group, B with isocyanate and acryloyl group in a molecule. These EB laminating adhesives do not need any aging process, which is a big advantage, and are very suitable for environment, safety, and health because of no heating process and solvent free formulas. And we have made basic research about the relation of peel strength or heat seal strength versus Tg of cured film, elongation at break, elastic modulus, and so on. Basic specifications of the new developed adhesives are shown. (author)

  4. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...

  5. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  6. Scalable bonding of nanofibrous polytetrafluoroethylene (PTFE) membranes on microstructures

    Science.gov (United States)

    Mortazavi, Mehdi; Fazeli, Abdolreza; Moghaddam, Saeed

    2018-01-01

    Expanded polytetrafluoroethylene (ePTFE) nanofibrous membranes exhibit high porosity (80%-90%), high gas permeability, chemical inertness, and superhydrophobicity, which makes them a suitable choice in many demanding fields including industrial filtration, medical implants, bio-/nano- sensors/actuators and microanalysis (i.e. lab-on-a-chip). However, one of the major challenges that inhibit implementation of such membranes is their inability to bond to other materials due to their intrinsic low surface energy and chemical inertness. Prior attempts to improve adhesion of ePTFE membranes to other surfaces involved surface chemical treatments which have not been successful due to degradation of the mechanical integrity and the breakthrough pressure of the membrane. Here, we report a simple and scalable method of bonding ePTFE membranes to different surfaces via the introduction of an intermediate adhesive layer. While a variety of adhesives can be used with this technique, the highest bonding performance is obtained for adhesives that have moderate contact angles with the substrate and low contact angles with the membrane. A thin layer of an adhesive can be uniformly applied onto micro-patterned substrates with feature sizes down to 5 µm using a roll-coating process. Membrane-based microchannel and micropillar devices with burst pressures of up to 200 kPa have been successfully fabricated and tested. A thin layer of the membrane remains attached to the substrate after debonding, suggesting that mechanical interlocking through nanofiber engagement is the main mechanism of adhesion.

  7. Anti-adhesion therapy following operative hysteroscopy for treatment of female subfertility

    NARCIS (Netherlands)

    Bosteels, Jan; Weyers, Steven; Kasius, Jenneke; Broekmans, Frank J.; Mol, Ben Willem J.; D'Hooghe, Thomas M.

    2015-01-01

    Background Limited observational evidence suggests potential benefit for subfertile women undergoing operative hysteroscopy with several anti-adhesion therapies (e. g. insertion of an intrauterine device (IUD) or balloon, hormonal treatment, barrier gels or human amniotic membrane grafting) to

  8. Anti-adhesion therapy following operative hysteroscopy for treatment of female subfertility

    NARCIS (Netherlands)

    Bosteels, Jan; Weyers, Steven; D'Hooghe, Thomas M.; Torrance, Helen; Broekmans, Frank J.; Chua, Su Jen; Mol, Ben Willem J.

    2017-01-01

    Background: Observational evidence suggests a potential benefit with several anti-adhesion therapies in women undergoing operative hysteroscopy (e.g. insertion of an intrauterine device or balloon, hormonal treatment, barrier gels or human amniotic membrane grafting) for decreasing intrauterine

  9. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  10. Bioinspired pressure actuated adhesive system

    NARCIS (Netherlands)

    Paretkar, D.R.; Kamperman, M.M.G.; Schneider, A.S.; Martina, D.; Creton, C.; Arzt, E.

    2011-01-01

    We developed a dry synthetic adhesive system inspired by gecko feet adhesion that can switch reversibly from adhesion to non-adhesion with applied pressure as external stimulus. Micropatterned polydimethylsiloxane (PDMS) surfaces with pillars of 30 µm length and 10 µm diameter were fabricated using

  11. Cohesion and Adhesion with Proteins

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    With increasing interest in bio-based adhesives, research on proteins has expanded because historically they have been used by both nature and humans as adhesives. A wide variety of proteins have been used as wood adhesives. Ancient Egyptians most likely used collagens tobond veneer to wood furniture, then came casein (milk), blood, fish scales, and soy adhesives, with...

  12. Doxycycline-loaded nanotube-modified adhesives inhibit MMP in a dose-dependent fashion.

    Science.gov (United States)

    Palasuk, Jadesada; Windsor, L Jack; Platt, Jeffrey A; Lvov, Yuri; Geraldeli, Saulo; Bottino, Marco C

    2018-04-01

    This article evaluated the drug loading, release kinetics, and matrix metalloproteinase (MMP) inhibition of doxycycline (DOX) released from DOX-loaded nanotube-modified adhesives. DOX was chosen as the model drug, since it is the only MMP inhibitor approved by the U.S. Food and Drug Administration. Drug loading into the nanotubes was accomplished using DOX solution at distinct concentrations. Increased concentrations of DOX significantly improved the amount of loaded DOX. The modified adhesives were fabricated by incorporating DOX-loaded nanotubes into the adhesive resin of a commercial product. The degree of conversion (DC), Knoop microhardness, DOX release kinetics, antimicrobial, cytocompatibility, and anti-MMP activity of the modified adhesives were investigated. Incorporation of DOX-loaded nanotubes did not compromise DC, Knoop microhardness, or cell compatibility. Higher concentrations of DOX led to an increase in DOX release in a concentration-dependent manner from the modified adhesives. DOX released from the modified adhesives did not inhibit the growth of caries-related bacteria, but more importantly, it did inhibit MMP-1 activity. The loading of DOX into the nanotube-modified adhesives did not compromise the physicochemical properties of the adhesives and the released levels of DOX were able to inhibit MMP activity without cytotoxicity. Doxycycline released from the nanotube-modified adhesives inhibited MMP activity in a concentration-dependent fashion. Therefore, the proposed nanotube-modified adhesive may hold clinical potential as a strategy to preserve resin/dentin bond stability.

  13. Single cell adhesion strength assessed with variable-angle total internal reflection fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Marcelina Cardoso Dos Santos

    2017-06-01

    Full Text Available We propose a new strategy to evaluate adhesion strength at the single cell level. This approach involves variable-angle total internal reflection fluorescence microscopy to monitor in real time the topography of cell membranes, i.e. a map of the membrane/substrate separation distance. According to the Boltzmann distribution, both potential energy profile and dissociation energy related to the interactions between the cell membrane and the substrate were determined from the membrane topography. We have highlighted on glass substrates coated with poly-L-lysine and fibronectin, that the dissociation energy is a reliable parameter to quantify the adhesion strength of MDA-MB-231 motile cells.

  14. Molecular Grafting of Fluorinated and Nonfluorinated Alkylsiloxanes on Various Ceramic Membrane Surfaces for the Removal of Volatile Organic Compounds Applying Vacuum Membrane Distillation.

    Science.gov (United States)

    Kujawa, Joanna; Al-Gharabli, Samer; Kujawski, Wojciech; Knozowska, Katarzyna

    2017-02-22

    Four main tasks were presented: (i) ceramic membrane functionalization (TiO 2 5 kDa and 300 kDa), (ii) extended material characterization (physicochemistry and tribology) of pristine and modified ceramic samples, (iii) evaluation of chemical and mechanical stability, and finally (iv) assessment of membrane efficiency in vacuum membrane distillation applied for volatile organic compounds (VOCs) removal from water. Highly efficient molecular grafting with four types of perfluoroalkylsilanes and one nonfluorinated agent was developed. Materials with controllable tribological and physicochemical properties were achieved. The most meaningful finding is associated with the applicability of fluorinated and nonfluorinated grafting agents. The results of contact angle, hysteresis of contact angle, sliding angle, and critical surface tension as well as Young's modulus, nanohardness, and adhesion force for grafting by these two modifiers are comparable. This provides insight into the potential applicability of environmental friendly hydrophobic and superhydrophobic surfaces. The achieved hydrophobic membranes were very effective in the removal of VOCs (butanol, methyl-tert-butyl ether, and ethyl acetate) from binary aqueous solutions in vacuum membrane distillation. The correlation between membrane effectiveness and separated solvent polarity was compared in terms of material properties and resistance to the wetting (kinetics of wetting and in-depth liquid penetration). Material properties were interpreted considering Zisman theory and using Kao diagram. The significant influence of surface chemistry on the membrane performance was noticed (5 kDa, influence of hydrophobic nanolayer and separation controlled by solution-diffusion model; 300 kDa, no impact of surface chemistry and separation controlled by liquid-vapor equilibrium).

  15. Dry adhesives with sensing features

    International Nuclear Information System (INIS)

    Krahn, J; Menon, C

    2013-01-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm 2 . (paper)

  16. Dry adhesives with sensing features

    Science.gov (United States)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  17. The Neural Cell Adhesion Molecule NCAM2/OCAM/RNCAM, a Close Relative to NCAM

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Walmod, Peter

    2008-01-01

    molecule (NCAM) is a well characterized, ubiquitously expressed CAM that is highly expressed in the nervous system. In addition to mediating cell adhesion, NCAM participates in a multitude of cellular events, including survival, migration, and differentiation of cells, outgrowth of neurites, and formation......Cell adhesion molecules (CAMs) constitute a large class of plasma membrane-anchored proteins that mediate attachment between neighboring cells and between cells and the surrounding extracellular matrix (ECM). However, CAMs are more than simple mediators of cell adhesion. The neural cell adhesion...... and plasticity of synapses. NCAM shares an overall sequence identity of approximately 44% with the neural cell adhesion molecule 2 (NCAM2), a protein also known as olfactory cell adhesion molecule (OCAM) and Rb-8 neural cell adhesion molecule (RNCAM), and the region-for-region sequence homology between the two...

  18. Engineering emergent multicellular behavior through synthetic adhesion

    Science.gov (United States)

    Glass, David; Riedel-Kruse, Ingmar

    In over a decade, synthetic biology has developed increasingly robust gene networks within single cells, but constructed very few systems that demonstrate multicellular spatio-temporal dynamics. We are filling this gap in synthetic biology's toolbox by developing an E. coli self-assembly platform based on modular cell-cell adhesion. We developed a system in which adhesive selectivity is provided by a library of outer membrane-displayed peptides with intra-library specificities, while affinity is provided by consistent expression across the entire library. We further provide a biophysical model to help understand the parameter regimes in which this tool can be used to self-assemble into cellular clusters, filaments, or meshes. The combined platform will enable future development of synthetic multicellular systems for use in consortia-based metabolic engineering, in living materials, and in controlled study of minimal multicellular systems. Stanford Bio-X Bowes Fellowship.

  19. Kinetics and

    Directory of Open Access Journals (Sweden)

    Mojtaba Ahmadi

    2016-11-01

    Full Text Available The aqueous degradation of Reactive Yellow 84 (RY84 by potassium peroxydisulfate (K2S2O8 has been studied in laboratory scale experiments. The effect of the initial concentrations of potassium peroxydisulfate and RY84, pH and temperature on RY84 degradation were also examined. Experimental data were analyzed using first and second-order kinetics. The degradation kinetics of RY84 of the potassium peroxydisulfate process followed the second-order reaction kinetics. These rate constants have an extreme values similar to of 9.493 mM−1min−1 at a peroxydisulfate dose of 4 mmol/L. Thermodynamic parameters such as activation (Ea and Gibbs free energy (ΔG° were also evaluated. The negative value of ΔGo and Ea shows the spontaneous reaction natural conditions and exothermic nature.

  20. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  1. Biobased Membrane

    NARCIS (Netherlands)

    Koenders, E.A.B.; Zlopasa, J.; Picken, S.J.

    2015-01-01

    The present invention is in the field of a composition for forming a bio-compatible membrane applicable to building material, such as concrete, cement, etc., to a meth od of applying said composition for forming a bio-compatible membrane, a biocompatible membrane, use of said membrane for various

  2. Adhesive particle shielding

    Science.gov (United States)

    Klebanoff, Leonard Elliott [Dublin, CA; Rader, Daniel John [Albuquerque, NM; Walton, Christopher [Berkeley, CA; Folta, James [Livermore, CA

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  3. Cell adhesion to borate glasses by colloidal probe microscopy.

    Science.gov (United States)

    Wiederhorn, Sheldon M; Chae, Young-Hun; Simon, Carl G; Cahn, Jackson; Deng, Yan; Day, Delbert

    2011-05-01

    The adhesion of osteoblast-like cells to silicate and borate glasses was measured in cell growth medium using colloidal probe microscopy. The probes consisted of silicate and borate glass spheres, 25-50 μm in diameter, attached to atomic force microscope cantilevers. Variables of the study included glass composition and time of contact of the cell to the glasses. Increasing the time of contact from 15 to 900 s increased the force of adhesion. The data could be plotted linearly on a log-log plot of adhesive force versus time. Of the seven glasses tested, five had slopes close to 0.5, suggesting a square root dependence of the adhesive force on the contact time. Such behavior can be interpreted as a diffusion limited process occurring during the early stages of cell attachment. We suggest that the rate limiting step in the adhesion process is the diffusion of integrins resident in the cell membrane to the area of cell attachment. Data presented in this paper support the hypothesis of Hench et al. that strong adhesion depends on the formation of a calcium phosphate reaction layer on the surfaces of the glass. Glasses that did not form a calcium phosphate layer exhibited a weaker adhesive force relative to those glasses that did form a calcium phosphate layer. Published by Elsevier Ltd.

  4. Ligand-mediated adhesive mechanics of two static, deformed spheres.

    Science.gov (United States)

    Sircar, Sarthok; Nguyen, Giang; Kotousov, Andrei; Roberts, Anthony J

    2016-10-01

    A self-consistent model is developed to investigate attachment/detachment kinetics of two static, deformable microspheres with irregular surface and coated with flexible binding ligands. The model highlights how the microscale binding kinetics of these ligands as well as the attractive/repulsive potential of the charged surface affects the macroscale static deformed configuration of the spheres. It is shown that in the limit of smooth, neutrally charged surface (i.e., the dimensionless inverse Debye length, [Formula: see text]), interacting via elastic binders (i.e., the dimensionless stiffness coefficient, [Formula: see text]) the adhesion mechanics approaches the regime of application of the JKR theory, and in this particular limit, the contact radius, R c , scales with the particle radius, R, according to the scaling law, [Formula: see text]. We show that static, deformed, highly charged, ligand-coated surface of micro-spheres exhibit strong adhesion. Normal stress distribution within the contact area adjusts with the binder stiffness coefficient, from a maximum at the center to a maximum at the periphery of the region. Although reported in some in vitro experiments involving particle adhesion, until now a physical interpretation for this variation of the stress distribution for deformable, charged, ligand-coated microspheres is missing. Surface roughness results in a diminished adhesion with a distinct reduction in the pull-off force, larger separation gap, weaker normal stress and limited area of adhesion. These results are in agreement with the published experimental findings.

  5. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  6. Kinetic bridges.

    Science.gov (United States)

    1980-01-01

    This report on kinetic bridges is essentially a state-of-the-art study on two types of bridges whose location or physical characteristics are designed to be time dependent. The first type, called a "relocatable bridge", is essentially for use as a te...

  7. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  8. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito

    2005-01-01

    that compare cells grown in suspension to similar cells grown attached to one another as aggregates have suggested that it is adhesion to the extracellular matrix of the basal membrane that confers resistance to apoptosis and, hence, resistance to cytotoxins. The genes whose expression correlates with poor...... survival might, therefore, act through such a matrix-to-cell suppression of apoptosis. Indeed, correlative mining of gene expression and patient survival databases suggests that poor survival in patients with metastatic cancer correlates highly with tumor expression of a common theme: the genes involved...

  9. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  10. Smad2 overexpression enhances adhesion of gingival epithelial cells.

    Science.gov (United States)

    Hongo, Shoichi; Yamamoto, Tadashi; Yamashiro, Keisuke; Shimoe, Masayuki; Tomikawa, Kazuya; Ugawa, Yuki; Kochi, Shinsuke; Ideguchi, Hidetaka; Maeda, Hiroshi; Takashiba, Shogo

    2016-11-01

    Gingival epithelial cells play an important role in preventing the initiation of periodontitis, by their hemidesmosomal adhesion to the tooth root surface. Adhesion requires integrin-extracellular matrix (ECM) interactions that are intricately regulated by transforming growth factor-β (TGF-β) signaling. However, the mechanisms underlying the interplay between adhesion molecules and TGF-β, especially the respective roles of Smad2 and Smad3, remain elusive. In this study, we examined the effects of Smad overexpression on gingival epithelial cell adhesion and expression profiles of integrin and ECM-related genes. Human gingival epithelial cells immortalized by the SV40 T-antigen were transfected with Smad2- and Smad3-overexpression vectors. A cell adhesion assay involving fluorescence detection of attached cells was performed using the ArrayScan imaging system. Real-time PCR was performed to examine the kinetics of integrin and ECM gene expression. In vitro and in vivo localization of adhesion molecules was examined by immunofluorescence analysis. By using SB431542, a specific inhibitor of the TGF-β type I receptor, Smad2/3 signaling was confirmed to be dominant in TGF-β1-induced cell adhesion. The Smad2-transfectant demonstrated higher potency for cell adhesion and integrin expression (α2, α5, β4, and β6) than the Smad3-transfectant, whereas little or no change in ECM expression was observed in either transfectant. Moreover, the gingival epithelium of transgenic mice that overexpressed Smad2 driven by the keratin 14 promoter showed increased integrin α2 expression. These findings indicate the crucial role of Smad2 in increased adhesion of gingival epithelial cells via upregulation of integrin α2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  12. Uranium preconcentration from seawater using adsorptive membranes

    International Nuclear Information System (INIS)

    Das, Sadananda; Pandey, A.K.; Manchanda, V.K.; Athawale, A.A.

    2009-01-01

    Uranium recovery from bio-aggressive but lean feed like seawater is a challenging problem as it requires in situ preconcentration of uranium in presence of huge excess of competing ions with fast sorption kinetics. In our laboratory, widely used amidoxime membrane (AO-membrane) was evaluated for uranium sorption under seawater conditions. This study indicated that AO-membrane was inherently slow because of the complexation chemistry involved in transfer of U(VI) from (UO 2 (CO 3 ) 3 ) 4 - to AO sites in membrane. In order to search better options, several chemical compositions of membrane were scanned for their efficacy for uranium preconcentration from seawater, and concluded that EGMP-membrane offers several advantages over AO-membrane. In this paper, the comparison of EGMP-membrane with AO-membrane for uranium sorption under seawater conditions has been reviewed. (author)

  13. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1972-01-01

    Progress in Surface and Membrane Science, Volume 5 covers the developments in the study of surface and membrane science. The book discusses the Mössbauer effect in surface science; the surface functional groups on carbon and silica; and the wetting phenomena pertaining to adhesion. The text also describes the physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes; the characteristics of heterocoagulation; and the effects of calcium on excitable membranes and neurotransmitter action. Chemists, physiologists, biophysicists, and civil engineers will find the book i

  14. Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling

    Science.gov (United States)

    Das, Sulagna; Yin, Taofei; Yang, Qingfen; Zhang, Jingqiao; Wu, Yi I.; Yu, Ji

    2015-01-01

    Polarized Rac1 signaling is a hallmark of many cellular functions, including cell adhesion, motility, and cell division. The two steps of Rac1 activation are its translocation to the plasma membrane and the exchange of nucleotide from GDP to GTP. It is, however, unclear whether these two processes are regulated independent of each other and what their respective roles are in polarization of Rac1 signaling. We designed a single-particle tracking (SPT) method to quantitatively analyze the kinetics of Rac1 membrane translocation in living cells. We found that the rate of Rac1 translocation was significantly elevated in protrusions during cell spreading on collagen. Furthermore, combining FRET sensor imaging with SPT measurements in the same cell, the recruitment of Rac1 was found to be polarized to an extent similar to that of the nucleotide exchange process. Statistical analysis of single-molecule trajectories and optogenetic manipulation of membrane lipids revealed that Rac1 membrane translocation precedes nucleotide exchange, and is governed primarily by interactions with phospholipids, particularly PI(3,4,5)P3, instead of protein factors. Overall, the study highlights the significance of membrane translocation in spatial Rac1 signaling, which is in addition to the traditional view focusing primarily on GEF distribution and exchange reaction. PMID:25561548

  15. an Adhesive Patch

    Directory of Open Access Journals (Sweden)

    S. Mojtaba Taghizadeh

    2013-01-01

    Full Text Available Drug-in-adhesive transdermal drug delivery systems  TDDSs containing stimulants, termed as energetic substances, such as caffeine and pantothenic acid, were studied. Caffeine is a white crystalline substance and a stimulant to central nervous system. In humans, caffeine acts as a central nervous system stimulant, temporarily warding off drowsiness and restoring alertness. Pantothenic acid, also recognized as vitamin B5, is a water-soluble vitamin. For many animals, pantothenic acid is an essential nutrient. Animals require pantothenic acid to synthesize and metabolize proteins, carbohydrates and fats. For this purpose caffeine and pantothenic acid were  used  as  drug  components with  6.32%  and  1.12%  loadings,  in  different functional and non-functional acrylic pressure sensitive adhesives (PSAs of 52.89%, respectively. Ethylene glycol as a chemical enhancer was used in all TDDSs with 39.67%. The effect of PSAs  type on  in vitro  release and adhesion properties  (peel strength and tack values from drug delivery devices were evaluated. It was found that TDDS containing -COOH functional PSA showed  the  lowest steady state fux. The adhesion properties of the samples were improved by addition of functional acrylic PSA in formulations.

  16. Adhesive bonding of wood materials

    Science.gov (United States)

    Charles B. Vick

    1999-01-01

    Adhesive bonding of wood components has played an essential role in the development and growth of the forest products industry and has been a key factor in the efficient utilization of our timber resource. The largest use of adhesives is in the construction industry. By far, the largest amounts of adhesives are used to manufacture building materials, such as plywood,...

  17. Zwitterionic materials for antifouling membrane surface construction.

    Science.gov (United States)

    He, Mingrui; Gao, Kang; Zhou, Linjie; Jiao, Zhiwei; Wu, Mengyuan; Cao, Jialin; You, Xinda; Cai, Ziyi; Su, Yanlei; Jiang, Zhongyi

    2016-08-01

    Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Copyright © 2016 Acta Materialia Inc

  18. Diffuse Charge Effects in Fuel Cell Membranes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Franco, A.A.; Bazant, M.Z.

    2009-01-01

    It is commonly assumed that electrolyte membranes in fuel cells are electrically neutral, except in unsteady situations, when the double-layer capacitance is heuristically included in equivalent circuit calculations. Indeed, the standard model for electron transfer kinetics at the membrane/electrode

  19. Physisorption kinetics

    CERN Document Server

    Kreuzer, Hans Jürgen

    1986-01-01

    This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr...

  20. Membranous nephropathy

    Science.gov (United States)

    ... check for hepatitis B, hepatitis C, and syphilis Complement levels Cryoglobulin test Treatment The goal of treatment ... not as helpful for people with membranous nephropathy. Medicines used treat membranous nephropathy include: Angiotensin-converting enzyme ( ...

  1. Dynamic coating of mf/uf membranes for fouling mitigation

    KAUST Repository

    Tabatabai, S. Assiyeh Alizadeh

    2017-01-19

    A membrane system including an anti-fouling layer and a method of applying an anti-fouling layer to a membrane surface are provided. In an embodiment, the surface is a microfiltration (MF) or an ultrafiltration (UF) membrane surface. The anti-fouling layer can include a stimuli responsive layer and a dynamic protective layer applied over the stimuli responsive layer that can be a coating on a surface of the membrane. The stimuli responsive polymer layer can act as an adhesive prior to coating with the dynamic protective layer to aid in adhering the dynamic protective layer to the membrane surface. The dynamic protective layer can be formed by suitable nanoparticles that can prevent adhesion of foulants directly to the membrane surface. The stimuli responsive layer can be responsive to physio- chemical stimuli to cause a release of the stimuli responsive layer and the dynamic protective layer including foulants from the membrane.

  2. Bacterial adhesion and growth on a polymer brush-coating.

    Science.gov (United States)

    Nejadnik, M Reza; van der Mei, Henny C; Norde, Willem; Busscher, Henk J

    2008-10-01

    Biomaterials-related infections pose serious problems in implant surgery, despite the development of non-adhesive coatings. Non-adhesive coatings, like polymer brush-coatings, have so far only been investigated with respect to preventing initial bacterial adhesion, but never with respect to effects on kinetics of bacterial growth. Here, we compare adhesion and 20 h growth of three bacterial strains (Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa) on pristine and brush-coated silicone rubber in a parallel plate flow chamber. Brush-coatings were made using a tri-block copolymer of polyethylene oxide (PEO) and polypropylene oxide (PPO). Brush-coatings prevented adhesion of staphylococci to below 5 x 10(5)cm(-2) after 30 min, which is a 10-fold reduction compared to pristine silicone rubber. Biofilms grew on both brush-coated and pristine silicone rubber, while the viability of biofilms on brush-coatings was higher than on pristine silicone rubber. However, biofilms on brush-coatings developed more slowly and detached almost fully by high fluid shear. Brush-coating remained non-adhesive after S. epidermidis biofilm formation and subsequent removal whereas a part of its functionality was lost after removal of S. aureus biofilms. Adhesion, growth and detachment of P. aeruginosa were not significantly different on brush-coatings as compared with pristine silicone rubber, although here too the viability of biofilms on brush-coatings was higher. We conclude that polymer brush-coatings strongly reduce initial adhesion of staphylococci and delay their biofilm growth. In addition, biofilms on brush-coatings are more viable and easily removed by the application of fluid shear.

  3. Prevention of postoperative pericardial adhesions with TachoSil.

    Science.gov (United States)

    Kuschel, Tarah J; Gruszka, Anna; Hermanns-Sachweh, Benita; Elyakoubi, Jaouad; Sachweh, Joerg S; Vázquez-Jiménez, Jaime F; Schnoering, Heike

    2013-01-01

    The prevention of the pericardial adhesions largely accountable for the technical difficulty and risk of injury inherent to resternotomy continues to gain in importance with the increasing frequency of reoperations. The hemostatic sponge TachoSil (Nycomed Austria GmbH, Linz, Austria), has shown promising results in adhesion prevention in several regions of the body. This study was designed to evaluate its effectiveness in the prevention of pericardial adhesions in comparison with the Gore-Tex (W. L. Gore and Assoc, Flagstaff, AZ) surgical membrane and a control. Twenty-four rabbits were distributed into 3 groups: TachoSil, Gore-Tex, or no barrier agent (control). After median sternotomy and pericardiotomy, the cardial surface was exposed to the aggravating effects of room air, irrigation, and gauze abrasion for one hour. A pericardial defect was created and repaired with one of the barrier agents, or left uncovered (control). Resternotomy was performed after 6 months for the evaluation of adhesion formation. Significantly fewer macroscopic adhesions were observed with TachoSil than Gore-Tex in all regions (p Gore-Tex and the control. Microscopically, the least pronounced fibrosis formation and inflammatory reaction was detected with TachoSil. TachoSil is effective in the prevention of pericardial adhesions. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Single-cell force spectroscopy of pili-mediated adhesion

    Science.gov (United States)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  5. Management of adhesive capsulitis

    Directory of Open Access Journals (Sweden)

    Stupay KL

    2015-08-01

    Full Text Available Kristen L Stupay,1 Andrew S Neviaser2 1Tulane University School of Medicine, New Orleans, LA, USA; 2George Washington University Medical Faculty Associates, Washington, DC, USA Abstract: Adhesive capsulitis of the shoulder is a condition of capsular contracture that reduces both active and passive glenohumeral motion. The cause of adhesive capsulitis is not known but it is strongly associated with endocrine abnormalities such as diabetes. Diverse terminology and the absence of definitive criteria for diagnosis make evaluating treatment modalities difficult. Many treatment methods have been reported, most with some success, but few have been proved to alter the natural course of this disease. Most afflicted patients will achieve acceptable shoulder function without surgery. Those who remain debilitated after 8–12 months are reasonable candidates for invasive treatments. Here, the various treatment methods and the data to support their use are reviewed. Keywords: frozen shoulder, stiff shoulder, periarthritis, painful shoulder 

  6. Altered interface adhesion molecules in oral lichen planus.

    Science.gov (United States)

    Ramirez-Amador, V; Dekker, N P; Lozada-Nur, F; Mirowski, G W; MacPhail, L A; Regezi, J A

    1996-09-01

    To evaluate expression of key epithelial-connective tissue interface adhesion molecules (basal keratinocyte integrins and extracellular matrix receptors) in oral lichen planus (LP). Integrins alpha 3, alpha 6, beta 1, beta 4 and basement membrane proteins laminin 1, laminin 5, collagen IV, and collagen VII were immunohistochemically identified in frozen biopsy specimens (14 oral LP and II matched controls) using a standard avidin-biotin-peroxidase technique. An increased staining intensity of all antigens in LP was shown, as compared to controls. Integrin expression by LP keratinocytes was generally more intense and appeared on more upper level cells. Staining for basement membrane-associated extracellular matrix proteins was also generally more intense, although fragmentation and gaps were typically seen. Reactions for alpha 6, beta 4, laminin 5, and collagen VII stains were particularly intense along the basement membrane. In LP, strands of laminin 5, collagen IV, and collagen VII appeared in the submucosa approximating or duplicating the basement membrane. The apparent increased expression of the interface-associated adhesion molecules may be reflective of a keratinocyte compensatory response (due to lymphocyte-mediated damage) that would functionally help resist epithelial separation (ulceration). Expression of alpha 3 beta 1 and alpha 6 beta 4 would also assist in epithelial migration associated with wound repair. We interpret the submucosal extensions and deposits of basement membrane proteins as representing remnants of basement membrane, indicating recent remodeling or atrophy of epithelial rete ridges.

  7. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  8. Micropipette Deflection Measurements of Agar-Glass Adhesion

    Science.gov (United States)

    Parg, Richard; Shelton, Erin; Dutcher, John

    Micropipette deflection experiments were used to study the adhesive strength at an agar-glass interface. Agar is a hydrogel commonly used in biological research; however, many of the mechanical properties of this hydrogel are not well characterized. By measuring the peak force required to slide an agar puck supported by a Teflon ring across a clean glass slide, we are able to compare the adhesive strength of 1 % w/w and 1.5 % w/w agar. On average, the force required to break the agar-glass interface was approximately a factor of 2 larger for 1.5 % w/w agar than for 1 % w/w agar. We discuss this result within the context of a simple model of agar adhesion. Additional experiments were performed to measure the kinetic friction between agar and glass to obtain insight into its dependence on agar concentration.

  9. Viral membrane fusion

    International Nuclear Information System (INIS)

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism

  10. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  11. Stochastic kinetics

    International Nuclear Information System (INIS)

    Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.

    1975-01-01

    A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)

  12. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    Science.gov (United States)

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  13. Formulation and Permeation Kinetic Studies of Flurbiprofen Gel

    African Journals Online (AJOL)

    9-11]. The objective of this study was to investigate the permeation and drug release kinetics flurbiprofen gels using silicone membrane in modified Franz diffusion cells with the aid of surface response methodology. EXPERIMENTAL. Materials.

  14. The Membrane Modulates Internal Proton Transfer in Cytochrome c Oxidase

    DEFF Research Database (Denmark)

    Öjemyr, Linda Nasvik; Ballmoos, Christoph von; Faxén, Kristina

    2012-01-01

    The functionality of membrane proteins is often modulated by the surrounding membrane. Here, we investigated the effect of membrane reconstitution of purified cytochrome c oxidase (CytcO) on the kinetics and thermodynamics of internal electron and proton-transfer reactions during O-2 reduction...

  15. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

    Directory of Open Access Journals (Sweden)

    Arnauld eSergé

    2016-05-01

    Full Text Available The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation and metastasis.

  16. Gallium nitride electrodes for membrane-based electrochemical biosensors.

    Science.gov (United States)

    Schubert, T; Steinhoff, G; von Ribbeck, H-G; Stutzmannn, M; Eickhoff, M; Tanaka, M

    2009-10-01

    We report on the deposition of planar lipid bilayers (supported membranes) on gallium nitride (GaN) electrodes for potential applications as membrane-based biosensors. The kinetics of the lipid membrane formation upon vesicle fusion were monitored by simultaneous measurements of resistance and capacitance of the membrane using AC impedance spectroscopy in the frequency range between 50 mHz and 50 kHz. We could identify a two-step process of membrane spreading and self-healing. Despite its relatively low resistance, the membrane can be modeled by a parallel combination of an ideal resistor and capacitor, indicating that the membrane efficiently blocks the diffusion of ions.

  17. Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor.

    Science.gov (United States)

    Li, Fang; Cheng, Qianxun; Tian, Qing; Yang, Bo; Chen, Qianyuan

    2016-07-01

    Forward osmosis (FO) has received considerable interest for water and energy related applications in recent years. Biofouling behavior and performance of cellulose triacetate (CTA) forward osmosis membranes with bioinspired surface modification via polydopamine (PD) coating and poly (ethylene glycol) (PEG) grafting (PD-g-PEG) in a submerged osmotic membrane bioreactor (OMBR) were investigated in this work. The modified membranes exhibited lower flux decline than the pristine one in OMBR, confirming that the bioinspired surface modification improved the antifouling ability of the CTA FO membrane. The result showed that the decline of membrane flux related to the increase of the salinity and MLSS concentration of the mixed liquid. It was concluded that the antifouling ability of modified membranes ascribed to the change of surface morphology in addition to the improvement of membrane hydrophilicity. The bioinspired surface modifications might improve the anti-adhesion for the biopolymers and biocake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Possible mechanism of adhesion in a mica supported phospholipid bilayer

    International Nuclear Information System (INIS)

    Pertsin, Alexander; Grunze, Michael

    2014-01-01

    Phospholipid bilayers supported on hydrophilic solids like silica and mica play a substantial role in fundamental studies and technological applications of phospholipid membranes. In both cases the molecular mechanism of adhesion between the bilayer and the support is of primary interest. Since the possibilities of experimental methods in this specific area are rather limited, the methods of computer simulation acquire great importance. In this paper we use the grand canonical Monte Carlo technique and an atomistic force field to simulate the behavior of a mica supported phospholipid bilayer in pure water as a function of the distance between the bilayer and the support. The simulation reveals a possible adhesion mechanism, where the adhesion is due to individual lipid molecules that protrude from the bilayer and form widely spaced links with the support. Simultaneously, the bilayer remains separated from the bilayer by a thin water interlayer which maintains the bilayer fluidity

  19. Kinetic buffers.

    Science.gov (United States)

    Alibrandi, Giuseppe; Fabbrizzi, Luigi; Licchelli, Maurizio; Puglisi, Antonio

    2015-01-12

    This paper proposes a new type of molecular device that is able to act as an inverse proton sponge to slowly decrease the pH inside a reaction vessel. This makes the automatic monitoring of the concentration of pH-sensitive systems possible. The device is a composite formed of an alkyl chloride, which kinetically produces acidity, and a buffer that thermodynamically modulates the variation in pH value. Profiles of pH versus time (pH-t plots) have been generated under various experimental conditions by computer simulation, and the device has been tested by carrying out automatic spectrophotometric titrations, without using an autoburette. To underline the wide variety of possible applications, this new system has been used to realize and monitor HCl uptake by a di-copper(II) bistren complex in a single run, in a completely automatic experiment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Polymer Claw: Instant Underwater Adhesive

    Science.gov (United States)

    2012-09-24

    glycerol is a well-known hygroscopic liquid and lubricant. In the Polymer Claw Progress Report -4- 9/24/12 The Johns Hopkins University Applied Physics...the Polymer Claw adhesive partially solidified, while commercial adhesives were completely liquid after one hour. However, the curing rate was...is not valid for partial liquid adhesives, we will only test at later times, noting the minimum time for which the glass slides break. The time to

  1. Polyurethane adhesive ingestion.

    Science.gov (United States)

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Polyurethane adhesives are found in a large number of household products in the United States and are used for a variety of purposes. Several brands of these expanding wood glues (those containing diphenylmethane diisocyanate [MDI]) have the potential to form gastrointestinal (GI) foreign bodies if ingested. The ingested adhesive forms an expanding ball of glue in the esophagus and gastric lumen. This expansion is caused by a polymerization reaction using the heat, water, and gastric acids of the stomach. A firm mass is created that can be 4-8 times its original volume. As little as 2 oz of glue have been reported to develop gastric foreign bodies. The obstructive mass is reported to form within minutes of ingestion of the adhesive. The foreign body can lead to esophageal impaction and obstruction, airway obstruction, gastric outflow obstruction, mucosal hemorrhage, ulceration, laceration, perforation of the esophageal and gastric linings, and death. Clinical signs following ingestion include anorexia, lethargy, vomiting, tachypnea, and abdominal distention and pain, and typically develop within 12 hours. Clinical signs may depend upon the size of the mass. If left untreated, perforation and rupture of the esophagus or stomach can occur. The glue mass does not stick to the GI mucosa and is not always detectable on abdominal palpation. Radiographs are recommended to confirm the presence of the "glue-ball" foreign body, and radiographic evidence of the obstruction may be seen as early as 4-6 hours following ingestion. Emesis is contraindicated owing to the risk of aspiration of the glue into the respiratory tree or the subsequent lodging of the expanding glue mass in the esophagus. Likewise, efforts to dilute the glue and prevent the formation of the foreign body through administration of liquids, activated charcoal, or bulk-forming products to push the foreign body through the GI tract have proven ineffective. Even endoscopy performed to remove the foreign body has

  2. Structural Insights into Ail-Mediated Adhesion in Yersinia pestis

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Satoshi; Lukacik, Petra; Barnard, Travis J.; Noinaj, Nicholas; Felek, Suleyman; Tsang, Tiffany M.; Krukonis, Eric S.; Hinnebusch, B. Joseph; Buchanan, Susan K. (Michigan); (NIH); (Michigan-Med)

    2012-01-30

    Ail is an outer membrane protein from Yersinia pestis that is highly expressed in a rodent model of bubonic plague, making it a good candidate for vaccine development. Ail is important for attaching to host cells and evading host immune responses, facilitating rapid progression of a plague infection. Binding to host cells is important for injection of cytotoxic Yersinia outer proteins. To learn more about how Ail mediates adhesion, we solved two high-resolution crystal structures of Ail, with no ligand bound and in complex with a heparin analog called sucrose octasulfate. We identified multiple adhesion targets, including laminin and heparin, and showed that a 40 kDa domain of laminin called LG4-5 specifically binds to Ail. We also evaluated the contribution of laminin to delivery of Yops to HEp-2 cells. This work constitutes a structural description of how a bacterial outer membrane protein uses a multivalent approach to bind host cells.

  3. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  4. The conveyor belt hypothesis for thymocyte migration: participation of adhesion and de-adhesion molecules

    Directory of Open Access Journals (Sweden)

    Villa-Verde D.M.S.

    1999-01-01

    Full Text Available Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble ß-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.

  5. Electrostatic effects at interfaces and adhesion problems

    International Nuclear Information System (INIS)

    Lorang, G.; Langeron, J.P.

    1992-01-01

    Electrostatic effects are usually observed at the interface of thin aluminium films deposited on polypropylene substrates during depth profiling analysis by Auger electron spectroscopy (AES). Charging build up is characterized by energy shifts of Auger spectra towards higher kinetic energies. These insulating layers (10 to 20 nm) are partially or totally eliminated when the polymer is, prior to the metallization process, submitted either to low pressure (argon, nitrogen or ammoniac) plasma or to inert ion etching treatments. A lowering of oxygen and alumina contents at interfaces and an improved adhesion behavior were simultaneously noted. With Al deposits performed in UHV conditions onto a sputter cleaned substrate: a graphitic-like layer was probably created which ensures the complete removal of the electric charges during analysis at the Al/'polymer' interface, where a direct chemical bonding Al-C was displayed by AES. (Author). 8 refs., 2 figs

  6. Studies on the Adhesive Property of Snail Adhesive Mucus.

    Science.gov (United States)

    Newar, Janu; Ghatak, Archana

    2015-11-10

    Many gastropod molluscs are known to secrete mucus which allow these animals to adhere to a substrate while foraging over it. While the mucus is known to provide strong adhesion to both dry and wet surfaces, including both horizontal and vertical ones, no systematic study has been carried out to understand the strength of such adhesion under different conditions. We report here results from preliminary studies on adhesion characteristics of the mucus of a snail found in eastern India, Macrochlamys indica. When perturbed, the snail was found to secrete its adhesive mucus, which was collected and subjected to regular adhesion tests. The hydrated mucus was used as such, and also as mixed with buffer of different pH. These experiments suggest that the mucus was slightly alkaline, and showed the maximum adhesion strength of 9 kPa when present in an alkaline buffer. Preliminary studies indicate that adhesive force is related to the ability of the mucus to incorporate water. In alkaline condition, the gel like mass that it forms, incorporate water from a wet surface and enable strong adhesion.

  7. Effect of adhesive thickness on adhesively bonded T-joint

    Science.gov (United States)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  8. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  9. Fast kinetics of calcium dissociation from calsequestrin

    Directory of Open Access Journals (Sweden)

    MARIANELA BELTRÁN

    2006-01-01

    Full Text Available We measured the kinetics of calcium dissociation from calsequestrin in solution or forming part of isolated junctional sarcoplasmic reticulum membranes by mixing calsequestrin equilibrated with calcium with calcium-free solutions in a stopped-flow system. In parallel, we measured the kinetics of the intrinsic fluorescence changes that take place following calcium dissociation from calsequestrin. We found that at 25ºC calcium dissociation was 10-fold faster for calsequestrin attached to junctional membranes (k = 109 s-1 than in solution. These results imply that calcium dissociation from calsequestrin in vivo is not rate limiting during excitation-contraction coupling. In addition, we found that the intrinsic fluorescence decrease for calsequestrin in solution or forming part of junctional membranes was significantly slower than the rates of calcium dissociation. The kinetics of intrinsic fluorescence changes had two components for calsequestrin associated to junctional membranes and only one for calsequestrin in solution; the faster component was 8-fold faster (k = 54.1 s-1 than the slower component (k = 6.9 s-1, which had the same k value as for calsequestrin in solution. These combined results suggest that the presence of calsequestrin at high concentrations in a restricted space, such as when bound to the junctional membrane, accelerates calcium dissociation and the resulting structural changes, presumably as a result of cooperative molecular interactions.

  10. Membrane flow in plants: Fractionation of growing pollen tubes of tobacco by preparative free-flow electrophoresis and kinetics of labeling of endoplasmic reticulum and Golgi apparatus with (/sup 3/H)leucine

    Energy Technology Data Exchange (ETDEWEB)

    Kappler, R.; Kristen, U.; Morre, D.J.

    1986-01-01

    Tobacco (Nicotiana tabacum L.) pollen, germinated 4 hours in suspension culture,was labeled with radioactive leucine and fractionated into constituent membranes by the technique of preparative free-flow electrophoresis. Tubes were ruptured by sonication directly into the electrophoresis buffer. Unfortunately, the Golgi apparatus of the rapidly elongating pollen tubes did not survive the sonication step. However, it was possible to obtain useful fractions of endoplasmic reticulum and mitochondria. To obtain Golgi apparatus, glutaraldehyde was added to the homogenization buffer during sonication. Plasma membrane, which accounted for only about 3% of the total membrane of the homogenates as determined by staining with phosphotungstate at low pH, was obtained in insufficient quantity and fraction purity to permit analysis. Results show rapid incorporation of (/sup 3/H)leucine into endoplasmic reticulum followed by rapid chase out. The half-time for loss of radioactivity from the pollen tube endoplasmic reticulum was about 10 minutes. Concomitant with the loss of radioactivity from endoplasmic reticulum, the Golgi apparatus fraction was labeled reaching a maximum 20 minutes post chase. The findings suggest flow of membranes from endoplasmic reticulum to the Golgi apparatus during pollen tube growth.

  11. Prostaglandins in Cancer Cell Adhesion, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    David G. Menter

    2012-01-01

    Full Text Available Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2 and microsomal prostaglandin E2 synthase-1 (mPGES-1 are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2, which binds to and activates G-protein-coupled prostaglandin E1-4 receptors (EP1-4. Selectively targeting the COX-2/mPGES-1/PGE2/EP1-4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM. Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1-4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.

  12. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  13. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  14. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...

  15. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link...... transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors....

  16. Controlling adhesive behavior during recycling

    Science.gov (United States)

    Carl Houtman; Karen Scallon; Jihui Guo; XinPing Wang; Steve Severtson; Mark Kroll; Mike Nowak

    2004-01-01

    Adhesives can be formulated to facilitate their removal by typical paper recycling unit operations. The investigations described in this paper are focused on determining fundamental properties that control particle size during pulping. While pressure-sensitive adhesives (PSAs) with high elastic moduli tend to survive pulping with larger particles, facestock and...

  17. Integrative systems and synthetic biology of cell-matrix adhesion sites.

    Science.gov (United States)

    Zamir, Eli

    2016-09-02

    The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them.

  18. Effect of fibril shape on adhesive properties

    Science.gov (United States)

    Soto, Daniel; Hill, Ginel; Parness, Aaron; Esparza, Noé; Cutkosky, Mark; Kenny, Tom

    2010-08-01

    Research into the gecko's adhesive system revealed a unique architecture for adhesives using tiny hairs. By using a stiff material (β-keratin) to create a highly structured adhesive, the gecko's system demonstrates properties not seen in traditional pressure-sensitive adhesives which use a soft, unstructured planar layer. In contrast to pressure sensitive adhesives, the gecko adhesive displays frictional adhesion, in which increased shear force allows it to withstand higher normal loads. Synthetic fibrillar adhesives have been fabricated but not all demonstrate this frictional adhesion property. Here we report the dual-axis force testing of single silicone rubber pillars from synthetic adhesive arrays. We find that the shape of the adhesive pillar dictates whether frictional adhesion or pressure-sensitive behavior is observed. This work suggests that both types of behavior can be achieved with structures much larger than gecko terminal structures. It also indicates that subtle differences in the shape of these pillars can significantly influence their properties.

  19. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1994-01-01

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport

  20. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.

    1994-08-04

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  1. Regulative mechanisms of chondrocyte adhesion

    DEFF Research Database (Denmark)

    Schmal, Hagen; Mehlhorn, Alexander T; Fehrenbach, Miriam

    2006-01-01

    Interaction between chondrocytes and extracellular matrix is considered a key factor in the generation of grafts for matrix-associated chondrocyte transplantation. Therefore, our objective was to study the influence of differentiation status on cellular attachment. Adhesion of chondrocytes...... to collagen type II increased after removal from native cartilage up to the third day in monolayer in a dose-dependent manner. Following dedifferentiation after the second passage, adhesion to collagen types I (-84%) and II (-46%) decreased, whereas adhesion to fibrinogen (+59%) and fibronectin (+43......%) increased. A cartilage construct was developed based on a clinically established collagen type I scaffold. In this matrix, more than 80% of the cells could be immobilized by mechanisms of adhesion, filtration, and cell entrapment. Confocal laser microscopy revealed focal adhesion sites as points of cell...

  2. Adhesive capsulitis of the shoulder.

    Science.gov (United States)

    Neviaser, Andrew S; Neviaser, Robert J

    2011-09-01

    Adhesive capsulitis is characterized by painful, gradual loss of active and passive shoulder motion resulting from fibrosis and contracture of the joint capsule. Other shoulder pathology can produce a similar clinical picture, however, and must be considered. Management is based on the underlying cause of pain and stiffness, and determination of the etiology is essential. Subtle clues in the history and physical examination can help differentiate adhesive capsulitis from other conditions that cause a stiff, painful shoulder. The natural history of adhesive capsulitis is a matter of controversy. Management of true capsular restriction of motion (ie, true adhesive capsulitis) begins with gentle, progressive stretching exercises. Most patients improve with nonsurgical treatment. Indications for surgery should be individualized. Failure to obtain symptomatic improvement and continued functional disability following ≥6 months of physical therapy is a general guideline for surgical intervention. Diligent postoperative therapy to maintain motion is required to minimize recurrence of adhesive capsulitis.

  3. Tannins Possessing Bacteriostatic Effect Impair Pseudomonas aeruginosa Adhesion and Biofilm Formation

    Science.gov (United States)

    Trentin, Danielle S.; Silva, Denise B.; Amaral, Matheus W.; Zimmer, Karine R.; Silva, Márcia V.; Lopes, Norberto P.; Giordani, Raquel B.; Macedo, Alexandre J.

    2013-01-01

    Plants produce many compounds that are biologically active, either as part of their normal program of growth and development or in response to pathogen attack or stress. Traditionally, Anadenanthera colubrina, Commiphora leptophloeos and Myracrodruon urundeuva have been used by communities in the Brazilian Caatinga to treat several infectious diseases. The ability to impair bacterial adhesion represents an ideal strategy to combat bacterial pathogenesis, because of its importance in the early stages of the infectious process; thus, the search for anti-adherent compounds in plants is a very promising alternative. This study investigated the ability of stem-bark extracts from these three species to control the growth and prevent biofilm formation of Pseudomonas aeruginosa, an important opportunistic pathogen that adheres to surfaces and forms protective biofilms. A kinetic study (0–72 h) demonstrated that the growth of extract-treated bacteria was inhibited up to 9 h after incubation, suggesting a bacteriostatic activity. Transmission electron microscopy and fluorescence microscopy showed both viable and nonviable cells, indicating bacterial membrane damage; crystal violet assay and scanning electron microscopy demonstrated that treatment strongly inhibited biofilm formation during 6 and 24 h and that matrix production remained impaired even after growth was restored, at 24 and 48 h of incubation. Herein, we propose that the identified (condensed and hydrolyzable) tannins are able to inhibit biofilm formation via bacteriostatic properties, damaging the bacterial membrane and hindering matrix production. Our findings demonstrate the importance of this abundant class of Natural Products in higher plants against one of the most challenging issues in the hospital setting: biofilm resilience. PMID:23776646

  4. Tannins possessing bacteriostatic effect impair Pseudomonas aeruginosa adhesion and biofilm formation.

    Science.gov (United States)

    Trentin, Danielle S; Silva, Denise B; Amaral, Matheus W; Zimmer, Karine R; Silva, Márcia V; Lopes, Norberto P; Giordani, Raquel B; Macedo, Alexandre J

    2013-01-01

    Plants produce many compounds that are biologically active, either as part of their normal program of growth and development or in response to pathogen attack or stress. Traditionally, Anadenanthera colubrina, Commiphora leptophloeos and Myracrodruon urundeuva have been used by communities in the Brazilian Caatinga to treat several infectious diseases. The ability to impair bacterial adhesion represents an ideal strategy to combat bacterial pathogenesis, because of its importance in the early stages of the infectious process; thus, the search for anti-adherent compounds in plants is a very promising alternative. This study investigated the ability of stem-bark extracts from these three species to control the growth and prevent biofilm formation of Pseudomonas aeruginosa, an important opportunistic pathogen that adheres to surfaces and forms protective biofilms. A kinetic study (0-72 h) demonstrated that the growth of extract-treated bacteria was inhibited up to 9 h after incubation, suggesting a bacteriostatic activity. Transmission electron microscopy and fluorescence microscopy showed both viable and nonviable cells, indicating bacterial membrane damage; crystal violet assay and scanning electron microscopy demonstrated that treatment strongly inhibited biofilm formation during 6 and 24 h and that matrix production remained impaired even after growth was restored, at 24 and 48 h of incubation. Herein, we propose that the identified (condensed and hydrolyzable) tannins are able to inhibit biofilm formation via bacteriostatic properties, damaging the bacterial membrane and hindering matrix production. Our findings demonstrate the importance of this abundant class of Natural Products in higher plants against one of the most challenging issues in the hospital setting: biofilm resilience.

  5. Adhesive tape exfoliation

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2015-01-01

    Single-crystal graphite can be cleaved by the use of an adhesive tape. This was also the initial route for obtaining graphene, a one-layer thick graphite slab. In this letter a few simple and fun considerations are presented in an attempt to shed some light on why this procedure is successful....... In particular on the nature of the surprisingly small number of repetitive steps that are needed in order to obtain a single-layer slab. Two frameworks for exfoliation are investigated: parallel exfoliation involving repetitive simultaneous cleaving, the other, serial exfoliation, which involves the repetitive...... cleaving of a single chunk of graphite. For both cases, parallel and serial exfoliation, it is investigated how many generations of cleavages are needed. An approximate model with the probability distribution expressed as a simple closed form is presented and compared with the simulations....

  6. Reverse adhesion of a gecko-inspired synthetic adhesive switched by an ion-exchange polymer-metal composite actuator.

    Science.gov (United States)

    Guo, Dong-Jie; Liu, Rui; Cheng, Yu; Zhang, Hao; Zhou, Li-Ming; Fang, Shao-Ming; Elliott, Winston Howard; Tan, Wei

    2015-03-11

    Inspired by how geckos abduct, rotate, and adduct their setal foot toes to adhere to different surfaces, we have developed an artificial muscle material called ion-exchange polymer-metal composite (IPMC), which, as a synthetic adhesive, is capable of changing its adhesion properties. The synthetic adhesive was cast from a Si template through a sticky colloid precursor of poly(methylvinylsiloxane) (PMVS). The PMVS array of setal micropillars had a high density of pillars (3.8 × 10(3) pillars/mm(2)) with a mean diameter of 3 μm and a pore thickness of 10 μm. A graphene oxide monolayer containing Ag globular nanoparticles (GO/Ag NPs) with diameters of 5-30 nm was fabricated and doped in an ion-exchanging Nafion membrane to improve its carrier transfer, water-saving, and ion-exchange capabilities, which thus enhanced the electromechanical response of IPMC. After being attached to PMVS micropillars, IPMC was actuated by square wave inputs at 1.0, 1.5, or 2.0 V to bend back and forth, driving the micropillars to actively grip or release the surface. To determine the adhesion of the micropillars, the normal adsorption and desorption forces were measured as the IPMC drives the setal micropillars to grip and release, respectively. Adhesion results demonstrated that the normal adsorption forces were 5.54-, 14.20-, and 23.13-fold higher than the normal desorption forces under 1.0, 1.5, or 2.0 V, respectively. In addition, shear adhesion or friction increased by 98, 219, and 245%, respectively. Our new technique provides advanced design strategies for reversible gecko-inspired synthetic adhesives, which might be used for spiderman-like wall-climbing devices with unprecedented performance.

  7. Membrane manufacture for peptide separations

    KAUST Repository

    Kim, Dooli

    2016-06-07

    Nanostructured polymeric membranes are key tools in biomedical applications such as hemodialysis, protein separations, in the food industry, and drinking water supply from seawater. Despite of the success in different separation processes, membrane manufacture itself is at risk, since the most used solvents are about to be banned in many countries due to environmental and health issues. We propose for the first time the preparation of polyethersulfone membranes based on dissolution in the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DEP). We obtained a series of membranes tailored for separation of solutes with molecular weight of 30, 5, 1.3, and 1.25 kg mol-1 with respective water permeances of 140, 65, 30 and 20 Lm-2h-1bar-1. We demonstrate their superior efficiency in the separation of complex mixtures of peptides with molecular weights in the range of 800 to 3500 gmol-1. Furthermore, the thermodynamics and kinetics of phase separation leading to the pore formation in the membranes were investigated. The rheology of the solutions and the morphology of the prepared membranes were examed and compared to those of polyethersulfone in organic solvents currently used for membrane manufacture.

  8. Post-operative adhesions after digestive surgery: their incidence and prevention: review of the literature.

    Science.gov (United States)

    Ouaïssi, M; Gaujoux, S; Veyrie, N; Denève, E; Brigand, C; Castel, B; Duron, J J; Rault, A; Slim, K; Nocca, D

    2012-04-01

    Post-operative adhesions after gastrointestinal surgery are responsible for significant morbidity and constitute an important public health problem. The aim of this study was to review the surgical literature to determine the incidence, consequences and the variety of possible countermeasures to prevent adhesion formation. A systematic review of English and French language surgical literature published between 1995 and 2009 was performed using the keywords "adhesion" and "surgery". Peritoneal adhesions are reported as the cause of 32% of acute intestinal obstruction and 65-75% of all small bowel obstructions. It is estimated that peritoneal adhesions develop after 93-100% of upper abdominal laparotomies and after 67-93% of lower abdominal laparotomies. Nevertheless, only 15-18% of these adhesions require surgical re-intervention. The need for re-intervention for adhesion-related complications varies depending on the initial type of surgery, the postoperative course and the type of incision. The laparoscopic approach appears to decrease the risk of adhesion formation by 45% and the need for adhesion-related re-intervention to 0.8% after appendectomy and to 2.5% after colorectal surgery. At the present time, only one product consisting of hyaluronic acid applied to a layer of carboxymethylcellulose (Seprafilm(®)) has been shown to significantly reduce the incidence of postoperative adhesion formation; but this product is also associated with a significant increase in the incidence of anastomotic leakage when the membrane is applied in direct contact with the anastomosis. The use of this product has not been shown to decrease the risk of re-intervention for bowel obstruction. The prevention of postoperative adhesions is an important public health goal, particularly in light of the frequency of this complication. The routine use of anti-adhesion products is not recommended given the lack of studies with a high level of evidence concerning their efficacy and safety of

  9. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    Science.gov (United States)

    Iverson, Eric J.; Pierpont, Daniel M.; Yandrasits, Michael A.; Hamrock, Steven J.; Obradovich, Stephan J.; Peterson, Donald G.

    2016-03-01

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  10. Membrane fusion triggers rapid degradation of two gamete-specific, fusion-essential proteins in a membrane block to polygamy in Chlamydomonas

    OpenAIRE

    Liu, Yanjie; Misamore, Michael J.; Snell, William J.

    2010-01-01

    The plasma membranes of gametes are specialized for fusion, yet, once fusion occurs, in many organisms the new zygote becomes incapable of further membrane fusion reactions. The molecular mechanisms that underlie this loss of fusion capacity (block to polygamy) remain unknown. During fertilization in the green alga Chlamydomonas, the plus gamete-specific membrane protein FUS1 is required for adhesion between the apically localized sites on the plasma membranes of plus and minus gametes that a...

  11. Vesicle-associated membrane protein 2 mediates trafficking of {alpha}5{beta}1 integrin to the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Nazarul [Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, 319 Abraham Flexner Way, Room 515, Louisville, KY 40202 (United States); Hu, Chuan, E-mail: chuan.hu@louisville.edu [Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, 319 Abraham Flexner Way, Room 515, Louisville, KY 40202 (United States)

    2010-01-01

    Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.

  12. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  13. Effect on adhesion of a nanocapsules-loaded adhesive system

    Directory of Open Access Journals (Sweden)

    Bruna Genari

    2018-02-01

    Full Text Available Abstract This study aimed to evaluate the in situ degree of conversion, contact angle, and immediate and long-term bond strengths of a commercial primer and an experimental adhesive containing indomethacin- and triclosan-loaded nanocapsules (NCs. The indomethacin- and triclosan-loaded NCs, which promote anti-inflammatory and antibacterial effects through controlled release, were incorporated into the primer at a concentration of 2% and in the adhesive at concentrations of 1, 2, 5, and 10%. The in situ degree of conversion (DC, n=3 was evaluated by micro-Raman spectroscopy. The contact angle of the primer and adhesive on the dentin surface (n = 3 was determined by an optical tensiometer. For the microtensile bond strength µTBS test (12 teeth per group, stick-shaped specimens were tested under tensile stress immediately after preparation and after storage in water for 1 year. The data were analyzed using two-way ANOVA, three-way ANOVA and Tukey’s post hoc tests with α=0.05. The use of the NC-loaded adhesive resulted in a higher in situ degree of conversion. The DC values varied from 75.07 ± 8.83% to 96.18 ± 0.87%. The use of NCs in only the adhesive up to a concentration of 5% had no influence on the bond strength. The contact angle of the primer remained the same with and without NCs. The use of both the primer and adhesive with NCs (for all concentrations resulted in a higher contact angle of the adhesive. The longitudinal μTBS was inversely proportional to the concentration of NCs in the adhesive system, exhibiting decreasing values for the groups with primer containing NCs and adhesives with increasing concentrations of NCs. Adhesives containing up to 5% of nanocapsules and primer with no NCs maintained the in situ degree of conversion, contact angle, and immediate and long-term bond strengths. Therefore, the NC-loaded adhesive can be an alternative method for combining the bond performance and therapeutic effects. The use of an

  14. Wet adhesion and adhesive locomotion of snails on anti-adhesive non-wetting surfaces.

    Directory of Open Access Journals (Sweden)

    Neil J Shirtcliffe

    Full Text Available Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted, texture (smooth, rough or granular or wetting property (hydrophilic or hydrophobic via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces.

  15. Wet adhesion and adhesive locomotion of snails on anti-adhesive non-wetting surfaces.

    Science.gov (United States)

    Shirtcliffe, Neil J; McHale, Glen; Newton, Michael I

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces.

  16. Marine Bioinspired Underwater Contact Adhesion.

    Science.gov (United States)

    Clancy, Sean K; Sodano, Antonio; Cunningham, Dylan J; Huang, Sharon S; Zalicki, Piotr J; Shin, Seunghan; Ahn, B Kollbe

    2016-05-09

    Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications.

  17. Methods of amniotic membrane fixation in ocular amniotic membrane surgeries

    Directory of Open Access Journals (Sweden)

    Shu-Rong Wang

    2016-05-01

    Full Text Available Various ocular surface disorders like alkali burns and corneal ulcers can all cause damage to the cornea and conjunctiva, and often induce corneal neovascularization(CNVthat affects the visual function. However, amniotic membranes(AMcan promote the rapid epithelization of acute injured corneas and conjunctiva defects, diminish scarring, and perform anti-inflammatory effect. Therefore, AM has been widely used in ocular surface reconstructions and treatment of CNV. But the key problem is how to fix the AM. Only ensuring the adhesive time and cover area with convenient operation and little stimulation can achieve the best curative effect. This article reviews the methods of AM fixation in AM patch technique.

  18. Development of a fast curing tissue adhesive for meniscus tear repair.

    Science.gov (United States)

    Bochyńska, Agnieszka Izabela; Hannink, Gerjon; Janssen, Dennis; Buma, Pieter; Grijpma, Dirk W

    2017-01-01

    Isocyanate-terminated adhesive amphiphilic block copolymers are attractive materials to treat meniscus tears due to their tuneable mechanical properties and good adhesive characteristics. However, a drawback of this class of materials is their relatively long curing time. In this study, we evaluate the use of an amine cross-linker and addition of catalysts as two strategies to accelerate the curing rates of a recently developed biodegradable reactive isocyanate-terminated hyper-branched adhesive block copolymer prepared from polyethylene glycol (PEG), trimethylene carbonate, citric acid and hexamethylene diisocyanate. The curing kinetics of the hyper-branched adhesive alone and in combination with different concentrations of spermidine solutions, and after addition of 2,2-dimorpholinodiethylether (DMDEE) or 1,4-diazabicyclo [2.2.2] octane (DABCO) were determined using FTIR. Additionally, lap-shear adhesion tests using all compositions at various time points were performed. The two most promising compositions of the fast curing adhesives were evaluated in a meniscus bucket handle lesion model and their performance was compared with that of fibrin glue. The results showed that addition of both spermidine and catalysts to the adhesive copolymer can accelerate the curing rate and that firm adhesion can already be achieved after 2 h. The adhesive strength to meniscus tissue of 3.2-3.7 N was considerably higher for the newly developed compositions than for fibrin glue (0.3 N). The proposed combination of an adhesive component and a cross-linking component or catalyst is a promising way to accelerate curing rates of isocyanate-terminated tissue adhesives.

  19. Systems and methods for using a boehmite bond-coat with polyimide membranes for gas separation

    Science.gov (United States)

    Polishchuk, Kimberly Ann

    2013-03-05

    The subject matter disclosed herein relates to gas separation membranes and, more specifically, to polyimide gas separation membranes. In an embodiment, a gas separation membrane includes a porous substrate, a substantially continuous polyimide membrane layer, and one or more layers of boehmite nanoparticles disposed between the porous substrate and the polyimide membrane layer to form a bond-coat layer. The bond-coat layer is configured to improve the adhesion of the polyimide membrane layer to the porous substrate, and the polyimide membrane layer has a thickness approximately 100 nm or less.

  20. TANNIN ADHESIVES AS AN ALTENATIVE TO THE SYNTHETIC PHENOLIC ADHESIVES

    Directory of Open Access Journals (Sweden)

    Semra Çolak

    2003-04-01

    Full Text Available Recently, increasing attention has been paid industrially to the use of tannin formaldehyde adhesives in production of wood based panel products such as particleboard, fiber board and plywood. The researches on the use of tannin extracts as a wood adhesive started in 1950, however, they proceeded very slowly since the problems associated with the application of them. The idea which tannin extract can be used replace the oil-based phenolic adhesive was the base of several studies after the oil crisis of the 1970s. In the past, the economical aspects were important in the researches on the tannin-based adhesives. Nowadays, however, both economical and ecological factors should have taken into consideration in wood bonding.

  1. Structural adhesives directory and databook

    CERN Document Server

    Wilson, Jo

    1996-01-01

    A worldwide directory of commercially available adhesive products for use in a wide range of engineering disciplines. Along with product names and suppliers, basic property data are tabulated and cross-referenced. The book is subdivided according to class of adhesive, with introductions to each class followed by comparison tables and datasheets for each adhesive. The datasheets contain detailed information, from product codes to environmental properties and are therefore of interest across a broad readership. Standardized data will aid the user in cross-comparison between different manufacturers and in easily identifying the required information.

  2. Photovoltaic module with adhesion promoter

    Science.gov (United States)

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  3. Adhesion of laser deposited films

    International Nuclear Information System (INIS)

    Zhovannik, E.V.; Nikolaev, I.N.; Utochkin, Yu.A.; Stavkin, D.G.

    1996-01-01

    The method of thin solid films (Ni, Cu, Al, Pd, Si, InSb, Ta 2 O 5 ) formation on different substrates (Cu, Fe, Si, SiO 2 , Ta 2 O 5 , carbon, glass, mica, teflon) with higher adhesion strength (∼ 10 7 Pa) without preliminary treatment of substrate surface was discribed. The method is based on laser evaporation of solid in vacuum. Adhesion was measured by means of a direct pull technique using a pin soldered to buffer film evaporated by laser on the investigated film. Possible reasons for higher adhesion of films fabricated by laser deposition were discussed. 10 refs.; 3 figs

  4. Adhesives from modified soy protein

    Science.gov (United States)

    Sun, Susan [Manhattan, KS; Wang, Donghai [Manhattan, KS; Zhong, Zhikai [Manhattan, KS; Yang, Guang [Shanghai, CN

    2008-08-26

    The present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  5. Comparing Soy Flour Wood Adhesives to Purified Soy Protein Adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2013-01-01

    While economics dictate that soy-based wood adhesives be made with soy flour, much of the recent literature on soy-based wood adhesives has involved using soy protein isolate. The obvious assumption is that the additional carbohydrates in the flour but not in the isolate only serve as inert diluents. Our studies have shown that the isolate can provide 10 times the wet...

  6. Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth

    Directory of Open Access Journals (Sweden)

    Carlstrom Lucas P

    2011-11-01

    Full Text Available Abstract Background Chemotropic factors in the extracellular microenvironment guide nerve growth by acting on the growth cone located at the tip of extending axons. Growth cone extension requires the coordination of cytoskeleton-dependent membrane protrusion and dynamic adhesion to the extracellular matrix, yet how chemotropic factors regulate these events remains an outstanding question. We demonstrated previously that the inhibitory factor myelin-associated glycoprotein (MAG triggers endocytic removal of the adhesion receptor β1-integrin from the growth cone surface membrane to negatively remodel substrate adhesions during chemorepulsion. Here, we tested how a neurotrophin might affect integrin adhesions. Results We report that brain-derived neurotropic factor (BDNF positively regulates the formation of substrate adhesions in axonal growth cones during stimulated outgrowth and prevents removal of β1-integrin adhesions by MAG. Treatment of Xenopus spinal neurons with BDNF rapidly triggered β1-integrin clustering and induced the dynamic formation of nascent vinculin-containing adhesion complexes in the growth cone periphery. Both the formation of nascent β1-integrin adhesions and the stimulation of axon extension by BDNF required cytoplasmic calcium ion signaling and integrin activation at the cell surface. Exposure to MAG decreased the number of β1-integrin adhesions in the growth cone during inhibition of axon extension. In contrast, the BDNF-induced adhesions were resistant to negative remodeling by MAG, correlating with the ability of BDNF pretreatment to counteract MAG-inhibition of axon extension. Pre-exposure to MAG prevented the BDNF-induced formation of β1-integrin adhesions and blocked the stimulation of axon extension by BDNF. Conclusions Altogether, these findings demonstrate the neurotrophin-dependent formation of integrin-based adhesions in the growth cone and reveal how a positive regulator of substrate adhesions can block

  7. Bacterial endotoxin adhesion to different types of orthodontic adhesives

    Directory of Open Access Journals (Sweden)

    Priscilla Coutinho ROMUALDO

    Full Text Available Abstract Bacterial endotoxin (LPS adhesion to orthodontic brackets is a known contributing factor to inflammation of the adjacent gingival tissues. Objective The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Material and Methods Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component, then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. Results There was endotoxin adhesion to all materials (p0.05. There was no significant difference (p>0.05 among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025. Conclusions LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials.

  8. [Biocompatibility of poly-L-lactic acid/Bioglass-guided bone regeneration membranes processed with oxygen plasma].

    Science.gov (United States)

    Fang, Wei; Zeng, Shu-Guang; Gao, Wen-Feng

    2015-04-01

    To prepare and characterize a nano-scale fibrous hydrophilic poly-L-lactic acid/ Bioglass (PLLA/BG) composite membrane and evaluate its biocompatibility as a composite membrane for guiding bone regeneration (GBR). PLLA/BG-guided bone regeneration membrane was treated by oxygen plasma to improved its hydrophilicity. The growth of MG-63 osteoblasts on the membrane was observed using Hoechst fluorescence staining, and the biocompatibility of the membrane was evaluated by calculating the cells adhesion rate and proliferation rate. Osteogenesis of MG-63 cells was assessed by detecting alkaline phosphatase (ALP), and the formation of calcified nodules and cell morphology changes were observed using scanning electron microscope (SEM). The cell adhesion rates of PLLA/BG-guided bone regeneration membrane treated with oxygen plasma were (30.570±0.96)%, (47.27±0.78)%, and (66.78±0.69)% at 1, 3, and 6 h, respectively, significantly higher than those on PLLA membrane and untreated PLLA/BG membrane (Pmembranes increased with time, but highest on oxygen plasma-treated PLLA/BG membrane (Pplasma treatment of the PLLA/BG membrane promoted cell adhesion. The membranes with Bioglass promoted the matrix secretion of the osteoblasts. Under SEM, the formation of calcified nodules and spindle-shaped cell morphology were observed on oxygen plasma-treated PLLA/BG membrane. Oxygen plasma-treated PLLA/BG composite membrane has good biocompatibility and can promote adhesion, proliferation and osteogenesis of the osteoblasts.

  9. Modeling cell adhesion and proliferation: a cellular-automata based approach.

    Science.gov (United States)

    Vivas, J; Garzón-Alvarado, D; Cerrolaza, M

    Cell adhesion is a process that involves the interaction between the cell membrane and another surface, either a cell or a substrate. Unlike experimental tests, computer models can simulate processes and study the result of experiments in a shorter time and lower costs. One of the tools used to simulate biological processes is the cellular automata, which is a dynamic system that is discrete both in space and time. This work describes a computer model based on cellular automata for the adhesion process and cell proliferation to predict the behavior of a cell population in suspension and adhered to a substrate. The values of the simulated system were obtained through experimental tests on fibroblast monolayer cultures. The results allow us to estimate the cells settling time in culture as well as the adhesion and proliferation time. The change in the cells morphology as the adhesion over the contact surface progress was also observed. The formation of the initial link between cell and the substrate of the adhesion was observed after 100 min where the cell on the substrate retains its spherical morphology during the simulation. The cellular automata model developed is, however, a simplified representation of the steps in the adhesion process and the subsequent proliferation. A combined framework of experimental and computational simulation based on cellular automata was proposed to represent the fibroblast adhesion on substrates and changes in a macro-scale observed in the cell during the adhesion process. The approach showed to be simple and efficient.

  10. Adhesive capsulitis: a review.

    Science.gov (United States)

    Ewald, Anthony

    2011-02-15

    Adhesive capsulitis is a common, yet poorly understood, condition causing pain and loss of range of motion in the shoulder. It can occur in isolation or concomitantly with other shoulder conditions (e.g., rotator cuff tendinopathy, bursitis) or diabetes mellitus. It is often self-limited, but can persist for years and may never fully resolve. The diagnosis is usually clinical, although imaging can help rule out other conditions. The differential diagnosis includes acromioclavicular arthropathy, autoimmune disease (e.g., systemic lupus erythematosus, rheumatoid arthritis), biceps tendinopathy, glenohumeral osteoarthritis, neoplasm, rotator cuff tendinopathy or tear (with or without impingement), and subacromial and subdeltoid bursitis. Several treatment options are commonly used, but few have high-level evidence to support them. Because the condition is often self-limited, observation and reassurance may be considered; however, this may not be acceptable to many patients because of the painful and debilitating nature of the condition. Nonsurgical treatments include analgesics (e.g., acetaminophen, nonsteroidal anti-inflammatory drugs), oral prednisone, and intra-articular corticosteroid injections. Home exercise regimens and physical therapy are often prescribed. Surgical treatments include manipulation of the joint under anesthesia and capsular release.

  11. Foreign material in postoperative adhesions

    NARCIS (Netherlands)

    R.W. Luijendijk; D.C.D. de Lange (Diederik); C.C. Wauters; W.C.J. Hop (Wim); J.J. Duron; J.L. Pailler; B.R. Camprodon; L. Holmdahl; H.J. van Geldorp; J. Jeekel (Hans)

    1996-01-01

    textabstractOBJECTIVE: The authors determined the prevalence of foreign body granulomas in intra-abdominal adhesions in patients with a history of abdominal surgery. PATIENTS AND METHODS: In a cross-sectional, multicenter, multinational study, adult patients with a

  12. Underwater adhesion: The barnacle way

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Anil, A.C.

    silicone substrata. For both materials, significant variation among maternal families in the proportion of barnacles producing a thick adhesive plaque was observed, which suggests the presence of genetic variation, or maternal environmental effects...

  13. 21 CFR 878.4010 - Tissue adhesive.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue adhesive. 878.4010 Section 878.4010 Food... DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4010 Tissue adhesive. (a) Tissue adhesive for the topical approximation of skin—(1) Identification. A tissue adhesive for the topical...

  14. Mechanisms of adhesion in geckos.

    Science.gov (United States)

    Autumn, Kellar; Peattie, Anne M

    2002-12-01

    The extraordinary adhesive capabilities of geckos have challenged explanation for millennia, since Aristotle first recorded his observations. We have discovered many of the secrets of gecko adhesion, yet the millions of dry, adhesive setae on the toes of geckos continue to generate puzzling new questions and valuable answers. Each epidermally-derived, keratinous seta ends in hundreds of 200 nm spatular tips, permitting intimate contact with rough and smooth surfaces alike. Prior studies suggested that adhesive force in gecko setae was directly proportional to the water droplet contact angle (θ) , an indicator of the free surface energy of a substrate. In contrast, new theory suggests that adhesion energy between a gecko seta and a surface (W(GS)) is in fact proportional to (1 + cosθ), and only for θ > 60°. A reanalysis of prior data, in combination with our recent study, support the van der Waals hypothesis of gecko adhesion, and contradict surface hydrophobicity as a predictor of adhesion force. Previously, we and our collaborators measured the force production of a single seta. Initial efforts to attach a seta failed because of improper 3D orientation. However, by simulating the dynamics of gecko limbs during climbing (based on force plate data) we discovered that, in single setae, a small normal preload, combined with a 5 μm displacement yielded a very large adhesive force of 200 microNewton (μN), 10 times that predicted by whole-animal measurements. 6.5 million setae of a single tokay gecko attached maximally could generate 130 kg force. This raises the question of how geckos manage to detach their feet in just 15 ms. We discovered that simply increasing the angle that the setal shaft makes with the substrate to 30° causes detachment. Understanding how simultaneous attachment and release of millions of setae are controlled will require an approach that integrates levels ranging from molecules to lizards.

  15. Fibrillar Adhesive for Climbing Robots

    Science.gov (United States)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  16. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    NARCIS (Netherlands)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the

  17. Adhesion of Photoactive Microalgae to Surfaces is Switchable by Light

    Science.gov (United States)

    Bäumchen, Oliver; Kreis, Christian; Le Blay, Marine; Linne, Christine; Makowski, Marcin

    The natural habitats of many microorganisms are confined geometries, such as the interstitial space of rocks and soil, where interactions with interfaces and surfaces are of paramount importance. We performed in vivo force spectroscopy experiments on the unicellular biflagellated microalga Chlamydomonas, a prime model organism in cell- and microbiology, and discovered that the flagella-mediated adhesion to surfaces can be switched on and off by light. Time-resolved micropipette experiments show that the light-switchable adhesiveness of the flagella is a completely reversible process that is based on a redistribution of adhesion-promoting flagella-membrane proteins within seconds. Light-switchable adhesion enables the cell to regulate the transition between planktonic and surface-associated state, which possibly represents a significant biological advantage for photoactive microorganisms. In terms of the colonization of surfaces and the formation of biofilms, the findings might have immediate economic and environmental relevance in biotechnological settings, such as photo-bioreactors for the sustainable production of biofuels.

  18. Surface pattern by nanoimprint for membrane fouling mitigation: Design, performance and mechanisms.

    Science.gov (United States)

    Xie, Ming; Luo, Wenhai; Gray, Stephen R

    2017-11-01

    Imparting water treatment membrane with surface pattern by nanoimprint offered a novel approach to fouling resistance. We employed nanoimprint to fabricate line-shape nanostructure on membrane distillation (MD) membrane surface. Patterned MD membrane exhibited strong antifouling property to Bovine Serum Albumin (BSA) protein during MD separation. Water flux decline and protein deposition were substantially minimized on the patterned MD membrane in comparison with the pristine one. Such lower fouling propensity on the patterned MD membrane was mainly driven by the weak hydrophobic interaction between BSA protein and patterned MD membrane surface. Weaker adhesion force mapping of the patterned MD membrane was quantified. Representative force-distance curve of pristine MD membrane showed a strong attractive depletion force comparing with that of patterned one. The simple, chemical-free, and scalable nanofabrication approach enables varying designs on membrane surface for special membrane properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Preventive effects of chitosan on peritoneal adhesion in rats.

    Science.gov (United States)

    Zhang, Zhi-Liang; Xu, Si-Wei; Zhou, Xie-Lai

    2006-07-28

    concentration, degrading speed of the film accelerated significantly. Regarding peritoneal adhesion situation: At both 2 and 4 wk after the treatments, the adhesive grades of B1 were the lowest among the four subgroups of B (2 wk: H = 29.679, P < 0.05; 4 wk: H = 18.791, P < 0.05). At 2 wk after the treatments, the grades of group B2 were significantly lower than that of groups B3 and B4 (H = 4.025, P < 0.05 for B2 vs B3; H = 4.361, P < 0.05 for B2 vs B4). At 4 wk, there were no significant differences of the grades between groups B2, B3 and B4. Regarding pathological changes: Inflammatory cell infiltration and fibroplastic proliferation were observed in the local treated serous membranes, which was the mildest in group B1. Slight foreign-body giant cell reactions were also found in groups B2, B3, and B4. (1) Chitosan gel has preventive effect on traumatic or ischemic peritoneal adhesion, but no obvious effect on foreign body-induced peritoneal adhesion. (2) Chitosan film may exacerbate the peritoneal adhesion. Blending with gelatin to chitosan film can accelerate the degradation of the film, but can simultaneously facilitate the formation of peritoneal adhesion.

  20. Quantitative analysis of dynamic adhesion properties in human hepatocellular carcinoma cells with fullerenol.

    Science.gov (United States)

    Liu, Yang; Wang, Zuobin; Wang, Xinyue; Huang, Yanhong

    2015-12-01

    In this study, the effect of fullerenol (C60(OH)24) on the cellular dynamic biomechanical behaviors of living human hepatocellular carcinoma (SMCC-7721) cancer cells were investigated by atomic force microscope (AFM) nanoindentation. As an important biomarker of cellular information, the cell adhesion is essential to maintain proper functioning as well as links with the pathogenesis and canceration. Nonetheless, it is challenging to properly evaluate the complex adhesion properties as all the biomechanical parameters interfere with each other. To investigate the dynamic adhesion changes, especially in the case of the fullerenol treatment, the detachment force and work, adhesion events, and membrane tether properties were measured and analyzed systematically with the proposed quantitative method. The statistical analyses suggest that, under the same operating parameters of AFM, the dependence of adhesion energy on the tip-cell contact area is weakened after the fullerenol treatment and the probability of adhesion decreases significantly from 30.6% to 4.2%. In addition, the disruption of the cytoskeleton resulted in a 34% decrease of the average membrane tether force and a 21% increase of the average tether length. Benefiting from the quantitative method, this work contributes to revealing the effects of fullerenol on the cellular biomechanical properties of the living SMCC-7721 cells in a precise and rigorous way and additionally is further instructive to interpret the interaction mechanism of other potential nanomedicines with living cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Optimizing Adhesive Design by Understanding Compliance.

    Science.gov (United States)

    King, Daniel R; Crosby, Alfred J

    2015-12-23

    Adhesives have long been designed around a trade-off between adhesive strength and releasability. Geckos are of interest because they are the largest organisms which are able to climb utilizing adhesive toepads, yet can controllably release from surfaces and perform this action over and over again. Attempting to replicate the hierarchical, nanoscopic features which cover their toepads has been the primary focus of the adhesives field until recently. A new approach based on a scaling relation which states that reversible adhesive force capacity scales with (A/C)(1/2), where A is the area of contact and C is the compliance of the adhesive, has enabled the creation of high strength, reversible adhesives without requiring high aspect ratio, fibrillar features. Here we introduce an equation to calculate the compliance of adhesives, and utilize this equation to predict the shear adhesive force capacity of the adhesive based on the material components and geometric properties. Using this equation, we have investigated important geometric parameters which control force capacity and have shown that by controlling adhesive shape, adhesive force capacity can be increased by over 50% without varying pad size. Furthermore, we have demonstrated that compliance of the adhesive far from the interface still influences shear adhesive force capacity. Utilizing this equation will allow for the production of adhesives which are optimized for specific applications in commercial and industrial settings.

  2. A short-time scale colloidal system reveals early bacterial adhesion dynamics.

    Directory of Open Access Journals (Sweden)

    Christophe Beloin

    2008-07-01

    Full Text Available The development of bacteria on abiotic surfaces has important public health and sanitary consequences. However, despite several decades of study of bacterial adhesion to inert surfaces, the biophysical mechanisms governing this process remain poorly understood, due, in particular, to the lack of methodologies covering the appropriate time scale. Using micrometric colloidal surface particles and flow cytometry analysis, we developed a rapid multiparametric approach to studying early events in adhesion of the bacterium Escherichia coli. This approach simultaneously describes the kinetics and amplitude of early steps in adhesion, changes in physicochemical surface properties within the first few seconds of adhesion, and the self-association state of attached and free-floating cells. Examination of the role of three well-characterized E. coli surface adhesion factors upon attachment to colloidal surfaces--curli fimbriae, F-conjugative pilus, and Ag43 adhesin--showed clear-cut differences in the very initial phases of surface colonization for cell-bearing surface structures, all known to promote biofilm development. Our multiparametric analysis revealed a correlation in the adhesion phase with cell-to-cell aggregation properties and demonstrated that this phenomenon amplified surface colonization once initial cell-surface attachment was achieved. Monitoring of real-time physico-chemical particle surface properties showed that surface-active molecules of bacterial origin quickly modified surface properties, providing new insight into the intricate relations connecting abiotic surface physicochemical properties and bacterial adhesion. Hence, the biophysical analytical method described here provides a new and relevant approach to quantitatively and kinetically investigating bacterial adhesion and biofilm development.

  3. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    , Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  4. Endurance of Nafion-composite membranes in PEFCs operating at ...

    Indian Academy of Sciences (India)

    Reduced gas-crossover, fast fuel-cell-reaction kinetics and superior performance of the PEFCs with Nafion-SiO2 and Nafion-MZP composite membranes in relation to the PEFC with pristine Nafion-1135 membrane support the long-term operational usage of the former in PEFCs. An 8-cell PEFC stack employing Nafion-SiO2 ...

  5. Two component permeation through thin zeolite MFI membranes

    NARCIS (Netherlands)

    Keizer, K.; Burggraaf, A.J.; Vroon, Z.A.E.P.; Verweij, H.

    1998-01-01

    Two component permeation measurements have been performed by the Wicke-Kallenbach method on a thin (3 μm) zeolite MFI (Silicalite-1) membrane with molecules of different kinetic diameters, d(k). The membrane was supported by a flat porous α-Al2O3 substrate. The results obtained could be classified

  6. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  7. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations

    KAUST Repository

    Zhang, Chen

    2012-02-01

    We report significantly enhanced propylene/propane (C 3H 6/C 3H 8) selectivity in mixed matrix membranes fabricated using 6FDA-DAM polyimide and a zeolitic imidazolate framework (ZIF-8). Equilibrium isotherms and sorption kinetics of C 3H 6 and C 3H 8 at 35°C were studied on a 200nm commercially available ZIF-8 sample produced by BASF. Mixed matrix dense films were formed with 6FDA-DAM and 200nm BASF ZIF-8 particles. SEM imaging showed generally good adhesion between the ZIF-8 and 6FDA-DAM without the need for surface-treating ZIF-8. Pure gas permeation showed significantly enhanced mixed matrix ZIF-8/6FDA-DAM membrane C 3H 6/C 3H 8 separation performance over the pure 6FDA-DAM membrane performance. A C 3H 6 permeability of 56.2Barrer and C 3H 6/C 3H 8 ideal selectivity of 31.0 was found in ZIF-8/6FDA-DAM mixed matrix membrane with 48.0wt% ZIF-8 loading, which are 258% and 150% higher than the pure 6FDA-DAM membrane, respectively for permeability and selectivity. Permeation properties of C 3H 6 and C 3H 8 in ZIF-8 were back-calculated by the Maxwell model for composite permeability using pure gas permeation data, leading to a C 3H 6 permeability of 277Barrer and C 3H 6/C 3H 8 selectivity of 122. Mixed gas permeation also verified that selectivity enhancements were achievable in mixed gas environment by ZIF-8. © 2011 Elsevier B.V.

  8. Lipophilic drug transfer between liposomal and biological membranes

    DEFF Research Database (Denmark)

    Fahr, Alfred; van Hoogevest, Peter; Kuntsche, Judith

    2006-01-01

    This review presents the current knowledge on the interaction of lipophilic, poorly water soluble drugs with liposomal and biological membranes. The center of attention will be on drugs having the potential to dissolve in a lipid membrane without perturbing them too much. The degree of interaction...... is described as solubility of a drug in phospholipid membranes and the kinetics of transfer of a lipophilic drug between membranes. Finally, the consequences of these two factors on the design of lipid-based carriers for oral, as well as parenteral use, for lipophilic drugs and lead selection of oral...... lipophilic drugs is described. Since liposomes serve as model-membranes for natural membranes, the assessment of lipid solubility and transfer kinetics of lipophilic drug using liposome formulations may additionally have predictive value for bioavailability and biodistribution and the pharmacokinetics...

  9. Ion Transport through Diffusion Layer Controlled by Charge Mosaic Membrane

    Directory of Open Access Journals (Sweden)

    Akira Yamauchi

    2012-01-01

    Full Text Available The kinetic transport behaviors in near interface of the membranes were studied using commercial anion and cation exchange membrane and charge mosaic membrane. Current-voltage curve gave the limiting current density that indicates the ceiling of conventional flux. From chronopotentiometry above the limiting current density, the transition time was estimated. The thickness of boundary layer was derived with conjunction with the conventional limiting current density and the transition time from steady state flux. On the other hand, the charge mosaic membrane was introduced in order to examine the ion transport on the membrane surface in detail. The concentration profile was discussed by the kinetic transport number with regard to the water dissociation (splitting on the membrane surface.

  10. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity.

    Science.gov (United States)

    Daley, William P; Gervais, Elise M; Centanni, Samuel W; Gulfo, Kathryn M; Nelson, Deirdre A; Larsen, Melinda

    2012-01-01

    The basement membrane is crucial for epithelial tissue organization and function. However, the mechanisms by which basement membrane is restricted to the basal periphery of epithelial tissues and the basement membrane-mediated signals that regulate coordinated tissue organization are not well defined. Here, we report that Rho kinase (ROCK) controls coordinated tissue organization by restricting basement membrane to the epithelial basal periphery in developing mouse submandibular salivary glands, and that ROCK inhibition results in accumulation of ectopic basement membrane throughout the epithelial compartment. ROCK-regulated restriction of PAR-1b (MARK2) localization in the outer basal epithelial cell layer is required for basement membrane positioning at the tissue periphery. PAR-1b is specifically required for basement membrane deposition, as inhibition of PAR-1b kinase activity prevents basement membrane deposition and disrupts overall tissue organization, and suppression of PAR-1b together with ROCK inhibition prevents interior accumulations of basement membrane. Conversely, ectopic overexpression of wild-type PAR-1b results in ectopic interior basement membrane deposition. Significantly, culture of salivary epithelial cells on exogenous basement membrane rescues epithelial organization in the presence of ROCK1 or PAR-1b inhibition, and this basement membrane-mediated rescue requires functional integrin β1 to maintain epithelial cell-cell adhesions. Taken together, these studies indicate that ROCK1/PAR-1b-dependent regulation of basement membrane placement is required for the coordination of tissue polarity and the elaboration of tissue structure in the developing submandibular salivary gland.

  11. Methods of nonlinear kinetics

    OpenAIRE

    Gorban, A. N.; Karlin, I. V.

    2003-01-01

    Nonlinear kinetic equations are reviewed for a wide audience of specialists and postgraduate students in physics, mathematical physics, material science, chemical engineering and interdisciplinary research. Contents: The Boltzmann equation, Phenomenology and Quasi-chemical representation of the Boltzmann equation, Kinetic models, Discrete velocity models, Direct simulation, Lattice Gas and Lattice Boltzmann models, Minimal Boltzmann models for flows at low Knudsen number, Other kinetic equati...

  12. Analysis of long- and short-range contribution to adhesion work in cardiac fibroblasts: An atomic force microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Sbaizero, O., E-mail: sbaizero@units.it [Department of Engineering and Architecture, University of Trieste (Italy); University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora (United States); DelFavero, G. [Department of Engineering and Architecture, University of Trieste (Italy); Martinelli, V. [International Center for Genetic Engineering and Biotechnology, Trieste (Italy); Long, C.S.; Mestroni, L. [University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora (United States)

    2015-04-01

    Atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) and Poisson statistic were used to analyze the detachment work recorded during the removal of gold-covered microspheres from cardiac fibroblasts. The effect of Cytochalasin D, a disruptor of the actin cytoskeleton, on cell adhesion was also tested. The adhesion work was assessed using a Poisson analysis also derived from single-cell force spectroscopy retracting curves. The use of Poisson analysis to get adhesion work from AFM curves is quite a novel method, and in this case, proved to be effective to study the short-range and long-range contributions to the adhesion work. This method avoids the difficult identification of minor peaks in the AFM retracting curves by creating what can be considered an average adhesion work. Even though the effect of actin depolymerisation is well documented, its use revealed that control cardiac fibroblasts (CT) exhibit a work of adhesion at least 5 times higher than that of the Cytochalasin treated cells. However, our results indicate that in both cells short-range and long-range contributions to the adhesion work are nearly equal and the same heterogeneity index describes both cells. Therefore, we infer that the different adhesion behaviors might be explained by the presence of fewer membrane adhesion molecules available at the AFM tip–cell interface under circumstances where the actin cytoskeleton has been disrupted. - Highlights: • AFM force–deformation curve was used to characterize the cardiac fibroblast adhesion behavior. • The amount and nature of adhesion were assessed using a Poisson analysis applied to the AFM curve. • The work of adhesion for control cells was about four times higher than that of the Cyt-D treated cells. • Short- and long-range contributions to adhesion are nearly equal for both control and treated cells.

  13. Polyurethane adhesives in flat roofs

    Directory of Open Access Journals (Sweden)

    Bogárová Markéta

    2017-01-01

    Full Text Available It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is to calculate the exact amount of adhesive, which is required to guarantee the resistance against wind suction. In this problematic we can not find help neither in technical data sheets provided by the manufactures. Some of these data sheets contain at least information about amount of adhesive depending on location in roof plane and building height, but they do not specify the strength of such connection. It was therefore resorted to select several representatives polyurethane adhesives and their subsequent testing on specimens simulating the flat roof segment. The paper described the test methodology and results for two types of polyurethane adhesives.

  14. Exploring the elasticity and adhesion behavior of cardiac fibroblasts by atomic force microscopy indentation

    Energy Technology Data Exchange (ETDEWEB)

    Codan, B.; Del Favero, G. [Department of Engineering and Architecture, University of Trieste (Italy); Martinelli, V. [Department of Engineering and Architecture, University of Trieste (Italy); International Center for Genetic Engineering and Biotechnology, Trieste (Italy); Long, C.S.; Mestroni, L. [University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora, CO (United States); Sbaizero, O., E-mail: sbaizero@units.it [Department of Engineering and Architecture, University of Trieste (Italy)

    2014-07-01

    AFM was used to collect the whole force–deformation cell curves. They provide both the elasticity and adhesion behavior of mouse primary cardiac fibroblasts. To confirm the hypothesis that a link exists between the membrane receptors and the cytoskeletal filaments causing therefore changing in both elasticity and adhesion behavior, actin-destabilizing Cytochalsin D was administrated to the fibroblasts. From immunofluorescence observation and AFM loading/unloading curves, cytoskeletal reorganization as well as a change in the elasticity and adhesion was indeed observed. Elasticity of control fibroblasts is three times higher than that for fibroblasts treated with 0.5 μM Cytochalasin. Moreover, AFM loading–unloading curves clearly show the different mechanical behavior of the two different cells analyzed: (i) for control cells the AFM cantilever rises during the dwell time while cells with Cytochalasin fail to show such an active resistance; (ii) the maximum force to deform control cells is quite higher and as far as adhesion is concern (iii) the maximum separation force, detachment area and the detachment process time are much larger for control compared to the Cytochalasin treated cells. Therefore, alterations in the cytoskeleton suggest that a link must exist between the membrane receptors and the cytoskeletal filaments beneath the cellular surface and inhibition of actin polymerization has effects on the whole cell mechanical behavior as well as adhesion. - Highlights: • The whole AFM force–deformation cell curves were analyzed. • They provide information on both the elasticity and adhesion behavior. • Actin-destabilizing Cytochalasin D was administrated to the fibroblasts. • Change in elasticity and adhesion was ascribed to cytoskeletal reorganization. • A link exists between the membrane receptors and the cytoskeletal filaments.

  15. Enhancement and suppression effects of a nanopatterned surface on bacterial adhesion

    Science.gov (United States)

    Li, Xinlei; Chen, Tongsheng

    2016-05-01

    We present a quantitative thermodynamic model to elucidate the effects of a nanopatterned surface on bacterial adhesion. Based on the established model, we studied the equilibrium state of rodlike bacterial cells adhered to a nanopillar-patterned surface. Theoretical analyses showed the physical origin of bacterial adhesion on a nanopatterned surface is actually determined by the balance between adhesion energy and deformation energy of the cell membrane. We found that there are enhancement effects on bacterial adhesion to the patterned surface with large radius and small spacing of nanopillars, but suppression effects for nanopillars with a radius smaller than a critical value. In addition, according to our model, a phase diagram has been constructed which can clarify the interrelated effects of the radius and the spacing of nanopillars. The broad agreement with experimental observations implies that these studies would provide useful guidance to the design of nanopatterned surfaces for biomedical applications.

  16. Membrane contactors for textile wastewater ozonation.

    Science.gov (United States)

    Ciardelli, Gianluca; Ciabatti, Ingrid; Ranieri, Laura; Capannelli, Gustavo; Bottino, Aldo

    2003-03-01

    This paper deals with the application of a membrane contactor for the ozone treatment of textile wastewater. Ceramic (alpha-Al(2)O(3)) membranes were chosen because of their ozone resistance. A thin metal oxide (TiO(2) and gamma-Al(2)O(3)) layer was deposited on the membrane surface to eliminate large defects. Membranes were characterized by bubble pressure and gas permeability tests. Mass transfer coefficients were calculated by using the double-film theory. Decolorization kinetics were studied with model dye solutions. Decolorization experiments with a real exhausted dyebath (untreated and after biological treatment) were also carried out. The potential advantages of membrane contactors for the treatment of these types of effluents are demonstrated.

  17. Intercellular adhesion molecules (ICAMs) and spermatogenesis

    Science.gov (United States)

    Xiao, Xiang; Mruk, Dolores D.; Cheng, C. Yan

    2013-01-01

    BACKGROUND During the seminiferous epithelial cycle, restructuring takes places at the Sertoli–Sertoli and Sertoli–germ cell interface to accommodate spermatogonia/spermatogonial stem cell renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation since developing germ cells, in particular spermatids, move ‘up and down’ the seminiferous epithelium. Furthermore, preleptotene spermatocytes differentiated from type B spermatogonia residing at the basal compartment must traverse the blood–testis barrier (BTB) to enter the adluminal compartment to prepare for meiosis at Stage VIII of the epithelial cycle, a process also accompanied by the release of sperm at spermiation. These cellular events that take place at the opposite ends of the epithelium are co-ordinated by a functional axis designated the apical ectoplasmic specialization (ES)—BTB—basement membrane. However, the regulatory molecules that co-ordinate cellular events in this axis are not known. METHODS Literature was searched at http://www.pubmed.org and http://scholar.google.com to identify published findings regarding intercellular adhesion molecules (ICAMs) and the regulation of this axis. RESULTS Members of the ICAM family, namely ICAM-1 and ICAM-2, and the biologically active soluble ICAM-1 (sICAM-1) are the likely regulatory molecules that co-ordinate these events. sICAM-1 and ICAM-1 have antagonistic effects on the Sertoli cell tight junction-permeability barrier, involved in Sertoli cell BTB restructuring, whereas ICAM-2 is restricted to the apical ES, regulating spermatid adhesion during the epithelial cycle. Studies in other epithelia/endothelia on the role of the ICAM family in regulating cell movement are discussed and this information has been evaluated and integrated into studies of these proteins in the testis to create a hypothetical model, depicting how ICAMs regulate junction restructuring events during spermatogenesis. CONCLUSIONS ICAMs are crucial

  18. Intercellular adhesion molecules (ICAMs) and spermatogenesis.

    Science.gov (United States)

    Xiao, Xiang; Mruk, Dolores D; Cheng, C Yan

    2013-01-01

    During the seminiferous epithelial cycle, restructuring takes places at the Sertoli-Sertoli and Sertoli-germ cell interface to accommodate spermatogonia/spermatogonial stem cell renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation since developing germ cells, in particular spermatids, move 'up and down' the seminiferous epithelium. Furthermore, preleptotene spermatocytes differentiated from type B spermatogonia residing at the basal compartment must traverse the blood-testis barrier (BTB) to enter the adluminal compartment to prepare for meiosis at Stage VIII of the epithelial cycle, a process also accompanied by the release of sperm at spermiation. These cellular events that take place at the opposite ends of the epithelium are co-ordinated by a functional axis designated the apical ectoplasmic specialization (ES)-BTB-basement membrane. However, the regulatory molecules that co-ordinate cellular events in this axis are not known. Literature was searched at http://www.pubmed.org and http://scholar.google.com to identify published findings regarding intercellular adhesion molecules (ICAMs) and the regulation of this axis. Members of the ICAM family, namely ICAM-1 and ICAM-2, and the biologically active soluble ICAM-1 (sICAM-1) are the likely regulatory molecules that co-ordinate these events. sICAM-1 and ICAM-1 have antagonistic effects on the Sertoli cell tight junction-permeability barrier, involved in Sertoli cell BTB restructuring, whereas ICAM-2 is restricted to the apical ES, regulating spermatid adhesion during the epithelial cycle. Studies in other epithelia/endothelia on the role of the ICAM family in regulating cell movement are discussed and this information has been evaluated and integrated into studies of these proteins in the testis to create a hypothetical model, depicting how ICAMs regulate junction restructuring events during spermatogenesis. ICAMs are crucial regulatory molecules of spermatogenesis. The proposed

  19. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells

    International Nuclear Information System (INIS)

    Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-01-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(L-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9 days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. - Highlights: • A series of peptide-modified PELCL electrospun membranes were prepared. • Hemocompatibility of the membranes was greatly improved by the modification. • QK-modified PELCL membrane promoted VECs proliferation more significantly. • REDV-modified PELCL membrane was the most favorable for VEC adhesion.

  20. Lignin-Furfural Based Adhesives

    Directory of Open Access Journals (Sweden)

    Prajakta Dongre

    2015-07-01

    Full Text Available Lignin recovered from the hot-water extract of sugar maple (Acer saccharum is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC. The effect of pH (0.3, 0.65 and 1, ex situ furfural, and curing conditions on the tensile properties of adhesive reinforced glass fibers is determined and compared to the reinforcement level of commercially available PF resin. The adhesive blend prepared at pH = 0.65 with no added furfural exhibits the highest tensile properties and meets 90% of the PF tensile strength.

  1. Hydrazide-Derivatized Microgels Bond to Wet, Oxidized Cellulose Giving Adhesion Without Drying or Curing.

    Science.gov (United States)

    Yang, Dong; Gustafsson, Emil; Stimpson, Taylor C; Esser, Anton; Pelton, Robert H

    2017-06-21

    Hydrazide-derivatized poly(N-isopropylacrylamide-co-acrylic acid) microgels gave strong adhesion to wet, TEMPO oxidized, regenerated cellulose membranes without a drying or heating step. Adhesion was attributed to hydrazone covalent bond formation with aldehyde groups present on the cellulose surfaces. This is one of only three chemistries we have found that gives significant never-dried adhesion between wet cellulose surfaces. By contrast, for cellulose joints that have been dried and heated before wet testing, the hydrazide-hydrazone chemistry offers no advantages over standard paper industry wet strength resins. The design rules for the hydrazide-microgel adhesives include: cationic microgels are superior to anionic gels; the lower the microgel cross-link density, the higher the adhesion; longer PEG-based hydrazide tethers offer no advantage over shorter attachments; and, adhesion is independent of microgel diameter. Many of these rules were in agreement with predictions of a simple adhesion model where the microgels were assumed to be ideal springs. We propose that the unexpected, high cohesion between neighboring microgels in multilayer films was a result of bond formation between hydrazide groups and residual NHS-carboxyl esters from the preparation of the hydrazide microgels.

  2. Dopaminergic enhancement of cellular adhesion in bone marrow derived mesenchymal stem cells (MSCs).

    Science.gov (United States)

    Chen, Si; Bai, Bing; Lee, Dong Joon; Diachina, Shannon; Li, Yina; Wong, Sing Wai; Wang, Zhengyan; Tseng, Henry C; Ko, Ching-Chang

    2017-08-01

    Dopamine (DA) is a well-known neurotransmitter and critical element in the mussel adhesive protein that has gained increasing attention for its role in cellular growth enhancement in biomaterials, including cellular adhesion improvement. As the mechanism underlying this remains unclear, the objective of this study was to explore the effects of DA on the adhesion properties of bone marrow derived rat mesenchymal stem cells (rMSCs) using an hydroxyapatite gelatin nanocomposite biomaterial and to test whether the effects are mediated through various endogenously expressed DA receptors. Primary rMSCs were pretreated with D1-like antagonist, D2-like antagonist, or a combination of these antagonists followed by treatment with 50 μM DA and cellular adhesion quantification at 0.5, 1, 2 and 4 hours post DA addition. DA was found to increase rMSC adhesion and spreading at the 0.5 hour time-point and the dopaminergic effect on cell adhesion was partially blocked by DA antagonists. In addition, the D1-like and D2-like antagonists appeared to have a similar effect on rMSCs. Immunofluorescent staining indicated that the rMSC spreading area was significantly increased in the DA treated group versus the control group. Treatment of the D1-like DA antagonists with DA revealed that the actin filaments of rMSCs could not connect the membrane with the nucleus. In summary, DA was found to enhance early rMSC adhesion partially via DA receptor activation.

  3. The potent effect of mycolactone on lipid membranes.

    OpenAIRE

    Milène Nitenberg; Anaïs Bénarouche; Ofelia Maniti; Estelle Marion; Laurent Marsollier; Julie Géan; Erick J Dufourc; Jean-François Cavalier; Stéphane Canaan; Agnès P Girard-Egrot

    2018-01-01

    Mycolactone is a lipid-like endotoxin synthesized by an environmental human pathogen, Mycobacterium ulcerans, the causal agent of Buruli ulcer disease. Mycolactone has pleiotropic effects on fundamental cellular processes (cell adhesion, cell death and inflammation). Various cellular targets of mycolactone have been identified and a literature survey revealed that most of these targets are membrane receptors residing in ordered plasma membrane nanodomains, within which their functionalities c...

  4. Insights into the Alteration of Osteoblast Mechanical Properties upon Adhesion on Chitosan

    Directory of Open Access Journals (Sweden)

    Antonia G. Moutzouri

    2014-01-01

    Full Text Available Cell adhesion on substrates is accompanied by significant changes in shape and cytoskeleton organization, which affect subsequent cellular and tissue responses, determining the long-term success of an implant. Alterations in osteoblast stiffness upon adhesion on orthopaedic implants with different surface chemical composition and topography are, thus, of central interest in the field of bone implant research. This work aimed to study the mechanical response of osteoblasts upon adhesion on chitosan-coated glass surfaces and to investigate possible correlations with the level of adhesion, spreading, and cytoskeleton reorganization. Using the micropipette aspiration technique, the osteoblast elastic modulus was found higher on chitosan-coated than on uncoated control substrates, and it was found to increase in the course of spreading for both substrates. The cell-surface contact area was measured throughout several time points of adhesion to quantify cell spreading kinetics. Significant differences were found between chitosan and control surfaces regarding the response of cell spreading, while both groups displayed a sigmoidal kinetical behavior with an initially elevated spreading rate which stabilizes in the second hour of attachment. Actin filament structural changes were confirmed after observation with confocal microscope. Biomaterial surface modification can enhance osteoblast mechanical response and induce favorable structural organization for the implant integration.

  5. Fetuin-A associates with histones intracellularly and shuttles them to exosomes to promote focal adhesion assembly resulting in rapid adhesion and spreading in breast carcinoma cells.

    Science.gov (United States)

    Nangami, Gladys; Koumangoye, Rainelli; Shawn Goodwin, J; Sakwe, Amos M; Marshall, Dana; Higginbotham, James; Ochieng, Josiah

    2014-11-01

    The present analyses were undertaken to define the mechanisms by which fetuin-A modulates cellular adhesion. FLAG-tagged fetuin-A was expressed in breast carcinoma and HEK-293T cells. We demonstrated by confocal microscopy that fetuin-A co-localizes with histone H2A in the cell nucleus, forms stable complexes with histones such as H2A and H3 in solution, and shuttles histones to exosomes. The rate of cellular adhesion and spreading to either fibronectin or laminin coated wells was accelerated significantly in the presence of either endogenous fetuin-A or serum derived protein. More importantly, the formation of focal adhesion complexes on surfaces coated by laminin or fibronectin was accelerated in the presence of fetuin-A or histone coated exosomes. Cellular adhesion mediated by histone coated exosomes was abrogated by heparin and heparinase III. Heparinase III cleaves heparan sulfate from cell surface heparan sulfate proteoglycans. Lastly, the uptake of histone coated exosomes and subsequent cellular adhesion, was abrogated by heparin. Taken together, the data suggest a mechanism where fetuin-A, either endogenously synthesized or supplied extracellularly can extract histones from the nucleus or elsewhere in the cytosol/membrane and load them on cellular exosomes which then mediate adhesion by interacting with cell surface heparan sulfate proteoglycans via bound histones. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Expression profile of the entire family of Adhesion G protein-coupled receptors in mouse and rat

    Directory of Open Access Journals (Sweden)

    Ebendal Ted

    2008-04-01

    Full Text Available Abstract Background The Adhesion G protein-coupled receptors (GPCRs are membrane-bound receptors with long N termini. This family has 33 members in humans. Several Adhesion GPCRs are known to have important physiological functions in CNS development and immune system response mediated by large cell surface ligands. However, the majority of Adhesion GPCRs are still poorly studied orphans with unknown functions. Results In this study we performed the extensive tissue localization analysis of the entire Adhesion GPCR family in rat and mouse. By applying the quantitative real-time PCR technique we have produced comparable expression profile for each of the members in the Adhesion family. The results are compared with literature data and data from the Allen Brain Atlas project. Our results suggest that the majority of the Adhesion GPCRs are either expressed in the CNS or ubiquitously. In addition the Adhesion GPCRs from the same phylogenetic group have either predominant CNS or peripheral expression, although each of their expression profile is unique. Conclusion Our findings indicate that many of Adhesion GPCRs are expressed, and most probably, have function in CNS. The related Adhesion GPCRs are well conserved in their structure and interestingly have considerable overlap in their expression profiles, suggesting similarities among the physiological roles for members within many of the phylogenetically related clusters.

  7. Analysis of long- and short-range contribution to adhesion work in cardiac fibroblasts: an atomic force microscopy study.

    Science.gov (United States)

    Sbaizero, O; DelFavero, G; Martinelli, V; Long, C S; Mestroni, L

    2015-04-01

    Atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) and Poisson statistic were used to analyze the detachment work recorded during the removal of gold-covered microspheres from cardiac fibroblasts. The effect of Cytochalasin D, a disruptor of the actin cytoskeleton, on cell adhesion was also tested. The adhesion work was assessed using a Poisson analysis also derived from single-cell force spectroscopy retracting curves. The use of Poisson analysis to get adhesion work from AFM curves is quite a novel method, and in this case, proved to be effective to study the short-range and long-range contributions to the adhesion work. This method avoids the difficult identification of minor peaks in the AFM retracting curves by creating what can be considered an average adhesion work. Even though the effect of actin depolymerisation is well documented, its use revealed that control cardiac fibroblasts (CT) exhibit a work of adhesion at least 5 times higher than that of the Cytochalasin treated cells. However, our results indicate that in both cells short-range and long-range contributions to the adhesion work are nearly equal and the same heterogeneity index describes both cells. Therefore, we infer that the different adhesion behaviors might be explained by the presence of fewer membrane adhesion molecules available at the AFM tip-cell interface under circumstances where the actin cytoskeleton has been disrupted. Copyright © 2014. Published by Elsevier B.V.

  8. Mechanics of the Adhesive Properties of Ivy Nanoparticles

    Science.gov (United States)

    2013-11-21

    from the start of the project to the date of this printing . List the papers, including journal references, in the following categories: 23.00 24.00...centrifuged at 1000g to remove any remaining debris. Finally, the sample was dialyzed through a 300 kDa Spectra/Por cellulose ester dialysis membrane...927 KPa (2.5 fold higher than the pure CS) after 3d reaction. Compared to 0.1and 1 Au CSNC, the 0.5 Au CSNC showed a significantly higher adhesion

  9. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume

  10. Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law

    Science.gov (United States)

    Zhu, Xinyao; Xu, Wei

    2018-02-01

    The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.

  11. Nanotechnology-based polymeric bio(muco)adhesive platforms for controlling drug delivery - properties, methodologies and applications

    International Nuclear Information System (INIS)

    Carvalho, Flavia Chiva; Chorilli, Marlus; Gremiao, Maria Palmira Daflon

    2014-01-01

    Studies using bio(muco)adhesive drug delivery systems have recently gained great interest, which can promote drug targeting and more specific contact of the drug delivery system with the various absorptive membranes of the body. This technological platform associated with nanotechnology offers potential for controlling drug delivery; therefore, they are excellent strategies to increase the bioavailability of drugs. The objective of this work was to study nanotechnology-based polymeric bio(muco)adhesive platforms for controlling drug delivery, highlighting their properties, how the bio(muco)adhesion can be measured and their potential applications for different routes of administration. (author)

  12. Adhesion of Antireflective Coatings in Multijunction Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Ryan; Miller, David C.; Dauskardt, Reinhold H.

    2016-11-21

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  13. Creep behaviour of flexible adhesives

    NARCIS (Netherlands)

    Straalen, IJ.J. van; Botter, E.; Berg, A. van den; Beers, P. van

    2004-01-01

    Since flexible adhesives are used more and more in structural applications, designers should have a better understanding of its behaviour under various conditions as ultimate load, fatigue load, long-term load and environmental conditions. This paper focuses on long-term load conditions and its

  14. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...

  15. Foreign material in postoperative adhesions

    NARCIS (Netherlands)

    R.W. Luijendijk; D.C.D. de Lange (Diederik C.); C.C.A.P. Wauters (C. C A P); W.C.J. Hop (Wim); J.J. Duron; J.L. Pailler; B.R. Camprodon; L. Holmdahl; H.J. van Geldorp (H.); J. Jeekel (Hans)

    1996-01-01

    textabstractObjective: The authors determined the prevalence of foreign body granulomas in intra-abdominal adhesions in patients with a history of abdominal surgery. Patients and Methods: In a cross sectional, multicenter, multinational study, adult patients with a history of one or more previous

  16. Ovalbumin as a Wood Adhesive

    Science.gov (United States)

    Charles R. Frihart; Holly Satori; Zhu Rongxian; Michael J. Birkeland

    2014-01-01

    Use of proteins to bond wood dominated industrial production until the middle of the 20th century (1). The ensuing creation of the plywood and glulam beam industries allowed for more efficient use of wood resources than is possible with solid wood products. Many protein sources have been used as adhesives, including plant (soybean) and animal (blood, fish scales,...

  17. Printing-assisted surface modifications of patterned ultrafiltration membranes

    International Nuclear Information System (INIS)

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; Snyder, Seth W.

    2016-01-01

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted in all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.

  18. Laser-induced stabilisation of the tympanic membrane

    Science.gov (United States)

    Schacht, Sophie A. L.; Stahn, Patricia; Hinsberger, Marius; Hoetzer, Benjamin; Schick, Bernhard; Wenzel, Gentiana I.

    2017-07-01

    Repeated pathologies of the tympanic membrane (TM) decrease its tension inducing conductive hearing loss and adhesive processes up to cholesteatoma. Our results regarding the development of a laser based noninvasive procedure to strengthen the structure of the TM are herein presented.

  19. Physicochemical aspects of polymer selection for ultrafiltration and microfiltration membranes

    NARCIS (Netherlands)

    Cornelissen, Emile; van den Boomgaard, Anthonie; Strathmann, H.

    1998-01-01

    The concept of additivity of surface tension components has been used to predict the adsorptive fouling tendency of membranes. The calculated value for the free energy of adhesion ΔGLWS is taken as a measure for this fouling tendency. ΔGLWS values can be determined from the surface tension

  20. Nonwoven glass fiber mat reinforces polyurethane adhesive

    Science.gov (United States)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  1. Potential for Biobased Adhesives in Wood Bonding

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    There has been a resurgence of interest and research on using bio-based materials as wood adhesives; however, they have achieved only limited market acceptance. To better understand this low level of replacement, it is important to understand why adhesives work or fail in moisture durability tests. A holistic model for wood adhesives has been developed that clarifies...

  2. Current dental adhesives systems. A narrative review.

    Science.gov (United States)

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  3. Recharging "Hot-Melt" Adhesive Film

    Science.gov (United States)

    Progar, D. J.

    1983-01-01

    Technique for recharging surface with "hot-melt" film makes use of one sided, high-temperature, pressure-sensitive adhesive tape. Purpose of the one-sided tape is to hold hot-melt charge in place until fused to surface. After adhesive has fused to surface and cooled, tape is removed, leaving adhesive on surface.

  4. Influence of substrate modulus on gecko adhesion

    Science.gov (United States)

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-03-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  5. Aspirin augments hyaluronidase induced adhesion inhibition ...

    African Journals Online (AJOL)

    Postoperative adhesions occur after virtually all abdomino-pelvic surgery and are the leading cause of intestinal obstruction and other gynaecologic problems. We used an animal model to test the efficacy of combined administration of aspirin and hyaluronidase on adhesion formation. Adhesions were induced using ...

  6. 21 CFR 878.4380 - Drape adhesive.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and... GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification. A drape adhesive is a device intended to be placed on the skin to attach a surgical drape. (b...

  7. Initial Homotypic Cell Pair Adhesion in Regenerating Hydra Facilitates Subsequent Adhesion of Homotypic Cells

    Science.gov (United States)

    Takaku, Y.; Hariyama, T.; Tsukahara, Y.

    In Hydra vulgaris at the level of dissociated single cells endodermal cells adhere to each other more readily than to ectodermal cells at the initial adhesion. The time required for adhesion to occur between two adjacent cells is shorter for both endodermal and ectodermal homotypic cell adhesions once the initial adhesion of the first pair of cells has been established. It is confirmed that contact of an aggregated pair with additional homotypic cells facilitates the occurrence of homotypic adhesions; heterotypic adhesions are discouraged. This suggests that adhesion of homotypic cells contributes to an increased readiness for subsequent homotypic cells to adhere.

  8. Enterococcus faecalis surface proteins determine its adhesion mechanism to bile drain materials.

    Science.gov (United States)

    Waar, Karola; van der Mei, Henny C; Harmsen, Hermie J M; Degener, John E; Busscher, Henk J

    2002-06-01

    An important step in infections associated with biliary drains is adhesion of micro-organisms to the surface. In this study the role of three surface proteins of Enterococcus faecalis (enterococcal surface protein, aggregation substances 1 and 373) in the adhesion to silicone rubber, fluoro-ethylene-propylene and polyethylene was examined. Four isogenic E. faecalis strains with and without aggregation substances and one strain expressing enterococcal surface protein were used. The kinetics of enterococcal adhesion to the materials was measured in situ in a parallel plate flow chamber. Initial deposition rates were similar for all strains, whereas the presence of surface proteins increased the total number of adhering bacteria. Nearest neighbour analysis demonstrated that enterococci expressing the whole sex-pheromone plasmid encoding aggregation substances 1 or 373 adhered in higher numbers through mechanisms of positive cooperativity, which means that adhesion of bacteria enhances the probability of adhesion of other bacteria near these bacteria. Enterococci with the enterococcal surface protein did not adhere through this mechanism. These findings indicate that the surface proteins of E. faecalis play a key role in the adhesion to bile drains and bile drain associated infections.

  9. Western blot analysis of adhesive interactions under fluid shear conditions: the blot rolling assay.

    Science.gov (United States)

    Sackstein, Robert; Fuhlbrigge, Robert

    2015-01-01

    Western blotting has proven to be an important technique in the analysis of receptor-ligand interactions (i.e., by ligand blotting) and for identifying molecules mediating cell attachment (i.e., by cell blotting). Conventional ligand blotting and cell blotting methods employ non-dynamic (static) incubation conditions, whereby molecules or cells of interest are placed in suspension and overlaid on membranes. However, many cell-cell and cell-matrix adhesive interactions occur under fluid shear conditions, and shear stress itself mediates and/or facilitates the engagement of these physiologically appropriate receptors and ligands. Notably, shear forces critically influence the adhesion of circulating cells and platelets to vessel walls in physiologic cell migration and hemostasis, as well as in inflammatory and thrombotic disorders, cancer metastasis, and atherosclerosis. Use of non-dynamic blotting conditions to analyze such interactions can introduce bias, overtly missing relevant effectors and/or exaggerating the relative role(s) of non-physiologic adhesion molecules. To address this shortfall, we have developed a new technique for identifying binding interactions under fluid shear conditions, the "blot rolling assay." Using this method, molecules in a complex mixture are resolved by gel electrophoresis, transferred to a membrane that is rendered semitransparent, and the membrane is then incorporated into a parallel-plate flow chamber apparatus. Under controlled flow conditions, cells or particles bearing adhesion proteins of interest are then introduced into the chamber and interactions with individual immobilized molecules (bands) can be visualized in real time. The substrate molecule(s) supporting adhesion under fluid shear can then be identified by staining with specific antibodies or by excising the relevant band(s) and performing mass spectrometry or microsequencing of the isolated material. This method thus allows for the identification, within a complex

  10. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared

  11. Principles of chemical kinetics

    CERN Document Server

    House, James E

    2007-01-01

    James House's revised Principles of Chemical Kinetics provides a clear and logical description of chemical kinetics in a manner unlike any other book of its kind. Clearly written with detailed derivations, the text allows students to move rapidly from theoretical concepts of rates of reaction to concrete applications. Unlike other texts, House presents a balanced treatment of kinetic reactions in gas, solution, and solid states. The entire text has been revised and includes many new sections and an additional chapter on applications of kinetics. The topics covered include quantitative rela

  12. Introduction to chemical kinetics

    CERN Document Server

    Soustelle, Michel

    2013-01-01

    This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental re

  13. Ultramicroelectrode studies of oxygen reduction in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    A study on the oxygen reduction reaction in a solid state electrochemical cell was presented. The oxygen reduction reaction is a rate limiting reaction in the operation of solid polymer electrolyte fuel cells which use H{sub 2} and O{sub 2}. Interest in the oxygen reduction reaction of platinum electrodes in contact with Nafion electrolytes stems from its role in fuel cell technology. The kinetics of the oxygen reduction reaction in different polyelectrolyte membranes, such as Nafion and non-Nafion membranes, were compared. The electrode kinetics and mass transport parameters of the oxygen reduction reaction in polyelectrolyte membranes were measured by ultramicroelectrode techniques. The major difference found between these two classes of membrane was the percentage of water, which is suggestive of superior electrochemical mass transport properties of the non-Nafion membranes. 2 refs. 1 fig.

  14. Adhesive organ regeneration in Macrostomum lignano.

    Science.gov (United States)

    Lengerer, Birgit; Hennebert, Elise; Flammang, Patrick; Salvenmoser, Willi; Ladurner, Peter

    2016-06-02

    Flatworms possess pluripotent stem cells that can give rise to all cell types, which allows them to restore lost body parts after injury or amputation. This makes flatworms excellent model systems for studying regeneration. In this study, we present the adhesive organs of a marine flatworm as a simple model system for organ regeneration. Macrostomum lignano has approximately 130 adhesive organs at the ventral side of its tail plate. One adhesive organ consists of three interacting cells: one adhesive gland cell, one releasing gland cell, and one modified epidermal cell, called an anchor cell. However, no specific markers for these cell types were available to study the regeneration of adhesive organs. We tested 15 commercially available lectins for their ability to label adhesive organs and found one lectin (peanut agglutinin) to be specific to adhesive gland cells. We visualized the morphology of regenerating adhesive organs using lectin- and antibody staining as well as transmission electron microscopy. Our findings indicate that the two gland cells differentiate earlier than the connected anchor cells. Using EdU/lectin staining of partially amputated adhesive organs, we showed that their regeneration can proceed in two ways. First, adhesive gland cell bodies are able to survive partial amputation and reconnect with newly formed anchor cells. Second, adhesive gland cell bodies are cleared away, and the entire adhesive organ is build anew. Our results provide the first insights into adhesive organ regeneration and describe ten new markers for differentiated cells and tissues in M. lignano. The position of adhesive organ cells within the blastema and their chronological differentiation have been shown for the first time. M. lignano can regenerate adhesive organs de novo but also replace individual anchor cells in an injured organ. Our findings contribute to a better understanding of organogenesis in flatworms and enable further molecular investigations of cell

  15. Analysis of Antimicrobial-Triggered Membrane Depolarisation Using Voltage Sensitive Dyes

    Directory of Open Access Journals (Sweden)

    J. Derk te Winkel

    2016-04-01

    Full Text Available The bacterial cytoplasmic membrane is a major inhibitory target for antimicrobial compounds. Commonly, although not exclusively, these compounds unfold their antimicrobial activity by disrupting the essential barrier function of the cell membrane. As a consequence, membrane permeability assays are central for mode of action studies analysing membrane-targeting antimicrobial compounds. The most frequently used in vivo methods detect changes in membrane permeability by following internalization of normally membrane impermeable and relatively large fluorescent dyes. Unfortunately, these assays are not sensitive to changes in membrane ion permeability which are sufficient to inhibit and kill bacteria by membrane depolarization. In this manuscript, we provide experimental advice how membrane potential, and its changes triggered by membrane-targeting antimicrobials can be accurately assessed in vivo. Optimized protocols are provided for both qualitative and quantitative kinetic measurements of membrane potential. At last, single cell analyses using voltage-sensitive dyes in combination with fluorescence microscopy are introduced and discussed.

  16. Micromechanical and surface adhesive properties of single saccharomyces cerevisiae cells

    Science.gov (United States)

    Farzi, Bahman; Cetinkaya, Cetin

    2017-09-01

    The adhesion and mechanical properties of a biological cell (e.g. cell membrane elasticity and adhesiveness) are often strong indicators for the state of its health. Many existing techniques for determining mechanical properties of cells require direct physical contact with a single cell or a group of cells. Physical contact with the cell can trigger complex mechanotransduction mechanisms, leading to cellular responses, and consequently interfering with measurement accuracy. In the current work, based on ultrasonic excitation and interferometric (optical) motion detection, a non-contact method for characterizing the adhesion and mechanical properties of single cells is presented. It is experimentally demonstrated that the rocking (rigid body) motion and internal vibrational resonance frequencies of a single saccharomyces cerevisiae (SC) (baker’s yeast) cell can be acquired with the current approach, and the Young’s modulus and surface tension of the cell membrane as well as surface adhesion energy can be extracted from the values of these acquired resonance frequencies. The detected resonance frequency ranges for single SC cells include a rocking (rigid body) frequency of 330  ±  70 kHz and two breathing resonance frequencies of 1.53  ±  0.12 and 2.02  ±  0.31 MHz. Based on these values, the average work-of-adhesion of SC cells on a silicon substrate in aqueous medium is extracted, for the first time, as WASC-Si=16.2+/- 3.8 mJ {{m}-2} . Similarly, the surface tension and the Young’s modulus of the SC cell wall are predicted as {{σ }SC}=0.16+/- 0.02 N {{m}-1} and {{E}SC}= 9.20  ±  2.80 MPa, respectively. These results are compared to those reported in the literature by utilizing various methods, and good agreements are found. The current approach eliminates the measurement inaccuracies associated with the physical contact. Exciting and detecting cell dynamics at micro-second time-scales is significantly faster than the

  17. Actomyosin organisation for adhesion, spreading, growth and movement in chick fibroblasts

    DEFF Research Database (Denmark)

    Couchman, J R; Rees, D A

    1979-01-01

    for anchorage-dependent growth, rather than facilitate their movement. The fibroblasts specialized for movement from the explants, though equally well spread, make contact with substratum through extensive areas of relatively unspecialized membrane, have less well developed stress fibres and a low growth rate.......Examination of the actomyosin structures and their relation to adhesion, movement and growth in the first fibroblasts migrating from chick heart explants shows striking differences with fibroblasts adapted to grow in culture. The latter have focal adhesions which seem to immobilize them...

  18. Membrane transport of anandamide through resealed human red blood cell membranes

    DEFF Research Database (Denmark)

    Bojesen, I.N.; Hansen, Harald S.

    2005-01-01

    The use of resealed red blood cell membranes (ghosts) allows the study of the transport of a compound in a nonmetabolizing system with a biological membrane. Transmembrane movements of anandamide (N-arachidonoylethanolamine, arachidonoylethanolamide) have been studied by exchange efflux experiments...... at 0°C and pH 7.3 with albumin-free and albumin-filled human red blood cell ghosts. The efflux kinetics is biexponential and is analyzed in terms of compartment models. The distribution of anandamide on the membrane inner to outer leaflet pools is determined to be 0.275 ± 0.023, and the rate constant...... of unidirectional flux from inside to outside is 0.361 ± 0.023 s. The rate constant of unidirectional flux from the membrane to BSA in the medium ([BSA]) increases with the square root of [BSA] in accordance with the theory of an unstirred layer around ghosts. Anandamide passed through the red blood cell membrane...

  19. Structural insights into Ail-mediated adhesion in Yersinia pestis.

    Science.gov (United States)

    Yamashita, Satoshi; Lukacik, Petra; Barnard, Travis J; Noinaj, Nicholas; Felek, Suleyman; Tsang, Tiffany M; Krukonis, Eric S; Hinnebusch, B Joseph; Buchanan, Susan K

    2011-11-09

    Ail is an outer membrane protein from Yersinia pestis that is highly expressed in a rodent model of bubonic plague, making it a good candidate for vaccine development. Ail is important for attaching to host cells and evading host immune responses, facilitating rapid progression of a plague infection. Binding to host cells is important for injection of cytotoxic Yersinia outer proteins. To learn more about how Ail mediates adhesion, we solved two high-resolution crystal structures of Ail, with no ligand bound and in complex with a heparin analog called sucrose octasulfate. We identified multiple adhesion targets, including laminin and heparin, and showed that a 40 kDa domain of laminin called LG4-5 specifically binds to Ail. We also evaluated the contribution of laminin to delivery of Yops to HEp-2 cells. This work constitutes a structural description of how a bacterial outer membrane protein uses a multivalent approach to bind host cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Kinetic equation solution by inverse kinetic method

    International Nuclear Information System (INIS)

    Salas, G.

    1983-01-01

    We propose a computer program (CAMU) which permits to solve the inverse kinetic equation. The CAMU code is written in HPL language for a HP 982 A microcomputer with a peripheral interface HP 9876 A ''thermal graphic printer''. The CAMU code solves the inverse kinetic equation by taking as data entry the output of the ionization chambers and integrating the equation with the help of the Simpson method. With this program we calculate the evolution of the reactivity in time for a given disturbance

  1. Gecko adhesion pad: a smart surface?

    Science.gov (United States)

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  2. Gecko adhesion pad: a smart surface?

    Energy Technology Data Exchange (ETDEWEB)

    Pesika, Noshir S [Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118 (United States); Zeng Hongbo [Chemical and Materials Engineering Department, University of Alberta, Edmonton, AB, T6G 2V4 (Canada); Kristiansen, Kai; Israelachvili, Jacob [Chemical Engineering Department, University of California, Santa Barbara, CA 93117 (United States); Zhao, Boxin [Chemical Engineering Department and Waterloo Institute of Nanotechnology, University of Waterloo, Ontario, N2L 3G1 (Canada); Tian Yu [State Key Laboratory of Tribology, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Autumn, Kellar, E-mail: npesika@tulane.ed [Department of Biology, Lewis and Clark College, Portland, OR 97219 (United States)

    2009-11-18

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  3. Gecko adhesion pad: a smart surface?

    International Nuclear Information System (INIS)

    Pesika, Noshir S; Zeng Hongbo; Kristiansen, Kai; Israelachvili, Jacob; Zhao, Boxin; Tian Yu; Autumn, Kellar

    2009-01-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  4. Photochemical tissue bonding with chitosan adhesive films

    Directory of Open Access Journals (Sweden)

    Piller Sabine C

    2010-09-01

    Full Text Available Abstract Background Photochemical tissue bonding (PTB is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Methods Adhesive films, based on chitosan and containing ~0.1 wt% RB were manufactured and bonded to calf intestine by a solid state laser (λ = 532 nm, Fluence~110 J/cm2, spot size~0.5 cm. A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results The RB-chitosan adhesive bonded firmly to the intestine with adhesion strength of 15 ± 2 kPa, (n = 31. The adhesion strength dropped to 0.5 ± 0.1 (n = 8 kPa when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26°C to 32°C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. Conclusion A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.

  5. Adhesive complex coacervate inspired by the sandcastle worm as a sealant for fetoscopic defects

    Science.gov (United States)

    Kaur, Sarbjit

    Inspired by the Sandcastle Worm, biomimetic of the water-borne adhesive was developed by complex coacervation of the synthetic copolyelectrolytes, mimicking the chemistries of the worm glue. The developed underwater adhesive was designed for sealing fetal membranes after fetoscopic surgery in twin-to-twin transfusion syndrome (TTTS) and sealing neural tissue of a fetus in aminiotic sac for spina bifida condition. Complex coacervate with increased bond strength was created by entrapping polyethylene glycol diacrylate (PEG-dA) monomer within the cross-linked coacervate network. Maximum shear bond strength of ~ 1.2 MPa on aluminum substrates was reached. The monomer-filled coacervate had complex flow behavior, thickening at low shear rates and then thinning suddenly with a 16-fold drop in viscosity at shear rates near 6 s-1. The microscale structure of the complex coacervates resembled a three-dimensional porous network of interconnected tubules. This complex coacervate adhesive was used in vitro studies to mimic the uterine wall-fetal membrane interface using a water column with one end and sealed with human fetal membranes and poultry breast, and a defect was created with an 11 French trocar. The coacervate adhesive in conjunction with the multiphase adhesive was used to seal the defect. The sealant withstood an additional traction of 12 g for 30-60 minutes and turbulence of the water column without leakage of fluid or slippage. The adhesive is nontoxic when in direct contact with human fetal membranes in an organ culture setting. A stable complex coacervate adhesive for long-term use in TTTS and spina bifida application was developed by methacrylating the copolyelectrolytes. The methacrylated coacervate was crosslinked chemically for TTTS and by photopolymerization for spina bifida. Tunable mechanical properties of the adhesive were achieved by varying the methacrylation of the polymers. Varying the amine to phosphate (A/P) ratio in the coacervate formation

  6. Effects of warm air drying on water sorption, solubility, and adhesive strength of simplified etch-and-rinse adhesives.

    Science.gov (United States)

    Reis, Alessandra; Wambier, Leticia; Malaquias, Tamirez; Wambier, Denise S; Loguercio, Alessandro D

    2013-02-01

    To evaluate the effects of the temperature of air used for solvent evaporation on water sorption, solubility, and ultimate tensile strength (UTS) of simplified etch-and-rinse adhesives. Four commercial simplified etch-and-rinse adhesives (Adper Single Bond 2 [SB]; Te Econom [TE]; XP Bond [XP] and Ambar [AM]) were selected. Disk-shaped specimens were prepared by dispensing the uncured resin into a mold (5.8 mm x 0.8 mm). Solvent evaporation was performed using a warm (60°C) or cold (20°C) air stream for 40 s. After desiccation, the cured specimens were weighed and then stored in distilled water for evaluation of the water diffusion kinetics over a 28-day period. For the UTS measurement, hourglass-shaped specimens of adhesives were prepared and tested in tension. The data from each test were evaluated with two-way ANOVA and Tukey's test at a confidence level of 95%. Water sorption and solubility varied significantly between materials, but no significant difference was observed between warm and cold conditions (p > 0.05). TE and AM showed the lowest water sorption and solubility (p < 0.05). For SB, TE, and XP, the use of a warm air stream resulted in higher ultimate tensile strength (p < 0.05) in both experimental conditions. The water sorption and solubility of the materials seem to be more influenced by their composition than by the temperature used for solvent evaporation. For some adhesives, the use of a warm air stream can yield higher ultimate tensile strength.

  7. Surface energy and viscoelasticity influence caramel adhesiveness.

    Science.gov (United States)

    Wagoner, Ty B; Foegeding, Edward Allen

    2017-08-26

    Adhesion is an important textural attribute that directs consumer eating patterns and behaviors and can be a negative attribute during food processing. The objectives of this study were to modify caramel formulation and compare adhesion to different materials to quantify the influence of surface energetics and viscoelasticity on caramel adhesiveness. Mechanical adhesion was viewed in the context of pressure sensitive tack theory, where adhesion is controlled by viscoelasticity of the adhesive material and the surface energy relationship of material and probe. Caramel samples varied in total amount of fat and protein, and mechanical adhesion was measured using a series of materials with total surface energies of 39.7-53.2 mJ/m 2 . Adhesiveness decreased as fat and protein content increased, with a significant effect of total surface energy. Viscoelasticity was modeled using creep recovery data fit to a four-element Burger mechanistic model. Burger model parameters representing retarded elasticity correlated strongly with adhesiveness. The results suggest two zones of adhesion based on formulation, one driven by both surface energy relationships-most notably dispersive and total surface energy-and viscoelasticity, and the other driven solely by viscoelasticity. Relationships between mechanical properties and adhesion have been explored but are still not well understood, and could aid in the design of food products with a controlled level of adhesion. The results of this study indicate the importance of considering material surface energy when measuring mechanical adhesion or texture profile analysis. Understanding the relationships between viscoelastic behavior and adhesion can be used to make inferences on perceived texture. © 2017 Wiley Periodicals, Inc.

  8. Adhesives for fixed orthodontic brackets.

    Science.gov (United States)

    Mandall, N A; Millett, D T; Mattick, C R; Hickman, J; Macfarlane, T V; Worthington, H V

    2003-01-01

    Bonding of orthodontic brackets to teeth is important to enable effective and efficient treatment with fixed appliances. The problem is bracket failure during treatment which increases operator chairside time and lengthens treatment time. A prolonged treatment is likely to increase the oral health risks of orthodontic treatment with fixed appliances one of which is irreversible enamel decalcification. To evaluate the effectiveness of different orthodontic adhesives for bonding. Electronic databases: the Cochrane Oral Health Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and EMBASE. Date of most recent searches: August 2002 (CENTRAL) (The Cochrane Library Issue 2, 2002). Trials were selected if they met the following criteria: randomised controlled trials (RCTs) and controlled clinical trials (CCTs) comparing two different adhesive groups. Participants were patients with fixed orthodontic appliances. The interventions were adhesives that bonded stainless steel brackets to all teeth except the molars. The primary outcome was debond or bracket failure. Data were recorded on decalcification as a secondary outcome, if present. Information regarding methods, participants, interventions, outcome measures and results were extracted in duplicate by pairs of reviewers (Nicky Mandall (NM) and Rye Mattick (CRM); Declan Millett (DTM) and Joy Hickman (JH2)). Since the data were not presented in a form that was amenable to meta-analysis, the results of the review are presented in narrative form only. Three trials satisfied the inclusion criteria. A chemical cured composite was compared with a light cure composite (one trial), a conventional glass ionomer cement (one trial) and a polyacid-modified resin composite (compomer) (one trial). The quality of the trial reports was generally poor. It is difficult to draw any conclusions from this review, however, suggestions are made for methods of improving future research involving

  9. DIABETES AND SHOULDER ADHESIVE CAPSULITIS

    OpenAIRE

    J. Mohanakrishnan; Bhanumathy Mohanakrishnan

    2016-01-01

    Background: Adhesive capsulitis (AC) of shoulder is a common condition encountered by physical therapists in their routine outpatient care services; AC of shoulder is as by itself being a self limiting disorder lasts from months to years causing pain and discomfort to the patients. The condition is commonly associated with Diabetes mellitus or other co morbidities. The incidence of AC is high among diabetic individuals and it becomes mandatory on the part of physical therapists and other heal...

  10. Polymer nanocarriers for dentin adhesion.

    Science.gov (United States)

    Osorio, R; Osorio, E; Medina-Castillo, A L; Toledano, M

    2014-12-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP- N : Active nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days' immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p degradation. Tested nanoparticles may be incorporated into dental adhesive systems to provide the appropriate environment in which dentin MMP collagen degradation is inhibited and mineral growth can occur. © International & American Associations for Dental Research.

  11. Culinary Medicine—Jalebi Adhesions

    OpenAIRE

    Kapoor, Vinay K

    2015-01-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injurin...

  12. Polyurethane adhesives in flat roofs

    OpenAIRE

    Bogárová Markéta; Stodůlka Jindřich; Šuhajda Karel

    2017-01-01

    It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is...

  13. A review of our development of dental adhesives--effects of radical polymerization initiators and adhesive monomers on adhesion.

    Science.gov (United States)

    Ikemura, Kunio; Endo, Takeshi

    2010-03-01

    This paper reviews the development of dental adhesives by collating information of related studies from original scientific papers, reviews, and patent literatures. Through our development, novel radical polymerization initiators, adhesive monomers, and microcapsules were synthesized, and their effects on adhesion were investigated. It was found that 5-monosubstituted barbituric acid (5-MSBA)-containing ternary initiators in conjunction with adhesive monomers contributed to effective adhesion with good polymerization reactivity. Several kinds of novel adhesive monomers bearing carboxyl group, phosphonic acid group or sulfur-containing group were synthesized, and investigated their multi-purpose bonding functions. It was suggested that the flexible methylene chain in the structure of adhesive monomers played a pivotal role in their enhanced bonding durability. It was found that the combination of acidic monomers with sulfur-containing monomer markedly improved adhesion to enamel, dentin, porcelain, alumina, zirconia, non-precious metals and precious metals. A new poly(methyl methacrylate) (PMMA)-type adhesive resin comprising microencapsulated polymerization initiators was also found to exhibit both good formulation stability and excellent adhesive property.

  14. Culinary Medicine-Jalebi Adhesions.

    Science.gov (United States)

    Kapoor, Vinay K

    2016-02-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injuring the bowel resulting in spill of contents-resection is the only option (Fig. 1). Jalebi, an Indian dessert, has a single long tubular strip of fried batter filled with sugary syrup so intertwined that it is impossible to discern its ends; if broken, the syrup spills out-the best way to relish it is to chew the whole piece (Fig. 2). Because of these similarities between them, I propose to name dense intra-abdominal adhesions as 'jalebi adhesions.'

  15. Modeling of Sylgard Adhesive Strength

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Ralph Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-03

    Sylgard is the name of a silicone elastomeric potting material manufactured by Dow Corning Corporation.1 Although the manufacturer cites its low adhesive strength as a feature of this product, thin layers of Sylgard do in fact have a non-negligible strength, which has been measured in recent tensile and shear debonding tests. The adhesive strength of thin layers of Sylgard potting material can be important in applications in which components having signi cantly di erent thermal expansion properties are potted together, and the potted assembly is subjected to temperature changes. The tensile and shear tractions developed on the potted surfaces of the components can cause signi cant internal stresses, particularly for components made of low-strength materials with a high area-to-volume ratio. This report is organized as follows: recent Sylgard debonding tests are rst brie y summarized, with particular attention to the adhesion between Sylgard and PBX 9501, and also between Sylgard and aluminum. Next, the type of numerical model that will be used to simulate the debonding behavior exhibited in these tests is described. Then the calibration of the debonding model will be illustrated. Finally, the method by which the model parameters are adjusted (scaled) to be applicable to other, non- tested bond thicknesses is summarized, and all parameters of the model (scaled and unscaled) are presented so that other investigators can reproduce all of the simulations described in this report as well as simulations of the application of interest.

  16. Non-kinetic capabilities: complementing the kinetic prevalence to targeting

    OpenAIRE

    Ducheine, P.

    2014-01-01

    Targeting is used in military doctrine to describe a military operational way, using (military) means to influence a target (or addressee) in order to achieve designated political and/or military goals. The four factors italicized are used to analyse non-kinetic targeting, complementing our knowledge and understanding of the kinetic prevalence. Paradoxically, non-kinetic targeting is not recognized as a separate concept: kinetic and non-kinetic are intertwined facets of targeting. Kinetic tar...

  17. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly

    Science.gov (United States)

    Uchil, Pradeep D.; Pawliczek, Tobias; Reynolds, Tracy D.; Ding, Siyuan; Hinz, Angelika; Munro, James B.; Huang, Fang; Floyd, Robert W.; Yang, Haitao; Hamilton, William L.; Bewersdorf, Joerg; Xiong, Yong; Calderwood, David A.; Mothes, Walther

    2014-01-01

    ABSTRACT Focal adhesions are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of focal adhesions is crucial for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating focal adhesion dynamics. Here, we identify TRIM15, a member of the tripartite motif protein family, as a paxillin-interacting factor and a component of focal adhesions. TRIM15 localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. Unlike other focal adhesion proteins, TRIM15 is a stable focal adhesion component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and reduced focal adhesion disassembly rates, in addition to enlarged focal adhesions. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of focal adhesion turnover and cell migration. PMID:25015296

  18. Functional Peptides from Laminin-1 Improve the Cell Adhesion Capacity of Recombinant Mussel Adhesive Protein.

    Science.gov (United States)

    Wang, Kai; Ji, Lina; Hua, Zichun

    2017-01-01

    Since cell adhesion is important for cell processes such as migration and proliferation, it is a crucial consideration in biomaterial design and development. Based on the fusion of mussel adhesive protein fp151 with laminin-1-originated functional peptides we designed fusion proteins (fLA4, fLG6 and fAG73) and explored their cell adhesion properties. In our study, cell adhesion analysis showed that protein fLG6 and fLA4 had a significantly higher cell adhesion property for A549 than fp151. Moreover, protein fAG73 also displayed a strong adhesion capacity for Hela cells. In conclusion, the incorporation of functional peptides with integrin and heparin/heparan sulphate binding capacity into mussel adhesive protein will promote the application of mussel adhesive protein as cell adhesion biomaterial. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    Science.gov (United States)

    Junghans, Ann

    Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.

  20. Kinetic and Thermodynamic Studies on Adsorption of Sulphate from ...

    African Journals Online (AJOL)

    DELL USER

    Kinetic and Thermodynamic Studies on Adsorption of Sulphate from Aqueous Solution by. Magnetite, Activated .... membrane separation, reverse osmosis, chemical ... removal, high energy consumption, reagents cost, disposal of large volume of organic solvents and inefficiency when the metal concentrations are 10 mg/l. 6.

  1. Handbook of Adhesion, 2nd Edition

    Science.gov (United States)

    Packham, D. E.

    2005-06-01

    This second edition of the successful Handbook of Adhesion provides concise and authoritative articles covering many aspects of the science and technology associated with adhesion and adhesives. It is intended to fill a gap between the necessarily simplified treatment of the student textbook and the full and thorough treatment of the research monograph and review article. The articles are structured in such a way, with internal cross-referencing and external literature references, that the reader can build up a broader and deeper understanding, as their needs require. This second edition includes many new articles covering developments which have risen in prominence in the intervening years, such as scanning probe techniques, the surface forces apparatus and the relation between adhesion and fractal surfaces. Advances in understanding polymer - polymer interdiffusion are reflected in articles drawing out the implications for adhesive bonding. In addition, articles derived from the earlier edition have been revised and updated where needed. Throughout the book there is a renewed emphasis on environmental implications of the use of adhesives and sealants. The scope of the Handbook, which features nearly 250 articles from over 60 authors, includes the background science - physics, chemistry and material science - and engineering, and also aspects of adhesion relevant to the use of adhesives, including topics such as: Sealants and mastics Paints and coatings Printing and composite materials Welding and autohesion Engineering design The Handbook of Adhesion is intended for scientists and engineers in both academia and industry, requiring an understanding of the various facets of adhesion.

  2. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    International Nuclear Information System (INIS)

    Díaz Téllez, J P; Harirchian-Saei, S; Li, Y; Menon, C

    2013-01-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet–visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved. (paper)

  3. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland

    2014-12-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene and the selective layer with isopores was formed by micelle assembly of polystyrene-. b-poly-4-vinyl pyridine. The dual layers had an excellent interfacial adhesion and pore interconnectivity. The dual membranes showed pH response behavior like single layer block copolymer membranes with a low flux for pH values less than 3, a fast increase between pH4 and pH6 and a constant high flux level for pH values above 7. The dry/wet spinning process was optimized to produce dual layer hollow fiber membranes with polystyrene internal support layer and a shell block copolymer selective layer.

  4. Human climbing with efficiently scaled gecko-inspired dry adhesives

    OpenAIRE

    Hawkes, Elliot W.; Eason, Eric V.; Christensen, David L.; Cutkosky, Mark R.

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for syn...

  5. Kinetics of the formation of the titanium nitruro film (TiN)

    International Nuclear Information System (INIS)

    Rojas Andres; Devia C, Alfonso; Alzate Rafael

    1999-01-01

    They are presented in succinct form the factors that intervene in the growth, adhesion of the film and election of the support material in the process of formation of TiN film. Equally it's carried out the kinetic development of the possible reactions (ionization and excitement) involved in the process

  6. Ceramic membranes for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Vincente-Mingarro, I.M. de; Pitarch, J.A. [Tecnologia y Gestion de la Innovacion, Madrid (Spain)

    1998-11-01

    The project is being carried out jointly by TGI, S.A., CIEMAT and CSIC-ICM to develop and evaluate new inorganic membranes of a ceramic type, with nanometric pore size for separation of contaminants and fuel enrichment, in gas mixtures from coal gasification. In order to achieve both the highest active and selective surface, a candle (150 mm length and 60 mm in diameter), with 30-40 % porosity and pore sizes of {lt}1 {mu}m was developed. The processing steps include the slip-casting of the first layer (porous support) in a way than after thermal treatment (1400-1600{degree}C) the desirable shape dimensions, strength, porosity and pore size were obtained. Then the support was dipped successively (colloidal filtration over the casting porous piece) in an appropriate suspension of alumina with lower grain size. The top layer was obtained by the sol-gel process so that through successive setting and heat treatment the pores were reduced to the nanometre size. CVD and CVI techniques were set up to develop membranes for gas separation with a high selectivity level. Experimental chemical infiltration `Membranes Development` on porous substrates has been achieved on disk and candle-shaped materials. Characterisation was by spectrophotometry (IRS). Kinetic studies of coating in order to find out reproducible conditions at low temperature were also carried out. Uniform recovery over the whole membrane surface is wanted. The CIEMAT`s Hot Gas Separation Plant (HGSP) works with gas mixtures at a maximum design temperature 773 K and pressures up to 50 bar. It comprises: a gas supply unit equipped with flow, temperature and pressure measuring and control systems; a heating system within the membrane which must be leak proof for high pressures; and an in-line gas chromatography system thus allowing the chemical composition of the gas entering, permeated and retained to be measured. 7 figs.

  7. Fouling Kinetics and Associated Dynamics of Structural Modifications

    DEFF Research Database (Denmark)

    Jacob, Jerome; Prádanos, Pedro; Calvo, J. I.

    1998-01-01

    It is shown that the fouling behaviour of microfiltration membranes does not agree within all the time ranges of any of the commonly used membrane blocking models (i.e. complete, standard, intermediate or cake blocking). The resulting experimental kinetics of flux decline do not fit to only one...... of these models, but according to a successive or simultaneous coexistence of two or more of them. This is studied by analysing the structural modifications associated with the fouling kinetics. To achieve this goal, here we analyse the dynamical changes on the structure of four microporous membranes made...... by Sartorius (ST02 and ST045, neutral) and Spectrum (SP02 and SP045, positively charged) when fouled by permeating a protein aqueous solution (bovine serum albumin (BSA) at 1 g l(-1)) under 10 kPa in a dead-end device. The structure after different fouling times is obtained by using an extended bubble point...

  8. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    Directory of Open Access Journals (Sweden)

    Nicolas Lebesgue

    2016-06-01

    Full Text Available Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc versus the non-adhesive part (the stem, and also to profile the proteome of the secreted adhesive (glue. This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016 [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold, likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  9. The influence of adhesive thickness on the microtensile bond strength of three adhesive systems.

    Science.gov (United States)

    D'Arcangelo, Camillo; Vanini, Lorenzo; Prosperi, Gianni Domenico; Di Bussolo, Giulia; De Angelis, Francesco; D'Amario, Maurizio; Caputi, Sergio

    2009-04-01

    To evaluate the effects of multiple adhesive layers of three etch-and-rinse adhesives on both adhesive thickness and microtensile bond strength (microTBS). Midcoronal occlusal dentin of 36 extracted human molars was used. Teeth were randomly assigned to 3 groups (EB, XP, PQ) according to the adhesive system to be used: PQ1 (Ultradent) (PQ), EnaBond (Micerium) (EB), or XP Bond (Dentsply/DeTrey) (XP). Specimens from each group were further divided into three subgroups according to the number of adhesive coatings (1, 2, or 3). In all subgroups, each adhesive layer was light cured before application of each additional layer. After bonding procedures, composite crowns were incrementally built up. Specimens were sectioned perpendicular to the adhesive interface to produce multiple beams, approximately 1 mm2 in area. Beams were tested under tension at a crosshead speed of 0.5 mm/min until failure. Adhesive thicknesses and failure modes were evaluated with SEM. The microTBS data and mean adhesive thickness were analyzed by two-way ANOVA and multiple-comparison Tukey's test (alpha = 0.05). The mean bond strength (in MPa (SD)) of group EB gradually increased from 1 to 3 consecutive coatings (27.02 (9.38) to 44.32 (4.93), respectively) (p adhesive coatings. The mean thickness of the adhesive layer (in microm (SD)) significantly increased with the number of coatings (p adhesive failure between adhesive and dentin. The XP3 and PQ3 subgroups showed a greater number of total cohesive failure in adhesive. Multiple adhesive coats significantly affected bond strength to dentin. An excess of adhesive layer thickness can negatively influence the strength and the quality of adhesion.

  10. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    Science.gov (United States)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  11. Irreversible processes kinetic theory

    CERN Document Server

    Brush, Stephen G

    2013-01-01

    Kinetic Theory, Volume 2: Irreversible Processes deals with the kinetic theory of gases and the irreversible processes they undergo. It includes the two papers by James Clerk Maxwell and Ludwig Boltzmann in which the basic equations for transport processes in gases are formulated, together with the first derivation of Boltzmann's ""H-theorem"" and a discussion of this theorem, along with the problem of irreversibility.Comprised of 10 chapters, this volume begins with an introduction to the fundamental nature of heat and of gases, along with Boltzmann's work on the kinetic theory of gases and s

  12. Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion

    DEFF Research Database (Denmark)

    Iba, K; Albrechtsen, R; Gilpin, B J

    1999-01-01

    The ADAMs (A disintegrin and metalloprotease) comprise a family of membrane-anchored cell surface proteins with a putative role in cell-cell and/or cell-matrix interactions. By immunostaining, ADAM 12 (meltrin alpha) was up-regulated in several human carcinomas and could be detected along the tumor...... tumor cell adhesion. We found that the disintegrin-like domain of human ADAM 15 supported adhesion of alphavbeta3-expressing A375 melanoma cells. In the case of human ADAM 12, however, recombinant polypeptides of the cysteine-rich domain but not the disintegrin-like domain supported cell adhesion...... of a panel of carcinoma cell lines. On attachment to recombinant polypeptides from the cysteine-rich domain of human ADAM 12, most tumor cell lines, such as MDA-MB-231 breast carcinoma cells, were rounded and associated with numerous actin-containing filopodia and used a cell surface heparan sulfate...

  13. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins.

    Science.gov (United States)

    Piñero-Lambea, Carlos; Bodelón, Gustavo; Fernández-Periáñez, Rodrigo; Cuesta, Angel M; Álvarez-Vallina, Luis; Fernández, Luis Ángel

    2015-04-17

    In this work we report synthetic adhesins (SAs) enabling the rational design of the adhesion properties of E. coli. SAs have a modular structure comprising a stable β-domain for outer membrane anchoring and surface-exposed immunoglobulin domains with high affinity and specificity that can be selected from large repertoires. SAs are constitutively and stably expressed in an E. coli strain lacking a conserved set of natural adhesins, directing a robust, fast, and specific adhesion of bacteria to target antigenic surfaces and cells. We demonstrate the functionality of SAs in vivo, showing that, compared to wild type E. coli, lower doses of engineered E. coli are sufficient to colonize solid tumors expressing an antigen recognized by the SA. In addition, lower levels of engineered bacteria were found in non-target tissues. Therefore, SAs provide stable and specific adhesion capabilities to E. coli against target surfaces of interest for diverse applications using live bacteria.

  14. Biofouling of reverse osmosis membranes: effects of cleaning on biofilm microbial communities, membrane performance, and adherence of extracellular polymeric substances.

    Science.gov (United States)

    Al Ashhab, Ashraf; Sweity, Amer; Bayramoglu, Bihter; Herzberg, Moshe; Gillor, Osnat

    2017-05-01

    Laboratory-scale reverse osmosis (RO) flat-sheet systems were used with two parallel flow cells, one treated with cleaning agents and a control (ie undisturbed). The cleaning efforts increased the affinity of extracellular polymeric substances (EPS) to the RO membrane and altered the biofilm surface structure. Analysis of the membrane biofilm community composition revealed the dominance of Proteobacteria. However, within the phylum Proteobacteria, γ-Proteobacteria dominated the cleaned membrane biofilm, while β-Proteobacteria dominated the control biofilm. The composition of the fungal phyla was also altered by cleaning, with enhancement of Ascomycota and suppression of Basidiomycota. The results suggest that repeated cleaning cycles select for microbial groups that strongly attach to the RO membrane surface by producing rigid and adhesive EPS that hampers membrane performance.

  15. Biosynthesis of the D2 cell adhesion molecule: pulse-chase studies in cultured fetal rat neuronal cells

    DEFF Research Database (Denmark)

    Lyles, J M; Norrild, B; Bock, E

    1984-01-01

    D2 is a membrane glycoprotein that is believed to function as a cell adhesion molecule (CAM) in neural cells. We have examined its biosynthesis in cultured fetal rat brain neurones. We found D2-CAM to be synthesized initially as two polypeptides: Mr 186,000 (A) and Mr 136,000 (B). With increasing...

  16. [Two-layer adhesive film Diplen-denta C--a new compound containing polymer base and active component Solcoseryl].

    Science.gov (United States)

    Abakarova, D S

    2007-01-01

    Characteristics of the main components of a new effective long-lasting dosage form--biopolymer two-layer adhesive solcoseryl containing film Diplen-denta C--are presented. It has a potent wound-healing action on oral mucosa, retains therapeutic properties during long time, is self dissolving and can be easily fixed on oral mucous membrane.

  17. Classification of OPP adhesive tapes according to pyrogram of adhesives.

    Science.gov (United States)

    Kumooka, Y

    2011-03-20

    Pressure sensitive adhesives (PSAs) of colorless and transparent oriented polypropylene (OPP) adhesive tapes were analyzed by pyrolysis/gas chromatography/mass spectrometry (Py/GC/MS). The PSAs were acrylic and rubber-based PSAs and the tapes were classified according to total ion current (TIC) chromatograms of the PSAs. The main pyrolyzates of the acrylic PSAs were decomposition products of monomers, monomers, dimmers and trimers. Those of the rubber-based PSAs were the monomers of elastomers, and subtle peaks observed were the pyrolyzates of tackifiers and volatile additives in the TIC chromatograms. Small differences were observed among the classifications of the acrylic PSAs by Py/GC/MS, attenuated total reflection Fourier transform infrared (ATR FT-IR) and Matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS). The classification of the rubber-based PSAs by Py/GC/MS and that by ATR FT-IR were the same, and a slight difference was observed between those by Py/GC/MS and MALDI MS. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    Biological membranes are essential and complex structures in every living cell consisting of a fluid lipid bilayer sheet and membrane proteins. Its significance makes biological membranes not only interesting for medical research, but also has made it a target for toxins in the course of evolution....... Today, we know more than ever before about the properties of biological membranes. Advanced biophysical techniques and sophisticated membrane models allow us to answer specific questions about the structure of the components within membranes and their interactions. However, many detailed structural...... mechanisms of membrane compounds, including compounds associated with membranes, are still unknown due to the challenges that arise when probing the hydrophobic nature of the membrane's interior. For integral membrane proteins that span through the entire membrane, the amphiphilic environment is essential...

  19. Biosynthesis of the neural cell adhesion molecule: characterization of polypeptide C

    DEFF Research Database (Denmark)

    Nybroe, O; Albrechtsen, M; Dahlin, J

    1985-01-01

    The biosynthesis of the neural cell adhesion molecule (N-CAM) was studied in primary cultures of rat cerebral glial cells, cerebellar granule neurons, and skeletal muscle cells. The three cell types produced different N-CAM polypeptide patterns. Glial cells synthesized a 135,000 Mr polypeptide B...... and a 115,000 Mr polypeptide C, whereas neurons expressed a 200,000 Mr polypeptide A as well as polypeptide B. Skeletal muscle cells produced polypeptide B. The polypeptides synthesized by the three cell types were immunochemically identical. The membrane association of polypeptide C was investigated...... with methods that distinguish peripheral and integral membrane proteins. Polypeptide C was found to be a peripheral membrane protein, whereas polypeptides A and B were integral membrane proteins with cytoplasmic domains of approximately 50,000 and approximately 25,000 Mr, respectively. The affinity...

  20. Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating

    International Nuclear Information System (INIS)

    Kim, Gyu Hye; Kwon, Da Som; Kim, Mi Jung; Kim, Su Hee; Yoon, Ji Won; An, Tea Chang; Hwang, Hui Yun

    2016-01-01

    Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively

  1. Influence of composition on the adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-min; Hong, Guang; Hayashida, Kentaro; Maeda, Takeshi; Murata, Hiroshi; Sasaki, Keiichi

    2014-01-01

    To investigate the effect of composition on the initial viscosity and adhesive strength between denture adhesives and the denture base. Two types of water-soluble polymers (methoxy ethylene maleic anhydride copolymer [PVM-MA] and sodium carboxymethyl cellulose [CMC]) were used. Samples were divided into three groups. Group 1 contained only PVM-MA; Group 2 contained only CMC; and Group 3 contained PVM-MA and CMC. The initial viscosity and adhesive strength were measured. For Group 1, the initial viscosity increased significantly as PVM-MA content increased. The adhesive strength of Group 1 lasted longer than Group 2. The adhesive strength of Group 3 varied greatly. The ratio of CMC and PVM-MA has a significant effect on the initial viscosity and adhesive strength of denture adhesives. Our results suggest that it is possible to improve the durability of a denture adhesive by combining different water-soluble polymers.

  2. Organization of cellular receptors into a nanoscale junction during HIV-1 adhesion.

    Directory of Open Access Journals (Sweden)

    Terrence M Dobrowsky

    2010-07-01

    Full Text Available The fusion of the human immunodeficiency virus type 1 (HIV-1 with its host cell is the target for new antiretroviral therapies. Viral particles interact with the flexible plasma membrane via viral surface protein gp120 which binds its primary cellular receptor CD4 and subsequently the coreceptor CCR5. However, whether and how these receptors become organized at the adhesive junction between cell and virion are unknown. Here, stochastic modeling predicts that, regarding binding to gp120, cellular receptors CD4 and CCR5 form an organized, ring-like, nanoscale structure beneath the virion, which locally deforms the plasma membrane. This organized adhesive junction between cell and virion, which we name the viral junction, is reminiscent of the well-characterized immunological synapse, albeit at much smaller length scales. The formation of an organized viral junction under multiple physiopathologically relevant conditions may represent a novel intermediate step in productive infection.

  3. A probabilistic approach to measure the strength of bone cell adhesion to chemically modified surfaces.

    Science.gov (United States)

    Rezania, A; Thomas, C H; Healy, K E

    1997-01-01

    Patterned surfaces with alternating regions of amino silanes [N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (EDS)] and alkyl silanes [dimethyldichlorosilane (DMS)] have been used to alter the kinetics of spatial distribution of cells in vitro. In particular, we have previously observed the preferential spatial distribution of bone cells on the EDS regions of EDS/ DMS patterned surfaces (10). In this study, we examined whether the mechanism of spatial distribution of cells on the EDS regions was adhesion mediated. Homogeneous layers of EDS and DMS were immobilized on quartz substrates and characterized by contact angle. X-ray photoelectron spectroscopy, and spectroscopic ellipsometry. The strength of bone cell attachment to the modified substrates was examined using a radial flow apparatus, within either 20 min or 2 hr of cell incubation in the presence of serum. A Weibull distribution was chosen to characterize the strength of cell-substratum adhesion. Within 20 min of cell exposure, the strength of adhesion was significantly larger on EDS and clean surfaces, compared with DMS surfaces (p < 0.001). Within 2 hr of cell incubation, there was no statistical difference between the strength of cell adhesion to EDS, DMS, and clean surfaces. The results of this study suggest that the surface chemistry mediates adhesion-based spatial cell arrangement through a layer of adsorbed serum proteins.

  4. Thermal kinetic inductance detector

    Science.gov (United States)

    Cecil, Thomas; Gades, Lisa; Miceli, Antonio; Quaranta, Orlando

    2016-12-20

    A microcalorimeter for radiation detection that uses superconducting kinetic inductance resonators as the thermometers. The detector is frequency-multiplexed which enables detector systems with a large number of pixels.

  5. Adhesion of rhodium films on metallic substrates

    International Nuclear Information System (INIS)

    Marot, L.; Covarel, G.; Tuilier, M.-H.; Steiner, R.; Oelhafen, P.

    2008-01-01

    Rhodium coated metallic films were prepared by magnetron sputtering on metallic substrates. All films were elaborated in same conditions on copper, molybdenum and stainless steel. Adhesion strength tests were carried out by scratch test. The results reveal that the adhesion strength between the film and the substrate is influenced by the hardness of the substrate. Increase of deposition temperature improves the adhesion of the coating. In addition, pre-treatment of substrates by a filtered cathodic vacuum arc and the layer thickness have has some effects on the final adhesion strength

  6. Autologous fibrin adhesive in experimental tubal anastomosis.

    Science.gov (United States)

    Rajaram, S; Rusia, U; Agarwal, S; Agarwal, N

    1996-01-01

    To evaluate autologous fibrin in rabbit oviduct anastomosis versus 7-0 vikryl, a conventional suture material used in tubal anastomosis. Thrombin was added to the autologous fibrinogen at the site of anastomosis to obtain a tissue adhesive. The anastomotic time, pregnancy rate, and litter size were evaluated. Three months later, a relaparotomy was done to evaluate patency and degree of adhesions, and a tubal biopsy was taken from the site of anastomosis. Analysis of results showed a statistically significant (P < .001) shortened anastomotic time and superior histopathological union in the tissue adhesive group. Patency rate, pregnancy rate, and degree of adhesions were comparable in both groups.

  7. Nucleation and growth of cadherin adhesions

    International Nuclear Information System (INIS)

    Lambert, Mireille; Thoumine, Olivier; Brevier, Julien; Choquet, Daniel; Riveline, Daniel; Mege, Rene-Marc

    2007-01-01

    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions

  8. Wood adhesives from Eucalyptus tar and creosote

    OpenAIRE

    Pimenta, AS; Vital, BR; Fujiwara, FY

    1997-01-01

    This study has shown that Eucalyptus tar and creosote can be used in phenolic adhesive formulations (resols) for wood products bonding. Some adhesives were prepared substituting 0; 17.7; 35.0 and 67.0% of the phenol by anhydrous tar and 0; 15.0 e 28.5% by creosote. In gluing Brazilian pine veneers, eucalypt tar and creosote based adhesives required longer pressing times for curing than conventional phenol-formaldehyde adhesives. By using C-13 NMR, the number of carbons in side chains and hydr...

  9. Rupture and Spreading Dynamics of Lipid Membranes on a Solid Surface

    Science.gov (United States)

    Perazzo, Antonio; Shin, Sangwoo; Colosqui, Carlos; Young, Yuan-Nan; Stone, Howard A.

    2017-11-01

    The spreading of lipid membranes on solid surfaces is a dynamic phenomenon relevant to drug delivery, endocytosis, biofouling, and the synthesis of supported lipid bilayers. Current technological developments are limited by an incomplete understanding of the spreading and adhesion dynamics of a lipid bilayer under different physicochemical conditions. Here, we present recent experimental and theoretical results for the spreading of giant unilamellar vesicles (GUVs), where the vesicle shell consists of a lipid bilayer. In particular, we study the effect of different background ion concentrations, osmolarity mismatches between the interior and the exterior of the vesicles, and different surface chemistries of the glass substrate. In all of the studied cases, we observe a delay time before a GUV in contact with the solid surface eventually ruptures. The rupture kinetics and subsequent spreading dynamics is controlled by the ionic screening within the thin film of liquid between the vesicle and the surface. Different rupture mechanisms, mobilities of the spreading vesicle, and degrees of substrate coverage are observed by varying the electrolyte concentration, solid surface charge, and osmolarity mismatch.

  10. The Kinetics of Carrier Transport Inhibition

    DEFF Research Database (Denmark)

    Rosenberg, T.; Wilbrandt, Robert Walter

    1962-01-01

    The kinetical treatment of enzymatic carrier transports as given in previous communications has been extended to conditions of inhibition. Various possible types of inhibitors have been considered differing in the site of attack (enzyme or carrier), in the mode of action (competing...... and polyphloretinephosphate. The results of the analysis for these inhibitors indicate a substrate competitive mode of action. The effect of reversing the transport direction by interchanging the substrate concentration has been treated for the case of a non-penetrating substrate competitive inhibitor in the external medium...... with the substrate for the enzyme or the carrier or for both, competing with the carrier for the enzyme, or non-competitive) and in the ability of penetrating the membrane. Experiments are reported on the inhibition of glucose and fructose transport across the human red cell membrane by phlorizine, phloretine...

  11. Properties of pressure sensitive adhesives found in paper recycling operations

    Science.gov (United States)

    Ryan F. Verhulst; Steven J. Severtson; Jihui Guo; Carl J. Houtman

    2006-01-01

    Hot melt and water-based adhesives are very different materials with similar physical properties. Their ability to act as adhesives is due to physical bonds and mechanical interlocks which form as adhesive flows into topographical features on the substrate surface. Hot-melt adhesives are based on soft, rubbery polymers while water-based adhesives are usually acrylic...

  12. Insulin-Regulated Increase of Soluble Vascular Adhesion Protein-1 in Diabetes

    OpenAIRE

    Salmi, Marko; Stolen, Craig; Jousilahti, Pekka; Yegutkin, Gennady G.; Tapanainen, Päivi; Janatuinen, Tuula; Knip, Mikael; Jalkanen, Sirpa; Salomaa, Veikko

    2002-01-01

    Vascular adhesion protein-1 (VAP-1) is one of the molecules on the endothelial cell membrane, which may guide inflammatory cells into atherosclerotic lesions. This dual function molecule may also contribute to the pathogenesis of atherosclerosis and other vasculopathies via its enzymatic activity that oxidizes primary amines to produce their corresponding aldehydes, hydrogen peroxide, and ammonium. Because VAP-1 also exists in a soluble form, we analyzed its potential usefulness as a biomarke...

  13. Membrane fluctuations mediate lateral interaction between cadherin bonds

    Science.gov (United States)

    Fenz, Susanne F.; Bihr, Timo; Schmidt, Daniel; Merkel, Rudolf; Seifert, Udo; Sengupta, Kheya; Smith, Ana-Sunčana

    2017-09-01

    The integrity of living tissues is maintained by adhesion domains of trans-bonds formed between cadherin proteins residing on opposing membranes of neighbouring cells. These domains are stabilized by lateral cis-interactions between the cadherins on the same cell. However, the origin of cis-interactions remains perplexing since they are detected only in the context of trans-bonds. By combining experimental, analytical and computational approaches, we identify bending fluctuations of membranes as a source of long-range cis-interactions, and a regulator of trans-interactions. Specifically, nanometric membrane bending and fluctuations introduce cooperative effects that modulate the affinity and binding/unbinding rates for trans-dimerization, dramatically affecting the nucleation and growth of adhesion domains. Importantly, this regulation relies on physical principles and not on details of protein-protein interactions. These omnipresent fluctuations can thus act as a generic control mechanism in all types of cell adhesion, suggesting a hitherto unknown physiological role for recently identified active fluctuations of cellular membranes.

  14. Cell adhesion on Ti surface with controlled roughness

    Energy Technology Data Exchange (ETDEWEB)

    Burgos-Asperilla, L.; Garcia-Alonso, M. C.; Escudero, M. L.; Alonso, C.

    2015-07-01

    In this report, the in situ interaction between Saos-2 osteoblast cells and a smooth Ti surface was examined over time. The adhesion kinetics and mechanisms of cellular proliferation were monitored by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). The rate of Saos-2 attachment on Ti surfaces, obtained from the measurements performed with the QCM, is a first-order reaction, with k=2.10{sup -}3 min{sup -}1. The impedance measurements indicate that in the absence of cells, the Ti resistance diminishes over time (7 days), due to the presence of amino acids and proteins from the culture medium that have been adsorbed, while in the presence of osteoblasts, this decrease is much greater because of the compounds generated by the cells that accelerate the dissolution of Ti. (Author)

  15. Effect of inorganic fillers in paper on the adhesion of pressure-sensitive adhesives

    Science.gov (United States)

    Weixu Chen; Xiaoyan Tang; John Considine; Kevin T. Turner

    2011-01-01

    Inorganic fillers are inexpensive materials used to increase the density, smoothness and other properties of paper that are important for printing. In the current study, the adhesion of pressure-sensitive adhesives (PSAs), a common type of adhesive used in labels and tapes, to papers containing varying amounts and types of fillers is investigated. Papers with three...

  16. Adhesive Bonding and Corrosion Performance Investigated as a Function of Aluminum Oxide Chemistry and Adhesives

    NARCIS (Netherlands)

    Abrahami, S.T.; Hauffman, T.; de Kok, John M.M.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    The long-term strength and durability of an adhesive bond is dependent on the stability of the oxide-adhesive interface. As such, changes in the chemistry of the oxide and/or the adhesive are expected to modify the interfacial properties and affect the joint performance in practice. The upcoming

  17. Phosphoric acid doped membranes based on Nafion®, PBI and their blends – Membrane preparation, characterization and steam electrolysis testing

    DEFF Research Database (Denmark)

    Aili, David; Hansen, Martin Kalmar; Pan, Chao

    2011-01-01

    Proton exchange membrane steam electrolysis at temperatures above 100 °C has several advantages from thermodynamic, kinetic and engineering points of view. A key material for this technology is the high temperature proton exchange membrane. In this work a novel procedure for preparation of Nafion...

  18. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  19. Characterization of macrophage adhesion molecule

    International Nuclear Information System (INIS)

    Remold-O'Donnell, E.; Savage, B.

    1988-01-01

    Macrophage adhesion molecule (MAM), an abundant surface molecule which functions in the adhesion and spreading of guinea pig macrophages on surfaces, is characterized as a heterodimer of the trypsin- and plasmin-sensitive glycopeptide gp160 (MAM-α) and the glycopeptide gp93 (MAM-β). The density of MAM molecules is estimated at 630,000 per macrophage on the basis of quantitative binding of 125 I-labeled monoclonal antibody. The glycopeptide subunits display microheterogeneity on isoelectrofocusing; the pI is 5.8-6.3 for gp160 (MAM-α) and 6.4-7.0 for gp93 (MAM-β). A neutrophil gp160, gp93 molecule was shown to be indistinguishable from macrophage MAM on the basis of electrophoresis, isoelectrofocusing, and reactivity with 10 monoclonal antibodies. A related heterodimer of gp93 associated with a larger, antigenically different glycopeptide (gp180, gp93)was identified on circulating lymphocytes. Cumulative properties indicate that MAM is the guinea pig analog of human Mo1 and mouse Mac-1

  20. DIABETES AND SHOULDER ADHESIVE CAPSULITIS

    Directory of Open Access Journals (Sweden)

    J. Mohanakrishnan

    2016-08-01

    Full Text Available Background: Adhesive capsulitis (AC of shoulder is a common condition encountered by physical therapists in their routine outpatient care services; AC of shoulder is as by itself being a self limiting disorder lasts from months to years causing pain and discomfort to the patients. The condition is commonly associated with Diabetes mellitus or other co morbidities. The incidence of AC is high among diabetic individuals and it becomes mandatory on the part of physical therapists and other health professionals to approach this issue on a holistic manner. This paper deals with the importance of a physiotherapist role in prevention and dealing with the causative factors of AC and not merely its symptom. Methods: Extensive literature review was done from the electronic data bases, Systematic reviews and critical reviews from Pub med indexed journals and other peer reviewed publications across the globe. Results: It was not the type of diabetes but the duration of the disease and the glycemic index, marking the causative factor for adhesive capsulitis of shoulder. Conclusion: It may be concluded that physiotherapist play a vital role in identifying the pre-diabetic or a diabetic state of an individual reporting in a multi disciplinary set up with a AC of shoulder, and also has a role in the prevention of AC by helping the individual to maintain a good glycemic control with a holistic approach which includes aerobic exercises, General Flexibility exercises, Weight management and Yoga therapy.

  1. A Molecularly Complete Planar Bacterial Outer Membrane Platform

    Science.gov (United States)

    Hsia, Chih-Yun; Chen, Linxiao; Singh, Rohit R.; DeLisa, Matthew P.; Daniel, Susan

    2016-01-01

    The bacterial outer membrane (OM) is a barrier containing membrane proteins and liposaccharides that fulfill crucial functions for Gram-negative bacteria. With the advent of drug-resistant bacteria, it is necessary to understand the functional role of this membrane and its constituents to enable novel drug designs. Here we report a simple method to form an OM-like supported bilayer (OM-SB), which incorporates native lipids and membrane proteins of gram-negative bacteria from outer membrane vesicles (OMVs). We characterize the formation of OM-SBs using quartz crystal microbalance with dissipation (QCM-D) and fluorescence microscopy. We show that the orientation of proteins in the OM-SB matches the native bacterial membrane, preserving the characteristic asymmetry of these membranes. As a demonstration of the utility of the OM-SB platform, we quantitatively measure antibiotic interactions between OM-SBs and polymyxin B, a cationic peptide used to treat Gram-negative infections. This data enriches understanding of the antibacterial mechanism of polymyxin B, including disruption kinetics and changes in membrane mechanical properties. Combining OM-SBs with microfluidics will enable higher throughput screening of antibiotics. With a broader view, we envision that a molecularly complete membrane-scaffold could be useful for cell-free applications employing engineered membrane proteins in bacterial membranes for myriad technological purposes. PMID:27600663

  2. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    Science.gov (United States)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  3. Phospho-Caveolin-1 Mediates Integrin-Regulated Membrane Domain Internalisation

    Science.gov (United States)

    del Pozo, Miguel A.; Alderson, Nazilla B.; Grande-García, Araceli; Balasubramanian, Nagaraj; Schwartz, Martin A.; Kiosses, William B.; Anderson, Richard G.W.

    2005-01-01

    Growth of normal cells is anchorage-dependent because signalling through multiple pathways including Erk, PI 3-kinase and Rac requires integrin-mediated cell adhesion 1. Components of these pathways localize to low density, cholesterol-rich domains in the plasma membrane named “lipid rafts” 2,3 or “cholesterol enriched membrane microdomains” (CEMM) 4. We previously reported that integrin-mediated adhesion regulates CEMM trafficking such that cell detachment from the extracellular matrix (ECM) triggers CEMM internalisation and clearance from the plasma membrane 5. We now report that this internalisation is mediated by dynamin-2 and caveolin-1. Internalisation requires phosphorylation of caveolin-1 on tyrosine 14. A shift in localisation of phospho-caveolin-1 from focal adhesions to caveolae induces CEMM internalisation upon cell detachment, which mediates inhibition of Erk, PI 3-kinase and Rac. These data define a novel molecular mechanism for growth and tumour suppression by caveolin-1. PMID:16113676

  4. The synaptic cell adhesion molecule, SynCAM1, mediates astrocyte-to-astrocyte and astrocyte-to-GnRH neuron adhesiveness in the mouse hypothalamus.

    Science.gov (United States)

    Sandau, Ursula S; Mungenast, Alison E; McCarthy, Jack; Biederer, Thomas; Corfas, Gabriel; Ojeda, Sergio R

    2011-06-01

    We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication.

  5. Wrapping of a deformable nanoparticle by the cell membrane: Insights into the flexibility-regulated nanoparticle-membrane interaction

    Science.gov (United States)

    Tang, Huayuan; Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang

    2016-09-01

    Although many researches have been conducted on the interaction of the cell membrane with the rigid nanoparticle (NP), relatively little is known about the interaction of the membrane with the deformable NP, which is a promising kind of drug delivery carrier. In this paper, we investigate the wrapping of a deformable NP by the membrane, with particular attention paid to the location of the NP. Phase diagrams with respect to the normalized NP-membrane adhesion strength and the bending stiffness ratio between the NP and membrane are presented. The results show that the NP is easier to be fully wrapped but harder to be shallowly wrapped when the NP locates outside than inside the vesicle. For the system with an outside NP, there are three distinct stages separated by two critical bending stiffness ratios as the NP becomes softer. Moreover, the critical normalized adhesion strength required for a deformable NP to be fully wrapped is the same as that for a rigid NP when the bending stiffness ratio is higher than a critical value, which is different from the wrapping behavior by an initially flat membrane. In addition, a larger vesicle size facilitates the full wrapping configuration when the NP is inside, whereas it prohibits it when the NP is outside. These results are consistent with the previous research and can provide guidelines for the design of drug delivery systems based on the flexibility-tunable NPs.

  6. Mechanical properties and modeling of drug release from chlorhexidine-containing etch-and-rinse adhesives.

    Science.gov (United States)

    Stanislawczuk, Rodrigo; Reis, Alessandra; Malaquias, Pamela; Pereira, Fabiane; Farago, Paulo Vitor; Meier, Marcia Margarete; Loguercio, Alessandro D

    2014-04-01

    To evaluate the effects of chlorhexidine (CHX) addition in different concentrations into simplified etch-and-rinse adhesives on the ultimate tensile strength (UTS), water sorption (WS), solubility (SO) and the rate of CHX release over time. We added CHX diacetate to Ambar [AM] (FGM) and XP Bond [XP] (Dentsply) in concentrations of 0, 0.01, 0.05, 0.1 and 0.2 wt%. For UTS (n=10 for each group), adhesive specimens were constructed in an hourglass shape metallic matrix with cross-sectional area of 0.8 mm(2). Half of specimens were tested after 24 h and the other half after 28 days of water storage in tension of 0.5 mm/min. For WS and SO (n=10 for each group), adhesive discs (5.8 mm×1.0 mm) were prepared into a mold. After desiccation, we weighed and stored the cured adhesive specimens in distilled water for evaluation of the WS, SO and the cumulative release of CHX over a 28-day period. For CHX release (n=10 for each group), spectrophotometric measurements of storage solution were performed to examine the release kinetics of CHX. We subjected data from each test to ANOVA and Tukey' test (α=0.05). XP Bond adhesive showed significantly more WS and SO and lower UTS than Ambar. In general, the addition of CHX did not alter WS, SO and UTS of the adhesives. XP showed a higher CHX release than AM (p<0.05) in all concentrations and the final amount of CHX release was directly proportional to the initial CHX concentration added to the adhesives. After 28 days of water storage, approximately 20% of CHX was released from XP and 8.0-12.0% from AM. Addition of CHX to commercial adhesive is a feasible method to provide a controlled release of CHX over time without jeopardizing WS, SO and UTS of the adhesives. Manufacturers should consider adding CHX to commercial adhesives to provide a controlled release of CHX over time. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Formation of Cell Membrane Component Domains in Artificial Lipid Bilayer.

    Science.gov (United States)

    Tero, Ryugo; Fukumoto, Kohei; Motegi, Toshinori; Yoshida, Miyu; Niwano, Michio; Hirano-Iwata, Ayumi

    2017-12-20

    The lipid bilayer environment around membrane proteins strongly affects their structure and functions. Here, we aimed to study the fusion of proteoliposomes (PLs) derived from cultured cells with an artificial lipid bilayer membrane and the distribution of the PL components after the fusion. PLs, which were extracted as a crude membrane fraction from Chinese hamster ovary (CHO) cells, formed isolated domains in a supported lipid bilayer (SLB), comprising phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cholesterol (Chol), after the fusion. Observation with a fluorescence microscope and an atomic force microscope showed that the membrane fusion occurred selectively at microdomains in the PC + PE + Chol-SLB, and that almost all the components of the PL were retained in the domain. PLs derived from human embryonic kidney 293 (HEK) cells also formed isolated domains in the PC + PE + Chol-SLB, but their fusion kinetics was different from that of the CHO-PLs. We attempted to explain the mechanism of the PL-SLB fusion and the difference between CHO- and HEK-PLs, based on a kinetic model. The domains that contained the whole cell membrane components provided environments similar to that of natural cell membranes, and were thus effective for studying membrane proteins using artificial lipid bilayer membranes.

  8. Polymeric Membrane Reactors

    OpenAIRE

    José M. Sousa; Luís M. Madeira; João C. Santos; Adélio Mendes

    2008-01-01

    The aim of this chapter is the study of membrane reactors with polymeric membranes, particularly catalytic polymeric membranes. After an introduction where the main advantages and disadvantages of the use of polymeric membranes are summarised, a review of the main areas where they have been applied, integrated in chemical reactors, is presented. This excludes the field of bio-membranes processes, which is analysed in a specific chapter of this book. Particular attention is then given to model...

  9. In vitro evaluation of tissue adhesives composed of hydrophobically modified gelatins and disuccinimidyl tartrate

    Directory of Open Access Journals (Sweden)

    Miyuki Matsuda

    2012-01-01

    Full Text Available The effect of the hydrophobic group content in gelatin on the bonding strength of novel tissue–penetrating tissue adhesives was evaluated. The hydrophobic groups introduced into gelatin were the saturated hexanoyl, palmitoyl, and stearoyl groups, and the unsaturated oleoyl group. A collagen casing was employed as an adherend to model soft tissue for the in vitro determination of bonding strength of tissue adhesives composed of various hydrophobically modified gelatins and disuccinimidyl tartrate. The adhesive composed of stearoyl-modified gelatin (7.4% stearoyl; 10Ste and disuccinimidyl tartrate showed the highest bonding strength. The bonding strength of the adhesives decreased as the degree of substitution of the hydrophobic groups increased. Cell culture experiments demonstrated that fluorescein isothiocyanate-labeled 10Ste was integrated onto the surface of smooth muscle cells and showed no cytotoxicity. These results suggest that 10Ste interacted with the hydrophobic domains of collagen casings, such as hydrophobic amino acid residues and cell membranes. Therefore, 10Ste–disuccinimidyl tartrate is a promising adhesive for use in aortic dissection.

  10. Characterization of the in vitro adhesion of Actinobacillus pleuropneumoniae to swine alveolar epithelial cells.

    Science.gov (United States)

    Van Overbeke, Ingrid; Chiers, Koen; Charlier, Gerard; Vandenberghe, Isabel; Van Beeumen, Jozef; Ducatelle, Richard; Haesebrouck, Freddy

    2002-08-02

    Actinobacillus pleuropneumoniae biovar 1 serotypes 2, 5a, 9 and 10 strains were tested for their ability to adhere to alveolar epithelial cells in culture. For the serotypes 5a, 9 and 10 strains, optimal adherence was observed after growth of bacterial cells in a NAD-restricted medium (0.001% NAD). This condition was also associated with the expression of a 55 kDa outer membrane protein (OMP) and of fimbriae. For the serotype 2 strain, adherence and expression of fimbriae and a 55 kDa OMP was less influenced by the growth conditions. The N-terminal amino acid sequence of the 55 kDa OMP had no homology with any known sequence, suggesting that it is an as yet unknown protein. Adherence capabilities were significantly reduced following treatment of the bacteria with proteolytic enzymes or heat. These findings suggest that proteins are involved in adhesion. The hydrophobic bond-breaking agent tetramethylurea was unable to inhibit the adherence of A. pleuropneumoniae to alveolar epithelial cells. Treatment of the bacteria with sodium metaperiodate resulted in lower adhesion scores for the serotypes 2 and 9 strains but the inhibition of adhesion was clearly lower than after treatment with proteolytic enzymes. This indicates that, besides proteins, carbohydrates might also be involved in adhesion of A. pleuropneumoniae to alveolar epithelial cells. The finding that inhibition of adhesion was very high when bacteria were treated with a combination of sodium metaperiodate and pronase also suggests that more than one adhesin is involved.

  11. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs

  12. Carbohydrate Coating Reduces Adhesion of Biofilm-Forming Bacillus subtilis to Gold Surfaces

    Science.gov (United States)

    Kesel, S.; Mader, A.; Seeberger, P. H.; Lieleg, O.

    2014-01-01

    The growth of bacterial biofilms in pipes and food tanks causes severe problems in industry. Biofilms growing on medical implants or catheters are of great concern, as they can cause serious infections and decrease the functionality of the medical device. The prevention of bacterial adhesion—the first step in colonization and biofilm formation—is therefore very important. Current research comprises alterations in surface properties, the prevention of adhesin biosynthesis, inhibition with receptor analogs, or the development of anti-adhesive vaccines. We present a new approach that allows us to study bacterial adhesion with high sensitivity in real-time while testing several different surfaces in parallel. Using the cantilever-array technique we demonstrate that coating of gold surfaces with mono- or disaccharides results in a reduction of the bacterial adhesion of the biofilm-forming bacterium Bacillus subtilis NCIB 3610 to these gold surfaces. This reduction in bacterial adhesion is independent of the studied carbohydrate. Using several mutant strains, we investigate the underlying molecular interactions, and our results suggest that adhesion to gold surfaces is mediated by thiol groups present in proteins of the bacterial cell membrane or biofilm matrix proteins expressed at low levels by the wild-type strain. Furthermore, our data indicate that the adhesion of B. subtilis NCIB 3610 to carbohydrate-coated gold surfaces is facilitated by interactions between carbohydrates installed on the cantilever gold surface and an exopolysaccharide expressed by this strain. Understanding general and specific contributions of molecular interactions mediating bacterial adhesion will enable its prevention in the future. PMID:25038098

  13. LYVE-1 enhances the adhesion of HS-578T cells to COS-7 cells via hyaluronan.

    Science.gov (United States)

    Du, Yan; Liu, Yiwen; Wang, Yingzhi; He, Yiqing; Yang, Cuixia; Gao, Feng

    2011-02-01

    Lymphatic vessel endothelial hyaluronan receptor (LYVE-1), a specific molecular marker for lymph systems, has only one known ligand, hyaluronan (HA). Many studies have reported that HA, on the surface of tumor cells, is associated with the metastatic behavior of cancer cells. The interaction of LYVE-1 with HA may facilitate tumor cell attachment and enhance dissemination of tumor cells to lymph nodes. The aim of this study was to explore the biological function of LYVE-1 and to determine whether the interaction between LYVE-1 and HA was directly involved in the adhesion of tumor cells to lymphatic vessels. COS-7 cells were transfected with cDNA encoding LYVE-1 and expressed LYVE-1 assembled exogenously added HA. A high HA-expressing breast cancer cell line, HS-578T, was chosen to be the upper layer of cells that adhered to a lower layer of COS-7(LYVE-1(+)), COS-7(pEGFP-N1), or COS-7 cells for the adhesion analyses. The mechanism of adhesion was investigated by an experiment in which the HA on the surface of HS-578T cells was digested by Streptomyces hyaluronidase before the HS-578T cells were allowed to adhere to COS-7(LYVE-1(+)) cells. Results showed that more adhesion was observed between HS-578T and COS-7(LYVE-1(+)) cells, while less adhesion was observed between HS-578T cells and either COS-7(pEGFP-N1) or COS-7 cells (p COS-7(LYVE-1(+)) cells suggesting that this adhesion might be mediated through HA. Our results suggest that LYVE-1 allows the adhesion of tumor cells through the interaction of HA on the tumor cell membrane with LYVE-1.

  14. Arct'Alg release from hydrogel membranes

    International Nuclear Information System (INIS)

    Amaral, Renata H.; Rogero, Sizue O.; Shihomatsu, Helena M.; Lugao, Ademar B.

    2009-01-01

    The hydrogel properties make them attractive for a variety of biomedical and pharmaceutical applications, primarily in drug delivery system. Synthetic hydrogels have been studied to develop new devices for drugs or cosmetic active agents release. Arct'Alg R is an extract derived from red algae biomass which has antioxidant, anti-inflammatory and tissue regeneration stimulant properties. This extract was incorporated to poly(N-vinyl pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) hydrogel membranes obtained by gamma rays crosslinking technique. The ionizing radiation presents the advantage to occur polymerization and sterilization simultaneously in the same process. The aim of this work was the in vitro release kinetic study of Arct'Alg R from hydrogel membranes during 24 hours to verify the possibility of use in cosmetic and dermatological treatments. Results showed that about 50% and 30% of incorporated Arct'Alg R was released from PVP and PVA hydrogel membrane devices respectively. (author)

  15. Adaptive transition rates in excitable membranes

    Directory of Open Access Journals (Sweden)

    Shimon Marom

    2009-02-01

    Full Text Available Adaptation of activity in excitable membranes occurs over a wide range of timescales. Standard computational approaches handle this wide temporal range in terms of multiple states and related reaction rates emanating from the complexity of ionic channels. The study described here takes a different (perhaps complementary approach, by interpreting ion channel kinetics in terms of population dynamics. I show that adaptation in excitable membranes is reducible to a simple Logistic-like equation in which the essential non-linearity is replaced by a feedback loop between the history of activation and an adaptive transition rate that is sensitive to a single dimension of the space of inactive states. This physiologically measurable dimension contributes to the stability of the system and serves as a powerful modulator of input-output relations that depends on the patterns of prior activity; an intrinsic scale free mechanism for cellular adaptation that emerges from the microscopic biophysical properties of ion channels of excitable membranes.

  16. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    International Nuclear Information System (INIS)

    Sekiguchi, Yu; Sato, Chiaki; Takahashi, Kunio

    2015-01-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified. (paper)

  17. Predicting Failure Initiation in Structural Adhesive Joints

    Science.gov (United States)

    2012-08-15

    Elastoplástico de Adhesivos – Modeling, characterization and simulation of the elastoplastic behavior of adhesives. Maestría en Ciencia de Materiales...adhesive and a 1018 steel”. Maestría en Ciencia de Materiales. Centro de Investigación en Materiales Avanzados S.C. May 2012.  Abstract: In the

  18. Mechanisms of temporary adhesion in benthic animals

    NARCIS (Netherlands)

    Dodou, D.; Breedveld, P.; Winter, J.C.F.; Dankelman, J.; Leeuwen, van J.L.

    2011-01-01

    Adhesive systems are ubiquitous in benthic animals and play a key role in diverse functions such as locomotion, food capture, mating, burrow building, and defence. For benthic animals that release adhesives, surface and material properties and external morphology have received little attention

  19. Switchable adhesion by chemical functionality and topography

    NARCIS (Netherlands)

    Kamperman, M.M.G.; Synytska, A.

    2012-01-01

    Progress in adhesion technology over the last few decades has led to widespread replacement of mechanical fasteners with adhesive bonds. Despite the advances, it remains challenging to produce materials that are sticky on demand. In this feature article we highlight recent efforts to develop

  20. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    Abstract. A major issue encountered during fabrication of triple junction a-Si solar cells on polyimide sub- strates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and ...