WorldWideScience

Sample records for melting glaciers release

  1. Glacier melt buffering sustains river flow in the Pamir Mountains

    Science.gov (United States)

    Pohl, Eric; Andermann, Christoff; Gloaguen, Richard

    2017-04-01

    Central Asia's water resources and agricultural practices depend on snow and glacier melts in the high mountains. The Amu Darya, the main river draining the Pamir Mountains, exemplifies the resulting seasonality in stream flow. In winter, comparably low amounts of groundwater discharge feed the streams, while the bulk of precipitation is provided and stored as snow. Successive melting of snow cover and glaciers during summer releases these stored waters to the swelling rivers. Despite a strong variability in precipitation and temperatures over the entire Pamir Mountain region, river flow shows severely less variability. We investigate what processes lead to this apparent discrepancy by using a simple but robust hydrological model that we thoroughly validate with remote sensing snow cover observations, Gravity Recovery and Climate Experiment (GRACE) data, highlighting changes in total water storage, and hydrograph comparison. We find that glaciers play a paramount role by buffering extreme meteorological conditions to sustain stream flow. In a simplified scheme, low precipitation amounts in winter result in small snow stocks, compensated for by more intensive glacier melt, and vice versa. By carrying out analyses over the extensive catchment area of the Amu Darya in the high mountain domain, we highlight regional differences in the effectiveness of this mechanism. Regional influences of wind systems and associated moisture transport as well as glaciated area emerge as main factors. Modeled negative glacier mass balances between -0.38 and -0.93 m/year agree with other studies based on geodetic methods and indicate a future reduction in stream flow sustainability. This not only exacerbates the conflict potential between riparian countries downstream, but also means that extreme weather events are more likely to cause floods and droughts.

  2. Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings

    Science.gov (United States)

    Truffer, Martin; Motyka, Roman J.

    2016-03-01

    Glacier change is ubiquitous, but the fastest and largest magnitude changes occur in glaciers that terminate in water. This includes the most rapidly retreating glaciers, and also several advancing ones, often in similar regional climate settings. Furthermore, water-terminating glaciers show a large range in morphology, particularly when ice flow into ocean water is compared to that into freshwater lakes. All water-terminating glaciers share the ability to lose significant volume of ice at the front, either through mechanical calving or direct melt from the water in contact. Here we present a review of the subaqueous melt process. We discuss the relevant physics and show how different physical settings can lead to different glacial responses. We find that subaqueous melt can be an important trigger for glacier change. It can explain many of the morphological differences, such as the existence or absence of floating tongues. Subaqueous melting is influenced by glacial runoff, which is largely a function of atmospheric conditions. This shows a tight connection between atmosphere, oceans and lakes, and glaciers. Subaqueous melt rates, even if shown to be large, should always be discussed in the context of ice supply to the glacier front to assess its overall relevance. We find that melt is often relevant to explain seasonal evolution, can be instrumental in shifting a glacier into a different dynamical regime, and often forms a large part of a glacier's mass loss. On the other hand, in some cases, melt is a small component of mass loss and does not significantly affect glacier response.

  3. Assessing glacier melt contribution to streamflow at Universidad Glacier, central Andes of Chile

    Directory of Open Access Journals (Sweden)

    C. Bravo

    2017-07-01

    Full Text Available Glacier melt is an important source of water for high Andean rivers in central Chile, especially in dry years, when it can be an important contributor to flows during late summer and autumn. However, few studies have quantified glacier melt contribution to streamflow in this region. To address this shortcoming, we present an analysis of meteorological conditions and ablation for Universidad Glacier, one of the largest valley glaciers in the central Andes of Chile at the head of the Tinguiririca River, for the 2009–2010 ablation season. We used meteorological measurements from two automatic weather stations installed on the glacier to drive a distributed temperature-index and runoff routing model. The temperature-index model was calibrated at the lower weather station site and showed good agreement with melt estimates from an ablation stake and sonic ranger, and with a physically based energy balance model. Total modelled glacier melt is compared with river flow measurements at three sites located between 0.5 and 50 km downstream. Universidad Glacier shows extremely high melt rates over the ablation season which may exceed 10 m water equivalent in the lower ablation area, representing between 10 and 13 % of the mean monthly streamflow at the outlet of the Tinguiririca River Basin between December 2009 and March 2010. This contribution rises to a monthly maximum of almost 20 % in March 2010, demonstrating the importance of glacier runoff to streamflow, particularly in dry years such as 2009–2010. The temperature-index approach benefits from the availability of on-glacier meteorological data, enabling the calculation of the local hourly variable lapse rate, and is suited to high melt regimes, but would not be easily applicable to glaciers further north in Chile where sublimation is more significant.

  4. Estimating Snow and Glacier Melt in a Himalayan Watershed Using an Energy Balance Snow and Glacier Melt Model

    Science.gov (United States)

    Sen Gupta, A.; Tarboton, D. G.; Racoviteanu, A.; Brown, M. E.; Habib, S.

    2014-12-01

    This study enhances an energy balance snowmelt model (Utah Energy Balance, UEB) to include the capability to quantify glacier melt. To account for clean and debris covered glaciers, substrate albedo and glacier outlines determined from remote sensing, are taken as inputs. The model uses the surface energy balance to compute the melting of seasonal snow and glacier substrate once the seasonal snow has melted. In this application the model was run over a 360 km2 glacierized watershed, Langtang Khola, in the Nepal Himalaya for a 10-year simulation period starting in water year 2003. The model was run on a distributed mesh of grid cells providing the capability to quantify both timing and spatial variability in snow and glacier melt. The distributed UEB melt model has a relatively high data demand, while the Hindu-Kush Himalayan region is a data-scarce region, a limitation that affects most water resources impact studies in this region. In this study, we determined model inputs from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and Southern Asia Daily Rainfall Estimate (RFE2) data products. The model estimates that roughly 57% of total surface water input is generated from glacier melt, while snowmelt and rain contribute 34% and 9%, respectively over the simulation period. The melt model provided input to the USGS Geospatial Stream Flow Model (GeoSFM) for the computation of streamflow and produced reasonable streamflow simulations at daily scale with some discrepancies, while monthly and annual scale comparisons resulted in better agreement. The result suggests that this approach is of interest for water resources applications where monthly or longer scale streamflow estimates are needed. Mean annual streamflow was positively correlated with the total annual surface water input. However, mean annual streamflow was not correlated with total annual precipitation, highlighting the importance of energy balance melt calculation, in comparison

  5. Causes of Glacier Melt Extremes in the Alps Since 1949

    Science.gov (United States)

    Thibert, E.; Dkengne Sielenou, P.; Vionnet, V.; Eckert, N.; Vincent, C.

    2018-01-01

    Recent record-breaking glacier melt values are attributable to peculiar extreme events and long-term warming trends that shift averages upward. Analyzing one of the world's longest mass balance series with extreme value statistics, we show that detrending melt anomalies makes it possible to disentangle these effects, leading to a fairer evaluation of the return period of melt extreme values such as 2003, and to characterize them by a more realistic bounded behavior. Using surface energy balance simulations, we show that three independent drivers control melt: global radiation, latent heat, and the amount of snow at the beginning of the melting season. Extremes are governed by large deviations in global radiation combined with sensible heat. Long-term trends are driven by the lengthening of melt duration due to earlier and longer-lasting melting of ice along with melt intensification caused by trends in long-wave irradiance and latent heat due to higher air moisture.

  6. Direct Measurements of Iceberg Melt in Greenland Tidewater Glacier Fjords

    Science.gov (United States)

    Schild, K. M.; Sutherland, D.; Straneo, F.; Elosegui, P.

    2017-12-01

    The increasing input of freshwater to the subpolar North Atlantic, both through glacier meltwater runoff and the melting of calved icebergs, has significant implications for the Atlantic meridional overturning circulation and regional scale circulation. However, the magnitude and timing of this meltwater input has been challenging to quantify because iceberg melt rates are largely unknown. Here we use data from a simultaneous glaciological and oceanographic field campaign conducted in Sermilik Fjord, southeast Greenland, during July 2017 to map the surface and submarine geometry of large icebergs and use repeat surveys to directly measure iceberg melt rates. We use a combination of coincident ship-based multibeam submarine scans, ocean hydrography measurements, aerial drone mapping, and high precision iceberg-mounted GPS measurements to construct a detailed picture of iceberg geometry and melt. This synthesis of in situ iceberg melt measurements is amongst the first of its kind. Here, we will discuss the results of the 2017 field campaign, the implications of variable iceberg meltwater input throughout the water column, and comparisons to standard melt rate parameterizations and tidewater glacier submarine melt rate calculations.

  7. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords

    NARCIS (Netherlands)

    Carroll, D.; Sutherland, D. A.; Hudson, B.; Moon, T.; Catania, G. A.; Shroyer, E. L.; Nash, J. D.; Bartholomaus, T. C.; Felikson, D.; Stearns, L. A.; Noël, B. P Y; van den Broeke, M. R.

    2016-01-01

    Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes enhance melt and undercutting, leading to calving and potential glacier destabilization. Here we

  8. Global Warming and Glaciers Melting at Fjords in Greenland

    Science.gov (United States)

    Coelho, Pablo

    2015-04-01

    This paper presents a discussion on the validation or not of a likely paradigm about the melting of polar glaciers and their direct impact on increasing ocean levels. Physico-chemical properties of ocean waters, as well as anomalies in the thermal behavior of water are used as providers of this discussion using fjords of Greenland as study area. This text seeks to infer the relationship between the most recent developments in global warming, specifically dealing with the melting of glaciers located in fjords in the eastern part of Greenland, increasing the water temperature in ocean currents and changes in sea levels. We emphasize the importance of the correlation of the water physico-chemical characteristics in these changes perceived in the studied environment. Greenland is defined by convention as the widest oceanic island in the world. In its fjords formed in the last glaciation of the Quaternary period, basically made of ice mountains with entries to the sea, there has been melts that are discussed in this work. At first, global warming and the melting of glaciers with a consequent rise in sea levels are presented almost as an axiom. This paper seeks to address the conclusions arising from this type of research according the basic laws of physics and chemistry, related to the behavior of water in their states (typically solid and liquid). The ultimate goal of this work glimpsed through some inferences and validation of water behavior in the ice condition and in its liquid state, a broader view with regard to the findings applied to the relationship between global warming and ice melting processes. Will be observed some water anomalies in the variation between its liquid and solid states to attempt a better understanding of the phenomena occurring in this area of interest as well as their possible impacts. It is noteworthy the fact that the water does not behave thermally as most liquids, with very specific consequences in relation to the variation between its

  9. Dissolved and particulate organic carbon in the melt water of Icelandic glaciers

    Science.gov (United States)

    Chifflard, Peter; Reiss, Martin

    2017-04-01

    Recently, glaciers have been recognized as unique ecosystems with potential effects on the global carbon cycle. Among other transport processes organic carbon stored in glacier ecosystems is released from the glaciers through melt at the glaciers surface that discharges into proglacial streams and finally into the ocean. Nevertheless, the potential role of glaciers in the carbon cycle remains poorly understood (Hood et al. 2015). One particular problem in this respect is that there is a lack in regional and global analysis of the total amount of organic carbon released from glaciers. Although, the release of organic carbon has been investigated in proglacial streams in Alaska, the European Alps and Greenland, to our knowledge, there is no information available for Icelandic proglacial streams. Thus, the aims of this study are: 1) to develop a first base information about the concentration of dissolved and particulate organic carbon (DOC and POC) in several Icelandic proglacial streams and 2) to detect the variability of DOC and POC along a proglacial stream from the glacier source to the mouth into the Atlantic Ocean. Therefore, a field trip was conducted between 23 and 31 July 2016, whereby, 25 water samples were taken. The sampling points cover melt water from the following Icelandic glaciers Vatnajökull, Langjökull, Hofsjökull, Myrdalsjökull and Tungnafellsjökull. Further water samples were taken along the river Hvitá starting at the glacier Langjökull and ending at the mouth into the Atlantic ocean in the southwest of Iceland. At every sample point electrical conductivity, water temperate and the pH-value were measured in situ using a calibrated portable water quality meter (Hanna Combo HI98129). The water samples (130 ml) were filtered using pre-combusted GF/F filters (Whatman, pore sizes 0.7 µm) and stored in a cooling box until the shipment to the laboratory of the Department for Geography, Philipps-University of Marburg. The DOC concentrations in

  10. Effect of Topography on Subglacial Discharge and Submarine Melting During Tidewater Glacier Retreat

    Science.gov (United States)

    Amundson, J. M.; Carroll, D.

    2018-01-01

    To first order, subglacial discharge depends on climate, which determines precipitation fluxes and glacier mass balance, and the rate of glacier volume change. For tidewater glaciers, large and rapid changes in glacier volume can occur independent of climate change due to strong glacier dynamic feedbacks. Using an idealized tidewater glacier model, we show that these feedbacks produce secular variations in subglacial discharge that are influenced by subglacial topography. Retreat along retrograde bed slopes (into deep water) results in rapid surface lowering and coincident increases in subglacial discharge. Consequently, submarine melting of glacier termini, which depends on subglacial discharge and ocean thermal forcing, also increases during retreat into deep water. Both subglacial discharge and submarine melting subsequently decrease as glacier termini retreat out of deep water and approach new steady state equilibria. In our simulations, subglacial discharge reached peaks that were 6-17% higher than preretreat values, with the highest values occurring during retreat from narrow sills, and submarine melting increased by 14% for unstratified fjords and 51% for highly stratified fjords. Our results therefore indicate that submarine melting acts in concert with iceberg calving to cause tidewater glacier termini to be unstable on retrograde beds. The full impact of submarine melting on tidewater glacier stability remains uncertain, however, due to poor understanding of the coupling between submarine melting and iceberg calving.

  11. Estimation of snow and glacier melt contribution to Liddar stream in a mountainous catchment, western Himalaya: an isotopic approach.

    Science.gov (United States)

    Jeelani, Gh; Shah, Rouf A; Jacob, Noble; Deshpande, Rajendrakumar D

    2017-03-01

    Snow- and glacier-dominated catchments in the Himalayas are important sources of fresh water to more than one billion people. However, the contribution of snowmelt and glacier melt to stream flow remains largely unquantified in most parts of the Himalayas. We used environmental isotopes and geochemical tracers to determine the source water and flow paths of stream flow draining the snow- and glacier-dominated mountainous catchment of the western Himalaya. The study suggested that the stream flow in the spring season is dominated by the snowmelt released from low altitudes and becomes isotopically depleted as the melt season progressed. The tracer-based mixing models suggested that snowmelt contributed a significant proportion (5-66 %) to stream flow throughout the year with the maximum contribution in spring and summer seasons (from March to July). In 2013 a large and persistent snowpack contributed significantly (∼51 %) to stream flow in autumn (September and October) as well. The average annual contribution of glacier melt to stream flow is little (5 %). However, the monthly contribution of glacier melt to stream flow reaches up to 19 % in September during years of less persistent snow pack.

  12. Central Asian supra-glacier snow melt enhanced by anthropogenic black carbon

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Farinotti, Daniel; Zhang, Qianggong; Guo, Junming; Li, Yang; Lawrence, Mark; Schwikowski, Margit

    2016-04-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. Densely populated areas near lower-lying mountain ranges are particularly vulnerable and a recent study showed that the region might lose 50 % of its glacier mass by 2050. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and snow melt. 218 snow samples were taken on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental carbon, mineral dust and iron among other parameters. We find the elemental carbon concentration to be at the higher end of the range reported for neighboring mountain ranges between 70 and 502 ng g-1 (interquartile range). To investigate the origin of the snow impurities, we used a Lagrangian particle dispersion model, LAGRANTO. Back trajectory ensembles of 40 members with varied starting points to capture the meteorological spread were released every 6 hours for the covered period at all sites. "Footprints" were calculated and combined with emission inventories to estimate the relative contribution of anthropogenic and natural BC to deposited aerosol on the glaciers. We find that more than 94 % of BC is of anthropogenic origin and the major source region is Central Asia followed by the Middle East. Further exploring the implications of mineral dust and BC deposition, we calculate the snow albedo reduction with the Snow-Ice-Aerosol-Radiative model (SNICAR). Even though mineral dust concentrations were up to a factor of 50 higher than BC concentrations, BC dominates the albedo reduction. Using these results we calculate the snow melt induced by

  13. Spatial and temporal melt variability at Helheim Glacier, East Greenland, and its effect on ice dynamics

    DEFF Research Database (Denmark)

    Andersen, M. L.; Larsen, T. B.; Nettles, M.

    2010-01-01

    influenced by the drainage of surface runoff to the bed through moulins, cracks, and other pathways. To investigate the extent of the latter effect, we develop a distributed surface-energy-balance model for Helheim Glacier, East Greenland, to calculate surface melt and thereby estimate runoff. The model...... on the lower reaches of the glacier trunk than on the upper glacier. We compare melt variations during the summer season to estimates of surface velocity derived from global positioning system surveys. Near the front of the glacier, there is a significant correlation (on >95% levels) between variations...... in runoff (estimated from surface melt) and variations in velocity, with a 1 day delay in velocity relative to melt. Although the velocity changes are small compared to accelerations previously observed following some calving events, our findings suggest that the flow speed of Helheim Glacier is sensitive...

  14. Extended T-index models for glacier surface melting: a case study from Chorabari Glacier, Central Himalaya, India

    Science.gov (United States)

    Karakoti, Indira; Kesarwani, Kapil; Mehta, Manish; Dobhal, D. P.

    2016-10-01

    Two enhanced temperature-index (T-index) models are proposed by incorporating meteorological parameters viz. relative humidity, wind speed and net radiation. The models are an attempt to explore different climatic variables other than temperature affecting glacier surface melting. Weather data were recorded at Chorabari Glacier using an automatic weather station during the summers of 2010 (July 10 to September 10) and 2012 (June 10 to October 25). The modelled surface melt is validated against the measured point surface melting at the snout. Performance of the developed models is evaluated by comparing with basic temperature-index model and is quantified through different efficiency criteria. The results suggest that proposed models yield considerable improvement in surface melt simulation . Consequently, the study reveals that glacier surface melt depends not only on temperature but also on weather parameters viz. relative humidity, wind speed and net radiation play a significant role in glacier surface melting. This approach provides a major improvement on basic temperature-index method and offers an alternative to energy balance model.

  15. Impact of Two Plumes' Interaction on Submarine Melting of Tidewater Glaciers : A Laboratory Study

    NARCIS (Netherlands)

    Cenedese, C.; Gatto, V.M.

    2016-01-01

    Idealized laboratory experiments investigate the glacier–ocean boundary dynamics near a vertical glacier in a two-layer stratified fluid. Discharge of meltwater runoff at the base of the glacier (subglacial discharge) enhances submarine melting. In the laboratory, the effect of multiple sources of

  16. Seasonal variation of ice melting on varying layers of debris of Lirung Glacier, Langtang Valley, Nepal

    Directory of Open Access Journals (Sweden)

    M. B. Chand

    2015-05-01

    Full Text Available Glaciers in the Himalayan region are often covered by extensive debris cover in ablation areas, hence it is essential to assess the effect of debris on glacier ice melt. Seasonal melting of ice beneath different thicknesses of debris on Lirung Glacier in Langtang Valley, Nepal, was studied during three seasons of 2013–14. The melting rates of ice under 5 cm debris thickness are 3.52, 0.09, and 0.85 cm d−1 during the monsoon, winter and pre-monsoon season, respectively. Maximum melting is observed in dirty ice (0.3 cm debris thickness and the rate decreases with the increase of debris thickness. The energy balance calculations on dirty ice and at 40 cm debris thickness show that the main energy source of ablation is net radiation. The major finding from this study is that the maximum melting occurs during the monsoon season than rest of the seasons.

  17. Debris cover and surface melt at a temperate maritime alpine glacier: Franz Josef Glacier, Southern Alps, New Zealand

    Science.gov (United States)

    Brook, Martin; Hagg, Wilfried; Winkler, Stefan

    2013-04-01

    During the last few years, after three decades of generally positive mass balance, Franz Josef Glacier (Southern Alps, New Zealand) has entered into a phase of strong frontal retreat. This development is combined with significant downwasting of the lower glacier tongue and a concurrent increasing emergence of debris on the surface in the ablation zone. Previously, melt rates at Franz Josef Glacier have only been measured on bare ice, so a short-term study in February 2012 saw a network of 11 ablation stakes drilled into locations of varying supraglacial debris thickness on the lower glacier. Direct ablation measurements were accompanied by observations of air temperatures and mapping of debris thickness and its distribution on the lower glacier tongue in order to calculate the potential effect of reduced overall ablation. Mean ablation rates over 9 days varied over the range 1.2-10.1 cm d-1 and were closely related to debris thickness. Air temperatures provided a strong indicator of daily melt rates and by applying a degree-day approach, a range of degree-day factors between 1.1 and 8.1 mm d-1 °C-1 with a mean of 4.4 mm d-1 °C-1 was obtained. These values are comparable with rates reported in other studies. Mapping of the entire ablation zone revealed an area of 0.7 km2 (or 14.3 %) covered by debris of 1-50 cm thickness. Based on measured debris thicknesses and calculated degree-day factors, ablation on those debris-covered areas of the glacier is reduced by a total of 41%. For the entire ablation zone this equates to a 6% overall reduction in melt. This study highlights the usefulness of short-term surveys to gather representative ablation data.

  18. Glacier melt buffers river runoff in the Pamir Mountains

    Science.gov (United States)

    Pohl, Eric; Gloaguen, Richard; Andermann, Christoff; Knoche, Malte

    2017-03-01

    Newly developed approaches based on satellite altimetry and gravity measurements provide promising results on glacier dynamics in the Pamir-Himalaya but cannot resolve short-term natural variability at regional and finer scale. We contribute to the ongoing debate by upscaling a hydrological model that we calibrated for the central Pamir. The model resolves the spatiotemporal variability in runoff over the entire catchment domain with high efficiency. We provide relevant information about individual components of the hydrological cycle and quantify short-term hydrological variability. For validation, we compare the modeled total water storages (TWS) with GRACE (Gravity Recovery and Climate Experiment) data with a very good agreement where GRACE uncertainties are low. The approach exemplifies the potential of GRACE for validating even regional scale hydrological applications in remote and hard to access mountain regions. We use modeled time series of individual hydrological components to characterize the effect of climate variability on the hydrological cycle. We demonstrate that glaciers play a twofold role by providing roughly 35% of the annual runoff of the Panj River basin and by effectively buffering runoff both during very wet and very dry years. The modeled glacier mass balance (GMB) of -0.52 m w.e. yr-1 (2002-2013) for the entire catchment suggests significant reduction of most Pamiri glaciers by the end of this century. The loss of glaciers and their buffer functionality in wet and dry years could not only result in reduced water availability and increase the regional instability, but also increase flood and drought hazards.Plain Language SummaryGlaciers store large amounts of water in the form of ice. They grow and shrink dominantly in response to climatic conditions. In Central Asia, where rivers originate in the high mountains, glaciers are an important source for sustainable water availability. Thus, understanding the link between climate, hydrology, and

  19. Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton characteristics and productivity

    NARCIS (Netherlands)

    Alderkamp, A.C.; Mills, M.M.; van Dijken, G.L.; Laan, P.; Thuróczy, C.-E.; Gerringa, L.J.A.; de Baar, H.J.W.; Payne, C.D.; Visser, R.J.W.; Buma, A.G.J.; Arrigo, K.R.

    2012-01-01

    The phytoplankton community composition and productivity in waters of the Amundsen Sea and surrounding sea ice zone were characterized with respect to iron (Fe) input from melting glaciers. High Fe input from glaciers such as the Pine Island Glacier, and the Dotson and Crosson ice shelves resulted

  20. Heat sources for glacial ice melt in a West Greenland tidewater outlet glacier fjord: The role of subglacial freshwater discharge

    DEFF Research Database (Denmark)

    Bendtsen, Jørgen; Mortensen, John; Lennert, Kunuk

    2015-01-01

    The melting of tidewater outlet glaciers from the Greenland Ice Sheet contributes significantly to global sea level rise. Accelerated mass loss is related to melt-processes in front of calving glaciers, yet the role of ocean heat transports is poorly understood. Here we present the first direct...... measurements from a subglacial plume in front of a calving tidewater outlet glacier. Surface salinity in the plume corresponded to a meltwater content of 7 %, which is indicative of significant entrainment of warm bottom water and, according to plume model calculations, significant ice melt. Energy balance...... of the area near the glacier showed that ice melt was mainly due to ocean heat transport and that direct plume-associated melt was only important in periods with high meltwater discharge rates of ~100 m3 s−1. Ocean mixing outside of the plume area was thus the primary heat source for melting glacier ice....

  1. Sea ice breakup and marine melt of a retreating tidewater outlet glacier in northeast Greenland (81 degrees N)

    DEFF Research Database (Denmark)

    Bendtsen, Jorgen; Mortensen, John; Lennert, Kunuk

    2017-01-01

    Rising temperatures in the Arctic cause accelerated mass loss from the Greenland Ice Sheet and reduced sea ice cover. Tidewater outlet glaciers represent direct connections between glaciers and the ocean where melt rates at the ice-ocean interface are influenced by ocean temperature and circulation...... glacier is a floating ice shelf with near-glacial subsurface temperatures at the freezing point. Melting from the surface layer significantly influenced the ice foot morphology of the glacier terminus. Hence, melting of the tidewater outlet glacier was found to be critically dependent on the retreat....... However, few measurements exist near outlet glaciers from the northern coast towards the Arctic Ocean that has remained nearly permanently ice covered. Here we present hydrographic measurements along the terminus of a major retreating tidewater outlet glacier from Flade Isblink Ice Cap. We show...

  2. Spatio-temporal Variability of Albedo and its Impact on Glacier Melt Modelling

    Science.gov (United States)

    Kinnard, C.; Mendoza, C.; Abermann, J.; Petlicki, M.; MacDonell, S.; Urrutia, R.

    2017-12-01

    Albedo is an important variable for the surface energy balance of glaciers, yet its representation within distributed glacier mass-balance models is often greatly simplified. Here we study the spatio-temporal evolution of albedo on Glacier Universidad, central Chile (34°S, 70°W), using time-lapse terrestrial photography, and investigate its effect on the shortwave radiation balance and modelled melt rates. A 12 megapixel digital single-lens reflex camera was setup overlooking the glacier and programmed to take three daily images of the glacier during a two-year period (2012-2014). One image was chosen for each day with no cloud shading on the glacier. The RAW images were projected onto a 10m resolution digital elevation model (DEM), using the IMGRAFT software (Messerli and Grinsted, 2015). A six-parameter camera model was calibrated using a single image and a set of 17 ground control points (GCPs), yielding a georeferencing accuracy of accounting for possible camera movement over time. The reflectance values from the projected image were corrected for topographic and atmospheric influences using a parametric solar irradiation model, following a modified algorithm based on Corripio (2004), and then converted to albedo using reference albedo measurements from an on-glacier automatic weather station (AWS). The image-based albedo was found to compare well with independent albedo observations from a second AWS in the glacier accumulation area. Analysis of the albedo maps showed that the albedo is more spatially-variable than the incoming solar radiation, making albedo a more important factor of energy balance spatial variability. The incorporation of albedo maps within an enhanced temperature index melt model revealed that the spatio-temporal variability of albedo is an important factor for the calculation of glacier-wide meltwater fluxes.

  3. Partitioning of Submarine Melt and Calving across the front of Store Glacier, Greenland

    Science.gov (United States)

    Hubbard, A., II; Chauche, N.

    2015-12-01

    Processes unique to the marine-termini of fast-flowing tidewater outlet glaciers can potentially drive extreme rates of mass wastage thereby providing a rapid link between the terrestrial ice reservoir and the oceanic sink. Here we attempt to directly quantify the pattern and magnitude of calving and melt at the front of Store Glacier, a major outlet draining the western sector of the Greenland ice sheet. Integration of range-survey technologies on a robust, heavy displacement marine platform coupled with high-resolution photogrammetry allowed the production of accurate, ~m resolution 3d digital terrain models (DTMs) of the glacier front. A swath-interferometric sonar system calibrated via an inertial motion unit stabilized with RTK GPS and vector-compass data-streams was combined with photogrammetric processing of repeat UAV surveys. The results of three repeat surveys across the front of Store Glaciers in 2012 is presented during which significant ice flow, melt and calving events were imaged, complimented with AWS, on-ice GPS stations and time-lapse/video camera sequences. The residual of successive DTMs yield the 3d pattern of frontal change allowing the processes calving and melt to be quantified and constrained in unprecedented detail. The pattern of submarine melt is further validated against indirect estimates of submarine melt derived from oceanographic circulation measurements within the fjord.

  4. Melting glaciers signal climate change in Bolivia | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-05-13

    May 13, 2011 ... A 2011 international study found that water stress will likely continue to increase, particularly in large high-altitude cities such as La Paz, Quito, and Bogota which are home to millions of people. Those living in the Illimani watershed knew the glacier was shrinking. However, no one knew how water use was ...

  5. Why Do We Expect Glacier Melting to Increase Under Global Warming?

    OpenAIRE

    Braithwaite, Roger J.

    2011-01-01

    Media stories about global warming almost always mention “melting glaciers” and their effects upon global sealevel. The reader might therefore ask why the title of this chapter includes a question mark. It may seem blindingly obvious that global warming will cause a rise in global sealevel with a substantial contribution from melting glaciers, but the reasons are less obvious despite the copious literature. For example, the IPCC assessment reports 1991, 1996, 2001 and 2007 all include many re...

  6. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    Science.gov (United States)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  7. Influence of an Increasing Surface Melt Over Decadal Timescales on Land Terminating Outlet Glaciers

    Science.gov (United States)

    Gagliardini, O.; Werder, M. A.; Durand, G.

    2015-12-01

    During the last decades, Greenland surface melt has shown an increase both in intensity and spatial extent. Part of this water probably reaches the bedrock and enhances the glacier speed, advecting larger volume of ice into the ablation area. In the context of a warming climate, this mechanism will contribute to the future rate of retreat and thinning of the land-terminating glaciers of Greenland. Complex couplings, implying both positive and negative feedbacks, prevail between surface mass balance, ice flow, basal hydrology and the evolution of the glacier geometry. Larger amount of melt water might increase or decrease the mean ice flow of a glacier, depending on the capacity of the basal hydrology network to evacuate this surplus of water, which in turn will influence the surface crevassing and the ability of water to reach the bedrock at higher elevations. Here, using a coupled basal hydrology and prognostic ice flow model, the evolution of a Greenland-type glacier subject to an increasing surface melt is studied over few decades. The basal hydrology model, based on the GlaDS model, includes an inefficient cavity-type water sheet and a network of efficient discrete channels. Both systems are connected and evolve in time in response to the water inputs. The prognostic equations for ice flow and the hydrology model are implemented in the open source, finite element, ice sheet / ice flow model Elmer/Ice. Assuming a surface melt increase over the next decades, the evolution of crevassed areas and the ability of water to reach the bedrock is inferred. Our results indicate that the currently observed crevasse distribution is likely to extend upstream, leading to an increase in ice flow which, in turn, accelerates the retreat and thinning of land-terminating glaciers.

  8. Factors influencing legacy pollutant accumulation in alpine osprey: biology, topography, or melting glaciers?

    Science.gov (United States)

    Elliott, John E; Levac, Joshua; Guigueno, Mélanie F; Shaw, D Patrick; Wayland, Mark; Morrissey, Christy A; Muir, Derek C G; Elliott, Kyle H

    2012-09-04

    Persistent organic pollutants (POPs) can be transported long distances and deposited into alpine environments via cold trapping and snow scavenging processes. Here we examined biotic and abiotic factors determining contaminant variability of wildlife in alpine ecosystems. We measured POPs in eggs and plasma of an apex predator, the osprey (Pandion haliaetus) breeding in 15 mountainous watersheds across a broad latitudinal, longitudinal and altitudinal range in western Canada. After accounting for proximate biotic factors such as trophic level (δ(15)N) and carbon source (δ(13)C), variability in contaminant concentrations, including ΣDDT (sum of trichlorodiphenylethane-related compounds), toxaphene, hexachlorobenzene (HCB), total chlordane, and ΣPCBs (polychlorinated biphenyls) in osprey tissues was explained by interactions among relative size of watersheds, water bodies, elevation, and glacial input. ΣDDT in nestling plasma, for example, decreased with lake elevation, probably as a result of local past inputs from agricultural or public health usage at lower altitude sites. In contrast, toxaphene, never used as an insecticide in western Canada, increased with elevation and year-round snow and ice cover in both plasma and eggs, indicating long-range atmospheric sources as dominant for toxaphene. Lower chlorinated PCBs in plasma tended to decrease with elevation and ice cover consistent with published data and model outcomes. Temporal trends of POPs in osprey eggs are coincident with some modeled predictions of release from melting glaciers due to climate change. Currently we suggest that contaminants largely are released through annual snowpack melt and deposited in large lower elevation lakes, or some smaller lakes with poor drainage. Our study highlights the importance of understanding how biological processes integrate physical when studying the environmental chemistry of wildlife.

  9. Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau.

    Science.gov (United States)

    Li, Xiaofei; Kang, Shichang; He, Xiaobo; Qu, Bin; Tripathee, Lekhendra; Jing, Zhefan; Paudyal, Rukumesh; Li, Yang; Zhang, Yulan; Yan, Fangping; Li, Gang; Li, Chaoliu

    2017-06-01

    Light-absorbing impurities (LAIs), such as organic carbon (OC), black carbon (BC), and mineral dust (MD) deposited on the glacier surface can reduce albedo, thus accelerating the glacier melt. Surface fresh snow, aged snow, granular ice, and snowpits samples were collected between August 2014 and October 2015 on the Xiao Dongkemadi (XDKMD) glacier (33°04'N, 92°04'E) in the central Tibetan Plateau (TP). The spatiotemporal variations of LAIs concentrations in the surface snow/ice were observed to be consistent, differing mainly in magnitudes. LAIs concentrations were found to be in the order: granular ice>snowpit>aged snow>fresh snow, which must be because of post-depositional effects and enrichment. In addition, more intense melting led to higher LAIs concentrations exposed to the surface at a lower elevation, suggesting a strong negative relationship between LAIs concentrations and elevation. The scavenging efficiencies of OC and BC were same (0.07±0.02 for OC, 0.07±0.01 for BC), and the highest enrichments was observed in late September and August for surface snow and granular ice, respectively. Meanwhile, as revealed by the changes in the OC/BC ratios, intense glacier melt mainly occurred between August and October. Based on the SNow ICe Aerosol Radiative (SNICAR) model simulations, BC and MD in the surface snow/ice were responsible for about 52%±19% and 25%±14% of the albedo reduction, while the radiative forcing (RF) were estimated to be 42.74±40.96Wm -2 and 21.23±22.08Wm -2 , respectively. Meanwhile, the highest RF was observed in the granular ice, suggesting that the exposed glaciers melt and retreat more easily than the snow distributed glaciers. Furthermore, our results suggest that BC was the main forcing factor compared with MD in accelerating glacier melt during the melt season in the Central TP. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Modified temperature index model for estimating the melt water discharge from debris-covered Lirung Glacier, Nepal

    Directory of Open Access Journals (Sweden)

    A. Parajuli

    2015-05-01

    Full Text Available In the Nepalese Himalayas, the complex topography, occurrence of debris covered glaciers, and limited data availability creates substantial difficulties for modelling glacier melt. The proper recognition of melt processes governs the accurate estimation of melt water from glacier dominated systems, even in the presence of debris-covered glaciers. This paper presents a glacier melt model developed for the Lirung sub-basin of Langtang valley, which has both a clean glacier area, 5.86 km2, and a debris-covered glacier area, 1.13 km2. We use a temperature index approach to estimate sub-daily melt water discharge for a two week period at the end of monsoon, and the melt factor is varied according to the aspect and distributed to each grid processed from the digital elevation model. The model uses easily available data and simple extrapolation techniques capable of generating melt with limited data. The result obtained from this method provides accurate estimate with an R2 value of 0.89, bias of 0.9% and Nash-Sutcliffe efficiency of 0.86, and suitable in Himalaya where data availability is major issue.

  11. Rapid melting dynamics of the Morteratsch glacier (Swiss Alps) from UAV photogrammetry and field spectroscopy data

    Science.gov (United States)

    Di Mauro, Biagio; Garzonio, Roberto; Rossini, Micol; Baccolo, Giovanni; Julitta, Tommaso; Cavallini, Giuseppe; Mattavelli, Matteo; Colombo, Roberto

    2017-04-01

    The impact of atmospheric impurities on the optical properties of snow and ice has been largely acknowledged in the scientific literature. Beyond this, the evaluation of the effect of specific organic and inorganic particles on melting dynamics remains a major challenge. In this contribution, we examine the annual melting dynamics of a large valley glacier of the Swiss Alps using UAV photogrammetry. We then compare the melting patterns to the presence of surface impurities on the glacier surface. Two surveys (in July and September 2016) with a lightweight Unmanned Aerial Vehicle (UAV) were organized on the ablation zone of the Morteratsch glacier (Swiss Alps). The UAV (DJI, Phantom 4) was equipped with a high resolution digital camera, and flew at a constant altitude of 150 from the glacier surface. 30 ground control points were placed on the glacier, and their coordinates were determined with a differential GPS (dGPS) for georeferencing UAV images. Contemporary to the UAV surveys, field spectroscopy data were collected on the glacier surface with an Analytical Spectral Device (ASD Field spec.) spectrometer covering the visible and near infrared spectral ranges, and ice samples were collected to determine the abundance of microorganism and algae. From the UAV RGB data, two point clouds were created using Structure from Motion (SfM) algorithms. The point clouds (each consisting of about 15M points) were then converted in Digital Surface Models (DSM) and orthomosaics by interpolation. The difference between the two DSM was calculated and converted in Snow Water Equivalent (SWE), in order to assess the ice lost by the glacier during the ablation season. The point clouds were compared and the displacement vectors were estimated using different algorithms. The elevation changes estimated from UAV data were compared with the abundance of microorganisms and algae. The reflectance spectra of ice with microorganisms and algae show a chlorophyll absorption feature at 680 nm

  12. Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters

    Science.gov (United States)

    Arrigo, Kevin R.; van Dijken, Gert L.; Castelao, Renato M.; Luo, Hao; Rennermalm, Ósa K.; Tedesco, Marco; Mote, Thomas L.; Oliver, Hilde; Yager, Patricia L.

    2017-06-01

    Each summer, large quantities of freshwater and associated dissolved and particulate material are released from the Greenland Ice Sheet (GrIS) into local fjords where they promote local phytoplankton growth. Whether the influx of freshwater and associated micronutrients in glacial meltwater is able to stimulate phytoplankton growth beyond the fjords is disputed, however. Here we show that the arrival of freshwater discharge from outlet glaciers from both southeast and southwest GrIS coincides with large-scale blooms in the Labrador Sea that extend over 300 km from the coast during summer. This summer bloom develops about a week after the arrival of glacial meltwater in early July and persists until the input of glacial meltwater slows in August or September, accounting for 40% of annual net primary production for the area. In view of the absence of a significant change in the depth of the mixed layer associated with the arrival of glacial meltwater to the Labrador Sea, we suggest that the increase in phytoplankton biomass and productivity in summer is likely driven by a greater nutrient supply (most likely iron). Our results highlight that the ecological impact of meltwater from the GrIS likely extends far beyond the boundaries of the local fjords, encompassing much of the eastern Labrador Sea. Such impacts may increase if melting of the GrIS accelerates as predicted.

  13. Directional close-contact melting in glacier ice

    Science.gov (United States)

    Kowalski, Julia; Schüller, Kai

    2015-04-01

    The Saturnian moon Enceladus shows incidence of liquid water underneath a thick ice sheet cover and is thought to be a potential candidate for extraterrestrial life. However, direct exploration of these subglacial aquatic ecosystems is very challenging. Within the scope of the joint research project 'Enceladus Explorer' (EnEx) (consisting of FH Aachen, RWTH Aachen, Bergische Universität Wuppertal, Universität Bremen, TU Braunschweig und Bundeswehr Universität München), initiated by the German Space Agency, a maneuverable close-contact melting probe has been developed. The force-regulated and heater-controlled probe is able to melt against gravity or even on a curved trajectory. Hence, it offers additional degrees of freedom in its melting motion, e.g. for target oriented melting or obstacle avoidance strategies. General feasibility of the concept has been demonstrated in various field tests. However, in order to optimize its design and to adopt it to extraterrestrial missions a simulation model is needed, capable of determining melting velocity and efficiency at given environmental conditions and system configurations. Within this contribution, the physical situation is abstracted into a quasi-stationary mathematical model description, and a numerical solution strategy is developed to compute melting velocity and temperature distribution within the probe and the surrounding ice. We present an inverse solution approach, in which a background velocity field of the ice mimics the melting velocity. The fundamental balance laws are solved with the corresponding melting rate. Following Newton's laws, the resulting force acting on the probe has to balance the contact force exerted by the probe and can hence be used for convergence. We present both, analytical results to a simplified head geometry, as well as results from a simulation model implemented into the open source software Elmer for arbitrary head geometries. The latter can deal with the full 3d situation

  14. Distinguishing snow and glacier ice melt in High Asia using MODIS

    Science.gov (United States)

    Rittger, K.; Brodzik, M. J.; Bair, N.; Racoviteanu, A.; Khalsa, S. J. S.; Barrett, A. P.; Armstrong, R. L.; Dozier, J.

    2015-12-01

    In High Mountain Asia, snow and glacier ice both contribute to streamflow, but few in-situ observations exist that can help distinguish between the two melt components. We utilize a suite of satellite based MODIS-derived datasets to distinguish three surface types as they change daily: 1) exposed glacier ice, 2) snow over ice and 3) snow over land. The MODIS products include fractional snow cover from MODSCAG and permanent ice and snow from MODICE, both at 500 m resolution, that are used jointly with albedo or grain size. The method provides a means to systematically analyze the cycle of snow and glacier ice over large regional extents. We compare the time series of these surfaces for sub-basins of the Upper Indus Basin and characterize the variability over the MODIS record. We use the Randolph Glacier Inventory to categorize by glacier size within the sub-basins and analyze small, medium, and large glaciers to characterize their variability and investigate changes to the cryosphere at different scales. In addition to analyses of the surface conditions, we use the surface classification to understand the source of melt volumes from glacier ice and seasonal snow cover. We model snow and ice melt in the Hunza and Gilgit sub-basins of the Upper Indus basin. We apply two melt models, a temperature index model and an energy balance model. For our temperature index model, we use lapse rates derived from ERA-Interim to downscale temperatures to 500 m and aggregate by elevation bands. Our spatially-distributed energy-balance model requires solar and longwave radiation, temperature, and wind data; we downscale to 500 m from GLDAS NOAH surface simulations. We compare results from the two models with measured streamflow, and evaluate the model computation times, accuracies and ease of diagnosing output errors. We include comparisons of model results using different remote sensing products (MCD43, MOD10A1, MODSCAG, MODDRFS) to partition surface types. Uncertainty is estimated

  15. Air temperature thresholds to evaluate snow melting at the surface of Alpine glaciers by T-index models: the case study of Forni Glacier (Italy)

    Science.gov (United States)

    Senese, A.; Maugeri, M.; Vuillermoz, E.; Smiraglia, C.; Diolaiuti, G.

    2014-03-01

    The glacier melt conditions (i.e.: null surface temperature and positive energy budget) can be assessed by analyzing meteorological and energy data acquired by a supraglacial Automatic Weather Station (AWS). In the case this latter is not present the assessment of actual melting conditions and the evaluation of the melt amount is difficult and simple methods based on T-index (or degree days) models are generally applied. These models require the choice of a correct temperature threshold. In fact, melt does not necessarily occur at daily air temperatures higher than 273.15 K. In this paper, to detect the most indicative threshold witnessing melt conditions in the April-June period, we have analyzed air temperature data recorded from 2006 to 2012 by a supraglacial AWS set up at 2631 m a.s.l. on the ablation tongue of the Forni Glacier (Italian Alps), and by a weather station located outside the studied glacier (at Bormio, a village at 1225 m a.s.l.). Moreover we have evaluated the glacier energy budget and the Snow Water Equivalent (SWE) values during this time-frame. Then the snow ablation amount was estimated both from the surface energy balance (from supraglacial AWS data) and from T-index method (from Bormio data, applying the mean tropospheric lapse rate and varying the air temperature threshold) and the results were compared. We found that the mean tropospheric lapse rate permits a good and reliable reconstruction of glacier air temperatures and the major uncertainty in the computation of snow melt is driven by the choice of an appropriate temperature threshold. From our study using a 5.0 K lower threshold value (with respect to the largely applied 273.15 K) permits the most reliable reconstruction of glacier melt.

  16. Glacier Melting Increases the Solute Concentrations of Himalayan Glacial Lakes.

    Science.gov (United States)

    Salerno, Franco; Rogora, Michela; Balestrini, Raffaella; Lami, Andrea; Tartari, Gabriele A; Thakuri, Sudeep; Godone, Danilo; Freppaz, Michele; Tartari, Gianni

    2016-09-06

    Over the past two decades, we observed a substantial rise in ionic content that was mainly determined by the sulfate concentration at 20 remote high elevation lakes located in central southern Himalaya. At LCN9, which was monitored on an annual basis for the last 20 years, the sulfate concentrations increased over 4-fold. Among the main causes, we exclude a change in the composition of wet atmospheric deposition, as well as a possible influence of decrease in seasonal snow cover duration, which could have exposed larger basin surfaces to alteration processes. Glacier retreat likely was the main factor responsible for the observed increase of sulfate concentrations. We attribute this chemical changes mainly to the sulfide oxidation processes that occur in subglacial environments. Moreover, we observe that the weakened monsoon of the past two decades has only partially contributed to the lakes enrichment through runoff waters that are more concentrated in solutes or lowering the water table, resulting in more rock exposed to air and enhanced mineral oxidation.

  17. Humboldt Glacier, Greenland sub-marine melt rates derived from CTD/current casts

    Science.gov (United States)

    Lauchman, E.; Box, J. E.; Howat, I. M.; Hubbard, A.; Bates, R.

    2009-12-01

    A larger de-stabilization of ice sheets is threatened from oceanic than atmospheric climate change. Yet, little is known about the magnitude of sub-marine melt rates. A chain of oceanographic profiles were cast in front of the Humboldt Glacier terminus, northwest Greenland summer 2009 with the Greenpeace ship Arctic Sunrise. A heat and mass budget closure scheme is applied to derive effective sub-marine ice melt rates. The results are discussed in context of seasonal climate and recent oceanic and atmospheric climate change.

  18. Dissolved organic carbon fractionation accelerates glacier-melting: A case study in the northern Tibetan Plateau.

    Science.gov (United States)

    Hu, Zhaofu; Kang, Shichang; Yan, Fangping; Zhang, Yulan; Li, Yang; Chen, Pengfei; Qin, Xiang; Wang, Kun; Gao, Shaopeng; Li, Chaoliu

    2018-06-15

    In glacierized regions, melting process has a significant effect on concentrations and light absorption characteristics of dissolved organic carbon (DOC), potentially resulting in variations of its radiative forcing, which is not yet relevant research at glacier region of the Tibetan Plateau (TP). In this study, DOC fractionation and its radiative forcing change during the melting process were investigated at Laohugou glacier No. 12 (LHG glacier) in western Qilian Mts., northern TP. DOC concentrations in fresh snow, snowpit and surface ice samples were 0.38 ± 0.06, 0.22 ± 0.11 and 0.60 ± 0.21 mg L -1 , respectively. Their mass absorption cross-section at 365 nm (MAC 365 ) were 0.65 ± 0.16, 4.71 ± 3.68 and 1.44 ± 0.52 m 2  g -1 , respectively. The MAC 365 values of snowpit samples showed a significant negative correlation with DOC concentrations, indicating DOC with high MAC 365 values were likely to be kept in snow during the melting process. Topsoil samples of LHG glacierized region likely contributed a lot to snowpit DOC with high MAC 365 values due to their similar absorption spectra. Spatially, the DOC concentration of surface ice samples increased from terminus to the upper part of the glacier. Correspondingly, the MAC 365 value showed decreased trend. In the freezing experiment on surface ice and topsoil samples, small part of DOC with high MAC 365 value was also likely to enter first frozen solid phase. In addition, the radiative forcing caused by snowpit and surface ice DOC increased around 7.64 ± 2.93 and 4.95 ± 1.19 times relative to fresh snow DOC, indicating the snow/ice melting caused by increased light-absorbing DOC needs to be considered in the future research. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. What color should snow algae be and what does it mean for glacier melt?

    Science.gov (United States)

    Dial, R. J.; Ganey, G. Q.; Loso, M.; Burgess, A. B.; Skiles, M.

    2017-12-01

    Specialized microbes colonize glaciers and ice sheets worldwide and, like all organisms, they are unable to metabolize water in its solid form. It is well understood that net solar radiation controls melt in almost all snow and ice covered environments, and theoretical and empirical studies have documented the substantial reduction of albedo by these microbes both on ice and on snow, implicating a microbial role in glacier melt. If glacial microbiomes are limited by liquid water, and the albedo-reducing properties of individual cells enhance melt rates, then natural selection should favor those microbes that melt ice and snow crystals most efficiently. Here we: (1) argue that natural selection favors a red color on snow and a near-black color on ice based on instantaneous radiative forcing. (2) Review results of the first replicated, controlled field experiment to both quantify the impact of microbes on snowmelt in "red-snow" communities and demonstrate their water-limitation and (3) show the extent of snow-algae's spatial distribution and estimate their contribution to snowmelt across a large Alaskan icefield using remote sensing. On the 700 km2 of a 2,000 km2 maritime icefield in Alaska where red-snow was present, microbes increased snowmelt over 20% by volume, a percentage likely to increase as the climate warms and particulate pollution intensifies with important implications for models of sea level rise.

  20. Using daily air temperature thresholds to evaluate snow melting occurrence and amount on Alpine glaciers by T-index models: the case study of the Forni Glacier (Italy)

    Science.gov (United States)

    Senese, A.; Maugeri, M.; Vuillermoz, E.; Smiraglia, C.; Diolaiuti, G.

    2014-10-01

    Glacier melt conditions (i.e., null surface temperature and positive energy budget) can be assessed by analyzing data acquired by a supraglacial automatic weather station (AWS), such as the station installed on the surface of Forni Glacier (Italian Alps). When an AWS is not present, the assessment of actual melt conditions and the evaluation of the melt amount is more difficult and simple methods based on T-index (or degree days) models are generally applied. These models require the choice of a correct temperature threshold. In fact, melt does not necessarily occur at daily air temperatures higher than 0 °C. In this paper, we applied both energy budget and T-index approaches with the aim of solving this issue. We start by distinguishing between the occurrence of snowmelt and the reduction in snow depth due to actual ablation (from snow depth data recorded by a sonic ranger). Then we find the daily average temperature thresholds (by analyzing temperature data acquired by an AWS on Forni Glacier) which, on the one hand, best capture the occurrence of significant snowmelt conditions and, on the other, make it possible, using the T-index, to quantify the actual snow ablation amount. Finally we investigated the applicability of the mean tropospheric lapse rate to reproduce air temperature conditions at the glacier surface starting from data acquired by weather stations located outside the glacier area. We found that the mean tropospheric lapse rate allows for a good and reliable reconstruction of glacier air temperatures and that the choice of an appropriate temperature threshold in T-index models is a very important issue. From our study, the application of the +0.5 °C temperature threshold allows for a consistent quantification of snow ablation while, instead, for detecting the beginning of the snow melting processes a suitable threshold has proven to be at least -4.6 °C.

  1. Sea ice breakup and marine melt of a retreating tidewater outlet glacier in northeast Greenland (81°N).

    Science.gov (United States)

    Bendtsen, Jørgen; Mortensen, John; Lennert, Kunuk; K Ehn, Jens; Boone, Wieter; Galindo, Virginie; Hu, Yu-Bin; Dmitrenko, Igor A; Kirillov, Sergei A; Kjeldsen, Kristian K; Kristoffersen, Yngve; G Barber, David; Rysgaard, Søren

    2017-07-10

    Rising temperatures in the Arctic cause accelerated mass loss from the Greenland Ice Sheet and reduced sea ice cover. Tidewater outlet glaciers represent direct connections between glaciers and the ocean where melt rates at the ice-ocean interface are influenced by ocean temperature and circulation. However, few measurements exist near outlet glaciers from the northern coast towards the Arctic Ocean that has remained nearly permanently ice covered. Here we present hydrographic measurements along the terminus of a major retreating tidewater outlet glacier from Flade Isblink Ice Cap. We show that the region is characterized by a relatively large change of the seasonal freshwater content, corresponding to ~2 m of freshwater, and that solar heating during the short open water period results in surface layer temperatures above 1 °C. Observations of temperature and salinity supported that the outlet glacier is a floating ice shelf with near-glacial subsurface temperatures at the freezing point. Melting from the surface layer significantly influenced the ice foot morphology of the glacier terminus. Hence, melting of the tidewater outlet glacier was found to be critically dependent on the retreat of sea ice adjacent to the terminus and the duration of open water.

  2. Evaluation of the most suitable threshold value for modelling snow glacier melt through T- index approach: the case study of Forni Glacier (Italian Alps)

    Science.gov (United States)

    Senese, Antonella; Maugeri, Maurizio; Vuillermoz, Elisa; Smiraglia, Claudio; Diolaiuti, Guglielmina

    2014-05-01

    Glacier melt occurs whenever the surface temperature is null (273.15 K) and the net energy budget is positive. These conditions can be assessed by analyzing meteorological and energy data acquired by a supraglacial Automatic Weather Station (AWS). In the case this latter is not present at the glacier surface the assessment of actual melting conditions and the evaluation of melt amount is difficult and degree-day (also named T-index) models are applied. These approaches require the choice of a correct temperature threshold. In fact, melt does not necessarily occur at daily air temperatures higher than 273.15 K, since it is determined by the energy budget which in turn is only indirectly affected by air temperature. This is the case of the late spring period when ablation processes start at the glacier surface thus progressively reducing snow thickness. In this study, to detect the most indicative air temperature threshold witnessing melt conditions in the April-June period, we analyzed air temperature data recorded from 2006 to 2012 by a supraglacial AWS (at 2631 m a.s.l.) on the ablation tongue of the Forni Glacier (Italy), and by a weather station located nearby the studied glacier (at Bormio, 1225 m a.s.l.). Moreover we evaluated the glacier energy budget (which gives the actual melt, Senese et al., 2012) and the snow water equivalent values during this time-frame. Then the ablation amount was estimated both from the surface energy balance (MEB from supraglacial AWS data) and from degree-day method (MT-INDEX, in this latter case applying the mean tropospheric lapse rate to temperature data acquired at Bormio changing the air temperature threshold) and the results were compared. We found that the mean tropospheric lapse rate permits a good and reliable reconstruction of daily glacier air temperature conditions and the major uncertainty in the computation of snow melt from degree-day models is driven by the choice of an appropriate air temperature threshold. Then

  3. Glaciers

    Science.gov (United States)

    Hambrey, Michael; Alean, Jürg

    2004-12-01

    Glaciers are among the most beautiful natural wonders on Earth, as well as the least known and understood, for most of us. Michael Hambrey describes how glaciers grow and decay, move and influence human civilization. Currently covering a tenth of the Earth's surface, glacier ice has shaped the landscape over millions of years by scouring away rocks and transporting and depositing debris far from its source. Glacier meltwater drives turbines and irrigates deserts, and yields mineral-rich soils as well as a wealth of valuable sand and gravel. However, glaciers also threaten human property and life. Our future is indirectly connected with the fate of glaciers and their influence on global climate and sea level. Including over 200 stunning photographs, the book takes the reader from the High-Arctic through North America, Europe, Asia, Africa, New Zealand and South America to the Antarctic. Michael Hambrey is Director of the Centre for Glaciology at the University of Wales, Aberystwyth. A past recipient of the Polar Medal, he was also given the Earth Science Editors' Outstanding Publication Award for the first edition of Glaciers (Cambridge, 1995). Hambrey is also the author of Glacial Environments (British Columbia, 1994). JÜrg Alean is Professor of Geography at the Kantonsschule ZÜrcher Unterland in BÜlach, Switzerland.

  4. Rapid melting dynamics of an alpine glacier with repeated UAV photogrammetry

    Science.gov (United States)

    Rossini, Micol; Di Mauro, Biagio; Garzonio, Roberto; Baccolo, Giovanni; Cavallini, Giuseppe; Mattavelli, Matteo; De Amicis, Mattia; Colombo, Roberto

    2018-03-01

    Glacial retreat is a major problem in the Alps, especially over the past 40 years. Unmanned aerial vehicles (UAVs) can provide an unparalleled opportunity to track the spatiotemporal variations in rapidly changing glacial morphological features related to glacial dynamics. The objective of this study is to evaluate the potential of commercial UAV platforms to detect the evolution of the surface topography and morphology of an alpine glacier over a short time scale through the repeated acquisition of high-resolution photogrammetric data. Two high-resolution UAV surveys were performed on the ablation region of the Morteratsch Glacier (Swiss Alps) in July and September 2016. First, structure-from-motion (SfM) techniques were applied to create orthophotos and digital surface models (DSMs) of the glacial surface from multi-view UAV acquisitions. The geometric accuracy of DSMs and orthophotos was checked using differential global navigation satellite system (dGNSS) ground measurements, and an accuracy of approximately 17 cm was achieved for both models. High-resolution orthophotos and DSMs made it possible to provide a detailed characterization of rapidly changing glacial environments. Comparing the data from the first and the second campaigns, the evolution of the lower part of the glacier in response to summer ablation was evaluated. Two distinct processes were revealed and accurately quantified: an average lowering of the surface, with a mean ice thinning of 4 m, and an average horizontal displacement of 3 m due to flowing ice. These data were validated through a comparison of different algorithms and approaches, which clearly showed the consistency of the results. The melt rate spatial patterns were then compared to the glacial brightness and roughness maps derived from the September UAV acquisition. The results showed that the DSM differences describing the glacial melt rates were inversely related to the glacial brightness. In contrast, a positive but weaker

  5. Sea ice breakup and marine melt of a retreating tidewater outlet glacier in northeast Greenland (81°N)

    DEFF Research Database (Denmark)

    Bendtsen, Jørgen; Mortensen, John; Lennert, Kunuk

    2017-01-01

    Rising temperatures in the Arctic cause accelerated mass loss from the Greenland Ice Sheet and reduced sea ice cover. Tidewater outlet glaciers represent direct connections between glaciers and the ocean where melt rates at the ice-ocean interface are influenced by ocean temperature and circulation....... However, few measurements exist near outlet glaciers from the northern coast towards the Arctic Ocean that has remained nearly permanently ice covered. Here we present hydrographic measurements along the terminus of a major retreating tidewater outlet glacier from Flade Isblink Ice Cap. We show...... that the region is characterized by a relatively large change of the seasonal freshwater content, corresponding to ∼2 m of freshwater, and that solar heating during the short open water period results in surface layer temperatures above 1 °C. Observations of temperature and salinity supported that the outlet...

  6. Post-depositional enrichment of black soot in snow-pack and accelerated melting of Tibetan glaciers

    International Nuclear Information System (INIS)

    Xu Baiqing; Joswiak, Daniel R; Zhao Huabiao; Cao Junji; Liu Xianqin; He Jianqiao

    2012-01-01

    The post-depositional enrichment of black soot in snow-pack was investigated by measuring the redistribution of black soot along monthly snow-pits on a Tien Shan glacier. The one-year experiment revealed that black soot was greatly enriched, defined as the ratio of concentration to original snow concentration, in the unmelted snow-pack by at least an order of magnitude. Greatest soot enrichment was observed in the surface snow and the lower firn-pack within the melt season percolation zone. Black carbon (BC) concentrations as high as 400 ng g −1 in the summer surface snow indicate that soot can significantly contribute to glacier melt. BC concentrations reaching 3000 ng g −1 in the bottom portion of the firn pit are especially concerning given the expected equilibrium-line altitude (ELA) rise associated with future climatic warming, which would expose the dirty underlying firn and ice. Since most of the accumulation area on Tibetan glaciers is within the percolation zone where snow densification is characterized by melting and refreezing, the enrichment of black soot in the snow-pack is of foremost importance. Results suggest the effect of black soot on glacier melting may currently be underestimated. (letter)

  7. Relationship between glacier melting and atmospheric circulation in the southeast Siberia

    Science.gov (United States)

    Osipova, O. P.; Osipov, E. Y.

    2018-01-01

    The interaction between climate and cryosphere is a key issue in recent years. Changes in surface mass balance of mountain glaciers closely correspond to differential changes in atmospheric circulation. Mountain glaciers in southeast Siberia located on East Sayan, Baikalsky and Kodar ridges have been continuously shrinking since the end of the Little Ice Age. In this study we used daily synoptic weather maps (Irkutsk Center of Hydrometeorology and Environmental Monitoring), 500 hPa, 700 hPa and 850 hPa geopotential height and air temperature data of NCEP/NCAR reanalysis to assess relationships between atmospheric circulation patterns and the sum of positive temperature (SPT), a predictor of summer ice/snow ablation. Results show that increased SPT (ablation) is generally associated with anticyclones and anticyclonic pressure fields (with cloudless weather conditions) and warm atmospheric fronts. Decreased SPT (ablation) is strongly correlated with cyclones and cyclonic type pressure fields, cold atmospheric fronts and air advections. Significant correlations have been found between ablation and cyclonic/anticyclonic activity. Revealed decreasing trends in the SPT in three glaciarized ridges at the beginning of the 21st century led to changes of air temperature and snow/ice melt climates.

  8. A short-term experiment on sub-debris melt on highly maritime Franz Josef Glacier, Southern Alps, New Zealand

    Science.gov (United States)

    Hagg, Wilfried; Brook, Martin; Mayer, Christoph; Winkler, Stefan

    2013-04-01

    Melt rates of glacier ice underneath a debris cover are dependent on the energy transfer through the debris cover. The effective heat conduction through the debris material wich is the major source of melt energy might be influenced by a number of processes, like air or water advection in the pore space of the debris material. In order to examine the potential contribution of individual parameters on ice melt we placed an ablation stake into a hand-drilled hole below 24 cm of supraglacial debris cover on the lower part of Franz Josef Glacier. Three thermistors were installed at the stake at depths of 6 cm, 12 cm and 18 cm below the debris surface, ensuring equal vertical distances between debris surface, individual thermistors and the debris-ice interface. The results show the expected and distinct diurnal temperature variation and a decreasing amplitude with depth. Melt rates were calculated assuming that conductive heat flux is the only energy source. Although heavy precipitation occurred on one day during the experiment, the observed melt agreed well with calculated values for dry conditions. This suggests that even in this highly maritime environment, additional energy provided by percolating rain is of minor importance for sub-debris melt. As a consequence, ablation beneath debris is mainly controlled by sensible heat flux and shortwave radiation. Both factors are closely related to air temperature. This is probably one reason why air temperature is a strong predictor of melt under debris and the degree day approach usually works well also for debris covered glacier parts. These findings will be of importance in the future with larger proportions of the glacier tongue expected to become successively covered by debris

  9. 3D modeling of continuous retreat of Thwaites Glacier, West Antarctica, under enhanced basal melting

    Science.gov (United States)

    Yu, H.; Rignot, E. J.; Seroussi, H. L.; Morlighem, M.

    2017-12-01

    Thwaites Glacier (TG) is the broadest and second largest ice stream in West Antarctica. Satellite observations have revealed rapid grounding line retreat and mass loss of TG in the past few decades, which has been attributed to enhanced ocean heat advection in the Amundsen Sea Embayment. As TG is resting on a retrograde bed, it has the potential to rapidly collapse according to the marine ice sheet instability theory. Here, we use the UCI/JPL Ice Sheet System Model (ISSM) to simulate the grounding line migration and mass loss of TG for the next 100 years in response to enhanced basal melting. Three models with varying levels of complexity (full-Stokes, higher-order and shallow-shelf approximation) are used and basal melt rate under ice shelf is parameterized as a function of depth. We show that the grounding line of TG will retreat rapidly along the eastern side of the glacier at a speed of 500-1000 m/yr while it will remain relatively stable on the western side due to the presence of a subglacial ridge. TG will continue to lose mass at a rapid rate (50-100 Gt/yr). If the grounding line retreats over this subglacial ridge, the retreat will become unstoppable. We also show that the full-Stokes model exhibits a higher rate of retreat than other models ( 10%). The difference is more significant when the grounding line is on a subglacial ridge, when full-Stokes can retreat over the ridge decades ahead of other models.This work has been performed at UC Irvine and Caltech's Jet Propulsion Laboratory under a contract with NASA's Cryospheric Science Program

  10. Tracer and hydrometric techniques to determine the contribution of glacier melt to a proglacial stream in the Ötztal Alps (Tyrol, Austria)

    Science.gov (United States)

    Schmieder, Jan; Marke, Thomas; Strasser, Ulrich

    2016-04-01

    Glaciers are important seasonal water contributors in many mountainous landscapes. For water resources management it is important to know about the timing and amount of released glacier melt water, especially in downstream regions where the water is needed (hydropower, drinking water) or where it represents a potential risk (drought, flood). Seasonal availability of melt water is strongly dependent on boundary layer atmospheric processes and becomes even more relevant in a changing climate. Environmental tracers are a useful tool in the assessment of snow and ice water resources, because they provide information about the sources, flow paths and traveling times of water contributing to streamflow at the catchment scale. Previously, high-elevation tracer studies throughout the Alps have been scarce as they require intense field work in remote areas. However, hydrometric and meteorological measurements combined with tracer analyses help to unravel streamflow composition and improve the understanding of hydroclimatological processes. On top of that, empirical studies are necessary to parameterize and validate hydrological models in more process-oriented ways, rather than comparing total measured and simulated runoff only. In the present study three approaches are applied to derive glacier melt contributions to a proglacial stream at the seasonal scale and to identify their individual advances and limitations. Tracers used for each approach are (1) electrical conductivity, (2) stable isotopes of water and (3) heavy metals. The field work was conducted during the summer of 2015 in the glaciated (35%) high-elevation catchment of the Hochjochbach, a small sub-basin (17 km²) of the Ötztaler Ache river in the Austrian Alps, ranging from 2400 to 3500 m.a.s.l. in elevation. Hydroclimatological data was provided by an automatic weather station and a gauging station equipped with a pressure transducer. Water samples from shallow groundwater, streamflow, glacier and snow melt

  11. Assessing the Climate Change Impact on Snow-Glacier Melting Dominated Basins in the Greater Himalaya Region Using a Distributed Glacio-Hydrologic Model

    Science.gov (United States)

    Wi, S.; Yang, Y. C. E.; Khalil, A.

    2014-12-01

    Glacier and snow melting is main source of water supply making a large contribution to streamflow of major river basins in the Greater Himalaya region including the Syr Darya, the Amu Darya, the Indus, the Ganges and the Brahmaputra basins. Due to the critical role of glacier and snow melting as water supply for both food production and hydropower generation in the region (especially during the low flow season), it is important to evaluate the vulnerability of snow and glacier melting streamflow to different climate conditions. In this study, a distributed glacio-hydrologic model with high resolution climate input is developed and calibrated that explicitly simulates all major hydrological processes and the glacier and snow dynamics for area further discretized by elevation bands. The distributed modeling structure and the glacier and snow modules provide a better understanding about how temperature and precipitation alterations are likely to affect current glacier ice reserves. Climate stress test is used to explore changes in the total streamflow change, snow/glacier melting contribution and glacier accumulation and ablation under a variety of different temperature and precipitation conditions. The latest future climate projections provided from the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) is used to inform the possibility of different climate conditions.

  12. The effect of impurities on the surface melt of a glacier in the Suntar Khayata Mountain Range, Russian Siberia

    Directory of Open Access Journals (Sweden)

    Nozomu eTakeuchi

    2015-12-01

    Full Text Available We investigated characteristics of impurities and their impact on the ablation of Glacier No.31 in the Suntar-Khayata Mountain Range in Russian Siberia during summer 2014. Positive degree-day factors (PDDFs obtained from 20 stake measurements distributed across the glacier’s ablation area varied from 3.00 to 8.55 mm w.e. K-1 day-1. The surface reflectivity measured with a spectrometer as a proxy for albedo, ranged from 0.09 to 0.62, and was negatively correlated with the PDDF, suggesting that glacier ablation is controlled by surface albedo on the studied glacier. Mass of total insoluble impurities on the ice surface varied from 0.1 to 45.2 g m-2 and was not correlated with surface reflectivity, suggesting that albedo is not directly conditioned by the mass of the impurities. Microscopy of impurities revealed that they comprised mineral particles, cryoconite granules, and ice algal cells filled with dark-reddish pigments (Ancylonema nordenskioldii. There was a significant negative correlation between surface reflectivity and algal biomass or organic matter, suggesting that the ice algae and their products are the most effective constituents in defining glacier surface albedo. Our results suggest that the melting of ice surface was enhanced by the growth of ice algae, which increased the melting rate 1.6 - 2.6 times greater than that of the impurity free bare-ice.

  13. Recent Basal Melting of a Mid-Latitude Glacier on Mars

    Science.gov (United States)

    Butcher, Frances E. G.; Balme, M. R.; Gallagher, C.; Arnold, N. S.; Conway, S. J.; Hagermann, A.; Lewis, S. R.

    2017-12-01

    Evidence for past basal melting of young (late Amazonian-aged), debris-covered glaciers in Mars' mid-latitudes is extremely rare. Thus, it is widely thought that these viscous flow features (VFFs) have been perennially frozen to their beds. We identify an instance of recent, localized wet-based mid-latitude glaciation, evidenced by a candidate esker emerging from a VFF in a tectonic rift in Tempe Terra. Eskers are sedimentary ridges deposited in ice-walled meltwater conduits and are indicative of glacial melting. We compare the candidate esker to terrestrial analogues, present a geomorphic map of landforms in the rift, and develop a landsystem model to explain their formation. We propose that the candidate esker formed during a transient phase of wet-based glaciation. We then consider the similarity between the geologic setting of the new candidate esker and that of the only other candidate esker to be identified in association with an existing mid-latitude VFF; both are within tectonic graben/rifts proximal to volcanic provinces. Finally, we calculate potential basal temperatures for a range of VFF thicknesses, driving stresses, mean annual surface temperatures, and geothermal heat fluxes, which unlike previous studies, include the possible role of internal strain heating. Strain heating can form an important additional heat source, especially in flow convergence zones, or where ice is warmer due to elevated surface temperatures or geothermal heat flux. Elevated geothermal heat flux within rifts, perhaps combined with locally-elevated strain heating, may have permitted wet-based glaciation during the late Amazonian, when cold climates precluded more extensive wet-based glaciation on Mars.

  14. A preliminary assessment of glacier melt-model parameter sensitivity and transferability in a dry subarctic environment

    Directory of Open Access Journals (Sweden)

    A. H. MacDougall

    2011-11-01

    Full Text Available Efforts to project the long-term melt of mountain glaciers and ice-caps require that melt models developed and calibrated for well studied locations be transferable over large regions. Here we assess the sensitivity and transferability of parameters within several commonly used melt models for two proximal sites in a dry subarctic environment of northwestern Canada. The models range in complexity from a classical degree-day model to a simplified energy-balance model. Parameter sensitivity is first evaluated by tuning the melt models to the output of an energy balance model forced with idealized inputs. This exercise allows us to explore parameter sensitivity both to glacier geometric attributes and surface characteristics, as well as to meteorological conditions. We then investigate the effect of model tuning with different statistics, including a weighted coefficient of determination (wR2, the Nash-Sutcliffe efficiency criterion (E, mean absolute error (MAE and root mean squared error (RMSE. Finally we examine model parameter transferability between two neighbouring glaciers over two melt seasons using mass balance data collected in the St. Elias Mountains of the southwest Yukon. The temperature-index model parameters appear generally sensitive to glacier aspect, mean surface elevation, albedo, wind speed, mean annual temperature and temperature lapse rate. The simplified energy balance model parameters are sensitive primarily to snow albedo. Model tuning with E, MAE and RMSE produces similar, or in some cases identical, parameter values. In twelve tests of spatial and/or temporal parameter transferability, the results with the lowest RMSE values with respect to ablation stake measurements were achieved twice with a classical temperature-index (degree-day model, three times with a temperature-index model in which the melt parameter is a function of potential radiation, and seven times with a simplified energy

  15. Ice-Shelf Melt Response to Changing Winds and Glacier Dynamics in the Amundsen Sea Sector, Antarctica

    Science.gov (United States)

    Donat-Magnin, Marion; Jourdain, Nicolas C.; Spence, Paul; Le Sommer, Julien; Gallée, Hubert; Durand, Gaël.

    2017-12-01

    It has been suggested that the coastal Southern Ocean subsurface may warm over the 21st century in response to strengthening and poleward shifting winds, with potential adverse effects on West Antarctic glaciers. However, using a 1/12° ocean regional model that includes ice-shelf cavities, we find a more complex response to changing winds in the Amundsen Sea. Simulated offshore subsurface waters get colder under strengthened and poleward shifted winds representative of the SAM projected trend. The buoyancy-driven circulation induced by ice-shelf melt transports this cold offshore anomaly onto the continental shelf, leading to cooling and decreased melt below 450 m. In the vicinity of ice-shelf fronts, Ekman pumping contributes to raise the isotherms in response to changing winds. This effect overwhelms the horizontal transport of colder offshore waters at intermediate depths (between 200 and 450 m), and therefore increases melt rates in the upper part of the ice-shelf cavities, which reinforces the buoyancy-driven circulation and further contributes to raise the isotherms. Then, prescribing an extreme grounding line retreat projected for 2100, the total melt rates simulated underneath Thwaites and Pine Island are multiplied by 2.5. Such increase is explained by a larger ocean/ice interface exposed to CDW, which is then amplified by a stronger melt-induced circulation along the ice draft. Our main conclusions are that (1) outputs from ocean models that do not represent ice shelf cavities (e.g., CMIP5 models) should not be directly used to predict the thermal forcing of future ice shelf cavities; (2) coupled ocean/ice sheet models with a velocity-dependent melt formulation are needed for future projections of glaciers experiencing a significant grounding line retreat.

  16. Insights into mercury deposition and spatiotemporal variation in the glacier and melt water from the central Tibetan Plateau.

    Science.gov (United States)

    Paudyal, Rukumesh; Kang, Shichang; Huang, Jie; Tripathee, Lekhendra; Zhang, Qianggong; Li, Xiaofei; Guo, Junming; Sun, Shiwei; He, Xiaobo; Sillanpää, Mika

    2017-12-01

    Long-term monitoring of global pollutant such as Mercury (Hg) in the cryosphere is very essential for understanding its bio-geochemical cycling and impacts in the pristine environment with limited emission sources. Therefore, from May 2015 to Oct 2015, surface snow and snow-pits from Xiao Dongkemadi Glacier and glacier melt water were sampled along an elevation transect from 5410 to 5678m a.s.l. in the central Tibetan Plateau (TP). The concentration of Hg in surface snow was observed to be higher than that from other parts of the TP. Unlike the southern parts of the TP, no clear altitudinal variation was observed in the central TP. The peak Total Hg (Hg T ) concentration over the vertical profile on the snow pits corresponded with a distinct yellowish-brown dust layer supporting the fact that most of the Hg was associated with particulate matter. It was observed that only 34% of Hg in snow was lost when the surface snow was exposed to sunlight indicating that the surface snow is less influenced by the post-depositional process. Significant diurnal variation of Hg T concentration was observed in the river water, with highest concentration observed at 7pm when the discharge was highest and lowest concentration during 7-8am when the discharge was lowest. Such results suggest that the rate of discharge was influential in the concentration of Hg T in the glacier fed rivers of the TP. The estimated export of Hg T from Dongkemadi river basin is 747.43gyr -1 , which is quite high compared to other glaciers in the TP. Therefore, the export of global contaminant Hg might play enhanced role in the Alpine regions as these glaciers are retreating at an alarming rate under global warming which may have adverse impact on the ecosystem and the human health of the region. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. New evidence for geothermal controls upon recent basal melting of mid-latitude glaciers on Mars

    Science.gov (United States)

    Butcher, Frances; Gallagher, Colman; Arnold, Neil; Balme, Matthew; Conway, Susan; Lewis, Stephen; Hagerman, Axel

    2017-04-01

    Diagnostic evidence for past melting of putative debris-covered glaciers (DCGs) in Mars' mid-latitudes [e.g. 1-2] is extremely rare. As such, it is widely believed that these DCGs have been perennially frozen to their beds in cold-based thermal regimes [e.g. 3] since their formation 40 Ma to 1 Ga [4-8]. Here, we present a geomorphic map and propose a landsystem model that challenges this paradigm. We identify a sinuous ridge emerging from the terminus of a DCG in the broad rift zone NE of the Tharsis volcanic province. We interpret this ridge as an esker formed by deposition of sediment within a subglacial meltwater conduit. This is only the second esker-like ridge to be identified in association with a mid-latitude DCG. Recent work [9] identified a complex of esker-like ridges on the foreland of an extant DCG in Phlegra Montes, for which high-resolution analysis is ongoing [10]. Significantly, both candidate eskers are located within graben. Graben are topographic troughs formed by crustal extension and are commonly associated with elevated geothermal heat flux [e.g. 11]. A paucity of meltwater morphologies associated with DCGs elsewhere in Mars' mid-latitudes implies that atmospheric warming alone was insufficient for widespread basal melting. We argue that, during deglaciation, atmospheric warming supplemented enhanced geothermal heat flux within graben such that the basal temperature threshold for basal melting of DCGs was surpassed in these locations [9]. This has implications for the search for recent life on Mars, as it helps constrain the likely regions of recent meltwater production within protected subglacial environments. As eskers are exposed relicts of subglacial drainage systems, they are accessible to landed missions without the high-risk requirement to drill through remnant decametre-thick debris-mantled ice. FEGB is funded by STFC grant ST/N50421X/1 [1] Head, J.W. et al. (2010), Earth Planet. Sc. Lett. 294, 306-320. [2] Levy, J.S. et al. (2014), J

  18. Microbial processes in glaciers and permafrost. A literature study on microbiology affecting groundwater at ice sheet melting

    International Nuclear Information System (INIS)

    Hallbeck, Lotta

    2009-10-01

    A repository for spent nuclear fuel will remain for hundred thousands of years. During this period, several ice ages will most likely take place. To understand the effect of melt water from ice sheets on the repository, the microbiological processes of oxygen reduction has to be elucidated. This report is a compilation of the present knowledge about biological activity in glacier environments. These environments consist of many different parts which have their own biological character depending on the prevailing physical and chemical conditions. There are, for example, ice sheets and glaciers, glacial streams and rivers, soil and water beneath the ice, soil and water in front of and beside ice sheets and glacier and deep groundwater beneath the ice. The microbiological processes of importance are consumption of oxygen by aerobic microorganisms, anaerobic organisms and their reduced metabolites, like sulphide, acetate and methane, which can act as reducing agents in biological or chemical oxygen reduction. The lithotrophic type (inorganic energy source) of metabolism is important in these cold environments. There are also microbiological processes important to radionuclide transport and the production of complexing agents, biological colloids and biofilms. The study of microbial processes in glacier and ice sheet environments is still a young scientific niche. The studies have so far mostly been concentrated to ice surfaces and the subglacial environment. The most important findings from the literature study are as follows. Primary production is ongoing in snow cover and on ice surfaces of glaciers and ice sheets. The production is dependent on the location, because of temperature and solar radiation, but also on the prevailing state of the glacier. On surfaces and in the snow cover, heterotrophic microorganisms consume oxygen and organic material. In surface ice structures anaerobic conditions may occur. The subglacial environment is very active with several types

  19. Microbial processes in glaciers and permafrost. A literature study on microbiology affecting groundwater at ice sheet melting

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta (Microbial Analytics Sweden AB, Moelnlycke (Sweden))

    2009-10-15

    A repository for spent nuclear fuel will remain for hundred thousands of years. During this period, several ice ages will most likely take place. To understand the effect of melt water from ice sheets on the repository, the microbiological processes of oxygen reduction has to be elucidated. This report is a compilation of the present knowledge about biological activity in glacier environments. These environments consist of many different parts which have their own biological character depending on the prevailing physical and chemical conditions. There are, for example, ice sheets and glaciers, glacial streams and rivers, soil and water beneath the ice, soil and water in front of and beside ice sheets and glacier and deep groundwater beneath the ice. The microbiological processes of importance are consumption of oxygen by aerobic microorganisms, anaerobic organisms and their reduced metabolites, like sulphide, acetate and methane, which can act as reducing agents in biological or chemical oxygen reduction. The lithotrophic type (inorganic energy source) of metabolism is important in these cold environments. There are also microbiological processes important to radionuclide transport and the production of complexing agents, biological colloids and biofilms. The study of microbial processes in glacier and ice sheet environments is still a young scientific niche. The studies have so far mostly been concentrated to ice surfaces and the subglacial environment. The most important findings from the literature study are as follows. Primary production is ongoing in snow cover and on ice surfaces of glaciers and ice sheets. The production is dependent on the location, because of temperature and solar radiation, but also on the prevailing state of the glacier. On surfaces and in the snow cover, heterotrophic microorganisms consume oxygen and organic material. In surface ice structures anaerobic conditions may occur. The subglacial environment is very active with several types

  20. Glacier melting during lava dome growth at Nevado de Toluca volcano (Mexico): Evidences of a major threat before main eruptive phases at ice-caped volcanoes

    Science.gov (United States)

    Capra, L.; Roverato, M.; Groppelli, G.; Caballero, L.; Sulpizio, R.; Norini, G.

    2015-03-01

    Nevado de Toluca volcano is one of the largest stratovolcanoes in the Trans-Mexican Volcanic Belt. During Late Pleistocene its activity was characterized by large dome growth and subsequent collapse emplacing large block and ash flow deposits, intercalated by Plinian eruptions. Morphological and paleoclimate studies at Nevado de Toluca and the surrounding area evidenced that the volcano was affected by extensive glaciation during Late Pleistocene and Holocene. During the older recognized glacial period (27-60 ka, MIS 3), the glacier was disturbed by the intense magmatic and hydrothermal activity related to two dome extrusion episodes (at 37 ka and 28 ka). Glacier reconstruction indicates maximum ice thickness of 90 m along main valleys, as at the Cano ravines, the major glacial valley on the northern slope of the volcano. Along this ravine, both 37 and 28 ka block-and-ash deposits are exposed, and they directly overlay a fluviatile sequence, up to 40 m-thick, which 14C ages clearly indicate that their emplacement occurred just before the dome collapsed. These evidences point to a clear interaction between the growing dome and its hydrothermal system with the glacier. During dome growth, a large amount of melting water was released along major glacial valleys forming thick fluvioglacial sequences that were subsequently covered by the block-and-ash flow deposits generated by the collapse of the growing dome. Even though this scenario is no longer possible at the Nevado de Toluca volcano, the data presented here indicate that special attention should be paid to the possible inundation areas from fluviatile/lahar activity prior to the main magmatic eruption at ice-capped volcanoes.

  1. EVALUATION OF GLACIER MELT CONTRIBUTION TO RUNOFF IN THE NORTH CAUCASUS ALPINE CATCHMENTS USING ISOTOPIC METHODS AND ENERGY BALANCE MODELING

    Directory of Open Access Journals (Sweden)

    E. Rets

    2017-01-01

    Full Text Available Frequency and intensity of river floods rise observed in the North Caucasus during last decades is considered to be driven by recent climate change. In order to predict possible future trends in extreme hydrological events in the context of climate change, it is essential to estimate the contribution of different feed sources in complicated flow-forming processes in the alpine part of the North Caucasus. A study was carried out for the Djankuat River basin, the representative for the North Caucasus system. Simultaneous measurements of electrical conductivity, isotopic and ion balance equations, and energy balance modeling of ice and snow melt were used to evaluate the contribution of different sources and processes in the Djankuat River runoff regime formation. A forecast of possible future changes in the Djankuat glacier melting regime according to the predicted climate changes was done.

  2. Melting Himalayan glaciers contaminated by legacy atmospheric depositions are important sources of PCBs and high-molecular-weight PAHs for the Ganges floodplain during dry periods.

    Science.gov (United States)

    Sharma, Brij Mohan; Nizzetto, Luca; Bharat, Girija K; Tayal, Shresth; Melymuk, Lisa; Sáňka, Ondřej; Přibylová, Petra; Audy, Ondřej; Larssen, Thorjørn

    2015-11-01

    Melting glaciers are natural redistributors of legacy airborne pollutants, affecting exposure of pristine proglacial environments. Our data shows that melting Himalayan glaciers can be major contributors of polychlorinated biphenyls (PCBs) and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) for surface water in the Gangetic Plain during the dry season. Glacial emissions can exceed in some cases inputs from diffuse sources within the catchment. We analyzed air, deposition and river water in several sections along the Ganges River and its major headwaters. The predominant glacial origin of these contaminants in the Himalayan reach was demonstrated using air-water fugacity ratios and mass balance analysis. The proportion of meltwater emissions compared to pollutant discharge at downstream sections in the central part of the Gangetic Plain was between 2 and 200%. By remobilizing legacy pollutants from melting glaciers, climate change can enhance exposure levels over large and already heavily impacted regions of Northern India. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. On the influence of debris in glacier melt modelling: a new temperature-index model accounting for the debris thickness feedback

    Science.gov (United States)

    Carenzo, Marco; Mabillard, Johan; Pellicciotti, Francesca; Reid, Tim; Brock, Ben; Burlando, Paolo

    2013-04-01

    The increase of rockfalls from the surrounding slopes and of englacial melt-out material has led to an increase of the debris cover extent on Alpine glaciers. In recent years, distributed debris energy-balance models have been developed to account for the melt rate enhancing/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya. Some of the input data such as wind or temperature are also of difficult extrapolation from station measurements. Due to their lower data requirement, empirical models have been used in glacier melt modelling. However, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of debris thickness on melt. In this paper, we present a new temperature-index model accounting for the debris thickness feedback in the computation of melt rates at the debris-ice interface. The empirical parameters (temperature factor, shortwave radiation factor, and lag factor accounting for the energy transfer through the debris layer) are optimized at the point scale for several debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter has been validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. The new model is developed on Miage Glacier, Italy, a debris cover glacier in which the ablation area is mantled in near-continuous layer of rock. Subsequently, its transferability is tested on Haut Glacier d'Arolla, Switzerland, where debris is thinner and its extension has been seen to expand in the last decades. The results show that the performance of the new debris temperature-index model (DETI) in simulating the glacier melt rate at the point scale

  4. An Integrated Modeling System for Estimating Glacier and Snow Melt Driven Streamflow from Remote Sensing and Earth System Data Products in the Himalayas

    Science.gov (United States)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Sen Gupta, A.; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.

    2014-01-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (Geo- SFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification

  5. Glacier surface melt characterization and trend analysis (1992-2011) in the Russian High Arctic from combined resolution-enhanced scatterometer and passive microwave data

    Science.gov (United States)

    Zhao, M.; Ramage, J. M.; Semmens, K. A.

    2012-12-01

    Global warming has been pronounced in the remote glacierized archipelagoes (Severnaya Zemlya, Novaya Zemlya and Franz Josef Land) of the Russian High Arctic (RHA) and its effect on the low altitude, high latitude small ice caps needs examination. The timing and spatial variability of snow melt onset, duration and intensity are key factors influencing mass balance and the ice marginal hydrological system as well as important indicators of glacial response to anthropogenic and natural forcings. Characterization and trend analysis of RHA glacier melt behaviors provide insight about assessing the mass loss rate under recent Arctic climate change. However, due to the harsh environment, long term records of glaciological data for RHA are limited, necessitating the application of remotely sensed data to accomplish the research. The high sensitivity to liquid water and the ability to penetrate non-precipitating clouds enables microwave remote sensing to detect glacier surface melt. The appearance of melt water in snow dramatically decreases the returned scatterometer radar signal from active microwave sensors and sharply augments passive microwave emission. Based on this feature, we combined resolution-enhanced ERS-1/2 C-band (1992-2000), QuickSCAT Ku-band (2000-2009), ASCAT C-band (2009-2011) scatterometer data and SSMI 37 GHz (1995-2007) vertically polarized passive microwave products from Brigham Young University and analyzed glacier surface melt trends from 1992 to 2011 with a spatial resolution downscaled to 4.45km. We concatenated scatterometer derived melt behaviors by overlapping years and refined the results based on passive microwave data. Cross-validation shows that melt timing to be consistent between the active and passive sensors. Trend analysis (α < 0.005) reveals that the average glacier surface melt onset date occurs earlier by approximately 0.85 days/year in Severnaya Zemlya which outpaced the mean advancing rate in the pan-Arctic. Surrounded by ocean

  6. Influence of spatial discretization, underground water storage and glacier melt on a physically-based hydrological model of the Upper Durance River basin

    Science.gov (United States)

    Lafaysse, M.; Hingray, B.; Etchevers, P.; Martin, E.; Obled, C.

    2011-06-01

    SummaryThe SAFRAN-ISBA-MODCOU hydrological model ( Habets et al., 2008) presents severe limitations for alpine catchments. Here we propose possible model adaptations. For the catchment discretization, Relatively Homogeneous Hydrological Units (RHHUs) are used instead of the classical 8 km square grid. They are defined from the dilineation of hydrological subbasins, elevation bands, and aspect classes. Glacierized and non-glacierized areas are also treated separately. In addition, new modules are included in the model for the simulation of glacier melt, and retention of underground water. The improvement resulting from each model modification is analysed for the Upper Durance basin. RHHUs allow the model to better account for the high spatial variability of the hydrological processes (e.g. snow cover). The timing and the intensity of the spring snowmelt floods are significantly improved owing to the representation of water retention by aquifers. Despite the relatively small area covered by glaciers, accounting for glacier melt is necessary for simulating the late summer low flows. The modified model is robust over a long simulation period and it produces a good reproduction of the intra and interannual variability of discharge, which is a necessary condition for its application in a modified climate context.

  7. Diclofenac sodium sustained release hot melt extruded lipid matrices.

    Science.gov (United States)

    Vithani, K; Cuppok, Y; Mostafa, S; Slipper, I J; Snowden, M J; Douroumis, D

    2014-08-01

    Sustained release diclofenac sodium (Df-Na) solid lipid matrices with Compritol® 888 ATO were developed in this study. The drug/lipid powders were processed via cold and hot melt extrusion at various drug loadings. The influence of the processing temperatures, drug loading and the addition of excipients on the obtained dissolution rates was investigated. The physicochemical characterization of the extruded batches showed the existence of crystalline drug in the extrudates with a small amount being solubilized in the lipid matrix. The drug content and uniformity on the tablet surface were also investigated by using energy dispersive X-ray microanalysis. The dissolution rates were found to depend on the actual Df-Na loading and the nature of the added excipients, while the effect of the processing temperatures was negligible. The dissolution mechanism of all extruded formulations followed Peppas-Korsemeyer law, based on the estimated determination coefficients and the dissolution constant rates, indicating drug diffusion from the lipid matrices.

  8. Patterns of glacier ablation across North-Central Chile: Identifying the limits of empirical melt models under sublimation-favorable conditions

    Science.gov (United States)

    Ayala, A.; Pellicciotti, F.; MacDonell, S.; McPhee, J.; Burlando, P.

    2017-07-01

    We investigate the energy balance and ablation regimes of glaciers in high-elevation, dry environments using glaciometeorological data collected on six glaciers in the semiarid Andes of North-Central Chile (29-34°S, 3127-5324 m). We use a point-scale physically based energy balance (EB) model and an enhanced Temperature-Index (ETI) model that calculates melt rates only as a function of air temperature and net shortwave radiation. At all sites, the largest energy inputs are net shortwave and incoming longwave radiation, which are controlled by surface albedo and elevation, respectively. Turbulent fluxes cancel each other out at the lower sites, but as elevation increases, cold, dry and wind-exposed conditions increase the magnitude of negative latent heat fluxes, associated with large surface sublimation rates. In midsummer (January), ablation rates vary from 67.9 mm w.e. d-1 at the lowest site (˜100% corresponding to melt), to 2.3 mm w.e. d-1 at the highest site (>85% corresponding to surface sublimation). At low-elevation, low-albedo, melt-dominated sites, the ETI model correctly reproduces melt using a large range of possible parameters, but both the performance and parameter transferability decrease with elevation for two main reasons: (i) the air temperature threshold approach for melt onset does not capture the diurnal variability of melt in cold and strong irradiated environments and (ii) energy losses decrease the correlation between melt and net shortwave radiation. We summarize our results by means of an elevation profile of ablation components that can be used as reference in future studies of glacier ablation in the semiarid Andes.

  9. Integrated simulation of snow and glacier melt runoff in a distributed biosphere hydrological modeling framework at Upper Indus Basin, Karakoram region

    Science.gov (United States)

    Shrestha, M.; Koike, T.; Xue, Y.; Wang, L.; Hirabayashi, Y.

    2014-12-01

    High mountain river basins in Hindukush Karakoram and Himalaya (HKH) regions are considered as 'water towers' of Asia with abundant source of fresh water as snow and glaciers. Upper Indus basin is one of the mega scale river basin in HKH region where snow and glaciermelt runoff is the major contributor to the annual runoff. The hostile climate, remote and extreme rough topography imposes many restraints regarding hydro-meteorological and glaciological observations, leading towards limited understanding of hydrological processes of river basins in this region. It is vital to integrate snow and glacier melt processes in a distributed biosphere hydrological framework to estimate the snow and glacier melt runoff and to quantify the river flow composition (snowmelt, glacier melt and rainfall contribution). An integrated system of distributed biosphere hydrological modeling framework with multilayer energy balance based snow and glaciermelt runoff schemes (WEB-DHM-S model) was implemented at Upper Indus basin (207300 km2) with a spatial resolution of 1 km and temporal resolution of an hour. Model input were meteorological forcing from Global Land Data Assimilation System (GLDAS), APHRODITE precipitation and de-trended gridded air temperature from observations. Simulations were carried out for two hydrological years (2002-2003). Discharge simulation results at multiple gauges showed good agreement with the observed one having Nash efficiency at 0.86. The spatial distribution of snow cover is simulated well as compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) derived eight-day maximum snow-cover extent data (MOD10A2). Model accuracy, overestimation error and underestimation error in snow cover simulation were obtained at 78%, 7% and 15% respectively. Uncertainty in precipitation was the main reason for the biases in seasonal variation of snow pixel errors. The model demonstrated its sound capability in comprehensive simulation of discharge with its flow

  10. Computer study the oxygen release from Al melts

    Science.gov (United States)

    Y Galashev, Alexander; Rakhmanova, Oksana R.

    2018-02-01

    The behavior of oxygen ions in the Al melts under action of a constant electric field was studied by molecular dynamics. The rate of O2‑ ions moving up from the cathode to the melt surface increases. The time of the first ion reaching the surface decreases with increase in O2‑ concentration. The Al and O2‑ self-diffusion coefficients increase with increasing concentration of ions in the system. The structure of the neighborhood of oxygen ions was studied in detail by statistical geometry. The distributions of truncated Voronoi polyhedra according to the number of faces and of faces according to the number of sides were determined. Simplified polyhedra were obtained after elimination of small-scale thermal fluctuations from the model. The picture of the oxygen ions final location can vary greatly depending on the boundary conditions and their application sequence.

  11. Spatiotemporal variability of oxygen isotope compositions in three contrasting glacier river catchments in Greenland

    DEFF Research Database (Denmark)

    Knudsen, N. Tvis; Yde, J.C.; Steffensen, J.P.

    2015-01-01

    Analysis of stable oxygen isotope (δ18O) characteristics is a useful tool to investigate water provenance in glacier river systems. In order to attain knowledge on the diversity of spatio-temporal δ18O variations in glacier rivers, we have examined three glacierized catchments in Greenland...... composition is controlled by the proportion between snowmelt and ice melt with episodic inputs of rainwater and occasional storage and release of a specific water component due to changes in the subglacial drainage system. At Kuannersuit Glacier River on the island Qeqertarsuaq, the δ18O characteristics were...... sampling indicates that during the early melt season most of the river water (64–73 %) derived from the Qinnguata Kuussua tributary, whereas the water flow on 23 July 2009 was dominated by bulk meltwater from the Akuliarusiarsuup Kuua tributary (where 7 and 67 % originated from the Russell Glacier...

  12. Thermal structure of Rikha Samba glacier, Nepal Himalayas

    Science.gov (United States)

    Sinisalo, A. K.; Fujita, K.; Zwinger, T.; Maharjan, S. B.; Gustafsson, J. M.; Joshi, S.; Stumm, D.; Litt, M.; Fukuda, T.

    2016-12-01

    Little is known about thermal regimes of Himalayan glaciers due to the challenges related to the field work in these remote, high altitudes areas. Thermal regimes defined by the environmental setting and the dynamics of the glacier are important since they can impact the glacier's melt response to climate changes and thus, the future discharge of glacier-fed catchments. In this study, we present ground penetrating radar (GPR) data analysis from Rikha Samba, a medium size glacier (5.5 km2) in central Nepal with an elevation range from 5380 to 6560 m a.s.l. We combine GPR data from two field campaigns carried out in 2010 and 2015, measured with center frequencies of 5 MHz and 30 MHz, respectively, and use intense volume scattering of the 30 MHz GPR signal as an indicator of temperate ice. Our results reveal that Rikha Samba is a polythermal glacier with a layer of temperate ice up to 100 m thick below the cold ice, and a maximum observed thickness of about 180 m. Furthermore, we investigate with ice flow models to what extend the present-day thermal structure can result from current melt water routing through cracks in the middle part of the glacier or from past convection of ice from an upstream area dominated by latent heat release of refrozen water.

  13. Development of a Sustained Release Solid Dispersion Using Swellable Polymer by Melting Method.

    Science.gov (United States)

    Nguyen, Tuong Ngoc-Gia; Tran, Phuong Ha-Lien; Van Vo, Toi; Duan, Wei; Truong-Dinh Tran, Thao

    2016-01-01

    This study is to design a sustained release solid dispersion using swellable polymer by melting method. Polyethylene glycol 6000 (PEG 6000) and hydroxypropyl methylcellulose 4000 (HPMC 4000) were used in solid dispersion for not only enhancing drug dissolution rate but also sustaining drug release. HPMC 4000 is a common swellable polymer in matrix sustained release dosage form, but could not be used in preparation of solid dispersion by melting method. However, the current study utilized the swelling capability of HPMC 4000 accompanied by the common carrier PEG 6000 in solid dispersion to accomplish the goal. While PEG 6000 acted as a releasing stimulant carrier and provided an environment to facilitate the swelling of HPMC 4000, this swellable polymer could act as a rate-controlling agent. This greatly assisted the dissolution enhancement by changing the crystalline structure of drug to more amorphous form and creating a molecular interaction. These results suggested that this useful technique can be applied in designing a sustained release solid dispersion with many advantages.

  14. Sustained-release alginate-chitosan pellets prepared by melt pelletization technique.

    Science.gov (United States)

    Wong, Tin Wui; Nurulaini, Harjoh

    2012-12-01

    Alginate-chitosan pellets prepared by extrusion-spheronization technique exhibited fast drug dissolution. This study aimed to design sustained-release alginate pellets through rapid in situ matrix coacervation by chitosan during dissolution. Pellets made of alginate with chitosan and/or calcium acetate were prepared using solvent-free melt pelletization technique which prevented reaction between processing materials during agglomeration and allowed such reaction to occur only in dissolution phase. Drug release was retarded in pH 2.2 medium when pellets were formulated with calcium acetate or chitosan till a change in medium pH to 6.8. The sustained-release characteristics of calcium alginate pellets were attributed to pellet dispersion and rapid cross-linking by soluble Ca(2+) during dissolution. The slow drug release characteristics of alginate-chitosan pellets were attributed to polyelectrolyte complexation and pellet aggregation into swollen structures with reduced erosion. The drug release was, however, not retarded when both calcium acetate and chitosan coexisted in the same matrix as a result of chitosan shielding of Ca(2+) to initiate alginate cross-linkages and rapid in situ solvation of calcium acetate induced fast pellet dispersion and chitosan losses from matrix. Similar to calcium alginate pellets, alginate-chitosan pellets demonstrated sustained drug release property though via different mechanisms. Combination of alginate, chitosan and calcium acetate in the same matrix nevertheless failed to retard drug release via complementary drug release pattern.

  15. In-situ GPS records of surface mass balance, firn compaction rates, and ice-shelf basal melt rates for Pine Island Glacier, Antarctica

    Science.gov (United States)

    Shean, D. E.; Christianson, K.; Larson, K. M.; Ligtenberg, S.; Joughin, I. R.; Smith, B.; Stevens, C.

    2016-12-01

    In recent decades, Pine Island Glacier (PIG) has experienced marked retreat, speedup and thinning due to ice-shelf basal melt, internal ice-stream instability and feedbacks between these processes. In an effort to constrain recent ice-stream dynamics and evaluate potential causes of retreat, we analyzed 2008-2010 and 2012-2014 GPS records for PIG. We computed time series of horizontal velocity, strain rate, multipath-based antenna height, surface elevation, and Lagrangian elevation change (Dh/Dt). These data provide validation for complementary high-resolution WorldView stereo digital elevation model (DEM) records, with sampled DEM vertical error of 0.7 m. The GPS antenna height time series document a relative surface elevation increase of 0.7-1.0 m/yr, which is consistent with estimated surface mass balance (SMB) of 0.7-0.9 m.w.e./yr from RACMO2.3 and firn compaction rates from the IMAU-FDM dynamic firn model. An abrupt 0.2-0.3 m surface elevation decrease due to surface melt and/or greater near-surface firn compaction is observed during a period of warm atmospheric temperatures from December 2012 to January 2013. Observed surface Dh/Dt for all PIG shelf sites is highly linear with trends of -1 to -4 m/yr and PIG shelf and 4 m/yr for the South shelf. These melt rates are similar to those derived from ice-bottom acoustic ranging, phase-sensitive ice-penetrating radar, and high-resolution stereo DEM records. The GPS/DEM records document higher melt rates within and near transverse surface depressions and rifts associated with longitudinal extension. Basal melt rates for the 2012-2014 period show limited temporal variability, despite significant change in ocean heat content. This suggests that sub-shelf melt rates are less sensitive to ocean heat content than previously reported, at least for these locations and time periods.

  16. Developing a Screening Model to Establish Human Risk from Glacial Meltwater Release of Legacy Organochlorine Pollutants at the Silvretta Glacier in the Swiss Alps

    Science.gov (United States)

    Miner, K. R.

    2017-12-01

    Organochlorine pollutants (OCPs) banned globally by the Stockholm Convention in 2004 are reemerging from melting glaciers in numerous alpine ecosystems. Despite the known OCP influx from glaciers, a study of human risk from uptake of pesticides in glacial meltwater has never been attempted. Our study qualifies human uptake routes and quantifies risk utilizing published meltwater data from the Silvretta Glacier in the Swiss Alps in combination with methodology established by the US Environmental Protection Agency (EPA). Relatively high concentrations of OCPs in Silvretta glacier meltwater reflect proximity to use near high density populations and provide the best estimate of a 95th percentile human risk scenario. This screening level model assesses direct PCB risk to humans through consumption of fish tissue and meltwater. Our model shows a risk for both cancer and non-cancer disease impacts to children with lifetime exposure to glacial meltwater and an average local fish consumption. For adults with an abbreviated 30 year exposure timeframe, the risk for non-cancer effects is negligible and cancer effects are only barely above screening level. Populations that consume higher quantities of local fish are at greater risk, with additional challenges borne by children. Further direct study into the individual level risk to Swiss residents from glacial meltwater pollution is deemed necessary by our screening study.

  17. Highly temporally resolved response to seasonal surface melt of the Zachariae and 79N outlet glaciers in Northeast Greenland

    DEFF Research Database (Denmark)

    Rathmann, N. M.; Hvidberg, C. S.; Solgaard, A. M.

    2017-01-01

    The seasonal response to surface melting of the Northeast Greenland Ice Stream outlets, Zachariae and 79N, is investigated using new highly temporally resolved surface velocity maps for 2016 combined with numerical modelling. The seasonal speed-up at 79N of 0.15km/yr is suggested to be driven by ...

  18. Development and evaluation of prolonged release pellets obtained by the melt pelletization process.

    Science.gov (United States)

    Hamdani, Jamila; Moës, André J; Amighi, Karim

    2002-10-01

    This study was performed in order to evaluate the possibility of obtaining prolonged release matrix pellets by a melt pelletization process in a laboratory high shear mixer (Mi-Pro, Pro-C-epT). Phenylephrine hydrochloride pellet formulations based on lactose 450 mesh and a mixture of Compritol 888 and Precirol ATO 5 as melting binders were evaluated. The fatty binder content of pellets was substantially increased (from 18 to 80% w/w). The effects of jacket temperature, massing time (MT) and impeller speed (IS) on the pellet characteristics were investigated. It was shown that pellets of narrow size distribution can be produced by using an IS of 800 rpm, a chopper speed of 4000 rpm and a MT of 8 min. On the other hand, the applicability of this technique for the production of sustained-release pellets using ciprofloxacin hydrochloride, ketoprofen and theophylline as less water soluble model drugs than phenylephrine hydrochloride was also studied. This study demonstrated that formulations based on an appropriate mixture of Precirol and Compritol can be used to produce in a short time prolonged release pellets for very hydrosoluble drugs like phenylephrine hydrochloride as well as for the other drugs tested.

  19. Contrasting trends in hydrologic extremes for two sub-arctic catchments in northern Sweden - Does glacier melt matter?

    Science.gov (United States)

    Dahlke, H. E.; Lyon, S. W.; Stedinger, J. R.; Rosqvist, G.; Jansson, P.

    2012-04-01

    Climate warming in the high-latitude environments of Sweden is raising concerns about its impacts upon hydrology. In order to manage future water resources in these snowmelt-dominated high-latitude and altitude catchments there is a need to determine how climatic change will influence glacial meltwater rates and terrestrial hydrology. This uncertainty is particularly acute for hydrologic extremes (flood events) because understanding the frequency of such unusual events requires long records of observation not often available for high-latitude and altitude catchments. This study presents a statistical analysis of trends in the magnitude and timing of hydrologic extremes (flood events) and the mean summer (June-August) discharge in two sub-arctic catchments, Tarfalajokk and Abiskojokk, in northern Sweden. The catchments have different glacier covers of 30% and 1%, respectively. Statistically significant hydrologic trends (at the 5% level) were identified for both catchments on an annual and on a seasonal scale (3-months averages) using the Mann-Kendall trend test and were related to observed changes in the precipitation and air temperature. Both catchments showed a statistically significant increase in the annual mean air temperature over the comparison time period of 1985-2009 (Tarfalajokk & Abiskojokk pflood peaks and the mean summer discharge. Hydrologic trends indicated an amplification of the hydrologic response in the highly glaciated catchment and a dampening of the response in the non-glaciated catchment. The glaciated mountain catchment showed a statistically significant increasing trend in the mean summer discharge that is clearly correlated to the decrease in glacier mass balance and the increase in air temperature. However, the catchment showed also a significant increase in the flood magnitudes, which are clearly correlated to the occurrence of extreme precipitation events, indicating a shift of the dominant storm runoff mechanism towards rainfall

  20. Assessment of snow-glacier melt and rainfall contribution to stream runoff in Baspa Basin, Indian Himalaya.

    Science.gov (United States)

    Gaddam, Vinay Kumar; Kulkarni, Anil V; Gupta, Anil Kumar

    2018-02-20

    Hydrological regimes of most of the Himalayan river catchments are poorly studied due to sparse hydro-meteorological data. Hence, stream runoff assessment becomes difficult for various socio-industrial activities in the Himalaya. Therefore, an attempt is made in this study to assess the stream runoff of Baspa River in Himachal Pradesh, India, by evaluating the contribution from snow-ice melt and rainfall runoff. The total volume of flow was computed for a period of 15 years, from 2000 to 2014, and validated with the long-term field discharge measurements, obtained from Jaipee Hydropower station (31° 32' 35.53″ N, 78° 00' 54.80″ E), at Kuppa barrage in the basin. The observations suggest (1) a good correlation (r 2  > 0.80) between the modeled runoff and field discharge measurements, and (2) out of the total runoff, 81.2% are produced by snowmelt, 11.4% by rainfall, and 7.4% from ice melt. The catchment receives ~75% of its total runoff in the ablation period (i.e., from May to September). In addition, an early snowmelt is observed in accumulation season during study period, indicating the significant influence of natural and anthropogenic factors on high-altitude areas.

  1. Glaciers of Asia

    Science.gov (United States)

    Williams, Richard S.; Ferrigno, Jane G.

    2010-01-01

    This chapter is the ninth to be released in U.S. Geological Survey Professional Paper 1386, Satellite Image Atlas of Glaciers of the World, a series of 11 chapters. In each of the geographic area chapters, remotely sensed images, primarily from the Landsat 1, 2, and 3 series of spacecraft, are used to analyze the specific glacierized region of our planet under consideration and to monitor glacier changes. Landsat images, acquired primarily during the middle to late 1970s and early 1980s, were used by an international team of glaciologists and other scientists to study various geographic regions and (or) to discuss related glaciological topics. In each glacierized geographic region, the present areal distribution of glaciers is compared, wherever possible, with historical information about their past extent. The atlas provides an accurate regional inventory of the areal extent of glacier ice on our planet during the 1970s as part of a growing international scientific effort to measure global environmental change on the Earth?s surface. The chapter is divided into seven geographic parts and one topical part: Glaciers of the Former Soviet Union (F-1), Glaciers of China (F-2), Glaciers of Afghanistan (F?3), Glaciers of Pakistan (F-4), Glaciers of India (F-5), Glaciers of Nepal (F?6), Glaciers of Bhutan (F-7), and the Paleoenvironmental Record Preserved in Middle-Latitude, High-Mountain Glaciers (F-8). Each geographic section describes the glacier extent during the 1970s and 1980s, the benchmark time period (1972-1981) of this volume, but has been updated to include more recent information. Glaciers of the Former Soviet Union are located in the Russian Arctic and various mountain ranges of Russia and the Republics of Georgia, Kyrgyzstan, Tajikistan, and Kazakstun. The Glacier Inventory of the USSR and the World Atlas of Ice and Snow Resources recorded a total of 28,881 glaciers covering an area of 78,938 square kilometers (km2). China includes many of the mountain-glacier

  2. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets.

    Science.gov (United States)

    Zhang, Jiaxiang; Feng, Xin; Patil, Hemlata; Tiwari, Roshan V; Repka, Michael A

    2017-03-15

    The main objective of this work was to explore the potential of coupling fused deposition modeling in three-dimensional (3D) printing with hot-melt extrusion (HME) technology to facilitate additive manufacturing, in order to fabricate tablets with enhanced extended release properties. Acetaminophen was used as the model drug and different grades and ratios of polymers were used to formulate tablets. Three-point bending and hardness tests were performed to determine the mechanical properties of the filaments and tablets. 3D-printed tablets, directly compressed mill-extruded tablets, and tablets prepared from a physical mixture were evaluated for drug release rates using a USP-II dissolution apparatus. The surface and cross-sectional morphology of the 3D-printed tablets were assessed by scanning electron microscopy. Differential scanning calorimetry and thermogravimetric analysis were used to characterize the crystal states and thermal properties of materials, respectively. The 3D-printed tablets had smooth surfaces and tight structures; therefore, they showed better extended drug release rates than the directly compressed tablets did. Further, this study clearly demonstrated the feasibility of coupling HME with 3D printing technology, which allows for the formulation of drug delivery systems using different grades and ratios of pharmaceutical polymers. In addition, formulations can be made based on the personal needs of patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Drug release, preclinical and clinical pharmacokinetics relationships of alginate pellets prepared by melt technology.

    Science.gov (United States)

    Bose, Anirbandeep; Harjoh, Nurulaini; Pal, Tapan Kumar; Dan, Shubhasis; Wong, Tin Wui

    2016-01-01

    Alginate pellets prepared by the aqueous agglomeration technique experience fast drug dissolution due to the porous pre-formed calcium alginate microstructure. This study investigated in vitro drug release, preclinical and clinical pharmacokinetics relationships of intestinal-specific calcium acetate-alginate pellets against calcium-free and calcium carbonate-alginate pellets. Alginate pellets were prepared by solvent-free melt pelletization instead of aqueous agglomeration technique using chlorpheniramine maleate as model drug. A fast in situ calcium acetate dissolution in pellets resulted in rapid pellet breakup, soluble Ca(2+) crosslinking of alginate fragments and drug dissolution retardation at pH 1.2, which were not found in other pellet types. The preclinical drug absorption rate was lower with calcium acetate loaded than calcium-free alginate pellets. In human subjects, however, the extent and the rate of drug absorption were higher from calcium acetate-loaded pellets than calcium-free alginate pellets. The fine, dispersible and weakly gastric mucoadhesive calcium alginate pellets underwent fast human gastrointestinal transit. They released the drug at a greater rate than calcium-free pellets in the intestine, thereby promoting drug bioavailability. Calcium acetate was required as a disintegrant more than as a crosslinking agent clinically to promote pellet fragmentation, fast gastrointestinal transit and drug release in intestinal medium, and intestinal-specific drug bioavailability.

  4. Melting of major Glaciers in the western Himalayas: evidence of climatic changes from long term MSU derived tropospheric temperature trend (1979–2008

    Directory of Open Access Journals (Sweden)

    A. K. Prasad

    2009-12-01

    Full Text Available Global warming or the increase of the surface and atmospheric temperatures of the Earth, is increasingly discernible in the polar, sub-polar and major land glacial areas. The Himalayan and Tibetan Plateau Glaciers, which are the largest glaciers outside of the Polar Regions, are showing a large-scale decrease of snow cover and an extensive glacial retreat. These glaciers such as Siachen and Gangotri are a major water resource for Asia as they feed major rivers such as the Indus, Ganga and Brahmaputra. Due to scarcity of ground measuring stations, the long-term observations of atmospheric temperatures acquired from the Microwave Sounding Unit (MSU since 1979–2008 is highly useful. The lower and middle tropospheric temperature trend based on 30 years of MSU data shows warming of the Northern Hemisphere's mid-latitude regions. The mean month-to-month warming (up to 0.048±0.026°K/year or 1.44°K over 30 years of the mid troposphere (near surface over the high altitude Himalayas and Tibetan Plateau is prominent and statistically significant at a 95% confidence interval. Though the mean annual warming trend over the Himalayas (0.016±0.005°K/year, and Tibetan Plateau (0.008±0.006°K/year is positive, the month to month warming trend is higher (by 2–3 times, positive and significant only over a period of six months (December to May. The factors responsible for the reversal of this trend from June to November are discussed here. The inequality in the magnitude of the warming trends of the troposphere between the western and eastern Himalayas and the IG (Indo-Gangetic plains is attributed to the differences in increased aerosol loading (due to dust storms over these regions. The monthly mean lower-tropospheric MSU-derived temperature trend over the IG plains (dust sink region; up to 0.032±0.027°K/year and dust source regions (Sahara desert, Middle East, Arabian region, Afghanistan-Iran-Pakistan and Thar Desert regions; up to 0.068±0.033

  5. Fundamentals of Glacier Dynamics

    Science.gov (United States)

    Thomas, Robert H.

    2001-01-01

    Glaciers form when snow melts and refreezes, or is compressed, to form ice. Spreading under their own weight, they flow seaward, channeled along preferred routes by the shape or composition of the underlying bedrock. Though we don't know why, some ice streams flow rapidly within slower-moving ice in Greenland and Antarctica. Glaciers exist on all continents except Australia, and at high enough elevations, they can be found even at the equator. Many are melting as global temperatures rise, but about 99% of glacier ice is in Greenland and Antarctica, where it is partly protected from global warming by low temperatures. Nevertheless, the coastal ice sheet in Greenland has thinned recently for unknown reasons, and we still don't know whether the far larger Antarctic ice sheet is growing or shrinking.

  6. Oral transmucosal delivery of domperidone from immediate release films produced via hot-melt extrusion technology.

    Science.gov (United States)

    Palem, Chinna Reddy; Kumar Battu, Sunil; Maddineni, Sindhuri; Gannu, Ramesh; Repka, Michael A; Yamsani, Madhusudan Rao

    2013-02-01

    The objective of the study was to prepare and characterize the domperidone (DOM) hot-melt extruded (HME) buccal films by both in vitro and in vivo techniques. The HME film formulations contained PEO N10 and/or its combination with HPMC E5 LV or Eudragit RL100 as polymeric carriers, and PEG3350 as a plasticizer. The blends were co-processed at a screw speed of 50 rpm with the barrel temperatures ranging from 120-160°C utilizing a bench top co-rotating twin-screw hot-melt extruder using a transverse-slit die. The HME films were evaluated for drug content, drug excipient interaction, in vitro drug release, mechanical properties, in vivo residence time, in vitro bioadhesion, swelling and erosion, ex vivo permeation from HME films and the selected optimal formulation was subjected for bioavailability studies in healthy human volunteers. The extruded films demonstrated no drug excipient interaction and excellent content uniformity. The selected HME film formulation (DOM2) exhibited a tensile strength (0.72 Kg/mm(2)), elongation at break (28.4% mm(2)), in vivo residence time (120 min), peak detachment force (1.55 N), work of adhesion (1.49 mJ), swelling index (210.2%), erosion (10.5%) and in vitro drug release of 84.8% in 2 h. Bioavailability from the optimized HME buccal films was 1.5 times higher than the oral dosage form and the results showed statistically significant (p buccal-adhesive films with improved bioavailability characteristics.

  7. Improved lysozyme stability and release properties of poly(lactide-co-glycolide) implants prepared by hot-melt extrusion.

    Science.gov (United States)

    Ghalanbor, Zahra; Körber, Martin; Bodmeier, Roland

    2010-02-01

    To assess the feasibility of hot-melt extrusion (HME) for preparing implants based on protein/poly(lactide-co-glycolide) (PLGA) formulations with special emphasis on protein stability, burst release and release completeness. Model protein (lysozyme)-loaded PLGA implants were prepared with a screw extruder and a self-built syringe-die device as a rapid screening tool for HME formulation optimization. Lysozyme stability was determined using DSC, FTIR, HPLC and biological activity. The simultaneous effect of lysozyme and PEG loadings was investigated to obtain optimized formulations with high drug loading but low initial release. Lysozyme was recovered from implants with full biological activity after HME. The release from all implants reached the 100% value in 60-80 days with nearly complete enzymatic activity of the last fraction of released lysozyme. Pure PLGA implants with up to 20% lysozyme loading could be formulated without initial burst. The incorporation of PEG 400 reduced the initial burst at drug loadings in excess of 20%. A complete lysozyme recovery in active form with a burst-free and complete release from PLGA implants prepared by hot-melt extrusion was obtained. This is in contrast to many reported microparticulate lysozyme-PLGA systems and suggests the great potential of hot-melt extrusion for the preparation of protein-PLGA implants.

  8. Protein release from poly(lactide-co-glycolide) implants prepared by hot-melt extrusion: thioester formation as a reason for incomplete release.

    Science.gov (United States)

    Ghalanbor, Zahra; Körber, Martin; Bodmeier, Roland

    2012-11-15

    The aim of this study was to characterize the protein release from PLGA-based implants prepared by hot-melt extrusion with special emphasis on identifying reasons for incomplete release. Biodegradable PLGA-implants loaded with BSA were prepared with a syringe-die extrusion device. A burst-free release was achieved up to 25% BSA loading by milling the protein prior to extrusion. The release was incomplete at 70% at loadings below the percolation threshold of the protein; higher protein loadings increased the release to 97%. However, an insoluble implant mass remained for over 180 days, which was attributed to the acylation of BSA by PLGA oligomers via a thioester bond. The incomplete protein release due to the formation of this covalent bond was overcome when increasing the porosity of the implant, which effectively reduced the contact between BSA and PLGA oligomers. Accordingly, melt-extrusion facilitated incorporating high loadings of BSA into burst-free biodegradable implants. Additionally, it enhanced complete protein release by a process- or formulation controlled increase of the implant porosity. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Analysis and evaluation of the ASTEC model basis on fission product and aerosol release phenomena from melts. 3. Technical report

    International Nuclear Information System (INIS)

    Agethen, K.; Koch, M.K.

    2016-04-01

    The present report is the 3 rd Technical Report within the research project ''ASMO'' founded by the German Federal Ministry for Economic Affairs and Energy (BMWi 1501433) and projected at the Chair of Energy Systems and Energy Economics (LEE) within the workgroup Reactor Simulation and Safety at the Ruhr-Universitaet Bochum (RUB). The focus in this report is set on the release of fission products and the contribution to the source term, which is formed in the late phase after failure of the reactor pressure vessel during MCCI. By comparing the RUB simulation results including the fission product release rates with further simulations of GRS and VEIKI it can be indicated that the simulations have a high sensitivity in respect to the melting point temperature. It can be noted that the release rates are underestimated for most fission product species with the current model. Especially semi-volatile fission products and the lanthanum release is underestimated by several orders of magnitude. Based on the ACE experiment L2, advanced considerations are presented concerning the melt temperature, the gas temperature, the segregation and a varied melt configuration. Furthermore, the influence of the gas velocity is investigated. This variation of the gas velocity causes an underestimation of the release rates compared to the RUB base calculation. A model extension to oxidic species for lanthanum and ruthenium shows a significant improvement of the simulation results. In addition, the MEDICIS module has been enhanced to document the currently existing species, are displayed in a *.ist-file. This expansion shows inconsistencies between the melt composition and the fission product composition. Based on these results, there are still some difficulties regarding the release of fission products in the MEDICIS module and the interaction with the material data base (MOB) which needs further investigation.

  10. Diclofenac sodium ion exchange resin complex loaded melt cast films for sustained release ocular delivery.

    Science.gov (United States)

    Adelli, Goutham R; Balguri, Sai Prachetan; Bhagav, Prakash; Raman, Vijayasankar; Majumdar, Soumyajit

    2017-11-01

    The goal of the present study is to develop polymeric matrix films loaded with a combination of free diclofenac sodium (DFS free ) and DFS:Ion exchange resin complexes (DFS:IR) for immediate and sustained release profiles, respectively. Effect of ratio of DFS and IR on the DFS:IR complexation efficiency was studied using batch processing. DFS:IR complex, DFS free , or a combination of DFS free  +   DFS:IR loaded matrix films were prepared by melt-cast technology. DFS content was 20% w/w in these matrix films. In vitro transcorneal permeability from the film formulations were compared against DFS solution, using a side-by-side diffusion apparatus, over a 6 h period. Ocular disposition of DFS from the solution, films and corresponding suspensions were evaluated in conscious New Zealand albino rabbits, 4 h and 8 h post-topical administration. All in vivo studies were carried out as per the University of Mississippi IACUC approved protocol. Complexation efficiency of DFS:IR was found to be 99% with a 1:1 ratio of DFS:IR. DFS release from DFS:IR suspension and the film were best-fit to a Higuchi model. In vitro transcorneal flux with the DFS free  +   DFS:IR (1:1) (1 + 1) was twice that of only DFS:IR (1:1) film. In vivo, DFS solution and DFS:IR (1:1) suspension formulations were not able to maintain therapeutic DFS levels in the aqueous humor (AH). Both DFS free and DFS free  +   DFS:IR (1:1) (3 + 1) loaded matrix films were able to achieve and maintain high DFS concentrations in the AH, but elimination of DFS from the ocular tissues was much faster with the DFS free formulation. DFS free  +   DFS:IR combination loaded matrix films were able to deliver and maintain therapeutic DFS concentrations in the anterior ocular chamber for up to 8 h. Thus, free drug/IR complex loaded matrix films could be a potential topical ocular delivery platform for achieving immediate and sustained release characteristics.

  11. Preparation of sustained release co-extrudates by hot-melt extrusion and mathematical modelling of in vitro/in vivo drug release profiles.

    Science.gov (United States)

    Quintavalle, U; Voinovich, D; Perissutti, B; Serdoz, F; Grassi, G; Dal Col, A; Grassi, M

    2008-03-03

    Aim of this work was to develop a cylindrical co-extrudate characterised by an in vivo sustained release profile by means of a hot-melt extrusion process. Co-extrudate was made up of two concentric extruded matrices: an inner one having a hydrophilic character, based on polyethylene glycol, and an outer one with lipophilic character, based on microcrystalline wax. Both segments contained theophylline as a model drug. A screening between several devices differing for dimensions (diameter and length) and relative proportions of the inner and outer part was carried out on the basis of their in vitro drug release and the release mechanism was studied by means of a mathematical model. The co-extrudate exhibiting the desired sustained release was selected for in vivo bioavailability studies. In vivo studies confirmed the achievement of the purpose of the research, demonstrating the desired release of theophylline on four healthy volunteers. Accordingly, hot-melt extrusion process is a viable method to produce in a single step co-extrudates showing a sustained release. In addition, the developed mathematical model proved to be a reliable descriptor of the both in vitro and in vivo experimental data.

  12. Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding.

    Science.gov (United States)

    Claeys, Bart; Vervaeck, Anouk; Hillewaere, Xander K D; Possemiers, Sam; Hansen, Laurent; De Beer, Thomas; Remon, Jean Paul; Vervaet, Chris

    2015-02-01

    This study evaluated thermoplastic polyurethanes (TPUR) as matrix excipients for the production of oral solid dosage forms via hot melt extrusion (HME) in combination with injection molding (IM). We demonstrated that TPURs enable the production of solid dispersions - crystalline API in a crystalline carrier - at an extrusion temperature below the drug melting temperature (Tm) with a drug content up to 65% (wt.%). The release of metoprolol tartrate was controlled over 24h, whereas a complete release of diprophylline was only possible in combination with a drug release modifier: polyethylene glycol 4000 (PEG 4000) or Tween 80. No burst release nor a change in tablet size and geometry was detected for any of the formulations after dissolution testing. The total matrix porosity increased gradually upon drug release. Oral administration of TPUR did not affect the GI ecosystem (pH, bacterial count, short chain fatty acids), monitored via the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). The high drug load (65 wt.%) in combination with (in vitro and in vivo) controlled release capacity of the formulations, is noteworthy in the field of formulations produced via HME/IM. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. PVP VA64 as a novel release-modifier for sustained-release mini-matrices prepared via hot melt extrusion.

    Science.gov (United States)

    Li, Yongcheng; Lu, Ming; Wu, Chuanbin

    2017-11-10

    The purpose of this study was to explore poly(vinylpyrrolidone-co-vinyl acetate) (PVP VA64) as a novel release-modifier to tailor the drug release from ethylcellulose (EC)-based mini-matrices prepared via hot melt extrusion (HME). Quetiapine fumarate (QF) was selected as model drug. QF/EC/PVP VA64 mini-matrices were extruded with 30% drug loading. The physical state of QF in extruded mini-matrices was characterized using differential scanning calorimetry, X-ray powder diffraction, and confocal Raman microscopy. The release-controlled ability of PVP VA64 was investigated and compared with that of xanthan gum, crospovidone, and low-substituted hydroxypropylcellulose. The influences of PVP VA64 content and processing temperature on QF release behavior and mechanism were also studied. The results indicated QF dispersed as the crystalline state in all mini-matrices. The release of QF from EC was very slow as only 4% QF was released in 24 h. PVP VA64 exhibited the best ability to enhance the drug release as compared with other three release-modifiers. The drug release increased to 50-100% in 24 h with the addition of 20-40% PVP VA64. Increasing processing temperature slightly slowed down the drug release by decreasing free volume and pore size. The release kinetics showed good fit with the Ritger-Peppas model. The values of release exponent (n) increased as PVP VA64 is added (0.14 for pure EC, 0.41 for 20% PVP VA64, and 0.61 for 40% PVP VA64), revealing that the addition of PVP VA64 enhanced the erosion mechanism. This work presented a new polymer blend system of EC with PVP VA64 for sustained-release prepared via HME.

  14. The 2016 gigantic twin glacier collapses in Tibet: towards an improved understanding of large glacier instabilities and their potential links to climate change

    Science.gov (United States)

    Gilbert, Adrien; Leinss, Silvan; Evans, Steve; Tian, Lide; Kääb, Andreas; Kargel, Jeffrey; Gimbert, Florent; Chao, Wei-An; Gascoin, Simon; Bueler, Yves; Berthier, Etienne; Yao, Tandong; Huggel, Christian; Farinotti, Daniel; Brun, Fanny; Guo, Wanqin; Leonard, Gregory

    2017-04-01

    In northwestern Tibet (34.0°N, 82.2°E) near lake Aru Co, the entire ablation area of an unnamed glacier (Aru-1) suddenly collapsed on 17 July 2016 and transformed into a mass flow that ran out over a distance of over 8 km, killing nine people and hundreds of cattle. Remarkably, a second glacier detachment with similar characteristics (Aru-2) took place 2.6 km south of the July event on 21 September 2016. These two events are unique in several aspects: their massive volumes (66 and 83 Mm3 respectively), the low slope angles ( 200 km h-1) and their close timing within two months. The only similar event currently documented is the 2002 Kolka Glacier mass flow (Caucasus Mountains). The uncommon occurrence of such large glacier failures suggest that such events require very specific conditions that could be linked to glacier thermal regime, bedrock lithology and morphology, geothermal activity or a particular climate setting. Using field and remote sensing observations, retrospective climate analysis, mass balance and thermo-mechanical modeling of the two glaciers in Tibet, we investigate the processes involved in the twin collapses. It appears that both, mostly cold-based glaciers, started to surge about 7-8 years ago, possibly in response to a long period of positive mass balance (1995-2005) followed by a sustained increase of melt water delivery to the glacier bed in the polythermal lower accumulation zone (1995-2016). Inversion of friction conditions at the base of the glacier constrained by surface elevation change rate for both glaciers shows a zone of very low basal friction progressively migrating downward until the final collapse. We interpret this to be the signature of the presence of high-pressure water dammed at the bed by the glacier's frozen periphery and toe. Large areas of low friction at the bed led to high shear stresses along the frozen side walls as evident in surface ice cracking patterns observed on satellite imagery. This process progressively

  15. Using an Ablation Gradient Model to Characterize Annual Glacial Melt Contribution to Major Rivers in High Asia

    Science.gov (United States)

    Brodzik, M. J.; Armstrong, R. L.; Khalsa, S. J. S.; Painter, T. H.; Racoviteanu, A.; Rittger, K.

    2014-12-01

    Ice melt from mountain glaciers can represent a significant contribution to freshwater hydrological budgets, along with seasonal snow melt, rainfall and groundwater. In the rivers of High Asia, understanding the proportion of glacier ice melt is critical for water resource management of irrigation and planning for hydropower generation and human consumption. Current climate conditions are producing heterogeneous glacier responses across the Hindu Kush-Karakoram-Himalayan ranges. However, it is not yet clear how contrasting glacier patterns affect regional water resources. For example, in the Upper Indus basin, estimates of glacial contribution to runoff are often not distinguished from seasonal snow contribution, and vary widely, from as little as 15% to as much as 55%. While many studies are based on reasonable concepts, most are based on assumptions uninformed by actual snow or ice cover measurements. While straightforward temperature index models have been used to estimate glacier runoff in some Himalayan basins, application of these models in larger Himalayan basins is limited by difficulties in estimating key model parameters, particularly air temperature. Estimating glacial area from the MODIS Permanent Snow and Ice Extent (MODICE) product for the years 2000-2013, with recently released Shuttle Radar Topography Mission (SRTMGL3) elevation data, we use a simple ablation gradient approach to calculate an upper limit on the contribution of clean glacier ice melt to streamflow data. We present model results for the five major rivers with glaciated headwaters in High Asia: the Bramaputra, Ganges, Indus, Amu Darya and Syr Darya. Using GRDC historical discharge records, we characterize the annual contribution from glacier ice melt. We use MODICE interannual trends in each basin to estimate glacier ice melt uncertainties. Our results are being used in the USAID project, Contribution to High Asia Runoff from Ice and Snow (CHARIS), to inform regional-scale planning for

  16. Hydrophilic thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding.

    Science.gov (United States)

    Verstraete, G; Van Renterghem, J; Van Bockstal, P J; Kasmi, S; De Geest, B G; De Beer, T; Remon, J P; Vervaet, C

    2016-06-15

    Hydrophilic aliphatic thermoplastic polyurethane (Tecophilic™ grades) matrices for high drug loaded oral sustained release dosage forms were formulated via hot melt extrusion/injection molding (HME/IM). Drugs with different aqueous solubility (diprophylline, theophylline and acetaminophen) were processed and their influence on the release kinetics was investigated. Moreover, the effect of Tecophilic™ grade, HME/IM process temperature, extrusion speed, drug load, injection pressure and post-injection pressure on in vitro release kinetics was evaluated for all model drugs. (1)H NMR spectroscopy indicated that all grades have different soft segment/hard segment ratios, allowing different water uptake capacities and thus different release kinetics. Processing temperature of the different Tecophilic™ grades was successfully predicted by using SEC and rheology. Tecophilic™ grades SP60D60, SP93A100 and TG2000 had a lower processing temperature than other grades and were further evaluated for the production of IM tablets. During HME/IM drug loads up to 70% (w/w) were achieved. In addition, Raman mapping and (M)DSC results confirmed the homogenous distribution of mainly crystalline API in all polymer matrices. Besides, hydrophilic TPU based formulations allowed complete and sustained release kinetics without using release modifiers. As release kinetics were mainly affected by drug load and the length of the PEO soft segment, this polymer platform offers a versatile formulation strategy to adjust the release rate of drugs with different aqueous solubility. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources

    International Nuclear Information System (INIS)

    Spencer, Robert G M; Vermilyea, Andrew; Fellman, Jason; Hood, Eran; Raymond, Peter; Stubbins, Aron; Scott, Durelle

    2014-01-01

    Glacier ecosystems are a significant source of bioavailable, yet ancient dissolved organic carbon (DOC). Characterizing DOC in Mendenhall Glacier outflow (southeast Alaska) we document a seasonal persistence to the radiocarbon-depleted signature of DOC, highlighting ancient DOC as a ubiquitous feature of glacier outflow. We observed no systematic depletion in Δ 14 C-DOC with increasing discharge during the melt season that would suggest mobilization of an aged subglacial carbon store. However, DOC concentration, δ 13 C-DOC, Δ 14 C-DOC and fluorescence signatures appear to have been influenced by runoff from vegetated hillslopes above the glacier during onset and senescence of melt. In the peak glacier melt period, the Δ 14 C-DOC of stream samples at the outflow (−181.7 to −355.3‰) was comparable to the Δ 14 C-DOC for snow samples from the accumulation zone (−207.2 to −390.9‰), suggesting that ancient DOC from the glacier surface is exported in glacier runoff. The pre-aged DOC in glacier snow and runoff is consistent with contributions from fossil fuel combustion sources similar to those documented previously in ice cores and thus provides evidence for anthropogenic perturbation of the carbon cycle. Overall, our results emphasize the need to further characterize DOC inputs to glacier ecosystems, particularly in light of predicted changes in glacier mass and runoff in the coming century. (papers)

  18. Temperature and pressure determination of the tin melt boundary from a combination of pyrometry, spectral reflectance, and velocity measurements along release paths

    Science.gov (United States)

    La Lone, Brandon; Asimow, Paul; Fatyanov, Oleg; Hixson, Robert; Stevens, Gerald

    2017-06-01

    Plate impact experiments were conducted on tin samples backed by LiF windows to determine the tin melt curve. Thin copper flyers were used so that a release wave followed the 30-40 GPa shock wave in the tin. The release wave at the tin-LiF interface was about 300 ns long. Two sets of experiments were conducted. In one set, spectral emissivity was measured at six wavelengths using a flashlamp illuminated integrating sphere. In the other set, thermal radiance was measured at two wavelengths. The emissivity and thermal radiance measurements were combined to obtain temperature histories of the tin-LiF interface during the release. PDV was used to obtain stress histories. All measurements were combined to obtain temperature vs. stress release paths. A kink or steepening in the release paths indicate where the releases merge onto the melt boundary, and release paths originating from different shock stresses overlap on the melt boundary. Our temperature-stress release path measurements provide a continuous segment of the tin melt boundary that is in good agreement with some of the published melt curves. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy, and supported by the Site-Directed Research and Development Program. DOE/NV/259463133.

  19. Klucel™ EF and ELF polymers for immediate-release oral dosage forms prepared by melt extrusion technology.

    Science.gov (United States)

    Mohammed, Noorullah Naqvi; Majumdar, Soumyajit; Singh, Abhilasha; Deng, Weibin; Murthy, Narasimha S; Pinto, Elanor; Tewari, Divya; Durig, Thomas; Repka, Michael A

    2012-12-01

    The objective of this research work was to evaluate Klucel™ hydroxypropylcellulose (HPC) EF and ELF polymers, for solubility enhancement as well as to address some of the disadvantages associated with solid dispersions. Ketoprofen (KPR), a Biopharmaceutics Classification System class II drug with poor solubility, was utilized as a model compound. Preliminary thermal studies were performed to confirm formation of a solid solution/dispersion of KPR in HPC matrix and also to establish processing conditions for hot-melt extrusion. Extrudates pelletized and filled into capsules exhibited a carrier-dependent release with ELF polymer exhibiting a faster release. Tablets compressed from milled extrudates exhibited rapid release owing to the increased surface area of the milled extrudate. Addition of mannitol (MNT) further enhanced the release by forming micro-pores and increasing the porosity of the extrudates. An optimized tablet formulation constituting KPR, MNT, and ELF in a 1:1:1 ratio exhibited 90% release in 15 min similar to a commercial capsule formulation. HPC polymers are non-ionic hydrophilic polymers that undergo polymer-chain-length-dependent solubilization and can be used to enhance solubility or dissolution rate of poorly soluble drugs. Dissolution/release rate could be tailored for rapid-release applications by selecting a suitable HPC polymer and altering the final dosage form. The release obtained from pellets was carrier-dependent and not drug-dependent, and hence, such a system can be effectively utilized to address solubility or precipitation issues with poorly soluble drugs in the gastrointestinal environment.

  20. Prolonged release matrix pellets prepared by melt pelletization. I. Process variables

    DEFF Research Database (Denmark)

    Thomsen, L.J.; Schaefer, T.; Sonnergaard, Jørn

    1993-01-01

    A melt pelletization process was investigated in an 8 litre laboratory scale high shear mixer using a formulation with paracetamol, glyceryl monostearate 40-50, and microcrystalline wax. The effects of jacket temperature, product temperature during massing, product load, massing time and impeller...... speed were investigated by means of factorially designed experiments. The maximum yield of pellets in the range of 500-1400 μm was found to approx. 90%. For process conditions preventing deposition of moist mass, the process was found to be reproducible. Impeller speed and massing time were found...

  1. In vivo release of testosterone from γ-globulin-drug delivery composites made by radiation after melt-pressing

    International Nuclear Information System (INIS)

    Asano, Masaharu; Yoshida, Masaru; Kaetsu, Isao; Nakai, Katsuyuki; Yamanaka, Hidetoshi; Yuasa, Hisako; Shida, Keizo.

    1983-01-01

    The rigid γ-globulin matrix (50 mg) as a carrier for drug delivery system was made by γ-ray irradiation after melt-pressing at 75 0 C under a pressure of 100 kg/cm 2 . The in vivo degradation (weight loss) of the matrix when implanted subcutaneously in the back of wistar rats was about 1.9% at 90th day from implantation. When 0.1 M Tartarate buffer solution (pH 1.8) containing 0, 0.005, 0.01 and 0.1 w/v% pepsin was used as a digestive medium (37 0 C), the in vitro degradation (weight loss) of the matrix was 1.2, 31.4, 45.7 and 53.9% at 90th day from start of the test, respectively. Therefore, it was concluded that the in vivo degradation of the matrix was much slower than that in vitro. On the basis of these results, testosterone (15 mg) as a drug was entrapped in γ-globulin matrix irradiated after melt-pressing. The in vivo degradation of matrix itself was significantly accelerated in the presence of drug, and reached up to 57.4% at 90th day from implantation. The in vivo release of drug from the composites was investigated using castrated Wistar rats. Furthermore, the study of the relationship between the in vivo release of drug and the physiological response (change in weight of the ventral prostate) indicated that the efficacious drug release continued up to 60 days. (author)

  2. Plasticized drug-loaded melt electrospun polymer mats: characterization, thermal degradation, and release kinetics.

    Science.gov (United States)

    Balogh, Attila; Drávavölgyi, Gábor; Faragó, Kornél; Farkas, Attila; Vigh, Tamás; Sóti, Péter Lajos; Wagner, István; Madarász, János; Pataki, Hajnalka; Marosi, György; Nagy, Zsombor Kristóf

    2014-04-01

    Melt electrospinning (MES) was used to prepare fast dissolving fibrous drug delivery systems in the presence of plasticizers. This new method was found promising in the field of pharmaceutical formulation because it combines the advantages of melt extrusion and solvent-based electrospinning. Lowering of the process temperature was performed using plasticizers in order to avoid undesired thermal degradation. Carvedilol (CAR), a poorly water-soluble and thermal-sensitive model drug, was introduced into an amorphous methacrylate terpolymer matrix, Eudragit® E, suitable for fiber formation. Three plasticizers (triacetin, Tween® 80, and polyethylene glycol 1500) were tested, all of which lowered the process temperature effectively. Scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and Raman microspectrometry investigations showed that crystalline CAR turned into an amorphous form during processing and preserved it for longer time. In vitro dissolution studies revealed ultrafast drug dissolution of the fibrous samples. According to the HPLC impurity tests, the reduced stability of CAR under conditions applied without plasticizer could be avoided using plasticizers, whereas storage tests also indicated the importance of optimizing the process parameters during MES. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Impact of a localized source of subglacial discharge on the heat flux and submarine melting of a tidewater glacier : A laboratory study

    NARCIS (Netherlands)

    Cenedese, Claudia; Gatto, V.M.

    2016-01-01

    Idealized laboratory experiments have been conducted in a two-layer stratified fluid to investigate the leading-order dynamics that control submarine melting and meltwater export near a vertical ice-ocean interface as a function of subglacial discharge. In summer, the discharge of surface runoff

  4. Monitoring of Rock Glacier Äußeres Hochebenkar (Austria): an Overview

    Science.gov (United States)

    Abermann, J.; Fischer, A.; Hartl, L.; Krainer, K.; Nickus, U.; Schneider, H.; Span, N.; Thies, H.

    2012-04-01

    permafrost ground decreased since a previous survey in 1976. The hydrological regime of HK shows high diurnal and seasonal variability. The melting of the winter snow pack typically causes discharge peaks during June, single peaks during summer are caused by heavy precipitation events. A high amount of solutes is released from HK during summer rising by a factor of 2 to 5 from the beginning of the melting season until autumn.

  5. Sediment transport drives tidewater glacier periodicity.

    Science.gov (United States)

    Brinkerhoff, Douglas; Truffer, Martin; Aschwanden, Andy

    2017-07-21

    Most of Earth's glaciers are retreating, but some tidewater glaciers are advancing despite increasing temperatures and contrary to their neighbors. This can be explained by the coupling of ice and sediment dynamics: a shoal forms at the glacier terminus, reducing ice discharge and causing advance towards an unstable configuration followed by abrupt retreat, in a process known as the tidewater glacier cycle. Here we use a numerical model calibrated with observations to show that interactions between ice flow, glacial erosion, and sediment transport drive these cycles, which occur independent of climate variations. Water availability controls cycle period and amplitude, and enhanced melt from future warming could trigger advance even in glaciers that are steady or retreating, complicating interpretations of glacier response to climate change. The resulting shifts in sediment and meltwater delivery from changes in glacier configuration may impact interpretations of marine sediments, fjord geochemistry, and marine ecosystems.The reason some of the Earth's tidewater glaciers are advancing despite increasing temperatures is not entirely clear. Here, using a numerical model that simulates both ice and sediment dynamics, the authors show that internal dynamics drive glacier variability independent of climate.

  6. Influence of snowpack internal structure on snow metamorphism and melting intensity on Hansbreen, Svalbard

    Directory of Open Access Journals (Sweden)

    Laska Michał

    2016-06-01

    Full Text Available This paper presents a detailed study of melting processes conducted on Hansbreen – a tidewater glacier terminating in the Hornsund fjord, Spitsbergen. The fieldwork was carried out from April to July 2010. The study included observations of meltwater distribution within snow profiles in different locations and determination of its penetration time to the glacier ice surface. In addition, the variability of the snow temperature and heat transfer within the snow cover were measured. The main objective concerns the impact of meltwater on the diversity of physical characteristics of the snow cover and its melting dynamics. The obtained results indicate a time delay between the beginning of the melting processes and meltwater reaching the ice surface. The time necessary for meltwater to percolate through the entire snowpack in both, the ablation zone and the equilibrium line zone amounted to c. 12 days, despite a much greater snow depth at the upper site. An elongated retention of meltwater in the lower part of the glacier was caused by a higher amount of icy layers (ice formations and melt-freeze crusts, resulting from winter thaws, which delayed water penetration. For this reason, a reconstruction of rain-on-snow events was carried out. Such results give new insight into the processes of the reactivation of the glacier drainage system and the release of freshwater into the sea after the winter period.

  7. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile

    Science.gov (United States)

    Janke, Jason R.; Bellisario, Antonio C.; Ferrando, Francisco A.

    2015-07-01

    In the Dry Andes of Chile (17 to 35° S), debris-covered glaciers and rock glaciers are differentiated from true glaciers based on the percentage of surface debris cover, thickness of surface debris, and ice content. Internal ice is preserved by an insulating cover of thick debris, which acts as a storage reservoir to release water during the summer and early fall. These landforms are more numerous than glaciers in the central Andes; however, the existing legislation only recognizes uncovered or semicovered glaciers as a water resource. Glaciers, debris-covered glaciers, and rock glaciers are being altered or removed by mining operations to extract valuable minerals from the mountains. In addition, agricultural expansion and population growth in this region have placed additional demands on water resources. In a warmer climate, as glaciers recede and seasonal water availability becomes condensed over the course of a snowmelt season, rock glaciers and debris-covered glaciers contribute a larger component of base flow to rivers and streams. As a result, identifying and locating these features to implement sustainable regional planning for water resources is important. The objective of this study is to develop a classification system to identify debris-covered glaciers and rock glaciers based on the interpretation of satellite imagery and aerial photographs. The classification system is linked to field observations and measurements of ice content. Debris-covered glaciers have three subclasses: surface coverage of semi (class 1) and fully covered (class 2) glaciers differentiates the first two forms, whereas debris thickness is critical for class 3 when glaciers become buried with more than 3 m of surface debris. Based on field observations, the amount of ice decreases from more than 85%, to 65-85%, to 45-65% for semi, fully, and buried debris-covered glaciers, respectively. Rock glaciers are characterized by three stages. Class 4 rock glaciers have pronounced

  8. The role of glacier changes and threshold definition in the characterisation of future streamflow droughts in glacierised catchments

    Science.gov (United States)

    Van Tiel, Marit; Teuling, Adriaan J.; Wanders, Niko; Vis, Marc J. P.; Stahl, Kerstin; Van Loon, Anne F.

    2018-01-01

    Glaciers are essential hydrological reservoirs, storing and releasing water at various timescales. Short-term variability in glacier melt is one of the causes of streamflow droughts, here defined as deficiencies from the flow regime. Streamflow droughts in glacierised catchments have a wide range of interlinked causing factors related to precipitation and temperature on short and long timescales. Climate change affects glacier storage capacity, with resulting consequences for discharge regimes and streamflow drought. Future projections of streamflow drought in glacierised basins can, however, strongly depend on the modelling strategies and analysis approaches applied. Here, we examine the effect of different approaches, concerning the glacier modelling and the drought threshold, on the characterisation of streamflow droughts in glacierised catchments. Streamflow is simulated with the Hydrologiska Byråns Vattenbalansavdelning (HBV-light) model for two case study catchments, the Nigardsbreen catchment in Norway and the Wolverine catchment in Alaska, and two future climate change scenarios (RCP4.5 and RCP8.5). Two types of glacier modelling are applied, a constant and dynamic glacier area conceptualisation. Streamflow droughts are identified with the variable threshold level method and their characteristics are compared between two periods, a historical (1975-2004) and future (2071-2100) period. Two existing threshold approaches to define future droughts are employed: (1) the threshold from the historical period; (2) a transient threshold approach, whereby the threshold adapts every year in the future to the changing regimes. Results show that drought characteristics differ among the combinations of glacier area modelling and thresholds. The historical threshold combined with a dynamic glacier area projects extreme increases in drought severity in the future, caused by the regime shift due to a reduction in glacier area. The historical threshold combined with a

  9. The climate memory of an Arctic polythermal glacier

    OpenAIRE

    Delcourt, C.; van Liefferinge, B.; Nolan, M.; Pattyn, F.

    2013-01-01

    Knowledge of glacier equilibrium-line altitude (ELA) changes and trends in time is essential for future predictions of glacier volumes. We present a novel method for determining trends in ELA change at McCall Glacier, Alaska, USA, over the last 50 years, based on mapping of the cold temperate transition surface (CTS), marking the limit between cold and temperate ice of a polythermal glacier. Latent heat release from percolating meltwater and precipitation keeps the ice column temperate in the...

  10. Glacier speed-up events and water inputs on the lower Franz Josef Glacier, New Zealand

    Science.gov (United States)

    Kehrl, L. M.; Horgan, H.; Mackintosh, A. N.; Anderson, B. A.; Dadic, R.

    2012-12-01

    A glacier speed-up event occurs when a water input exceeds the capacity of the subglacial drainage system, and the subglacial water pressure increases. Several studies have suggested that glacier speed-up events do not affect overall glacier motion, as high ice-flow velocities during the event are offset by lower ice-flow velocities after the event due to a more efficient subglacial drainage system. In this study, we combine in-situ velocity measurements with a full Stokes glacier flowline model to explore the temporal and spatial variability in glacier flow on the lower Franz Josef Glacier, Southern Alps, New Zealand. Significant volumes of water enter the Franz Josef Glacier throughout the year due to high rainfall rates and year-round ablation. As a result, we infer that the subglacial drainage system is generally well-developed. In late summer (March) 2011, measured ice-flow velocities increased by up to 75% above background values because of rain events and by up to 32% above background values because of diurnal melt cycles. The observed speed-up events occurred at all survey locations within 4 ± 1 hours after the peak water input. We use a flowline model to show that a spatially-uniform subglacial water pressure, which increased during periods of heavy rain and glacier melt, can reproduce the measured ice-flow velocities across the lower glacier. From our results, we suggest that the variability in water inputs, rather than the mean water input to the system, is the primary driver in glacier speed-up events. If this is the case and the variability in water inputs is maintained, then glacier speed-up events can occur even if the subglacial drainage system is well-developed.

  11. An assessment of the radiological consequences of releases to groundwater following a core-melt accident at the Sizewell PWR

    International Nuclear Information System (INIS)

    Maul, P.R.

    1984-03-01

    In the extremely unlikely event of a degraded core accident at the proposed Sizewell PWR it is theoretically possible for the core to melt through the containment, after which activity could enter groundwater directly or as a result of subsequent leaching of the core in the ground. The radiological consequences of such an event are analysed and compared with the analysis undertaken by the NRPB for the corresponding releases to atmosphere. It is concluded that the risks associated with the groundwater route are much less important than those associated with the atmospheric route. The much longer transport times in the ground compared with those in the atmosphere enable countermeasures to be taken, if necessary, to restrict doses to members of the public to very low levels in the first few years following the accident. The entry of long-lived radionuclides into the sea over very long timescales results in the largest contribution to population doses, but these are delivered at extremely low dose rates which would be negligible compared with background exposure. (author)

  12. Mercury speciation and distribution in a glacierized mountain environment and their relevance to environmental risks in the inland Tibetan Plateau.

    Science.gov (United States)

    Sun, Xuejun; Zhang, Qianggong; Kang, Shichang; Guo, Junming; Li, Xiaofei; Yu, Zhengliang; Zhang, Guoshuai; Qu, Dongmei; Huang, Jie; Cong, Zhiyuan; Wu, Guangjian

    2018-08-01

    Glacierized mountain environments can preserve and release mercury (Hg) and play an important role in regional Hg biogeochemical cycling. However, the behavior of Hg in glacierized mountain environments and its environmental risks remain poorly constrained. In this research, glacier meltwater, runoff and wetland water were sampled in Zhadang-Qugaqie basin (ZQB), a typical glacierized mountain environment in the inland Tibetan Plateau, to investigate Hg distribution and its relevance to environmental risks. The total mercury (THg) concentrations ranged from 0.82 to 6.98ng·L -1 , and non-parametric pairwise multiple comparisons of the THg concentrations among the three different water samples showed that the THg concentrations were comparable. The total methylmercury (TMeHg) concentrations ranged from 0.041 to 0.115ng·L -1 , and non-parametric pairwise multiple comparisons of the TMeHg concentrations showed a significant difference. Both the THg and MeHg concentrations of water samples from the ZQB were comparable to those of other remote areas, indicating that Hg concentrations in the ZQB watershed are equivalent to the global background level. Particulate Hg was the predominant form of Hg in all runoff samples, and was significantly correlated with the total suspended particle (TSP) and not correlated with the dissolved organic carbon (DOC) concentration. The distribution of mercury in the wetland water differed from that of the other water samples. THg exhibited a significant correlation with DOC as well as TMeHg, whereas neither THg nor TMeHg was associated with TSP. Based on the above findings and the results from previous work, we propose a conceptual model illustrating the four Hg distribution zones in glacierized environments. We highlight that wetlands may enhance the potential hazards of Hg released from melting glaciers, making them a vital zone for investigating the environmental effects of Hg in glacierized environments and beyond. Copyright © 2018

  13. Ocean impact on Nioghalvfjerdsfjorden Glacier, Northeast Greenland

    Science.gov (United States)

    Schaffer, Janin; Kanzow, Torsten; von Appen, Wilken-Jon; Mayer, Christoph

    2017-04-01

    The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers around Greenland. The largest of three outlet glaciers draining the Northeast Greenland Ice Stream is Nioghalvfjerdsfjorden Glacier (also referred to as 79 North Glacier). Historic observations showed that warm waters of Atlantic origin are present in the subglacial cavity below the 80 km long floating ice tongue of the Nioghalvfjerdsfjorden Glacier and cause strong basal melt at the grounding line, but to date it has been unknown how those warm water enter the cavity. In order to understand how Atlantic origin waters carry heat into the subglacial cavity beneath Nioghalvfjerdsfjorden Glacier, we performed bathymetric, hydrographic, and velocity observations in the vicinity of the main glacier calving front aboard RV Polarstern in summer 2016. The bathymetric multibeam data shows a 500 m deep and 2 km narrow passage downstream of a 310 m deep sill. This turned out to be the only location deep enough for an exchange of Atlantic waters between the glacier cavity and the continental shelf. Hydrographic and velocity measurements revealed a density driven plume in the vicinity of the glacier calving front causing a rapid flow of waters of Atlantic origin warmer 1°C into the subglacial cavity through the 500 m deep passage. In addition, glacially modified waters flow out of the glacier cavity below the 80 m deep ice base. In the vicinity of the glacier, the glacially modified waters form a distinct mixed layer situated above the Atlantic waters and below the ambient Polar water. At greater distances from the glacier this layer is eroded by lateral mixing with ambient water. Based on our observations we will present an estimate of the ocean heat transport into the subglacial cavity. In comparison with historic observations we find an increase in Atlantic water temperatures throughout the last 20 years. The resulting

  14. Dissolved trace and minor elements in cryoconite holes and supraglacial streams, Canada Glacier, Antarctica

    Science.gov (United States)

    Fortner, Sarah K.; Lyons, W. Berry

    2018-04-01

    Here we present a synthesis of the trace element chemistry in melt on the surface Canada Glacier, Taylor Valley, McMurdo Dry Valleys (MDV), Antarctica ( 78°S). The MDV is largely ice-free. Low accumulation rates, strong winds, and proximity to the valley floor make these glaciers dusty in comparison to their inland counterparts. This study examines both supraglacial melt streams and cryoconite holes. Supraglacial streams on the lower Canada Glacier have median dissolved (dynamic responses in melt chemistry. For elements above detection limits, dissolved concentrations in glacier surface melt are within an order of magnitude of concentrations observed in proglacial streams (i.e. flowing on the valley floor). This suggests that glacier surfaces are an important source of downstream chemistry. The Fe enrichment of cryoconite water relative to N, P, or Si exceeds enrichment observed in marine phytoplankton. This suggests that the glacier surface is an important source of Fe to downstream ecosystems.

  15. Modeled climate-induced glacier change in Glacier National Park, 1850-2100

    Science.gov (United States)

    Hall, M.H.P.; Fagre, D.B.

    2003-01-01

    The glaciers in the Blackfoot-Jackson Glacier Basin of Glacier National Park, Montana, decreased in area from 21.6 square kilometers (km2) in 1850 to 7.4 km2 in 1979. Over this same period global temperatures increased by 0.45??C (?? 0. 15??C). We analyzed the climatic causes and ecological consequences of glacier retreat by creating spatially explicit models of the creation and ablation of glaciers and of the response of vegetation to climate change. We determined the melt rate and spatial distribution of glaciers under two possible future climate scenarios, one based on carbon dioxide-induced global warming and the other on a linear temperature extrapolation. Under the former scenario, all glaciers in the basin will disappear by the year 2030, despite predicted increases in precipitation; under the latter, melting is slower. Using a second model, we analyzed vegetation responses to variations in soil moisture and increasing temperature in a complex alpine landscape and predicted where plant communities are likely to be located as conditions change.

  16. Carnauba wax as a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of highly soluble drugs.

    Science.gov (United States)

    Nart, Viviane; Beringhs, André O'Reilly; França, Maria Terezinha; de Espíndola, Brenda; Pezzini, Bianca Ramos; Stulzer, Hellen Karine

    2017-01-01

    Mini-tablets are a new tendency in solid dosage form design for overcoming therapeutic obstacles such as impaired swallowing and polypharmacy therapy. Among their advantages, these systems offer therapeutic benefits such as dose flexibility and combined drug release patterns. The use of lipids in the formulation has also drawn considerable interest as means to modify the drug release from the dosage form. Therefore, this paper aimed at developing sustained release mini-tablets containing the highly soluble drugs captopril and metformin hydrochloride. Carnauba wax was used as a lipid component in melt granulation, targeting the improvement of the drugs poor flowability and tabletability, as well as to sustain the drug release profiles in association with other excipients. To assist sustaining the drug release, Ethocel™ (EC) and Kollicoat® SR 30D associated with Opadry® II were employed as matrix-forming and reservoir-forming materials, respectively. The neat drugs, granules and the bulk formulations were evaluated for their angle of repose, compressibility index, Hausner ratio and tabletability. Mini-tablets were evaluated for their weight variation, hardness, friability, drug content and in-vitro drug release. The results indicated that melt granulation with carnauba wax improved the flow and the tabletability of the drugs, allowing the preparation of mini-tablets with adequate tensile strength under reduced compaction pressures. All mini-tablet formulations showed acceptable hardness (within the range of 1.16 to 3.93Kp) and friability (granulated captopril in matrix systems containing 50% EC (45P, 100P or 100FP) and the melt-granulated metformin hydrochloride in reservoir systems coated with Kollicoat® SR 30D and Opadry® II (80:20 with 10% weight gain or 70:30 with 20% weight gain) exhibited release profiles adequate to sustained release formulations, for over 450min. Therefore, carnauba wax proved to be a promising excipient in melt granulation targeting

  17. The hydrological role of snow and glaciers in alpine river basins and their distributed modeling

    NARCIS (Netherlands)

    Verbunt, M.; Gurtz, J.; Jasper, K.; Lang, H.; Warmerdam, P.M.M.; Zappa, M.

    2003-01-01

    A temperature index approach including incoming solar radiation was used as a sub-model in the gridded hydrological catchment model WaSiM-ETH to simulate the melt rate of glacierized areas. Melt water and rainfall are transformed into glacier discharge by using linear reservoir approaches. The

  18. Complex Greenland outlet glacier flow captured

    Science.gov (United States)

    Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin

    2016-01-01

    The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316

  19. Remote Sensing Observations of Advancing and Surging Tidewater Glaciers

    Science.gov (United States)

    McNabb, R. W.; Kääb, A.; Nuth, C.; Girod, L.; Truffer, M.; Fahnestock, M. A.

    2017-12-01

    Progress has been made in understanding the glaciological frontiers of tidewater glacier dynamics and surge dynamics, though many aspects of these topics are not well-understood. Advances in the processing of digital elevation models (DEMs) from ASTER imagery, as well as the increased availability and temporal density of satellite images such as Landsat and the Sentinel missions, provide an unprecedented wealth of satellite data over glaciers, providing new opportunities to learn about these topics. As one of the largest glaciated regions in the world outside of the Greenland and Antarctic ice sheets, glaciers in Alaska and adjacent regions in Canada have been highlighted for their elevated contributions to global sea level rise, through both high levels of melt and frontal ablation/calving from a large number of tidewater glaciers. The region is also home to a number of surging glaciers. We focus on several tidewater glaciers in the region, including Turner, Tsaa, Harvard, and Meares Glaciers. Turner Glacier is a surge-type tidewater glacier with a surge period of approximately eight years, while Tsaa Glacier is a tidwewater glacier that has shown rapid swings in terminus position on the order of a year. Harvard and Meares Glaciers have been steadily advancing since at least the mid-20th century, in contrast with neighboring glaciers that are retreating. Using a combination of ASTER, Landsat, and Sentinel data, we present and examine high-resolution time series of elevation, velocity, and terminus position for these glaciers, as well as updated estimates of volume change and frontal ablation rates, including on sub-annual time scales. Preliminary investigations of elevation change on Turner Glacier show that changes are most pronounced in the lower reaches of the glacier, below a prominent icefall approximately 15km from the head of the glacier. On Harvard and Meares Glaciers, elevation changes in the upper reaches of both glaciers have been generally small or

  20. Study of inter-annual variations in surface melting over Amery Ice ...

    Indian Academy of Sciences (India)

    Lambert Glacier ... Thus, monitoring surface melt conditions is critical for evaluating the stability of Antarctic ice shelves (Kunz and. Long 2006). Davis. Station. Site-1. Lambert. Glacier ..... P A, Jones J and Bitz C 2006 Antarctic temperature over.

  1. Hot-melt co-extrusion for the production of fixed-dose combination products with a controlled release ethylcellulose matrix core.

    Science.gov (United States)

    Vynckier, A-K; Dierickx, L; Saerens, L; Voorspoels, J; Gonnissen, Y; De Beer, T; Vervaet, C; Remon, J P

    2014-04-10

    In this study, hot-melt co-extrusion was evaluated as a technique for the production of fixed-dose combination products, using ethylcellulose as a core matrix former to control the release of metoprolol tartrate and a polyethylene oxide-based coat formulation to obtain immediate release of hydrochlorothiazide. By lowering the concentration of the hydrophilic additive polyethylene oxide in the plasticized ethylcellulose matrix or by lowering the drug load, the in vitro metoprolol tartrate release from the core was substantially sustained. The in vitro release of hydrochlorothiazide from the polyethylene oxide/polyethylene glycol coat was completed within 45 min for all formulations. Tensile testing of the core/coat mini-matrices revealed an adequate adhesion between the two layers. Raman mapping showed no migration of active substances. Solid state characterization indicated that the crystalline state of metoprolol tartrate was not affected by thermal processing via hot-melt extrusion, while hydrochlorothiazide was amorphous in the coat. These solid state characteristics were confirmed during the stability study. Considering the bioavailability of metoprolol tartrate after oral administration to dogs, the different co-extruded formulations offered a range of sustained release characteristics. Moreover, high metoprolol tartrate plasma concentrations were reached in dogs allowing the administered dose to be halved. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Global-scale hydrological response to future glacier mass loss

    Science.gov (United States)

    Huss, Matthias; Hock, Regine

    2018-02-01

    Worldwide glacier retreat and associated future runoff changes raise major concerns over the sustainability of global water resources1-4, but global-scale assessments of glacier decline and the resulting hydrological consequences are scarce5,6. Here we compute global glacier runoff changes for 56 large-scale glacierized drainage basins to 2100 and analyse the glacial impact on streamflow. In roughly half of the investigated basins, the modelled annual glacier runoff continues to rise until a maximum (`peak water') is reached, beyond which runoff steadily declines. In the remaining basins, this tipping point has already been passed. Peak water occurs later in basins with larger glaciers and higher ice-cover fractions. Typically, future glacier runoff increases in early summer but decreases in late summer. Although most of the 56 basins have less than 2% ice coverage, by 2100 one-third of them might experience runoff decreases greater than 10% due to glacier mass loss in at least one month of the melt season, with the largest reductions in central Asia and the Andes. We conclude that, even in large-scale basins with minimal ice-cover fraction, the downstream hydrological effects of continued glacier wastage can be substantial, but the magnitudes vary greatly among basins and throughout the melt season.

  3. Hydrological scenarios for two selected Alpine catchments for the 21st century using a stochastic weather generator and enhanced process understanding for modelling of seasonal snow and glacier melt for improved water resources management

    Science.gov (United States)

    Strasser, Ulrich; Schneeberger, Klaus; Dabhi, Hetal; Dubrovsky, Martin; Hanzer, Florian; Marke, Thomas; Oberguggenberger, Michael; Rössler, Ole; Schmieder, Jan; Rotach, Mathias; Stötter, Johann; Weingartner, Rolf

    2016-04-01

    The overall objective of HydroGeM³ is to quantify and assess both water demand and water supply in two coupled human-environment mountain systems, i.e. Lütschine in Switzerland and Ötztaler Ache in Austria. Special emphasis is laid on the analysis of possible future seasonal water scarcity. The hydrological response of high Alpine catchments is characterised by a strong seasonal variability with low runoff in winter and high runoff in spring and summer. Climate change is expected to cause a seasonal shift of the runoff regime and thus it has significant impact on both amount and timing of the release of the available water resources, and thereof, possible future water conflicts. In order to identify and quantify the contribution of snow and ice melt as well as rain to runoff, streamflow composition will be analysed with natural tracers. The results of the field investigations will help to improve the snow and ice melt and runoff modules of two selected hydrological models (i.e. AMUNDSEN and WaSiM) which are used to investigate the seasonal water availability under current and future climate conditions. Together, they comprise improved descriptions of boundary layer and surface melt processes (AMUNDSEN), and of streamflow runoff generation (WaSiM). Future meteorological forcing for the modelling until the end of the century will be provided by both a stochastic multi-site weather generator, and downscaled climate model output. Both approches will use EUROCORDEX data as input. The water demand in the selected study areas is quantified for the relevant societal sectors, e.g. agriculture, hydropower generation and (winter) tourism. The comparison of water availability and water demand under current and future climate conditions will allow the identification of possible seasonal bottlenecks of future water supply and resulting conflicts. Thus these investigations can provide a quantitative basis for the development of strategies for sustainable water management in

  4. Malaspina Glacier, Alaska, Perspective with Landsat Overlay

    Science.gov (United States)

    2003-01-01

    Malaspina Glacier in southeastern Alaska is considered the classic example of a piedmont glacier. Piedmont glaciers occur where valley glaciers exit a mountain range onto broad lowlands, are no longer laterally confined, and spread to become wide lobes. Malaspina Glacier is actually a compound glacier, formed by the merger of several valley glaciers, the most prominent of which seen here are Agassiz Glacier (left) and Seward Glacier (right). In total, Malaspina Glacier is up to 65 kilometers (40 miles) wide and extends up to 45 kilometers (28 miles) from the mountain front nearly to the sea. This perspective view was created from a Landsat satellite image and an elevation model generated by the Shuttle Radar Topography Mission (SRTM). Landsat views both visible and infrared light, which have been combined here into a color composite that generally shows glacial ice in light blue, snow in white, vegetation in green, bare rock in grays and tans, and the ocean (foreground) in dark blue. The back (northern) edge of the data set forms a false horizon that meets a false sky. Glaciers erode rocks, carry them down slope, and deposit them at the edge of the melting ice, typically in elongated piles called moraines. The moraine patterns at Malaspina Glacier are quite spectacular in that they have huge contortions that result from the glacier crinkling as it gets pushed from behind by the faster-moving valley glaciers. Glaciers are sensitive indicators of climatic change. They can grow and thicken with increasing snowfall and/or decreased melting. Conversely, they can retreat and thin if snowfall decreases and/or atmospheric temperatures rise and cause increased melting. Landsat imaging has been an excellent tool for mapping the changing geographic extent of glaciers since 1972. The elevation measurements taken by SRTM in February 2000 now provide a near-global baseline against which future non-polar region glacial thinning or thickening can be assessed. Elevation data used

  5. Reconstruction of specific mass balance for glaciers in Western ...

    Indian Academy of Sciences (India)

    Vinay Kumar Gaddam

    2017-06-12

    Jun 12, 2017 ... Press, Birlington, MA, pp. 318–321. Pellicciotti F, Helbing J, Rivera A, Favier V, Corripio J,. Araos J, Sicard J E, and Carenzo M 2008 A study of the energy balance and melt regime on Juncal Norte glacier, semi-arid Andes of Central Chile, using melt models of different complexity; Hydrol. Process. 22 3980–.

  6. High-resolution DEMs for High-mountain Asia: A systematic, region-wide assessment of geodetic glacier mass balance and dynamics

    Science.gov (United States)

    Shean, D. E.; Arendt, A. A.; Osmanoglu, B.; Montesano, P.

    2017-12-01

    High Mountain Asia (HMA) constitutes the largest glacierized region outside of the Earth's polar regions. Although available observations are limited, long-term records indicate sustained regional glacier mass loss since 1850, with increased loss in recent decades. Recent satellite data (e.g., GRACE, ICESat-1) show spatially variable glacier mass balance, with significant mass loss in the Himalaya and Hindu Kush and slight mass gain in the Karakoram. We generated 4000 high-resolution digital elevation models (DEMs) from sub-meter commercial stereo imagery (DigitalGlobe WorldView/GeoEye) acquired over glaciers in High-mountain Asia from 2002-present (mostly 2013-present). We produced a regional 8-m DEM mosaic for 2015 and estimated 15-year geodetic mass balance for 40000 glaciers larger than 0.1 km2. We are combining with other regional DEM sources to systematically document the spatiotemporal evolution of glacier mass balance for the entire HMA region. We also generated monthly to interannual DEM and velocity time series for high-priority sites distributed across the region, with >15-20 DEMs available for some locations from 2010-present. These records document glacier dynamics, seasonal snow accumulation/redistribution, and processes that affect glacier mass balance (e.g., ice-cliff retreat, debris cover evolution). These efforts will provide basin-scale assessments of snow/ice melt runoff contributions for model cal/val and downstream water resources applications. We will continue processing all archived and newly available commercial stereo imagery for HMA, and will release all DEMs through the HiMAT DAAC.

  7. World Glacier Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Glacier Inventory (WGI) contains information for over 130,000 glaciers. Inventory parameters include geographic location, area, length, orientation,...

  8. Glacier Photograph Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Glacier Photograph Collection is a database of photographs of glaciers from around the world, some dating back to the mid-1850's, that provide an historical...

  9. Glaciers between two drivers

    DEFF Research Database (Denmark)

    Machguth, Horst

    2014-01-01

    It is assumed that the monsoon is the dominant influence on Himalayan glaciers. However, a study now investigates the importance of the mid-latitude Westerlies and shows that glacier changes can be triggered from afar.......It is assumed that the monsoon is the dominant influence on Himalayan glaciers. However, a study now investigates the importance of the mid-latitude Westerlies and shows that glacier changes can be triggered from afar....

  10. Glaciers and Climate Change

    NARCIS (Netherlands)

    Oerlemans, J.

    2001-01-01

    Although my book focuses on valley glaciers, it is not intended to provide a basic course in glaciology, nor does it claim to give a state-of-the-art picture of glacier research. It consists mainly of the personal reflections of a meteorologist who gradually became interested in glaciers and is

  11. Mechanical properties and drug release of venlafaxine HCl solid mini matrices prepared by hot-melt extrusion and hot or ambient compression.

    Science.gov (United States)

    Avgerinos, Theodoros; Kantiranis, Nikolaos; Panagopoulou, Athanasia; Malamataris, Stavros; Kachrimanis, Kyriakos; Nikolakakis, Ioannis

    2018-02-01

    Objective/significance: To elucidate the role of plasticizers in different mini matrices and correlate mechanical properties with drug release. Cylindrical pellets were prepared by hot-melt extrusion (HME) and mini tablets by hot (HC) and ambient compression (AC). Venlafaxine HCl was the model drug, Eudragit ® RSPO the matrix former and citric acid or Lutrol ® F127 the plasticizers. The matrices were characterized for morphology, crystallinity, and mechanical properties. The influence of plasticizer's type and content on the extrusion pressure (P e ) during HME and ejection during tableting was examined and the mechanical properties were correlated with drug release parameters. Resistance to extrusion and tablet ejection force were reduced by Lutrol ® F127 which also produced softer and weaker pellets with faster release, but harder and stronger HC tablets with slower release. HME pellets showed greater tensile strength (T) and 100 times slower release than tablets. P e correlated with T and resistance to deformation of the corresponding pellets (r 2  = 0.963 and 0.945). For both HME and HC matrices the decrease of drug release with T followed a single straight line (r 2  = 0.990) and for HME the diffusion coefficient (D e ) and retreat rate constant (k b ) decreased linearly with T (r 2  = 0.934 and 0.972). Lutrol ® F127 and citric acid are efficient plasticizers and Lutrol ® F127 is a thermal binder/lubricant in HC compression. The different bonding mechanisms of the matrices were reflected in the mechanical strength and drug release. Relationships established between T and drug release parameters for HME and HC matrices may be useful during formulation work.

  12. Glacier shrinkage and water resources in the Andes

    Science.gov (United States)

    Francou, Bernard; Coudrain, Anne

    For more than a century glaciers around the world have been melting as air temperatures rise due to a combination of natural processes and human activity. The disappearance of these glaciers can have wide-ranging effects, such as the creation of new natural hazards or changes in stream flow that could threaten water suppliesSome of the most dramatic melting has occurred in the Andes mountain range in South America. To highlight the climatic and glacial change in the Andes and to encourage the scientific community to strengthen the glacier observation network that stretches from Colombia to the Patagonian ice fields, the Instituto Nacional de Recursos Naturales (INRENA), Perú, and the Institute of Research and Development (IRD), France, recently organized the second Symposium on Mass Balance of Andean Glaciers in Huaráz,Perú.

  13. Impacts of glacier recession and declining meltwater on mountain societies

    DEFF Research Database (Denmark)

    Carey, Mark; Molden, Olivia C.; Rasmussen, Mattias Borg

    2017-01-01

    Glacierized mountains are often referred to as our world's water towers because glaciers both store water over time and regulate seasonal stream flow, releasing runoff during dry seasons when societies most need water. Ice loss thus has the potential to affect human societies in diverse ways...

  14. Large-Scale Seasonal Changes in Glacier Thickness Across High Mountain Asia

    Science.gov (United States)

    Wang, Qiuyu; Yi, Shuang; Chang, Le; Sun, Wenke

    2017-10-01

    Recently, increased efforts have been made to estimate the mass budgets of glaciers in High Mountain Asia (HMA). However, seasonal changes in glaciers are poorly understood, despite the fact that seasonal meltwater released from glaciers is a crucial local water resource in HMA. Utilizing satellite altimetry and gravimetry data, we constructed annual changes in glacier elevation and identified two general patterns of the seasonality of glacier elevation changes. Glaciers in the periphery of HMA (except for those in the eastern Himalayas) thicken from approximately December to April-June, thus exhibiting winter and spring accumulation. Glaciers in the inner Tibetan Plateau, especially those in Western Kunlun and Tanggula, accumulate from approximately March to approximately August, thus exhibiting spring and summer accumulation. The amounts of seasonal glacier ablation were obtained using a new approach of direct observations of glacier changes, rather than inferring changes using a climate model.

  15. An Active Englacial Hydrological System in a Cold Glacier: Blood Falls, Taylor Glacier, Antarctica

    Science.gov (United States)

    Carr, C. G.; Pettit, E. C.; Carmichael, J.; Badgeley, J.; Tulaczyk, S. M.; Lyons, W. B.; Mikucki, J.

    2016-12-01

    Blood Falls is a supraglacial hydrological feature formed by episodic release of iron-rich subglacial brine derived from an extensive aquifer beneath the cold, polar, Taylor Glacier. While fluid transport in non-temperate ice typically occurs through meltwater delivery from the glacier surface to the bed (hydrofracturing, supraglacial lake drainage), Blood Falls represents the opposite situation: brine moves from a subglacial source to the glacier surface. Here, we present the first complete conceptual model for brine transport and release, as well as the first direct evidence of a wintertime brine release at Blood Falls obtained through year-round time-lapse photography. Related analyses show that brine pools subglacially underneath the northern terminus of Taylor Glacier, rather than flowing directly into proglacial Lake Bonney because ice-cored moraines and channelized surface topography provide hydraulic barriers. This pooled brine is pressurized by hydraulic head from the upglacier brine source region. Based on seismic data, we propose that episodic supraglacial release is initiated by high strain rates coupled with pressurized subglacial brine that drive intermittent subglacial and englacial fracturing. Ultimately, brine-filled basal crevasses propagate upward to link with surface crevasses, allowing brine to flow from the bed to the surface. The observation of wintertime brine release indicates that surface-generated meltwater is not necessary to trigger crack propagation or to maintain the conduit as previously suggested. The liquid brine persists beneath and within the cold ice (-17°C) despite ambient ice/brine temperature differences of as high as 10°C through both locally depressed brine freezing temperatures through cryoconcentration of salts and increased ice temperatures through release of latent heat during partial freezing of brine. The existence of an englacial hydrological system initiated by basal crevassing extends to polar glaciers a process

  16. Accessing the inaccessible: making (successful) field observations at tidewater glacier termini

    Science.gov (United States)

    Kienholz, C.; Amundson, J. M.; Jackson, R. H.; Motyka, R. J.; Nash, J. D.; Sutherland, D.

    2017-12-01

    Glaciers terminating in ocean water (tidewater glaciers) show complex dynamic behavior driven predominantly by processes at the ice-ocean interface (sedimentation, erosion, iceberg calving, submarine melting). A quantitative understanding of these processes is required, for example, to better assess tidewater glaciers' fate in our rapidly warming environment. Lacking observations close to glacier termini, due to unpredictable risks from calving, hamper this understanding. In an effort to remedy this lack of knowledge, we initiated a large field-based effort at LeConte Glacier, southeast Alaska, in 2016. LeConte Glacier is a regional analog for many tidewater glaciers, but better accessible and observable and thus an ideal target for our multi-disciplinary effort. Our ongoing campaigns comprise measurements from novel autonomous vessels (temperature, salinity and current) in the immediate proximity of the glacier terminus and additional surveys (including multibeam bathymetry) from boats and moorings in the proglacial fjord. These measurements are complemented by iceberg and glacier velocity measurements from time lapse cameras and a portable radar interferometer situated above LeConte Bay. GPS-based velocity observations and melt measurements are conducted on the glacier. These measurements provide necessary input for process-based understanding and numerical modeling of the glacier and fjord systems. In the presentation, we discuss promising initial results and lessons learned from the campaign.

  17. Partitioning the Water Budget in a Glacierized Basin

    Science.gov (United States)

    O'Neel, S.; Sass, L.; McGrath, D.; McNeil, C.; Myers, K. F.; Bergstrom, A.; Koch, J. C.; Ostman, J. S.; Arendt, A. A.; LeWinter, A.; Larsen, C. F.; Marshall, H. P.

    2017-12-01

    Glaciers couple to the ecosystems in which they reside through their mass balance and subsequent runoff. The unique timing and composition of glacier runoff notably impacts ecological and socio-economically important processes, including thermal modulation of streams, nearshore primary production, and groundwater exchange. Predicting how these linkages will evolve as glaciers continue to retreat requires a better understanding of basin- to region-scale water budgets. Here we develop a partitioned water balance for Alaska's Wolverine Glacier basin for 2016. Our presentation will highlight mass-balance forcing and sensitivity, as well as analyses of hydrometric and geochemical partitioning. These observations provide constraints for hypsometry-based regional projections of glacier change, which form the basis of future biogeochemical scenarios. Local climate records show relatively minor warming and drying over the 1967 -2016 interval, yet the impact on the glacier was substantial; the average annual balance rate over the study interval is -0.5 m/yr. We performed a sensitivity experiment that suggests that elevation-independent processes drive first-order variability in glacier-wide mass balance solutions Analysis of runoff and precipitation data suggest that previously ignored components of the hydrologic cycle (groundwater, evapotranspiration, off-glacier snowpack storage, and snow redistribution) may substantially contribute to the basin wide water budget. Initial geochemical assessments (carbon, water isotopes, major ions) highlight unique source signatures (glacier-derived, snow-melt, groundwater), which will be further explored using a mixing model approach. Applying a range of climate forcings over centennial time-scales suggests the regional equilibrium line altitude is likely to increase by more than 100 m, which will result in extensive glacier area losses. Such changes will likely modify the runoff from this basin by increasing inter-annual streamflow

  18. Modeling Ocean-Forced Changes in Smith Glacier

    Science.gov (United States)

    Lilien, D.; Joughin, I. R.; Smith, B. E.

    2014-12-01

    Glaciers along the Amundsen Coast are changing rapidly, which has drawn substantial scientific and public attention. Modeling and observation suggest warm-water intrusion and consequent melting as the cause of observed changes, and that unstoppable retreat may have already been triggered in some drainages. While Pine Island and Thwaites Glaciers are losing the most mass and have been the predominant objects study, other systems, particularly Smith, Pope and Kohler Glaciers and the corresponding Dotson and Crosson Shelves, are changing more rapidly relative to their size. Though smaller, these glaciers still have potentially large implications for overall regional dynamics as their beds connect below sea level to surrounding basins. In particular, the long, deep trough of Smith Glacier nearly links to the large eastern tributary of Thwaites, potentially causing rapid changes of Smith to have significant impact on the continuing retreat of Thwaites.We implemented a numerical model in Elmer/Ice, an open-source, full-Stokes, finite-element software package, to investigate the response of the Smith/Pope/Kohler system to different initial conditions. We use various parameterizations of sub-shelf melting with constant magnitude to examine the sensitivity of overall dynamics to melt distribution. Because melt distribution affects lateral buttressing and upstream grounded areas, it is potentially an important control on ice shelf and outlet glacier dynamics. Through comparison to the most recent velocity data, we evaluate the ability of differing melt parameterizations to reproduce the behavior currently seen in Smith/Pope/Kohler glaciers. In addition, we investigate the effect of using different years of velocity data with constant elevation input when initiating model runs. By comparing results over the satellite record to initiation with synchronous observations, we assess the accuracy of the often necessary practice of using differently timestamped datasets.

  19. Coupling of a Detailed Snow Model to WRF-Hydro for Glacier Mass Balance and Glacier Runoff Studies

    Science.gov (United States)

    Eidhammer, T.; Gochis, D.; Barlage, M. J.; Rasmussen, R.

    2017-12-01

    Studies of mass balance in glaciers in complex terrain show that elevation gradients and complex topography in many glaciated regions lead to large variations in temperature, precipitation, winds (and thereby wind deflection, transport and deposition of dry snow during the accumulation season) and net radiative exchange across the glacier. Therefore, proper simulation of the non-homogenous, non-stationary, evolution of a glacier requires much finer resolution of atmospheric processes than typical global or regional climate models can provide. Furthermore, regional `atmosphere-only' models typically do not have the detailed information about runoff routing processes, which are important components in the hydrological cycle. Glacier melt contributes to discharge especially during summer when the magnitude of the summer peak river flow depends greatly on the contribution of melt water from snow and ice to the total river flow. This contribution from glaciers to total flow plays a key role in the glacier-fed rivers in populated regions where summer flows are crucial for irrigation, human consumption and energy production. We have incorporated the detailed Crocus snow model, as a glacier mass balance model, into the Noah-MP land model, within the Weather and Research Forecasting - Hydro (WRF-Hydro) modelling system. By linking a surface mass balance glacier model to the WRF-Hydro system (WRF-HydroGlac), the interactions between the energy, water and mass balance budgets over glaciated river basins can be better depicted and projected future impacts, better understood. We will demonstrate the WRF-HydroGlac model with a mass balance and snowpack/glacier runoff study of a highly observed Norwegian glacier (Hardangerjokulen).

  20. Continuous twin screw melt granulation of glyceryl behenate: Development of controlled release tramadol hydrochloride tablets for improved safety.

    Science.gov (United States)

    Keen, Justin M; Foley, Connor J; Hughey, Justin R; Bennett, Ryan C; Jannin, Vincent; Rosiaux, Yvonne; Marchaud, Delphine; McGinity, James W

    2015-06-20

    Interest in granulation processes using twin screw extrusion machines is rapidly growing. The primary objectives of this study were to develop a continuous granulation process for direct production of granules using this technique with glyceryl behenate as a binder, evaluate the properties of the resulting granules and develop controlled release tablets containing tramadol HCl. In addition, the granulation mechanism was probed and the polymorphic form of the lipid and drug release rate were evaluated on stability. Granules were prepared using a Leistritz NANO16 twin screw extruder operated without a constricting die. The solid state of the granules were characterized by differential scanning calorimetry and X-ray diffraction. Formulated tablets were studied in 0.1N HCl containing 0-40% ethanol to investigate propensity for alcohol induced dose dumping. The extrusion barrel temperature profile and feed rate were determined to be the primary factors influencing the particle size distribution. Granules were formed by a combination immersion/distribution mechanism, did not require subsequent milling, and were observed to contain desirable polymorphic forms of glyceryl behenate. Drug release from tablets was complete and controlled over 16 h and the tablets were determined to be resistant to alcohol induced dose dumping. The drug release rate from the tablets was found to be stable at 40°C and 75% relative humidity for the duration of a 3 month study. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Geoengineering Outlet Glaciers and Ice Streams

    Science.gov (United States)

    Wolovick, Michael

    2017-04-01

    Mass loss from Greenland and Antarctica is highly sensitive to the presence of warm ocean water that drives melting of ice shelves and marine terminated glaciers. This warm water resides offshore at depth and accesses the grounding line through deep but narrow troughs and fjords. Here, we investigate the possibility of blocking warm water transport through these choke points with an artificial sill. Using a simple width-averaged model of ice stream flow coupled to a buoyant-plume model of submarine melt, we find that grounding line retreat and sea level rise can be delayed or reversed for hundreds of years if warm water is prevented from accessing outlet glaciers and ice-shelf cavities. Glaciers with a floating shelf exhibit a strong response to the presence of the artificial sill regardless of our choice of calving law, while tidewater glaciers require a strong linkage between submarine melt and iceberg calving for the artificial sill to have an effect. As a result of this difference and as a result of differing degrees of overdeepening in the basal topography, Antarctica and Greenland present very different societal cost-benefit analyses. Intervention in Greenland would be low-cost and low-reward: the volume of the artificial sill is comparable to existing large public works projects such as the Dubai Islands or the Suez Canal, but the magnitude of averted sea-level rise is small, the success of the intervention depends on the choice of calving law, and the glaciers return to their non-geoengineered trajectories within one to two centuries. Intervention in Antarctica, on the other hand, would be high-cost and high-reward: the volume of the artificial sill is one to two orders of magnitude greater, but the averted sea level rise is much larger, the intervention is successful regardless of the choice of calving law, and the ice streams remain far from their non-geoengineered trajectories throughout the 1000 year duration of our model runs. In both cases, an

  2. One decade of scientific studies of snow management on Austria's glacier ski resorts

    Science.gov (United States)

    Fischer, Andrea; Helfricht, Kay

    2016-04-01

    After the extremely warm summer of 2003, when melt affected Austria's glaciers up to the highest elevations, a scientific study on artificial modification of mass balance was initiated. It examined the effects of glacier covers and water injection, but also various grooming methods and snow accumulations based on monitoring and modelling of snow and energy balance. The results showed that covering the glacier was the most effective and cheapest method, saving about 70% of glacier melt in places. But covers are restricted to a small portion of the area, as they require high maintenance. In recent years, snow production and snow accumulation by wind drift have gained more and more importance, not only modifying glacier mass balance, but also guaranteeing an early season start. Initially about 35 ha of the glacier area (resort area and less than one per mille of the total glacier area in Austria) were covered and later the area was reduced as snow production possibilities increased. Snow depots are often used as fun parks for snow boarders. Glacier covers are not primarily used for keeping snow for early season start on ski tracks, but to maintain the surface, especially close to cable car infrastructure, at a constant elevation and slope. Despite glacier dynamics, glacier surfaces with snow management show reduced decrease of surface elevation , both on piste and along lift tracks.

  3. Changes of glacier, glacier-fed rivers and lakes in Altai Tavan Bogd National Park, Western Mongolia, based on multispectral satellite data from 1990 to 2017

    Science.gov (United States)

    Batsaikhan, B.; Lkhamjav, O.; Batsaikhan, N.

    2017-12-01

    Impacts on glaciers and water resource management have been altering through climate changes in Mongolia territory characterized by dry and semi-arid climate with low precipitation. Melting glaciers are early indicators of climate change unlike the response of the forests which is slower and takes place over a long period of time. Mountain glaciers are important environmental components of local, regional, and global hydrological cycles. The study calculates an overview of changes for glacier, glacier-fed rivers and lakes in Altai Tavan Bogd mountain, the Western Mongolia, based on the indexes of multispectral data and the methods typically applied in glacier studies. Were utilized an integrated approach of Normalized Difference Snow Index (NDSI) and Normalized Difference Water Index (NDWI) to combine Landsat, MODIS imagery and digital elevation model, to identify glacier cover are and quantify water storage change in lakes, and compared that with and climate parameters including precipitation, land surface temperature, evaporation, moisture. Our results show that melts of glacier at the study area has contributed to significantly increase of water storage of lakes in valley of The Altai Tavan Bogd mountain. There is hydrologic connection that lake basin is directly fed by glacier meltwater.

  4. Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range)

    International Nuclear Information System (INIS)

    Takeuchi, Nozomu

    2013-01-01

    Snow and ice algae are cold tolerant algae growing on the surface of snow and ice, and they play an important role in the carbon cycles for glaciers and snowfields in the world. Seasonal and altitudinal variations in seven major taxa of algae (green algae and cyanobacteria) were investigated on the Gulkana glacier in Alaska at six different elevations from May to September in 2001. The snow algal communities and their biomasses changed over time and elevation. Snow algae were rarely observed on the glacier in May although air temperature had been above 0 ° C since the middle of the month and surface snow had melted. In June, algae appeared in the lower areas of the glacier, where the ablation ice surface was exposed. In August, the distribution of algae was extended to the upper parts of the glacier as the snow line was elevated. In September, the glacier surface was finally covered with new winter snow, which terminated algal growth in the season. Mean algal biomass of the study sites continuously increased and reached 6.3 × 10 μl m −2 in cell volume or 13 mg carbon m −2 in September. The algal community was dominated by Chlamydomonas nivalis on the snow surface, and by Ancylonema nordenskiöldii and Mesotaenium berggrenii on the ice surface throughout the melting season. Other algae were less abundant and appeared in only a limited area of the glacier. Results in this study suggest that algae on both snow and ice surfaces significantly contribute to the net production of organic carbon on the glacier and substantially affect surface albedo of the snow and ice during the melting season. (letter)

  5. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect

    Science.gov (United States)

    Carenzo, M.; Pellicciotti, F.; Mabillard, J.; Reid, T.; Brock, B. W.

    2016-08-01

    Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the

  6. 2017 Rapid Retreat Of Thwaites Glacier

    Science.gov (United States)

    Milillo, P.; Rignot, E. J.; Mouginot, J.; Scheuchl, B.

    2017-12-01

    We employ data from the second generation of SAR systems e.g. the Italian COSMO- SkyMed (CSK) constellation and the German TanDEM-X (TDX) formation to monitor grounding line retreat using short repeat-time interferometry and accurate InSAR DEM on Thwaites glacier in the Amundsen Sea Embayment (ASE), West Antarctica. The ASE is a marine-based ice sheet with a retrograde bed containing enough ice to raise global sea level by 120 cm. Several studies have inferred the mechanical properties of portions of ASE using observationally constrained numerical models, but these studies offer only temporal snapshots of basal mechanics owing to a dearth of observational time series. Prior attempts of grounding lines mapping have been limited because few space-borne SAR missions offer the short-term repeat pass capability required to map the differential vertical displacement of floating ice at tidal frequencies with sufficient detail to resolve grounding line boundaries in areas of fast ice deformation. Using 1-day CSK repeat pass data and TDX DEMs, we collected frequent, high-resolution grounding line measurements of Thwaites glaciers spanning 2015-2017. We compare the results with ERS data spanning 1996-2011, and Sentinel-1a 2014-2015 data. Between 2011 and 2017 we observe a maximum retreat of 5-7 km across the main Thwaites glacier tongue and Thwaites Eastern ice shelf (TEIS) corresponding to an increased retreat rate of 0.5 km/yr. Grounding line retreat has been fueled by the enhanced intrusion of warm, salty, subsurface ocean water of circumpolar deep water origin onto the continental shelf, beneath the floating ice shelf, to reach the glacier grounding zone and melt it from below at rates varying from 50 to 150 m/yr. The retreat rate varies depending on the magnitude of ice melt by the ocean, the rate of ice thinning and the shape of the glacier surface and bed topography.

  7. The thickness of glaciers

    International Nuclear Information System (INIS)

    Faraoni, Valerio; Vokey, Marshall W

    2015-01-01

    Basic formulae and results of glacier physics appearing in glaciology textbooks can be derived from first principles introduced in algebra-based first year physics courses. We discuss the maximum thickness of alpine glaciers and ice sheets and the relation between maximum thickness and length of an ice sheet. Knowledge of ordinary differential equations allows one to derive also the local ice thickness. (paper)

  8. The thickness of glaciers

    Science.gov (United States)

    Faraoni, Valerio; Vokey, Marshall W.

    2015-09-01

    Basic formulae and results of glacier physics appearing in glaciology textbooks can be derived from first principles introduced in algebra-based first year physics courses. We discuss the maximum thickness of alpine glaciers and ice sheets and the relation between maximum thickness and length of an ice sheet. Knowledge of ordinary differential equations allows one to derive also the local ice thickness.

  9. Glaciers and society

    DEFF Research Database (Denmark)

    Gagné, Karine; Rasmussen, Mattias Borg; Orlove, Ben

    2014-01-01

    As icons of a world set in motion by human action, glaciers are often highlighted as quintessential evidences of global climate change. Although there is a general agreement among scientists that glaciers around the world are receding, much of the discussions on the subject tend to be oriented to...

  10. Effect of fluoride content on ion release from cast and selective laser melting-processed Co-Cr-Mo alloys.

    Science.gov (United States)

    Yang, Xu; Xiang, Nan; Wei, Bin

    2014-11-01

    Selective laser melting (SLM) alloy is gaining popularity in prosthetic dentistry. However, its biocompatibility has been of some concern because of long-term exposure to fluoride in the oral environment. The purpose of this study was to examine the effect of fluoride concentration on ion release from Co-Cr-Mo alloy specimens fabricated using either SLM or lost-wax casting when immersed in an artificial saliva solution containing fluoride. Specimens were prepared with either a SLM system for the SLM alloy or conventional lost-wax techniques for the cast alloy. The specimen surfaces were wet ground with silicon carbide paper (400, 800, and 1200 grit) and immersed in modified artificial saliva solutions, the pH of which had been adjusted to 5.0 with lactic acid and which contained NaF at concentrations of 0.00%, 0.05%, 0.1%, or 0.2%. The metal ion content of the solution was determined with an inductively coupled plasma mass spectrometer. The results were submitted to 2-way ANOVA and regression analysis (α=.05). Fluoride concentration significantly influenced the elemental ion release from both the SLM and cast alloys. The quantity of ions released increased significantly with increasing fluoride concentration. The ion release from the cast specimens was significantly greater than that from the SLM specimens. The performance of the SLM alloy in immersion tests demonstrates that this new technique is a superior choice because of its good biocompatibility. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Englacial Hydrology of Temperate Glaciers

    Science.gov (United States)

    Fountain, A. G.; Creyts, T. T.

    2015-12-01

    The englacial region of temperate glaciers is generally treated as a passive conveyor of water from the surface to the bed. Consequently, few studies have examined this region and relatively little is known. This is an important issue because englacial processes probably exert a first order control on the distribution of water to the subglacial hydraulic system. Controlling the water distribution probably controls the type of subglacial hydraulic features present and therefore sliding behavior. Certainly, englacial conduits play a major, if not primary, role in conveying water in the ablation zone. In regions of over-deepenings, areas highly crevassed, or in the accumulation zone, the importance of englacial conduits is less clear. Field studies have shown that intersecting englacial passageways in these regions are relatively common, implying that large water fluxes can drain efficiently through a network of fractures. Hypothetically, efficient drainage systems composed of englacial conduits develop in response to point input of large surface water fluxes. Where input is small and distributed, common to highly crevassed areas or the accumulation zone, water is probably routed through a network of englacial fractures. Glacier geometry may also play a role. Conduits may not develop in the over-deepened (closed basins) regions of a glacier requiring another flow pathway. That englacial fractures exist and can convey water presents a promising alternative. Measured rates of flow in fractures strongly suggest laminar conditions and a sufficient fracture density exists to accommodate the estimated water flux generated upstream by surface melt. The slow flow rates do not generate sufficient viscous heat to compensate expected rates of closure by freezing, however field observations and seismic evidence point to spontaneous fracture formation at depth that must regenerate the fracture network. It is unfortunate that englacial investigations are ignored in favor of

  12. Bathymetry of Torssukatak fjord and one century of glacier stability

    Science.gov (United States)

    An, L.; Rignot, E. J.; Morlighem, M.

    2017-12-01

    Marine-terminating glaciers dominate the evolution of the Greenland Ice Sheet(GrIS) mass balance as they control 90% of the ice discharge into the ocean. Warm air temperatures thin the glaciers from the top to unground ice fronts from the bed. Warm oceans erode the submerged grounded ice, causing the grounding line to retreat. To interpret the recent and future evolution of two outlet glaciers, Sermeq Avangnardleq (AVA) and Sermeq Kujatdleq (KUJ) in central West Greenland, flowing into the ice-choked Torssukatak fjord (TOR), we need to know their ice thickness and bed topography and the fjord bathymetry. Here, we present a novel mapping of the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line using high resolution airborne gravity data from AIRGrav collected in August 2012 with a helicopter platform, at 500 m spacing grid, 50 knots ground speed, 80 m ground clearance, with submilligal accuracy, i.e. higher than NASA Operation IceBridge (OIB)'s 5.2 km resolution, 290 knots, and 450 m clearance. We also employ MultiBeam Echo Sounding data (MBES) collected in the fjord since 2009. We had to wait until the summer of 2016, during Ocean Melting Greenland (OMG), to map the fjord bathymetry near the ice fronts for the first time. We constrain the 3D inversion of the gravity data with MBES in the fjord and a reconstruction of the glacier bed topography using mass conservation (MC) on land ice. The seamless topography obtained across the grounding line reveal the presence of a 300-m sill for AVA, which explains why this glacier has been stable for a century, despite changes in surface melt and ocean-induced melt and the presence of a deep fjord (800 m) in front of the glacier. For KUJ, we also reveal the presence of a wide sill (300 m depth) near the current ice front which explains its stability and the stranding of iceberg debris in front of the glacier. The results shed new light on the evolution of these glaciers and explain their

  13. Differences in mass balance behavior for three glaciers from different climatic regions on the Tibetan Plateau

    Science.gov (United States)

    Zhu, Meilin; Yao, Tandong; Yang, Wei; Xu, Baiqing; Wu, Guanjian; Wang, Xiaojun

    2017-07-01

    Glacier mass balance shows a spatially heterogeneous pattern in response to global warming on the Tibetan Plateau (TP), and the climate mechanisms controlling this pattern require further study. In this study, three glaciers where systematic glaciological and meteorological observations have been carried out were selected, specifically Parlung No. 4 (PL04) and Zhadang (ZD) glaciers on the southern TP and Muztag Ata No. 15 (MZ15) glacier in the eastern Pamir. The characteristics of the mass and energy balances of these three glaciers during the periods between October 1th, 2008 and September 23rd, 2013 were analyzed and compared using the energy and mass balance model. Results show that differences in surface melt, which mainly result from differences in the amounts of incoming longwave radiation (L in ) and outgoing shortwave radiation (S out ), represent the largest source of the observed differences in mass balance changes between PL04 and ZD glaciers and MZ15 glacier, where air temperature, humidity, precipitation and cloudiness are dramatically different. In addition, sensitivity experiments show that mass balance sensitivity to air temperature change is remarkably higher than that associated with precipitation change on PL04 and ZD glaciers, in contrast results from MZ15 glacier. And significantly higher sensitivities to air temperature change are noted for PL04 and ZD glaciers than for MZ15 glacier. These significant differences in the sensitivities to air temperature change are mainly caused by differences in the ratio of snowfall to precipitation during the ablation season, melt energy (L in +S out ) during the ablation season and the seasonality of precipitation among the different regions occupied by glaciers. In turn, these conditions are related to local climatic conditions, especially air temperature. These factors can be used to explain the different patterns of change in Tibetan glacier mass balance under global warming.

  14. Dust, Elemental Carbon and Other Impurities on Central Asian Glaciers: Origin and Radiative Forcing

    Science.gov (United States)

    Schmale, J.; Flanner, M.; Kang, S.; Sprenger, M.; Zhang, Q.; Li, Y.; Guo, J.; Schwikowski, M.

    2015-12-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and radiative forcing (RF). 218 snow samples were taken from 13 snow pits on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental and organic carbon by a thermo-optical method, mineral dust by gravimetry, and iron by ICP-MS. Back trajectory ensembles were released every 6 hours with the Lagranto model for the covered period at all sites. Boundary layer "footprints" were calculated to estimate general source regions and combined with MODIS fire counts for potential fire contributions. Albedo reduction due to black carbon and mineral dust was calculated with the Snow-Ice-Aerosol-Radiative model (SNICAR), and surface spectral irradiances were derived from atmospheric radiative transfer calculations to determine the RF under clear-sky and all sky conditions using local radiation measurements. Dust contributions came from Central Asia, the Arabian Peninsula, the Sahara and partly the Taklimakan. Fire contributions were higher in 2014 and generally came from the West and North. We find that EC exerts roughly 3 times more RF than mineral dust in fresh and relatively fresh snow (~5 W/m2) and up to 6 times more in snow that experienced melting (> 10 W/m2) even though EC concentrations (average per snow pit from 90 to 700 ng/g) were up to two orders of magnitude lower than mineral dust (10 to 140 μg/g).

  15. Malaspina Glacier, Alaska, Anaglyph with Landsat Overlay

    Science.gov (United States)

    2003-01-01

    This anaglyph view of Malaspina Glacier in southeastern Alaska was created from a Landsat satellite image and an elevation model generated by the Shuttle Radar Topography Mission (SRTM). Malaspina Glacier is considered the classic example of a piedmont glacier. Piedmont glaciers occur where valley glaciers exit a mountain range onto broad lowlands, are no longer laterally confined, and spread to become wide lobes. Malaspina Glacier is actually a compound glacier, formed by the merger of several valley glaciers, the most prominent of which seen here are Agassiz Glacier (left) and Seward Glacier (right). In total, Malaspina Glacier is up to 65 kilometers (40 miles) wide and extends up to 45 kilometers (28 miles) from the mountain front nearly to the sea. Glaciers erode rocks, carry them down slope, and deposit them at the edge of the melting ice, typically in elongated piles called moraines. The moraine patterns at Malaspina Glacier are quite spectacular in that they have huge contortions that result from the glacier crinkling as it gets pushed from behind by the faster-moving valley glaciers. Numerous other features of the glaciers and the adjacent terrain are clearly seen when viewing this image at full resolution. The series of tonal arcs on Agassiz Glacier's extension onto the piedmont are called 'ogives.' These arcs are believed to be seasonal features created by deformation of the glacier as it passes over bedrock irregularities at differing speeds through the year. Assuming one light-and-dark ogive pair per year, the rate of motion of the glacial ice can be estimated (in this case, about 200 meters per year where the ogives are most prominent). Just to the west, moraine deposits abut the eroded bedrock terrain, forming a natural dam that has created a lake. Near the northwest corner of the scene, a recent landslide has deposited rock debris atop a small glacier. Sinkholes are common in many areas of the moraine deposits. The sinkholes form when blocks of ice

  16. Pathways of Petermann Glacier meltwater, Greenland

    Science.gov (United States)

    Heuzé, Céline; Wåhlin, Anna; Johnson, Helen; Münchow, Andreas

    2016-04-01

    Radar and satellite observations suggest that the floating ice shelf of Petermann Glacier loses up to 80% of its mass through basal melting, caused by the intrusion of warm Atlantic Water into the fjord and under the ice shelf. The fate of Petermann's glacial meltwater is still largely unknown. It is investigated here, using hydrographic observations collected during a research cruise on board I/B Oden in August 2015. Two methods are used to detect the meltwater from Petermann: a mathematical one that provides the concentration of ice shelf meltwater, and a geometrical one to distinguish the meltwater from Petermann and the meltwater from other ice shelves. The meltwater from Petermann mostly circulates on the north side of the fjord. At the sill, 0.5 mSv of meltwater leave the fjord, mostly on the northeastern side between 100 and 350 m depth, but also in the central channel, albeit with a lesser concentration. Meltwater from Petermann is found in all the casts in Hall Basin, notably north of the sill by Greenland coast. The geometrical method reveals that the casts closest to the Canadian side mostly contain meltwater from other, unidentified glaciers. As Atlantic Water warms up, it is key to monitor Greenland melting glaciers and track their meltwater to properly assess their impact on the ocean circulation and sea level rise.

  17. Investigating plume dynamics at the ocean-glacier interface with turbulence profiling and autonomous vessels

    Science.gov (United States)

    Jackson, R. H.; Nash, J. D.; Sutherland, D. A.; Amundson, J. M.; Kienholz, C.; Skyllingstad, E. D.; Motyka, R. J.

    2017-12-01

    The exchanges of heat and freshwater at tidewater glacier termini are modulated by small-scale turbulent processes. However, few observations have been obtained near the ocean-glacier interface, limiting our ability to quantify turbulent fluxes or test melt parameterizations in ocean-glacier models. Here, we explore the turbulent plume dynamics at LeConte Glacier, Alaska with three extensive field campaigns in May, August and September (2016-17). Two autonomous vessels collected repeat transects of velocity and water properties near the glacier, often within 20 m of the terminus. Concurrent shipboard surveying measured turbulence with a vertical microstructure profiler, along with water properties and velocity. These high-resolution surveys provide a 3D view of the circulation and allow us to quantify turbulent fluxes in the near-glacier region. We observe two regimes at the terminus: an energetic upwelling plume driven by subglacial discharge at a persistent location, and submarine melt-driven convection along other parts of the terminus. We trace the evolution of the subglacial discharge plume as it flows away from the glacier, from an initial stage of vigorous mixing to a more quiescent outflow downstream. Resolving these spatial patterns of upwelling and mixing near glaciers is a key step towards understanding submarine melt rates and glacial fjord circulation.

  18. Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China.

    Science.gov (United States)

    Sun, Shiwei; Kang, Shichang; Huang, Jie; Li, Chengding; Guo, Junming; Zhang, Qianggong; Sun, Xuejun; Tripathee, Lekhendra

    2016-06-01

    The Tibetan Plateau is home to the largest aggregate of glaciers outside the Polar Regions and is a source of fresh water to 1.4 billion people. Yet little is known about the transportation and cycling of Hg in high-elevation glacier basins on Tibetan Plateau. In this study, surface snow, glacier melting stream water and lake water samples were collected from the Qiangyong Glacier Basin. The spatiotemporal distribution and transportation of Hg from glacier to lake were investigated. Significant diurnal variations of dissolved Hg (DHg) concentrations were observed in the river water, with low concentrations in the morning (8:00am-14:00pm) and high concentrations in the afternoon (16:00pm-20:00pm). The DHg concentrations were exponentially correlated with runoff, which indicated that runoff was the dominant factor affecting DHg concentrations in the river water. Moreover, significant decreases of Hg were observed during transportation from glacier to lake. DHg adsorption onto particulates followed by the sedimentation of particulate-bound Hg (PHg) could be possible as an important Hg removal mechanism during the transportation process. Significant decreases in Hg concentrations were observed downstream of Xiao Qiangyong Lake, which indicated that the high-elevation lake system could significantly affect the distribution and transportation of Hg in the Qiangyong Glacier Basin. Copyright © 2016. Published by Elsevier B.V.

  19. GLIMS Glacier Database

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Land Ice Measurements from Space (GLIMS) is an international project with the goal of surveying a majority of the world's estimated 160,000 glaciers. GLIMS...

  20. Rock Glacier Response to Climate Change in the Argentinian Andes

    Science.gov (United States)

    Drewes, J.; Korup, O.; Moreiras, S.

    2017-12-01

    Rock glaciers are bodies of frozen debris and ice that move under the influence of gravity in permafrost areas. Rock glaciers may store a large amount of sediments and play an important role as prime movers of debris in the Andean sediment cascade. However, little is known about how much sediment and water rock glaciers may store at the mountain-belt scale, and the few existing estimates vary considerably. We address this question for the Argentinian Andes, for which a new glacial inventory containing more than 6500 rock glaciers gives us the opportunity to analyse their relevance within the sediment cascade. We examine the inventory for catchments in five sub-regions, i.e. the Desert Andes (22°-31°S); the Central Andes (31°-36°S); the Northern Andes of Patagonia (36°-45°S); the Southern Andes of Patagonia (45°-52°S); and Tierra del Fuego (52°-55°S), together with climate variables of the WorldClim datasets, and digital topographic data, to estimate how rock-glacier extents may change under different past and future climate scenarios. We observe for the northern Desert Andes that rock glacier toes are at 4000 to 5000 m a.s.l. and a mean annual temperature range of 3° and 8°C, though most rock glaciers are in areas with mean annual temperatures between -5 and 5°C, marking a distinct thermal niche. Rock glaciers are traditionally viewed as diagnostic of sporadic alpine permafrost and their toes are often near the annual mean 0°C isotherm. However, we find that only rock glaciers in the southern Desert Andes and Central Andes are located where annual mean temperature is -2°C. Future scenarios project an increase of > four degrees in these areas, which may further degrade ground ice and potentially change the rates at which rock glaciers advance. Where active rock glaciers become inactive their coarse material, which was formerly bound by ice, may be released into the sediment cascade, whereas accelerating or rapidly downwasting rock glaciers may either

  1. 170 years of debris covered glacier surface evolution

    Science.gov (United States)

    Mölg, Nico; Bolch, Tobias; Vieli, Andreas; Bauder, Andreas

    2017-04-01

    The local effect of debris layer thickness on ice melt can be studied considering short time periods and is quite well known to date. How the reduced melt, the additional weight of the debris, and the formation of ice cliffs and lakes are linked with the flow behaviour of the glacier is less well understood and much longer time periods are required for such investigations, typically in the order of the response time of the respective glacier, if possible even longer. For this reason we selected to study Zmuttgletscher in the Western Swiss Alps, which today is a heavily debris covered valley glacier. We produced a time series of glacier area, debris cover and surface elevation changes on the basis of 14 old maps and aerial images, 11 orthoimages and additional terrestrial photographs starting at the end of the little ice age (LIA) in 1859. During these 170 years the glacier lost a volume of 52.9*106 m3 (mean thickness change of -89 m) at its tongue while its debris covered area increased from about 14 to 20%. Several periods of variable retreat rates can be discerned and spatially varying change patterns become visible. Commonly the glacier has been retreating, but we can discern locally different elevation change, and also stable to positive periods in the 1980s become visible on different dynamical section of the glacier. Surface features that are commonly linked to debris cover and ice flow have emerged after the end of the LIA. For example, supraglacial thermokarst features become visible in 1880 and are widespread in the lower area of the glacier tongue in 1946. Considering big ice cliffs that are typically related to a realtively high, steep elevation difference and a large surface area, their number has increased somewhat from zero in 1859 to about 15 today. However, its the small ice cliffs, lakes and surface water channels that have emerged and also contribute to stronger melt through either exposed clean ice or ice in contact with water. Elevation

  2. Mass balance model parameter transferability on a tropical glacier

    Science.gov (United States)

    Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg

    2013-04-01

    The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer

  3. Exploring the links between transient water inputs and glacier velocity in a small temperate glacier in southeastern Alaska

    Science.gov (United States)

    Heavner, M.; Habermann, M.; Hood, E. W.; Fatland, D. R.

    2009-12-01

    Glaciers along the Gulf of Alaska are thinning and retreating rapidly. An important control on the rate at which ice is being lost is basal motion because higher glacier velocities increase the rate at which ice is delivered to ablation zones. Recent research has focused on understanding the effects of sub-glacial water storage on glacier basal motion. In this study, we examined two seasons of the effect of hydrologic controls (from large rainfall events as well as a glacier lake outburst floods) on the velocity of the Lemon Creek Glacier in southeastern Alaska. Lemon Creek Glacier is a moderately sized (~16~km2) temperate glacier at the margin of the Juneau Icefield. An ice-marginal lake forms at the head of the glacier and catastrophically drains once or twice every melt season. We have instrumented the glacier with two meteorological stations: one at the head of the glacier near the ice-marginal lake and another several kilometers below the terminus. These stations measure temperature, relative humidity, precipitation, incoming solar radiation and wind speed and direction. Lake stage in the ice-marginal lake was monitored with a pressure transducer. In addition, Lemon Creek was instrumented with a water quality sonde at the location of a US Geological Survey gaging station approximately 3 km downstream from the glacier terminus. The sonde provides continuous measurements of water temperature, dissolved oxygen, turbidity and conductivity. Finally, multiple Trimble NetRS dual frequency, differential GPS units were deployed on the glacier along the centerline of the glacier. All of the instruments were run continuously from May-September 2008 and May-September 2009 and captured threee outburst floods associated with the ice-marginal lake drainage as well as several large (>3~cm) rainfall events associated with frontal storms off of the Gulf of Alaska in late summer. Taken together, these data allow us to test the hypothesis that water inputs which overwhelm

  4. First record of massive blooming of benthic diatoms and their association with megabenthic filter feeders on the shallow seafloor of an Antarctic Fjord: Does glacier melting fuel the bloom?

    Science.gov (United States)

    Ahn, In-Young; Moon, Hye-Won; Jeon, Misa; Kang, Sung-Ho

    2016-03-01

    We report a conspicuous benthic diatom bloom on an Antarctic fjord shallow seafloor, which has not been reported elsewhere in Antarctica. A thick and massive growth of benthic diatoms was covering or being entangled with a variety of common benthic megafauna such as stalked ascidians, sponges, tubedwelling polychaetes, gastropods, bryozoans, and others. This finding is an outcome of recent investigations on benthic communities in Marian Cove, King George Island, where glacier retreat has been proceeding quickly for the past several decades. Dominance of benthic diatoms during the austral summer has been frequently reported in shallow Antarctic nearshore waters, which in turn indicates their potential as a primary food item for secondary producers living in this harsh environment. However, previous blooming records of the benthic diatoms were primarily based on data from water column samples. We are the first to report observational evidence of shallow seafloor substrates, including the massive blooming of benthic diatoms and their associations with common benthic megafauna in an Antarctic fjord.

  5. Rapid bottom melting widespread near Antarctic ice sheet grounding lines

    Science.gov (United States)

    Rignot, E.; Jacobs, S.

    2002-01-01

    As continental ice from Antartica reaches the grounding line and begins to float, its underside melts into the ocean. Results obtained with satellite radar interferometry reveal that bottom melt rates experienced by large outlet glaciers near their grounding lines are far higher than generally assumed.

  6. Future streamflow droughts in glacierized catchments: the impact of dynamic glacier modelling and changing thresholds

    Science.gov (United States)

    Van Tiel, Marit; Van Loon, Anne; Wanders, Niko; Vis, Marc; Teuling, Ryan; Stahl, Kerstin

    2017-04-01

    In glacierized catchments, snowpack and glaciers function as an important storage of water and hydrographs of highly glacierized catchments in mid- and high latitudes thus show a clear seasonality with low flows in winter and high flows in summer. Due to the ongoing climate change we expect this type of storage capacity to decrease with resultant consequences for the discharge regime. In this study we focus on streamflow droughts, here defined as below average water availability specifically in the high flow season, and which methods are most suitable to characterize future streamflow droughts as regimes change. Two glacierized catchments, Nigardsbreen (Norway) and Wolverine (Alaska), are used as case study and streamflow droughts are compared between two periods, 1975-2004 and 2071-2100. Streamflow is simulated with the HBV light model, calibrated on observed discharge and seasonal glacier mass balances, for two climate change scenarios (RCP 4.5 & RCP 8.5). In studies on future streamflow drought often the same variable threshold of the past has been applied to the future, but in regions where a regime shift is expected this method gives severe "droughts" in the historic high-flow period. We applied the new alternative transient variable threshold, a threshold that adapts to the changing hydrological regime and is thus better able to cope with this issue, but has never been thoroughly tested in glacierized catchments. As the glacier area representation in the hydrological modelling can also influence the modelled discharge and the derived streamflow droughts, we evaluated in this study both the difference between the historical variable threshold (HVT) and transient variable threshold (TVT) and two different glacier area conceptualisations (constant area (C) and dynamical area (D)), resulting in four scenarios: HVT-C, HVT-D, TVT-C and TVT-D. Results show a drastic decrease in the number of droughts in the HVT-C scenario due to increased glacier melt. The deficit

  7. Downstream impacts of climate induced glacier change in High Mountain Asia

    Science.gov (United States)

    Osmanoglu, B.; Hock, R.; Lammers, R. B.; Nicholls, S.; Montesano, P.; Neigh, C. S. R.; Frolking, S. E.; Grogan, D. S.; Rounce, D.; Proussevitch, A. A.

    2017-12-01

    High Mountain Asia (HMA) is often considered the third pole of the world due to the large glacier presence. The seasonal glacier melt water provides the necessary resource for agriculture affecting about a billion people. In this work we aim to provide an integrated framework for the entire HMA region, suitable for understanding changes in glacier mass and associated streamflow in response to recent and future climate combining extensive modeling with relevant glacier data products from remote sensing. Specifically we use a) visible and radar remote sensing products to derive glacier volume changes, snow line altitudes and debris; b) apply a regional climate model with unprecedented spatial resolution to elucidate the regional-scale monsoon-driven climate dynamics with focus on precipitation patterns across the HMA region, c) model recent glacier changes and forecast future glacier evolution, and d) quantify the hydrological response to climate and glacier changes and forecast how those changes impact human water availability downstream of HMA. With this project we integrate high-resolution modeling of the climate heterogeneity in HMA with regional-scale glacier-hydrological modeling specifically adjusted to HMA and informed by a suite of observations from in-situ and satellite-derived data.

  8. The Petermann Glacier Experiment, NW Greenland

    Science.gov (United States)

    Mix, A. C.; Jakobsson, M.; Andrews, J. T.; Jennings, A. E.; Mayer, L. A.; Marcott, S. A.; Muenchow, A.; Stoner, J. S.; Andresen, C. S.; Nicholls, K. W.; Anderson, S. T.; Brook, E.; Ceperley, E. G.; Cheseby, M.; Clark, J.; Dalerum, F.; Dyke, L. M.; Einarsson, D.; Eriksson, B.; Frojd, C.; Glueder, A.; Hedman, U.; Heirman, K.; Heuzé, C.; Hogan, K.; Holden, R.; Holm, C.; Jerram, K.; Krutzfeldt, J.; Nicolas, L.; Par, L.; Lomac-MacNair, K.; Madlener, S.; McKay, J. L.; Meijer, T.; Meiton, A.; Brian, M.; Mohammed, R.; Molin, M.; Moser, C.; Normark, E.; Padman, J.; Pecnerova, P.; Reilly, B.; Reusche, M.; Ross, A.; Stranne, C.; Trinhammer, P.; Walczak, M. H.; Walczak, P.; Washam, P.; Karasti, M.; Anker, P.

    2016-12-01

    The Petermann Glacier Experiment is a comprehensive study on land, ocean, and ice in Northwest Greenland, staged from Swedish Icebreaker Oden in 2015 as a collaboration between the US, Sweden, UK, and Denmark. This talk introduces the strategic goals of the experiment and connects the various scientific results. Petermann Glacier drains a significant marine-based sector of the northern Greenland Ice Sheet and terminates in a floating ice tongue, one of the largest remaining systems of its kind in the northern hemisphere. Records of the modern state of Petermann Glacier and its past variations are of interest to understand the sensitivity of marine terminating outlet glaciers to change, and to constrain the rates and extent of changes that have actually occurred. With this case study we are learning the rules of large scale dynamics that cannot be understood from modern observations alone. Although past behavior is not an simple analog for the future, and no single system captures all possible behaviors, insights from these case studies can be applied through models to better project how similar systems may change in the future. The Petermann Expedition developed the first comprehensive bathymetric maps of the region, drilled through the floating ice tongue to obtain sub-shelf sediment cores near the grounding line and to monitor sub-ice conditions, recovered a broad array of sediment cores documenting changing oceanic conditions in Petermann Fjord, Hall Basin, and Nares Strait, measured watercolumn properties to trace subsurface watermasses that bring heat from the Arctic Ocean into deep Petermann Fjord to melt the base of the floating ice tongue, developed a detailed record of relative sealevel change on land to constrain past ice loads, and recovered pristine boulders for cosmogenic exposure dating of areal ice retreat on land. Together, these studies are shedding new light on the dynamics of past glaciation in Northwest Greenland, and contributing to fundamental

  9. Glacial-hydrogeomorphic process of proglacial lake expansion and exploring its amplification effect on glacier recession in the Himalayas

    Science.gov (United States)

    Song, C.; Sheng, Y.; Wang, J.; Ke, L.; Nie, Y.

    2016-12-01

    Glacial lakes, as a key component of the cryosphere in the Himalayas in response to climate change, pose significant threats to the downstream lives and properties and eco-environment via outburst floods, yet our understanding of their evolution and reaction mechanism with connected glaciers is limited. Here, a regional investigation of glacial lake evolution and glacial-hydrogeomorphic process was conducted by integrating optical imagery, satellite altimetry and DEM. A classification scheme was first used to group glacial lakes of similar glacial and geo-morphology. Our studies show that debris-contact proglacial lakes experienced much more rapid expansions than ice cliff-contact and non-glacier-contact lakes. We further estimate the mass balance of parent glaciers and elevation changes in lake surfaces and debris-covered glacier tongues. Results reveal that the upstream expansion of debris-contact proglacial lakes was not directly related to rising water levels but with a geomorphological alternation of upstream lake basins caused by ice melt-induced debris subsidence at glacier termini. It suggests that the hydrogeomorphic process of glacier thinning and retreat, in comparison with direct meltwater supply alone, may have governed primarily the recent glacial lake expansion across the Himalayas. The mechanism of proglacial lake expansion provides an indirect way to estimate the lowering rates of glacier terminus. The debris-covered glacier fronts show considerable ice melts, with the lowering rate ranging from 1.0 to 9.7 m/yr. The rates exhibit obvious correlations with contacted lake sizes, centerline length and area of glaciers, suggesting that the glacier termini thinning is the combined effect of interplays between glacial lakes and ice flux from parent glaciers. Our study implies that substantial mass loss occurred at lake-contact glacier fronts, which cannot be ignored in assessing the overall mass balance of Himalayan glaciers.

  10. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    DEFF Research Database (Denmark)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes...... in glacier melt independently from model output. Here, we present a comprehensive database of Greenland glacier surface mass-balance observations from the ablation area of the ice sheet and local glaciers. The database spans the 123 a from 1892 to 2015, contains a total of similar to 3000 measurements from......-term time series of which there are only two exceeding 20 a. We use the data to analyse uncertainties in point measurements of surface mass balance, as well as to estimate surface mass-balance profiles for most regions of Greenland....

  11. Air temperature, radiation budget and area changes of Quisoquipina glacier in the Cordillera Vilcanota (Peru)

    Science.gov (United States)

    Suarez, Wilson; Macedo, Nicolás; Montoya, Nilton; Arias, Sandro; Schauwecker, Simone; Huggel, Christian; Rohrer, Mario; Condom, Thomas

    2015-04-01

    The Peruvian Andes host about 71% of all tropical glaciers. Although several studies have focused on glaciers of the largest glaciered mountain range (Cordillera Blanca), other regions have received little attention to date. In 2011, a new program has been initiated with the aim of monitoring glaciers in the centre and south of Peru. The monitoring program is managed by the Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) and it is a joint project together with the Universidad San Antonio Abad de Cusco (UNSAAC) and the Autoridad Nacional del Agua (ANA). In Southern Peru, the Quisoquipina glacier has been selected due to its representativeness for glaciers in the Cordillera Vilcanota considering area, length and orientation. The Cordillera Vilcanota is the second largest mountain range in Peru with a glaciated area of approximately 279 km2 in 2009. Melt water from glaciers in this region is partly used for hydropower in the dry season and for animal breeding during the entire year. Using Landsat 5 images, we could estimate that the area of Quisoquipina glacier has decreased by approximately 11% from 3.66 km2 in 1990 to 3.26 km2 in 2010. This strong decrease is comparable to observations of other tropical glaciers. In 2011, a meteorological station has been installed on the glacier at 5180 m asl., measuring air temperature, wind speed, relative humidity, net short and longwave radiation and atmospheric pressure. Here, we present a first analysis of air temperature and the radiation budget at the Quisoquipina glacier for the first three years of measurements. Additionally, we compare the results from Quisoquipina glacier to results obtained by the Institut de recherche pour le développement (IRD) for Zongo glacier (Bolivia) and Antizana glacier (Ecuador). For both, Quisoquipina and Zongo glacier, net shortwave radiation may be the most important energy source, thus indicating the important role of albedo in the energy balance of the glacier

  12. Preparation of sustained release matrix pellets by melt agglomeration in the fluidized bed: influence of formulation variables and modelling of agglomerate growth.

    Science.gov (United States)

    Pauli-Bruns, Anette; Knop, Klaus; Lippold, Bernhard C

    2010-03-01

    The one-step preparation of sustained release matrix pellets, using a melting procedure in a fluidized bed apparatus, was tested in a 2(3) full factorial design of experiments, using microcrystalline wax as lipophilic binder, theophylline as model drug and talc as additional matrix forming agent. The three influence parameters were (A) size of binder particles, (B) fraction of theophylline in solid particles and (C) fraction of microcrystalline wax in formulation. The response variables were agglomerate size and size distribution, dissolution time, agglomerate crush resistance, sphericity, yield and porosity. Nearly spherical pellets comprising a smooth, closed surface could be obtained with the used method, exhibiting the hollow core typical for the immersion and layering mechanism. The reproducibility was very good concerning all responses. The size of agglomerates is proportional to the size of the binder particles, which serve as cores for pellet formation in the molten state in the fluidized bed. Additionally, the agglomerate size is influenced by the volume of the solid particles in relation to the binder particles, with more solid particles leading to larger agglomerates and vice versa. Dissolution times vary in a very wide range, resulting from the interplay between amount of drug in relation to the meltable matrix substance microcrystalline wax and the non-meltable matrix substance talc. The change of binder particle size does not lead to a structural change of the matrix; both dissolution times and porosity are not significantly altered. Agglomerate crush resistance is low due to the hollow core of the pellets. However, it is significantly increased if the volume fraction of microcrystalline wax in the matrix is high, which means that the matrix is mechanically better stabilized. A theoretical model has been established to quantitatively explain agglomerate growth and very good accordance of the full particle size distributions between predicted and

  13. Oceans Melting Greenland: Early Results from NASA's Ocean-Ice Mission in Greenland

    DEFF Research Database (Denmark)

    Fenty, Ian; Willis, Josh K.; Khazendar, Ala

    2016-01-01

    the continental shelf, and about the extent to which the ocean interacts with glaciers. Early results from NASA's five-year Oceans Melting Greenland (OMG) mission, based on extensive hydrographic and bathymetric surveys, suggest that many glaciers terminate in deep water and are hence vulnerable to increased...

  14. Modeling the Response of Glaciers to Climate Change in the Upper North Saskatchewan River Basin

    Science.gov (United States)

    Booth, E.; Byrne, J. M.; Jiskoot, H.; MacDonald, R. J.

    2011-12-01

    Alpine glaciers act as barometers of climatic change, responding directly to longterm changes in temperature and precipitation with changes in mass balance, resulting in volume and length modifications. The heavily glaciated Upper North Saskatchewan River Basin (UNSRB), Alberta, Canada, represents a crucial portion of the headwaters for the Saskatchewan-Nelson watershed that spans the northern interior of the continent and drains into Hudson's Bay over 1500 km away. Historically, glacier melt runoff provides a significant percentage of late-summer streamflow in the UNSRB. Evidence suggests that recent warming has caused a change in glacier mass balance in the UNSRB that is unprecedented during the Holocene. Analysis of projected climate indices shows that the longterm negative mass balance of glaciers in the region will likely continue to decline over the next century. The effect of recent historical climate change on the glaciers in UNSRB is simulated using a modified version of the physically based Generate Earth SYstems Science (GENESYS) hydromet model. GENESYS has previously been employed to watersheds on the eastern slopes of the Rocky Mountains to simulate daily hydro-met processes at a high resolution over complex terrain, focusing on modeling snow water equivalent and the timing of the spring melt. A mass balance glacier routine is incorporated into GENESYS to more accurately gauge the effects of climate change on the glaciers located in the UNSRB. GENESYS daily micrometeorological data is used to drive a series of glacial ice and snow algorithms that include accumulation, ablation and ice redistribution over the glacier. GCM future ensembles were downscaled and applied to the model to predict changes in the mass balance of glaciers in the UNSRB under a range of likely climate scenarios. Results include time series of changes in glacier mass balance, length, and hydrologic response to changing ice volumes up to the year 2100.

  15. Sensitivity of mountain glacier mass balance to changes in bare-ice albedo

    OpenAIRE

    Naegeli, Kathrin; Huss, Matthias

    2017-01-01

    Albedo is an important parameter in the energy balance of bare-ice surfaces and modulates glacier melt rates. The prolongation of the ablation period enforces the albedo feedback and highlights the need for profound knowledge on impacts of bare-ice albedo on glacier mass balance. In this study, we assess the mass balance sensitivity of 12 Swiss glaciers with abundant long-term in-situ data on changes in bare-ice albedo. We use pixel-based bare-ice albedo derived from Landsat 8. A distributed ...

  16. Ikh Turgen Mountain Glacier Change and 3d Surface Extents Prediction Using Long Term Landsat Image and Climate Data

    Science.gov (United States)

    Nasanbat, Elbegjargal; Erdenebat, Erdenetogtokh; Chogsom, Bolorchuluun; Lkhamjav, Ochirkhuyag; Nanzad, Lkhagvadorj

    2018-04-01

    The glacier is most important the freshwater resources and indicator of the climate change. The researchers noted that during last decades the glacier is melting due to global warming. The study calculates a spatial distribution of protentional change of glacier coverage in the Ikh Turgen mountain of Western Mongolia, and it integrates long-term climate data and satellite datasets. Therefore, in this experiment has tried to estimation three-dimensional surface area of the glacier. For this purpose, Normalized difference snow index (NDSI) was applied to decision tree approach, using Landsat MSS, TM, ETM+ and LC8 imagery for 1975-2016, a surface and slope for digital elevation model, precipitation and air temperature historical data of meteorological station. The potential volume area significantly changed glacier cover of the Ikh Turgen Mountain, and the area affected by highly variable precipitation and air temperature regimes. Between 1972 and 2016, a potential area of glacier area has been decreased in Ikh Turgen mountain region.

  17. Recent glacier retreat and climate trends in Cordillera Huaytapallana, Peru

    Science.gov (United States)

    López-Moreno, J. I.; Fontaneda, S.; Bazo, J.; Revuelto, J.; Azorin-Molina, C.; Valero-Garcés, B.; Morán-Tejeda, E.; Vicente-Serrano, S. M.; Zubieta, R.; Alejo-Cochachín, J.

    2014-01-01

    We analyzed 19 annual Landsat Thematic Mapper images from 1984 to 2011 to determine changes of the glaciated surface and snow line elevation in six mountain areas of the Cordillera Huaytapallana range in Peru. In contrast to other Peruvian mountains, glacier retreat in these mountains has been poorly documented, even though this is a heavily glaciated area. These glaciers are the main source of water for the surrounding lowlands, and melting of these glaciers has triggered several outburst floods. During the 28-year study period, there was a 55% decrease in the surface covered by glaciers and the snowline moved upward in different regions by 93 to 157 m. Moreover, several new lakes formed in the recently deglaciated areas. There was an increase in precipitation during the wet season (October-April) over the 28-year study period. The significant increase in maximum temperatures may be related to the significant glacier retreat in the study area. There were significant differences in the wet season temperatures during El Niño (warmer) and La Niña (colder) years. Although La Niña years were generally more humid than El Niño years, these differences were not statistically significant. Thus, glaciers tended to retreat at a high rate during El Niño years, but tended to be stable or increase during La Niña years, although there were some notable deviations from this general pattern. Climate simulations for 2021 to 2050, based on the most optimistic assumptions of greenhouse gas concentrations, forecast a continuation of climate warming at the same rate as documented here. Such changes in temperature might lead to a critical situation for the glaciers of the Cordillera Huaytapallana, and may significantly impact the water resources, ecology, and natural hazards of the surrounding areas.

  18. Distribution of light-absorbing impurities in snow of glacier on Mt. Yulong, southeastern Tibetan Plateau

    Science.gov (United States)

    Niu, Hewen; Kang, Shichang; Zhang, Yulan; Shi, Xiaoyi; Shi, Xiaofei; Wang, Shijin; Li, Gang; Yan, Xingguo; Pu, Tao; He, Yuanqing

    2017-11-01

    Insoluble light-absorbing impurities (ILAIs) in surface snow of glacier reduce snow albedo and accelerate glacier melt. In order to assess effects of ILAIs on glacier melt, we present the first results from field measurements of ILAIs, including black carbon (BC) and dust in snowpacks of glacier on Mt. Yulong, southeastern Tibetan Plateau (TP). Amplification factors because of snow melt were calculated for BC and dust concentrations in surface snow, and melt scavenging rates, effects of ILAIs on snow spectral albedo, and associated radiative forcing (RF) were estimated. Melt amplification generally appeared to be confined to the top few centimeters of the snowpack, and our results indicated that BC was more efficiently scavenged with meltwater than the other insoluble light-absorbers (e.g., dust). Absorbing impurities reduced snow spectral albedo more with larger particulate grain radius (re). Spectral albedo reduction was investigated using the SNow ICe Aerosol Radiative (SNICAR) model. Albedo reduction for 1200 ng g- 1 of BC in Mt. Yulong snow was 0.075 for snow with re = 500 compared with re = 200 μm. If dust (51.37 ppm) was the only impurity in the snowpack, the spectral albedo reduction would be only 0.03, and the associated RF was 42.76 W m- 2. For a BC and dust mixed scenario, the spectral albedo was substantially reduced (0.11 ± 0.03), and the associated RF (145.23 W m- 2) was more than three times larger than that for the dust-only scenario. BC in snow is an active factor controlling snow albedo and snow-ice RF. Further observational studies are needed to quantify the contribution of BC and dust to albedo reduction and glacier melt and to characterize the variation of glacier RF.

  19. Glaciers of Antarctica

    Science.gov (United States)

    Williams, Richard S.; Ferrigno, Jane G.

    1988-01-01

    Of all the world?s continents Antarctica is the coldest, the highest, and the least known. It is one and a half times the size of the United States, and on it lies 91 percent (30,109,800 km3) of the estimated volume of all the ice on Earth. Because so little is known about Antarctic glaciers compared with what is known about glaciers in populated countries, satellite imagery represents a great leap forward in the provision of basic data. From the coast of Antarctica to about 81?south latitude, there are 2,514 Landsat nominal scene centers (the fixed geographic position of the intersection of orbital paths and latitudinal rows). If there were cloud-free images for all these geographic centers, only about 520 Landsat images would be needed to provide complete coverage. Because of cloud cover, however, only about 70 percent of the Landsat imaging area, or 55 percent of the continent, is covered by good quality Landsat images. To date, only about 20 percent of Antarctica has been mapped at scales of 1:250,000 or larger, but these maps do include about half of the coastline. The area of Antarctica that could be planimetrically mapped at a scale of 1:250,000 would be tripled if the available Landsat images were used in image map production. This chapter contains brief descriptions and interpretations of features seen in 62 carefully selected Landsat images or image mosaics. Images were chosen on the basis of quality and interest; for this reason they are far from evenly spaced around the continent. Space limitations allow less than 15 percent of the Landsat imaging area of Antarctica to be shown in the illustrations reproduced in this chapter. Unfortunately, a wealth of glaciological and other features of compelling interest is present in the many hundreds of images that could not be included. To help show some important features beyond the limit of Landsat coverage, and as an aid to the interpretation of certain features seen in the images, 38 oblique aerial photographs

  20. What influences climate and glacier change in southwestern China?

    Science.gov (United States)

    Yasunari, Teppei J.

    2011-12-01

    The subject of climate change in the Tibetan Plateau (TP) and Himalayas has taken on increasing importance because of the availability of water resources from their mountain glaciers (Immerzeel et al 2010). Many of the glaciers over these regions have been retreating, while some are advancing and stable (Yao et al 2004, Scherler et al 2011). Other studies report that some glaciers in the Himalayas show acceleration of their shrinkage (e.g., Fujita and Nuimura 2011). However, the causes of glacier melting are still difficult to grasp because of the complexity of climatic change and its influence on glacier issues. Despite this, it is vital that we pursue further study to enable future predictions of glacier changes. The paper entitled 'Climate and glacier change in southwestern China during the past several decades' by Li et al (2011) provided carefully analyzed, quality controlled, long-term data on atmospheric temperature and precipitation during the period 1961-2008. The data were obtained from 111 Chinese stations. The researchers performed systematic analyses of temperature and precipitation over the whole southwestern Chinese domain. They discussed those changes in terms of other meteorological components such as atmospheric circulation patterns, radiation and altitude difference, and then showed how these factors could contribute to climate and glacier changes in the region. Air temperature and precipitation are strongly associated with glacier mass balance because of heat balance and the addition of mass when it snows. Temperature warming trends over many places in southwestern China were unequivocally dominant in all seasons and at higher altitudes. This indicates that the heat contribution to the glaciers has been increasing. On the other hand, precipitation has a wider variability in time and space. It is more difficult to clearly understand the effect of precipitation on the climate and glacier melting characteristics in the whole of southwestern China

  1. Little Ice Age climate reconstruction from ensemble reanalysis of Alpine glacier fluctuations

    Directory of Open Access Journals (Sweden)

    M. P. Lüthi

    2014-04-01

    Full Text Available Mountain glaciers sample a combination of climate fields – temperature, precipitation and radiation – by accumulation and melting of ice. Flow dynamics acts as a transfer function that maps volume changes to a length response of the glacier terminus. Long histories of terminus positions have been assembled for several glaciers in the Alps. Here I analyze terminus position histories from an ensemble of seven glaciers in the Alps with a macroscopic model of glacier dynamics to derive a history of glacier equilibrium line altitude (ELA for the time span 400–2010 C.E. The resulting climatic reconstruction depends only on records of glacier variations. The reconstructed ELA history is similar to recent reconstructions of Alpine summer temperature and Atlantic Multidecadal Oscillation (AMO index, but bears little resemblance to reconstructed precipitation variations. Most reconstructed low-ELA periods coincide with large explosive volcano eruptions, hinting at a direct effect of volcanic radiative cooling on mass balance. The glacier advances during the LIA, and the retreat after 1860, can thus be mainly attributed to temperature and volcanic radiative cooling.

  2. Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal

    Science.gov (United States)

    Hambrey, Michael J.; Quincey, Duncan J.; Glasser, Neil F.; Reynolds, John M.; Richardson, Shaun J.; Clemmens, Samuel

    2009-06-01

    This paper presents the sediment, landform and dynamic context of four avalanche-fed valley glaciers (Khumbu, Imja, Lhotse and Chukhung) in the Mount Everest (Sagarmatha) region of Nepal. All four glaciers have a mantle of debris dominated by sandy boulder-gravel that suppresses melting to an increasing degree towards the snout, leading to a progressive reduction in the overall slope of their longitudinal profile. Prominent lateral-terminal moraine complexes, also comprising sandy bouldergravel, enclose the glaciers. These terminal moraines originally grew by accretion of multiple sedimentary facies of basal glacial and supraglacial origin, probably by folding and thrusting when the glaciers were more dynamic during the Little Ice Age. The four glaciers are in various stages of recession, and demonstrate a range of scenarios from down-wasting of the glacier tongue, through morainedammed lake development, to post-moraine-dam breaching. Khumbu Glacier is at the earliest stage of supraglacial pond formation and shows no sign yet of developing a major lake, although one is likely to develop behind its >250 m high composite terminal moraine. Imja Glacier terminates in a substantial body of water behind a partially ice-cored moraine dam (as determined from geophysical surveys), but morphologically appears unlikely to be an immediate threat. Chukhung Glacier already has a breached moraine and a connected debris fan, and therefore no longer poses a threat. Lhotse Glacier has an inclined, free-draining tongue that precludes hazardous lake development. From the data assembled, a conceptual model, applicable to other Himalayan glaciers, is proposed to explain the development of large, lateral-terminal moraine complexes and associated potentially hazardous moraine dams. - 2008 Elsevier Ltd. All rights reserved .

  3. Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard

    Directory of Open Access Journals (Sweden)

    Andreas Köhler

    2015-12-01

    Full Text Available Dynamic glacier activity is increasingly observed through passive seismic monitoring. We analysed near-regional-scale seismicity on the Arctic archipelago of Svalbard to identify seismic icequake signals and to study their spatial–temporal distribution within the 14-year period from 2000 until 2013. This is the first study that uses seismic data recorded on permanent broadband stations to detect and locate icequakes in different regions of Spitsbergen, the main island of the archipelago. A temporary local seismic network and direct observations of glacier calving and surging were used to identify icequake sources. We observed a high number of icequakes with clear spectral peaks between 1 and 8 Hz in different parts of Spitsbergen. Spatial clusters of icequakes could be associated with individual grounded tidewater glaciers and exhibited clear seasonal variability each year with more signals observed during the melt season. Locations at the termini of glaciers, and correlation with visual calving observations in situ at Kronebreen, a glacier in the Kongsfjorden region, show that these icequakes were caused dominantly by calving. Indirect evidence for glacier surging through increased calving seismicity was found in 2003 at Tunabreen, a glacier in central Spitsbergen. Another type of icequake was observed in the area of the Nathorstbreen glacier system. Seismic events occurred upstream of the glacier within a short time period between January and May 2009 during the initial phase of a major glacier surge. This study is the first step towards the generation and implementation of an operational seismic monitoring strategy for glacier dynamics in Svalbard.

  4. Modeling the Tidewater Glacier Kangiata Nunaata Sermia and the Freshwater Flux into Godthaabsfjorden

    DEFF Research Database (Denmark)

    Fitzner, Antje

    The Greenland ice sheet loses mass due to changing surface mass balance, direct melting on the surface, ice flow through the numerous outlet glaciers, and basal melt. This Ph.D. thesis focuses on the outlet glaciers terminating in Godthåbsfjord near Nuuk in West Greenland, with Kangiata Nunaata...... to estimate the total mass loss by KNS and its neighboring outlets, namely the ice sheet model PISM applied to KNS and stable oxygen isotope measurements in the fjord. Both studies show that KNS is currently losing mass. Prognostic studies show that KNS will likely continue to lose mass....

  5. Modelling the contribution of supraglacial ice cliffs to the mass-balance of glaciers in the Langtang catchment, Nepalese Himalaya

    Science.gov (United States)

    Buri, P.; Steiner, J. F.; Miles, E.; Ragettli, S.; Pellicciotti, F.

    2017-12-01

    Supraglacial cliffs are typical surface features of debris-covered glaciers worldwide, affecting surface evolution, and mass balance by providing a direct ice-atmosphere interface where melt rates can be very high. As a result, ice cliffs act as windows of energy transfer from the atmosphere to the ice, and enhance melt and mass losses of otherwise insulated ice. However, their contribution to glacier mass balance has never been quantified at the glacier scale, and all inference has been obtained from upscaling results of point-scale models or observations at select individual cliffs. Here we use a 3D, physically-based backwasting model to estimate the volume losses associated with the melting and backwasting of supraglacial ice cliffs for the entire debris-covered glacier area of the Langtang catchment. We estimate mass losses for the 2014 melt season and compare them to recent values of glacier mass balance determined from geodetic and numerical modelling approached. Cliff outlines and topography are derived from high-resolution stereo SPOT6-imagery from April 2014. Meteorological data to force the model are provided by automatic weather stations on- and off-glacier within the valley. The model simulates ice cliff backwasting by considering the cliff-atmosphere energy-balance, reburial by debris and the effects of adjacent ponds. In the melt season of 2014, cliffs' distribution and patterns of mass losses vary considerably from glacier to glacier, and we relate rates of volume loss to both glaciers' and cliffs' characteristics. Only cliffs with a northerly aspect account for substantial losses. Uncertainty in our estimates is due to the quality of the stereo DEM, uncertainties in the cliff delineation and the fact that we use a conservative approach to cliff delineation and discard very small cliffs and those for which uncertainty in topography is high. Despite these uncertainties, our work presents the first estimate of the importance of supraglacial ice

  6. Seasonal changes in surface albedo of Himalayan glaciers from MODIS data and links with the annual mass balance

    Directory of Open Access Journals (Sweden)

    F. Brun

    2015-02-01

    Full Text Available Few glaciological field data are available on glaciers in the Hindu Kush–Karakoram–Himalayan (HKH region, and remote sensing data are thus critical for glacier studies in this region. The main objectives of this study are to document, using satellite images, the seasonal changes of surface albedo for two Himalayan glaciers, Chhota Shigri Glacier (Himachal Pradesh, India and Mera Glacier (Everest region, Nepal, and to reconstruct the annual mass balance of these glaciers based on the albedo data. Albedo is retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS images, and evaluated using ground based measurements. At both sites, we find high coefficients of determination between annual minimum albedo averaged over the glacier (AMAAG and glacier-wide annual mass balance (Ba measured with the glaciological method (R2 = 0.75. At Chhota Shigri Glacier, the relation between AMAAG found at the end of the ablation season and Ba suggests that AMAAG can be used as a proxy for the maximum snow line altitude or equilibrium line altitude (ELA on winter-accumulation-type glaciers in the Himalayas. However, for the summer-accumulation-type Mera Glacier, our approach relied on the hypothesis that ELA information is preserved during the monsoon. At Mera Glacier, cloud obscuration and snow accumulation limits the detection of albedo during the monsoon, but snow redistribution and sublimation in the post-monsoon period allows for the calculation of AMAAG. Reconstructed Ba at Chhota Shigri Glacier agrees with mass balances previously reconstructed using a positive degree-day method. Reconstructed Ba at Mera Glacier is affected by heavy cloud cover during the monsoon, which systematically limited our ability to observe AMAAG at the end of the melting period. In addition, the relation between AMAAG and Ba is constrained over a shorter time period for Mera Glacier (6 years than for Chhota Shigri Glacier (11 years. Thus the mass balance reconstruction

  7. The Open Global Glacier Model

    Science.gov (United States)

    Marzeion, B.; Maussion, F.

    2017-12-01

    Mountain glaciers are one of the few remaining sub-systems of the global climate system for which no globally applicable, open source, community-driven model exists. Notable examples from the ice sheet community include the Parallel Ice Sheet Model or Elmer/Ice. While the atmospheric modeling community has a long tradition of sharing models (e.g. the Weather Research and Forecasting model) or comparing them (e.g. the Coupled Model Intercomparison Project or CMIP), recent initiatives originating from the glaciological community show a new willingness to better coordinate global research efforts following the CMIP example (e.g. the Glacier Model Intercomparison Project or the Glacier Ice Thickness Estimation Working Group). In the recent past, great advances have been made in the global availability of data and methods relevant for glacier modeling, spanning glacier outlines, automatized glacier centerline identification, bed rock inversion methods, and global topographic data sets. Taken together, these advances now allow the ice dynamics of glaciers to be modeled on a global scale, provided that adequate modeling platforms are available. Here, we present the Open Global Glacier Model (OGGM), developed to provide a global scale, modular, and open source numerical model framework for consistently simulating past and future global scale glacier change. Global not only in the sense of leading to meaningful results for all glaciers combined, but also for any small ensemble of glaciers, e.g. at the headwater catchment scale. Modular to allow combinations of different approaches to the representation of ice flow and surface mass balance, enabling a new kind of model intercomparison. Open source so that the code can be read and used by anyone and so that new modules can be added and discussed by the community, following the principles of open governance. Consistent in order to provide uncertainty measures at all realizable scales.

  8. Modeling the Long-Term Evolution of Supraglacial Ice Cliffs on Himalayan Debris-Covered Glaciers

    Science.gov (United States)

    Buri, P.; Miles, E. S.; Steiner, J. F.; Ragettli, S.; Pellicciotti, F.

    2016-12-01

    Supraglacial ice cliffs are present on debris-covered glaciers worldwide and provide the only direct atmosphere-ice interface over the lower sections of these glaciers. Low albedo and high longwave emissions from surrounding debris cause very high melt rates, accounting for a significant portion of total glacier mass loss. As a result, ice cliffs affect glacier downwasting and mass balance. Additionally, and in contrast to the debris-covered ice, high melt at cliffs turns them into dynamic features, directly affecting glacier surface evolution. While conceptual ideas about the formation, evolution and collapse of ice cliffs exist, their life cycles have never been thoroughly documented. Based on observations obtained from high-resolution aerial and terrestrial images analyzed with Structure-from-Motion and with data from automatic weather stations on two glaciers in the Nepalese Himalaya, we simulate the evolution of selected ice cliffs over several seasons using a new physically-based model of cliff backwasting. The 3D model calculates the energy-balance at the cliff scale and includes the cliff interaction with supraglacial ponds and reburial by debris. We consider cliffs of different shape, orientation and slope, and we show that backwasting leads to a variety of evolution typologies, with cliffs that maintain a constant, self-similar geometry, cliffs that grow laterally and cliffs that disappear through slope shallowing and debris melt-out. Most cliffs persist over several seasons. The presence of a pond appears to be the key control for cliffs to survive, while east and west facing cliffs grow because of higher radiation receipts. We use the model to test the hypothesis that south-facing cliffs do not survive. We show that most south-facing cliffs demise after one melt season on both glaciers, because of high input of solar radiation exceeding the longwave radiation receipt. For north facing features, the longwave radiation receipts at lower cliff sections

  9. Listening to Glaciers: Passive hydroacoustics near marine-terminating glaciers

    Science.gov (United States)

    Pettit, E.C.; Nystuen, J.A.; O'Neel, Shad

    2012-01-01

    The catastrophic breakup of the Larsen B Ice Shelf in the Weddell Sea in 2002 paints a vivid portrait of the effects of glacier-climate interactions. This event, along with other unexpected episodes of rapid mass loss from marine-terminating glaciers (i.e., tidewater glaciers, outlet glaciers, ice streams, ice shelves) sparked intensified study of the boundaries where marine-terminating glaciers interact with the ocean. These dynamic and dangerous boundaries require creative methods of observation and measurement. Toward this effort, we take advantage of the exceptional sound-propagating properties of seawater to record and interpret sounds generated at these glacial ice-ocean boundaries from distances safe for instrument deployment and operation.

  10. Spatio-temporal evolution of efficient subglacial water discharge at Lemon Creek Glacier, Alaska

    Science.gov (United States)

    Bartholomaus, T. C.; Labedz, C. R.; Amundson, J. M.; Gimbert, F.; Tsai, V. C.; Vore, M. E.; Karplus, M. S.

    2017-12-01

    The impact of subglacial hydrology on glacier motion, glacier erosion and sediment transport, and submarine melt is well established. However, despite its importance, critical gaps in our understanding of subglacial hydrology and its seasonal evolution remain, in large part due to the challenge of making observations of glacier beds. Thus far, no spatially extensive, temporally continuous observations of subglacial water discharge exist. Seismic signals produced by subglacial water flow, and which correlate with subglacial water discharge, can meet this need. Here, we present the first observations from a 2017 summer seismic, geodetic, and hydrologic experiment. Our experiment seeks to better understand the evolution of efficient subglacial drainage and water storage through data collection and analysis at Lemon Creek Glacier, a 5.7 km-long glacier with a gauged outlet in Southeast Alaska. Data with nested spatial resolutions create an unparalleled perspective of subglacial discharge and its seasonal evolution. Six broadband seismometers and two GPS receivers installed for 80 days provide a long-term view of subglacial discharge and its impact on glacier dynamics. More than 100 nodes, installed approximately every 250 m over the glacier surface ( 13 nodes per 1 km^2) and deployed for up to 25 days, reveal the detailed spatial pattern of glaciohydraulic tremor amplitudes. These nodes enable us to more precisely infer the locations of subglacial discharge and its change, as well as better interpret long-term patterns of glaciohydraulic tremor observed by the broadband seismometers. We infer the subglacial response to hydraulic transients over the duration of the deployment through examination of intermittent melt and rain events, and the abrupt drainage of a glacier-dammed lake. These observations demonstrate the promise of seismology to significantly advance our understanding of glacier hydrology and associated glaciological processes.

  11. A Mass Balance Model of Lyell and Maclure Glaciers in Yosemite National Park

    Science.gov (United States)

    Mendoza, K. A.; Stock, G. M.; Sharping, J. E.

    2015-12-01

    The Lyell and Maclure glaciers, two historically important glaciers of Yosemite National Park, have been rapidly retreating since the late 1800's. I attempted to quantify the water balance of two basins containing these glaciers. Water inputs were calculated by applying snow pillow data and two precipitation vs. elevation slope models. Water outputs consisted of a simplified evapotranspiration model and stream runoff data. Fifty-six linear combinations of precipitation and evaporation were used to develop water balance models. Most of these models predicted melt rates from the two glaciers outside of empirical observations. However, both the Lyell Glacier Basin and the Lyell Fork of the Tuolumne Basin water balance spreads had notable Kolmogorov-Smirnov test statistics: Lyell Glacier with p = 0.34 for 2013 and p = 0.37 for 2014, and Lyell Fork with p = 0.45 for 2009. The basin containing Lyell Glacier had a water balance spread of between -1,105×10^3m^3 and +58×10^3m^3+ (interquartile range) with a mean of -564×10^3m^3 for the 2013 hydrologic year, and between -1,137×10^3m^3 and +21×10^3m^3 (interquartile range) with a mean of-583×10^3m^3 for the 2014 hydrologic year. The Lyell fork of the Tuolumne basin containing both Lyell and Maclure Glaciers had a water balance spread of between-14,350×10^3m^3 and +7,454×10^3m^3 (interquartile range) with a mean of -2,426×10^3m^3 for the 2009 hydrologic year. Variations observed in water balance models for Lyell Glacier in this study are an order of magnitude larger than the expected melt signal, and two orders of magnitude for the Lyell Fork of the Tuolumne water balance models.

  12. Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt

    Directory of Open Access Journals (Sweden)

    N. Ohlanders

    2013-03-01

    Full Text Available Central Chile is an economically important region for which water supply is dependent on snow- and ice melt. Nevertheless, the relative contribution of water supplied by each of those two sources remains largely unknown. This study represents the first attempt to estimate the region's water balance using stable isotopes of water in streamflow and its sources. Isotopic ratios of both H and O were monitored during one year in a high-altitude basin with a moderate glacier cover (11.5%. We found that the steep altitude gradient of the studied catchment caused a corresponding gradient in snowpack isotopic composition and that this spatial variation had a profound effect on the temporal evolution of streamflow isotopic composition during snowmelt. Glacier melt and snowmelt contributions to streamflow in the studied basin were determined using a quantitative analysis of the isotopic composition of streamflow and its sources, resulting in a glacier melt contribution of 50–90% for the unusually dry melt year of 2011/2012. This suggests that in (La Niña years with little precipitation, glacier melt is an important water source for central Chile. Predicted decreases in glacier melt due to global warming may therefore have a negative long-term impact on water availability in the Central Andes. The pronounced seasonal pattern in streamflow isotope composition and its close relation to the variability in snow cover and discharge presents a potentially powerful tool to relate discharge variability in mountainous, melt-dominated catchments with related factors such as contributions of sources to streamflow and snowmelt transit times.

  13. Spatio Temporal Change of Selected Glaciers Along Karakoram Highway from 1994-2017 Using Remote Sensing and GIS Techniques

    Science.gov (United States)

    Anwar, Yasmeen; Iqbal, Javed

    2018-04-01

    With the acceleration of global warming glaciers are receding rapidly. Monitoring of glaciers are important because they caused outburst of floods the past. This research delivers a systematic approach for the assessment of glaciers i.e. Batura, Passu, Ghulkin and Gulmit cover along the Karakoram Highway. Main reason to select these glaciers was their closeness to Karakoram Highway which plays an important role in China-Pakistan economic corridor (CPEC). This study incorporates the techniques of Geographical Information System and Remote Sensing (GIS & RS). For this study, Landsat 4,5,7,8 images were taken for the years of 1994, 2002, 2009, 2013 and 2017. Using the said images supervised classification was done in ArcMap 10.3 version to identify the changes in glaciers. The area was categorized into six major classes' i.e. Fresh snow, Glaciers, Debris, Vegetation, Water bodies and Open land. Classified results showed a decrease in the area of Glaciers, almost 3.5% from 1994 to 2017. GLIMS data about boundary of glaciers of 1999 and 2007 was compared with the classified results which show decrease in terminus of glaciers. Batura glacier has been receded almost 0.6 km from 1999 to 2017, whereas Passu glaciers receded 0.3 km, whereas Gulmit and Ghulkin glaciers are more stable than Passu and Batura with the difference of -0.05 and +0.57 km respectively. At the end results from classified maps were compared with the climatic data. Wherein temperature is rapidly increasing resulting in melting of glaciers and can cause shrinkage of fresh water as well as destruction to Karakoram highway in case of outburst floods.

  14. Internal structure and evolution of a small debris-covered glacier: Les Diablerets, Switzerland

    Science.gov (United States)

    Bosson, J.-B.; Lambiel, C.

    2012-04-01

    The negative mass balance of alpine glacier systems can lead to their discontinuous or continuous burial under debris: the glacier becomes too weak to remove intra and supraglacial debris. A mantle that is a few centimeters thick, leads to partial insulation of the ice from the atmosphere and melts rates are reduced. Otherwise, within the discontinuous periglacial domain (roughly above the isogeotherm of -2°C), glacier/permafrost interactions occur frequently. Thus, a continuum of complex forms exists between debris-covered glacier and rock glacier. Finally, in the case of small glaciers located under high rock walls, intense rock falls associated with several Holocene fluctuations leaded to the formation of hypertrophied sedimentary accumulations called morainic bastions. Thus, high mountain glacier systems may be characterized by a massive buried ice body, some glacier/permafrost interactions and an important stock of sediments. In the current context of global change, the responses of these systems are complex and atypical, compared with the response of "white" glaciers. Moreover, the stability of these ice/sediments accumulations can also be disturbed. The objective of this study is to investigate the internal structure of these debris-covered glaciers systems and to quantify their response to recent and current climate modifications. This poster presents results from 2011 and 2012 measurement campaigns on the debris-covered glacier system of Entre la Reille (Les Diablerets - ski area of Glacier 3000, Switzerland, 46°20'22'' N / 7°13'11'' E). Located between 2350 and 2550m, this small landform (0.05 km2) comprises a rock glacier morphology with morainic ridges, small outcrops of massive ice and permanent snowfields uphill. Multiple methods (Electrical resistivity tomography, DGPS, Ground surface temperature measurements, BTS, Geomorphological mapping) have been carried out on the landform. The results show, in the upper part, an ice-cored buried body

  15. Experiments on the dynamics and sedimentary products of glacier slip

    Science.gov (United States)

    Iverson, Neal R.; Zoet, Lucas K.

    2015-09-01

    Experimental work in glacial geomorphology is focused almost entirely on processes in the thin shear zone at the beds of sliding glaciers, where ice at its pressure-melting temperature moves over either rigid rock or deformable till. Experiments with rotary shear devices illuminate constitutive behavior there, central to the dynamics of fast-moving glaciers, and provide a foundation for interpreting the sedimentary record of glacier slip and associated sediment transport. Results from experiments designed to study ice sliding over a rigid wavy bed, shear deformation of till, and plowing of clasts across the surface of a till bed point to a common conclusion: drag at the bed can decrease with increasing slip velocity, thereby concentrating driving stress elsewhere and promoting rapid glacier flow. This rate-weakening behavior at glacier beds is in contrast to the viscous slip resistance assumed in ice-sheet models and most efforts to determine distributions of basal drag from glacier surface velocities. Ring-shear experiments in which various basal tills and more idealized materials are sheared to high strains provide quantitative insight into grain size evolution, mixing at contacts between basal tills, microstructure development, particle-fabric development, and development of anisotropy of magnetic susceptibility. Preferred orientations of principal magnetic susceptibilities provide the most dependable and complete description of till shear patterns. When applied to basal tills of the geologic record, magnetic till fabrics measured along thick till sections and calibrated experimentally indicate that deformation of the bed by two lobes of the Laurentide ice sheet was shallow (< 1 m), patchy, and occurred as till progressively accreted. Rates of sediment transport by bed shear were thus significantly less than estimates based on models that invoke deep, pervasive shear of the bed. The lack of an experimental tradition in glacial geomorphology leaves many research

  16. The Significance of Shifts in Precipitation Patterns: Modelling the Impacts of Climate Change and Glacier Retreat on Extreme Flood Events in Denali National Park, Alaska

    Science.gov (United States)

    Crossman, Jill; Futter, Martyn N.; Whitehead, Paul G.

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21st century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21st century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff. PMID

  17. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska.

    Science.gov (United States)

    Crossman, Jill; Futter, Martyn N; Whitehead, Paul G

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24 m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21(st) century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21(st) century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff.

  18. Calving Geometry of Thwaites Glacier Linked to Semi-brittle Ice Dynamics

    Science.gov (United States)

    Logan, L. C.; Lavier, L.; Choi, E.; Tan, E.; Catania, G. A.; Holt, J.

    2016-12-01

    In the coming decades the linkage between ice dynamics, basal melt, and calving will play a central role in the flow of Thwaites Glacier, which has undergone vast and recent retreat. We explore this connection using a 3D, transient, thermomechanical ice flow model under different basal melt scenarios. Our use of a semi-brittle ice rheology enables the time-dependent development and tracking of surface and basal crevasses that determine the calving rate at this location. With the use of adaptive re-meshing, we are able to simulate the glacier's retreat response to different boundary forcings. We show that the resulting characteristic pinch-and-swell model geometries in the floating tongue compare well with airborne radar data acquired across the grounding line and floating tongue of Thwaites Glacier. These geometric features may be reproduced using this semi-brittle rheology, and further, are linked directly to the calving rate of Thwaites Glacier (and others). The use of semi-brittle rheology on decadal time scales may help provide constraints on the near-term future behavior of glaciers vulnerable to ocean-induced retreat, as this rheology targets the complex interaction of ice failure, basal melt, and flow.

  19. Kilimanjaro’s melting glaciers: on the colonial and postcolonial perception and appropriation of African nature O degelo dos glaciares do Kilimanjaro: percepção e apropriação colonial e pós-colonial da natureza africana

    Directory of Open Access Journals (Sweden)

    Urte Undine Frömming

    2009-11-01

    Full Text Available Over the past decade, the melting glaciers of Kilimanjaro have come to symbolise the effects of global warming. At the same time, increased tourism in the region has an ambivalent quality as the industry capitalises on the celebration of the same nature (and its western appropriation that is threatened by tourism’s major influence on world climate. In European perceptions, Mount Kilimanjaro has, since its first discovery in the 18th century, become an epitome of overwhelming beauty, representing - until today - wilderness and adventure to the more than 20,000 international tourists who climb the mountain each year. This paper traces how these perceptions are grounded in the foundations of aesthetic modernity that continue to shape the attraction of Mount -Kilimanjaro. Further examinations focus on the consequences for the local population as well as the relationships between local inhabitants and international visitors attracted by the scale-making projects of an industry that continues the colonial conquest.Ao longo da última década, o degelo dos glaciares do Kilimanjaro tornou-se um símbolo dos efeitos do aquecimento global. Simultaneamente, o aumento do turismo na região tem um carácter ambivalente, já que a indústria ganha com a celebração da natureza (e sua apropriação pelo Ocidente, a mesma natureza que é ameaçada pela enorme influência do turismo sobre o clima mundial. Nas percepções europeias, o monte Kilimanjaro tornou-se, desde a sua descoberta no século XVIII, epítome da beleza avassaladora, sendo até hoje representativo do estado selvagem e da aventura para os mais de 20 mil turistas estrangeiros que sobem a montanha todos os anos. Este artigo identifica os modos como tais percepções se inscrevem nos fundamentos da modernidade estética que continuam a moldar a atracção pelo monte Kilimanjaro. A análise prossegue centrando-se nas suas consequências para a população local e nas relações entre os

  20. Adapting to the reality of climate change at Glacier National Park, Montana, USA

    Science.gov (United States)

    Fagre, Daniel B.

    2007-01-01

    The glaciers of Glacier National Park (GNP) are disappearing rapidly and likely will be gone by 2030. These alpine glaciers have been continuously present for approximately 7,000 years so their loss from GNP in another 25 years underscores the significance of current climate change. There are presently only 27 glaciers remaining of the 150 estimated to have existed when GNP was created in 1910. Mean annual temperature in GNP has increased 1.6 0 C during the past cen- tury, three times the global mean increase. The temperature increase has affected other parts of the mountain ecosystem, too. Snowpacks hold less water equivalent and melt 2+ weeks earlier in the spring. Forest growth rates have increased, alpine treelines have expanded upward and be- come denser, and subalpine meadows have been invaded by high elevation tree species. These latter responses can be mostly attributed to longer growing seasons and warmer temperatures.

  1. Outlet Glacier and Margin Elevation Changes: Near - Coastal Thinning of The Greenland Ice Sheet

    Science.gov (United States)

    Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Wright, W.; Yungel, J.; hide

    2000-01-01

    Repeat surveys by aircraft laser altimeter in 1993/4 and 1998/9 reveal significant thinning along 70% of the coastal parts of the Greenland ice sheet at elevations below about 2000 m. Thinning rates of more than 1 m/yr are common along many outlet glaciers, at all latitudes and, in some cases, at elevations up to 1500 m. Warmer summers along parts of the coast may have caused a few tens of cm/yr additional melting, but most of the observed thinning probably results from increased glacier velocities and associated creep rates. Three glaciers in the northeast all show patterns of thickness change indicative of surging behavior, and one has been independently documented as a surging glacier. There are a few areas of significant thickening (over 1 m/yr), and these are probably related to higher than normal accumulation rates during the observation period.

  2. Biogeography of cryoconite bacterial communities on glaciers of the Tibetan Plateau.

    Science.gov (United States)

    Liu, Yongqin; Vick-Majors, Trista J; Priscu, John C; Yao, Tandong; Kang, Shichang; Liu, Keshao; Cong, Ziyuang; Xiong, Jingbo; Li, Yang

    2017-06-01

    Cryoconite holes, water-filled pockets containing biological and mineralogical deposits that form on glacier surfaces, play important roles in glacier mass balance, glacial geochemistry and carbon cycling. The presence of cryoconite material decreases surface albedo and accelerates glacier mass loss, a problem of particular importance in the rapidly melting Tibetan Plateau. No studies have addressed the microbial community composition of cryoconite holes and their associated ecosystem processes on Tibetan glaciers. To further enhance our understanding of these glacial ecosystems on the Tibetan Plateau and to examine their role in carbon cycling as the glaciers respond to climate change, we explored the bacterial communities within cryoconite holes associated with three climatically distinct Tibetan Plateau glaciers using Illumina sequencing of the V4 region of the 16S rRNA gene. Cryoconite bacterial communities were dominated by Cyanobacteria, Chloroflexi, Betaproteobacteria, Bacteroidetes and Actinobacteria. Cryoconite bacterial community composition varied according to their geographical locations, exhibiting significant differences among glaciers studied. Regional beta diversity was driven by the interaction between geographic distance and environmental variables; the latter contributed more than geographic distance to the variation in cryoconite microbial communities. Our study is the first to describe the regional-scale spatial variability and to identify the factors that drive regional variability of cryoconite bacterial communities on the Tibetan Plateau. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards

    Science.gov (United States)

    Benn, D. I.; Bolch, T.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L. I.; Quincey, D.; Thompson, S.; Toumi, R.; Wiseman, S.

    2012-08-01

    In areas of high relief, many glaciers have extensive covers of supraglacial debris in their ablation zones, which alters both rates and spatial patterns of melting, with important consequences for glacier response to climate change. Wastage of debris-covered glaciers can be associated with the formation of large moraine-dammed lakes, posing risk of glacier lake outburst floods (GLOFs). In this paper, we use observations of glaciers in the Mount Everest region to present an integrated view of debris-covered glacier response to climate change, which helps provide a long-term perspective on evolving GLOF risks. In recent decades, debris-covered glaciers in the Everest region have been losing mass at a mean rate of ~ 0.32 m yr- 1, although in most cases there has been little or no change in terminus position. Mass loss occurs by 4 main processes: (1) melting of clean ice close to glacier ELAs; (2) melting beneath surface debris; (3) melting of ice cliffs and calving around the margins of supraglacial ponds; and (4) calving into deep proglacial lakes. Modelling of processes (1) and (2) shows that Everest-region glaciers typically have an inverted ablation gradient in their lower reaches, due to the effects of a down-glacier increase in debris thickness. Mass loss is therefore focused in the mid parts of glacier ablation zones, causing localised surface lowering and a reduction in downglacier surface gradient, which in turn reduce driving stress and glacier velocity, so the lower ablation zones of many glaciers are now stagnant. Model results also indicate that increased summer temperatures have raised the altitude of the rain-snow transition during the summer monsoon period, reducing snow accumulation and ice flux to lower elevations. As downwasting proceeds, formerly efficient supraglacial and englacial drainage networks are broken up, and supraglacial lakes form in hollows on the glacier surface. Ablation rates around supraglacial lakes are typically one or two

  4. Features of the recovery process of the Kolka glacier after the disaster of 2002

    Science.gov (United States)

    Nosenko, G.; Rototaeva, O.; Nikitin, S.

    2017-12-01

    There were events that attracted attention by the grand scale of the glacial catastrophe and its consequences in the North Ossetia (Caucasus Mountains) in 2002. The Kolka Glacier was completely thrown out of its bed and formed a giant water-ice-stone flow, caused destruction and human deaths along the valley of the Genaldon River. The volcanic impact of Mount Kazbek was one of the key factors in this process. The recovery of a new glacier in the empty circus of the Kolka glacier began almost immediately. Currently, three streams of ice have closed in the rear zone of the circus, forming a joint ice massif on the bed. The dimensions of the glacier vary under the influence of both new conditions for the accumulation and melting of ice, and the features of the dynamics of the ice masses filling the vacated bed. This report describes the next stage of the state of the new Kolka glacier - relative stabilization - and analyzes the features of the process of its recovery based on the field observations data, modern space images and the data of changes in summer air temperatures and winter precipitation on the glacier area at the beginning of the 21st century. In recent years, the rate of increase in the area of the glacier does not exceed 0.015 km2 per year. By September 2016, its area reached 1.11 km2, the volume - about 0.044 km3. The conditions for the formation of a new glacier on the empty bottom of the circus differ significantly from the previous ones - when Kolka was restored in after a pulsation on the 1970s. In addition to increase in the summer air temperatures, the thermal balance in the circus has changed due to the increase of the open surface area of the bed and the lateral moraine. At the same time, the growth of the debris cover on the glacier restrains the melting process. Rockfalls and avalanches supply moraine material to the surface of the glacier more intensively than in the 1970s. The conditions of accumulation also changed - the volume of food

  5. Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru

    Science.gov (United States)

    Wigmore, Oliver; Mark, Bryan

    2017-11-01

    The glaciers of the Cordillera Blanca, Peru, are rapidly retreating and thinning as a result of climate change, altering the timing, quantity and quality of water available to downstream users. Furthermore, increases in the number and size of proglacial lakes associated with these melting glaciers is increasing potential exposure to glacier lake outburst floods (GLOFs). Understanding how these glaciers are changing and their connection to proglacial lake systems is thus of critical importance. Most satellite data are too coarse for studying small mountain glaciers and are often affected by cloud cover, while traditional airborne photogrammetry and lidar are costly. Recent developments have made unmanned aerial vehicles (UAVs) a viable and potentially transformative method for studying glacier change at high spatial resolution, on demand and at relatively low cost.Using a custom designed hexacopter built for high-altitude (4000-6000 m a. s. l. ) operation, we completed repeat aerial surveys (2014 and 2015) of the debris-covered Llaca Glacier tongue and proglacial lake system. High-resolution orthomosaics (5 cm) and digital elevation models (DEMs) (10 cm) were produced and their accuracy assessed. Analysis of these datasets reveals highly heterogeneous patterns of glacier change. The most rapid areas of ice loss were associated with exposed ice cliffs and meltwater ponds on the glacier surface. Considerable subsidence and low surface velocities were also measured on the sediments within the pro-glacial lake, indicating the presence of extensive regions of buried ice and continued connection to the glacier tongue. Only limited horizontal retreat of the glacier tongue was observed, indicating that measurements of changes in aerial extent alone are inadequate for monitoring changes in glacier ice quantity.

  6. Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru

    Directory of Open Access Journals (Sweden)

    O. Wigmore

    2017-11-01

    Full Text Available The glaciers of the Cordillera Blanca, Peru, are rapidly retreating and thinning as a result of climate change, altering the timing, quantity and quality of water available to downstream users. Furthermore, increases in the number and size of proglacial lakes associated with these melting glaciers is increasing potential exposure to glacier lake outburst floods (GLOFs. Understanding how these glaciers are changing and their connection to proglacial lake systems is thus of critical importance. Most satellite data are too coarse for studying small mountain glaciers and are often affected by cloud cover, while traditional airborne photogrammetry and lidar are costly. Recent developments have made unmanned aerial vehicles (UAVs a viable and potentially transformative method for studying glacier change at high spatial resolution, on demand and at relatively low cost.Using a custom designed hexacopter built for high-altitude (4000–6000 m a. s. l.  operation, we completed repeat aerial surveys (2014 and 2015 of the debris-covered Llaca Glacier tongue and proglacial lake system. High-resolution orthomosaics (5 cm and digital elevation models (DEMs (10 cm were produced and their accuracy assessed. Analysis of these datasets reveals highly heterogeneous patterns of glacier change. The most rapid areas of ice loss were associated with exposed ice cliffs and meltwater ponds on the glacier surface. Considerable subsidence and low surface velocities were also measured on the sediments within the pro-glacial lake, indicating the presence of extensive regions of buried ice and continued connection to the glacier tongue. Only limited horizontal retreat of the glacier tongue was observed, indicating that measurements of changes in aerial extent alone are inadequate for monitoring changes in glacier ice quantity.

  7. Aspect controls the survival of ice cliffs on debris-covered glaciers.

    Science.gov (United States)

    Buri, Pascal; Pellicciotti, Francesca

    2018-04-24

    Supraglacial ice cliffs exist on debris-covered glaciers worldwide, but despite their importance as melt hot spots, their life cycle is little understood. Early field observations had advanced a hypothesis of survival of north-facing and disappearance of south-facing cliffs, which is central for predicting the contribution of cliffs to total glacier mass losses. Their role as windows of energy transfer suggests they may explain the anomalously high mass losses of debris-covered glaciers in High Mountain Asia (HMA) despite the insulating debris, currently at the center of a debated controversy. We use a 3D model of cliff evolution coupled to very high-resolution topographic data to demonstrate that ice cliffs facing south (in the Northern Hemisphere) disappear within a few months due to enhanced solar radiation receipts and that aspect is the key control on cliffs evolution. We reproduce continuous flattening of south-facing cliffs, a result of their vertical gradient of incoming solar radiation and sky view factor. Our results establish that only north-facing cliffs are recurrent features and thus stable contributors to the melting of debris-covered glaciers. Satellite observations and mass balance modeling confirms that few south-facing cliffs of small size exist on the glaciers of Langtang, and their contribution to the glacier volume losses is very small ([Formula: see text]1%). This has major implications for the mass balance of HMA debris-covered glaciers as it provides the basis for new parameterizations of cliff evolution and distribution to constrain volume losses in a region where glaciers are highly relevant as water sources for millions of people.

  8. Estimating stream discharge from a Himalayan Glacier using coupled satellite sensor data

    Science.gov (United States)

    Child, S. F.; Stearns, L. A.; van der Veen, C. J.; Haritashya, U. K.; Tarpanelli, A.

    2015-12-01

    The 4th IPCC report highlighted our limited understanding of Himalayan glacier behavior and contribution to the region's hydrology. Seasonal snow and glacier melt in the Himalayas are important sources of water, but estimates greatly differ about the actual contribution of melted glacier ice to stream discharge. A more comprehensive understanding of the contribution of glaciers to stream discharge is needed because streams being fed by glaciers affect the livelihoods of a large part of the world's population. Most of the streams in the Himalayas are unmonitored because in situ measurements are logistically difficult and costly. This necessitates the use of remote sensing platforms to obtain estimates of river discharge for validating hydrological models. In this study, we estimate stream discharge using cost-effective methods via repeat satellite imagery from Landsat-8 and SENTINEL-1A sensors. The methodology is based on previous studies, which show that ratio values from optical satellite bands correlate well with measured stream discharge. While similar, our methodology relies on significantly higher resolution imagery (30 m) and utilizes bands that are in the blue and near-infrared spectrum as opposed to previous studies using 250 m resolution imagery and spectral bands only in the near-infrared. Higher resolution imagery is necessary for streams where the source is a glacier's terminus because the width of the stream is often only 10s of meters. We validate our methodology using two rivers in the state of Kansas, where stream gauges are plentiful. We then apply our method to the Bhagirathi River, in the North-Central Himalayas, which is fed by the Gangotri Glacier and has a well monitored stream gauge. The analysis will later be used to couple river discharge and glacier flow and mass balance through an integrated hydrologic model in the Bhagirathi Basin.

  9. Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations

    Science.gov (United States)

    Jackson, R. H.; Shroyer, E. L.; Nash, J. D.; Sutherland, D. A.; Carroll, D.; Fried, M. J.; Catania, G. A.; Bartholomaus, T. C.; Stearns, L. A.

    2017-07-01

    At tidewater glaciers, plume dynamics affect submarine melting, fjord circulation, and the mixing of meltwater. Models often rely on buoyant plume theory to parameterize plumes and submarine melting; however, these parameterizations are largely untested due to a dearth of near-glacier measurements. Here we present a high-resolution ocean survey by ship and remotely operated boat near the terminus of Kangerlussuup Sermia in west Greenland. These novel observations reveal the 3-D structure and transport of a near-surface plume, originating at a large undercut conduit in the glacier terminus, that is inconsistent with axisymmetric plume theory, the most common representation of plumes in ocean-glacier models. Instead, the observations suggest a wider upwelling plume—a "truncated" line plume of ˜200 m width—with higher entrainment and plume-driven melt compared to the typical axisymmetric representation. Our results highlight the importance of a subglacial outlet's geometry in controlling plume dynamics, with implications for parameterizing the exchange flow and submarine melt in glacial fjord models.

  10. A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps

    NARCIS (Netherlands)

    Noël, Brice; van den Berg, J.W.; Lhermitte, S.L.M.; Wouters, B; Machguth, Horst; Howat, Ian; Citterio, M.; Moholdt, G; Lenaerts, Jan T M; van den Broeke, Michiel R.

    2017-01-01

    Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear.

  11. A tipping point in refreezing accelerates mass loss of Greenland’s glaciers and ice caps

    NARCIS (Netherlands)

    Noël, B.P.Y.; van de Berg, W.J.; Lhermitte, S.; Wouters, B.; Machguth, Horst; Howat, I.M.; Citterio, M.; Moholdt, G.; Lenaerts, J.T.M.; van den Broeke, M.R.

    2017-01-01

    Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here

  12. Variability of air temperature over a debris-covered glacier in the Nepalese Himalaya

    NARCIS (Netherlands)

    Steiner, J.; Pellicciotti, F.

    2016-01-01

    Estimates of melt from debris-covered glaciers require distributed estimates of meteorological variables and air temperature in particular. Meteorological data are scarce for this environment, and spatial variability of temperature over debris is poorly understood. Based on multiple measurements of

  13. Melting glaciers signal climate change in Bolivia | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-05-13

    May 13, 2011 ... Scientists and peasants combine traditional farming techniques and cutting-edge research to grow food sustainably in the high Andes, where the ecology ... Two years into the project, researchers are developing a detailed picture of how the Illimani watershed is changing and establishing a sound basis for ...

  14. Comparison of the meteorology and surface energy fluxes of debris-free and debris-covered glaciers in the southeastern Tibetan Plateau

    Science.gov (United States)

    Yang, W.

    2017-12-01

    Knowledge of the meteorology and energy fluxes of debris-free and debris-covered glaciers is important for understanding the varying response of glaciers to climate change. Field measurements at the debris-free Parlung No. 4 Glacier and the debris-covered 24K Glacier in the southeastern Tibetan Plateau were carried out to compare the meteorology and surface energy fluxes and to understand the factors controlling the melting process. The meteorological comparisons displayed temporally synchronous fluctuations in air temperature, relative humidity, incoming longwave radiation (Lin), but notable differences in precipitation, incoming shortwave radiation (Sin) and wind speed. Under the prevailing regional precipitation and debris conditions, more Lin (42 W/m2) was supplied from warmer and more humid air and more Sin (58 W/m2) was absorbed at the 24K Glacier. The relatively high energy supply led mainly to an increased energy output via turbulent heat fluxes and outgoing longwave radiation, rather than glacier melting beneath the thick debris. The sensitivity experiment showed that melting rates were sensitive to variations in energy supply with debris thicknesses of less than 10 cm. In contrast, energy supply to the ablation zone of the Parlung No. 4 Glacier mainly resulted in snow/ice melting, the magnitude of which was significantly influenced by the energy supplied by Sin and the sensible heat flux.

  15. GLIMS Glacier Database, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Land Ice Measurements from Space (GLIMS) is an international initiative with the goal of repeatedly surveying the world's estimated 200,000 glaciers. GLIMS...

  16. Glacier retreat of the Tian Shan and its impact on the urban growth and environment evaluated from satellite remote sensing data

    Science.gov (United States)

    Fu, B. H.; Guo, Q.; Yan, F.; Zhang, J.; Shi, P. L.; Ayinuer, M.; Xue, G. L.

    2017-07-01

    The retreat of mountain glaciers, notably in high Asia, provides evidence for the rise of global temperature. The mass balance is vital for the health of a glacier. If the amount of frozen precipitation in the accumulation zone exceeds the quantity of glacial ice loss due to melting or lies in the ablation zone, the glacier will advance. Conversely, if the accumulation is less than the ablation, the glacier will retreat. Glaciers in retreat will have negative mass balances, and if they do not reach an equilibrium between accumulation and ablation, will eventually disappear. Long-term changes of the mountain glaciers in the Tian Shan, Central Asia, are not well constrained. Analyses of satellite remote sensing data combined with the ground observations reveal a 37.5% decline of glaciered area from 1989 to 2014 in No.1 Glacier, the headwaters of the Urumqi River basin, Chinese Tian Shan, which could be linked to increased summer melting. The results show that the area of glaciers was reduced from 31.55 km2 in 18 August 1989 to 28.66 km2 in 24 August 1994 and 19.74 km2 in 31 August 2014. The glacier area was reduced by 0.47 km2/per year in recent 25 years since 1989, and the annual reduction was 1.5%. Meanwhile, the urban area of Urumqi, the biggest city of Xinjiang Uygur Autonomous Region, increased from 156 km2 in 1989 to 555 km2 in 2014. Correspondingly, the population of permanent residents increased from 1.06 million in 1989 to 3.53 million in 2014. We suggest that the decline of glacier area is driven primarily by summer melting and, possibly, linked to the combined effects of the global rise in temperatures and black carbon/CO2 emission from coal-fired power plants, cement plants and petroleum chemical plants from the nearby Urumqi and surrounding regions. The continuing retreat of glaciers will have a number of different quantitative impacts. Populations in the arid Central Asia regions are heavily dependent on snow and glacier melt for their irrigation and

  17. Sudden disintegration of ice in the glacial-proglacial transition zone of the largest glacier in Austria

    Science.gov (United States)

    Kellerer-Pirklbauer, Andreas; Avian, Michael; Hirschmann, Simon; Lieb, Gerhard Karl; Seier, Gernot; Sulzer, Wolfgang; Wakonigg, Herwig

    2017-04-01

    Rapid deglaciation does not only reveal a landscape which is prone to rapid geomorphic changes and sediment reworking but also the glacier ice itself might be in a state of disintegration by ice melting, pressure relief, crevasse formation, ice collapse or changes in the glacier's hydrology. In this study we considered the sudden disintegration of glacier ice in the glacial-proglacial transition zone of Pasterze Glacier. Pasterze Glacier is a typical alpine valley glacier and covers currently some 16.5 km2 making it to the largest glacier in Austria. This glacier is an important site for alpine mass tourism in Austria related to a public high alpine road and a cable car which enable access to the glacier rather easily also for unexperienced mountaineers. Spatial focus in our research is given on two particular study areas where several ice-mass movement events occurred during the 2015- and 2016-melting seasons. The first study area is a crevasse field at the lower third of the glacier tongue. This lateral crevasse field has been substantially modified during the last two melting seasons particularly because of thermo-erosional effects of a glacial stream which changed at this site from subglacial (until 2015) to glacier-lateral revealing a several tens of meters high unstable ice cliff prone to ice falls of different magnitudes. The second study area is located at the proglacial area. At Pasterze Glacier the proglacial area is widely influenced by dead-ice bodies of various dimensions making this area prone to slow to sudden geomorphic changes caused by ice mass changes. A particular ice-mass movement event took place on 20.09.2016. Within less than one hour the surface of the proglacial area changed substantially by tilting, lateral shifting, and subsidence of the ground accompanied by complete ice disintegration of once-debris covered ice. To understand acting processes at both areas of interest and to quantify mass changes we used field observations, terrain

  18. A 3D Full-Stokes Calving Model Applied to a West Greenland Outlet Glacier

    Science.gov (United States)

    Todd, Joe; Christoffersen, Poul; Zwinger, Thomas; Råback, Peter; Chauché, Nolwenn; Hubbard, Alun; Toberg, Nick; Luckman, Adrian; Benn, Doug; Slater, Donald; Cowton, Tom

    2017-04-01

    Iceberg calving from outlet glaciers accounts for around half of all mass loss from both the Greenland and Antarctic ice sheets. The diverse nature of calving and its complex links to both internal dynamics and external climate make it challenging to incorporate into models of glaciers and ice sheets. Consequently, calving represents one of the most significant uncertainties in predictions of future sea level rise. Here, we present results from a new 3D full-Stokes calving model developed in Elmer/Ice and applied to Store Glacier, the second largest outlet glacier in West Greenland. The calving model implements the crevasse depth criterion, which states that calving occurs when surface and basal crevasses penetrate the full thickness of the glacier. The model also implements a new 3D rediscretization approach and a time-evolution scheme which allow the calving front to evolve realistically through time. We use the model to test Store's sensitivity to two seasonal environmental processes believed to significantly influence calving: submarine melt undercutting and ice mélange buttressing. Store Glacier discharges 13.9 km3 of ice annually, and this calving rate shows a strong seasonal trend. We aim to reproduce this seasonal trend by forcing the model with present day levels of submarine melting and ice mélange buttressing. Sensitivity to changes in these frontal processes was also investigated, by forcing the model with a) increased submarine melt rates acting over longer periods of time and b) decreased mélange buttressing force acting over a reduced period. The model displays a range of observed calving behaviour and provides a good match to the observed seasonal evolution of the Store's terminus. The results indicate that ice mélange is the primary driver of the observed seasonal advance of the terminus and the associated seasonal variation in calving rate. The model also demonstrates a significant influence from submarine melting on calving rate. The results

  19. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard

    Science.gov (United States)

    van der Bilt, Willem G. M.; Bakke, Jostein; Vasskog, Kristian; D'Andrea, William J.; Bradley, Raymond S.; Ólafsdóttir, Sædis

    2015-10-01

    The Arctic is warming faster than anywhere else on Earth. Holocene proxy time-series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. However, available datasets are scarce, unevenly distributed and often of coarse resolution. Glaciers are sensitive recorders of climate shifts and variations in rock-flour production transfer this signal to the lacustrine sediment archives of downstream lakes. Here, we present the first full Holocene record of continuous glacier variability on Svalbard from glacier-fed Lake Hajeren. This reconstruction is based on an undisturbed lake sediment core that covers the entire Holocene and resolves variability on centennial scales owing to 26 dating points. A toolbox of physical, geochemical (XRF) and magnetic proxies in combination with multivariate statistics has allowed us to fingerprint glacier activity in addition to other processes affecting the sediment record. Evidence from variations in sediment density, validated by changes in Ti concentrations, reveal glaciers remained present in the catchment following deglaciation prior to 11,300 cal BP, culminating in a Holocene maximum between 9.6 and 9.5 ka cal BP. Correspondence with freshwater pulses from Hudson Strait suggests that Early Holocene glacier advances were driven by the melting Laurentide Ice Sheet (LIS). We find that glaciers disappeared from the catchment between 7.4 and 6.7 ka cal BP, following a late Hypsithermal. Glacier reformation around 4250 cal BP marks the onset of the Neoglacial, supporting previous findings. Between 3380 and 3230 cal BP, we find evidence for a previously unreported centennial-scale glacier advance. Both events are concurrent with well-documented episodes of North Atlantic cooling. We argue that this brief forcing created suitable conditions for glaciers to reform in the catchment against a background of gradual orbital cooling. These findings highlight the

  20. Monitoring glacier variations in the Urubamba and Vilcabamba Mountain Ranges, Peru, using "Landsat 5" images

    Science.gov (United States)

    Suarez, Wilson; Cerna, Marcos; Ordoñez, Julio; Frey, Holger; Giráldez, Claudia; Huggel, Christian

    2013-04-01

    The Urubamba and Vilcabamba mountain ranges are two geological structures belonging to the Andes in the southern part of Peru, which is located in the tropical region. These mountain ranges are especially located within the transition area between the Amazon region (altitudes close to 1'000 m a.s.l.) and the Andes. These mountains, with a maximum height of 6'280 m a.s.l. (Salkantay Snow Peak in the Vilcabamba range), are characterized by glaciers mainly higher than 5000 m a.s.l. Here we present a study on the evolution of the ice cover based on "Landsat 5" images from 1991 and 2011 is presented in this paper. These data are freely available from the USGS in a georeferenced format and cover a time span of more than 25 years. The glacier mapping is based on the Normalized Difference Snow Index (NDSI). In 1991 the Vilcabamba mountain range had 221 km2 of glacier cover, being reduced to 116.4 km2 in 2011, which represents a loss of 48%. In the Urubamba mountain range, the total glacier area was 64.9 km2 in 1991 and 29.4 km2 in 2011, representing a loss of 54.7%. It means that the glacier area was halved during the past two decades although precipitation patterns show an increase in recent years (the wet season lasts from September to April with precipitation peaks in February and March). Glacier changes in these two tropical mountain ranges also impact from an economic point of view due to small local farming common in this region (use of water from the melting glacier). Furthermore, potential glacier related hazards can pose a threat to people and infrastructure in the valleys below these glaciers, where the access routes to Machu Picchu Inca City, Peru's main tourist destination, are located too.

  1. Multi-decadal marine- and land-terminating glacier recession in the Ammassalik region, southeast Greenland

    Directory of Open Access Journals (Sweden)

    S. H. Mernild

    2012-06-01

    Full Text Available Landsat imagery was applied to elucidate glacier fluctuations of land- and marine-terminating outlet glaciers from the Greenland Ice Sheet (GrIS and local land-terminating glaciers and ice caps (GIC peripheral to the GrIS in the Ammassalik region, Southeast Greenland, during the period 1972–2011. Data from 21 marine-terminating glaciers (including the glaciers Helheim, Midgaard, and Fenris, the GrIS land-terminating margin, and 35 GIC were examined and compared to observed atmospheric air temperatures, precipitation, and reconstructed ocean water temperatures (at 400 m depth in the Irminger Sea. Here, we document that net glacier recession has occurred since 1972 in the Ammassalik region for all glacier types and sizes, except for three GIC. The land-terminating GrIS and GIC reflect lower marginal and areal changes than the marine-terminating outlet glaciers. The mean annual land-terminating GrIS and GIC margin recessions were about three to five times lower than the GrIS marine-terminating recession. The marine-terminating outlet glaciers had an average net frontal retreat for 1999–2011 of 0.098 km yr−1, which was significantly higher than in previous sub-periods 1972–1986 and 1986–1999. For the marine-terminating GrIS, the annual areal recession rate has been decreasing since 1972, while increasing for the land-terminating GrIS since 1986. On average for all the observed GIC, a mean net frontal retreat for 1986–2011 of 0.010 ± 0.006 km yr−1 and a mean areal recession of around 1% per year occurred; overall for all observed GIC, a mean recession rate of 27 ± 24% occurred based on the 1986 GIC area. Since 1986, five GIC melted away in the Ammassalik area.

  2. Modelling Glaciers in the HARMONIE-AROME NWP model

    Science.gov (United States)

    Mottram, Ruth; Pagh Nielsen, Kristian; Gleeson, Emily; Yang, Xiaohua

    2017-12-01

    HARMONIE-AROME is a convection-permitting non-hydrostatic model that includes the multi-purpose SURFEX surface model. It is developed for high resolution (1-3 km) weather forecasting and applied in a number of regions in Europe and the Mediterranean. A version of HARMONIE-AROME is also under development for regional climate modelling. Here we run HARMONIE-AROME for a domain over Greenland that includes a significant portion of the Greenland ice sheet. The model output reproduces temperature, wind speed and direction and relative humidity over the ice sheet well when compared with the observations from PROMICE automatic weather stations (AWS) operated within the model domain on the ice sheet (mean temperature bias 1.31 ± 3.6 K) but we identified a much lower bias (-0.16 ± 2.3 K) at PROMICE sites on days where melt does not occur at the ice sheet surface and is thus an artefact of the simplified surface scheme over glaciers in the existing HARMONIE-AROME operational set-up. The bias in summer time temperature also affects wind speed and direction as the dominant katabatic winds are caused by the cold ice surface and slope gradient. By setting an upper threshold to the surface temperature of the ice surface within SURFEX we show that the weather forecast error over the Greenland ice sheet can be reduced in summer when glacier ice is exposed. This improvement will facilitate accurate ice melt and run-off computations, important both for ice surface mass budget estimation and for commercial applications such as hydro-power forecasting. Furthermore, the HCLIM regional climate model derived from HARMONIE-AROME will need to accurately account for glacier surface processes in these regions in order to be used to accurately compute the surface mass budget of ice sheets and glaciers, a key goal of regional climate modelling studies in Greenland.

  3. An elevational gradient in snowpack chemical loading at Glacier National Park, Montana: implications for ecosystem processes

    Science.gov (United States)

    Fagre, Daniel; Tonnessen, Kathy; Morris, Kristi; Ingersoll, George; McKeon, Lisa; Holzer, Karen

    2000-01-01

    The accumulation and melting of mountain snowpacks are major drivers of ecosystem processes in the Rocky Mountains. These include the influence of snow water equivalent (SWE) timing and amount of release on soil moisture for annual tree growth, and alpine stream discharge and temperature that control aquatic biota life histories. Snowfall also brings with it atmospheric deposition. Snowpacks will hold as much as 8 months of atmospheric deposition for release into mountain ecosystems during the spring melt. These pulses of chemicals influence soil microbiota and biogeochemical processes affecting mountain vegetation growth. Increased atmospheric nitrogen inputs recently have been documented in remote parts of Colorado's mountain systems but no baseline data exist for the Northern Rockies. We examined patterns of SWE and snow chemistry in an elevational gradient stretching from west to east over the continental divide in Glacier National Park in March 1999 and 2000. Sites ranged from 1080m to 2192m at Swiftcurrent Pass. At each site, two vertically-integrated columns of snow were sampled from snowpits up to 600cm deep and analyzed for major cations and anions. Minor differences in snow chemistry, on a volumetric basis, existed over the elvational gradient. Snowpack chemical loading estimates were calculated for NH4, SO4 and NO3 and closely followed elevational increases in SWE. NO3 (in microequivalents/square meter) ranged from 1,000 ueq/m2 at low elevation sites to 8,000+ ueq/m2 for high elevation sites. Western slopes received greater amounts of SWE and chemical loads for all tested compounds.

  4. Earth's Climate History from Glaciers and Ice Cores

    Science.gov (United States)

    Thompson, Lonnie

    2013-03-01

    Glaciers serve both as recorders and early indicators of climate change. Over the past 35 years our research team has recovered climatic and environmental histories from ice cores drilled in both Polar Regions and from low to mid-latitude, high-elevation ice fields. Those ice core -derived proxy records extending back 25,000 years have made it possible to compare glacial stage conditions in the Tropics with those in the Polar Regions. High-resolution records of δ18O (in part a temperature proxy) demonstrate that the current warming at high elevations in the mid- to lower latitudes is unprecedented for the last two millennia, although at many sites the early Holocene was warmer than today. Remarkable similarities between changes in the highland and coastal cultures of Peru and regional climate variability, especially precipitation, imply a strong connection between prehistoric human activities and regional climate. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds to thousands of years, suggesting that current climatological conditions in those regions today are different from those under which these ice fields originated and have been sustained. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides strong evidence that a large-scale, pervasive and, in some cases, rapid change in Earth's climate system is underway. Observations of glacier shrinkage during the 20th and 21st century girdle the globe from the South American Andes, the Himalayas, Kilimanjaro (Tanzania, Africa) and glaciers near Puncak Jaya, Indonesia (New Guinea). The history and fate of these ice caps, told through the adventure, beauty and the scientific evidence from some of world's most remote mountain tops, provide a global perspective for contemporary climate. NSF Paleoclimate Program

  5. Global Monitoring of Mountain Glaciers Using High-Resolution Spotlight Imaging from the International Space Station

    Science.gov (United States)

    Donnellan, A.; Green, J. J.; Bills, B. G.; Goguen, J.; Ansar, A.; Knight, R. L.; Hallet, B.; Scambos, T. A.; Thompson, L. G.; Morin, P. J.

    2013-12-01

    Mountain glaciers around the world are retreating rapidly, contributing about 20% to present-day sea level rise. Numerous studies have shown that mountain glaciers are sensitive to global environmental change. Temperate-latitude glaciers and snowpack provide water for over 1 billion people. Glaciers are a resource for irrigation and hydroelectric power, but also pose flood and avalanche hazards. Accurate mass balance assessments have been made for only 280 glaciers, yet there are over 130,000 in the World Glacier Inventory. The rate of glacier retreat or advance can be highly variable, is poorly sampled, and inadequately understood. Liquid water from ice front lakes, rain, melt, or sea water and debris from rocks, dust, or pollution interact with glacier ice often leading to an amplification of warming and further melting. Many mountain glaciers undergo rapid and episodic events that greatly change their mass balance or extent but are sparsely documented. Events include calving, outburst floods, opening of crevasses, or iceberg motion. Spaceborne high-resolution spotlight optical imaging provides a means of clarifying the relationship between the health of mountain glaciers and global environmental change. Digital elevation models (DEMs) can be constructed from a series of images from a range of perspectives collected by staring at a target during a satellite overpass. It is possible to collect imagery for 1800 targets per month in the ×56° latitude range, construct high-resolution DEMs, and monitor changes in high detail over time with a high-resolution optical telescope mounted on the International Space Station (ISS). Snow and ice type, age, and maturity can be inferred from different color bands as well as distribution of liquid water. Texture, roughness, albedo, and debris distribution can be estimated by measuring bidirectional reflectance distribution functions (BRDF) and reflectance intensity as a function of viewing angle. The non-sun-synchronous orbit

  6. Analysis of meteorological data and the surface energy balance of Keqicar Glacier, Tien Shan, China

    Science.gov (United States)

    Zhang, Y.; Liu, S.; Fujita, K.; Han, H.; Li, J.

    2009-04-01

    Northwestern China currently experiences a climate change with fundamental consequences for the hydrological cycle. In the strongly arid region where water resources are essential for agriculture and food production, glaciers represent important water resources, contributing significantly to streamflow. The debris is an important glaciological feature of the region and has major impact on melt rates. It is essential to understand and quantify the interaction of climate and sub-debris melt in order to assess the current situation and to predict future water yield. Note that the surface energy balance determines glacier melt. However, little is known about the variability characteristics of the surface energy fluxes in this region. For this reason, we set up two automatic weather stuation (AWSs) in the ablation area of Keqicar Glacier. Keqicar Glacier is located in the Tarim River basin (largest inland river basin in China), southwestern Tien Shan, China. It is a representative debris-covered glacier with a length of 26.0 km and a total surface area of 83.6 km2. The thickness of the debris layer varies from 0.0 to 2.50 m in general. In some places large rocks are piled up to several meters. In this study, we report on analysis of meteorological data for the period 1 July-13 September 2003, from two automatic weather stations, aimed at studying the relationship between climate and ablation. One station is located on the lower part of the ablation area where the glacier is covered by debris layer, and the other near the equilibrium line altitude (ELA). All sensors were sampled every 10 seconds, and data were stored as hourly averages. The stations were visited regularly for maintenance at two weeks intervals depending on the weather conditions and location of the AWS. A total of 17 ablation stakes were drilled into the glacier at different elevations to monitor glacier melt during the study period. Readings were taken regularly in connection with AWS maintenance. The

  7. Simple models for the simulation of submarine melt for a Greenland glacial system model

    Science.gov (United States)

    Beckmann, Johanna; Perrette, Mahé; Ganopolski, Andrey

    2018-01-01

    Two hundred marine-terminating Greenland outlet glaciers deliver more than half of the annually accumulated ice into the ocean and have played an important role in the Greenland ice sheet mass loss observed since the mid-1990s. Submarine melt may play a crucial role in the mass balance and position of the grounding line of these outlet glaciers. As the ocean warms, it is expected that submarine melt will increase, potentially driving outlet glaciers retreat and contributing to sea level rise. Projections of the future contribution of outlet glaciers to sea level rise are hampered by the necessity to use models with extremely high resolution of the order of a few hundred meters. That requirement in not only demanded when modeling outlet glaciers as a stand alone model but also when coupling them with high-resolution 3-D ocean models. In addition, fjord bathymetry data are mostly missing or inaccurate (errors of several hundreds of meters), which questions the benefit of using computationally expensive 3-D models for future predictions. Here we propose an alternative approach built on the use of a computationally efficient simple model of submarine melt based on turbulent plume theory. We show that such a simple model is in reasonable agreement with several available modeling studies. We performed a suite of experiments to analyze sensitivity of these simple models to model parameters and climate characteristics. We found that the computationally cheap plume model demonstrates qualitatively similar behavior as 3-D general circulation models. To match results of the 3-D models in a quantitative manner, a scaling factor of the order of 1 is needed for the plume models. We applied this approach to model submarine melt for six representative Greenland glaciers and found that the application of a line plume can produce submarine melt compatible with observational data. Our results show that the line plume model is more appropriate than the cone plume model for simulating

  8. Light-absorbing Particles in Snow in the context of climate, snowpack & glaciers: Where do we stand?

    Science.gov (United States)

    Doherty, S. J.

    2016-12-01

    This talk will review recent progress and challenges in quantifying the effects of light-absorbing particles in snow on climate and on snow and glacier melt. In addition to black carbon (BC), field measurements have revealed that brown carbon (BrC) from combustion, mineral dust, soil organics and, in some cases, algae can also play important roles in determining snow albedo. I will review the strengths and limitations of the techniques used to quantify each. I will also overview what we know about how light-absorbing particles in snow compare to other factors affecting snow and glacier albedo and melt, and emphasize the need for such a wholistic view.

  9. Recent Advances in the GLIMS Glacier Database

    Science.gov (United States)

    Raup, Bruce; Cogley, Graham; Zemp, Michael; Glaus, Ladina

    2017-04-01

    Glaciers are shrinking almost without exception. Glacier losses have impacts on local water availability and hazards, and contribute to sea level rise. To understand these impacts and the processes behind them, it is crucial to monitor glaciers through time by mapping their areal extent, changes in volume, elevation distribution, snow lines, ice flow velocities, and changes to associated water bodies. The glacier database of the Global Land Ice Measurements from Space (GLIMS) initiative is the only multi-temporal glacier database capable of tracking all these glacier measurements and providing them to the scientific community and broader public. Here we present recent results in 1) expansion of the geographic and temporal coverage of the GLIMS Glacier Database by drawing on the Randolph Glacier Inventory (RGI) and other new data sets; 2) improved tools for visualizing and downloading GLIMS data in a choice of formats and data models; and 3) a new data model for handling multiple glacier records through time while avoiding double-counting of glacier number or area. The result of this work is a more complete glacier data repository that shows not only the current state of glaciers on Earth, but how they have changed in recent decades. The database is useful for tracking changes in water resources, hazards, and mass budgets of the world's glaciers.

  10. From Glaciers to Icebergs

    Science.gov (United States)

    Zhang, Wendy

    I will describe works from a collaboration between physics and glaciology that grew out of interactions at the Computations in Science seminar Leo Kadanoff organized at the University of Chicago. The first project considers the interaction between ocean waves and Antarctic ice shelves, large floating portions of ice formed by glacial outflows. Back-of-envelop calculation and seismic sensor data suggest that crevasses may be distributed within an ice shelf to shield it from wave energy. We also examine numerical scenarios in which changes in environmental forcing causes the ice shelf to fail catastrophically. The second project investigates the aftermath of iceberg calving off glacier terminus in Greenland using data recorded via time-lapse camera and terrestrial radar. Our observations indicate that the mélange of icebergs within the fjord experiences widespread jamming during a calving event and therefore is always close to being in a jammed state during periods of terminus quiescence. Joint work with Jason Amundson, Ivo R. Peters, Julian Freed Brown, Nicholas Guttenberg, Justin C Burton, L. Mac Cathles, Ryan Cassotto, Mark Fahnestock, Kristopher Darnell, Martin Truffer, Dorian S. Abbot and Douglas MacAyeal. Kadanoff Session DCMP.

  11. High-resolution modeling of coastal freshwater discharge and glacier mass balance in the Gulf of Alaska watershed

    Science.gov (United States)

    Beamer, J. P.; Hill, D. F.; Arendt, A.; Liston, G. E.

    2016-05-01

    A comprehensive study of the Gulf of Alaska (GOA) drainage basin was carried out to improve understanding of the coastal freshwater discharge (FWD) and glacier volume loss (GVL). Hydrologic processes during the period 1980-2014 were modeled using a suite of physically based, spatially distributed weather, energy-balance snow/ice melt, soil water balance, and runoff routing models at a high-resolution (1 km horizontal grid; daily time step). Meteorological forcing was provided by the North American Regional Reanalysis (NARR), Modern Era Retrospective Analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis (CFSR) data sets. Streamflow and glacier mass balance modeled using MERRA and CFSR compared well with observations in four watersheds used for calibration in the study domain. However, only CFSR produced regional seasonal and long-term trends in water balance that compared favorably with independent Gravity Recovery and Climate Experiment (GRACE) and airborne altimetry data. Mean annual runoff using CFSR was 760 km3 yr-1, 8% of which was derived from the long-term removal of stored water from glaciers (glacier volume loss). The annual runoff from CFSR was partitioned into 63% snowmelt, 17% glacier ice melt, and 20% rainfall. Glacier runoff, taken as the sum of rainfall, snow, and ice melt occurring each season on glacier surfaces, was 38% of the total seasonal runoff, with the remaining runoff sourced from nonglacier surfaces. Our simulations suggests that existing GRACE solutions, previously reported to represent glacier mass balance alone, are actually measuring the full water budget of land and ice surfaces.

  12. Opportunities and Challenges in Enhancing Value of Annual Glacier Mass Balance Monitoring Examples from Western North America

    Science.gov (United States)

    Pelto, M. S.

    2017-12-01

    Alpine glacier mass balance is the most accurate indicator of glacier response to climate and with retreat of alpine glaciers is one of the clearest signals of global climate change. Completion of long term, representative and homogenous mass balance field measurement of mass balance, compiled by WGMS, is a key climate data record. To ensure a monitoring program remains vital and funded local collaboration and connecting the research to local societal impacts is crucial. Working with local partners in collecting and providing the right data is critical whether their interest is in hydropower, irrigation, municipal supply, hazard reduction and/or aquatic ecosystems. The expansion of remote sensing and modeling capability provides both a challenge to continued relevance and an opportunity for field mass balance programs to expand relevance. In modelling studies of both glacier mass balance and glacier runoff transient balance data has equivalent value with annual balance data, for both calibration runs and as an input variable. This increases the utility of mid-season field observations. Remote sensing provides repeat imagery that often identifies the AAR and transient snowline of a glacier. For runoff assessment understanding the specific percent of glacier surface area that is glacier ice, older firn, and retained snowpack from the previous winter at frequent intervals during the melt season is vital since each region has a different melt factor. A denser field observation network combined with this imagery can provide additional point balance values of ablation that complement the mass balance record. Periodic measurement of mass balance at a denser network using GPR, LIDAR, TLS or probing is required to better understand long term point balance locations and is important at end of the melt season not just beginning, and has value mid-season for modelling. Applications of each of utility of field mass balance observations will be illustrated.

  13. Adapting to climate change at Glacier National Park, Montana, USA (Invited)

    Science.gov (United States)

    Fagre, D. B.

    2009-12-01

    The impact of climate change on mountain watersheds has been studied at Glacier National Park, Montana since 1991. Despite a 14% increase in annual precipitation, glaciers have receded, snow packs have diminished, and late season stream discharge has declined. Snow melts one month earlier in the spring, leading to earlier hydrologic peaks and tree invasions of subalpine meadows. This has been largely driven by annual temperature increases that are 2-3 times greater than the global average for the past century. How do scientists and park managers adapt? Although stopping the glaciers from disappearing is not a management option, park staff have embarked on an aggressive education and interpretation effort to use melting glaciers as the segue into dialog about climate change. Media such as podcasts, handouts, posters, visitor center displays and roadside signage complement interpretive ranger-led talks about climate change and incorporate the latest glacial data from ongoing research. With few historic data on most animal populations, Glacier Park staff and other scientists are unable to assess the impacts of climate change to resources that the public cares about. They have recently initiated alpine wildlife monitoring programs to track populations of potentially climate-sensitive organisms such as the American pika (Ochotona princeps). Recognizing that climate change increases the frequency and severity of extreme weather events, design specifications for reconstruction of an alpine highway were adjusted to include larger culverts and hardened rock walls. Species that are dependent on cold water will be at risk as glaciers and snowfields disappear but managers cannot control these processes. However, they are proactively reducing other stressors to sensitive native fish species by removing exotic, introduced species that are competitors. In addition to these adaptation measures, Glacier Park has implemented shuttles, fleet conversions and enhanced building

  14. Threatened by: An audiovisual experience inspired by scientific data about glaciers and climate change

    Science.gov (United States)

    Lee, J.; Jeong, S.

    2017-12-01

    Glaciers often have been considered as a symbol of climate change, also its mass change is a major contributor to sea level rise. Dynamic discharge is one of the mechanisms that marine-terminating outlet glaciers loses its mass, whose trend consists of seasonal, annual and secular patterns. These patterns, along with the other climate parameters, can be inspirational to music composition, thereby it can be expressed and transferred by musical media. Here we present `Threatened by,' a piece of electronic music accompanied by animation of glaciers' movement which represent an attempt to frame the sound of the glacier in freer ways vis-à-vis acoustic music. To give expression to the sound, musical production tools such as Pro Tools, Sound Forge Pro, Logic Pro X, Max/MSP, etc. are utilized to modify and combine a variety of sounds generated by a melting glacier. After adding impact by the way of EQ, reverberation, distortion, delay, reverse, etc., we created a two-channel stereo piece in approximately 7 minutes. Along with the musical media, we also present a video clip whose visual features corresponds to glacial properties or events. We expect this work will raise awareness of glaciers' behaviour to general public, also presenting one of the examples that scientists and artists work collaboratively to come up with an artwork that has social implications.

  15. A NEW APPROACH TO ESTIMATE WATER OUTPUT FROM THE MOUNTAIN GLACIERS IN ASIA

    Directory of Open Access Journals (Sweden)

    Vladimir G. Konovalov

    2015-01-01

    Full Text Available Regional data on climate, river runoff and inventory of glaciers within High Mountainous Asia were used as informational basis to elaborate new approach in computing components of the hydrological cycle (glaciers runoff, evaporation, precipitation. In order to improve and optimize the calculation methodology, 4 675 homogeneous groups of glaciers were identified in the largest Asian river basins, i.e., Amu Darya, Syr Darya, Indus, Ganges, Brahmaputra, Tarim, and others. As the classification criteria for 53 225 glaciers located there, the author consistently used 8 gradations of orientation (azimuth and 23 gradations of area. Calculating of the hydrological regime of glaciers was performed on the example of several Asian river basins. It has been shown that in the drainless basins in Asia, the only potential factor of the glacial influence on the changes in global Ocean level is the seasonal amount of evaporation from the melted surface of perennial ice and old firn. These results and published sources were used for re-evaluation of the previous conclusions on the influence of glacier runoff on change of the Ocean level. Comparison of measured and calculated annual river runoff, which was obtained by means of modeling the components of water-balance equation, showed good correspondence between these variables.

  16. Rock glaciers, Central Andes, Argentina, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Primary rock glaciers are fed by avalanche chutes. At the El Salto rock glacier, surveys have been undertaken in order to determine the creep rate. Between 1981 and...

  17. Airborne Surface Profiling of Alaskan Glaciers

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of glacier outline, laser altimetry profile, and surface elevation change data for 46 glaciers in Alaska and British Columbia, Canada,...

  18. Physicochemical impacts of dust particles on alpine glacier meltwater at the Laohugou Glacier basin in western Qilian Mountains, China.

    Science.gov (United States)

    Dong, Zhiwen; Qin, Dahe; Chen, Jizu; Qin, Xiang; Ren, Jiawen; Cui, Xiaoqing; Du, Zhiheng; Kang, Shichang

    2014-09-15

    This work discusses the temporal variation of various physicochemical species in the meltwater runoff of Laohugou Glacier No. 12 (4260 ma.s.l.) in central Asia, and their correlation with dust particles, based on a two-year field observation in summer 2012 and 2013, mainly focusing on dust concentration and size distribution, meltwater chemistry, particles SEM-EDX analysis in the meltwater, and MODIS atmospheric optical depth fields around the Qilian Mountains in central Asia. We find that, the volume-size distribution of dust particles in the meltwater is mainly composed of three parts, which includes fine aerosol particles (with diameter of 0~3.0 μm, mainly PM 2.5), atmospheric dust (with diameter of 3.0~20 μm), and local dust particles (20~100 μm), respectively. Comparison of dust particles in the snowpack and meltwater runoff indicates that, large part of dust particles in the meltwater may have originated from atmospheric dust deposition to the snow and ice on the glacier, and transported into the meltwater runoff. Moreover, temporal variation of dust and major ions (especially crustal species) is very similar with each other, showing great influence of dust particles to the chemical constituents of the glacier meltwater. SPM and TDS implied significant influences of dust to the physical characteristics of the glacier meltwater. Results showed that, accelerated glacier melting may affect physicochemical characteristics of the meltwater at an alpine basin under global warming. MODIS atmospheric optical depth (AOD) fields derived using the Deep Blue algorithm, showed great influence of regional dust transportation over western Qilian Mountains in springtime. SEM-EDX analysis shows that dust particles in the glacier meltwater contain Si-, Al-, Ca-, K-, and Fe-rich materials, such as quartz, albite, aluminate, and fly ash, similar to that deposited in snowpack. These results showed great and even currently underestimated influences of atmospheric dust

  19. Bacteria at glacier surfaces: microbial community structures in debris covered glaciers and cryoconites in the Italian Alps

    Science.gov (United States)

    Azzoni, Roberto; Franzetti, Andrea; Ambrosini, Roberto; D'Agata, Carlo; Senese, Antonella; Minora, Umberto; Tagliaferri, Ilario; Diolaiuti, Guglielmina

    2014-05-01

    Supraglacial debris has an important role in the glacier energy budget and has strong influence on the glacial ecosystem. Sediment derives generally from rock inputs from nesting rockwalls and are abundant and continuous at the surface of debris-covered glaciers (i.e. DCGs; glaciers where the ablation area is mainly covered by rock debris) and sparse and fine on debris-free glaciers (DFGs). Recently, evidence for significant tongue darkening on retreating debris-free glaciers has been drawing increasing attention. Fine particles, the cryoconite, are locally abundant and may form cryoconite holes that are water-filled depressions on the surface of DFGs that form when a thin layer of cryoconite is heated by the sun and melts the underlying ice. There is increasing evidence that cryoconite holes also host highly diverse microbial communities and can significantly contribute to global carbon cycle. However, there is almost no study on microbial communities of the debris cover of DCGs and there is a lack of data from the temporal evolution of the microbial communities in the cryoconites. To fill these gaps in our knowledge we characterized the supraglacial debris of two Italian DCGs and we investigated the temporal evolution of microbial communities on cryoconite holes in DFG. We used the Illumina technology to analyse the V5 and V6 hypervariable regions of the bacterial 16S rRNA gene amplified from samples collected distances from the terminus of two DCGs (Miage and Belvedere Glaciers - Western Italian Alps). Heterotrophic taxa dominated bacterial communities, whose structure changed during downwards debris transport. Organic carbon of these recently exposed substrates therefore is probably provided more by allochthonous deposition of organic matter than by primary production by autotrophic organisms. We used ARISA fingerprinting and quantitative PCR to describe the structure and the evolution of the microbial communities and to estimate the number of the total

  20. Mass balance of Djankuat Glacier, Central Caucasus: observations, modeling and prediction

    Science.gov (United States)

    Rybak, Oleg; Mariia, Kaminskaia; Stanislav, Kutuzov; Ivan, Lavrentiev; Polina, Morozova; Victor, Popovnin; Elena, Rybak

    2017-04-01

    Djankuat is a typical valley glacier on the northern slope of the main Caucasus chain. Its present day area is approximately 2.5 square km with the characteristic ice thickness of several tens of meters. As well as other glaciers in the region, Djankuat has been shrinking during the last several decades, its cumulative mass balance in 1968-2016 was equal to -13.6 m w.e. In general, Caucasus' glaciers lost approximately one-third of their area and half of the volume. Prediction of further deradation of glaciers in changing environment is a challenging task because rivers fed by glacier melt water provide from 40 to 70% of the total river run-off in the adjacent piedmont territories. Growing demand in fresh water is rather critical for the local economy development and for growing population, motivating elaboration of an effitient instrument for evaluation and forecasting of the glaciation in the Greater Caucasus. Unfortunately, systematic observations are sparse limiting possibilities for proper model development for the most of the glaciers. Under these circumstances, we have to rely on the models developed for the few well-studied ones, like Djankuat, which is probably one of the most explored glaciers in the world. Accumulation and ablation rates have been observed here systematically and uninterruptedly since mid 60-ies using dense stake network. Together with the mass balance components, changes in flow velocity, ice thickness and geometry were regularly evaluated. During the last several ablation seasons, direct meteorological observations were carried out using an AMS. Long series of meteorological observations at the nearest weather station allow making assessment of the glacier response to climate change in the second half of the 20th century. Abundant observation data gave us the opportunity to elaborate, calibrate and validate an efficient mathematical model of surface mass balance of a typical glacier in the region. Since many glaciers in the Caucasus

  1. Mass balance and hydrological contribution of glaciers in northern and central Chile

    Science.gov (United States)

    MacDonell, Shelley; Vivero, Sebastian; McPhee, James; Ayala, Alvaro; Pellicciotti, Francesca; Campos, Cristian; Caro, Dennys; Ponce, Rodrigo

    2016-04-01

    Water is a critical resource in the northern and central regions of Chile, as the area supports more than 40% of the country's population, and the regional economy depends on agricultural production and mining, which are two industries that rely heavily on a consistent water supply. Due to relatively low rates of rainfall, meltwater from snow and ice bodies in the highland areas provides a key component of the annual water supply in these areas. Consequently, accurate estimates of the rates of ablation of the cryosphere (i.e. snow and ice) are crucial for predicting current supply rates, and future projections. Whilst snow is generally a larger contributor of freshwater, during periods of drought, glaciers provide a significant source. This study aims to determine the contribution of glaciers to two catchments in northern and central Chile during a 2.5 year period, which largely consisted of extreme dry periods, but also included the recent El Niño event. This study combined field and modelling studies to understand glacier and rock glacier contributions in the Tapado (30°S), Yeso (33°S) catchments. In the field we undertook glaciological mass balance monitoring of three glaciers, monitored albedo and snow line changes using automatic cameras for three glaciers, measured discharge continuously at several points, installed six automatic weather stations and used thermistors to monitor thermal regime changes of two rock glaciers. The combination of these datasets where used to drive energy balance and hydrological models to estimate the contribution of ice bodies to streamflow in the two studied catchments. Over the course of the study all glaciers maintained a negative mass balance, however glaciers in central Chile lost more mass, which is due to the higher melt rates experienced due to lower elevations and higher temperatures. Areas free of debris generally contributed more to streamflow than sediment covered regions, and snow generally contributed more over

  2. Glacier albedo decrease in the European Alps: potential causes and links with mass balances

    Science.gov (United States)

    Di Mauro, Biagio; Julitta, Tommaso; Colombo, Roberto

    2016-04-01

    Both mountain glaciers and polar ice sheets are losing mass all over the Earth. They are highly sensitive to climate variation, and the widespread reduction of glaciers has been ascribed to the atmospheric temperature increase. Beside this driver, also ice albedo plays a fundamental role in defining mass balance of glaciers. In fact, dark ice absorbs more energy causing faster glacier melting, and this can drive to more negative balances. Previous studies showed that the albedo of Himalayan glaciers and the Greenland Ice Sheet is decreasing with important rates. In this contribution, we tested the hypothesis that also glaciers in the European Alps are getting darker. We analyzed 16-year time series of MODIS (MODerate resolution Imaging Spectrometer) snow albedo from Terra (MOD13A1, 2000-2015) and Aqua (MYD13A1, 2002-2015) satellites. These data feature a spatial resolution of 500m and a daily temporal resolution. We evaluated the existence of a negative linear and nonlinear trend of the summer albedo values both at pixel and at glacier level. We also calculated the correlation between MODIS summer albedo and glacier mass balances (from the World Glaciological Monitoring Service, WGMS database), for all the glaciers with available mass balance during the considered period. In order to estimate the percentage of the summer albedo that can be explained by atmospheric temperature, we correlated MODIS albedo and monthly air temperature extracted from the ERA-Interim reanalysis dataset. Results show that decreasing trends exist with a strong spatial variability in the whole Alpine chain. In large glaciers, such as the Aletch (Swiss Alps), the trend varies significantly also within the glacier, showing that the trend is higher in the area across the accumulation and ablation zone. Over the 17 glaciers with mass balance available in the WGMS data set, 11 gave significant relationship with the MODIS summer albedo. Moreover, the comparison between ERA-Interim temperature

  3. Various Particulate Matter Effects on Glacial Melting Rates in the Himalayan Mountain Range

    Science.gov (United States)

    Barwegen, S.

    2017-12-01

    Due to increased human activity and the impact of global warming in the Himalayas, glaciers are melting at alarming rates. It is hypothesized that by the year 2100, about 5,500 glaciers located in the Hindu-Kush will melt by up to 70%-90%. This will be severely detrimental to farmers as well as lessen the potential to harness hydropower, which requires the glaciers to be fully present (Vidal 2015). The melting of these glaciers is accelerating, in part, due to the deposition of particulate matter onto the snow, which lowers the albedo and causes the glaciers to absorb more heat. The Himalayan glaciers, specifically, are melting due to intense human movement over the snow, movement of particulate matter from storms, the increase in temperatures due to global warming, and soot deposited from forest fires (Dimmick 2014). This whole mountain range needs to retain glaciers in order to support the population of people living there by providing water. This project investigated the effect of both different types and amounts of particulate matter (PM) on ice melting rates. It was a model simulating the impact of PM of varying sizes and sources on glacial melting rates in the Himalayan glaciers. The impact of eight different types of PM (charcoal, pumice, sand/organic soil mixture, peat moss/soil, gravel/soil, soot, and soil), at two different masses (0.1g and 0.3g) on the melting rate of ice was assessed. Ice cubes were covered in PM and placed 5 cm away from a 50W incandescent bulb, with mass measured at regular intervals as they melted. Mass loss was recorded at 3, 6, 9, and 15 minutes and each sample type was repeated in triplicate. Over the course of the experiment, the ice cubes with 0.1 gram of PM were observed to be melting at a slower rate. Of the ice cubes with .3 g of PM on top, the ice covered in the sand and organic soil mixture had the lowest mass loss (3.4 g over 15 minutes), while the gravel and potting soil (4.9 g over 15 minutes) resulted in the highest (4

  4. Satellite-derived submarine melt rates and mass balance (2011-2015) for Greenland's largest remaining ice tongues

    Science.gov (United States)

    Wilson, Nat; Straneo, Fiammetta; Heimbach, Patrick

    2017-12-01

    Ice-shelf-like floating extensions at the termini of Greenland glaciers are undergoing rapid changes with potential implications for the stability of upstream glaciers and the ice sheet as a whole. While submarine melting is recognized as a major contributor to mass loss, the spatial distribution of submarine melting and its contribution to the total mass balance of these floating extensions is incompletely known and understood. Here, we use high-resolution WorldView satellite imagery collected between 2011 and 2015 to infer the magnitude and spatial variability of melt rates under Greenland's largest remaining ice tongues - Nioghalvfjerdsbræ (79 North Glacier, 79N), Ryder Glacier (RG), and Petermann Glacier (PG). Submarine melt rates under the ice tongues vary considerably, exceeding 50 m a-1 near the grounding zone and decaying rapidly downstream. Channels, likely originating from upstream subglacial channels, give rise to large melt variations across the ice tongues. We compare the total melt rates to the influx of ice to the ice tongue to assess their contribution to the current mass balance. At Petermann Glacier and Ryder Glacier, we find that the combined submarine and aerial melt approximately balances the ice flux from the grounded ice sheet. At Nioghalvfjerdsbræ the total melt flux (14.2 ± 0.96 km3 a-1 w.e., water equivalent) exceeds the inflow of ice (10.2 ± 0.59 km3 a-1 w.e.), indicating present thinning of the ice tongue.

  5. Mountain glaciers fluctuation as climate change indicator

    International Nuclear Information System (INIS)

    Vilesov, E.N.; Uvarov, V. N.

    1997-01-01

    Changes of general area and linear characteristics on all glaciers of North slop of the Zailijskij Alatau are determined in the result of monitoring of large glacier system on the base of repeated cartography with aero-photography use in 1955, 1979, 1990 raper years. General glaciers deviation, its area and volumes cutting down are distinctly revealed. (author)

  6. Spatial variations and sources of trace elements in recent snow from glaciers at the Tibetan Plateau.

    Science.gov (United States)

    Huang, Ju; Li, Yuefang; Li, Zhen; Xiong, Longfei

    2018-03-01

    Trace elements (TEs) could pose a potential threat to the environment and human health and hence they have been paid attention increasingly at present. This study presents the acid-leached concentrations of TEs (e.g., Al, As, Ba, Co, Cr, Cs, Cu, Fe, Li, Mn, Mo, Pb, Rb, Sb, Sr, Ti, Tl, U, V) and dust content sampled from Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), Gurenhekou (GRHK) glaciers on the Tibetan Plateau (TP) from April to May in 2013. A nonparametric Jonckheere-Terpstra Method was used to test the trend of spatial distribution of TEs. The statistical analysis indicates that TEs were the highest in the QMLK glacier, lowest in the YZF glacier, and comparable in the other three glaciers. Comparison with other glaciers of the plateau, the statistical analysis on As, Cu, Mo, Pb, and Sb shows that their concentrations had, in general, a decreasing distribution characteristic from the north to the south of TP, which indicates that the northern TP is loading more atmospheric-polluted impurity than central and southern TP. Enrichment factor (EF) analysis indicates that Rb, V, U, Cr, Ba, Cs, Li, As, Co, Mn, Tl, Sr, and Cu originated mainly from crustal dust, while anthropogenic inputs such as nonferrous metals melting, coal combustion, and traffic emission made an important contribution to the Mo, Pb, and Sb. Evidences from air mass back trajectories show that TEs in the five studied glaciers might not only come from surrounding areas of glaciers but also might be long-range transported by atmosphere from the Central Asia and South Asia and deposited on these glaciers.

  7. Spatial Variations and Sources of Trace Elements in Recent Snow from Glaciers at the Tibetan Plateau

    Science.gov (United States)

    Huang, J.; Li, Y.; Li, Z.; Cozzi, G.; Turetta, C.; Barbante, C.; Xiong, L.

    2017-12-01

    Various trace element (TEs) could be long-range transported through the atmosphere and deposited onto the snow surface. Recently, with the development of economy of China and the surrounding countries, TEs such as Pb, Cd, Mo and Sb in several glaciers from the Tibetan Plateau (TP) have been gradually affected by anthropogenic activities. This study presents the acid leached concentrations of TEs (e.g., Al, As, Ba, Co, Cr, Cs, Cu, Fe, Li, Mn, Mo, Pb, Rb, Sb, Sr, Ti, Tl, U, V) and dust content sampled from Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), Gurenhekou (GRHK) glaciers on the TP from April to May of 2013. The different concentrations of TEs in the surface snow and snow pit samples over the five glaciers show that TEs were influenced both by surrounding environment of glaciers and seasonal variations of atmospheric impurity loading. Comparison of TEs concentrations with data of other sites, elevated concentrations of As, Cu, Mo, Pb and Sb were observed in glaciers of TP, showing significant atmospheric TEs pollution. Enrichment factor(EF) analysis indicates that Rb, V, U, Cr, Ba, Cs, Li, As, Co, Mn, Tl, Sr and Cu mainly originated from crustal dust, while anthropogenic inputs such as nonferrous metals melting, coal combustion and traffic emission made an important contribution to the Mo, Pb and Sb. Evidences from air mass back trajectories show the air masses arrived at QMLK mostly came from the Taklimakan desert, the TEs from the Taklimakan desert and the western TP could be transported to the MK and YZF glaciers . The air masses derived from the western TP and the southwestern TP affected the environment of the XDKMD and GRHK glaciers. Futhermore, the air masses passed through some big cities with developed industry and large population such as Urumqi, Bishkek, Dushanbe and some countries such as Pakistan and India could also bring pollutants to the studied glaciers.

  8. Twentieth century climate change: evidence from small glaciers.

    Science.gov (United States)

    Dyurgerov, M B; Meier, M F

    2000-02-15

    The relation between changes in modern glaciers, not including the ice sheets of Greenland and Antarctica, and their climatic environment is investigated to shed light on paleoglacier evidence of past climate change and for projecting the effects of future climate warming on cold regions of the world. Loss of glacier volume has been more or less continuous since the 19th century, but it is not a simple adjustment to the end of an "anomalous" Little Ice Age. We address the 1961-1997 period, which provides the most observational data on volume changes. These data show trends that are highly variable with time as well as within and between regions; trends in the Arctic are consistent with global averages but are quantitatively smaller. The averaged annual volume loss is 147 mm.yr(-1) in water equivalent, totaling 3.7 x 10(3) km(3) over 37 yr. The time series shows a shift during the mid-1970s, followed by more rapid loss of ice volume and further acceleration in the last decade; this is consistent with climatologic data. Perhaps most significant is an increase in annual accumulation along with an increase in melting; these produce a marked increase in the annual turnover or amplitude. The rise in air temperature suggested by the temperature sensitivities of glaciers in cold regions is somewhat greater than the global average temperature rise derived largely from low altitude gauges, and the warming is accelerating.

  9. Ocean mixing beneath Pine Island Glacier Ice Shelf

    Science.gov (United States)

    Kimura, Satoshi; Dutrieux, Pierre; Jenkins, Adrian; Forryan, Alexander; Naveira Garabato, Alberto; Firing, Yvonne

    2016-04-01

    Ice shelves around Antarctica are vulnerable to increase in ocean-driven melting, with the melt rate depending on ocean temperature and strength of sub-ice-shelf-cavity circulations. We present repeated measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate and thermal variance dissipation rate beneath Pine Island Glacier Ice Shelf, collected by CTD, ADCP and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The turbulence quantities measured by the AUV outside the ice shelf are in good agreement with ship-based measurements. The highest rate of turbulent kinetic energy dissipation is found near the grounding line, while its temporal fluctuation over seabed ridge within the cavity corresponds to the tidal fluctuation predicted in the Pine Island Bay to the west. The highest thermal variance dissipation rate is found when the AUV was 0.5 m away from the ice, and the thermal variance dissipation generally increases with decreasing distance between the AUV and ice.

  10. Comparison on micrometeorology and surface energy fluxes between debris-free and debris-covered glaciers in the southeast Tibetan Plateau

    Science.gov (United States)

    Yang, Wei; Wang, Yongjie

    2017-04-01

    The knowledge of meteorology and energy fluxes on the debris-free and debris-covered glacier is important for understanding how different glaciers behaviors heterogeneous to regional climate change. Based on the observations during 2016 ablation season at the debris-free Parlung No.4 Glacier and the debris-covered 24K Glacier in southeast Tibetan Plateau, a comparative analysis was made to shed light on the micrometeorology and surface energy fluxes and to gain knowledge about the influencing factors controlling melting process at different type glaciers. The meteorological correlations showed that the variables including air temperature, relative humidity and incoming longwave radiation (Lin) display a regionally synchronous pattern, but there are notable differences in precipitation, incoming shortwave radiation (Sin) and wind speed between two glaciers. The most striking is the difference in precipitation, with 5 times larger in the 24K Glacier. The energy fluxes between two glaciers display contrasting pattern due to different surface conditions and monsoonal precipitation. More Sin was absorbed due to lower debris albedo (0.05) In spite of same amount of total Sin and more Lin (W/m2 larger) was supplied from warm and humidity air at the 24K Glacier. However, such excess energy supply was mainly used to warm the debris temperature, leading to the increase of energy output by outgoing longwave radiation and turbulent heat fluxes, rather than glacier melting. These energy outputs are very sensitive to the debris thickness in which is less than 10 cm and the amount of Sin, leading to significant spatial change of underneath ice melting magnitude. At the debris-free surface at AWS of Parlung No.4 Glacier, surface melting is mainly supplied by net shortwave radiation and turbulent sensible heat fluxes (Hse). Comparing with energy fluxes in 2009, the reduced melting energy in 2016 on the debris-free Parlung No.4 Glacier is attributed to the decrease of Sin and Hse by

  11. Reconstructing Climate Change: Not All Glaciers Suitable

    Science.gov (United States)

    Yde, Jacob C.; Paasche, Øyvind

    2010-05-01

    Glaciers are among the most trusted indicators of climate change, not just because they retreat due to the current rise in global temperatures but also because of their central role in reconstructing past climates. Glaciers come in many forms, and their sensitivity to climate change depends partly on the physics governing the individual glacier, implying that a response can be fast or slow, straightforward or complex, which in sum suggests that not all glaciers are equally suitable for reconstructing past and present climate conditions. In particular, surging and debris-covered glaciers may especially yield misleading results (Figure 1).

  12. An estimate of global glacier volume

    Directory of Open Access Journals (Sweden)

    A. Grinsted

    2013-01-01

    Full Text Available I assess the feasibility of using multivariate scaling relationships to estimate glacier volume from glacier inventory data. Scaling laws are calibrated against volume observations optimized for the specific purpose of estimating total global glacier ice volume. I find that adjustments for continentality and elevation range improve skill of area–volume scaling. These scaling relationships are applied to each record in the Randolph Glacier Inventory, which is the first globally complete inventory of glaciers and ice caps. I estimate that the total volume of all glaciers in the world is 0.35 ± 0.07 m sea level equivalent, including ice sheet peripheral glaciers. This is substantially less than a recent state-of-the-art estimate. Area–volume scaling bias issues for large ice masses, and incomplete inventory data are offered as explanations for the difference.

  13. Seasonal variability of the circulation system in a West Greenland tidewater outlet glacier fjord, Godthåbsfjord (64°N)

    DEFF Research Database (Denmark)

    Mortensen, John; Bendtsen, Jørgen; Lennert, Kunuk

    2014-01-01

    Many tidewater outlet glacier fjords surround the coast of Greenland, and their dynamics and circulation are of great importance for understanding the heat transport toward glaciers from the ice sheet. Thus, fjord circulation is a critical aspect for assessing the threat of global sea level rise...... due to melting of the ice sheet. However, very few observational studies describe the seasonal dynamics of fjord circulation. Here we present the first continuous current measurements (April–November) from a deep mooring deployed in a west Greenland tidewater outlet glacier fjord. Four distinct...... circulation phases are identified during the period, and they are related to exchange processes with coastal waters, tidal mixing, and melt processes on the Greenland Ice Sheet. During early summer, warm intermediate water is transported toward the glacier at an average velocity of about 7 cm s−1. In late...

  14. Integrated Optical and SAR Imagery with DEM to Quantify Glacier Water Storage Change in Upper Mekong River Basin

    Science.gov (United States)

    Liu, G. T.; Chen, J. B.; Le, T. S.; Chang, C. P.; Shum, C. K.; Tseng, K. H.

    2015-12-01

    In the past few decades, regional increase in air temperature has accelerated the ice melting in polar, sub-polar, and major land glacial areas. The glaciers in Tibetan Plateau, the largest glaciers outside Polar Regions and the sources of several trans-boundary major rivers, are now showing aggravated terminus retreat and thinning. The variation of freshwater availability is crucial for the economic development in Mainland Southeast Asia, especially in hydroelectric generation and agriculture irrigation. These rives, including the Mekong River, is also subject to upstream-downstream conflict and transboundary issues. In this study, we propose to estimate the remaining glacier water storage in Mekong River basin, and further analyze the impact of glacier retreat on these dams/reservoirs for the next decade. By calculating the Modified Normalized Difference Water Index (MNDWI), the water surface area (WSA) can thus be extracted from optical satellite images. On the other hand, the ice surface area (ISA) can be derived from the Polarimetric Synthetic Aperture Radar (POLSAR) images. With different polarization states of electromagnetic wave reflected by earth surface, POLSAR image can effectively identify glacier/ice from snow. Combined WSA and ISA information with digital elevation model (DEM), the change of freshwater storage in glaciers can be estimated. In the end, the influence on dams/reservoirs in the Mekong River caused by glacier retreat can be forecasted. The result can also be applied to hydrology, water allocation, and economy/agriculture policy determination.

  15. Recent Developments of the GLIMS Glacier Database

    Science.gov (United States)

    Raup, B. H.; Berthier, E.; Bolch, T.; Kargel, J. S.; Paul, F.; Racoviteanu, A.

    2017-12-01

    Earth's glaciers are shrinking almost without exception, leading to changes in water resources, timing of runoff, sea level, and hazard potential. Repeat mapping of glacier outlines, lakes, and glacier topography, along with glacial processes, is critically needed to understand how glaciers will react to a changing climate, and how those changes will impact humans. To understand the impacts and processes behind the observed changes, it is crucial to monitor glaciers through time by mapping their areal extent, snow lines, ice flow velocities, associated water bodies, and thickness changes. The glacier database of the Global Land Ice Measurements from Space (GLIMS) initiative is the only multi-temporal glacier database capable of tracking all these glacier measurements and providing them to the scientific community and broader public.Recent developments in GLIMS include improvements in the database and web applications and new activities in the international GLIMS community. The coverage of the GLIMS database has recently grown geographically and temporally by drawing on the Randolph Glacier Inventory (RGI) and other new data sets. The GLIMS database is globally complete, and approximately one third of glaciers have outlines from more than one time. New tools for visualizing and downloading GLIMS data in a choice of formats and data models have been developed, and a new data model for handling multiple glacier records through time while avoiding double-counting of glacier number or area is nearing completion. A GLIMS workshop was held in Boulder, Colorado this year to facilitate two-way communication with the greater community on future needs.The result of this work is a more complete and accurate glacier data repository that shows both the current state of glaciers on Earth and how they have changed in recent decades. Needs for future scientific and technical developments were identified and prioritized at the GLIMS Workshop, and are reported here.

  16. Microbial diversity on Icelandic glaciers and ice caps

    Directory of Open Access Journals (Sweden)

    Stefanie eLutz

    2015-04-01

    Full Text Available Algae are important primary colonizers of snow and glacial ice, but hitherto little is known about their ecology on Iceland’s glaciers and ice caps. Due do the close proximity of active volcanoes delivering large amounts of ash and dust, they are special ecosystems. This study provides the first investigation of the presence and diversity of microbial communities on all major Icelandic glaciers and ice caps over a three year period. Using high-throughput sequencing of the small subunit ribosomal RNA genes (16S and 18S, we assessed the snow community structure and complemented these analyses with a comprehensive suite of physical-, geo- and biochemical characterizations of the aqueous and solid components contained in snow and ice samples. Our data reveal that a limited number of snow algal taxa (Chloromonas polyptera, Raphidonema sempervirens and two uncultured Chlamydomonadaceae support a rich community comprising of other micro-eukaryotes, bacteria and archaea. Proteobacteria and Bacteroidetes were the dominant bacterial phyla. Archaea were also detected in sites where snow algae dominated and they mainly belong to the Nitrososphaerales, which are known as important ammonia oxidizers. Multivariate analyses indicated no relationships between nutrient data and microbial community structure. However, the aqueous geochemical simulations suggest that the microbial communities were not nutrient limited because of the equilibrium of snow with the nutrient-rich and fast dissolving volcanic ash. Increasing algal secondary carotenoid contents in the last stages of the melt seasons have previously been associated with a decrease in surface albedo, which in turn could potentially have an impact on the melt rates of Icelandic glaciers.

  17. Impacts of debris cover on glaciers: research priorities and relation to glacier-climate interactions on clean-ice glaciers.

    Science.gov (United States)

    Nicholson, L. I.

    2012-04-01

    Debris covered glaciers are a common feature in many high mountain environments. The presence of surficial debris fundamentally alters a number of glacier processes, and consequently the manner in which glaciers respond to climate. Incomplete understanding of these altered processes hampers (a) the use of records of glacier change as a means of unraveling former climate conditions, (b) the production of glacier runoff projections and (c) development of high quality hazard assessments of the future development of debris covered glaciers and associated ice dammed lakes. This presentation summarizes four key ways in which debris cover alters the behaviour of glaciers in ways that are relevant to solving both scientific and more practical problems: (1) surface energy balance and sensitivity to climate (2) ablation gradient of debris covered glaciers and their long profile evolution under changing climate conditions (3) differential ablation and the development of supraglacial ponds (4) sedimentary record of moraine deposition and impacts of this on climatic reconstruction and long term moraine stability The presentation concludes by outlining priority list of research required specifically on debris covered glaciers and how this could be integrated within research programs assessing the response of clean ice glaciers to ongoing climate change.

  18. Glacier area changes in Northern Eurasia

    International Nuclear Information System (INIS)

    Khromova, Tatiana; Nosenko, Gennady; Kutuzov, Stanislav; Muraviev, Anton; Chernova, Ludmila

    2014-01-01

    Glaciers are widely recognized as key indicators of climate change. Recent evidence suggests an acceleration of glacier mass loss in several key mountain regions. Glacier recession implies landscape changes in the glacial zone, the origin of new lakes and activation of natural disaster processes, catastrophic mudflows, ice avalanches, outburst floods, etc. The absence or inadequacy of such information results in financial and human losses. A more comprehensive evaluation of glacier changes is imperative to assess ice contributions to global sea level rise and the future of water resources from glacial basins. One of the urgent steps is a full inventory of all ice bodies and their changes. The first estimation of glacier state and glacier distribution on the territory of the former Soviet Union has been done in the USSR Glacier Inventory (UGI) published in 1965–1982. The UGI is based on topographic maps and air photos and reflects the status of the glaciers in the 1940s–1970s. There is information about 28 884 glaciers with an area of 7830.75 km 2 in the inventory. It covers 25 glacier systems in Northern Eurasia. In the 1980s the UGI has been transformed into digital form as a part of the World Glacier Inventory (WGI). Recent satellite data provide a unique opportunity to look again at these glaciers and to evaluate changes in glacier extent for the second part of the 20th century. About 15 000 glacier outlines for the Caucasus, Polar Urals, Pamir Alay, Tien Shan, Altai, Kamchatka and Russian Arctic have been derived from ASTER and Landsat imagery and can be used for glacier change evaluation. Results of the analysis indicate the steady trend in glacier shrinkage in all mountain regions for the second part of the 20th century. Glacier area loss for the studied regions varies from 13% (Tien Shan) to 22.3% (Polar Urals). The common driver, most likely, is an increase in summer air temperature. There is also a very large variability in the degree of

  19. Using Metaphorical Models for Describing Glaciers

    Science.gov (United States)

    Felzmann, Dirk

    2014-11-01

    To date, there has only been little conceptual change research regarding conceptions about glaciers. This study used the theoretical background of embodied cognition to reconstruct different metaphorical concepts with respect to the structure of a glacier. Applying the Model of Educational Reconstruction, the conceptions of students and scientists regarding glaciers were analysed. Students' conceptions were the result of teaching experiments whereby students received instruction about glaciers and ice ages and were then interviewed about their understandings. Scientists' conceptions were based on analyses of textbooks. Accordingly, four conceptual metaphors regarding the concept of a glacier were reconstructed: a glacier is a body of ice; a glacier is a container; a glacier is a reflexive body and a glacier is a flow. Students and scientists differ with respect to in which context they apply each conceptual metaphor. It was observed, however, that students vacillate among the various conceptual metaphors as they solve tasks. While the subject context of the task activates a specific conceptual metaphor, within the discussion about the solution, the students were able to adapt their conception by changing the conceptual metaphor. Educational strategies for teaching students about glaciers require specific language to activate the appropriate conceptual metaphors and explicit reflection regarding the various conceptual metaphors.

  20. A geophone wireless sensor network for investigating glacier stick-slip motion

    Science.gov (United States)

    Martinez, Kirk; Hart, Jane K.; Basford, Philip J.; Bragg, Graeme M.; Ward, Tyler; Young, David S.

    2017-08-01

    We have developed an innovative passive borehole geophone system, as part of a wireless environmental sensor network to investigate glacier stick-slip motion. The new geophone nodes use an ARM Cortex-M3 processor with a low power design capable of running on battery power while embedded in the ice. Only data from seismic events was stored, held temporarily on a micro-SD card until they were retrieved by systems on the glacier surface which are connected to the internet. The sampling rates, detection and filtering levels were determined from a field trial using a standard commercial passive seismic system. The new system was installed on the Skalafellsjökull glacier in Iceland and provided encouraging results. The results showed that there was a relationship between surface melt water production and seismic event (ice quakes), and these occurred on a pattern related to the glacier surface melt-water controlled velocity changes (stick-slip motion). Three types of seismic events were identified, which were interpreted to reflect a pattern of till deformation (Type A), basal sliding (Type B) and hydraulic transience (Type C) associated with stick-slip motion.

  1. Measurements of light absorbing particulates on the glaciers in the Cordillera Blanca, Peru

    Science.gov (United States)

    Schmitt, C. G.; All, J. D.; Schwarz, J. P.; Arnott, W. P.; Cole, R. J.; Lapham, E.; Celestian, A.

    2014-10-01

    Glaciers in the tropical Andes have been rapidly losing mass since the 1970s. In addition to the documented increase in air temperature, increases in light absorbing particulates deposited on glaciers could be contributing to the observed glacier loss. Here we report on measurements of light absorbing particulates sampled from glaciers during three surveys in the Cordillera Blanca in Peru. During three research expeditions in the dry seasons (May-August) of 2011, 2012 and 2013, two hundred and forty snow samples were collected from fifteen mountain peaks over altitudes ranging from 4800 to nearly 6800 m. Several mountains were sampled each of the three expeditions and some mountains were sampled multiple times during the same expedition. Collected snow samples were melted and filtered in the field then later analyzed using the Light Absorption Heating Method (LAHM), a new technique that measures the ability of particulates on filters to absorb visible light. LAHM results have been calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). As sample filters often contain dust in addition to BC, results are presented in terms of effective Black Carbon (eBC). During the 2013 survey, snow samples were collected and kept frozen for analysis with a Single Particle Soot Photometer (SP2). Calculated eBC mass from the filter analysis and the SP2 refractory Black Carbon (rBC) results were well correlated (r2 = 0.92). These results indicate that a substantial portion of the light absorbing particulates in the more polluted areas were likely BC. The three years of data show that glaciers in the Cordillera Blanca Mountains close to human population centers have substantially higher levels of eBC (as high as 70 ng g-1) than remote glaciers (as low as 2.0 ng g-1 eBC), indicating that population centers can influence local glaciers by sourcing BC.

  2. Measurements of light-absorbing particles on the glaciers in the Cordillera Blanca, Peru

    Science.gov (United States)

    Schmitt, C. G.; All, J. D.; Schwarz, J. P.; Arnott, W. P.; Cole, R. J.; Lapham, E.; Celestian, A.

    2015-02-01

    Glaciers in the tropical Andes have been rapidly losing mass since the 1970s. In addition to the documented increase in temperature, increases in light-absorbing particles deposited on glaciers could be contributing to the observed glacier loss. Here we report on measurements of light-absorbing particles sampled from glaciers during three surveys in the Cordillera Blanca Mountains in Peru. During three research expeditions in the dry seasons (May-August) of 2011, 2012 and 2013, 240 snow samples were collected from 15 mountain peaks over altitudes ranging from 4800 to nearly 6800 m. Several mountains were sampled each of the 3 years and some mountains were sampled multiple times during the same year. Collected snow samples were melted and filtered in the field then later analyzed using the Light Absorption Heating Method (LAHM), a new technique that measures the ability of particles on filters to absorb visible light. LAHM results have been calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). As sample filters often contain dust in addition to BC, results are presented in terms of effective black carbon (eBC). During the 2013 survey, snow samples were collected and kept frozen for analysis with a Single Particle Soot Photometer (SP2). Calculated eBC mass from the LAHM analysis and the SP2 refractory black carbon (rBC) results were well correlated (r2 = 0.92). These results indicate that a substantial portion of the light-absorbing particles in the more polluted regions were likely BC. The 3 years of data show that glaciers in the Cordillera Blanca Mountains close to human population centers have substantially higher levels of eBC (as high as 70 ng g-1) than remote glaciers (as low as 2.0 ng g-1 eBC), indicating that population centers can influence local glaciers by sourcing BC.

  3. Monitoring receding of glaciers and in north-eastern pakistan through geo-informatics techniques

    International Nuclear Information System (INIS)

    Zamir, U.B.

    2012-01-01

    Pakistan is amongst those countries which are blessed from the wide range of natural features. Pakistan is a land of varied topography, ranging from deep sea to top mountains of the world. Northern area of Pakistan carries the most fascinating mountainous series with snow-clad peaks of varying height. Apart from North and South Pole, Northern Pakistan hosts the greatest masses of glaciated ice in the world. The glaciers are of extreme worth in providing fresh water resources; this important resource is a vital source of water but it has been diminished due to anthropogenic interventions which, as a result, have unbalanced the indigenous eco-system. Monitoring of these glaciers is important to cater the water and power need of a country like Pakistan. By using remote sensing and Geographical Information System (GIS) techniques, this paper is an attempt to address the receding of glaciers and snow cover in the extreme north-eastern districts of Pakistan. Monitoring of melting of glaciers due to climate change in the recent decades has been attempted in this study for Ghanche District. This study is also concerned with observing the spatial change in the snow cover and glaciers of Ghanche District. (author)

  4. New high-definition thickness data obtained at tropical glaciers: preliminary results from Antisana volcano (Ecuador) using GPR prospection

    Science.gov (United States)

    Zapata, Camilo; Andrade, Daniel; Córdova, Jorge; Maisincho, Luis; Carvajal, Juan; Calispa, Marlon; Villacís, Marcos

    2014-05-01

    The study of tropical glaciers has been a significant contribution to the understanding of glacier dynamics and climate change. Much of the data and results have been obtained by analyzing plan-view images obtained by air- and space-borne sensors, as well as depth data obtained by diverse methodologies at selected points on the glacier surface. However, the measurement of glacier thicknesses has remained an elusive task in tropical glaciers, often located in rough terrains where the application of geophysical surveys (i.e. seismic surveys) requires logistics sometimes hardly justified by the amount of obtained data. In the case of Ecuador, however, where most glaciers have developed on active volcanoes and represent sources/reservoirs of fresh water, the precise knowledge of such information is fundamental for scientific research but also in order to better assess key aspects for the society. The relatively recent but fast development of the GPR technology has helped to obtain new highdefinition thickness data at Antisana volcano that will be used to: 1) better understand the dynamics and fate of tropical glaciers; 2) better estimate the amount of fresh water stored in the glaciers; 3) better assess the hazards associated with the sudden widespread melting of glaciers during volcanic eruptions. The measurements have been obtained at glaciers 12 and 15 of Antisana volcano, with the help of a commercial GPR equipped with a 25 MHz antenna. A total of 30 transects have been obtained, covering a distance of more than 3 km, from the glacier ablation zone, located at ~ 4600 masl, up to the level of 5200 masl. The preliminary results show a positive correlation between altitude and glacier thickness, with maximum and minimum calculated values reaching up to 80 m, and down to 15 m, respectively. The experience gained at Antisana volcano will be used to prepare a more widespread GPR survey in the glaciers of Cotopaxi volcano, whose implications in terms of volcanic hazards

  5. A database of worldwide glacier thickness observations

    DEFF Research Database (Denmark)

    Gärtner-Roer, I.; Naegeli, K.; Huss, M.

    2014-01-01

    surface observations. However, although thickness has been observed on many glaciers and ice caps around the globe, it has not yet been published in the shape of a readily available database. Here, we present a standardized database of glacier thickness observations compiled by an extensive literature...... review and from airborne data extracted from NASA's Operation IceBridge. This database contains ice thickness observations from roughly 1100 glaciers and ice caps including 550 glacier-wide estimates and 750,000 point observations. A comparison of these observational ice thicknesses with results from...... area- and slope-dependent approaches reveals large deviations both from the observations and between different estimation approaches. For glaciers and ice caps all estimation approaches show a tendency to overestimation. For glaciers the median relative absolute deviation lies around 30% when analyzing...

  6. Surface wave generation due to glacier calving

    Directory of Open Access Journals (Sweden)

    Stanisław R. Massel

    2013-02-01

    Full Text Available Coastal glaciers reach the ocean in a spectacular process called "calving". Immediately after calving, the impulsive surface waves are generated, sometimes of large height. These waves are particularly dangerous for vessels sailing close to the glacier fronts. The paper presents a theoretical model of surface wave generation due to glacier calving. To explain the wave generation process, four case studies of ice blocks falling into water are discussed: a cylindrical ice block of small thickness impacting on water, an ice column sliding into water without impact, a large ice block falling on to water with a pressure impulse, and an ice column becoming detached from the glacier wall and falling on to the sea surface. These case studies encompass simplified, selected modes of the glacier calving, which can be treated in a theoretical way. Example calculations illustrate the predicted time series of surface elevations for each mode of glacier calving.

  7. Individual particles of cryoconite deposited on the mountain glaciers of the Tibetan Plateau: Insights into chemical composition and sources

    Science.gov (United States)

    Dong, Zhiwen; Qin, Dahe; Kang, Shichang; Liu, Yajun; Li, Yang; Huang, Jie; Qin, Xiang

    2016-08-01

    impurities (LAI) together could influence the glacier albedo change and induce ice melting in the mountain glaciers of the Tibetan Plateau. Moreover, a high BC concentration in the south (e.g., YL and ZD) could significantly change the albedo of snow and ice, at a greater rate than dust, causing significant melting of the glaciers under global warming.

  8. The crustal uplift determined at the Jakobshavn glacier (West Greenland) using ATM and GPS data

    DEFF Research Database (Denmark)

    Muresan, Ioana Stefania; Frumosu, Flavia Dalia; Khan, Shfaqat Abbas

    The Greenland ice sheet has experienced record melting in recent years. In order to estimate the ice loss we can make use of the earth’s natural elasticity to weigh the ice. Ice bends down the bedrock so when the ice melts away, the bedrock rises measurably in response. Throughout this abstract we...... present both a predicted and observed crustal upliftfor the Jakobshavn glacier using ATM data (Airborne Topographic Mapper) from NASA ATM flights during 1997, 2005 and 2010 supplemented with data provided from continuous Global Positioning System (GPS), measurements made on bedrock between 2005...

  9. Assessing the status of glaciers in part of the Chandra basin, Himachal Himalaya: A multiparametric approach

    Science.gov (United States)

    Garg, Purushottam Kumar; Shukla, Aparna; Tiwari, Reet Kamal; Jasrotia, Avtar Singh

    2017-05-01

    This study investigates the change in multiple glacier parameters of three valley-type glaciers (Sakchum (SC), Chhota Shigri (CS), and Bara Shigri (BS)) located in Chandra basin, Himachal Himalaya, sharing the same climatic regime, and assesses the control of nonclimatic factors on wholesome glacier response. Multitemporal satellite remote sensing data from Landsat-TM/ETM/OLI (1993-2014), and Terra-ASTER (2002-2014) along with an SRTM digital elevation model were used for extraction of the glacier parameters. Results show that while SC and BS retreated (SC: 10.65 ± 2.52 m/y; BS: 15.51 ± 2.52 m/y) and lost area (SC: 0.49 ± 0.0032 km2, BS: 1.18 ± 0.0032 km2), the CS remained relatively stable (retreat rate: 4.06 ± 2.52 m/y, area loss: 0.19 ± 0.0032 km2) during 1993-2014. However, results of surface ice velocities (SIV) change (SC: 24.41%, CS: 21.60%, and BS: 28.49%) and surface elevation change (SC: - 1.22 m/y, CS: - 0.91 m/y and BS: - 1.21 m/y) suggest a comparable slowing down and surface lowering from 2002 to 2014. Debris cover also varied substantially (SC: 30.25%, CS: 11.96%, BS: 19.61%) on these glaciers. Results reveal that higher retreat/deglaciation of glaciers was associated with higher altitudinal range, slow SIV in lower ablation zones (LAZ), and glacier hypsometry. Debris cover on glaciers was found to be controlled by slope, higher deglaciation rates, higher SIV in the upper ablation zone (UAZ) coupled with lower SIV in LAZ and surface lowering. Glacier SIV was primarily governed by slope gradient, differential surface lowering, and size of accumulation zone (ACZ). The SIV results confirm the presence of stagnant zones in the lower ablations of SC (changing spatial distribution of debris cover, presence of supraglacial lakes, and ice cliffs bordering them. Melting around supraglacial lakes and backwasting of ice cliffs may be the prime reasons behind intense mass loss observed in the stagnant zone of the Bara Shigri glacier, where surface lowering

  10. Modelling Glaciers in the HARMONIE-AROME NWP model

    Directory of Open Access Journals (Sweden)

    R. Mottram

    2017-12-01

    Full Text Available HARMONIE-AROME is a convection-permitting non-hydrostatic model that includes the multi-purpose SURFEX surface model. It is developed for high resolution (1–3 km weather forecasting and applied in a number of regions in Europe and the Mediterranean. A version of HARMONIE-AROME is also under development for regional climate modelling. Here we run HARMONIE-AROME for a domain over Greenland that includes a significant portion of the Greenland ice sheet. The model output reproduces temperature, wind speed and direction and relative humidity over the ice sheet well when compared with the observations from PROMICE automatic weather stations (AWS operated within the model domain on the ice sheet (mean temperature bias 1.31 ± 3.6 K but we identified a much lower bias (−0.16 ± 2.3 K at PROMICE sites on days where melt does not occur at the ice sheet surface and is thus an artefact of the simplified surface scheme over glaciers in the existing HARMONIE-AROME operational set-up. The bias in summer time temperature also affects wind speed and direction as the dominant katabatic winds are caused by the cold ice surface and slope gradient. By setting an upper threshold to the surface temperature of the ice surface within SURFEX we show that the weather forecast error over the Greenland ice sheet can be reduced in summer when glacier ice is exposed. This improvement will facilitate accurate ice melt and run-off computations, important both for ice surface mass budget estimation and for commercial applications such as hydro-power forecasting. Furthermore, the HCLIM regional climate model derived from HARMONIE-AROME will need to accurately account for glacier surface processes in these regions in order to be used to accurately compute the surface mass budget of ice sheets and glaciers, a key goal of regional climate modelling studies in Greenland.

  11. Glacier-derived climate for the Younger Dryas in Europe

    Science.gov (United States)

    Pellitero, Ramon; Rea, Brice R.; Spagnolo, Matteo; Hughes, Philip; Braithwaite, Roger; Renssen, Hans; Ivy-Ochs, Susan; Ribolini, Adriano; Bakke, Jostein; Lukas, Sven

    2016-04-01

    We have reconstructed and calculated the glacier equilibrium line altitudes (ELA) for 120 Younger Dryas palaeoglaciers from Morocco in the south to Svalbard in the north and from Ireland in the west to Turkey in the east. The chronology of these landform were checked and, when derived from cosmogenic dates, these were recalculated based on newer production rates. Frontal moraines/limits for the palaeoglaciers were used to reconstruct palaeoglacier extent by using a GIS tool which implements a discretised solution for the assumption of perfect-plasticity ice rheology for a single flowline and extents this out to a 3D ice surface. From the resulting equilibrium profile, palaeoglaciers palaeo-ELAs were calculated using another GIS tool. Where several glaciers were reconstructed in a region, a single ELA value was generated following the methodology of Osmaston (2005). In order to utilise these ELAs for quantitative palaeo-precipitation reconstructions an independent regional temperature analysis was undertaken. A database of 121 sites was compiled where the temperature was determined from palaeoproxies other than glaciers (e.g. pollen, diatoms, choleoptera, chironimids…) in both terrestrial and offshore environments. These proxy data provides estimates of average annual, summer and winter temperatures. These data were merged and interpolated to generate maps of average temperature for the warmest and coldest months and annual average temperature. From these maps the temperature at the ELA was obtained using a lapse rate of 0.65°C/100m. Using the ELA temperature range and summer maximum in a degree-day model allows determination of the potential melt which can be taken as equivalent to precipitation given the assumption a glacier is in equilibrium with climate. Results show that during the coldest part of the Younger Dryas precipitation was high in the British Isles, the NW of the Iberian Peninsula and the Vosges. There is a general trend for declining precipitation

  12. The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China

    Science.gov (United States)

    Sun, Weijun; Qin, Xiang; Wang, Yetang; Chen, Jizu; Du, Wentao; Zhang, Tong; Huai, Baojuan

    2017-08-01

    To understand how a continental glacier responds to climate change, it is imperative to quantify the surface energy fluxes and identify factors controlling glacier mass balance using surface energy balance (SEB) model. Light absorbing impurities (LAIs) at the glacial surface can greatly decrease surface albedo and increase glacial melt. An automatic weather station was set up and generated a unique 6-year meteorological dataset for the ablation zone of Laohugou Glacier No. 12. Based on these data, the surface energy budget was calculated and an experiment on the glacial melt process was carried out. The effect of reduced albedo on glacial melting was analyzed. Owing to continuous accumulation of LAIs, the ablation zone had been darkening since 2010. The mean value of surface albedo in melt period (June through September) dropped from 0.52 to 0.43, and the minimum of daily mean value was as small as 0.1. From the records of 2010-2015, keeping the clean ice albedo fixed in the range of 0.3-0.4, LAIs caused an increase of +7.1 to +16 W m-2 of net shortwave radiation and an removal of 1101-2663 mm water equivalent. Calculation with the SEB model showed equivalent increases in glacial melt were obtained by increasing air temperature by 1.3 and 3.2 K, respectively.

  13. Retrieving original melt compositions in migmatites

    Science.gov (United States)

    Kriegsman, L. M.; Nyström, A. I.

    2003-04-01

    The final textures and mineral modes of anatectic migmatites are affected by four successive processes: (i) prograde partial melting and small-scale segregation into melt-rich domains and restitic domains; (ii) partial melt extraction; (iii) partial retrograde reactions (back reaction) between in situ crystallizing melt and the restite; (iv) crystallization of remaining melt at the water-saturated solidus, releasing volatiles (Kriegsman, 2001). These processes are investigated using mass balance calculations in the KFMASH chemical system. Starting from a fixed bulk composition, fluid-absent melting reactions are considered along an isobaric heating path, followed by mineral-melt reactions during isobaric cooling (path 1), and uplift (path 2). Variables in the model are the restite fraction X and the melt fraction Y involved in back reaction, the melt fraction Z extracted from the system, and the melt fraction 1-Y-Z crystallized in situ at the water-saturated solidus. Incongruent phases are considered to be part of the restite. To facilitate calculations, mineral and melt compositions are taken to be constant. It is shown that melanosome, leucosome, and mesosome compositions generally do not show linear compositional trends in a closed system. Instead, mesosome, neosome, protolith and melt compositions lie on a hyperplane and form linear trends in any compositional diagram. Several methods are proposed to retrieve the melt composition from neosome and mesosome compositions. Applications to natural examples (dataset of Ashworth, 1976; and our new data from SW Finland) strengthen the migmatite-to-granite connection which may notably be obscured by the back reaction process. References: Kriegsman, L.M., 2001, Lithos 56, 75-96 Ashworth, J.R., 1976. Mineralogical Magazine 40, 661-682

  14. Relative performance of empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps

    Directory of Open Access Journals (Sweden)

    M. Réveillet

    2018-04-01

    Full Text Available This study focuses on simulations of the seasonal and annual surface mass balance (SMB of Saint-Sorlin Glacier (French Alps for the period 1996–2015 using the detailed SURFEX/ISBA-Crocus snowpack model. The model is forced by SAFRAN meteorological reanalysis data, adjusted with automatic weather station (AWS measurements to ensure that simulations of all the energy balance components, in particular turbulent fluxes, are accurately represented with respect to the measured energy balance. Results indicate good model performance for the simulation of summer SMB when using meteorological forcing adjusted with in situ measurements. Model performance however strongly decreases without in situ meteorological measurements. The sensitivity of the model to meteorological forcing indicates a strong sensitivity to wind speed, higher than the sensitivity to ice albedo. Compared to an empirical approach, the model exhibited better performance for simulations of snow and firn melting in the accumulation area and similar performance in the ablation area when forced with meteorological data adjusted with nearby AWS measurements. When such measurements were not available close to the glacier, the empirical model performed better. Our results suggest that simulations of the evolution of future mass balance using an energy balance model require very accurate meteorological data. Given the uncertainties in the temporal evolution of the relevant meteorological variables and glacier surface properties in the future, empirical approaches based on temperature and precipitation could be more appropriate for simulations of glaciers in the future.

  15. Relative performance of empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps)

    Science.gov (United States)

    Réveillet, Marion; Six, Delphine; Vincent, Christian; Rabatel, Antoine; Dumont, Marie; Lafaysse, Matthieu; Morin, Samuel; Vionnet, Vincent; Litt, Maxime

    2018-04-01

    This study focuses on simulations of the seasonal and annual surface mass balance (SMB) of Saint-Sorlin Glacier (French Alps) for the period 1996-2015 using the detailed SURFEX/ISBA-Crocus snowpack model. The model is forced by SAFRAN meteorological reanalysis data, adjusted with automatic weather station (AWS) measurements to ensure that simulations of all the energy balance components, in particular turbulent fluxes, are accurately represented with respect to the measured energy balance. Results indicate good model performance for the simulation of summer SMB when using meteorological forcing adjusted with in situ measurements. Model performance however strongly decreases without in situ meteorological measurements. The sensitivity of the model to meteorological forcing indicates a strong sensitivity to wind speed, higher than the sensitivity to ice albedo. Compared to an empirical approach, the model exhibited better performance for simulations of snow and firn melting in the accumulation area and similar performance in the ablation area when forced with meteorological data adjusted with nearby AWS measurements. When such measurements were not available close to the glacier, the empirical model performed better. Our results suggest that simulations of the evolution of future mass balance using an energy balance model require very accurate meteorological data. Given the uncertainties in the temporal evolution of the relevant meteorological variables and glacier surface properties in the future, empirical approaches based on temperature and precipitation could be more appropriate for simulations of glaciers in the future.

  16. Brief communication: Getting Greenland's glaciers right - a new data set of all official Greenlandic glacier names

    Science.gov (United States)

    Bjørk, A. A.; Kruse, L. M.; Michaelsen, P. B.

    2015-12-01

    Place names in Greenland can be difficult to get right, as they are a mix of Greenlandic, Danish, and other foreign languages. In addition, orthographies have changed over time. With this new data set, we give the researcher working with Greenlandic glaciers the proper tool to find the correct name for glaciers and ice caps in Greenland and to locate glaciers described in the historic literature with the old Greenlandic orthography. The data set contains information on the names of 733 glaciers, 285 originating from the Greenland Ice Sheet (GrIS) and 448 from local glaciers and ice caps (LGICs).

  17. A novel integrated method to describe dust and fine supraglacial debris and their effects on ice albedo: the case study of Forni Glacier, Italian Alps

    Science.gov (United States)

    Azzoni, R. S.; Senese, A.; Zerboni, A.; Maugeri, M.; Smiraglia, C.; Diolaiuti, G. A.

    2014-06-01

    We investigated the characteristics of sparse and fine debris coverage at the glacier melting surface and its relation to ice albedo. In spite of the abundant literature dealing with dust and black carbon deposition on glacier accumulation areas (i.e.: on snow and firn), few studies that describe the distribution and properties of fine and discontinuous debris and black carbon at the melting surface of glaciers are available. Furthermore, guidelines are needed to standardize field samplings and lab analyses thus permitting comparisons among different glaciers. We developed a protocol to (i) sample fine and sparse supraglacial debris and dust, (ii) quantify their surface coverage and the covering rate, (iii) describe composition and sedimentological properties, (iv) measure ice albedo and (v) identify the relationship between ice albedo and fine debris coverage. The procedure was tested on the Forni Glacier surface (northern Italy), in summer 2011, 2012 and 2013, when the fine debris and dust presence had marked variability in space and time (along the glacier tongue and from the beginning to the end of summer) thus influencing ice albedo: in particular the natural logarithm of albedo was found to depend on the percentage of glacier surface covered by debris. Debris and dust analyses indicate generally a local origin (from nesting rockwalls) and the organic content was locally high. Nevertheless the finding of some cenospheres suggests an anthropic contribution to the superficial dust as well. Moreover, the effect of liquid precipitation on ice albedo was not negligible, but short lasting (from 1 to 4 day long), thus indicating that also other processes affect ice albedo and ice melt rates and then some attention has to be spent analysing frequency and duration of summer rainfalls for better describing albedo and melt variability.

  18. Effects of increase glacier discharge on phytoplankton bloom dynamics and pelagic geochemistry in a high Arctic fjord

    KAUST Repository

    Calleja, Maria Ll.

    2017-07-26

    Arctic fjords experience extremely pronounced seasonal variability and spatial heterogeneity associated with changes in ice cover, glacial retreat and the intrusion of continental shelf’s adjacent water masses. Global warming intensifies natural environmental variability on these important systems, yet the regional and global effects of these processes are still poorly understood. In the present study, we examine seasonal and spatial variability in Kongsfjorden, on the western coast of Spitsbergen, Svalbard. We report hydrological, biological, and biogeochemical data collected during spring, summer, and fall 2012. Our results show a strong phytoplankton bloom with the highest chlorophyll a (Chla) levels ever reported in this area, peaking 15.5 µg/L during late May and completely dominated by large diatoms at the inner fjord, that may sustain both pelagic and benthic production under weakly stratified conditions at the glacier front. A progressively stronger stratification of the water column during summer and fall was shaped by the intrusion of warm Atlantic water (T > 3°C and Sal > 34.65) into the fjord at around 100 m depth, and by turbid freshwater plumes (T < 1°C and Sal < 34.65) at the surface due to glacier meltwater input. Biopolymeric carbon fractions and isotopic signatures of the particulate organic material (POM) revealed very fresh and labile material produced during the spring bloom (13C enriched, with values up to -22.7‰ at the highest Chl a peak, and high in carbohydrates and proteins content -up to 167 and 148 µg/L, respectively-), and a clear and strong continental signature of the POM present during late summer and fall (13C depleted, with values averaging -26.5 ‰, and high in lipid content –up to 92 µg/L-) when freshwater melting is accentuated. Our data evidence the importance of combining both physical (i.e. water mass dominance) and geochemical (i.e. characteristics of material released by glacier runoff) data in order to

  19. Changes in glaciers in the Swiss Alps and impact on basin hydrology: current state of the art and future research.

    Science.gov (United States)

    Pellicciotti, F; Carenzo, M; Bordoy, R; Stoffel, M

    2014-09-15

    Switzerland is one of the countries with some of the longest and best glaciological data sets. Its glaciers and their changes in response to climate have been extensively investigated, and the number and quality of related studies are notable. However, a comprehensive review of glacier changes and their impact on the hydrology of glacierised catchments for Switzerland is missing and we use the opportunity provided by the EU-FP7 ACQWA project to review the current state of knowledge about past changes and future projections. We examine the type of models that have been applied to infer glacier evolution and identify knowledge gaps that should be addressed in future research in addition to those indicated in previous publications. Common characteristics in long-term series of projected future glacier runoff are an initial peak followed by a decline, associated with shifts in seasonality, earlier melt onset and reduced summer runoff. However, the quantitative predictions are difficult to compare, as studies differ in terms of model structure, calibration strategies, input data, temporal and spatial resolution as well as future scenarios used for impact studies. We identify two sources of uncertainties among those emerging from recent research, and use simulations over four glaciers to: i) quantify the importance of the correct extrapolation of air temperature, and ii) point at the key role played by debris cover in modulating glacier response. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Greenland iceberg melt variability from high-resolution satellite observations

    Directory of Open Access Journals (Sweden)

    E. M. Enderlin

    2018-02-01

    Full Text Available Iceberg discharge from the Greenland Ice Sheet accounts for up to half of the freshwater flux to surrounding fjords and ocean basins, yet the spatial distribution of iceberg meltwater fluxes is poorly understood. One of the primary limitations for mapping iceberg meltwater fluxes, and changes over time, is the dearth of iceberg submarine melt rate estimates. Here we use a remote sensing approach to estimate submarine melt rates during 2011–2016 for 637 icebergs discharged from seven marine-terminating glaciers fringing the Greenland Ice Sheet. We find that spatial variations in iceberg melt rates generally follow expected patterns based on hydrographic observations, including a decrease in melt rate with latitude and an increase in melt rate with iceberg draft. However, we find no longitudinal variations in melt rates within individual fjords. We do not resolve coherent seasonal to interannual patterns in melt rates across all study sites, though we attribute a 4-fold melt rate increase from March to April 2011 near Jakobshavn Isbræ to fjord circulation changes induced by the seasonal onset of iceberg calving. Overall, our results suggest that remotely sensed iceberg melt rates can be used to characterize spatial and temporal variations in oceanic forcing near often inaccessible marine-terminating glaciers.

  1. How do glacier inventory data aid global glacier assessments and projections?

    Science.gov (United States)

    Hock, R.

    2017-12-01

    Large-scale glacier modeling relies heavily on datasets that are collected by many individuals across the globe, but managed and maintained in a coordinated fashion by international data centers. The Global Terrestrial Network for Glaciers (GTN-G) provides the framework for coordinating and making available a suite of data sets such as the Randolph Glacier Inventory (RGI), the Glacier Thickness Dataset or the World Glacier Inventory (WGI). These datasets have greatly increased our ability to assess global-scale glacier mass changes. These data have also been vital for projecting the glacier mass changes of all mountain glaciers in the world outside the Greenland and Antarctic ice sheet, a total >200,000 glaciers covering an area of more than 700,000 km2. Using forcing from 8 to 15 GCMs and 4 different emission scenarios, global-scale glacier evolution models project multi-model mean net mass losses of all glaciers between 7 cm and 24 cm sea-level equivalent by the end of the 21st century. Projected mass losses vary greatly depending on the choice of the forcing climate and emission scenario. Insufficiently constrained model parameters likely are an important reason for large differences found among these studies even when forced by the same emission scenario, especially on regional scales.

  2. Energy-balance and melt contributions of supraglacial lakes, Langtang Khola, Nepal

    Science.gov (United States)

    Miles, E. S.; Willis, I. C.; Pellicciotti, F.; Steiner, J. F.; Buri, P.; Arnold, N. S.

    2014-12-01

    As Himalayan debris-covered glaciers retreat and thin in response to climate warming, their long, low-gradient tongues generate substantial meltwater which often collects to form surface lakes. Supraglacial lakes on debris covered glaciers present a mechanism of atmosphere-glacier energy transfer that is poorly-studied, and only conceptually included in mass-balance studies. The ponded water can enhance energy transfer as compared to dry debris cover, while also acting as a reservoir of melt-available energy. Supraglacial lakes occur in association with debris-free ice cliffs, another poorly-constrained but critical component of glacier melt. Understanding the role of supraglacial lakes requires precise monitoring of lake volume, estimation of inlet and outlet flows, and consideration of the energy balance across three surfaces: atmosphere-lake, lake-ice, and lake-saturated debris layer. This research progresses previous modeling work on the energy and mass balance of such supraglacial lakes. Lakes were monitored during the monsoon of 2013 on Lirung Glacier in the Langtang Himal of Nepal with pressure transducers and temperature sensors, while UAV-derived DEMs were used to determine lake geometry. Lake albedo was measured to vary between 0.08 and 0.12, and a nearby on-glacier AWS was used to drive the energy balance. Results indicate that the lakes act as a significant recipient of energy, and suggest that lakes are an important part of an active supraglacial hydrologic system during the monsoon. Melt generated by the lake in contact with bare ice is calculated to be 3-5 cm/day, while energy conducted through saturated lake-bottom debris only resulted in 1-2 mm/day melt. The subaqueous melt rates are of similar magnitude to observed ice-cliff melt rates, allowing lake-cliff systems to persist. Energy leaving the lake system through englacial conduits may be the most important contribution to the glacier's mass balance, driving surface evolution to form new ice

  3. The length of the glaciers in the world

    DEFF Research Database (Denmark)

    Machguth, Horst; Huss, M.; Huss, M.

    2014-01-01

    Glacier length is an important measure of glacier geometry but global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present 5 a first global assessment of glacier length using...... a fully automated method based on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for the same area as well as for Alaska, and eventually applied to all ∼ 200000 glaciers around the globe. The evaluation...... highlights accurately calculated glacier length where DEM quality is good (East 10 Greenland) and limited precision on low quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers...

  4. Spatiotemporal variability of Canadian High Arctic glacier surface albedo from MODIS data, 2001–2016

    Directory of Open Access Journals (Sweden)

    C. A. Mortimer

    2018-02-01

    Full Text Available Inter-annual variations and longer-term trends in the annual mass balance of glaciers in Canada's Queen Elizabeth Islands (QEI are largely attributable to changes in summer melt. The largest source of melt energy in the QEI in summer is net shortwave radiation, which is modulated by changes in glacier surface albedo. We used measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS sensors to investigate large-scale spatial patterns, temporal trends, and variability in the summer surface albedo of QEI glaciers from 2001 to 2016. Mean summer black-sky shortwave broadband albedo (BSA decreased at a rate of 0.029±0.025 decade−1 over that period. Larger reductions in BSA occurred in July (−0.050±0.031 decade−1. No change in BSA was observed in either June or August. Most of the decrease in BSA, which was greatest at lower elevations around the margins of the ice masses, occurred between 2007 and 2012, when mean summer BSA was anomalously low. The first principal component of the 16-year record of mean summer BSA was well correlated with the mean summer North Atlantic Oscillation index, except in 2006, 2010, and 2016, when the mean summer BSA appears to have been dominated by the August BSA. During the period 2001–2016, the mean summer land surface temperature (LST over the QEI glaciers and ice caps increased by 0.049±0.038 °C yr−1, and the BSA record was negatively correlated (r: −0.86 with the LST record, indicative of a positive ice-albedo feedback that would increase rates of mass loss from the QEI glaciers.

  5. Spatiotemporal variability of Canadian High Arctic glacier surface albedo from MODIS data, 2001-2016

    Science.gov (United States)

    Mortimer, Colleen A.; Sharp, Martin

    2018-02-01

    Inter-annual variations and longer-term trends in the annual mass balance of glaciers in Canada's Queen Elizabeth Islands (QEI) are largely attributable to changes in summer melt. The largest source of melt energy in the QEI in summer is net shortwave radiation, which is modulated by changes in glacier surface albedo. We used measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to investigate large-scale spatial patterns, temporal trends, and variability in the summer surface albedo of QEI glaciers from 2001 to 2016. Mean summer black-sky shortwave broadband albedo (BSA) decreased at a rate of 0.029±0.025 decade-1 over that period. Larger reductions in BSA occurred in July (-0.050±0.031 decade-1). No change in BSA was observed in either June or August. Most of the decrease in BSA, which was greatest at lower elevations around the margins of the ice masses, occurred between 2007 and 2012, when mean summer BSA was anomalously low. The first principal component of the 16-year record of mean summer BSA was well correlated with the mean summer North Atlantic Oscillation index, except in 2006, 2010, and 2016, when the mean summer BSA appears to have been dominated by the August BSA. During the period 2001-2016, the mean summer land surface temperature (LST) over the QEI glaciers and ice caps increased by 0.049±0.038 °C yr-1, and the BSA record was negatively correlated (r: -0.86) with the LST record, indicative of a positive ice-albedo feedback that would increase rates of mass loss from the QEI glaciers.

  6. The response of glaciers to climate change

    NARCIS (Netherlands)

    Klok, Elisabeth Jantina

    2003-01-01

    The research described in this thesis addresses two aspects of the response of glaciers to climate change. The first aspect deals with the physical processes that govern the interaction between glaciers and climate change and was treated by (1) studying the spatial and temporal variation of the

  7. Microbial biodiversity in glacier-fed streams.

    Science.gov (United States)

    Wilhelm, Linda; Singer, Gabriel A; Fasching, Christina; Battin, Tom J; Besemer, Katharina

    2013-08-01

    While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest α diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest α diversity. Biofilms in the glacier-fed streams had intermediate α diversity and species sorting by local environmental conditions likely shaped their community composition. α diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, β diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams.

  8. The role of turbulent fluxes in the atmospheric boundary layer above a debris-covered glacier in the Himalayas

    Science.gov (United States)

    Steiner, J. F.; Stigter, E.; Litt, M.; Shea, J.; Bierkens, M. F.; Immerzeel, W. W.

    2017-12-01

    Debris-covered glaciers play an important role in the water cycle in high altitude catchments in the Himalaya. The melt dynamics of these glaciers are complex as a result of the debris. A thin debris layer (up to a few cm) may act as a facilitator of melt, whereas a thick layer serves primarily as an insulator. The debris cover itself shows a strong diurnal variation in temperature and humidity resulting in a complex interaction with the atmospheric boundary layer (ABL). Energy balance models are a common way to quantify sub-debris melt, but the importance of turbulent fluxes in this energy balance have so far been poorly investigated. We hypothesize that they may play a substantial role during phases of wetting and drying. In this study, ABL characteristics and surface turbulent fluxes are measured using an automatic weather station including an eddy-correlation (EC) system on the debris-covered Lirung glacier in Nepal over a 10 day period in late 2016, during the transition period from monsoon to the drier post-monsoon. The measurements are combined with surface temperature measurements and thermal UAV flights covering the footprint area of the EC tower to quantify the surface fluxes over a larger area. Our results show that turbulent fluxes do play a substantial role in the energy balance of debris-covered glaciers, and need to be accounted for to accurately simulate glacier melt. The EC tower results are subsequently evaluated against a number of different bulk approaches to quantify sensible and latent heat fluxes and are evaluated against turbulence characteristics. If found accurate enough, these approaches require less advanced measurement set-ups and can be applied on a wider scale.

  9. Seismic Investigation of the Glacier de la Plaine Morte, Switzerland

    Science.gov (United States)

    Laske, Gabi; Lindner, Fabian; Walter, Fabian; Krage, Manuel

    2017-04-01

    Glacier de la Plaine Morte is a plateau glacier along the border between Valais and Berne cantons. It covers a narrow elevation range and is extremely vulnerable to climate change. During snow melt, it feeds three marginal lakes that have experienced sudden subglacial drainage in recent years, thereby causing flooding in the Simme Valley below. Of greatest concern is Lac des Faverges at the southeastern end of the glacier that has drained near the end of July in recent years, with flood levels reaching capacity of flood control systems downstream. The lake levels are carefully monitored but precise prediction has not yet been achieved. In the search for precursory ice fracturing to the lake drainage to improve forecast, four seismic arrays comprised of five short-period borehole seismometers provided by Eidgenössische Technische Hochschule (ETH), Zürich as well as fifteen 3-component geophones from the Geophysical Instrument Pool Potsdam (GIPP) collected continuous seismic data for about seven weeks during the summer of 2016. We present initial results on discharge dynamics as well as changing noise levels and seismicity before, during and after the drainage of Lac des Faverges. Compared to previous recent years, the 2016 drainage of Lac des Faverges occurred unusually late on August 28. With an aperture between 100 and 200 m, the small arrays recorded many hundred ice quakes per day. A majority of the events exhibits clearly dispersed, high-frequency Rayleigh waves at about 10 Hz and higher. A wide distribution of events allows us to study azimuthal anisotropy and its relationship with the orientation of glacial crevasses.

  10. Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall

    DEFF Research Database (Denmark)

    Doyle, Samuel H.; Hubbard, Alun; van de Wal, Roderik S.W.

    2015-01-01

    Intense rainfall events significantly affect Alpine and Alaskan glaciers through enhanced melting, ice-flow acceleration and subglacial sediment erosion, yet their impact on the Greenland ice sheet has not been assessed. Here we present measurements of ice velocity, subglacial water pressure and ...

  11. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Mernild, Sebastian Haugard [Los Alamos National Laboratory; Liston, Glen [COLORADO STATE UNIV.

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  12. The Microseismicity of Glacier Sliding

    Science.gov (United States)

    Walter, Fabian; Röösli, Claudia; Kissling, Edi

    2017-04-01

    Our understanding of glacier and ice sheet basal motion remains incomplete. The past decades have witnessed a shift away from initially proposed hard bed theories towards soft, till-laden beds, which deform and thus participate in basal motion. The theoretical treatment of deformable beds is subject to debate, yet our capability to predict ice sheet flow and ultimately sea level rise is contingent upon correct parameterization of basal motion (Ritz et al., 2015). Both hard and soft bed theories neglect frictional sliding across distinct basal fault planes and elastic deformation in response to sudden dislocation. Over recent years, this view has been repeatedly challenged as more and more studies report seismogenic faulting associated with basal sliding. For instance, large parts of the Whillans Ice Stream at Antarctica's Siple Coast move nearly exclusively during sudden sliding episodes (Wiens et al., 2008). This "stick-slip motion" is difficult to explain with traditional glacier sliding theories but more analogous to earthquake dislocation on tectonic faults. Although the Whillans Ice Stream motion may be an extreme example, there exists evidence for much smaller microseismic stick-slip events beneath the Greenland Ice Sheet and non-polar glaciers (Podolskiy and Walter, 2016). This raises the question how relevant and widespread the stick-slip phenomenon is and if it is necessary to include it into ice sheet models. Here we discuss recent seismic deployments, which focused on detection of stick-slip events beneath the Greenland Ice Sheet and European Alpine Glaciers. For all deployments, a considerable challenge lies in detection of stick-slip seismograms in the presence of a dominant background seismicity associated with surface crevassing. Nevertheless, automatic search algorithms and waveform characteristics provide important insights into temporal variation of stick-slip activity as well as information about fault plane geometry and co-seismic sliding

  13. Glaciers in 21st Century Himalayan Geopolitics

    Science.gov (United States)

    Kargel, J. S.; Wessels, R.; Kieffer, H. H.

    2002-05-01

    Glaciers are ablating rapidly the world over. Nowhere are the rates of retreat and downwasting greater than in the Hindu Kush-Himalaya (HKH) region. It is estimated that over the next century, 40,000 square kilometers of present glacier area in the HKH region will become ice free. Most of this area is in major valleys and the lowest glaciated mountain passes. The existence and characteristics of glaciers have security impacts, and rapidly changing HKH glaciers have broad strategic implications: (1) Glaciers supply much of the fresh water and hydroelectric power in South and Central Asia, and so glaciers are valuable resources. (2) Shared economic interests in water, hydroelectricity, flood hazards, and habitat preservation are a force for common cause and reasoned international relations. (3) Glaciers and their high mountains generally pose a natural barrier tending to isolate people. Historically, they have hindered trade and intercultural exchanges and have protected against aggression. This has further promoted an independent spirit of the region's many ethnic groups. (4) Although glaciers are generally incompatible with human development and habitation, many of the HKH region's glaciers and their mountains have become sanctuaries and transit routes for militants. Siachen Glacier in Kashmir has for 17 years been "the world's highest battlefield," with tens of thousands of troops deployed on both sides of the India/Pakistan line of control. In 1999, that conflict threatened to trigger all-out warfare, and perhaps nuclear warfare. Other recent terrorist and military action has taken place on glaciers in Kyrgyzstan and Tajikistan. As terrorists are forced from easily controlled territories, many may tend to migrate toward the highest ground, where definitive encounters may take place in severe alpine glacial environments. This should be a major concern in Nepali security planning, where an Army offensive is attempting to reign in an increasingly robust and brutal

  14. An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile

    Science.gov (United States)

    Janke, Jason R.; Ng, Sam; Bellisario, Antonio

    2017-11-01

    An inventory of firn fields, glaciers, debris-covered glaciers, and rock glaciers was conducted in the Aconcagua River Basin of the semiarid Andes of central Chile. A total of 916 landforms were identified, of which rock glaciers were the most abundant (669) and occupied the most total area. Glaciers and debris-covered glaciers were less numerous, but were about five times larger in comparison. The total area occupied by glaciers and debris-covered glaciers was roughly equivalent to the total area of rock glaciers. Debris-covered glaciers and rock glaciers were subcategorized into six ice-content classes based on interpretation of surface morphology with high-resolution satellite imagery. Over 50% of rock glaciers fell within a transitional stage; 85% of debris-covered glaciers were either fully covered or buried. Most landforms occupied elevations between 3500 and 4500 m. Glaciers and firn occurred at higher elevations compared to rock glaciers and debris-covered glaciers. Rock glaciers had a greater frequency in the northern part of the study area where arid climate conditions exist. Firn and glaciers were oriented south, debris-covered glaciers west, and rock glaciers southwest. An analysis of water contribution of each landform in the upper Andes of the Aconcagua River Basin was conducted using formulas that associate the size of the landforms to estimates of water stored. Minimum and maximum water storage was calculated based on a range of debris to ice content ratios for debris-covered glaciers and rock glaciers. In the Aconcagua River Basin, rock glaciers accounted for 48 to 64% of the water stored within the landforms analyzed; glaciers accounted for 15 to 25%; debris-covered glaciers were estimated at 15 to 19%; firn fields contained only about 5 to 8% of the water stored. Expansion of agriculture, prolonged drought, and removal of ice-rich landforms for mining have put additional pressure on already scarce water resources. To develop long

  15. Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps

    Directory of Open Access Journals (Sweden)

    B. Di Mauro

    2017-11-01

    Full Text Available The amount of reflected energy by snow and ice plays a fundamental role in their melting processes. Different non-ice materials (carbonaceous particles, mineral dust (MD, microorganisms, algae, etc. can decrease the reflectance of snow and ice promoting the melt. The object of this paper is to assess the capability of field and satellite (EO-1 Hyperion hyperspectral data to characterize the impact of light-absorbing impurities (LAIs on the surface reflectance of ice and snow of the Vadret da Morteratsch, a large valley glacier in the Swiss Alps. The spatial distribution of both narrow-band and broad-band indices derived from Hyperion was analyzed in relation to ice and snow impurities. In situ and laboratory reflectance spectra were acquired to characterize the optical properties of ice and cryoconite samples. The concentrations of elemental carbon (EC, organic carbon (OC and levoglucosan were also determined to characterize the impurities found in cryoconite. Multi-wavelength absorbance spectra were measured to compare the optical properties of cryoconite samples and local moraine sediments. In situ reflectance spectra showed that the presence of impurities reduced ice reflectance in visible wavelengths by 80–90 %. Satellite data also showed the outcropping of dust during the melting season in the upper parts of the glacier, revealing that seasonal input of atmospheric dust can decrease the reflectance also in the accumulation zone of the glacier. The presence of EC and OC in cryoconite samples suggests a relevant role of carbonaceous and organic material in the darkening of the ablation zone. This darkening effect is added to that caused by fine debris from lateral moraines, which is assumed to represent a large fraction of cryoconite. Possible input of anthropogenic activity cannot be excluded and further research is needed to assess the role of human activities in the darkening process of glaciers observed in recent years.

  16. Glacier surface mass balance and freshwater runoff modeling for the entire Andes Cordillera

    Science.gov (United States)

    Mernild, Sebastian H.; Liston, Glen E.; Yde, Jacob C.

    2017-04-01

    Glacier surface mass balance (SMB) observations for the Andes Cordillera are limited and, therefore, estimates of the SMB contribution from South America to sea-level rise are highly uncertain. Here, we simulate meteorological, snow, glacier surface, and hydrological runoff conditions and trends for the Andes Cordillera (1979/80-2013/14), covering the tropical latitudes in the north down to the sub-polar latitudes in the far south, including the Northern Patagonia Ice Field (NPI) and Southern Patagonia Ice Field (SPI). SnowModel - a fully integrated energy balance, blowing-snow distribution, multi-layer snowpack, and runoff routing model - was used to simulate glacier SMBs for the Andes Cordillera. The Randolph Glacier Inventory and NASA Modern-Era Retrospective Analysis for Research and Applications products, downscaled in SnowModel, allowed us to conduct relatively high-resolution simulations. The simulated glacier SMBs were verified against independent directly-observed and satellite gravimetry and altimetry-derived SMB, indicating a good statistical agreement. For glaciers in the Andes Cordillera, the 35-year mean annual SMB was found to be -1.13 m water equivalent. For both NPI and SPI, the mean SMB was positive (where calving is the likely reason for explaining why geodetic estimates are negative). Further, the spatio-temporal freshwater river runoff patterns from individual basins, including their runoff magnitude and change, were simulated. For the Andes Cordillera rivers draining to the Pacific Ocean, 86% of the simulated runoff originated from rain, 12% from snowmelt, and 2% from ice melt, whereas, for example, for Chile, the water-source distribution was 69, 24, and 7%, respectively. Along the Andes Cordillera, the 35-year mean basin outlet-specific runoff (L s-1 km-2) showed a characteristic regional hourglass shape pattern with highest runoff in both Colombia and Ecuador and in Patagonia, and lowest runoff in the Atacama Desert area.

  17. MELTING, a flexible platform to predict the melting temperatures of nucleic acids

    Directory of Open Access Journals (Sweden)

    Dumousseau Marine

    2012-05-01

    Full Text Available Abstract Background Computing accurate nucleic acid melting temperatures has become a crucial step for the efficiency and the optimisation of numerous molecular biology techniques such as in situ hybridization, PCR, antigene targeting, and microarrays. MELTING is a free open source software which computes the enthalpy, entropy and melting temperature of nucleic acids. MELTING 4.2 was able to handle several types of hybridization such as DNA/DNA, RNA/RNA, DNA/RNA and provided corrections to melting temperatures due to the presence of sodium. The program can use either an approximative approach or a more accurate Nearest-Neighbor approach. Results Two new versions of the MELTING software have been released. MELTING 4.3 is a direct update of version 4.2, integrating newly available thermodynamic parameters for inosine, a modified adenine base with an universal base capacity, and incorporates a correction for magnesium. MELTING 5 is a complete reimplementation which allows much greater flexibility and extensibility. It incorporates all the thermodynamic parameters and corrections provided in MELTING 4.x and introduces a large set of thermodynamic formulae and parameters, to facilitate the calculation of melting temperatures for perfectly matching sequences, mismatches, bulge loops, CNG repeats, dangling ends, inosines, locked nucleic acids, 2-hydroxyadenines and azobenzenes. It also includes temperature corrections for monovalent ions (sodium, potassium, Tris, magnesium ions and commonly used denaturing agents such as formamide and DMSO. Conclusions MELTING is a useful and very flexible tool for predicting melting temperatures using approximative formulae or Nearest-Neighbor approaches, where one can select different sets of Nearest-Neighbor parameters, corrections and formulae. Both versions are freely available at http://sourceforge.net/projects/melting/and at http://www.ebi.ac.uk/compneur-srv/melting/under the terms of the GPL license.

  18. Sensitivity of Glaciers and Small Ice Caps to Greehouse Warming

    NARCIS (Netherlands)

    Oerlemans, J.; Fortuin, J.P.F.

    1992-01-01

    Recent field programs on glaciers have supplied information that makes simulation of glacier mass balance with meteorological models meaningful. An estimate of world-wide glacier sensitivity based on a modeling study of 12 selected glaciers situated in widely differing climatic regimes shows that

  19. Evaluating the Impact of Glacier Shrinkage on Water Supply at Volcán Chimborazo, Ecuador

    Science.gov (United States)

    La Frenierre, J.; Mark, B. G.

    2013-12-01

    Glaciers play a critical hydrologic role in mountain watersheds worldwide, and the potential effect of persistent glacier shrinkage on water supply is justly regarded as one of the key climate change impacts that the scientific and development communities must endeavor to understand. The relationship between glaciers and water supply is particularly acute in the tropical Andes, where irrigation is often essential for the sustainability of agricultural livelihoods. In Ecuador, the glaciers of Volcán Chimborazo (6267 m.a.s.l.) are a highly-visible component of the local hydrologic system and irrigators in the communities that surround the mountain are concerned about their potential vulnerability in the face of noticeable recent glacier retreat on the mountain. Here, I present results from an integrated study that quantifies the rate of glacier retreat at Chimborazo since the mid-1980s, estimates the present-day contribution of glacier melt to total discharge in the mountain's most glacierized watershed, and assays the implications of changing hydrologic conditions on water users in the region. Methods employed include direct hydrologic and glaciologic measurements, analysis of hydrologic tracers, remote sensing techniques, and social research activities such as household surveys and focus groups. Over the past quarter-century, increased water stress has been a key driver of shifting livelihood patterns in the agrarian communities below the mountain, with persistent glacier retreat one of multiple biophysical and socio-economic forcing mechanisms. Since 1986, Chimborazo has lost 20.5% of its glacier surface area (0.8%/yr). While station records indicate patterns of climate change consistent with those reported elsewhere in the tropical Andes (temperature increase of 1.1°C/decade; no statistically-significant changes in precipitation since 1985), there is a very strong local perception that surface water sources are diminishing and that rainfall patterns are

  20. Algal communities in cryoconite holes on the Russell glacier, Southwest Greenland

    Science.gov (United States)

    Lamsters, Kristaps; Stivrins, Normunds; Karušs, Jānis; Krievāns, Māris; Rečs, Agnis

    2017-04-01

    The surface of the Greenland Ice Sheet in ablation zone has considerably darkened in the last decades, thus absorbing more solar radiation and accelerating ice melting. Darkening of glacier is made of different impurities that reduce surface albedo. These impurities are represented as cryoconite - combination of dust, soot and microorganisms. While mineral dust composes the greatest part of cryoconite, the black carbon is the most solar radiation absorbing constituent. Microorganisms on the ice are concentrated in cryoconite holes, which have long been of scientific interest, but still remain poorly understood. In order to investigate the microbial communities in cryoconite holes, we collected 12 samples from cryoconite holes at 6 sites located on a 2.5 km long transect line on Russell glacier, Southwest Greenland. The first sampling site was set 3 km from glacier margin at 552 m a.s.l. and the last sampling site was 500 m from the glacier margin at 423 m a.s.l. Depth and diameter of each cryoconite hole, as well as pH, temperature and electrical conductivity was measured in situ on July 29, 2017. During microscopic analysis all microcharcoal (10-100 µm), spheroidal carbonaceous particles (soot), pollen, spores and algae were recorded. Principal Component Analysis reveal two clusters of cryoconite holes (located at 423-465 m a.s.l. and 465-552 m a.s.l.) indicating altitudinal differences. Further, our results show that the biomass of green algae Mesotaeniaceae is correlated with temperature. Meanwhile green algae Chlamydomonadaceae correlates with temperature, microcharcoal and soot particle abundance. Our results show that green algae are dominant type of microorganisms inhabiting cryconite holes on the Russell's glacier at least up to distance of 3 km from ice margin. It is contrary to the previous study of Uetake et al. (2010), who found that cyanobacterial (Oscillatoriaceae) community dominated at 510-635 m altitude of the ablation area of Russell glacier in

  1. The changing impact of snow conditions and refreezing on the mass balance of an idealized Svalbard glacier

    Directory of Open Access Journals (Sweden)

    Ward Van Pelt

    2016-11-01

    Full Text Available Glacier surface melt and runoff depend strongly on seasonal and perennial snow (firn conditions. Not only does the presence of snow and firn directly affect melt rates by reflecting solar radiation, it may also act as a buffer against mass loss by storing melt water in refrozen or liquid form. In Svalbard, ongoing and projected amplified climate change with respect to the global mean change has severe implications for the state of snow and firn and its impact on glacier mass loss. Model experiments with a coupled surface energy balance - firn model were done to investigate the surface mass balance and the changing role of snow and firn conditions for an idealized Svalbard glacier. A climate forcing for the past, present and future (1984-2104 is constructed, based on observational data from Svalbard Airport and a seasonally dependent projection scenario. Results illustrate ongoing and future firn degradation in response to an elevational retreat of the equilibrium line altitude (ELA of 31 m decade−1. The temperate firn zone is found to retreat and expand, while cold ice in the ablation zone warms considerably. In response to pronounced winter warming and an associated increase in winter rainfall, the current prevalence of refreezing during the melt season gradually shifts to the winter season in a future climate. Sensitivity tests reveal that in a present and future climate the density and thermodynamic structure of Svalbard glaciers are heavily influenced by refreezing. Refreezing acts as a net buffer against mass loss. However, the net mass balance change after refreezing is substantially smaller than the amount of refreezing itself, which can be ascribed to melt-enhancing effects after refreezing, which partly offset the primary mass-retaining effect of refreezing.

  2. Imaging spectroscopy to assess the composition of ice surface materials and their impact on glacier mass balance

    Science.gov (United States)

    Naegeli, Kathrin; Huss, Matthias; Damm, Alexander; de Jong, Rogier; Schaepman, Michael; Hoelzle, Martin

    2014-05-01

    The ice-albedo feedback plays a crucial role in various glaciological processes, but especially influences ice melt. Glacier surface albedo is one of the most important variables in the energy balance of snow and ice, but depends in a complicated way on many factors, such as cryoconite concentration, impurities due to mineral dust, soot or organic matter, grain size or ice surface morphology. Our understanding on how these various factors influence glacier albedo is still limited hindering a spatially and temporally explicit parameterization of energy balance models and requiring strongly simplified assumptions on actual albedo values. Over the last two decades, several studies have focused on glacier surface albedo using automatic in-situ weather stations in combination with radiation measurement setups or satellite images. Due to limitations of both approaches in matching either the spatial or the temporal length scale of glacier albedo, still fairly little is known about the state, changes and impact of glacier surface albedo in the Swiss Alps, although there are obvious changes in surface characteristics on most alpine glaciers over the last years. With use of the APEX (Airborne Prism EXperiment) image spectrometer, measurements of reflected radiation were acquired in high spatial and spectral resolution on Glacier de la Plaine Morte, Switzerland, to explicitly analyse the ice surface. In-situ radiometric measurements were acquired with an ASD field spectrometer in parallel to APEX overflights. These data are intended to be used for validation purposes as well as input data for the linear spectral unmixing analysis of the APEX data. Seasonal glacier mass balance is monitored since five years using the direct glaciological method. This contribution presents a first evaluation of the data collected in summer 2013. The obtained in-situ and airborne reflectance measurements were used in combination with a spectral mixture analysis (SMA) approach to assess the

  3. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  4. Velocity measurements and changes in position of Thwaites Glacier/iceberg tongue from aerial photography, Landsat images and NOAA AVHRR data

    Science.gov (United States)

    Ferrigno, Jane G.; Lucchitta, Baerbel K.; Mullinsallison, A. L.; Allen, Robert J.; Gould, W. G.

    1993-01-01

    The Thwaites Glacier/iceberg tongue complex has been a significant feature of the Antarctic coastline for at least 50 years. In 1986, major changes began to occur in this area. Fast ice melted and several icebergs calved from the base of the iceberg tongue and the terminus of Thwaites Glacier. The iceberg tongue rotated to an east-west orientation and drifted westward. Between 1986 and 1992, a total of 140 km of drift has occurred. Remote digital velocity measurements were made on Thwaites Glacier using sequential Landsat images to try to determine if changes in velocity had occurred in conjunction with the changes in ice position. Examination of the morphology of the glacier/iceberg tongue showed no evidence of surge activity.

  5. Glaciers in Patagonia: Controversy and prospects

    Science.gov (United States)

    Kargel, J. S.; Alho, P.; Buytaert, W.; Célleri, R.; Cogley, J. G.; Dussaillant, A.; Guido, Z.; Haeberli, W.; Harrison, S.; Leonard, G.; Maxwell, A.; Meier, C.; Poveda, G.; Reid, B.; Reynolds, J.; Rodríguez, C. A. Portocarrero; Romero, H.; Schneider, J.

    2012-05-01

    Lately, glaciers have been subjects of unceasing controversy. Current debate about planned hydroelectric facilities—a US7- to 10-billion megaproject—in a pristine glacierized area of Patagonia, Chile [Romero Toledo et al., 2009; Vince, 2010], has raised anew the matter of how glaciologists and global change experts can contribute their knowledge to civic debates on important issues. There has been greater respect for science in this controversy than in some previous debates over projects that pertain to glaciers, although valid economic motivations again could trump science and drive a solution to the energy supply problem before the associated safety and environmental problems are understood. The connection between glaciers and climate change—both anthropogenic and natural—is fundamental to glaciology and to glaciers' practical importance for water and hydropower resources, agriculture, tourism, mining, natural hazards, ecosystem conservation, and sea level [Buytaert et al., 2010; Glasser et al., 2011]. The conflict between conservation and development can be sharper in glacierized regions than almost anywhere else. Glaciers occur in spectacular natural landscapes, but they also supply prodigious exploitable meltwater.

  6. Glacier and snow hydrology investigation in the Upper Indus Basin using Synthetic Aperture Radar

    Science.gov (United States)

    Jouvet, G.; Stastny, T.; Oettershagen, P.; Hugentobler, M.; Mantel, T.; Melzer, A.; Weidmann, Y.; Funk, M.; Siegwart, R.; Lund, J.; Forster, R. R.; Burgess, E. W.

    2017-12-01

    The flows of the Indus River are a vital resource for food security, ecosystem services, hydropower and economy for China, India and Pakistan. Glaciers of the Karakoram Mountains are the largest drivers of discharge in the Upper Indus Basin, and combined with snowmelt constitute the majority of runoff. While recently verified in near balance, the glaciers of the Karakoram exhibit substantial variation both spatially and temporally. Complex climatology, coupled with the challenges of field study in this rugged range, illicit notable uncertainties in observation and prediction of glacial status. Satellite-borne radar sensors acquire imagery regardless of cloud cover or time of day, and offer unique insights into physical processes due to their wavelength. Here we utilize Sentinel-1 synthetic aperture radar (SAR) imagery to track transient snow lines on glaciers of the Shigar watershed throughout multiple ablation seasons, and discuss the utility of this information in relation to snow and glacier mass balance. As the Sentinel-1 sensor ascending and descending passes capture morning and evening imagery in this region, diurnal radar variations will also be explored as indicators of melt-refreeze cycles and their correlation with peak runoff.

  7. Glacier loss and hydro-social risks in the Peruvian Andes

    Science.gov (United States)

    Mark, Bryan G.; French, Adam; Baraer, Michel; Carey, Mark; Bury, Jeffrey; Young, Kenneth R.; Polk, Molly H.; Wigmore, Oliver; Lagos, Pablo; Crumley, Ryan; McKenzie, Jeffrey M.; Lautz, Laura

    2017-12-01

    Accelerating glacier recession in tropical highlands and in the Peruvian Andes specifically is a manifestation of global climate change that is influencing the hydrologic cycle and impacting water resources across a range of socio-environmental systems. Despite predictions regarding the negative effects of long-term glacier decline on water availability, many uncertainties remain regarding the timing and variability of hydrologic changes and their impacts. To improve context-specific understandings of the effects of climate change and glacial melt on water resources in the tropical Andes, this article synthesizes results from long-term transdisciplinary research with new findings from two glacierized Peruvian watersheds to develop and apply a multi-level conceptual framework focused on the coupled biophysical and social determinants of water access and hydro-social risks in these settings. The framework identifies several interacting variables-hydrologic transformation, land cover change, perceptions of water availability, water use and infrastructure in local and regional economies, and water rights and governance-to broadly assess how glacier change is embedded with social risks and vulnerability across diverse water uses and sectors. The primary focus is on the Santa River watershed draining the Cordillera Blanca to the Pacific. Additional analysis of hydrologic change and water access in the geographically distinct Shullcas River watershed draining the Huaytapallana massif towards the city of Huancayo further illuminates the heterogeneous character of hydrologic risk and vulnerability in the Andes.

  8. Hydrologic Regime Changes in a High-Latitude Glacierized Watershed under Future Climate Conditions

    Directory of Open Access Journals (Sweden)

    Melissa M. Valentin

    2018-01-01

    Full Text Available A calibrated conceptual glacio-hydrological monthly water balance model (MWBMglacier was used to evaluate future changes in water partitioning in a high-latitude glacierized watershed in Southcentral Alaska under future climate conditions. The MWBMglacier was previously calibrated and evaluated against streamflow measurements, literature values of glacier mass balance change, and satellite-based observations of snow covered area, evapotranspiration, and total water storage. Output from five global climate models representing two future climate scenarios (RCP 4.5 and RCP 8.5 was used with the previously calibrated parameters to drive the MWBMglacier at 2 km spatial resolution. Relative to the historical period 1949–2009, precipitation will increase and air temperature in the mountains will be above freezing for an additional two months per year by mid-century which significantly impacts snow/rain partitioning and the generation of meltwater from snow and glaciers. Analysis of the period 1949–2099 reveals that numerous hydrologic regime shifts already occurred or are projected to occur in the study area including glacier accumulation area, snow covered area, and forest vulnerability. By the end of the century, Copper River discharge is projected to increase by 48%, driven by 21% more precipitation and 53% more glacial melt water (RCP 8.5 relative to the historical period (1949–2009.

  9. Unveiling the climate memory of an Arctic polythermal glacier: a combined radar and thermomechanical modeling approach

    Science.gov (United States)

    Delcourt, C.; Van Liefferinge, B.; Pattyn, F.; Nolan, M.

    2011-12-01

    Based on borehole temperature measurements and radio-echo sounding surveys on McCall Glacier, Alaska (USA) we were able to identify and map the Cold Transition Surface (CTS) marking the limit between cold and warm ice of a polythermal glacier. In the accumulation area, the ice column is observed to be warm throughout, while in the ablation area, the amount of cold ice at the top of the ice column increases downstream, hence lowering the CTS. High englacial temperatures in the accumulation are explained by the latent heat release due to percolating meltwater and precipitation, hence warming the ice column. With increasing atmospheric temperatures and increasing ablation rates, reduction of the perennial snowpack results in surface runoff and ice cooling. Using a transient thermomechanically-coupled higher-order glacier model, the timing of the cooling was determined from which past equilibrium-line altitudes (ELA) were constructed, which are in accord with ELAs measured since the 1950s (IGY). The paper therefore shows that (i) mapping of the CTS allows reconstructing the recent climate history of polythermal glaciers, and (ii) with a warming climate, McCall Glacier tends to cool down in a counterintuitive way.

  10. Origin and transport of sediments in an alpine glaciated catchment (Bossons glacier, France): a quantification combining hydro-sedimentary data, radio-frequency identification of pebbles, cosmogenic nuclides content and probabilistic methods

    International Nuclear Information System (INIS)

    Guillon, Herve

    2016-01-01

    Among the most efficient agents of erosion, glaciers react dynamically to climate change, leading to a significant adjustment of downstream sediment flux. Present-day global warming raises the question regarding the evolution of the sediment load originating from partially glaciated catchment. The detrital export from such environment results from erosion processes operating within distinct geomorphologic domains: supra-glacial rock-walls, ice-covered substratum and the pro-glacial area, downstream from the glacier. The general intent of this doctoral research is therefore to characterize the origin and transport of sediments in the watersheds of two streams draining Bossons glacier (Mont-Blanc massif, France).For this purpose, the components of the sediment flux coming from supra-glacial, sub-glacial and pro-glacial domains are separated and quantified by innovating methods: i. Using the terrestrial cosmogenic nuclides concentrations as evidence of a supra-glacial transport; ii. Combining meteorological data and hydro-sedimentary data acquired at a high time resolution (2 min) and completed by multi-linear models; iii. Estimating sediment flux by source for 7 years and with a probabilistic method; iv. Associating radio-frequency identification of pebbles in the pro-glacial area with a stochastic transport analysis.Through numerical tools, applying the presented methodologies provides erosion rates of the supra-glacial, sub-glacial and pro-glacial domains, and determines the sediment transfer mechanisms within the catchment.Thus in the terminal part of the glacier, 52±14 to 9±4% of the supra-glacial load is transferred to the sub-glacial drainage network. Moreover, its evolution throughout the melt season leads to the export of the winter sediment production during a limited period. Furthermore, the drainage configuration beneath the glacier and its retreat control the remobilization of a long-term sediment stock. These processes explain the contrast between the

  11. Role of glacier runoff in the Heihe Basin

    OpenAIRE

    坂井, 亜規子; 藤田, 耕史; 中尾, 正義; YAO, Tandong

    2005-01-01

    We estimated the fluctuation of precipitation and air temperature from Dunde ice core data since 1606 comparing to meteorological data taken near the July 1st glacier since 1930s. Then, we calculated the discharges from glaciers and glacier-free areaFurthermore, we analyzed the sensitivity of those discharges to meteorological factor. The result revealed that calculated discharge from glacier-free area increased with precipitation. Meanwhile, calculated discharge from glaciers decreased with ...

  12. Temporal dynamics of suspended sediment transport in a glacierized Andean basin

    Science.gov (United States)

    Mao, Luca; Carrillo, Ricardo

    2017-06-01

    Suspended sediment transport can affect water quality and aquatic ecosystems, and its quantification is of the highest importance for river and watershed management. Suspended sediment concentration (SSC) and discharge were measured at two locations in the Estero Morales, a Chilean Andean stream draining a small basin (27 km2) hosting glacierized areas of about 1.8 km2. Approximately half of the suspended sediment yield (470 t year- 1 km- 2) was transported during the snowmelt period and half during glacier melting. The hysteresis patterns between discharge and SSC were calculated for each daily hydrograph and were analysed to shed light on the location and activity of different sediment sources at the basin scale. During snowmelt, an unlimited supply of fine sediments is provided in the lower and middle part of the basin and hysteresis patterns tend to be clockwise as the peaks in SSC precede the peak of discharge in daily hydrographs. Instead, during glacier melting the source of fine sediments is the proglacial area, producing counterclockwise hysteresis. It is suggested that the analysis of hysteretic patterns over time provides a simple concept for interpreting variability of location and activity of sediment sources at the basin scale.

  13. [Solder melting torches].

    Science.gov (United States)

    Cubero Postigo, G

    1988-11-01

    In this study about melting and torchs employed in solder in fixed prosthodontics, it's analysed the accurate melting, adequate quantity, as well as protection of adjacent tissues with an accurate anti-melting. The torch chosen is the oxyacetylene burner, because its greater calorific power.

  14. A grid-based Model for Backwasting at supraglacial Ice Cliffs on a debris-covered Glacier

    Science.gov (United States)

    Buri, P.; Steiner, J. F.; Pellicciotti, F.; Miles, E. S.; Immerzeel, W.

    2014-12-01

    In the Himalaya, debris-covered glaciers cover significant portions of the glacierised area. Their behaviour is not entirely understood, but they seem to experience strong mass losses in direct contradiction with the insulating effect of debris. A characteristic most debris-covered glaciers share is the appearance of cliffs and lakes on their surface. These supraglacial features play a role in surface evolution, dynamics and downwasting of debris-covered glaciers but their actual effects have not been quantified at the glacier scale. Numerous measurements of radiative fluxes at the cliff surface, detailed survey of cliffs geometry and ablation have been conducted on the debris-covered Lirung Glacier, Nepalese Himalayas. We used four 20cm-resolution DEMs obtained from UAV flights to represent the glacier surface to a very detailed degree. As the debris remains stable on slopes up to 30°, ice cliffs show inclinations above this threshold and were clearly represented in the DEMs. Direct measurements and a point-scale cliff-backwasting model have showed that melt patterns over a single cliff are highly variable across and along the ice surface due to non-uniform geometry, varying inclination, aspect and terrain view factors. Variability in observed ablation was large also among cliffs. We therefore developed an energy balance model with a gridded representation of the cliff to understand the melt behaviour at the cliff scale. Previous models assumed the cliff to be a plane with a constant slope and aspect, and extrapolation of melt rates to the glacier scale based on this assumption might be erroneous. Using a grid-based approach allows representation of real inclined areas of the cliff. The detailed surface from the UAV-DEM was taken as initial condition for the model. The model was in close agreement with ablation measurements at numerous stakes located on 3 cliffs. Results show very high variability both along the cliffs' elevation and extension. These cannot be

  15. Feeling the Heat: Supraglacial Lake Changes as Observed via Time-Lapse Photography, Ngozumpa Glacier, Nepal

    Science.gov (United States)

    Horodyskyj, U. N.; Breashears, D.; Bilham, R. G.

    2011-12-01

    Supraglacial lakes are suspected of playing a catalytic role in the current rapid melting rate of temperate glaciers. Our field work on the Ngozumpa glacier, in the Nepalese Himalaya, was targeted to quantify the physics of this process. A field season was conducted in June 2011 to investigate the formation and evolution of these lakes via time-lapse photography. One supraglacial lake in particular was chosen for more intensive study. A pressure transducer recorded lake level changes throughout the field season; probes measured surface water temperature, water temperature at depth, and air temperature; and solar irradiation (incoming and outgoing) was measured with a pair of silicon pyranometers. Depth surveys were conducted, water samples were collected, and melt rates on north and south facing ice walls also were measured with a laser rangefinder during hours of peak insolation. During the course of the field season, 28 cm of overall water rise was measured in the lake. Two major icefall events a week apart contributed to 8 and 6 cm, respectively, rise alone. Surface water and air temperatures increased during this time, along with the amount of solar irradiation reaching the surface of the lake. South-facing ice walls were found to melt faster, but no walls were found to be immune to melt and collapse. Hourly time-lapse photography captured a major icefall in this lake, while another camera captured a larger lake farther upglacier draining more than 3 meters overnight. A third camera, aimed near the terminus, captured a lake changing in color (from milky blue to brown) and doubling in size during the field season. These initial results show substantial change in a short amount of time. Continued time-lapse photography should provide us with an even better record of surface evolution on this climatically sensitive glacier in the Himalaya.

  16. Seasonal speed-up of two outlet glaciers of Austfonna, Svalbard, inferred from continuous GPS measurements

    Directory of Open Access Journals (Sweden)

    T. Dunse

    2012-04-01

    Full Text Available A large part of the ice discharge from ice caps and ice sheets occurs through spatially limited flow units that may operate in a mode of steady flow or cyclic surge behaviour. Changes in the dynamics of distinct flow units play a key role in the mass balance of Austfonna, the largest ice cap on Svalbard. The recent net mass loss of Austfonna was dominated by calving from marine terminating outlet glaciers. Previous ice-surface velocity maps of the ice cap were derived by satellite radar interferometry (InSAR and rely on data acquired in the mid-1990s with limited information concerning the temporal variability. Here, we present continuous Global Positioning System (GPS observations along the central flowlines of two fast flowing outlet glaciers over 2008–2010. The data show prominent summer speed-ups with ice-surface velocities as high as 240% of the pre-summer mean. Acceleration follows the onset of the summer melt period, indicating enhanced basal motion due to input of surface meltwater into the subglacial drainage system. In 2008, multiple velocity peaks coincide with successive melt periods. In 2009, the major melt was of higher amplitude than in 2008. Flow velocities appear unaffected by subsequent melt periods, suggesting a transition towards a hydraulically more efficient drainage system. The observed annual mean velocities of Duvebreen and Basin-3 exceed those from the mid-1990s by factors two and four, respectively, implying increased ice discharge at the calving front. Measured summer velocities up to 2 m d−1 for Basin-3 are close to those of Kronebreen, often referred to as the fastest glacier on Svalbard.

  17. Simple models for the simulation of submarine melt for a Greenland glacial system model

    Directory of Open Access Journals (Sweden)

    J. Beckmann

    2018-01-01

    Full Text Available Two hundred marine-terminating Greenland outlet glaciers deliver more than half of the annually accumulated ice into the ocean and have played an important role in the Greenland ice sheet mass loss observed since the mid-1990s. Submarine melt may play a crucial role in the mass balance and position of the grounding line of these outlet glaciers. As the ocean warms, it is expected that submarine melt will increase, potentially driving outlet glaciers retreat and contributing to sea level rise. Projections of the future contribution of outlet glaciers to sea level rise are hampered by the necessity to use models with extremely high resolution of the order of a few hundred meters. That requirement in not only demanded when modeling outlet glaciers as a stand alone model but also when coupling them with high-resolution 3-D ocean models. In addition, fjord bathymetry data are mostly missing or inaccurate (errors of several hundreds of meters, which questions the benefit of using computationally expensive 3-D models for future predictions. Here we propose an alternative approach built on the use of a computationally efficient simple model of submarine melt based on turbulent plume theory. We show that such a simple model is in reasonable agreement with several available modeling studies. We performed a suite of experiments to analyze sensitivity of these simple models to model parameters and climate characteristics. We found that the computationally cheap plume model demonstrates qualitatively similar behavior as 3-D general circulation models. To match results of the 3-D models in a quantitative manner, a scaling factor of the order of 1 is needed for the plume models. We applied this approach to model submarine melt for six representative Greenland glaciers and found that the application of a line plume can produce submarine melt compatible with observational data. Our results show that the line plume model is more appropriate than the cone plume

  18. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China

    Science.gov (United States)

    In this paper we proposed: (1) an algorithm of glacier melt, sublimation/evaporation, accumulation, mass balance and retreat; (2) a dynamic Hydrological Response Unit approach for incorporating the algorithm into the Soil and Water Assessment Tool (SWAT) model; and (3) simulated the transient glacie...

  19. PILOT STUDIES WITH A PHOTOGRAMMETRIC GLACIER LAKE OUTBURST FLOOD EARLY WARNING SYSTEM

    Directory of Open Access Journals (Sweden)

    H. G. Maas

    2012-07-01

    Full Text Available Glacier Lake Outburst Floods (GLOFs depict an environmental risk with an increasing damage potential in many regions of the world. GLOFs are often caused by glacier margin lakes, which suddenly find a drainage path underneath the bottom of a glacier, which is destabilized and retreating as a consequence of local or global climate changes. In a typical GLOF event, a glacier margin lake may drain completely in 24 hours, causing a large flood wave in the area downstream the glacier. The paper documents some recent GLOF events in the Northern Patagonian Icefield (Chile and presents a terrestrial photogrammetric glacier margin lake monitoring system. The system is based on a camera taking images at regular time intervals. In these images, variations of the water level can be detected by tracking the water-land interface at pre-defined image spots. Due to the drainage mechanism, which is characterized by progressive erosion and melting at the bottom of the glacier, GLOFs are indicated by a progressive water level drop in the lake. Water level changes may be detected with subpixel accuracy by image sequence processing methods. If a 3D model of the lake bottom topography (or at least one height profile through the lake exists, water level changes in monoscopic image sequences may be transformed into volume loss. The basic idea herein is the intersection of a terrain profile with a water level detected in the image and projected into object space. The camera orientation is determined through a GPS-supported photogrammetric network. Camera orientation changes, which may for instance be induced by wind, can be compensated by tracking some fiducial marks in the image. The system has been used in a pilot study at two glacier margin lakes in the Northern Patagonian Icefield. These lakes have a depth of about 80 - 100 meters. The larger one has a length of 5 km and a maximum volume of about 200,000,000 cubic meters. During the pilot study, several GLOF events

  20. Glacial melt content of water use in the tropical Andes

    Science.gov (United States)

    Buytaert, Wouter; Moulds, Simon; Acosta, Luis; De Bièvre, Bert; Olmos, Carlos; Villacis, Marcos; Tovar, Carolina; Verbist, Koen M. J.

    2017-11-01

    Accelerated melting of glaciers is expected to have a negative effect on the water resources of mountain regions and their adjacent lowlands, with tropical mountain regions being among the most vulnerable. In order to quantify those impacts, it is necessary to understand the changing dynamics of glacial melting, but also to map how glacial meltwater contributes to current and future water use, which often occurs at considerable distance downstream of the terminus of the glacier. While the dynamics of tropical glacial melt are increasingly well understood and documented, major uncertainty remains on how the contribution of tropical glacial meltwater propagates through the hydrological system, and hence how it contributes to various types of human water use in downstream regions. Therefore, in this paper we present a detailed regional mapping of current water demand in regions downstream of the major tropical glaciers. We combine these maps with a regional water balance model to determine the dominant spatiotemporal patterns of the contribution of glacial meltwater to human water use at an unprecedented scale and resolution. We find that the number of users relying continuously on water resources with a high (>25%) long-term average contribution from glacial melt is low (391 000 domestic users, 398 km2 of irrigated land, and 11 MW of hydropower production), but this reliance increases sharply during drought conditions (up to 3.92 million domestic users, 2096 km2 of irrigated land, and 732 MW of hydropower production in the driest month of a drought year). A large proportion of domestic and agricultural users are located in rural regions where climate adaptation capacity tends to be low. Therefore, we suggest that adaptation strategies should focus on increasing the natural and artificial water storage and regulation capacity to bridge dry periods.

  1. Himalayan glaciers: understanding contrasting patterns of glacier behavior using multi-temporal satellite imagery

    Science.gov (United States)

    Racoviteanu, A.

    2014-12-01

    High rates of glacier retreat for the last decades are often reported, and believed to be induced by 20th century climate changes. However, regional glacier fluctuations are complex, and depend on a combination of climate and local topography. Furthermore, in ares such as the Hindu-Kush Himalaya, there are concerns about warming, decreasing monsoon precipitation and their impact on local glacier regimes. Currently, the challenge is in understanding the magnitude of feedbacks between large-scale climate forcing and small-scale glacier behavior. Spatio-temporal patterns of glacier distribution are still llimited in some areas of the high Hindu-Kush Himalaya, but multi-temporal satellite imagery has helped fill spatial and temporal gaps in regional glacier parameters in the last decade. Here I present a synopsis of the behavior of glaciers across the Himalaya, following a west to east gradient. In particular, I focus on spatial patterns of glacier parameters in the eastern Himalaya, which I investigate at multi-spatial scales using remote sensing data from declassified Corona, ASTER, Landsat ETM+, Quickbird and Worldview2 sensors. I also present the use of high-resolution imagery, including texture and thermal analysis for mapping glacier features at small scale, which are particularly useful in understanding surface trends of debris-covered glaciers, which are prevalent in the Himalaya. I compare and contrast spatial patterns of glacier area and élévation changes in the monsoon-influenced eastern Himalaya (the Everest region in the Nepal Himalaya and Sikkim in the Indian Himalaya) with other observations from the dry western Indian Himalaya (Ladakh and Lahul-Spiti), both field measurements and remote sensing-based. In the eastern Himalaya, results point to glacier area change of -0.24 % ± 0.08% per year from the 1960's to the 2006's, with a higher rate of retreat in the last decade (-0.43% /yr). Debris-covered glacier tongues show thinning trends of -30.8 m± 39 m

  2. Geomorphological and sedimentological record of accelerated deglaciation of small mountain glacier, Ragnarbreen, Svalbard

    Science.gov (United States)

    Ewertowski, Marek

    2010-05-01

    and formation of the distinct lateral moraines, the debris delivering from the valley sides is limited only to very narrow zone of the glacier (i.e. only to the lateral moraine). 3) Accelerated recession of the ice mouth and limitation in delivery of debris from sides of the valley caused that amount of deposits released in the ice front is small. 4) Increasing amount of water flowing from the glacier was blocked by frontal moraine complex and the ice marginal lake was created. 5) The debris cover on the lateral moraines is relatively thin. In addition, as a consequence of the clean ice surface lowering, slopes of the lateral moraines are very steep. It causes that mass movement processes (especially debris flows) are ubiquitous. Contemporary, lateral moraines are the elements undergoing the most intense transformations. Observations made in the Ragnar marginal zone revealed spatial-temporal changes in distribution of the sediments and landforms. They also add some premises that in the first stage of deglaciation debris flow and other mass wasting processes are most common. In the later phase glaciolacustrine and glaciofluvial deposition also plays important role in transformation of landforms and sediments.

  3. In-situ measurements of light-absorbing impurities in snow of glacier on Mt. Yulong and implications for radiative forcing estimates.

    Science.gov (United States)

    Niu, Hewen; Kang, Shichang; Shi, Xiaofei; Paudyal, Rukumesh; He, Yuanqing; Li, Gang; Wang, Shijin; Pu, Tao; Shi, Xiaoyi

    2017-03-01

    The Tibetan Plateau (TP) or the third polar cryosphere borders geographical hotspots for discharges of black carbon (BC). BC and dust play important roles in climate system and Earth's energy budget, particularly after they are deposited on snow and glacial surfaces. BC and dust are two kinds of main light-absorbing impurities (LAIs) in snow and glaciers. Estimating concentrations and distribution of LAIs in snow and glacier ice in the TP is of great interest because this region is a global hotspot in geophysical research. Various snow samples, including surface aged-snow, superimposed ice and snow meltwater samples were collected from a typical temperate glacier on Mt. Yulong in the snow melt season in 2015. The samples were determined for BC, Organic Carbon (OC) concentrations using an improved thermal/optical reflectance (DRI Model 2001) method and gravimetric method for dust concentrations. Results indicated that the LAIs concentrations were highly elevation-dependent in the study area. Higher contents and probably greater deposition at relative lower elevations (generally snow of glacier gradually increased as snow melting progressed. Evaluations of the relative absorption of BC and dust displayed that the impact of dust on snow albedo and radiative forcing (RF) is substantially larger than BC, particularly when dust contents are higher. This was verified by the absorption factor, which was albedo reduction to be in the range of 2% to nearly 10% during the snow melting season, and the mean snow albedo reduction was 4.63%, hence for BC contents ranging from 281 to 894ngg -1 in snow of a typical temperate glacier on Mt. Yulong, the associated instantaneous RF will be 76.38-146.96Wm -2 . Further research is needed to partition LAIs induced glacial melt, modeling researches in combination with long-term in-situ observations of LAIs in glaciers is also urgent needed in the future work. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Dramatic for Norwegian glaciers in the future

    International Nuclear Information System (INIS)

    Nesje, Atle; Bakke, Jostein; Lie, Oeyvind; Dahl, Svein Olaf

    2006-01-01

    The article presents briefly some results from the research program RegClim. Various climatic aspects are discussed and climatic models are used. 98 % of the Norwegian glaciers may have disappeared before 2100

  5. Rock glaciers, Prealps, Vaud, Switzerland, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The investigated area forms part of the western lobe of the Prealps (Swiss Prealps). The 25 identified fossil rock glaciers are found mainly in the Prealpes medianes...

  6. ROCK GLACIERS IN THE KOLYMA HIGHLAND

    Directory of Open Access Journals (Sweden)

    A. A. Galanin

    2012-01-01

    Full Text Available Based on remote mapping and field studies inGrand Rapids, Tumansky,Hasynsky,Del-Urechen Ridges as well as Dukchinsky and Kilgansky Mountain Massifs there were identified about 1160 landforms which morphologically are similar to the rock glaciers or they develop in close association with them. Besides tongue-shaped cirque rock glaciers originated due to ablation, a large number of lobate-shaped slope-associated rock glaciers were recognized. Significant quantity of such forms are developing within the active neotectonic areas, in zones of seismic-tectonic badland and in association with active earthquakes-controlling faults. Multiplication of regional data on volcanic-ash-chronology, lichenometry, Schmidt Hammer Test, pollen spectra and single radiocarbon data, most of the active rock glaciers were preliminary attributed to the Late Holocene.

  7. Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon.

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Zhang, Qianggong; Guo, Junming; Li, Yang; Schwikowski, Margit; Farinotti, Daniel

    2017-01-12

    Deposited mineral dust and black carbon are known to reduce the albedo of snow and enhance melt. Here we estimate the contribution of anthropogenic black carbon (BC) to snowmelt in glacier accumulation zones of Central Asia based on in-situ measurements and modelling. Source apportionment suggests that more than 94% of the BC is emitted from mostly regional anthropogenic sources while the remaining contribution comes from natural biomass burning. Even though the annual deposition flux of mineral dust can be up to 20 times higher than that of BC, we find that anthropogenic BC causes the majority (60% on average) of snow darkening. This leads to summer snowmelt rate increases of up to 6.3% (7 cm a -1 ) on glaciers in three different mountain environments in Kyrgyzstan, based on albedo reduction and snowmelt models.

  8. Widespread albedo decreasing and induced melting of Himalayan snow and ice in the early 21st century.

    Directory of Open Access Journals (Sweden)

    Jing Ming

    Full Text Available The widely distributed glaciers in the greater Himalayan region have generally experienced rapid shrinkage since the 1850s. As invaluable sources of water and because of their scarcity, these glaciers are extremely important. Beginning in the twenty-first century, new methods have been applied to measure the mass budget of these glaciers. Investigations have shown that the albedo is an important parameter that affects the melting of Himalayan glaciers.The surface albedo based on the Moderate Resolution Imaging Spectroradiometer (MODIS data over the Hindu Kush, Karakoram and Himalaya (HKH glaciers is surveyed in this study for the period 2000-2011. The general albedo trend shows that the glaciers have been darkening since 2000. The most rapid decrease in the surface albedo has occurred in the glacial area above 6000 m, which implies that melting will likely extend to snow accumulation areas. The mass-loss equivalent (MLE of the HKH glacial area caused by surface shortwave radiation absorption is estimated to be 10.4 Gt yr-1, which may contribute to 1.2% of the global sea level rise on annual average (2003-2009.This work probably presents a first scene depicting the albedo variations over the whole HKH glacial area during the period 2000-2011. Most rapidly decreasing in albedo has been detected in the highest area, which deserves to be especially concerned.

  9. Widespread albedo decreasing and induced melting of Himalayan snow and ice in the early 21st century.

    Science.gov (United States)

    Ming, Jing; Wang, Yaqiang; Du, Zhencai; Zhang, Tong; Guo, Wanqin; Xiao, Cunde; Xu, Xiaobin; Ding, Minghu; Zhang, Dongqi; Yang, Wen

    2015-01-01

    The widely distributed glaciers in the greater Himalayan region have generally experienced rapid shrinkage since the 1850s. As invaluable sources of water and because of their scarcity, these glaciers are extremely important. Beginning in the twenty-first century, new methods have been applied to measure the mass budget of these glaciers. Investigations have shown that the albedo is an important parameter that affects the melting of Himalayan glaciers. The surface albedo based on the Moderate Resolution Imaging Spectroradiometer (MODIS) data over the Hindu Kush, Karakoram and Himalaya (HKH) glaciers is surveyed in this study for the period 2000-2011. The general albedo trend shows that the glaciers have been darkening since 2000. The most rapid decrease in the surface albedo has occurred in the glacial area above 6000 m, which implies that melting will likely extend to snow accumulation areas. The mass-loss equivalent (MLE) of the HKH glacial area caused by surface shortwave radiation absorption is estimated to be 10.4 Gt yr-1, which may contribute to 1.2% of the global sea level rise on annual average (2003-2009). This work probably presents a first scene depicting the albedo variations over the whole HKH glacial area during the period 2000-2011. Most rapidly decreasing in albedo has been detected in the highest area, which deserves to be especially concerned.

  10. Radiocarbon ages of insects and plants frozen in the No. 31 Glacier, Suntar-Khayata Range, eastern Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, F., E-mail: nakazawa@nipr.ac.jp [National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Transdisciplinary Research Integration Center, Hulic Kamiyacho Bldg. 2F, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Uchida, M.; Kondo, M. [Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0053 (Japan); Kadota, T. [Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka 237-0061 (Japan); Shirakawa, T. [Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan); Enomoto, H. [National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Fedorov, A.N. [Melnikov Permafrost Institute, SB RAN, Yakutsk 6770110 (Russian Federation); North-Eastern Federal University, Yakutsk 677010 (Russian Federation); Fujisawa, Y. [Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Konstantinov, P.Y. [Melnikov Permafrost Institute, SB RAN, Yakutsk 6770110 (Russian Federation); Kusaka, R. [Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan); Miyairi, M. [Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Ohata, T.; Yabuki, H. [Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka 237-0061 (Japan)

    2015-10-15

    The aim of this study was to estimate the age of glacier ice in the No. 31 Glacier in the Suntar-Khayata Range of eastern Siberia by performing dating of insects thought to be long-legged fly species (Dolichopodidae) as well as plants (species unknown) fragments preserved in the ice. Ice samples containing organisms were collected at depths of 0.4–1.1 m at five points from the middle to lowest parts of the glacier in 2013. The age of an insect collected at the lowest point on the glacier was estimated as 2038 ± 32 yr B.P. Insects collected at higher points had a modern or near-modern radiocarbon age. The age of plant fragments collected at the uppermost and middle points was 1531 ± 44 and 1288 ± 26 yr B.P., respectively, and that of a mixture of plant and insect fragments collected at the lowest point was 9772 ± 42 yr B.P. When comparing specimens collected at the same point, the plant fragments were found to be older than the insects. In 2012–2014 observations, some living insects were found on the glacier, and thus the age of the insects appears to correspond to the age of the ice. On the other hand, the plant fragments might have already aged since detachment from the source plants. This study found an approximately 2000-year gap in the age of the ice between the lowest and higher points. Annual mass balance observations from 2012 to 2014 showed that in recent years, the glacier sometimes had no accumulation area. Therefore, the wide gap in the age of ice may be due to a difference in past melting processes between the lowest and higher points on the glacier.

  11. Development of a Water and Enthalpy Budget-based Glacier mass balance Model (WEB-GM) and its preliminary validation

    Science.gov (United States)

    Ding, Baohong; Yang, Kun; Yang, Wei; He, Xiaobo; Chen, Yingying; Lazhu; Guo, Xiaofeng; Wang, Lei; Wu, Hui; Yao, Tandong

    2017-04-01

    This paper presents a new water and energy budget-based glacier mass balance model. Enthalpy, rather than temperature, is used in the energy balance equations to simplify the computation of the energy transfers through the water phase change and the movement of liquid water in the snow. A new parameterization for albedo estimation and state-of-the-art parameterization schemes for rainfall/snowfall type identification and surface turbulent heat flux calculations are implemented in the model. This model was driven with meteorological data and evaluated using mass balance and turbulent flux data collected during a field experiment implemented in the ablation zone of the Parlung No. 4 Glacier on the Southeast Tibetan Plateau during 2009 and 2015-2016. The evaluation shows that the model can reproduce the observed glacier ablation depth, surface albedo, surface temperature, sensible heat flux, and latent heat flux with high accuracy. Comparing with a traditional energy budget-based glacier mass balance model, this enthalpy-based model shows a superior capacity in simulation accuracy. Therefore, this model can reasonably simulate the energy budget and mass balance of glacier melting in this region and be used as a component of land surface models and hydrological models.

  12. Fuzzy Cognitive Maps for Glacier Hazards Assessment: Application to Predicting the Potential for Glacier Lake Outbursts

    Science.gov (United States)

    Furfaro, R.; Kargel, J. S.; Fink, W.; Bishop, M. P.

    2010-12-01

    Glaciers and ice sheets are among the largest unstable parts of the solid Earth. Generally, glaciers are devoid of resources (other than water), are dangerous, are unstable and no infrastructure is normally built directly on their surfaces. Areas down valley from large alpine glaciers are also commonly unstable due to landslide potential of moraines, debris flows, snow avalanches, outburst floods from glacier lakes, and other dynamical alpine processes; yet there exists much development and human occupation of some disaster-prone areas. Satellite remote sensing can be extremely effective in providing cost-effective and time- critical information. Space-based imagery can be used to monitor glacier outlines and their lakes, including processes such as iceberg calving and debris accumulation, as well as changing thicknesses and flow speeds. Such images can also be used to make preliminary identifications of specific hazardous spots and allows preliminary assessment of possible modes of future disaster occurrence. Autonomous assessment of glacier conditions and their potential for hazards would present a major advance and permit systematized analysis of more data than humans can assess. This technical leap will require the design and implementation of Artificial Intelligence (AI) algorithms specifically designed to mimic glacier experts’ reasoning. Here, we introduce the theory of Fuzzy Cognitive Maps (FCM) as an AI tool for predicting and assessing natural hazards in alpine glacier environments. FCM techniques are employed to represent expert knowledge of glaciers physical processes. A cognitive model embedded in a fuzzy logic framework is constructed via the synergistic interaction between glaciologists and AI experts. To verify the effectiveness of the proposed AI methodology as applied to predicting hazards in glacier environments, we designed and implemented a FCM that addresses the challenging problem of autonomously assessing the Glacier Lake Outburst Flow

  13. Linking glacier annual mass balance and glacier albedo retrieved from MODIS data

    Directory of Open Access Journals (Sweden)

    M. Dumont

    2012-12-01

    Full Text Available Albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODerate Imaging Spectroradiometer (MODIS on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ice are particularly investigated. The methods are tested on the Saint Sorlin Glacier (Grandes Rousses area, French Alps. The accuracy of the retrieved albedo is estimated using both field measurements, at two automatic weather stations located on the glacier, and albedo values derived from terrestrial photographs. For summers 2008 and 2009, the root mean square deviation (RMSD between field measurements and the broadband albedo retrieved from MODIS data at 250 m spatial resolution was found to be 0.052 or about 10% relative error. The RMSD estimated for the MOD10 daily albedo product is about three times higher. One decade (2000–2009 of MODIS data were then processed to create a time series of albedo maps of Saint Sorlin Glacier during the ablation season. The annual mass balance of Saint Sorlin Glacier was compared with the minimum albedo value (average over the whole glacier surface observed with MODIS during the ablation season. A strong linear correlation exists between the two variables. Furthermore, the date when the average albedo of the whole glacier reaches a minimum closely corresponds to the period when the snow line is located at its highest elevation, thus when the snow line is a good indicator of the glacier equilibrium line. This indicates that this strong correlation results from the fact that the minimal average albedo values of the glacier contains considerable information regarding the relative share of areal surfaces between the ablation zone (i.e. ice with generally

  14. Glacier monitoring and glacier-climate interactions in the tropical Andes: A review

    Science.gov (United States)

    Veettil, Bijeesh Kozhikkodan; Wang, Shanshan; Florêncio de Souza, Sergio; Bremer, Ulisses Franz; Simões, Jefferson Cardia

    2017-08-01

    In this review, we summarized the evolution of glacier monitoring in the tropical Andes during the last few decades, particularly after the development of remote sensing and photogrammetry. Advantages and limitations of glacier mapping, applied so far, in Venezuela, Colombia, Ecuador, Peru and Bolivia are discussed in detail. Glacier parameters such as the equilibrium line altitude, snowline and mass balance were given special attention in understanding the complex cryosphere-climate interactions, particularly using remote sensing techniques. Glaciers in the inner and the outer tropics were considered separately based on the precipitation and temperature conditions within a new framework. The applicability of various methods to use glacier records to understand and reconstruct the tropical Andean climate between the Last Glacial Maximum (11,700 years ago) and the present is also explored in this paper. Results from various studies published recently were analyzed and we tried to understand the differences in the magnitudes of glacier responses towards the climatic perturbations in the inner tropics and the outer tropics. Inner tropical glaciers, particularly those in Venezuela and Colombia near the January Intertropical Convergence Zone (ITCZ), are more vulnerable to increase in temperature. Surface energy balance experiments show that outer tropical glaciers respond to precipitation variability very rapidly in comparison with the temperature variability, particularly when moving towards the subtropics. We also analyzed the gradients in glacier response to climate change from the Pacific coast towards the Amazon Basin as well as with the elevation. Based on the current trends synthesised from recent studies, it is hypothesized that the glaciers in the inner tropics and the southern wet outer tropics will disappear first as a response to global warming whereas glaciers in the northern wet outer tropics and dry outer tropics show resistance to warming trends due to

  15. The GLIMS geospatial glacier database: A new tool for studying glacier change

    Science.gov (United States)

    Raup, Bruce; Racoviteanu, Adina; Khalsa, Siri Jodha Singh; Helm, Christopher; Armstrong, Richard; Arnaud, Yves

    2007-03-01

    The Global Land Ice Measurement from Space (GLIMS) project is a cooperative effort of over sixty institutions world-wide with the goal of inventorying a majority of the world's estimated 160 000 glaciers. Each institution (called a Regional Center, or RC) oversees the analysis of satellite imagery for a particular region containing glacier ice. Data received by the GLIMS team at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado are ingested into a spatially-enabled database (PostGIS) and made available via a website featuring an interactive map, and a Web-Mapping Service (WMS). The WMS, an Open Geospatial Consortium (OGC)-compliant web interface, makes GLIMS glacier data available to other data servers. The GLIMS Glacier Database is accessible on the World Wide Web at " http://nsidc.org/glims/". There, users can browse custom maps, display various data layers, query information within the GLIMS database, and download query results in different GIS-compatible formats. Map layers include glacier outlines, footprints of ASTER satellite optical images acquired over glaciers, and Regional Center information. The glacier and ASTER footprint layers may be queried for scalar attribute data, such as analyst name and date of contribution for glacier data, and acquisition time and browse imagery for the ASTER footprint layer. We present an example analysis of change in Cordillera Blanca glaciers, as determined by comparing data in the GLIMS Glacier Database to historical data. Results show marked changes in that system over the last 30 years, but also point out the need for establishing clear protocols for glacier monitoring from remote-sensing data.

  16. A 400-year ice core melt layer record of summertime warming in the Alaska Range

    Science.gov (United States)

    Winski, D.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S. W.; Baum, M.; Raudzens Bailey, A.; Birkel, S. D.; Introne, D.; Handley, M.

    2017-12-01

    Warming in high-elevation regions has socially relevant impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While many terrestrial paleoclimate records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually-resolved temperature records from high elevations. We present a 400-year temperature record based on the melt-layer stratigraphy in two ice cores collected from Mt. Hunter in the Central Alaska Range. The ice core record shows a 60-fold increase in melt frequency and water equivalent melt thickness between the pre-industrial period (before 1850) and present day. We calibrate the melt record to summer temperatures based on local and regional weather station analyses, and find that the increase in melt production represents a summer warming of at least 2° C, exceeding rates of temperature increase at most low elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p<0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby-wave like pattern that induces high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century, and that conditions in the tropical oceans contribute to this warming.

  17. Determination of black carbon and nanoparticles along glaciers in the Spitsbergen (Svalbard) region exploiting a mobile platform

    Science.gov (United States)

    Spolaor, Andrea; Barbaro, Elena; Mazzola, Mauro; Viola, Angelo P.; Lisok, Justyna; Obleitner, Friedrich; Markowicz, Krzysztof M.; Cappelletti, David

    2017-12-01

    experimental design opens new perspectives for future experiments, which may be of relevance for the understanding of black carbon and dry dust deposition on the glacier surface, which may impact the melting of ice and snow. The investigations also contribute to better understanding of the transport and surface exchange processes acting within the atmospheric layer over glacier surface.

  18. Icequakes and ambient noise sources detected by a geophone array at the Kaskawulsh glacier

    Science.gov (United States)

    Aso, N.; Tsai, V. C.; Schoof, C.; Whiteford, A.; Flowers, G. E.

    2015-12-01

    Both sliding and meltwater drainage processes of glaciers are expected to generate seismic signals. The confluence of the North and Central arms of the Kaskawulsh glacier in the Yukon Territory is an especially attractive place to study such phenomena not only because of the confluence but also because a nearby ice-dammed lake fills and drains rapidly every summer. We analyzed geophone data from nine stations at the Kaskawulsh glacier during the summer of 2014 to detect and locate icequakes and ambient noise sources. We first detected icequakes automatically by picking arrivals. Then we located events using differential arrival times between stations obtained precisely by cross-correlations, and also applied a double-difference relocation technique. During the 1-month observation period, we found 183 events that clustered near the medial moraine. More icequakes are observed from midnight to noon, potentially due to lower noise levels. These events are distributed on a dipping plane sub-parallel to the glacier flow direction. The depths below the surface range from 200m on the shallower side to 500m on the deeper side. This structure may correspond to the basal slope of the medial moraine and implies that these icequake signals come from either shear basal sliding or an englacial splay fault. We also determined ambient noise source locations for each 1-hour record sequence using the same process as for the icequakes. We located 31 sequences, among which more sequences were observed in the afternoon, possibly related to melting of the glacier. Most of the ambient noise sequences were located in two vertical clusters, with each cluster potentially corresponding to a crevasse or a moulin. We interpret this ambient noise as being produced by meltwater drainage. In both analyses, we find that inter-station differential arrival times obtained by cross-correlations provide effective information to locate sliding or meltwater drainage processes.

  19. Chemical characteristics of pond waters within the debris area of Lirung Glacier in Nepal Himalaya

    Directory of Open Access Journals (Sweden)

    Nozomu TAKEUCHI

    2007-08-01

    Full Text Available Water samples were analyzed from ponds developed within the debris-covered area of Lirung Glacier (28º 12.9’N, 86º 39.9’E; 4000 m a.s.l. in the Himalayas of Nepal during the pre-monsoon to post-monsoon period of 1996. Major chemical species were classified into three groups based on their relationships relative to the sum of cations: conservative (SiO2, Ca2+, K+, and Alkalinity, semiconservative (Na+, Mg2+, and SO4 2- and non-conservative (NH4 +, NO3 - and Cl-. The dominant processes determining the chemical composition of glacier pond water were sulfide oxidation coupled with carbonate dissolution and chemical weathering of aluminosilicate as indicated by the conservative and semi-conservative species. Calcium and alkalinity appeared as the dominant cation and anion, respectively, among all samples within the basin. Compared to the discharge waters at the outlet of the glacier, most of these pond waters have lower major solutes as well as alkalinity. The availability of fresh reactive minerals at the base of the glacier, coupled with higher temperature in discharge waters than in the ponds, may be the prime factors resulting in higher concentrations of most solutes in the discharge waters than in the ponds. In the ponds, higher concentrations of major solutes as well as alkalinity were observed in the monsoon than the pre-monsoon and post-monsoon seasons, suggesting the role of hydrolysis condition in chemical weathering rates. Ponds within the debris area of Lirung glacier in central Nepal Himalaya are likely to increase in importance if global warming accelerates the rate of glacial melting.

  20. Investigating ice cliff evolution and contribution to glacier mass-balance using a physically-based dynamic model

    Science.gov (United States)

    Buri, Pascal; Miles, Evan; Ragettli, Silvan; Brun, Fanny; Steiner, Jakob; Pellicciotti, Francesca

    2016-04-01

    Supraglacial cliffs are a surface feature typical of debris-covered glaciers, affecting surface evolution, glacier downwasting and mass balance by providing a direct ice-atmosphere interface. As a result, melt rates can be very high and ice cliffs may account for a significant portion of the total glacier mass loss. However, their contribution to glacier mass balance has rarely been quantified through physically-based models. Most cliff energy balance models are point scale models which calculate energy fluxes at individual cliff locations. Results from the only grid based model to date accurately reflect energy fluxes and cliff melt, but modelled backwasting patterns are in some cases unrealistic, as the distribution of melt rates would lead to progressive shallowing and disappearance of cliffs. Based on a unique multitemporal dataset of cliff topography and backwasting obtained from high-resolution terrestrial and aerial Structure-from-Motion analysis on Lirung Glacier in Nepal, it is apparent that cliffs exhibit a range of behaviours but most do not rapidly disappear. The patterns of evolution cannot be explained satisfactorily by atmospheric melt alone, and are moderated by the presence of supraglacial ponds at the base of cliffs and by cliff reburial with debris. Here, we document the distinct patterns of evolution including disappearance, growth and stability. We then use these observations to improve the grid-based energy balance model, implementing periodic updates of the cliff geometry resulting from modelled melt perpendicular to the ice surface. Based on a slope threshold, pixels can be reburied by debris or become debris-free. The effect of ponds are taken into account through enhanced melt rates in horizontal direction on pixels selected based on an algorithm considering distance to the water surface, slope and lake level. We use the dynamic model to first study the evolution of selected cliffs for which accurate, high resolution DEMs are available

  1. Effects of local microclimates on the surface sensible heat flux on a mid-latitude alpine valley glacier using Large-Eddy Simulations

    Science.gov (United States)

    Sauter, Tobias; Galos, Stephan

    2016-04-01

    While the large-scale climate conditions play an important role in shaping the environment in which glaciers exist, the mass and energy balance of each individual glacier are dictated by local conditions. Given the complex mountain topography around alpine glaciers, it is not trivial to find a direct link between the large-scale atmospheric motions and the local-scale weather conditions at an individual glacier. Non-local dynamic effects due to the surrounding complex topography can significantly modify the spatial variability of exchange processes, either by small scale circulations or episodic entrainment of heat and momentum by burst events. Motivated by the fact that distributed glacier models strongly rely on the quality of high resolution forcing data to adequately represent the glacier wide ablation and accumulation processes, the present study investigates (i) whether non-local topographic effects have a significant impact on the spatial distribution of turbulent sensible heat fluxes (local microclimates) over alpine glaciers, and (ii) how much variability is smoothed out when using linearly interpolated fields together with the commonly used bulk approach. To answer these questions, we perform highly resolved and properly designed case experiments by Large-Eddy Simulations with real topography to determine the impact of topographic flow features on the spatial variability of the surface sensible heat flux and compare the fields with those derived with the bulk approach. The analysis shows that there is a significant spatial variability of the mean fluxes with values ranging from -10 Wm-2 to -120 Wm-2. Since the sensible heat flux can make up to 40% of the total melting on mid-latitude alpine valley glaciers, the heterogeneity of the fluxes can substantially dictate the local melting rates. When estimating the glacier-wide surface heat fluxes on the basis of point-measurements and the bulk approach, a considerable amount of spatial information is lost. All

  2. Under the glacier, the groundwater - the case of Skálafell area, Iceland

    Science.gov (United States)

    Vincent, Aude; Hart, Jane

    2017-04-01

    The research addressing glaciers evolution under climate change is well developed, and is now looking not only at their mass balance, but also at the associated subsurface hydrology and downstream hydrology. However, the groundwater component is rarely considered, even though it will be required to forecast the evolution of water resources and of water linked hazards under climate change. The few available studies demonstrate the existence of sub-or pro-glacial aquifers. Some of them suggest strong coupling between rivers and the aquifer, observe the flooding due to water table rising following enhanced glacier melting, or expect stronger recharge in the future due to glacier melting. The present study is the first step of a wider project, GlacAq, aiming at filling this knowledge gap, by characterizing the particular hydrogeology encountered under and downstream of glaciers of alpine type, i.e. sub-, pro- and periglacial hydrogeology, and its sensibility to climate change, in order to provide operational management directions. Skálafell glacier area (Iceland) has been chosen as it has already been followed for climatic, glaciological, and surface hydrology data (Hart et al. (2015), Young et al. (2015)). The present work will use those data, as well as topographic and surface data from the National Land Survey of Iceland, and geological data, to run a comprehensive numerical modelling. The work conducted on the Skálafell site will lead both to the achievement of an operational understanding of a poorly known underground system, and to the anticipation of its hydrodynamic response to climate change. The foreseen mechanisms include an enhanced sub-glacial aquifer recharge, intense surface water bodies-aquifer exchanges, and the aquifer discharge either through springs, or to an offshore system. Those offshore stocks are being increasingly recognised, but their origins are still only guessed at. Skálafell site allows the exploration of the potential role of the

  3. Using marine sediment archives to reconstruct past outlet glacier variability

    DEFF Research Database (Denmark)

    Andresen, Camilla Snowman; Straneo, Fiamma; Ribergaard, Mads

    2013-01-01

    Ice-rafted debris in fjord sediment cores provides information about outlet glacier activity beyond the instrumental time period. It tells us that the Helheim Glacier, Greenland’s third most productive glacier, responds rapidly to short-term (3 to 10 years) climate changes.......Ice-rafted debris in fjord sediment cores provides information about outlet glacier activity beyond the instrumental time period. It tells us that the Helheim Glacier, Greenland’s third most productive glacier, responds rapidly to short-term (3 to 10 years) climate changes....

  4. Meteorological controls on snow and ice ablation for two contrasting months on Glacier de Saint-Sorlin, France

    OpenAIRE

    Six, D.; Wagnon, Patrick; Sicart, Jean-Emmanuel; Vincent, C.

    2009-01-01

    The influence of meteorological variables on snow/ice melting has been analyzed for two very contrasting months, in summer 2006, on Glacier de Saint-Sorlin, French Alps. July 2006 was the warmest July since 1950, and August 2006 was the coldest August since 1979. The total energy available for melting was just over half as much in August as in July, due to a sharp decrease in net shortwave radiation and in turbulent flux. This decrease of net shortwave radiation was mainly controlled by a str...

  5. ICESat laser altimetry over small mountain glaciers

    Directory of Open Access Journals (Sweden)

    D. Treichler

    2016-09-01

    Full Text Available Using sparsely glaciated southern Norway as a case study, we assess the potential and limitations of ICESat laser altimetry for analysing regional glacier elevation change in rough mountain terrain. Differences between ICESat GLAS elevations and reference elevation data are plotted over time to derive a glacier surface elevation trend for the ICESat acquisition period 2003–2008. We find spatially varying biases between ICESat and three tested digital elevation models (DEMs: the Norwegian national DEM, SRTM DEM, and a high-resolution lidar DEM. For regional glacier elevation change, the spatial inconsistency of reference DEMs – a result of spatio-temporal merging – has the potential to significantly affect or dilute trends. Elevation uncertainties of all three tested DEMs exceed ICESat elevation uncertainty by an order of magnitude, and are thus limiting the accuracy of the method, rather than ICESat uncertainty. ICESat matches glacier size distribution of the study area well and measures small ice patches not commonly monitored in situ. The sample is large enough for spatial and thematic subsetting. Vertical offsets to ICESat elevations vary for different glaciers in southern Norway due to spatially inconsistent reference DEM age. We introduce a per-glacier correction that removes these spatially varying offsets, and considerably increases trend significance. Only after application of this correction do individual campaigns fit observed in situ glacier mass balance. Our correction also has the potential to improve glacier trend significance for other causes of spatially varying vertical offsets, for instance due to radar penetration into ice and snow for the SRTM DEM or as a consequence of mosaicking and merging that is common for national or global DEMs. After correction of reference elevation bias, we find that ICESat provides a robust and realistic estimate of a moderately negative glacier mass balance of around −0.36 ± 0.07

  6. Tracking seasonal subglacial drainage evolution of alpine glaciers using radiogenic Nd and Sr isotope systematics: Lemon Creek Glacier, Alaska

    Science.gov (United States)

    Clinger, A. E.; Aciego, S.; Stevenson, E. I.; Arendt, C. A.

    2014-12-01

    The transport pathways of water beneath a glacier are subject to change as melt seasons progress due to variability in the balance between basal water pressure and water flux. Subglacial hydrology has been well studied, but the understanding of spatial distribution is less well constrained. Whereas radiogenic isotopic tracers have been traditionally used as proxies to track spatial variability and weathering rates in fluvial and riverine systems, these techniques have yet to be applied extensively to the subglacial environment and may help resolve ambiguity in subglacial hydrology. Research has shown the 143Nd/144Nd values can reflect variation in source provenance processes due to variations in the age of the continental crust. Correlating the 143Nd/144Nd with other radiogenic isotope systematics such as strontium (87Sr/86Sr) provides important constraints on the role of congruent and incongruent weathering processes. Our study presents the application of Nd and Sr systematics using isotopic ratios to the suspended load of subglacial meltwater collected over a single melt season at Lemon Creek Glacier, USA (LCG). The time-series data show an average ɛNd ~ -6.83, indicating a young bedrock (~60 MYA). Isotopic variation helps track the seasonal expansion of the subglacial meltwater channels and subsequent return to early season conditions due to the parabolic trend towards less radiogenic Nd in June and towards more radiogenic Nd beginning in mid-August. However, the high variability in July and early August may reflect a mixture of source as the channels diverge and derive sediment from differently aged lithologies. We find a poor correlation between 143Nd/144Nd and 87Sr/86Sr (R2= 0.38) along with a slight trend towards more radiogenic 87Sr/86Sr values with time ((R2= 0.49). This may indicate that, even as the residence time decreases over the melt season, the LCG subglacial system is relatively stable and that the bedrock is congruently weathered. Our study

  7. Impacts of glacier shrinkage on water resources of La Paz city, Bolivia (16°S) over the last four decades

    Science.gov (United States)

    Soruco, Alvaro; Vincent, Christian; Rabatel, Antoine; Francou, Bernard; Thibert, Emmanuel; Sicart, Jean-Emmanuel; Condom, Thomas

    2014-05-01

    Under tropical conditions, water discharge from glaciers is crucial for water resources in the dry season, as it is the case for La Paz, Bolivia (16°S). In the current study, the glacier water supply of La Paz city has been assessed at annual and seasonal time-scale for the first time thanks to the mass balance analysis of 70 glaciers located within the drainage basins of La Paz between 1963 and 2006. The ice melting has contributed to about 15% of the water resources of the city at an annual scale, 14% in the humid season and 27% in the dry season. Despite the loss of about the half of the glaciers areas during this period, the runoff at La Paz did not change significantly. It reveals that ice melting rise compensated the surface areas decrease. Contrary, assuming that glaciers disappear in the future and precipitation does not change in the catchment areas, the runoff should diminish by about 12% at annual scale, 9% during the humid season and 24% during the dry season.

  8. An Intelligent Pinger Network for Solid Glacier Environments

    Science.gov (United States)

    Schönitz, S.; Reuter, S.; Henke, C.; Jeschke, S.; Ewert, D.; Eliseev, D.; Heinen, D.; Linder, P.; Scholz, F.; Weinstock, L.; Wickmann, S.; Wiebusch, C.; Zierke, S.

    2016-12-01

    This talk presents a novel approach for an intelligent, agent-based pinger network in an extraterrestrial glacier environment. Because of recent findings of the Cassini spacecraft, a mission to Saturn's moon Enceladus is planned in order search for extraterrestrial life within the ocean beneath Enceladus' ice crust. Therefore, a maneuverable melting probe, the EnEx probe, was developed to melt into Enceladus' ice and take liquid samples from water-filled crevasses. Hence, the probe collecting the samples has to be able to navigate in ice which is a hard problem, because neither visual nor gravitational methods can be used. To enhance the navigability of the probe, a network of autonomous pinger units (APU) is in development that is able to extract a map of the ice environment via ultrasonic soundwaves. A network of these APUs will be deployed on the surface of Enceladus, melt into the ice and form a network to help guide the probe safely to its destination. The APU network is able to form itself fully autonomously and to compensate system failures of individual APUs. The agents controlling the single APU are realized by rule-based expert systems implemented in CLIPS. The rule-based expert system evaluates available information of the environment, decides for actions to take to achieve the desired goal (e.g. a specific network topology), and executes and monitors such actions. In general, it encodes certain situations that are evaluated whenever an APU is currently idle, and then decides for a next action to take. It bases this decision on its internal world model that is shared with the other APUs. The optimal network topology that defines each agents position is iteratively determined by mixed-integer nonlinear programming. Extensive simulations studies show that the proposed agent design enables the APUs to form a robust network topology that is suited to create a reliable 3D map of the ice environment.

  9. Estimation of Sub Hourly Glacier Albedo Values Using Artificial Intelligence Techniques

    Science.gov (United States)

    Moya Quiroga, Vladimir; Mano, Akira; Asaoka, Yoshihiro; Udo, Keiko; Kure, Shuichi; Mendoza, Javier

    2013-04-01

    Glaciers are the most important fresh water reservoirs storing about 67% of total fresh water. Unfortunately, they are retreating and some small glaciers have already disappeared. Thus, snow glacier melt (SGM) estimation plays an important role in water resources management. Whether SGM is estimated by complete energy balance or a simplified method, albedo is an important data present in most of the methods. However, this is a variable value depending on the ground surface and local conditions. The present research presents a new approach for estimating sub hourly albedo values using different artificial intelligence techniques such as artificial neural networks and decision trees along with measured and easy to obtain data. . The models were developed using measured data from the Zongo-Ore station located in the Bolivian tropical glacier Zongo (68°10' W, 16°15' S). This station automatically records every 30 minutes several meteorological parameters such as incoming short wave radiation, outgoing short wave radiation, temperature or relative humidity. The ANN model used was the Multi Layer Perceptron, while the decision tree used was the M5 model. Both models were trained using the WEKA software and validated using the cross validation method. After analysing the model performances, it was concluded that the decision tree models have a better performance. The model with the best performance was then validated with measured data from the Equatorian tropical glacier Antizana (78°09'W, 0°28'S). The model predicts the sub hourly albedo with an overall mean absolute error of 0.103. The highest errors occur for albedo measured values higher than 0.9. Considering that this is an extreme value coincident with low measured values of incoming short wave radiation, it is reasonable to assume that such values include errors due to censored data. Assuming a maximum albedo of 0.9 improved the accuracy of the model reducing the MAE to less than 0.1. Considering that the

  10. What color should glacier algae be? An ecological role for red carbon in the cryosphere.

    Science.gov (United States)

    Dial, Roman J; Ganey, Gerard Q; Skiles, S McKenzie

    2018-03-01

    Red-colored secondary pigments in glacier algae play an adaptive role in melting snow and ice. We advance this hypothesis using a model of color-based absorption of irradiance, an experiment with colored particles in snow, and the natural history of glacier algae. Carotenoids and phenols-astaxanthin in snow-algae and purpurogallin in ice-algae-shield photosynthetic apparatus by absorbing overabundant visible wavelengths, then dissipating the excess radiant energy as heat. This heat melts proximal ice crystals, providing liquid-water in a 0°C environment and freeing up nutrients bound in frozen water. We show that purple-colored particles transfer 87%-89% of solar energy absorbed by black particles. However, red-colored particles transfer nearly as much (85%-87%) by absorbing peak solar wavelengths and reflecting the visible wavelengths most absorbed by nearby ice and snow crystals; this latter process may reduce potential cellular overheating when snow insulates cells. Blue and green particles transfer only 80%-82% of black particle absorption. In the experiment, red-colored particles melted 87% as much snow as black particles, while blue particles melted 77%. Green-colored snow-algae naturally occupy saturated snow where water is non-limiting; red-colored snow-algae occupy drier, water-limited snow. In addition to increasing melt, we suggest that esterified astaxanthin in snow-alga cells increases hydrophobicity to remain surficial. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Changing Precipitation Patterns or Waning Glaciers? Identifying Water Supply Vulnerabilities to Climate Change in the Bolivian Andes

    Science.gov (United States)

    Guido, Z. S.; McIntosh, J. C.; Papuga, S. A.

    2010-12-01

    The Bolivian Andes have become an iconic example for the impacts of climate change. Glaciers are rapidly melting and some have already completely disappeared. More than 75 percent of the water consumed by 2 million people living on the flanks of the Bolivian Andes comes from mountains and it is often cited that the dwindling ice threatens the water supply of the expanding and destitute population living in the twin cities of La Paz and El Alto. However, the wet and the warm seasons and the cold and dry seasons coincide, causing high precipitation and ice melt—and therefore high streamflows—to occur only in the austral summer (October-March); during the austral winter, cold conditions limit glacier melt. This suggests that reductions in the water supply could be influenced more by changing precipitation amounts than continued glacial mass-wasting. We hypothesize that precipitation is the principal component of groundwater recharge for the aquifers at the base of the central Cordillera Real. Oxygen and hydrogen isotopes from rivers partially fed by glaciers, groundwater, and glacial melt water can help determine the relative contribution of precipitation and glacial melt to important water supplies. During the dry season in August 2010, we sampled 23 sites that follow the flow path of water in the Condiriri watershed, beginning in the glacial headwaters and ending several kilometers upriver from Lake Titicaca. We collected five samples at the toe of the Pequeño Alpamayo glacier and four samples from three tributary rivers that drain glaciated headwaters, which include meltwater from the Pequeño Alpamayo glacier. W also collected 14 water samples from shallow and deep wells in rural communities within 40 kilometers of the glaciers. If the isotopic values of groundwater are similar to rain values, as we suspect, precipitation is likely the largest contributor to groundwater resources in the region and will suggest that changing precipitation patterns present the

  12. Using a semi-distributed physically-based hydrological model to explain diurnal to decadal scale ice velocity variations on Franz Josef Glacier (Ka Roimata o Hine Hukatere), New Zealand

    Science.gov (United States)

    Willis, I. C.; Anderson, B. M.; Banwell, A. F.; Goodsell, B.; Owens, I. F.; Mackintosh, A. N.; Lawson, W.

    2011-12-01

    Franz Josef Glacier provides a rare opportunity to observe the dynamics of a fast-flowing, maritime glacier that differs significantly from many 'typical' alpine glaciers. In particular, Franz Josef Glacier tongue has limited ranges in both diurnal and seasonal temperature, significant volumes of melt and rainwater present year-round, and has been through a recent advance/retreat cycle. Previous studies indicate these factors have a significant influence on surface motion. This paper presents surface velocity measurements made over a ten year period between 2000 and 2010 at a variety of resolutions, notably hourly, daily, weekly, monthly, and yearly. A distributed degree-day based mass balance model is used to calculate spatial and temporal variations in snow / ice melt and rainfall across the glacier each day of the decade and these are used as input to a semi-distributed physically based model representing the englacial / subglacial drainage system. Key outputs are spatial and temporal variations in subglacial water pressure and discharge. Because the glacier is relatively thin and steep, subglacial conduits operate at atmospheric pressure over most of the glacier's length for most of the time. High pressure events are confined to specific places, generally at times of high melt or rain inputs. Daily to monthly ice velocity variations can be linked to corresponding fluctuations in subglacial water pressures. Year-to-year velocity variations are linked more to variations in glacier geometry and advance/retreat cycles. Short- to medium-term ice velocity variations reflect rapid changes in basal motion, whereas longer-term variations reflect changes in ice deformation and longitudinal stress gradients.

  13. Cross-Comparison of Albedo Products for Glacier Surfaces Derived from Airborne and Satellite (Sentinel-2 and Landsat 8 Optical Data

    Directory of Open Access Journals (Sweden)

    Kathrin Naegeli

    2017-01-01

    Full Text Available Surface albedo partitions the amount of energy received by glacier surfaces from shortwave fluxes and modulates the energy available for melt processes. The ice-albedo feedback, influenced by the contamination of bare-ice surfaces with light-absorbing impurities, plays a major role in the melting of mountain glaciers in a warming climate. However, little is known about the spatial and temporal distribution and variability of bare-ice glacier surface albedo under changing conditions. In this study, we focus on two mountain glaciers located in the western Swiss Alps and perform a cross-comparison of different albedo products. We take advantage of high spectral and spatial resolution (284 bands, 2 m imaging spectrometer data from the Airborne Prism Experiment (APEX and investigate the applicability and potential of Sentinel-2 and Landsat 8 data to derive broadband albedo products. The performance of shortwave broadband albedo retrievals is tested and we assess the reliability of published narrow-to-broadband conversion algorithms. The resulting albedo products from the three sensors and different algorithms are further cross-compared. Moreover, the impact of the anisotropy correction is analysed depending on different surface types. While degradation of the spectral resolution impacted glacier-wide mean albedo by about 5%, reducing the spatial resolution resulted in changes of less than 1%. However, in any case, coarser spatial resolution was no longer able to represent small-scale variability of albedo on glacier surfaces. We discuss the implications when using Sentinel-2 and Landsat 8 to map dynamic glaciological processes and to monitor glacier surface albedo on larger spatial and more frequent temporal scales.

  14. Surface Air Temperature Fluctuations and Lapse Rates on Olivares Gamma Glacier, Rio Olivares Basin, Central Chile, from a Novel Meteorological Sensor Network

    Directory of Open Access Journals (Sweden)

    Edward Hanna

    2017-01-01

    Full Text Available Empirically based studies of glacier meteorology, especially for the Southern Hemisphere, are relatively sparse in the literature. Here, we use an innovative network of highly portable, low-cost thermometers to report on high-frequency (1-min time resolution surface air temperature fluctuations and lapse rates (LR in a ~800-m elevational range (from 3,675 to 4,492 m a.s.l. across the glacier Olivares Gamma in the central Andes, Chile. Temperatures were measured during an intense field campaign in late Southern summer, 19–27 March 2015, under varying weather conditions. We found a complex dependence of high-frequency LR on time of day, topography, and wider meteorological conditions, with hourly temperature variations during this week that were probably mainly associated with short- and long-wave radiation changes and not with wind speed/direction changes. Using various pairs of sites within our station network, we also analyze spatial variations in LR. Uniquely in this study, we compare temperatures measured at heights of 1-m and 2-m above the glacier surface for the network of five sites and found that temperatures at these two heights occasionally differed by more than ±4°C during the early afternoons, although the mean temperature difference is much smaller (~0.3°C. An implication of our results is that daily, hourly, or even monthly averaged LR may be insufficient for feeding into accurate melt models of glacier change, with the adoption of subhourly (ideally 1–10-min resolution LR likely to prove fruitful in developing new innovative high-time-resolution melt modelling. Our results are potentially useful as input LR for local glacier melt models and for improving the understanding of lapse rate fluctuations and glacier response to climate change.

  15. GlacierRocks - Glacier-Headwall Interaction and its Influence on Rockfall Activity

    Science.gov (United States)

    Hartmeyer, Ingo; Keuschnig, Markus; Krautblatter, Michael; Helfricht, Kay; Leith, Kerry; Otto, Jan-Christoph

    2017-04-01

    Climate models predict continued climate warming and a decrease of Austrian glaciers to less than 20% of their present area by the end of this century. Rockfall from freshly exposed headwalls has been documented as an increasing risk factor with considerable significance for man and high-alpine infrastructure. Recent findings of a five-year terrestrial laserscanning campaign (2011-2016) monitoring glacial headwalls at the Kitzsteinhorn (3.203 m a.s.l.), Hohe Tauern Range, Austria, show the dramatic impact of glacier thinning on adjacent headwalls: 80 % of the detected rockfall volumes were triggered from areas located less than 20 m above the current glacier surface. Despite these implications, little is known about the thermal, mechanical and hydrological processes that operate at the glacier-headwall interface (randkluft). Systemic in-situ monitoring of stability-relevant parameters are lacking, leaving fundamental gaps in the understanding of rockfall preconditioning in glacial headwalls and the geomorphological evolution of glaciated catchments. In this contribution we introduce the recently approved research project 'GlacierRocks', which starts in 2017 and will run for at least three years. 'GlacierRocks' will establish the worldwide first research site for long-term monitoring of stability-relevant processes inside a randkluft system. Based on the acquired monitoring data 'GlacierRocks' is pursuing three overall aims at (1) gaining a better understanding of rockfall preconditioning in randklufts and related geomorphological shaping of headwalls, (2) analyzing poorly understood glacial thinning dynamics near headwalls, and (3) estimating present and future rockfall hazard potential in headwalls on a regional scale. The three system components (headwall, glacier, randkluft) will be investigated by combining geomorphological, glaciological and meteorological methods. 'GlacierRocks' will continuously monitor rock temperature, rock moisture, frost cracking

  16. Updating the New Zealand Glacier Inventory

    Science.gov (United States)

    Baumann, S. C.; Anderson, B.; Mackintosh, A.; Lorrey, A.; Chinn, T.; Collier, C.; Rack, W.; Purdie, H.

    2017-12-01

    The last complete glacier inventory of New Zealand dates from the year 1978 (North Island 1988) and was manually constructed from oblique aerial photographs and geodetic maps (Chinn 2001). The inventory has been partly updated by Gjermundsen et al. (2011) for the year 2002 (40% of total area) and by Sirguey & More (2010) for the year 2009 (32% of total area), both using ASTER satellite imagery. We used Landsat 8 OLI/TIRS satellite data from February/March 2016 to map the total glaciated area. Clean and debris-covered ice were mapped semi-automatically. The band ratio approach was used for clean ice (ratio: red/SWIR). We mapped debris-covered ice using a supervised classification (maximum likelihood). Manual post processing was necessary due to misclassifications (e.g. lakes, clouds) or mapping in shadowed areas. It was also necessary to manually combine the clean and debris-covered parts into single glaciers. Additional input data for the post processing were Sentinel 2 images from the same time period, orthophotos from Land Information New Zealand (resolution: 0.75 m, date: Nov 2014), and the 1978/88 outlines from the GLIMS database (http://www.glims.org/). As the Sentinel 2 data were more heavily cloud covered compared to the Landsat 8 images, they were only used for post processing and not for the classification itself. Initial results show that New Zealand glaciers covered an area of about 1050 km² in 2016, a reduction of 16% since 1978. Approximately 17% of glacier area was covered in surface debris. The glaciers in the central Southern Alps around Mt Cook reduced in area by 24%. Glaciers in the North Island of New Zealand reduced by 71% since 1988, and only 2 km² of ice cover remained in 2016. Chinn, TJH (2001). "Distribution of the glacial water resources of New Zealand." Journal of Hydrology (NZ) 40(2): 139-187 Gjermundsen, EF, Mathieu, R, Kääb, A, Chinn, TJH, Fitzharris, B & Hagen, JO (2011). "Assessment of multispectral glacier mapping methods and

  17. Terrestrial impact melt rocks and glasses

    Science.gov (United States)

    Dressler, B. O.; Reimold, W. U.

    2001-12-01

    craters. Impact melt rocks form sheets, lenses, and dike-like bodies within or beneath allogenic fallback breccia deposits in the impact crater and possibly on crater terraces and flanks. Dikes of impact melt rocks also intrude the rocks of the crater floor. They commonly contain shock metamorphosed target rock and mineral fragments in various stages of assimilation and are glassy or fine- to coarse-grained. Chemically, they are strikingly homogeneous, but as with impact glasses, exemptions to this rule do exist. Large and thick melt bodies, such as the Sudbury Igneous Complex (SIC), are differentiated or may represent a combination of impact melt rocks sensu-strictu and impact-triggered, deep-crustal melts. A concerted, multidisciplinary approach to future research on impact melting and on other aspects of meteorite and comet impact is advocated. Impact models are models only and uncritical reliance on their validity will not lead to a better understanding of impact processes—especially of melting, excavation, and deposition of allogenic breccias and the spatial position of breccias in relation to sheets and lenses of melt rocks within the crater. Impact-triggered pressure-release melting of target rocks beneath the excavation cavity may be responsible for the existence of melt rocks beneath the impact melt rocks sensu-strictu. This controversial idea needs to be tested by a re-evaluation of existing data and models, be they based on field or laboratory research. Only a relatively small number of terrestrial impact structures has been investigated in sufficient detail as it relates to geological and geophysical mapping. In this review, we summarize observations made on impact melt rocks and impact glasses in a number of North American (Brent, Haughton, Manicouagan, New Quebec, Sudbury, Wanapitei, all in Canada), Asian (Popigai, Russia; Zhamanshin, Kazakhstan), two South African structures (Morokweng and Vredefort), the Henbury crater field of Australia, and one

  18. Melting of the Earth's inner core.

    Science.gov (United States)

    Gubbins, David; Sreenivasan, Binod; Mound, Jon; Rost, Sebastian

    2011-05-19

    The Earth's magnetic field is generated by a dynamo in the liquid iron core, which convects in response to cooling of the overlying rocky mantle. The core freezes from the innermost surface outward, growing the solid inner core and releasing light elements that drive compositional convection. Mantle convection extracts heat from the core at a rate that has enormous lateral variations. Here we use geodynamo simulations to show that these variations are transferred to the inner-core boundary and can be large enough to cause heat to flow into the inner core. If this were to occur in the Earth, it would cause localized melting. Melting releases heavy liquid that could form the variable-composition layer suggested by an anomaly in seismic velocity in the 150 kilometres immediately above the inner-core boundary. This provides a very simple explanation of the existence of this layer, which otherwise requires additional assumptions such as locking of the inner core to the mantle, translation from its geopotential centre or convection with temperature equal to the solidus but with composition varying from the outer to the inner core. The predominantly narrow downwellings associated with freezing and broad upwellings associated with melting mean that the area of melting could be quite large despite the average dominance of freezing necessary to keep the dynamo going. Localized melting and freezing also provides a strong mechanism for creating seismic anomalies in the inner core itself, much stronger than the effects of variations in heat flow so far considered.

  19. Rock glaciers in the Pyrenees, Spain and France, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This study and inventory of active rock glaciers was carried out by means of the usual techniques used in the study of alpine permafrost. First, the rock glaciers...

  20. Ablation Rates of Taylor Glacier, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides glacier surface ablation rates for a network of approximately 250 sites on Taylor Glacier, spanning a period from 2003 to 2011. Here...

  1. Rock glaciers on South Shetland Islands, Antarctic Peninsula, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — In the South Shetland Islands the investigators found eight active rock glaciers, no relict or fossil examples, and seven protalus ramparts. The rock glaciers are...

  2. OPTICAL FLOW FOR GLACIER MOTION ESTIMATION

    Directory of Open Access Journals (Sweden)

    C. Vogel

    2012-07-01

    Full Text Available Quantitative measurements of glacier flow over time are an important ingredient for glaciological research, for example to determine the mass balances and the evolution of glaciers. Measuring glacier flow in multi-temporal images involves the estimation of a dense set of corresponding points, which in turn define the flow vectors. Furthermore glaciers exhibit rather difficult radiometry, since their surface usually contains homogeneous areas as well as weak texture and contrast. To date glacier flow is usually observed by manually measuring a sparse set of correspondences, which is labor-intensive and often yields rather irregular point distributions, with the associated problems of interpolating over large areas. In the present work we propose to densely compute motion vectors at every pixel, by using recent robust methods for optic flow computation. Determining the optic flow, i.e. the dense deformation field between two images of a dynamic scene, has been a classic, long-standing research problem in computer vision and image processing. Sophisticated methods exist to optimally balance data fidelity with smoothness of the motion field. Depending on the strength of the local image gradients these methods yield a smooth trade-off between matching and interpolation, thereby avoiding the somewhat arbitrary decision which discrete anchor points to measure, while at the same time mitigating the problem of gross matching errors. We evaluate our method by comparing with manually measured point wise ground truth.

  3. Photogrammetric monitoring of glacier margin lakes

    Directory of Open Access Journals (Sweden)

    Christian Mulsow

    2015-07-01

    Full Text Available The growing number of glacier margin lakes that have developed due to glacier retreat have caused an increase of dangerous glacier lake outburst floods (GLOFs in several regions over the last decade. This normally causes a flood wave downstream the glacier. Typically, such an event takes few to several hours. GLOF scenarios may be a significant hazard to life, property, nature and infrastructure in the affected areas. A GLOF is usually characterized by a progressive water level drop. By observing the water level of the lake, an imminent GLOF-event can be identified. Common gauging systems are often not suitable for the measurement task, as they may be affected by ice fall or landslides in the lake basin. Therefore, in our pilot study, the water level is observed by processing images of a terrestrial camera system observing a glacier margin lake. The paper presents the basic principle of an automatic single-camera-based GLOF early warning system. Challenges and approaches to solve them are discussed. First, results from processed image sequences are presented to show the feasibility of the concept. Water level changes can be determined at decimetre precision.

  4. What controls the survival of ice cliffs on debris-covered glaciers? An investigation into the aspect-dependent evolution of supraglacial cliffs in the Nepalese Himalaya

    Science.gov (United States)

    Pellicciotti, F.; Buri, P.

    2017-12-01

    Supraglacial ice cliffs exist on debris-covered glaciers worldwide, but despite increasing evidence of their important role in the surface melt of debris-covered glaciers, their role and importance at the glacier scale is still little understood. Acting as windows of energy transfer through the debris, they can contribute to very large glacier mass losses. Their abundance and life cycle might thus explain the anomalous behavior of much higher than expected mass losses of the debris-covered glaciers of High Mountain Asia, a controversial finding of recent research in a region where glaciers are highly relevant as water sources for millions of people downstream. Cliffs' evolution in time and distribution in space will determine their total contribution to the mass balance of glaciers, but while spatial distribution has been recently inferred from remote sensing studies, their temporal evolution is largely unknown. Here, we make use of recent advancements in our ability to model these complex features and use a novel 3D numerical model of cliff backwasting and very high resolution topographic data to show that supraglacial ice cliffs existence is controlled by aspect. Because of lack of observed south-facing cliffs, we rotate north-facing cliff systems observed in high detail over the debris-covered Lirung glacier, in the Nepalese Himalaya, towards southerly aspects and use the model coupled to the very high resolution topography to simulate the continuous evolution of selected cliffs over one melt season. Cliffs facing south (in the Northern Hemisphere) do not survive the duration of an ablation season and disappear within few weeks to few months due to very strong solar radiation receipts. Our model shows a progressive, continuous flattening of southerly facing cliffs, which is a result of their vertical gradient of incoming solar radiation. We also show that there is a clear range of aspects (northwest to northeast) that allows cliff survival because of energy and

  5. Investigating near-glacier circulation and plume theory with high-resolution fjord surveys in West Greenland

    Science.gov (United States)

    Jackson, R. H.; Nash, J. D.; Shroyer, E.; Sutherland, D.; Fried, M.; Catania, G. A.; Carroll, D.; Bartholomaus, T. C.; Stearns, L. A.

    2016-12-01

    The plumes that emanate from Greenland's glaciers are hotspots of mixing between meltwater and ambient fjord waters. The dynamics of these plumes affect both submarine melting of glacier termini and the dilution of freshwater as it is exported into the ocean. Modeling studies often rely on buoyant plume theory to represent the circulation and mixing at the ocean/ice interface. However, a dearth of measurements in the near-glacier region has left open many questions about glacial plumes, entrainment, and the applicability of idealized plume theory to these environments. Here, we present near-glacier ocean surveys from Kangerdlugssuaq Sermerssua in central West Greenland in three consecutive summers (2013-2015). High-resolution measurements of velocity and water properties were collected by ship, by surface drifters, and by a remotely operated surface vessel - all focusing on the region within 2 km of the glacier terminus. These novel measurements of the 3D circulation capture a persistent near-surface plume, along with its time-evolution over a tidal cycle and between different summers. Concurrent multibeam sonar measurements of the submarine terminus morphology show that the plume emerges from a large undercut subglacial channel outlet. Plume theory, when applied with this fjord's stratification and any flux of subglacial discharge, cannot match the observed plume's volume flux and water properties. The discrepancy between our observations and plume theory suggests that there is enhanced entrainment at depth that is not adequately represented in plume theory. The details of this entrainment have important consequences for submarine melt rates, terminus morphology, and fjord circulation.

  6. Decadal and Seasonal Variations of Alpine Lakes in Glacierized areas of Central Asia during 1990-2015

    Science.gov (United States)

    Li, J.; Warner, T.; Chen, X.; Bao, A.

    2016-12-01

    Central Asia is one of the world's most vulnerable areas responding to global change. Glacier lakes in the alpine regions remain sensitive to climatic change and fluctuate with temperature and precipitation variations. Study shows that glaciers in Central Asia have retreated dramatically, leading to the expansion of the existing glacial lakes and the emergence of many new glacier lakes. The existence of these lakes increases the possibility of outburst flood during the ice melting season, which can bring a disaster to the downstream area. Mapping glacial lakes and monitoring their changes would improve our understanding of regional climate change and glacier-related hazards. Glacial lakes in Central Asia are mainly located at the Tianshan Mountains, the Altai Mountains, the Kunlun Mountains and the Pamirs with average elevation more than 1500 meters. Most of these lakes are supplied with the glaciers or snowmelt water during the summer seasons. Satellite remote sensing provides an efficient and objective tool to analyze the status and variations of glacial lakes. The increased availability of remote sensing sensors with appropriate spatial and temporal resolutions, broad coverage makes lake investigations more feasible and cost-effective. The paper intends to map glacier lake changes in glacierized alpine mountains with Landsat TM/ETM+ imagery. More than 600 scenes of Landsat images in circa 1990, circa 2000, circa 2010 and circa 2015 are used to map the decadal glacial lake changes over the Central Asia, and about 8 expanding glacial lakes are selected to map seasonal changes. Over 12000 glacial lakes were mapped in circa 1990, and in 2015, lake number are more than 16000, most of these new lakes are emerging in the last 10 years. The result shows that the number and area of the glacial lakes in the Altain Mountain remain stable, while the Tianshan Mountain have experienced expanding changes in the last two decades, and about a half number of lake areas are

  7. Contrasting responses of Central Asian rock glaciers to global warming

    Science.gov (United States)

    Sorg, Annina; Kääb, Andreas; Roesch, Andrea; Bigler, Christof; Stoffel, Markus

    2015-01-01

    While the responses of Tien Shan glaciers – and glaciers elsewhere – to climatic changes are becoming increasingly well understood, this is less the case for permafrost in general and for rock glaciers in particular. We use a novel approach to describe the climate sensitivity of rock glaciers and to reconstruct periods of high and low rock glacier activity in the Tien Shan since 1895. Using more than 1500 growth anomalies from 280 trees growing on rock glacier bodies, repeat aerial photography from Soviet archives and high-resolution satellite imagery, we present here the world's longest record of rock glacier movements. We also demonstrate that the rock glaciers exhibit synchronous periods of activity at decadal timescales. Despite the complex energy-balance processes on rock glaciers, periods of enhanced activity coincide with warm summers, and the annual mass balance of Tuyuksu glacier fluctuates asynchronously with rock glacier activity. At multi-decadal timescales, however, the investigated rock glaciers exhibit site-specific trends reflecting different stages of inactivation, seemingly in response to the strong increase in air temperature since the 1970s. PMID:25657095

  8. Tidal bending of glaciers: a linear viscoelastic approach

    DEFF Research Database (Denmark)

    Reeh, Niels; Christensen, Erik Lintz; Mayer, Christoph

    2003-01-01

    glaciers are in the range 0.9-3 GPa. It has therefore been suggested that the elastic-beam model with a single value of E approximate to 1 GPa adequately describes tidal bending of glaciers.In contrast, laboratory experiments with ice give E =93 GPa, i.e. 3-10 times higher than the glacier-derived values...

  9. More Data and Better Tools for the GLIMS Glacier Database

    Science.gov (United States)

    Raup, B. H.; Armstrong, R. L.; Cogley, J. G.; Hock, R.

    2015-12-01

    Earth's glaciers are changing rapidly in response to a changing climate, and this has implications for people in numerous ways, such as increased hazards from glacial lake outburst floods, changes to water resources, and increasing sea level. To understand these changes, it is vitally important to monitor glaciers through time, measuring their areal extent, changes in volume, flow velocities, snow lines, elevation distribution, and changes to associated water bodies. The glacier database of the Global Land Ice Measurements from Space (GLIMS) initiative is the only multi-temporal glacier database capable of tracking all these glacier measurements and providing them to the scientific community and broader public.This contribution presents recent results in 1) expansion of the GLIMS Glacier Database in geographic coverage by drawing on the Randolph Glacier Inventory (RGI) and other new data sets; 2) new tools for visualizing and downloading GLIMS data in a choice of formats and data models; 3) a new data model for handling multiple glacier records through time while avoiding double-counting of glacier number or area; and 4) a new system of collaboration between all members of the glacier mapping community to streamline the process of meeting various community needs. The result of this work promises to be an improved glacier data repository that will be useful for tracking changes in water resources, hazards, and mass budgets of the world's glaciers.

  10. Climate reconstructions derived from global glacier length records

    NARCIS (Netherlands)

    Klok, E.J.; Oerlemans, J.

    2004-01-01

    As glacier length fluctuations provide useful information about past climate, we derived historic fluctuations in the equilibrium-line altitude (ELA) on the basis of 19 glacier length records from different parts of the world. We used a model that takes into account the geometry of the glacier,

  11. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Konovalenko, Alexander, E-mail: kono@kth.se; Karbojian, Aram, E-mail: karbojan@kth.se

    2017-04-01

    Highlights: • Steam explosion in stratified melt-coolant configuration is studied experimentally. • Different binary oxidic melt simulant materials were used. • Five spontaneous steam explosions were observed. • Instability of melt-coolant interface and formation of premixing layer was observed. • Explosion strength is influenced by melt superheat and water subcooling. - Abstract: Steam explosion phenomena in stratified melt-coolant configuration are considered in this paper. Liquid corium layer covered by water on top can be formed in severe accident scenarios with (i) vessel failure and release of corium melt into a relatively shallow water pool; (ii) with top flooding of corium melt layer. In previous assessments of potential energetics in stratified melt-coolant configuration, it was assumed that melt and coolant are separated by a stable vapor film and there is no premixing prior to the shock wave propagation. This assumption was instrumental for concluding that the amount of energy that can be released in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Melt Spreading (PULiMS) facility with up to 78 kg of binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (order of one percent). The instability of the melt-coolant interface, melt splashes and formation of premixing layer were observed in the tests. In this work, we present results of experiments carried out more recently in steam explosion in stratified melt-coolant configuration (SES) facility in order to shed some light on the premixing phenomena and assess the influence of the test conditions on the steam explosion energetics.

  12. Meteorological drivers of ablation processes on a cold glacier in the semi-arid Andes of Chile

    Directory of Open Access Journals (Sweden)

    S. MacDonell

    2013-09-01

    Full Text Available Meteorological and surface change measurements collected during a 2.5 yr period are used to calculate surface mass and energy balances at 5324 m a.s.l. on Guanaco Glacier, a cold-based glacier in the semi-arid Andes of Chile. Meteorological conditions are marked by extremely low vapour pressures (annual mean of 1.1 hPa, strong winds (annual mean of 10 m s−1, shortwave radiation receipt persistently close to the theoretical site maximum during cloud-free days (mean annual 295 W m−2; summer hourly maximum 1354 W m−2 and low precipitation rates (mean annual 45 mm w.e.. Snowfall occurs sporadically throughout the year and is related to frontal events in the winter and convective storms during the summer months. Net shortwave radiation provides the greatest source of energy to the glacier surface, and net longwave radiation dominates energy losses. The turbulent latent heat flux is always negative, which means that the surface is always losing mass via sublimation, which is the main form of ablation at the site. Sublimation rates are most strongly correlated with net shortwave radiation, incoming shortwave radiation, albedo and vapour pressure. Low glacier surface temperatures restrict melting for much of the period, however episodic melting occurs during the austral summer, when warm, humid, calm and high pressure conditions restrict sublimation and make more energy available for melting. Low accumulation (131 mm w.e. over the period and relatively high ablation (1435 mm w.e. means that mass change over the period was negative (−1304 mm w.e., which continued the negative trend recorded in the region over the last few decades.

  13. The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier

    Directory of Open Access Journals (Sweden)

    J. Gabbi

    2015-07-01

    Full Text Available Light-absorbing impurities in snow and ice control glacier melt as shortwave radiation represents the main component of the surface energy balance. Here, we investigate the long-term effect of snow impurities, i.e., mineral dust and black carbon (BC, on albedo and glacier mass balance. The analysis was performed over the period 1914–2014 for two sites on Claridenfirn, Swiss Alps, where an outstanding 100-year record of seasonal mass balance measurements is available. Information on atmospheric deposition of mineral dust and BC over the last century was retrieved from two firn/ice cores of high-alpine sites. A combined mass balance and snow/firn layer model was employed to assess the effects of melt and accumulation processes on the impurity concentration at the surface and thus on albedo and glacier mass balance. Compared to pure snow conditions, the presence of Saharan dust and BC lowered the mean annual albedo by 0.04–0.06 depending on the location on the glacier. Consequently, annual melt was increased by 15–19 %, and the mean annual mass balance was reduced by about 280–490 mm w.e. BC clearly dominated absorption which is about 3 times higher than that of mineral dust. The upper site has experienced mainly positive mass balances and impurity layers were continuously buried whereas at the lower site, surface albedo was more strongly influenced by re-exposure of dust and BC-enriched layers due to frequent years with negative mass balances.

  14. Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: implications for sources.

    Science.gov (United States)

    Kwok, Karen Y; Yamazaki, Eriko; Yamashita, Nobuyoshi; Taniyasu, Sachi; Murphy, Margaret B; Horii, Yuichi; Petrick, Gert; Kallerborn, Roland; Kannan, Kurunthachalam; Murano, Kentaro; Lam, Paul K S

    2013-03-01

    Perfluoroalkyl substances (PFAS) have been globally detected in various environmental matrices, yet their fate and transport to the Arctic is still unclear, especially for the European Arctic. In this study, concentrations of 17 PFAS were quantified in two ice cores (n=26), surface snow (n=9) and surface water samples (n=14) collected along a spatial gradient in Svalbard, Norway. Concentrations of selected ions (Na(+), SO4(2-), etc.) were also determined for tracing the origins and sources of PFAS. Perfluorobutanoate (PFBA), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) were the dominant compounds found in ice core samples. Taking PFOA, PFNA and perfluorooctane-sulfonate (PFOS) as examples, higher concentrations were detected in the middle layers of the ice cores representing the period of 1997-2000. Lower concentrations of C8-C12 perfluorocarboxylates (PFCAs) were detected in comparison with concentrations measured previously in an ice core from the Canadian Arctic, indicating that contamination levels in the European Arctic are lower. Average PFAS concentrations were found to be lower in surface snow and melted glacier water samples, while increased concentrations were observed in river water downstream near the coastal area. Perfluorohexanesulfonate (PFHxS) was detected in the downstream locations, but not in the glacier, suggesting existence of local sources of this compound. Long-range atmospheric transport of PFAS was the major deposition pathway for the glaciers, while local sources (e.g., skiing activities) were identified in the downstream locations. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Controls on the inland propagation of terminus-driven speedups at Helheim Glacier, SE Greenland

    Science.gov (United States)

    Kehrl, L. M.; Joughin, I. R.; Smith, B.

    2017-12-01

    Tidewater glaciers are very sensitive to changes in the stress balance near their termini. When submarine melt or iceberg calving reduce lateral or basal resistance near the terminus, the glacier typically must speed up to produce the additional longitudinal and lateral stress gradients necessary to restore stress balance. Once speedup near the terminus is initiated, it can propagate inland through longitudinal stress coupling, thinning-induced changes in the effective pressure, and/or a steepening of surface slopes. The controls on these processes and the timing and spatial extent of the inland response, however, remain poorly understood. In this study, we use a three-dimensional, Full Stokes model (Elmer/Ice) to investigate the effects of different ice rheology and basal sliding parameterizations on the inland propagation of speedups at Helheim Glacier, SE Greenland. Using satellite observations of terminus position, we force the model with the observed 3-km, 2013/14 retreat history and allow the model to evolve in response to this retreat. We run a set of simulations that vary the ice rheology (constant or spatially variable ice temperature) and basal sliding law (linear, nonlinear, and effective-pressure-dependent). Our results show that the choice of parameterizations affect the timing and spatial extent of the inland response, but that the range of acceptable parameters can be constrained by comparing the model results to satellite observations of surface velocity and elevation.

  16. Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau.

    Science.gov (United States)

    Zhang, Yulan; Kang, Shichang; Li, Chaoliu; Gao, Tanguang; Cong, Zhiyuan; Sprenger, Michael; Liu, Yajun; Li, Xiaofei; Guo, Junming; Sillanpää, Mika; Wang, Kun; Chen, Jizu; Li, Yang; Sun, Shiwei

    2017-12-31

    Black carbon (BC) emitted from the incomplete combustion of biomass and fossil fuel impacts the climate system, cryospheric change, and human health. This study documents black carbon deposition in snow from a benchmark glacier on the northern Tibetan Plateau. Significant seasonality of BC concentrations indicates different input or post-depositional processes. BC particles deposited in snow had a mass volume median diameter slightly larger than that of black carbon particles typically found in the atmosphere. Also, unlike black carbon particles in the atmosphere, the particles deposited in snow did not exhibit highly fractal morphology by Scanning Transmission Electron Microscope. Footprint analysis indicated BC deposited on the glacier in summer originated mainly from Central Asia; in winter, the depositing air masses generally originated from Central Asia and Pakistan. Anthropogenic emissions play an important role on black carbon deposition in glacial snow, especially in winter. The mass absorption efficiency of BC in snow at 632nm exhibited significantly seasonality, with higher values in summer and lower values in winter. The information on black carbon deposition in glacial snow provided in this study could be used to help mitigate the impacts of BC on glacier melting on the northern Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Hydrological Modeling of Highly Glacierized Basins (Andes, Alps, and Central Asia

    Directory of Open Access Journals (Sweden)

    Nina Omani

    2017-02-01

    Full Text Available The Soil and Water Assessment Tool (SWAT was used to simulate five glacierized river basins that are global in coverage and vary in climate. The river basins included the Narayani (Nepal, Vakhsh (Central Asia, Rhone (Switzerland, Mendoza (Central Andes, Argentina, and Central Dry Andes (Chile, with a total area of 85,000 km2. A modified SWAT snow algorithm was applied in order to consider spatial variation of associated snowmelt/accumulation by elevation band across each subbasin. In previous studies, melt rates varied as a function of elevation because of an air temperature gradient while the snow parameters were constant throughout the entire basin. A major improvement of the new snow algorithm is the separation of the glaciers from seasonal snow based on their characteristics. Two SWAT snow algorithms were evaluated in simulation of monthly runoff from the glaciered watersheds: (1 the snow parameters are lumped (constant throughout the entire basin and (2 the snow parameters are spatially variable based on elevation bands of a subbasin (modified snow algorithm. Applying the distributed SWAT snow algorithm improved the model performance in simulation of monthly runoff with snow-glacial regime, so that mean RSR decreased to 0.49 from 0.55 and NSE increased to 0.75 from 0.69. Improvement of model performance was negligible in simulations of monthly runoff from the basins with a monsoon runoff regime.

  18. Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland

    DEFF Research Database (Denmark)

    Nettles, M.; Larsen, T. B.; Elósegui, P.

    2008-01-01

    iceberg calving events. No coseismic offset in the position of the glacier surface is observed; instead, modest tsunamis associated with the glacial earthquakes implicate glacier calving in the seismogenic process. Our results link changes in glacier velocity directly to calving-front behavior...

  19. Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry

    Directory of Open Access Journals (Sweden)

    S. C. B. Raper

    2009-08-01

    Full Text Available Glacier volume response time is a measure of the time taken for a glacier to adjust its geometry to a climate change. It has been previously proposed that the volume response time is given approximately by the ratio of glacier thickness to ablation at the glacier terminus. We propose a new conceptual model of glacier hypsometry (area-altitude relation and derive the volume response time where climatic and topographic parameters are separated. The former is expressed by mass balance gradients which we derive from glacier-climate modelling and the latter are quantified with data from the World Glacier Inventory. Aside from the well-known scaling relation between glacier volume and area, we establish a new scaling relation between glacier altitude range and area, and evaluate it for seven regions. The presence of this scaling parameter in our response time formula accounts for the mass balance elevation feedback and leads to longer response times than given by the simple ratio of glacier thickness to ablation at the terminus. Volume response times range from decades to thousands of years for glaciers in maritime (wet-warm and continental (dry-cold climates respectively. The combined effect of volume-area and altitude-area scaling relations is such that volume response time can increase with glacier area (Axel Heiberg Island and Svalbard, hardly change (Northern Scandinavia, Southern Norway and the Alps or even get smaller (The Caucasus and New Zealand.

  20. Mapping distribution and thickness of supraglacial debris in the Central Karakoram National Park: main features and implications to model glacier meltwater

    Science.gov (United States)

    Minora, Umberto; Mayer, Christoph; Bocchiola, Daniele; D'Agata, Carlo; Maragno, Davide; Lambrecht, Astrid; Vuillermoz, Elisa; smiraglia, claudio; diolaiuti, guglielmina

    2014-05-01

    Supraglacial debris plays a not negligible role in controlling magnitude and rates of buried ice melt (Østrem, 1959; Mattson et al., 1993). Knowledge on rock debris is essential to model ice melt (and consequently meltwater discharge) upon wide glacierized areas, as melt rates are mainly driven by debris thickness variability. This is particularly important for the Pamir-Himalaya-Karakoram area (PHK), where debris-covered glaciers are frequent (Smiraglia et al., 2007; Scherler et al., 2011) and where melt water from glaciers supports agriculture and hydropower production. By means of remote sensing techniques and field data, supraglacial debris can be detected, and then quantified in area and thickness. Supervised classifications of satellite imagery can be used to map debris on glaciers. They use different algorithms to cluster an image based on its pixel values, and Region Of Interests (ROIs) previously selected by the human operator. This can be used to obtain a supraglacial debris mask by which surface extension can be calculated. Moreover, kinetic surface temperature data derived from satellites (such as ASTER and Landsat), can be used to quantify debris thicknesses (Mihalcea et al., 2008). Ground Control Points (GCPs) are essential to validate the obtained debris thicknesses. We took the Central Karakoram National Park (CKNP) as a representative sample for PHK area. The CKNP is 12,000 km2 wide, with more than 700 glaciers, mostly debris covered (Minora et al., 2013). Among those we find some of the widest glaciers of the World (e.g: Baltoro). To improve the knowledge on these glaciers and to better model their melt and water discharge we proceeded as follows. Firstly we ran a Supervised Maximum Likelihood (SML) classification on 2001 and 2010 Landsat images to detect debris presence and distribution. Secondly we analyzed kinetic surface temperature (from Landsat) to map debris depth. This latter attempt took also advantage from field data of debris thickness

  1. POP and PAH contamination in the southern slopes of Mt. Everest (Himalaya, Nepal): Long-range atmospheric transport, glacier shrinkage, or local impact of tourism?

    Science.gov (United States)

    Guzzella, Licia; Salerno, Franco; Freppaz, Michele; Roscioli, Claudio; Pisanello, Francesca; Poma, Giulia

    2016-02-15

    Due to their physico-chemical properties, POPs and PAHs are subjected to long-range atmospheric transport (LRAT) and may be deposited in remote areas. In this study, the contamination with DDx, PCBs, PBDEs, and PAHs was investigated in sediments and soils collected on the southern slopes of Mt. Everest (Himalaya, Nepal) in two different sampling campaigns (2008 and 2012). The results showed a limited contamination with POPs and PAHs in both soil and sediment samples. Therefore, the southern slopes of Mt. Everest can be considered a remote area in almost pristine condition. The LRAT mechanism confirmed its primary role in the transfer of contaminants to remote regions, while the gradual melting of glaciers, due to global warming, and the subsequent release of contaminants was suggested to be a secondary source of pollution of the lake sediments. In addition, the increase of tourism in this area during the last decades might have influenced the present concentrations of PAHs in the sediments and soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway

    Directory of Open Access Journals (Sweden)

    R. H. Giesen

    2009-03-01

    Full Text Available We compare 5 years of meteorological records from automatic weather stations (AWSs on Storbreen and Midtdalsbreen, two glaciers in southern Norway, located approximately 120 km apart. The records are obtained from identical AWSs with an altitude difference of 120 m and cover the period September 2001 to September 2006. Air temperature at the AWS locations is found to be highly correlated, even with the seasonal cycle removed. The most striking difference between the two sites is the difference in wind climate. Midtdalsbreen is much more under influence of the large-scale circulation with wind speeds on average a factor 1.75 higher. On Storbreen, weaker katabatic winds are dominant. The main melt season is from May to September at both locations. During the melt season, incoming and net solar radiation are larger on Midtdalsbreen, whereas incoming and net longwave radiation are larger on Storbreen, primarily caused by thicker clouds on the latter. The turbulent fluxes are a factor 1.7 larger on Midtdalsbreen, mainly due to the higher wind speeds. Inter-daily fluctuations in the surface energy fluxes are very similar at the AWS sites. On average, melt energy is a factor 1.3 larger on Midtdalsbreen, a result of both larger net radiation and larger turbulent fluxes. The relative contribution of net radiation to surface melt is larger on Storbreen (76% than on Midtdalsbreen (66%. As winter snow depth at the two locations is comparable in most years, the larger amount of melt energy results in an earlier disappearance of the snowpack on Midtdalsbreen and 70% more ice melt than on Storbreen. We compare the relative and absolute values of the energy fluxes on Storbreen and Midtdalsbreen with reported values for glaciers at similar latitudes. Furthermore, a comparison is made with meteorological variables measured at two nearby weather stations, showing that on-site measurements are essential for an accurate calculation of the surface energy balance and

  3. Oxygen isotope ratios in the shell of Mytilus edulis: Archives of glacier meltwater in Greenland?

    DEFF Research Database (Denmark)

    Versteegh, E.A.A.; Blicher, M.E.; Mortensen, J.

    2012-01-01

    Melting of the Greenland Ice Sheet (GrIS) is accelerating and will contribute significantly to global sea level rise during the 21st century. Instrumental data on GrIS melting only cover the last few decades, and proxy data extending our knowledge into the past are vital for validating models...... predicting the influence of ongoing climate change. We investigated a potential meltwater proxy in Godthabsfjord (West Greenland), where glacier meltwater causes seasonal excursions with lower oxygen isotope water (delta O-18(w)) values and salinity. The blue mussel (Mytilus edulis) potentially records...... these variations, because it precipitates its shell calcite in oxygen isotopic equilibrium with ambient seawater. As M. edulis shells are known to occur in raised shorelines and archaeological shell middens from previous Holocene warm periods, this species may be ideal in reconstructing past meltwater dynamics. We...

  4. Glacier-induced Hazards in the Trans-Himalaya of Ladakh (NW-India)

    Science.gov (United States)

    Schmidt, Susanne; Dame, Juliane; Nüsser, Marcus

    2016-04-01

    Glaciers are important water resources for irrigated crop cultivation in the semi-arid Trans-Himalaya of Ladakh (NW-India). Due to global warming, many glaciers of South Asia have retreated over the last century and further ice loss will threaten local livelihoods in the long run. In the short term, an increase of flood events caused by melting glaciers and permafrost is expected for the Himalayan region. Beside large catastrophic events, small outburst floods are 'more' regularly reported for various parts of the region. This also holds true for the Trans-Himalayan region of Ladakh, where small glaciers exist at high altitudes. Caused by glacier retreat, a number of proglacial lakes have been formed, most of them dammed by ice filled moraines. The potential risk of these lakes is shown by recent reports on glacial lake outburst flood in the villages Nidder in October 2010 and Gya in August 2014. The 2014 flood destroyed several agricultural terraces, a new concrete bridge and two houses. Own remote sensing analyses shows the increase of a moraine dammed proglacial lake in the upper catchment area, which grew from about 0.03 to 0.08 km2 between 1969 and 2014. Because of the relatively stable altitude of the lake level, one can assume that the flood was caused by a piping process, initiated by melted ice bodies in the moraine. Already in the 1990s a small GLOF was observed in the village, which destroyed some fields. As in 2014, the lake was not completely spilled and a short-term decrease of the lake area is detectable in remote sensing data. Thus, further GLOF-events can be expected for the future. Beside physical risk factors, population growth and new infrastructure development along the streams and valleys increases potential damages of floods. Therefore, investigations are required to estimate the risks of these small glacial lakes and the potential flood effected area for the case study of Gya as well as for the whole region of Ladakh. Remote sensing data are

  5. Decompression Melting beneath the Indonesian Volcanic Front

    Science.gov (United States)

    Kelley, K. A.; Colabella, A.; Sisson, T. W.; Hauri, E. H.; Sigurdsson, H.

    2006-12-01

    Subduction zone magmas are typically characterized by high concentrations of dissolved H2O (up to 6-7 wt%), presumably derived from the subducted plate and ultimately responsible for melt generation in this tectonic setting. Pressure-release melting from upward mantle flow, however, is increasingly cited as a secondary driver of mantle wedge melting. Here we report new SIMS volatile and LA-ICP-MS trace element data for olivine-hosted melt inclusions from Galunggung (GG) and Tambora (TB) volcanoes in the Indonesian subduction zone to evaluate the relative importance of decompression vs. H2O-flux melting beneath arc volcanoes. Prior studies of melt inclusions from Galunggung showed unusually low primary H2O concentrations (~0.5 wt%), implicating decompression as a significant mechanism of mantle melting beneath this volcano (Sisson &Bronto, 1998). Our new data from a larger suite of Galunggung melt inclusions show a bimodal distribution of H2O concentrations: a dominant population with ~0.5 wt% H2O, and a small group with 1.5-2.5 wt% H2O, indicating that a small amount of H2O addition from the slab may also contribute to mantle melting here. New volatile data from Tambora melt inclusions also indicate low primary H2O contents (1-2 wt%), suggesting that decompression melting may be a large-scale characteristic of the Indonesian volcanic front. Our new trace element data show both volcanoes are LREE enriched relative to MORB, but Tambora melts show greater LREE enrichment (La/Sm=1.7-2.7[GG]; 6.0- 9.5[TB]). Galunggung melts have Nb/Y in the range of NMORB (0.1-0.2), whereas Tambora Nb/Y is similar to EMORB (0.3-0.5). Most Tambora melt inclusions also have H2O/Y (Y (200-1000) and H2O/Ce (100-1400) relative to NMORB, suggesting a larger influence from slab-derived H2O despite having lower average H2O concentrations than Tambora. The range of H2O/Y and H2O/Ce at Galunggung, however, is largely within the range of back-arc basin basalts and does not preclude a major

  6. Seismological observations of glaciers dynamic on the Spitsbergen archipelago

    Directory of Open Access Journals (Sweden)

    Fedorov A. V.

    2016-03-01

    Full Text Available The paper provides a brief description of results of Spitsbergen glacier observations by the seismic method. The study has been carried out both by permanent and temporary stations data. Characteristic features of glacier-related seismic events have been shown. Main areas of glacier seismic activity on the Archipelago have been revealed. A detailed study of Horsund-fjord glacier activity has been carried out using local seismic station HSPB data. Temporal and spatial distributions of glacier-related events have been obtained for the area. Season variations in temporal distribution of the events have been found

  7. Dynamics of Glacier Calving at the Ungrounded Margin of Helheim Glacier, South-East Greenland

    Science.gov (United States)

    Murray, T.; Selmes, N.; James, T.; Edwards, S.; Martin, I.; O'Farrell, T.; Aspey, R. A.; Nettles, M.; Rutt, I. C.

    2014-12-01

    Iceberg calving is a key mass loss mechanism for tidewater glaciers, and has been the major contributor to increased contribution to sea-level rise from several regions of Greenland, including the south-east. In summer 2013 we installed a network of 19 GNSS sensors at the margin of Helheim Glacier in south-east Greenland together with 5 oblique cameras to study iceberg calving mechanisms. The network collected data at rates up to every 7 seconds and was designed to be robust to the loss of sensor nodes as the glacier calved. Data collection covered 55 days during July through to early September 2013, and many sensors survived in locations right at the glacier front to the time of iceberg calving. The observation period included a number of significant calving events, and in consequence the glacier retreated ~1.5 km. Throughout the summer the glacier was seen to calve by a process of buoyancy-force-induced bottom-crevassing in which the ice downglacier of flexion zones rotates upwards because it is out of buoyant equilibrium. Calving then occurs back to the flexion zone. This calving process provides a compelling and complete explanation for the data collected. Tracking of the oblique camera images allows identification and characterisation of the flexion zones and their propagation downglacier. Interpretation of the GNSS data and camera data in combination allows us to place constraints on the geometry of the basal cavity that forms beneath the rotating ice downglacier of the flexion zone before calving. Theoretical considerations suggest that the process of bottom crevasse propagation is strongly enhanced when the glacier base is deeper than buoyant equilibrium. We therefore suggest that this calving mechanism will be prevalent whenever this occurs. Interactions between the fjord water and the glacier are likely to enhance calving rates and the process also has implications for mixing in the proglacial fjord.

  8. GIS-based modelling of (all) glacier beds in Switzerland

    Science.gov (United States)

    Linsbauer, A.; Paul, F.; Hoelzle, M.; Haeberli, W.

    2009-04-01

    Due to the ongoing and expected future increase in global mean temperature, the Alpine environment will continue to get further away from equilibrium. Glaciers are a part of the high-mountain cryosphere, and their changes are considered to be the best natural indicators of climatic changes. The calculation and visualization of future glacier development is thus an important task of communicating climate change effects to a wider public. One of the most challenging topics in the assessment of climate change impacts on future glacier development is the unknown glacier bed and the related uncertainties in glacier volume estimations (Driedger and Kennard, 1986). In this respect, an estimated topography of the glacier bed would facilitate the calculation of glacier volume, the detection of local depressions, and the visualization of future ice-free grounds. We here present a simple but robust GIS-tool which allows to calculate an approximate bed topography for a large sample of glaciers. The only input used is a DEM, glacier outlines, and a set of flow lines. The method is based on the calculation of the ice thickness along selected points of the flow lines from the shallow ice approximation and subsequent spatial interpolation using topogrid and is independent of glacier size, type or climatic setting. The generated ice thickness distribution is in good agreement with direct measurements (GPR profiles) and results from more sophisticated methods that include assumptions on glacier flow. However, local derivations exist due to the very sensitive dependence on surface slope.

  9. Chapman Conference delves into the significance of rock glaciers

    Science.gov (United States)

    Gillespie, Alan R.; Clark, Douglas H.; Steig, Eric J.; Potter, N., Jr.

    Rock glaciers are rubble-covered, flowing mixtures of rock and ice common in many alpine and polar regions. They even may occur on Mars. Although rock glaciers are important agents of geomorphic modification of the landscapes in which they occur, they are less well studied than their “true” ice-glacier cousins, and many questions surround their origin and development. The scientific benefits of answering these questions may be considerable, in part because rock glaciers could provide accessible archives of local climatic conditions throughout much of the last 10,000 years, and possibly extending back much longer in some settings.A Chapman Conference on the geomorphic and climatic significance of rock glaciers was sponsored by AGU at the Northwest College Field Station in the Absaroka Mountains near Cody, Wyo., August 23-28, 1996. Despite more than 40 years of study, surprisingly little is understood about rock glaciers. Even hypotheses about their genesis are controversial: one view holds that regardless of compartheir similar appearance and distribution, rock glaciers are distinct from true glaciers and strictly result from periglacial processes [Barsch, 1996]; the other holds that the formation of rock glaciers involves a continuum of processes from glacial to periglacial [Potter, 1972]. The conference was convened to help resolve the issue of the origin of rock glaciers, to highlight the significance of rock glaciers as geomorphic systems, and to identify areas for future research.

  10. Melt Cast High Explosives

    Directory of Open Access Journals (Sweden)

    Stanisław Cudziło

    2014-12-01

    Full Text Available [b]Abstract[/b]. This paper reviews the current state and future developments of melt-cast high explosives. First the compositions, properties and methods of preparation of trinitrotoluene based (TNT conventional mixtures with aluminum, hexogen (RDX or octogen (HMX are described. In the newer, less sensitive explosive formulations, TNT is replaced with dinitroanisole (DNANDNANDNAN and nitrotriazolone (NTONTONTO, nitroguanidine (NG or ammonium perchlorate (AP are the replacement for RDRDX and HMX. Plasticized wax or polymer-based binder systems for melt castable explosives are also included. Hydroxyl terminated polybutadiene (HPTB is the binder of choice, but polyethylene glycol, and polycaprolactone with energetic plasticizers are also used. The most advanced melt-cast explosives are compositions containing energetic thermoplastic elastomers and novel highly energetic compounds (including nitrogen rich molecules in whose particles are nanosized and practically defect-less.[b]Keywords[/b]: melt-cast explosives, detonation parameters

  11. Water boiling on the corium melt surface under VVER severe accident conditions

    International Nuclear Information System (INIS)

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V.

    1999-01-01

    Experimental results are presented on the interaction between corium melt and water supplied onto its surface. The tests were conducted on the Rasplav-2' experimental facility. Induction melting in a cold crucible was used to produce the melt. The following data have been obtained: heat transfer at water boiling on the melt surface, aerosol release, structure of the post-interaction solidified corium. The corium melt had the following composition, mass %: 60%UO 2 - 16%ZrO 2 - 15%Fe 2 O 3 - 6%Cr 2 O 3 -3%Ni 2 O 3 . The melt surface temperature was 1650-1700degC. (author)

  12. Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall

    OpenAIRE

    Doyle, Samuel H.; Hubbard, Alun; van de Wal, Roderik S. W.; Box, Jason E.; van As, Dirk; Scharrer, Kilian; Meierbachtol, Toby W.; Smeets, Paul C. J. P.; Harper, Joel T.; Johansson, Emma; Mottram, Ruth H.; Mikkelsen, Andreas B.; Wilhelms, Frank; Patton, Henry; Christoffersen, Poul

    2015-01-01

    Intense rainfall events significantly affect Alpine and Alaskan glaciers through enhanced melting, ice-flow acceleration and subglacial sediment erosion, yet their impact on the Greenland ice sheet has not been assessed. Here we present measurements of ice velocity, subglacial water pressure and meteorological variables from the western margin of the Greenland ice sheet during a week of warm, wet cyclonic weather in late August and early September 2011. We find that extreme surface runoff fro...

  13. Seasonal dynamic thinning at Helheim Glacier

    DEFF Research Database (Denmark)

    Bevan, Suzanne L.; Luckman, Adrian; Khan, Shfaqat Abbas

    2015-01-01

    We investigate three annual mass-balance cycles on Helheim Glacier in south-east Greenland using TanDEM-X interferometric digital elevation models (DEMs), bedrock GPS measurements, and ice velocity from feature-tracking. The DEMs exhibit seasonal surface elevation cycles at elevations up to 800 m...

  14. Melt fracture revisited

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, J. M.

    2003-07-16

    In a previous paper the author and Demay advanced a model to explain the melt fracture instability observed when molten linear polymer melts are extruded in a capillary rheometer operating under the controlled condition that the inlet flow rate was held constant. The model postulated that the melts were a slightly compressible viscous fluid and allowed for slipping of the melt at the wall. The novel feature of that model was the use of an empirical switch law which governed the amount of wall slip. The model successfully accounted for the oscillatory behavior of the exit flow rate, typically referred to as the melt fracture instability, but did not simultaneously yield the fine scale spatial oscillations in the melt typically referred to as shark skin. In this note a new model is advanced which simultaneously explains the melt fracture instability and shark skin phenomena. The model postulates that the polymer is a slightly compressible linearly viscous fluid but assumes no slip boundary conditions at the capillary wall. In simple shear the shear stress {tau}and strain rate d are assumed to be related by d = F{tau} where F ranges between F{sub 2} and F{sub 1} > F{sub 2}. A strain rate dependent yield function is introduced and this function governs whether F evolves towards F{sub 2} or F{sub 1}. This model accounts for the empirical observation that at high shears polymers align and slide more easily than at low shears and explains both the melt fracture and shark skin phenomena.

  15. Modeling mass balance and volume of Xiao Dongkemadi glacier in the Central Tibetan Plateau from 1989 to 2050

    Science.gov (United States)

    Duan, K.

    2015-12-01

    The Tibetan Plateau (TP) holds ten thousands of alpine glaciers in mid-latitude, which have shrunk with an accelerating retreat rate recently. Here, we applied a temperature-index distributed mass-balance model coupled with a volume-area scaling method to Xiao Dongkemadi Glacier (XDG) in the central TP, to assess its response to climate change. The result shows the simulated mass balance is in a good agreement with observations (R2=0.75, pRegCM4 under the climate scenarios RCP4.5 and RCP8.5 from 2013 to 2050. The simulated terminus elevation of the glacier will rise from 5454m a.s.l. in 2013 to 5533m a.s.l. (RCP4.5) and 5543m a.s.l (RCP8.5) in 2050. XDG will lose its volume with an increasing rate of 600-700m3 a-1 during the period of 1989-2050, indicating the melting water will enhance the river runoff. But for the long term, the contribution to the river runoff will decrease for shrinkage of glacier scale.

  16. Radioactive waste melting furnace

    International Nuclear Information System (INIS)

    Nakayama, Junpei.

    1997-01-01

    The present invention provides a radioactive waste melting furnace excellent in heat insulating property, capable of exchanging only refractory materials with lesser amount of contamination. Namely, an heat insulation layer is disposed on the outer wall of the melting furnace. A refractory layer is disposed on the inner wall being in contact with molten materials in the melting furnace. A metal vessel covering the refractory layer is interposed between the heat insulation layer and the refractory layer. In addition, a metal outer shell covering the heat insulation layer is disposed on the heat insulation layer on the outer wall of the melting furnace. Bricks comprising, for example, alumina, carbon, zircon, magnesia or chromia having a low heat conductivity are used for the outer wall heat insulation layer irrespective of the melting performance. The refractory layer on the inner wall is made of bricks comprising chromia, alumina and zircon as molten materials of low basicity and chromia and magnesia as molten materials of high basicity. The materials of the metal vessel may be ordinary carbon steels, cast irons, or stainless steels. The refractory layer is taken out from the melting furnace together with the metal vessel, and only the refractory layer can be removed. Radiation contamination is eliminated. The metal vessel can be used again. (I.S.)

  17. Hydrological processes in glacierized high-altitude basins of the western Himalayas

    Science.gov (United States)

    Jeelani, Ghulam; Shah, Rouf A.; Fryar, Alan E.; Deshpande, Rajendrakumar D.; Mukherjee, Abhijit; Perrin, Jerome

    2018-03-01

    Western Himalaya is a strategically important region, where the water resources are shared by China, India and Pakistan. The economy of the region is largely dependent on the water resources delivered by snow and glacier melt. The presented study used stable isotopes of water to further understand the basin-scale hydro-meteorological, hydrological and recharge processes in three high-altitude mountainous basins of the western Himalayas. The study provided new insights in understanding the dominant factors affecting the isotopic composition of the precipitation, snowpack, glacier melt, streams and springs. It was observed that elevation-dependent post-depositional processes and snowpack evolution resulted in the higher isotopic altitude gradient in snowpacks. The similar temporal trends of isotopic signals in rivers and karst springs reflect the rapid flow transfer due to karstification of the carbonate aquifers. The attenuation of the extreme isotopic input signal in karst springs appears to be due to the mixing of source waters with the underground karst reservoirs. Basin-wise, the input-output response demonstrates the vital role of winter precipitation in maintaining the perennial flow in streams and karst springs in the region. Isotopic data were also used to estimate the mean recharge altitude of the springs.

  18. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan)

    Science.gov (United States)

    Tielidze, Levan G.; Wheate, Roger D.

    2018-01-01

    There have been numerous studies of glaciers in the Greater Caucasus, but none that have generated a modern glacier database across the whole mountain range. Here, we present an updated and expanded glacier inventory at three time periods (1960, 1986, 2014) covering the entire Greater Caucasus. Large-scale topographic maps and satellite imagery (Corona, Landsat 5, Landsat 8 and ASTER) were used to conduct a remote-sensing survey of glacier change, and the 30 m resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM; 17 November 2011) was used to determine the aspect, slope and height distribution of glaciers. Glacier margins were mapped manually and reveal that in 1960 the mountains contained 2349 glaciers with a total glacier surface area of 1674.9 ± 70.4 km2. By 1986, glacier surface area had decreased to 1482.1 ± 64.4 km2 (2209 glaciers), and by 2014 to 1193.2 ± 54.0 km2 (2020 glaciers). This represents a 28.8 ± 4.4 % (481 ± 21.2 km2) or 0.53 % yr-1 reduction in total glacier surface area between 1960 and 2014 and an increase in the rate of area loss since 1986 (0.69 % yr-1) compared to 1960-1986 (0.44 % yr-1). Glacier mean size decreased from 0.70 km2 in 1960 to 0.66 km2 in 1986 and to 0.57 km2 in 2014. This new glacier inventory has been submitted to the Global Land Ice Measurements from Space (GLIMS) database and can be used as a basis data set for future studies.

  19. Changes in the Surface Area of Glaciers in Northern Eurasia

    Science.gov (United States)

    Khromova, T.; Nosenko, G.

    2012-12-01

    Glaciers are widely recognized as key indicators of climate change. Recent evidence suggests an acceleration of glacier mass loss in several key mountain regions. Glacier recession implies the landscape changes in the glacial zone, origin of new lakes and activation of natural disaster processes, catastrophic mudflows, ice avalanches, outburst floods, and etc. The presence of glaciers in itself threats to human life, economic activity and growing infrastructure. Economical and recreational human activity in mountain regions requires relevant information on snow and ice objects. Absence or inadequacy of such information results in financial and human losses. A more comprehensive evaluation of glacier changes is imperative to assess ice contributions to global sea level rise and the future of water resources from glacial basins. One of the urgent steps is a full inventory of all ice bodies, their volume and changes The first estimation of glaciers state and glaciers distribution in the big part of Northern Eurasia has been done in the USSR Glacier Inventory published in 1966 -1980 as a part of IHD activity. The Inventory is based on topographic maps and air photos and reflects the status of the glaciers in 1957-1970y. There is information about 23796 glaciers with area of 78222.3 km2 in the Inventory. It covers 23 glacier systems on Northern Eurasia. In the 80th the USSR Glacier Inventory has been transformed in the digital form as a part of the World Glacier Inventory. Recent satellite data provide a unique opportunity to look again at these glaciers and to evaluate changes in glacier extent for the second part of XX century. In the paper we report about 15 000 glaciers outlines for Caucasus, Pamir, Tien-Shan, Altai, Syntar-Khayata, Cherskogo Range, Kamchatka and Russian Arctic which have been derived from ASTER and Landsat imagery and could be used for glacier changes evaluation. The results show that glaciers are retreating in all these regions. There is, however

  20. Impact of glaciers retreat on highland Andean wetlands and communities: lessons from the upper Cachi catchment (Ayacucho, Peru)

    Science.gov (United States)

    Angulo, Oscar; Biévre Bert, De

    2017-04-01

    The vulnerability of water resources under climate change scenarios in Peru is generally regarded to be connected to a diminished availability of water due to retreating glaciers. However, the impact of glacier retreat goes much beyond a decline of glacial water reserves. This article argues that another important impact is the extreme erosion in areas where glaciers have recently melted, as well as the accumulation of erosion material in highland wetlands located downslope. As a direct consequence of these changes highland Andean communities which depend on these ecosystems are affected in socio-economic terms as they find themselves forced to alter ancestral dynamics and traditional practices of land and water use. This quickly leads to a vicious cycle of risks and threats. In such a context a possibility to adapt to glacial retreat should be to protect areas affected by glacial melt in order to enable a rapid development of protective vegetation cover. In the upper catchment of the Cachi River interesting experiences of protection and water harvesting exist that could be extended to other high vulnerability areas for the benefit of highland populations as well as downstream water users, such as the irrigation system of Cachi and the city of Ayacucho.

  1. Tidewater dynamics at Store Glacier, West Greenland from daily repeat UAV surveys

    Science.gov (United States)

    Ryan, Jonathan; Hubbard, Alun; Toberg, Nick; Box, Jason; Todd, Joe; Christoffersen, Poul; Neal, Snooke

    2017-04-01

    A significant component of the Greenland ice sheet's mass wasteage to sea level rise is attributed to the acceleration and dynamic thinning at its tidewater margins. To improve understanding of the rapid mass loss processes occurring at large tidewater glaciers, we conducted a suite of daily repeat aerial surveys across the terminus of Store Glacier, a large outlet draining the western Greenland Ice Sheet, from May to July 2014 (https://www.youtube.com/watch?v=-y8kauAVAfE). The unmanned aerial vehicles (UAVs) were equipped with digital cameras, which, in combination with onboard GPS, enabled production of high spatial resolution orthophotos and digital elevation models (DEMs) using standard structure-from-motion techniques. These data provide insight into the short-term dynamics of Store Glacier surrounding the break-up of the sea-ice mélange that occurred between 4 and 7 June. Feature tracking of the orthophotos reveals that mean speed of the terminus is 16 - 18 m per day, which was independently verified against a high temporal resolution time-series derived from an expendable/telemetric GPS deployed at the terminus. Differencing the surface area of successive orthophotos enable quantification of daily calving rates, which significantly increase just after melange break-up. Likewise, by differencing bulk freeboard volume of icebergs through time we could also constrain the magnitude and variation of submarine melt. We calculate a mean submarine melt rate of 0.18 m per day throughout the spring period with relatively little supraglacial runoff and no active meltwater plumes to stimulate fjord circulation and upwelling of deeper, warmer water masses. Finally, we relate calving rates to the zonation and depth of water-filled crevasses, which were prominent across parts of the terminus from June onwards.

  2. Possible Icelandic Tephra Found in European Colle Gnifetti Glacier

    Science.gov (United States)

    Luongo, M. T.; Kurbatov, A. V.; Erhardt, T.; Mayewski, P. A.; McCormick, M.; More, A. F.; Spaulding, N. E.; Wheatley, S. D.; Yates, M. G.; Bohleber, P. D.

    2017-11-01

    Volcanic ash (tephra) provides unique time markers (isochrons) that are often used as an independent age-control tool for stratigraphic correlations of paleoclimate archives from ice cores. However, little credence has been given to the notion of finding tephra in ice cores collected in the European Alps because of the relatively large distance from volcanic sources and the presumed nature of regional atmospheric circulation patterns. We filtered particles from melted ice core drilling chips gathered roughly every meter during a 2013 drilling operation at Colle Gnifetti glacier in the Swiss-Italian Alps (45°55.74'N, 7°52.58'E, 4450 m asl). One filter, preliminarily dated to the nineteenth century by annual layer counting, contained a group of six visually similar tephra particles. Analyzing their chemistry using a scanning electron microscope equipped with an energy-dispersive x-ray spectrometer established that the six particles were volcanic in origin and are very similar in composition (a distinctive geochemical signature), pointing to a single volcanic eruption source. We proposed that one of several massive nineteenth century Eastern Icelandic eruptions is a potential source given eruption timing, size, tephra dispersion area, and similarities in chemical composition. This first finding of tephra in an Alpine ice core contributes to a regional tephrochronological framework that can be adapted for future correlation among different paleoclimate sequences.

  3. Estimating ice albedo from fine debris cover quantified by a semi-automatic method: the case study of Forni Glacier, Italian Alps

    Science.gov (United States)

    Azzoni, Roberto Sergio; Senese, Antonella; Zerboni, Andrea; Maugeri, Maurizio; Smiraglia, Claudio; Diolaiuti, Guglielmina Adele

    2016-03-01

    In spite of the quite abundant literature focusing on fine debris deposition over glacier accumulation areas, less attention has been paid to the glacier melting surface. Accordingly, we proposed a novel method based on semi-automatic image analysis to estimate ice albedo from fine debris coverage (d). Our procedure was tested on the surface of a wide Alpine valley glacier (the Forni Glacier, Italy), in summer 2011, 2012 and 2013, acquiring parallel data sets of in situ measurements of ice albedo and high-resolution surface images. Analysis of 51 images yielded d values ranging from 0.01 to 0.63 and albedo was found to vary from 0.06 to 0.32. The estimated d values are in a linear relation with the natural logarithm of measured ice albedo (R = -0.84). The robustness of our approach in evaluating d was analyzed through five sensitivity tests, and we found that it is largely replicable. On the Forni Glacier, we also quantified a mean debris coverage rate (Cr) equal to 6 g m-2 per day during the ablation season of 2013, thus supporting previous studies that describe ongoing darkening phenomena at Alpine debris-free glaciers surface. In addition to debris coverage, we also considered the impact of water (both from melt and rainfall) as a factor that tunes albedo: meltwater occurs during the central hours of the day, decreasing the albedo due to its lower reflectivity; instead, rainfall causes a subsequent mean daily albedo increase slightly higher than 20 %, although it is short-lasting (from 1 to 4 days).

  4. MELTED BUTTER TECHNOLOGY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    L. V. Golubeva

    2014-01-01

    Full Text Available Summary. Melted butter is made from dairy butter by rendering the fat phase. It has specific taste and aroma, high-calorie content and good assimilability. Defects of butter which appeared during the storage causes by the development of microbiological processes or by the chemical oxidation. On the development of these processes influence quality and composition of fresh butter, its physical structure, content of the increased amount of gas phase and content of heavy metals, storage conditions. Microbiological spoilage of butter occurs generally due to damage of plasma which is good environment for the development of microorganisms. Defects of microbiological origin include: unclean, sour, moldy, yeasty, cheesy, bitter taste. Defects of test and smell chemical origin are formed due to hydrolytic digestion of lipids. It's prevailed at long storage of butter in the conditions of freezing temperatures. It's picked out the following main processes of spoiling: souring, acidifying and sallowness. Often these processes take place simultaneously.It has been investigated melted butter with lactated additive. The latter improves the microbiological and toxicological safety, prolongs the storage condition of the products. Technological efficiency of the additives is achieved by a multilayer products formation from the inactive bound water, preventing microorganisms growth and by the barrier layer with lactate inhibiting hydrolytic reactions. Oil samples were obtained with the batch-type butter maker application, then they were melted and after that lactated additive were supplemented. It has been studied organoleptic and physico-chemical indices of the melted butter samples. The fatty-acid composition of melted butter were studied. Comparative analysis of fatty-acid composition of cow's milk fat and produced melted butter has shown their similarity. Also in the last sample there is increased weight fraction of linoleic and linolenic acids. The obtained

  5. Franz Josef and Fox Glaciers, New Zealand: Historic length records

    Science.gov (United States)

    Purdie, Heather; Anderson, Brian; Chinn, Trevor; Owens, Ian; Mackintosh, Andrew; Lawson, Wendy

    2014-10-01

    Compilation of modern and historical length change records for Franz Josef and Fox Glaciers demonstrates that these glaciers have lost ~ 3 km in length and at least 3-4 km2 in area since the 1800s, with the greatest overall loss occurring between 1934 and 1983. Within this dramatic and ongoing retreat, both glaciers have experienced periods of re-advance. The record from Franz Josef Glacier is the most detailed, and shows major advances from 1946 to 1951 (340 m), 1965-1967 (400 m), 1983-1999 (1420 m) and 2004-2008 (280 m). At Fox Glacier the record is similar, with advances recorded during 1964-1968 (60 m), 1985-1999 (710 m) and 2004-2008 (290 m). Apart from the latest advance event, the magnitude of advance has been greater at Franz Josef Glacier, suggesting a higher length sensitivity. Analysis of the relationship between glacier length and a reconstructed annual equilibrium line altitude (ELA) record shows that the glaciers react very quickly to ELA variations - with the greatest correlation at 3-4 years' lag. The present (2014) retreat is the fastest retreat in the records of both glaciers. While decadal length fluctuations have been linked to hemispheric ocean-atmosphere variability, the overall reduction in length is a clear sign of twentieth century warming. However, documenting glacier length changes can be challenging; especially when increased surface debris-cover makes identification of the 'true' terminus a convoluted process.

  6. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  7. On turbulent heat flux contributions to the energy balance at the Opabin Glacier, Yoho National Park, Canada

    Science.gov (United States)

    Losic, Mira

    Turbulent heat flux and its contribution to energy balance is investigated at two glaciers in the Canadian Rockies. Detailed profile measurements of wind, temperature, and humidity in the lower boundary layer above the Opabin Glacier reveal a predominantly stable boundary layer regime. Wind speeds generally increase with height and temperature profiles are predominantly logarithmic in nature, however humidity profiles do not exhibit the archetypal shape. Roughness lengths derived using the profile method are used to calculate energy balance in fifteen unique models per site. The models perform best at both sites when a constant roughness value is used; however, the median value of all found roughness lengths performs better than mean value which is typically used in current literature. Model results improve when melt is restricted to periods when surface temperature is above 0°C, and when atmospheric stability corrections are applied.

  8. Multi-year analysis of distributed glacier mass balance modelling and equilibrium line altitude on King George Island, Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    U. Falk

    2018-04-01

    Full Text Available The South Shetland Islands are located at the northern tip of the Antarctic Peninsula (AP. This region was subject to strong warming trends in the atmospheric surface layer. Surface air temperature increased about 3 K in 50 years, concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. The positive trend in surface air temperature has currently come to a halt. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0 K (100 m−1 and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns. The increased mesocyclonic activity during the wintertime over the past decades in the study area results in intensified advection of warm, moist air with high temperatures and rain and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. Its impact on winter accumulation results in the observed negative mass balance estimates. Six years of continuous glaciological measurements on mass balance stake transects as well as 5 years of climatological data time series are presented and a spatially distributed glacier energy balance melt model adapted and run based on these multi-year data sets. The glaciological surface mass balance model is generally in good agreement with observations, except for atmospheric conditions promoting snow drift by high wind speeds, turbulence-driven snow deposition and snow layer erosion by rain. No drift in the difference between simulated mass balance and mass balance measurements can be seen over the course of the 5-year model run period. The winter accumulation does not suffice to compensate for the high variability in summer ablation. The results are analysed to assess changes in meltwater input to the coastal waters, specific glacier mass balance and the equilibrium line altitude (ELA. The

  9. Surface melt on Antarctic ice shelves driven by wind-albedo interactions

    Science.gov (United States)

    Lhermitte, Stef; Lenaerts, Jan

    2017-04-01

    Surface melt and subsequent firn air depletion is considered an important precursor for disintegration of Antarctic ice shelves, causing grounded glaciers to accelerate and sea level to rise. Recent studies have highlighted the impact of surface winds on Antarctic ice shelf melt, both on the Antarctic Peninsula and in East Antarctica. In the Antarctic Peninsula, foehn winds enhance melting near the grounding line, which in the recent past has led to the disintegration of the most northerly ice shelves. On the East Antarctic ice shelves, on the other hand, meltwater-induced firn air depletion is found in the grounding zone as result of persistent katabatic winds, regionally warming the atmosphere and inducing a melt-albedo feedback. Here, we use a combination multi-source satellite imagery, snow modelling, climate model output and in-situ observations to highlight the importance of this wind-induced melt and to show its widespread occurrence across Antarctica. The satellite imagery gives insight in the meltwater drainage systems, showing spatio-temporal changes in both supraglacial and englacial water throughout the melt season and during the subsequent winter. Although the wind-induced melt is a regional phenomenon with strong inter-annual variability, it is strongly correlated to larger scale climate parameters, such as summer surface temperature. Based on these correlations and snow model output driven by future climate scenarios, we can constrain the future changes to this local melt near the grounding line.

  10. Current state of glaciers in the tropical Andes: a perspective on glacier evolution and climate change

    Science.gov (United States)

    Rabatel, Antoine; Francou, Bernard; Soruco, Alvaro; Gomez, Jesus; Caceres, Bolivar; Ceballos, Jorge-Luis; Vuille, Mathias; Sicart, Jean-Emmanuel; Huggel, Christian

    2013-04-01

    This presentation provides a comprehensive overview of the studies of glaciers in the tropical Andes conducted in recent decades leading to the current status of the glaciers in the context of climate change. In terms of changes in surface area and length, we show that the glacier retreat in the tropical Andes over the last three decades is unprecedented since the maximum extension of the LIA (mid 17th - early 18th century). In terms of changes in mass balance, although there have been some sporadic gains on several glaciers, we show that the trend has been quite negative over the past 50 years, with a mean mass balance deficit for glaciers in the tropical Andes that is slightly more negative than the one computed on a global scale. A break point in the trend appeared in the late 1970s with mean annual mass balance per year decreasing from -0.2 m w.e. in the period 1964-1975 to -0.76 m w.e. in the period 1976-2010. In addition, even if glaciers are currently retreating everywhere in the tropical Andes, it should be noted that this is much more pronounced on small glaciers at low altitudes that do not have a permanent accumulation zone, and which could disappear in the coming years/decades. Monthly mass balance measurements performed in Bolivia, Ecuador and Colombia show that variability of the surface temperature of the Pacific Ocean is the main factor governing variability of the mass balance at the decadal time scale. Precipitation did not display a significant trend in the tropical Andes in the 20th century, and consequently cannot explain the glacier recession. On the other hand, temperature increased at a significant rate of 0.10°C/decade in the last 70 years. The higher frequency of El Niño events and changes in its spatial and temporal occurrence since the late 1970s together with a warming troposphere over the tropical Andes may thus explain much of the recent dramatic shrinkage of glaciers in this part of the world.

  11. Southwest Greenland's Alpine Glacier History: Recent Glacier Change in the Context of the Holocene Geologic Record

    Science.gov (United States)

    Larocca, L. J.; Axford, Y.; Lasher, G. E.; Lee, C. W.

    2017-12-01

    Due to anthropogenic climate change, the Arctic region is currently undergoing major transformation, and is expected to continue warming much faster than the global average. To put recent and future changes into context, a longer-term understanding of this region's past response to natural climate variability is needed. Given their sensitivity to modest climate change, small alpine glaciers and ice caps on Greenland's coastal margin (beyond the Greenland Ice Sheet) represent ideal features to record climate variability through the Holocene. Here we investigate the Holocene history of a small ( 160 square km) ice cap and adjacent alpine glaciers, located in southwest Greenland approximately 50 km south of Nuuk. We employ measurements on sediment cores from a glacier-fed lake in combination with geospatial analysis of satellite images spanning the past several decades. Sedimentary indicators of sediment source and thus glacial activity, including organic matter abundance, inferred chlorophyll-a content, sediment major element abundances, grain size, and magnetic susceptibility are presented from cores collected from a distal glacier-fed lake (informally referred to here as Per's Lake) in the summer of 2015. These parameters reflect changes in the amount and character of inorganic detrital input into the lake, which may be linked to the size of the upstream glaciers and ice cap and allow us to reconstruct their status through the Holocene. Additionally, we present a complementary record of recent changes in Equilibrium Line Altitude (ELA) for the upstream alpine glaciers. Modern ELAs are inferred using the accumulation area ratio (AAR) method in ArcGIS via Landsat and Worldview-2 satellite imagery, along with elevation data obtained from digital elevation models (DEMs). Paleo-ELAs are inferred from the positions of moraines and trim lines marking the glaciers' most recent expanded state, which we attribute to the Little Ice Age (LIA). This approach will allow us to

  12. Future hydrological regimes and glacier cover in the Everest region: The case study of the upper Dudh Koshi basin.

    Science.gov (United States)

    Soncini, Andrea; Bocchiola, Daniele; Confortola, Gabriele; Minora, Umberto; Vuillermoz, Elisa; Salerno, Franco; Viviano, Gaetano; Shrestha, Dibas; Senese, Antonella; Smiraglia, Claudio; Diolaiuti, Guglielmina

    2016-09-15

    Assessment of future water resources under climate change is required in the Himalayas, where hydrological cycle is poorly studied and little understood. This study focuses on the upper Dudh Koshi river of Nepal (151km(2), 4200-8848ma.s.l.) at the toe of Mt. Everest, nesting the debris covered Khumbu, and Khangri Nup glaciers (62km(2)). New data gathered during three years of field campaigns (2012-2014) were used to set up a glacio-hydrological model describing stream flows, snow and ice melt, ice cover thickness and glaciers' flow dynamics. The model was validated, and used to assess changes of the hydrological cycle until 2100. Climate projections are used from three Global Climate Models used in the recent IPCC AR5 under RCP2.6, RCP4.5 and RCP8.5. Flow statistics are estimated for two reference decades 2045-2054, and 2090-2099, and compared against control run CR, 2012-2014. During CR we found a contribution of ice melt to stream flows of 55% yearly, with snow melt contributing for 19%. Future flows are predicted to increase in monsoon season, but to decrease yearly (-4% vs CR on average) at 2045-2054. At the end of century large reduction would occur in all seasons, i.e. -26% vs CR on average at 2090-2099. At half century yearly contribution of ice melt would be on average 45%, and snow melt 28%. At the end of century ice melt would be 31%, and snow contribution 39%. Glaciers in the area are projected to thin largely up to 6500ma.s.l. until 2100, reducing their volume by -50% or more, and their ice covered area by -30% or more. According to our results, in the future water resources in the upper Dudh Koshi would decrease, and depend largely upon snow melt and rainfall, so that adaptation measures to modified water availability will be required. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Microbial communities of the Lemon Creek Glacier show subtle structural variation yet stable phylogenetic composition over space and time

    Directory of Open Access Journals (Sweden)

    Cody Springer Sheik

    2015-05-01

    Full Text Available Glaciers are geologically important yet transient ecosystems that support diverse, biogeochemically significant microbial communities. During the melt season glaciers undergo dramatic physical, geochemical and biological changes that exert great influence on downstream biogeochemical cycles. Thus, we sought to understand the temporal melt-season dynamics of microbial communities and associated geochemistry at the terminus of Lemon Creek Glacier (LCG in coastal southern Alaska. Due to late season snowfall, sampling of LCG occurred in three interconnected areas: proglacial Lake Thomas, the lower glacial outflow stream and the glacier’s terminus. LCG associated microbial communities were phylogenetically diverse and varied by sampling location. However, Betaproteobacteria, Alphaproteobacteria and Bacteroidetes dominated communities at all sampling locations. Strict anaerobic groups such as methanogens, SR1, and OP11 were also recovered from glacier outflows, indicating anoxic conditions in at least some portions of the LCG subglacial environment. Microbial community structure was significantly correlated with sampling location and sodium concentrations. Microbial communities sampled from terminus outflow waters exhibited day-to-day fluctuation in taxonomy and phylogenetic similarity. However, these communities were not significantly different from randomly constructed communities from all three sites. These results indicate that glacial outflows share a large proportion of phylogenetic overlap with downstream environments and that the observed significant shifts in community structure are driven by changes in relative abundance of different taxa, and not complete restructuring of communities. We conclude that LCG glacial discharge hosts a diverse and relatively stable microbiome that shifts at fine taxonomic scales in response to geochemistry and likely water residence time.

  14. Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ∼1975 and 2007 derived from remote sensing data

    Science.gov (United States)

    Shangguan, D. H.; Bolch, T.; Ding, Y. J.; Kröhnert, M.; Pieczonka, T.; Wetzel, H. U.; Liu, S. Y.

    2015-04-01

    Glacier melt is an essential source of freshwater for the arid regions surrounding the Tian Shan. However, the knowledge about glacier volume and mass changes over the last decades is limited. In the present study, glacier area, glacier dynamics and mass changes are investigated for the period ~1975-2007 for Southern Inylchek Glacier (SIG) and Northern Inylchek Glacier (NIG), the largest glacier system in Central Tian Shan separated by the regularly draining Lake Merzbacher. The area of NIG increased by 2.0 ± 0.1 km2 (~1.3%) in the period ~1975-2007. In contrast, SIG has shrunk continuously in all investigated periods since ~1975. Velocities of SIG in the central part of the ablation region reached ~100-120 m a-1 in 2002/2003, which was slightly higher than the average velocity in 2010/2011. The central part of SIG flows mainly towards Lake Merzbacher rather than towards its terminus. The measured velocities at the distal part of the terminus downstream of Lake Merzbacher were below the uncertainty, indicating very low flow with even stagnant parts. Geodetic glacier mass balances have been calculated using multi-temporal digital elevation models from KH-9 Hexagon (representing the year 1975), SRTM3 (1999), ALOS PRISM (2006) and SPOT-5 high-resolution geometrical (HRG) data (2007). In general, a continuous mass loss for both SIG and NIG could be observed between ~1975 and 2007. SIG lost mass at a rate of 0.43 ± 0.10 m w.e. a-1 and NIG at a rate of 0.25 ± 0.10 m w.e. a-1 within the period ~1975-1999. For the period 1999-2007, the highest mass loss of 0.57 ± 0.46 m w.e. a-1 was found for NIG, whilst SIG showed a potential moderate mass loss of 0.28 ± 0.46 m w.e. a-1. Both glaciers showed a small retreat during this period. Between ~1975 and 1999, we identified a thickening at the front of NIG with a maximum surface elevation increase of about 150 m as a consequence of a surge event. In contrast significant thinning (>0.5 m a-1) and comparatively high velocities

  15. Glaciers and ice caps outside Greenland

    Science.gov (United States)

    Sharp, Marin; Wolken, G.; Burgess, D.; Cogley, J.G.; Copland, L.; Thomson, L.; Arendt, A.; Wouters, B.; Kohler, J.; Andreassen, L.M.; O'Neel, Shad; Pelto, M.

    2015-01-01

    Mountain glaciers and ice caps cover an area of over 400 000 km2 in the Arctic, and are a major influence on global sea level (Gardner et al. 2011, 2013; Jacob et al. 2012). They gain mass by snow accumulation and lose mass by meltwater runoff. Where they terminate in water (ocean or lake), they also lose mass by iceberg calving. The climatic mass balance (Bclim, the difference between annual snow accumulation and annual meltwater runoff) is a widely used index of how glaciers respond to climate variability and change. The total mass balance (ΔM) is defined as the difference between annual snow accumulation and annual mass losses (by iceberg calving plus runoff).

  16. Examining spring wet slab and glide avalanche occurrence along the Going-to-the-Sun Road corridor, Glacier National Park, Montana, USA

    Science.gov (United States)

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.; Reardon, Blase

    2012-01-01

    Wet slab and glide snow avalanches are dangerous and yet can be particularly difficult to predict. Wet slab and glide avalanches are presumably triggered by free water moving through the snowpack and the subsequent interaction with layer or ground interfaces, and typically occur in the spring during warming and subsequent melt periods. In Glacier National Park (GNP), Montana, both types of avalanches can occur in the same year and affect the spring opening operations of the Going-to-the-Sun Road (GTSR).

  17. Updated inventory for three glaciers coverage in Ecuador

    Science.gov (United States)

    Cáceres, B. E.

    2014-12-01

    The first systematic inventory of glacier coverage in Ecuador was performed in the early nineties. It is important to update the knowledge on the evolution and recent relationship with climatic conditions along the Tropical Andes and the risk associated with potential eruptions which will affect the ice covers. This study was conducted to update the information related to glacier coverage on three Ecuadorian volcanoes (Cotopaxi, Antisana, and Chimborazo). It was determined that the glacier coverage reduced by around 37% in average over 40 years. The Ecuadorean glacier coverage measured in 1997 corresponded to 60 km2. Using the data obtained for Cotopaxi, which has been studied in detail, a projection on the glacier coverage to the year 2010 was performed and a value of 48 Km2 was obtained. This evaluation should be confirmed with future studies which include other glaciers such as Cayambe and Altar. Actualy this work is in progress.

  18. Mass loss on Himalayan glacier endangers water resources

    Science.gov (United States)

    Kehrwald, Natalie M.; Thompson, Lonnie G.; Tandong, Yao; Mosley-Thompson, Ellen; Schotterer, Ulrich; Alfimov, Vasily; Beer, Jürg; Eikenberg, Jost; Davis, Mary E.

    2008-11-01

    Ice cores drilled from glaciers around the world generally contain horizons with elevated levels of beta radioactivity including 36Cl and 3H associated with atmospheric thermonuclear bomb testing in the 1950s and 1960s. Ice cores collected in 2006 from Naimona'nyi Glacier in the Himalaya (Tibet) lack these distinctive marker horizons suggesting no net accumulation of mass (ice) since at least 1950. Naimona'nyi is the highest glacier (6050 masl) documented to be losing mass annually suggesting the possibility of similar mass loss on other high-elevation glaciers in low and mid-latitudes under a warmer Earth scenario. If climatic conditions dominating the mass balance of Naimona'nyi extend to other glaciers in the region, the implications for water resources could be serious as these glaciers feed the headwaters of the Indus, Ganges, and Brahmaputra Rivers that sustain one of the world's most populous regions.

  19. Ice flux divergence anomalies on 79north Glacier, Greenland

    DEFF Research Database (Denmark)

    Seroussi, H.; Morlighem, M.; Rignot, E.

    2011-01-01

    onto a regular grid using a scheme (here block kriging) that does not conserve mass or ice flux. This problem is not unique to 79north Glacier but is common to all conventional ice thickness surveys of glaciers and ice sheets; and fundamentally limits the application of ice thickness grids to high......The ice flux divergence of a glacier is an important quantity to examine because it determines the rate of temporal change of its thickness. Here, we combine high-resolution ice surface velocity observations of Nioghalvfjerdsfjorden (79north) Glacier, a major outlet glacier in north Greenland......, with a dense grid of ice thickness data collected with an airborne radar sounder in 1998, to examine its ice flux divergence. We detect large variations, up to 100 m/yr, in flux divergence on grounded ice that are incompatible with what we know of the glacier surface mass balance, basal mass balance...

  20. Observations of brine plumes below melting Arctic sea ice

    OpenAIRE

    Peterson, Algot K.

    2018-01-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous obse...

  1. Reconstruction of Aerosol Concentration and Composition from Glacier Ice Cores

    Science.gov (United States)

    Vogel, Alexander; Dällenbach, Kaspar; El-Haddad, Imad; Wendl, Isabel; Eichler, Anja; Schwikowski, Margit

    2017-04-01

    Reconstruction of the concentration and composition of natural aerosol in an undisturbed atmosphere enables the evaluation of the understanding of aerosol-climate effects, which is currently based on highly uncertain emission inventories of the biosphere under pre-industrial conditions. Understanding of the natural state of the pre-industrial atmosphere and evaluating the atmospheric perturbations by anthropogenic emissions, and their potential feedbacks, is essential for accurate model predictions of the future climate (Boucher et al., 2013). Here, we present a new approach for the chemical characterization of the organic fraction preserved in cold-glacier ice cores. From this analysis historic trends of atmospheric organic aerosols are reconstructed, allowing new insights on organic aerosol composition and mass in the pre-industrial atmosphere, which can help to improve climate models through evaluation of our current understanding of aerosol radiative effects. We present results from a proof-of-principal study, analyzing an 800 year ice core record from the Lomonosovfonna glacier ice core, drilled in 2009 in Svalbard, Norway, using a setup that has until then only been applied on offline measurements of aerosol filter extracts (Dällenbach et al., 2016): The melted ice was nebulized and dried, such that aerosols are formed from the soluble and insoluble organic and inorganic compounds that are preserved in the ice. To improve the sensitivity, the aerosol stream was then enriched by the application of an online aerosol concentrator, before the aerosol was analyzed by electron ionization within a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). We were able to demonstrate that this setup is a quantitative method toward nitrate and sulfate when internal inorganic standards of NH415NO3 and (NH4)234SO4 are added to the sample. Comparison between AMS and IC measurements of nitrate and sulfate resulted in an excellent agreement. The analysis of

  2. Light-absorbing impurities in a southern Tibetan Plateau glacier: Variations and potential impact on snow albedo and radiative forcing

    Science.gov (United States)

    Li, Xiaofei; Kang, Shichang; Zhang, Guoshuai; Qu, Bin; Tripathee, Lekhendra; Paudyal, Rukumesh; Jing, Zhefan; Zhang, Yulan; Yan, Fangping; Li, Gang; Cui, Xiaoqing; Xu, Rui; Hu, Zhaofu; Li, Chaoliu

    2018-02-01

    Light-absorbing impurities (LAIs), such as organic carbon (OC), black carbon (BC), and mineral dust (MD), deposited on the surface snow of glacier can reduce the surface albedo. As there exists insufficient knowledge to completely characterize LAIs variations and difference in LAIs distributions, it is essential to investigate the behaviors of LAIs and their influence on the glaciers across the Tibetan Plateau (TP). Therefore, surface snow and snowpit samples were collected during September 2014 to September 2015 from Zhadang (ZD) glacier in the southern TP to investigate the role of LAIs in the glacier. LAIs concentrations were observed to be higher in surface aged snow than in the fresh snow possibly due to post-depositional processes such as melting or sublimation. The LAIs concentrations showed a significant spatial distribution and marked negative relationship with elevation. Impurity concentrations varied significantly with depth in the vertical profile of the snowpit, with maximum LAIs concentrations frequently occurred in the distinct dust layers which were deposited in non-monsoon, and the bottom of snowpit due to the eluviation in monsoon. Major ions in snowpit and backward trajectory analysis indicated that regional activities and South Asian emissions were the major sources. According to the SNow ICe Aerosol Radiative (SNICAR) model, the average simulated albedo caused by MD and BC in aged snow collected on 31 May 2015 accounts for about 13% ± 3% and 46% ± 2% of the albedo reduction. Furthermore, we also found that instantaneous RF caused by MD and BC in aged snow collected on 31 May 2015 varied between 4-16 W m- 2 and 7-64 W m- 2, respectively. The effect of BC exceeds that of MD on albedo reduction and instantaneous RF in the study area, indicating that BC played a major role on the surface of the ZD glacier.

  3. Export fluxes of geochemical solutes in the meltwater stream of Sutri Dhaka Glacier, Chandra basin, Western Himalaya.

    Science.gov (United States)

    Singh, Ajit T; Laluraj, C M; Sharma, Parmanand; Patel, Lavkush K; Thamban, Meloth

    2017-10-12

    The hydrochemistry of meltwater from the Sutri Dhaka Glacier, Western Himalaya, has been studied to understand the influence of the factors controlling the weathering processes of the glaciers during the peak ablation period. The high solar irradiance prompted intense melting, which has raised the stream flow of the glacier. The meltwater has been observed as slightly alkaline (mean pH 8.2) and contains the major anions (HCO 3 -  > SO 4 2-  > NO 3 -  > Cl - ) and cations (Ca 2+  > Mg 2+  > K +  > Na +  > NH 4 + ) with Ca 2+ (78.5%) and HCO 3 - (74.5%) as the dominant species. The piper diagram indicates the category of stream meltwater as Ca 2+ -HCO 3 - type. In addition, it is evident from the Gibbs diagram that the interaction between the meltwater and bedrock controls the ionic concentrations of the glacial meltwater. The high ratio value (~ 0.75) of HCO 3 - /(HCO 3 -  + SO 4 2- ) indicates that the carbonate weathering is dominant. Fe and Al followed by Mn, Sr, and Ti are the most dominant trace elements present in the meltwater. The significant negative correlation exhibited by the major ions and Sr with the discharge is recommended for the enrichment of these solutes during the lean discharge periods. However, the insignificant correlation of Fe, Al, Mn, and Ti with discharge suggests their physicochemical control. The principal component analysis (PCA) carried has highlighted three dominant composites, i.e., the water-rock interaction, atmospheric dust inputs, and physicochemical changes in the meltwater. Hence, the present study elucidates the export of geochemical solutes from Sutri Dhaka Glacier and factors governing the water chemistry, which helps in the better understanding of hydrochemical processes of the Himalayan glaciers and substantial improvement of our understanding about the glacio-hydrological environments and their response in the scenario of global warming.

  4. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Directory of Open Access Journals (Sweden)

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  5. Estimating future flood frequency and magnitude in basins affected by glacier wastage.

    Science.gov (United States)

    2015-03-01

    We present field measurements of meteorology, hydrology and glaciers and long-term modeled projections of glacier mass balance and : stream flow informed by downscaled climate simulations. The study basins include Valdez Glacier Stream (342 km2 : ), ...

  6. Satellite monitoring of glaciers in the Karakoram from 1977 to 2013: an overall almost stable population of dynamic glaciers

    Science.gov (United States)

    Brahmbhatt, R. M.; Bahuguna, I. M.; Rathore, B. P.; Singh, S. K.; Rajawat, A. S.; Shah, R. D.; Kargel, J. S.

    2015-03-01

    Six hundred and seven glaciers of the Shigar, Shashghan, Nubra and part of Shyok sub-basins of the Karakoram region were monitored using satellite data of years 1977, 1990, 2000, 2001, 2002, 2004, 2006, 2008, 2009, 2010, 2011 and 2013. Landsat MSS, TM, ETM+ and IRS/Resourcesat-1 LISS III data were used. Glacier observations were classified into 3 categories such as advance, retreat or stable with reference to base data of 1977. Glaciers of the Karakoram have shown inconsistency in advance, retreat and no change during this period, and some examples of glacier surging have been caught in action. Despite significant geographic and temporal variability betraying the dynamic nature of many of the glaciers, in aggregate the population is roughly stable with less propensity toward retreat than most other glaciers in the nearby Himalaya and in the world. 341 glaciers exhibited no measured change throughout the 36 years of the study. Among other glaciers, no significant and sustained pattern of retreat or advance was observed. The overall changes in glacier area in the whole region are of small magnitudes (positive and negative values) in the various measured intervals. Moreover, it is mostly disconnected glaciers in tributary valleys which have advanced, whereas the main former trunk glaciers have primarily not changed. The dynamical differences between disconnected former tributaries and trunks may be related to response time differences, with the smaller, perhaps steeper tributaries responding more rapidly than trunks to brief climatic fluctuations. The advance/retreat fluctuations of many individual glaciers suggest that their response times primarily may be of order decades rather than some longer period, though some glaciers may have longer response times that have limited their length and area changes over the 36 year study period. The data from 2001 onwards were also utilized for finding annual changes of glaciers. Among the 607 glaciers, 10 show considerable

  7. How Greenland melts

    Directory of Open Access Journals (Sweden)

    van den Broeke M.R.

    2010-12-01

    Full Text Available Satellite altimetry and gravimetry show that the Greenland ice sheet has been losing volume and mass since the beginning of this century. However, from these short time series of direct measurements we cannot infer what the causes of the mass loss are, i.e. ice dynamics or surface processes, or that maybe the ice sheet returns to normal after a period of volume increase and mass gain. By modelling and observing the individual components of the ice sheet mass balance, i.e. snowfall, meltwater runoff and iceberg production, we are able to identify the processes that led to the recent mass loss. We conclude that the Greenland ice sheet is significantly out of balance. Acceleration of outlet glaciers and increased runoff have contributed equally to recent Greenland mass loss. The potential for mass loss by surface processes, however, was three times greater than actually observed, due to refreezing and enhanced snowfall.

  8. Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Kjeldsen, Kristian Kjellerup; Kjær, Kurt H.

    2014-01-01

    Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance on the decadal scale. To improve...... temperature to records of thickness and velocity change suggest that both glaciers are highly sensitive to short-term atmospheric and ocean forcing, and respond very quickly to small fluctuations. On century timescales, however, multiple external parameters (e.g. outlet glacier shape) may dominate the mass...... change. These findings suggest that special care must be taken in the projection of future dynamic ice loss....

  9. The rock melting approach to drilling

    Energy Technology Data Exchange (ETDEWEB)

    Cort, G.E.; Goff, S.J.; Rowley, J.C.; Neudecker, J.W. Jr.; Dreesen, D.S.; Winchester, W.

    1993-09-01

    During the early and mid-1970`s the Los Alamos National Laboratory demonstrated practical applications of drilling and coring using an electrically-heated graphite, tungsten, or molybdenum penetrator that melts a hole as it is slowly pushed through the rock or soil. The molten material consolidates into a rugged glass lining that prevents hole collapse; minimizes the potential for cross-flow, lost circulation, or the release of hazardous materials without casing operations; and produces no cuttings in porous or low density (<1.7 g/cc) formations. Because there are no drilling fluids required, the rock