WorldWideScience

Sample records for melter off-gas system

  1. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  2. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  3. Hazards analysis of TNX Large Melter-Off-Gas System

    International Nuclear Information System (INIS)

    Randall, C.T.

    1982-03-01

    Analysis of the potential safety hazards and an evaluation of the engineered safety features and administrative controls indicate that the LMOG System can be operated without undue hazard to employees or the public, or damage to equipment. The safety features provided in the facility design coupled with the planned procedural and administrative controls make the occurrence of serious accidents very improbable. A set of recommendations evolved during this analysis that was judged potentially capable of further reducing the probability of personnel injury or further mitigating the consequences of potential accidents. These recommendations concerned areas such as formic acid vapor hazards, hazard of feeding water to the melter at an uncontrolled rate, prevention of uncontrolled glass pours due to melter pressure excursions and additional interlocks. These specific suggestions were reviewed with operational and technical personnel and are being incorporated into the process. The safeguards provided by these recommendations are discussed in this report

  4. Remediation on off-gas system deposits in a radioactive waste glass melter

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.M.; Choi, A.S.; Randall, C.T.

    1991-12-31

    Since the early 1980`s, research glass melters have been used at the Savannah River Laboratory (SRL) to develop the reference vitrification process for immobilization of high level radioactive waste. One of the operating concerns for these melters has been the pluggage of the off-gas system with solid deposits. Samples of these deposits were analyzed to be mixture of alkali-rich chlorides, sulfates, borates, and fluorides with entrained Fe{sub 2}O{sub 3} spinel, and frit particles. The spatial distribution of these deposits throughout the off-gas system indicates that they form by vapor-phase transport and subsequently condensation. Condensation of the alkali-rich phases cements entrained particulates causing the off-gas line to plug. It is concluded that off-gas system pluggage can be effectively controlled by maintaining the off-gas velocity above 16 m/s, while maintaining the off-gas temperature as high as practical below the glass softening point. This paper summarizes the results of chemical and physical analyses of off-gas deposit samples from various melters at SRL. Recent design changes made to the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) to alleviate the pluggage problem are also discussed.

  5. Remediation on off-gas system deposits in a radioactive waste glass melter

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.M.; Choi, A.S.; Randall, C.T.

    1991-01-01

    Since the early 1980's, research glass melters have been used at the Savannah River Laboratory (SRL) to develop the reference vitrification process for immobilization of high level radioactive waste. One of the operating concerns for these melters has been the pluggage of the off-gas system with solid deposits. Samples of these deposits were analyzed to be mixture of alkali-rich chlorides, sulfates, borates, and fluorides with entrained Fe{sub 2}O{sub 3} spinel, and frit particles. The spatial distribution of these deposits throughout the off-gas system indicates that they form by vapor-phase transport and subsequently condensation. Condensation of the alkali-rich phases cements entrained particulates causing the off-gas line to plug. It is concluded that off-gas system pluggage can be effectively controlled by maintaining the off-gas velocity above 16 m/s, while maintaining the off-gas temperature as high as practical below the glass softening point. This paper summarizes the results of chemical and physical analyses of off-gas deposit samples from various melters at SRL. Recent design changes made to the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) to alleviate the pluggage problem are also discussed.

  6. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems

  7. Literature Review: Assessment of DWPF Melter and Melter Off-gas System Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-30

    Testing to date for the MOC for the Hanford Waste Treatment and Immobilization Plant (WTP) melters is being reviewed with the lessons learned from DWPF in mind and with consideration to the changes in the flowsheet/feed compositions that have occurred since the original testing was performed. This information will be presented in a separate technical report that identifies any potential gaps for WTP processing.

  8. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Vance, R.F. [West Valley Nuclear Services Co., Inc., NY (United States)

    1995-02-01

    The West Valley Demonstration Project was established by Public Law 96-368, the {open_quotes}West Valley Demonstration Project Act, {close_quotes} on October 1, l980. Under this act, Congress directed the Department of Energy to carry out a high level radioactive waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The purpose of this project is to demonstrate solidification techniques which can be used for preparing high level radioactive waste for disposal. In addition to developing this technology, the West Valley Demonstration Project Act directs the Department of Energy to: (1) develop containers suitable for permanent disposal of the high level waste; (2) transport the solidified high level waste to a Federal repository; (3) dispose of low level and transuranic waste produced under the project; and (4) decontaminate and decommission the facilities and materials associated with project activities and the storage tanks originally used to store the liquid high level radioactive waste. The process of vitrification will be used to solidify the high level radioactive liquid wastes into borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems which are used in the vitrification process.

  9. CHARACTERIZATION OF DWPF MELTER OFF-GAS QUENCHER SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J.

    2011-11-14

    The Savannah River National Laboratory (SRNL) recently received a deposit sample from the Melter Primary Off Gas System (POG) of the Defense Waste Processing Facility (DWPF). This sample was composed of material that had been collected while the quencher was in operation January 27, 2011 through March 31, 2011. DWPF requested, through a technical assistance request, characterization of the melter off-gas deposits by x-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical analysis. The purpose of the Melter Off-Gas System is to reduce the amount of radioactive particles and mercury in the gases vented to the atmosphere. Gases emitted from the melter pass through the primary film cooler, quencher, Off-Gas Condensate Tank (OGCT), Steam Atomized Scrubbers (SAS), a condenser, a high efficiency mist eliminator, and a high efficiency particulate air filter, before being vented to the Process Vessel Vent System. The film coolers cool the gases leaving the melter vapor space from {approx}750 C to {approx}375 C, by introducing air and steam to the flow. In the next step, the quencher cools the gas to about 60 C by bringing the condensate from the OGCT in contact with the effluent (Figure 1). Most of the steam in the effluent is then condensed and the melter vapor space pressure is reduced. The purpose of the OGCT is to collect and store the condensate formed during the melter operation. Condensate from the OGCT is circulated to the SAS and atomized with steam. This atomized condensate is mixed with the off-gas to wet and join the particulate which is then removed in the cyclone. The next stage incorporates a chilled water condenser which separates the vapors and elemental mercury from the off-gas steam. Primary off-gas deposit samples from the DWPF melter have previously been analyzed. In 2003, samples from just past the film cooler, from the inlet of the quencher and inside the quencher were analyzed at SRNL. It was determined that the samples were a

  10. Modeling The Impact Of Elevated Mercury In Defense Waste Processing Facility Melter Feed On The Melter Off-Gas System - Preliminary Report

    International Nuclear Information System (INIS)

    Zamecnik, J.; Choi, A.

    2009-01-01

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl 2 , and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg 2 Cl 2 ) to HgCl 2 with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of

  11. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Choi, A.

    2010-08-18

    chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly

  12. Performance of a large-scale melter off-gas system utilizing simulated SRP DWPF waste

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, J L; Randall, C T

    1984-03-01

    The Department of Energy and the DuPont Company have begun construction of a Defense Waste Processing Facility to immobilize radioactive waste now stored as liquids at the Department of Energy's Savannah River Plant. The immobilization process solidifies waste sludge by vitrification into a leach-resistant borosilicate glass. Development of the process has been the responsibility of the Savannah River Laboratory. As part of the development, two large-scale glass melter systems have been designed and operated with simulated waste. Experimental data from these operations show that process requirements will be met. 6 references, 8 figures, 4 tables.

  13. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3) melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.

  14. DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.; Lambert, D.

    2014-08-27

    . Sample calculations of the system are also included in this report. Please note that the system developed and documented in this report is intended as an alternative to the current, analytically-driven system being utilized by DWPF; the proposed system is not intended to eliminate the current system. Also note that the system developed in this report to track antifoam mass in the AMFT, SRAT, and SME will be applicable beyond just Sludge Batch 8. While the model used to determine acceptability of the SME product with respect to melter off-gas flammability controls must be reassessed for each change in sludge batch, the antifoam mass tracking methodology is independent of sludge batch composition and as such will be transferable to future sludge batches.

  15. FINAL REPORT REGULATORY OFF GAS EMISSIONS TESTING ON THE DM1200 MELTER SYSTEM USING HLW AND LAW SIMULANTS VSL-05R5830-1 REV 0 10/31/05

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    The operational requirements for the River Protection Project - Waste Treatment Plant (RPP-WTP) Low Activity Waste (LAW) and High Level Waste (HLW) melter systems, together with the feed constituents, impose a number of challenges to the off-gas treatment system. The system must be robust from the standpoints of operational reliability and minimization of maintenance. The system must effectively control and remove a wide range of solid particulate matter, acid mists and gases, and organic constituents (including those arising from products of incomplete combustion of sugar and organics in the feed) to concentration levels below those imposed by regulatory requirements. The baseline design for the RPP-WTP LAW primary off-gas system includes a submerged bed scrubber (SBS), a wet electrostatic precipitator (WESP), and a high efficiency particulate air (HEPA) filter. The secondary off-gas system includes a sulfur-impregnated activated carbon bed (AC-S), a thermal catalytic oxidizer (TCO), a single-stage selective catalytic reduction NOx treatment system (SCR), and a packed-bed caustic scrubber (PBS). The baseline design for the RPP-WTP HLW primary off-gas system includes an SBS, a WESP, a high efficiency mist eliminator (HEME), and a HEPA filter. The HLW secondary off-gas system includes a sulfur-impregnated activated carbon bed, a silver mordenite bed, a TCO, and a single-stage SCR. The one-third scale HLW DM1200 Pilot Melter installed at the Vitreous State Laboratory (VSL) was equipped with a prototypical off-gas train to meet the needs for testing and confirmation of the performance of the baseline off-gas system design. Various modifications have been made to the DM1200 system as the details of the WTP design have evolved, including the installation of a silver mordenite column and an AC-S column for testing on a slipstream of the off-gas flow; the installation of a full-flow AC-S bed for the present tests was completed prior to initiation of testing. The DM1200

  16. Improvement of melter off-gas design for commercial HALW vitrification facility

    International Nuclear Information System (INIS)

    Ohno, A.; Kitamura, M.; Yamanaka, T.; Yoshioka, M.; Endo, N.; Asano, N.

    2001-01-01

    The Japan commercial reprocessing plant is now under construction, and it will commence the operation in 2005. The High Active Liquid Waste (HALW) generated at the plant is treated into glass product at the vitrification facility using the Liquid Fed Joule-Heated Ceramic Melter (LFCM). The characteristic of the LFCM is that the HALW is fed directly onto the molten glass surface with the glass forming material. This process was developed by the Japan Nuclear Cycle Development Institute (JNC). The JNC process was first applied to the Tokai Vitrification Facility (TVF), which is a pilot scale plant having about 1/6 capacity of the commercial facility. The TVF has been in operation since 1995. During the operation, the rapid increase of the differential pressure between the melter plenum and the dust scrubber was observed. This phenomenon is harmful to the long-term continuous operation of TVF. And, it is also anticipated that the same phenomenon will occur in commercial vitrification facility. In order to solve this problem, the countermeasures were studied and developed. Through the study on the deposit growing mechanism, it was probable that the rapid increased differential pressure was attributed to the condensation of meta-boric acid at the outlet of the air-film cooler slits. And, the heating and the humidification of purge air were judged to be effective as the countermeasures to suppress the condensation. On the other hand, the water injection into melter off-gas pipe was found to be very effective to reduce the differential pressure as the results of the various tests. The deposit adhered on the inner surface of the off-gas pipe was almost washed out. And, it was also demonstrated that the system was superior to other systems by virtue of its simplicity and stability. In order to apply the system to the commercial scale plant, the scale-up tests were conducted at JNC mock-up facility using the acrylic model. (author)

  17. Impact Of Melter Internal Design On Off-Gas Flammability

    International Nuclear Information System (INIS)

    Choi, A. S.; Lee, S. Y.

    2012-01-01

    The purpose of this study was to: (1) identify the more dominant design parameters that can serve as the quantitative measure of how prototypic a given melter is, (2) run the existing DWPF models to simulate the data collected using both DWPF and non-DWPF melter configurations, (3) confirm the validity of the selected design parameters by determining if the agreement between the model predictions and data is reasonably good in light of the design and operating conditions employed in each data set, and (4) run Computational Fluid Dynamics (CFD) simulations to gain new insights into how fluid mixing is affected by the configuration of melter internals and to further apply the new insights to explaining, for example, why the agreement is not good

  18. Impact Of Melter Internal Design On Off-Gas Flammability

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S.; Lee, S. Y.

    2012-05-30

    The purpose of this study was to: (1) identify the more dominant design parameters that can serve as the quantitative measure of how prototypic a given melter is, (2) run the existing DWPF models to simulate the data collected using both DWPF and non-DWPF melter configurations, (3) confirm the validity of the selected design parameters by determining if the agreement between the model predictions and data is reasonably good in light of the design and operating conditions employed in each data set, and (4) run Computational Fluid Dynamics (CFD) simulations to gain new insights into how fluid mixing is affected by the configuration of melter internals and to further apply the new insights to explaining, for example, why the agreement is not good.

  19. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  20. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  1. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  2. ART CCIM Phase II-A Off-Gas System Evaluation Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg; Jay Roach

    2009-01-01

    This test plan defines testing to be performed using the Idaho National Laboratory (INL) engineering-scale cold crucible induction melter (CCIM) test system for Phase II-A of the Advanced Remediation Technologies (ART) CCIM Project. The multi-phase ART-CCIM Project is developing a conceptual design for replacing the joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) with a cold crucible induction melter. The INL CCIM test system includes all feed, melter off-gas control, and process control subsystems needed for fully integrated operation and testing. Testing will include operation of the melter system while feeding a non-radioactive slurry mixture prepared to simulate the same type of waste feed presently being processed in the DWPF. Process monitoring and sample collection and analysis will be used to characterize the off-gas composition and properties, and to show the fate of feed constituents, to provide data that shows how the CCIM retrofit conceptual design can operate with the existing DWPF off-gas control system.

  3. Melter viewing system for liquid-fed ceramic melters

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.; Brenden, B.B.

    1988-01-01

    Melter viewing systems are an integral component of the monitoring and control systems for liquid-fed ceramic melters. The Pacific Northwest Laboratory (PNL) has designed cameras for use with glass melters at PNL, the Hanford Waste Vitrification Plant (HWVP), and West Valley Demonstration Project (WVDP). This report is a compilation of these designs. Operating experiences with one camera designed for the PNL melter are discussed. A camera has been fabricated and tested on the High-Bay Ceramic Melter (HBCM) and the Pilot-Scale Ceramic Melter (PSCM) at PNL. The camera proved to be an effective tool for monitoring the cold cap formed as the feed pool developed on the molten glass surface and for observing the physical condition of the melter. Originally, the camera was built to operate using the visible light spectrum in the melter. It was later modified to operate using the infrared (ir) spectrum. In either configuration, the picture quality decreases as the size of the cold cap increases. Large cold caps cover the molten glass, reducing the amount of visible light and reducing the plenum temperatures below 600 0 C. This temperature corresponds to the lowest level of blackbody radiation to which the video tube is sensitive. The camera has been tested in melter environments for about 1900 h. The camera has withstood mechanical shocks and vibrations. The cooling system in the camera has proved effective in maintaining the optical and electronic components within acceptable temperature ranges. 10 refs., 15 figs

  4. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, John M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-29

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  5. Detection device for off-gas system accidents

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Tsuruoka, Ryozo; Yamanari, Shozo.

    1984-01-01

    Purpose: To rapidly isolate the off-gas system by detecting the off-gas system failure accident in a short time. Constitution: Radiation monitors are disposed to ducts connecting an exhaust gas area and an air conditioning system as a portion of a turbine building. The ducts are disposed independently such that they ventilate only the atmosphere in the exhaust gas area and do not mix the atmosphere in the turbine building. Since radioactivity issued upon off-gas accidents to the exhaust gas area is sucked to the duct, it can be detected by radiation detection monitors in a short time after the accident. Further, since the operator judges it as the off-gas system accident, the off-gas system can be isolated in a short time after the accident. (Moriyama, K.)

  6. ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg

    2009-04-01

    AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. A simulant of the DWPF SB4 feed was successfully fed and melted in a small pilot-scale CCIM system during two test series. The OGSE tests provide initial results that (a) provide melter operating conditions while feeding a DWPF SB4 simulant feed, (b) determine the fate of feed organic and metal feed constituents and metals partitioning, and (c) characterize the melter off-gas source term to a downstream off-gas system. The INL CCIM test system was operated continuously for about 30 hours during the parametric test series, and for about 58 hours during the OGSE test. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter

  7. Results of cleaning dissolver off-gas in the PASSAT prototype dissolver off-gas filter system

    International Nuclear Information System (INIS)

    Furrer, J.; Kaempffer, R.; Linek, A.; Merz, A.

    1981-01-01

    For demonstration of an advanced dissolver off-gas cleaning system the new PASSAT filter system has been developed, set up under licensing conditions pertinent to industrial scale reprocessing facilities and commissioned for trial operation. Major components of the PASSAT off-gas cleaning system are the packed fiber mist eliminator with flushing capability (Brink filter) for initial removal of droplet and solid aerosols, which has been installed to extend the service life of HEPA filters, and the series connected iodine adsorption filters for optimum utilization of the iodine adsorption material, AC 6120. The tests performed so far and the experience accumulated in testing these remotely operated filter components under simulated dissolver off-gas conditions, are described and discussed

  8. Cleanable sintered metal filters in hot off-gas systems

    International Nuclear Information System (INIS)

    Schurr, G.A.

    1981-01-01

    Filters with sintered metal elements, arranged as tube bundles with backflush air cleaning, are the equivalent of bag filters for high-temperature, harsh environments. They are virtually the only alternative for high-temperature off-gas systems where a renewable, highly efficient particle trap is required. Tests were conducted which show that the sintered metal elements installed in a filter system provide effective powder collection in high-temperature atmospheres over thousands of cleaning cycles. Such a sintered metal filter system is now installed on the experimental defense waste calciner at the Savannah River Laboratory. The experimental results included in this paper were used as the basis for its design

  9. Safety evaluation of BWR off-gas treatment systems

    International Nuclear Information System (INIS)

    Schultz, R.J.; Schmitt, R.C.

    1975-01-01

    Some of the results of a safety evaluation performed on current generic types of BWR off-gas treatment systems including cooled and ambient temperature adsorber beds and cryogenics are presented. The evaluation covered the four generic types of off-gas systems and the systems of five major vendors. This study was part of original work performed under AEC contract for the Directorate of Regulatory Standards. The analysis techniques employed for the safety evaluation of these systems include: Fault Tree Analysis; FMECA (Failure Mode Effects and Criticality Analysis); general system comparisons, contaminant, system control, and design adequacy evaluations; and resultant Off-Site Dose Calculations. The salient areas presented are some of the potential problem areas, the approach that industry has taken to mitigate or design against potential upset conditions, and areas where possible deficiencies still exist. Potential problem areas discussed include hydrogen detonation, hydrogen release to equipment areas, operator/automatic control interface, and needed engineering evaluation to insure safe system operation. Of the systems reviewed, most were in the category of advanced or improved over that commonly in use today, and a conclusion from the study was that these systems offer excellent potential for noble gas control for BWR power plants where more stringent controls may be specified -- now or in the future. (U.S.)

  10. Off-gas recirculation system for nuclear reactors

    International Nuclear Information System (INIS)

    Eppler, M.; Lade, H.J.

    1975-01-01

    According to the invention, it is suggested to provide a buffer vessel in the ring main of the off-gas recirculation system for off-gases of a nuclear reactor to which all chambers or vessels which may contain radioactively contaminated gases are connected, within the connection line to outside air. This is to prevent the immediate release of an appreciable amount of gas to the outside air due to pressure variations conditioned by the sequence of operations - e.g. on the filling of the coolant storage. After the improvement, the released gas may be reduced to the amount of gas corresponding to the leakage gas flow entering the ring mains system. (TK) [de

  11. INTEGRATED DM 1200 MELTER TESTING OF HLW C-106/AY-102 COMPOSITION USING BUBBLERS VSL-03R3800-1 REV 0 9/15/03

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of simulated HLW C-106/AY-102 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW C-106/AY-102 feed; determine the effect of bubbling rate on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post test inspections of system components.

  12. Maximum total organic carbon limits at different DWPF melter feed maters (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1996-01-01

    The document presents information on the maximum total organic carbon (TOC) limits that are allowable in the DWPF melter feed without forming a potentially flammable vapor in the off-gas system were determined at feed rates varying from 0.7 to 1.5 GPM. At the maximum TOC levels predicted, the peak concentration of combustible gases in the quenched off-gas will not exceed 60 percent of the lower flammable limit during a 3X off-gas surge, provided that the indicated melter vapor space temperature and the total air supply to the melter are maintained. All the necessary calculations for this study were made using the 4-stage cold cap model and the melter off-gas dynamics model. A high-degree of conservatism was included in the calculational bases and assumptions. As a result, the proposed correlations are believed to by conservative enough to be used for the melter off-gas flammability control purposes

  13. Literature review of arc/plasma, combustion, and joule-heated melter vitrification systems

    International Nuclear Information System (INIS)

    Freeman, C.J.; Abrigo, G.P.; Shafer, P.J.; Merrill, R.A.

    1995-07-01

    This report provides reviews of papers and reports for three basic categories of melters: arc/plasma-heated melters, combustion-heated melters, and joule-heated melters. The literature reviewed here represents those publications which may lend insight to phase I testing of low-level waste vitrification being performed at the Hanford Site in FY 1995. For each melter category, information from those papers and reports containing enough information to determine steady-state mass balance data is tabulated at the end of each section. The tables show the composition of the feed processed, the off-gas measured via decontamination factors, gross energy consumptions, and processing rates, among other data

  14. Design and operation of off-gas cleaning systems at high level liquid waste conditioning facilities

    International Nuclear Information System (INIS)

    1988-01-01

    The immobilization of high level liquid wastes from the reprocessing of irradiated nuclear fuels is of great interest and serious efforts are being undertaken to find a satisfactory technical solution. Volatilization of fission product elements during immobilization poses the potential for the release of radioactive substances to the environment and necessitates effective off-gas cleaning systems. This report describes typical off-gas cleaning systems used in the most advanced high level liquid waste immobilization plants and considers most of the equipment and components which can be used for the efficient retention of the aerosols and volatile contaminants. In the case of a nuclear facility consisting of several different facilities, release limits are generally prescribed for the nuclear facility as a whole. Since high level liquid waste conditioning (calcination, vitrification, etc.) facilities are usually located at fuel reprocessing sites (where the majority of the high level liquid wastes originates), the off-gas cleaning system should be designed so that the airborne radioactivity discharge of the whole site, including the emission of the waste conditioning facility, can be kept below the permitted limits. This report deals with the sources and composition of different kinds of high level liquid wastes and describes briefly the main high level liquid waste solidification processes examining the sources and characteristics of the off-gas contaminants to be retained by the off-gas cleaning system. The equipment and components of typical off-gas systems used in the most advanced (large pilot or industrial scale) high level liquid waste solidification plants are described. Safety considerations for the design and safe operation of the off-gas systems are discussed. 60 refs, 31 figs, 17 tabs

  15. Fabrication of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Jr., Joseph Franklin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-30

    A small sorbent-based capture system was designed that could be placed in the off-gas line from the fuel dissolver in the ATALANTE hot cells with minimal modifications to the ATALANTE dissolver off-gas system. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system have been specified, procured, and received on site at Oak Ridge National Laboratory (ORNL), meeting the April 30, 2015, milestone for completing the fabrication of the ATALANTE dissolver off-gas capture system. This system will be tested at ORNL to verify operation and to ensure that all design requirements for ATALANTE are met. Modifications to the system will be made, as indicated by the testing, before the system is shipped to ATALANTE for installation in the hot cell facility.

  16. Hanford high-level waste melter system evaluation data packages

    International Nuclear Information System (INIS)

    Elliott, M.L.; Shafer, P.J.; Lamar, D.A.; Merrill, R.A.; Grunewald, W.; Roth, G.; Tobie, W.

    1996-03-01

    The Tank Waste Remediation System is selecting a reference melter system for the Hanford High-Level Waste vitrification plant. A melter evaluation was conducted in FY 1994 to narrow down the long list of potential melter technologies to a few for testing. A formal evaluation was performed by a Melter Selection Working Group (MSWG), which met in June and August 1994. At the June meeting, MSWG evaluated 15 technologies and selected six for more thorough evaluation at the Aug. meeting. All 6 were variations of joule-heated or induction-heated melters. Between the June and August meetings, Hanford site staff and consultants compiled data packages for each of the six melter technologies as well as variants of the baseline technologies. Information was solicited from melter candidate vendors to supplement existing information. This document contains the data packages compiled to provide background information to MSWG in support of the evaluation of the six technologies. (A separate evaluation was performed by Fluor Daniel, Inc. to identify balance of plant impacts if a given melter system was selected.)

  17. Development of membrane moisture separator for BWR off-gas system

    International Nuclear Information System (INIS)

    Ogata, H.; Kawamura, S.; Kumasaka, M.; Nishikubo, M.

    2001-01-01

    In BWR plant off-gas treatment systems, dehumidifiers are used to maintain noble gas adsorption efficiency in the first half of the charcoal hold-up units. From the perspective of simplifying and reducing the cost of such a dehumidification system, Japanese BWR utilities and plant fabricators have been developing a dehumidification system employing moisture separation membrane of the type already proven in fields such as medical instrumentation and precision measuring apparatus. The first part of this development involved laboratory testing to simulate the conditions found in an actual off-gas system, the results of which demonstrated satisfactory results in terms of moisture separation capability and membrane durability, and suggested favorable prospects for application in actual off-gas systems. Further, in-plant testing to verify moisture separation capability and membrane durability in the presence of actual gases is currently underway, with results so far suggesting that the system is capable of obtaining good moisture separation capability. (author)

  18. The Behavior and Effects of the Noble Metals in the DWPF Melter System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bickford, D.F.

    1997-11-30

    Governments worldwide have committed to stabilization of high-level nuclear waste (HLW) by vitrification to a durable glass form for permanent disposal. All of these nuclear wastes contain the fission-product noble metals: ruthenium, rhodium, and palladium. SRS wastes also contain natural silver from iodine scrubbers. Closely associated with the noble metals are the fission products selenium and tellurium which are chemical analogs of sulfur and which combine with noble metals to influence their behavior and properties. Experience has shown that these melt insoluble metals and their compounds tend to settle to the floor of Joule-heated ceramic melters. In fact, almost all of the major research and production facilities have experienced some operational problem which can be associated with the presence of dense accumulations of these relatively conductive metals and/or their compounds. In most cases, these deposits have led to a loss of production capability, in some cases, to the point that melter operation could not continue. HLW nuclear waste vitrification facilities in the United States are the Department of Energy`s Defense Waste Processing Facility (DWPF) at the Savannah River Site, the planned Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the operating West Valley Demonstration Project (WVDP) at West Valley, NY. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. An extensive noble metals testing program was begun in 1990. The objectives of this task were to explore the effects of the noble metals on the DWPF melter feed preparation and waste vitrification processes. This report focuses on the vitrification portion of the test program.

  19. Trends in the design and operation of off-gas cleaning systems in nuclear facilities

    International Nuclear Information System (INIS)

    First, M.W.

    1980-01-01

    Trends in the design and operation of off-gas cleaning systems in nuclear facilities reflect the normal development by manufacturers of new and improved equipment and the demand for more safety, greater reliability, and higher collection efficiency as an aftermath of the well publicized accident at Three Mile Island. The latter event has to be viewed as a watershed in the history of off-gas treatment requirements for nuclear facilities. It is too soon to predict what these will be with any degree of assurance but it seems reasonable to expect greatly increased interest in containment venting systems for light water and LMFBR nuclear power reactors and more stringent regulatory requirements for auxiliary off-gas cleaning systems. Although chemical and waste handling plants share few characteristics with reactors other than the presence of radioactive materials, often in large amounts, tighter requirements for handling reactor off-gases will surely be transferred to other kinds of nuclear facilities without delay. Currently employed nuclear off-gas cleaning technology was largely developed and applied during the decade of the 1950s. It is regrettable that the most efficient and most economical off-gas treatment systems do not always yield the best waste forms for storage or disposal. It is even more regrettable that waste management has ceased to be solely a technical matter but has been transformed instead into a highly charged political posture of major importance in many western nations. Little reinforcement has been provided by detailed studies of off-gas treatment equipment failures that show that approximately 13% of over 9000 licensee event reports to the United States Nuclear Regulatory Commission pertained to failures in ventilating and cleaning systems and their monitoring instruments

  20. Studies in the dissolver off-gas system for a spent FBR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Heinrich, E.; Huefner, R.; Weirich, F.

    1982-01-01

    Investigations of possible modifications of the process steps of a dissolver off-gas (DOG) system for a spent FBR fuel reprocessing plant are reported. The following operations are discussed: iodine removal from the fuel solution; behaviour of NOsub(x) and iodine in nitric acid off-gas scrubbers at different temperatures and nitric acid concentrations; iodine desorption from the scrub acid; selective absorption of noble gases in refrigerant-12; cold traps. The combination of suitable procedures to produce a total DOG system is described. (U.K.)

  1. Durability of glasses from the Hg-doped Integrated DWPF Melter System (IDMS) campaign

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1992-01-01

    The Integrated DWPF Melter System (IDMS) for the vitrification of high-level radioactive wastes is designed and constructed to be a 1/9th scale prototype of the full scale Defense Waste Processing Facility (DWPF) melter. The IDMS facility is the first engineering scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to determine the effects of mercury on the feed preparation process, the off-gas chemistry, glass melting behavior, and glass durability, a three-run mercury (Hg) campaign was conducted. The glasses produced during the Hg campaign were composed of Batch 1 sludge, simulated precipitate hydrolysis aqueous product (PHA) from the Precipitate Hydrolysis Experimental Facility (PHEF), and Frit 202. The glasses were produced using the DWPF process/product models for glass durability, viscosity, and liquidus. The durability model indicated that the glasses would all be more durable than the glass qualified in the DWPF Environmental Assessment (EA). The glass quality was verified by performing the Product Consistency Test (PCT) which was designed for glass durability testing in the DWPF

  2. Design and operational experience with the off-gas cleaning system of the Seibersdorf incinerator plant

    International Nuclear Information System (INIS)

    Patek, P.

    1982-05-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxilary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10000 kcal/kg waste. The maximum throughput ammounts 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, an electrostatic filter and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, iodine- and tritium-monitor; the building is surveilled by doserate- and aerosolmonitors. Finally the experiences of the first year of operation and the main problems in running the plant are described. (Author) [de

  3. Design and operational experience with the off-gas cleaning system of the Seibersdorf incinerator plant

    International Nuclear Information System (INIS)

    Patek, P.R.M.

    1983-01-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxiliary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10,000 kcal/kg waste. The maximum throughput amounts to 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, an electrostatic filter and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, iodine- and tritium-monitor; the building is surveyed by doserate and aerosolmonitors. Finally the experiences of the first year of operation and the main problems in running the plant are described. (author)

  4. Test results from the GA Technologies engineering-scale off-gas treatment system

    International Nuclear Information System (INIS)

    Jensen, D.D.; Olguin, L.J.; Wilbourn, R.G.

    1985-01-01

    Test results are available from the GA Technologies (GA) off-gas treatment facilities using gas streams from both the graphite fuel element burner system and from the spent fuel dissolver. The off-gas system is part of a pilot plant for development of processes for treating spent fuel from high temperature gas-cooled reactors (HTGRs). One method for reducing the volume of HTGR fuel prior to reprocessing or spent fuel storage is to crush and burn the graphite fuel elements. The burner off-gas (BOG) contains radioactive components, principally H-3, C-14, Kr-85, I-129, and Rn-220, as well as chemical forms such as CO 2 , CO, O 2 , and SO 2 . The BOG system employs components designed to remove these constituents. Test results are reported for the iodine and SO 2 adsorbers and the CO/HT oxidizer. Integrated testing of major BOG system components confirmed the performance of units evaluated in individual tests. Design decontamination and conversion factors were maintained for up to 72 h. In a reprocessing flowsheet, the solid product from the burners is dissolved in nitric or Thorex acid. The dissolver off-gas (DOG) contains radioactive components H-3, Kr-85, I-129, Rn-220 plus chemical forms such as nitrogen oxides (NO/sub x/). In the pilot-scale system iodine is removed from the DOG by adsorption. Tests of iodine removal have been conducted using either silver-exchanged mordenite (AgZ) or AgNO 3 -impregnated silica gel (AC-6120). Although each sorbent performed well in the presence of NO/sub x/, the silica gel adsorbent proved more efficient in silver utilization and, thus, more cost effective

  5. Selective Trapping of Volatile Fission Products with an Off-Gas Treatment System

    Energy Technology Data Exchange (ETDEWEB)

    B.R. Westphal; J.J. Park; J.M. Shin; G.I. Park; K.J. Bateman; D.L. Wahlquist

    2008-07-01

    A head-end processing step, termed DEOX for its emphasis on decladding via oxidation, is being developed for the treatment of spent oxide fuel by pyroprocessing techniques. The head-end step employs high temperatures to oxidize UO2 to U3O8 resulting in the separation of fuel from cladding and the removal of volatile fission products. Development of the head-end step is being performed in collaboration with the Korean Atomic Energy Research Institute (KAERI) through an International Nuclear Energy Research Initiative. Following the initial experimentation for the removal of volatile fission products, an off-gas treatment system was designed in conjunction with KAERI to collect specific fission gases. The primary volatile species targeted for trapping were iodine, technetium, and cesium. Each species is intended to be collected in distinct zones of the off-gas system and within those zones, on individual filters. Separation of the volatile off-gases is achieved thermally as well as chemically given the composition of the filter media. A description of the filter media and a basis for its selection will be given along with the collection mechanisms and design considerations. In addition, results from testing with the off-gas treatment system will be presented.

  6. Off-gas treatment system Process Experimental Pilot Plant (PREPP) k-t evaluation

    International Nuclear Information System (INIS)

    Hedahl, T.G.; Cargo, C.H.; Ayers, A.L.

    1982-06-01

    The scope of work for this task involves a systems' evaluation, using the Kepner-Tregoe (K-T) decision analysis methodology, of off-gas treatment alternatives for a Process Experimental Pilot Plant (PREPP). Two basic systems were evaluated: (1) a wet treatment system using a quencher and scrubber system; and (2) a dry treatment system using a spray dryer and baghouse arrangement. Both systems would neutralize acidic off-gases (HCL and SO 2 ) and remove radioactive particulates prior to release to the environment. The K-T analysis results provided a numerical comparison of the two basic off-gas treatments systems for PREPP. The overall ratings for the two systems differ by only 7%. The closeness of the evaluation indicates that either system is capable of treating the off-gases from PREPP. Based on the analysis, the wet treatment system design is slightly more favorable for PREPP. Technology development, expected operability, total costs, and safety aspects were determined to be more advantageous for the wet system design. Support technology was the only major category that appears less favorable for using the wet off-gas system for PREPP. When considering the two criteria considered most important for PREPP (capital cost and major accident prevention - both rated 10), the wet treatment system received maximum ratings. Space constraints placed on the design by the existing TAN-607 building configuration also are more easily met by the wet system design. Lastly, the level of development for the wet system indicates more applicable experience for nuclear waste processing

  7. Design features of the radioactive Liquid-Fed Ceramic Melter system

    Energy Technology Data Exchange (ETDEWEB)

    Holton, L.K. Jr. (comp.)

    1985-06-01

    During 1983, the Pacific Northwest Laboratory (PNL), at the request of the Department of Energy (DOE), undertook a program with the principal objective of testing the Liquid-Fed Ceramic Melter (LFCM) process in actual radioactive operations. This activity, termed the Radioactive LFCM (RLFCM) Operations is being conducted in existing shielded hot-cell facilities in B-Cell of the 324 Building, 300 Area, located at Hanford, Washington. This report summarizes the design features of the RLFCM system. These features include: a waste preparation and feed system which uses pulse-agitated waste preparation tanks for waste slurry agitation and an air displacement slurry pump for transferring waste slurries to the LFCM; a waste vitrification system (LFCM) - the design features, design approach, and reasoning for the design of the LFCM are described; a canister-handling turntable for positioning canisters underneath the RLFCM discharge port; a gamma source positioning and detection system for monitoring the glass fill level of the product canisters; and a primary off-gas treatment system for removing the majority of the radionuclide contamination from the RLFCM off gas. 8 refs., 48 figs., 6 tabs.

  8. Design, Fabrication, and Shakeout Testing of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Jr, Joseph Franklin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jordan, Jacob A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-31

    A sorbent-based capture system designed for integration into the existing dissolver off-gas (DOG) treatment system at the ATelier Alpha et Laboratoires pour ANalyses, Transuraniens et Etudes de retraitement (ATALANTE) facility has been successfully designed and fabricated and has undergone shakeout testing. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system were specified, procured, and received on site at Oak Ridge National Laboratory (ORNL). The system was then fabricated and tested at ORNL to verify operation. Shakeout testing resulted in a simplified system. This system should be easily installed into the existing facility and should be straightforward to operate during future experimental testing. All parts were selected to be compatible with ATALANTE power supplies, space requirements, and the existing DOG treatment system. Additionally, the system was demonstrated to meet all of four design requirements. These include (1) a dissolver off-gas flow rate of ≤100 L/h (1.67 L/min), (2) an external temperature of ≤50°C for all system components placed in the hot cell, (3) a sorbent bed temperature of ~150°C, and (4) a gas temperature of ~150°C upon entry into the sorbent bed. The system will be ready for shipment and installation in the existing DOG treatment system at ATALANTE in FY 2016.

  9. Radioactive contamination monitoring device for off-gas in ventilation system

    International Nuclear Information System (INIS)

    Osaki, Masahiko; Watabe, Atsushi; Kaneko, Itaru; Kubokoya, Takashi.

    1990-01-01

    In a conventional method of detecting leakage for primary coolants, radioactive iodine in off-gases was detected while going up the off-gas system. As an event resulting in abnormality to radioactive rare gas level, leakage of water, leakage in cleanup system-recycling system, leakage in main steams and leakage from wastes processing system are considered. An off-gas system to be measured is selectively sampled by a sample changer in order to measure radioactive rare gases in the off-gases, and sample gases are introduced to detect radioactivity. Detection signals are received for analysis and quantitative determination, the result of the analysis is diagnosed and the presence or absence of abnormality in an object to be measured is determined. Subsequently, an abnormality alarm and the result of the analysis are outputted. Since the radioactive rare gases are chemically inactive, they are neither combined with other materials nor deposited to wall surfaces. Abnormality can be easily detected by always monitoring a composition pattern and a radioactivity level. (N.H.)

  10. Design report: An off gas trapping system for a voloxidizer in INL of US

    Energy Technology Data Exchange (ETDEWEB)

    Jung, I. H.; Shin, J. M.; Park, J. J.; Park, G. I.; Lee, H. H

    2006-09-15

    This reports on the 'Development of Voloxidation Process for Treatment of LWR Spent Fuel', and it is the second year since it has started from June 2004 as a tripartite cooperation project among KAERI(Korea Atomic Energy Research Institute), INL(Idaho National Laboratory) and ORNL(Oak Ridge National Laboratory). This report is described mainly for the Task B2 accomplished during the second project year. The Task B2 in proposal contains two sub-tasks. The first one is design of an off-gas treatment system for a voloxidizer to be used in HFEF of INL. For this, KAERI team developed the design of INL OTS (Off-gas Treatment System) for hot experiment in the HFEF. INL team modified and completed the design of the INL OTS. The second task is manufacturing and test operation of the INL OTS for a voloxidizer in the INL. Manufacturing of the OTS is accomplished by INL team with co-work of KAERI. KAERI provided four sets of trapping filters needed for conducting hot experiment in the INL HFEF.

  11. Corrosion in the off-gas system of a radioactive-waste incinerator

    International Nuclear Information System (INIS)

    Jenkins, C.F.; Peters, J.J.

    1987-01-01

    Corrosion in a low-level radioactive-waste incinerator off-gas system at the Department of Energy's Savannah River Plant is discussed. Severe corrosive attack and failure of an alloy 600 part exposed to high-temperature (>1000 0 C) gases was observed. Rapid attack of carbon steel components, and cracking of austenitic stainless steel parts also occurred at locations where lower gas temperatures and periodic condensate exposure occurred. Investigation showed HCl, SO 2 , SO 3 and phosphorus-oxides were present and contributed to the failures. Mechanisms of high-temperature failure include alloy separation and reactions with phosphorus. Coupons placed in the exhaust stream have provided information for selection of future materials of construction for system components. Several nickel- and iron-base alloys, and a stainless steel with an aluminum-diffusion coating were investigated

  12. Temperature control system for liquid-fed ceramic melters

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.

    1986-10-01

    A temperature-feedback system has been developed for controlling electrical power to liquid-fed ceramic melters (LFCM). Software, written for a microcomputer-based data acquisition and process monitoring system, compares glass temperatures with a temperature setpoint and adjusts the electrical power accordingly. Included in the control algorithm are steps to reject failed thermocouples, spatially average the glass temperatures, smooth the averaged temperatures over time using a digital filter, and detect foaming in the glass. The temperature control system has proved effective during all phases of melter operation including startup, steady operation, loss of feed, and shutdown. This system replaces current, power, and resistance feedback control systems used previously in controlling the LFCM process

  13. Temperature control system for liquid-fed ceramic melters

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, J.H. Jr.

    1986-10-01

    A temperature-feedback system has been developed for controlling electrical power to liquid-fed ceramic melters (LFCM). Software, written for a microcomputer-based data acquisition and process monitoring system, compares glass temperatures with a temperature setpoint and adjusts the electrical power accordingly. Included in the control algorithm are steps to reject failed thermocouples, spatially average the glass temperatures, smooth the averaged temperatures over time using a digital filter, and detect foaming in the glass. The temperature control system has proved effective during all phases of melter operation including startup, steady operation, loss of feed, and shutdown. This system replaces current, power, and resistance feedback control systems used previously in controlling the LFCM process.

  14. Two new research melters at the Savannah River Technology Center

    International Nuclear Information System (INIS)

    Gordon, J.R.; Coughlin, J.T.; Minichan, R.L.; Zamecnik, J.R.

    2000-01-01

    The Savannah River Technology Center (SRTC) is a US Department of Energy (DOE) complex leader in the development of vitrification technology. To maintain and expand this SRTC core technology, two new melter systems are currently under construction in SRTC. This paper discusses the development of these two new systems, which will be used to support current as well as future vitrification programs in the DOE complex. The first of these is the new minimelter, which is a joule-heated glass melter intended for experimental melting studies with nonradioactive glass waste forms. Testing will include surrogates of Defense Waste processing Facility (DWPF) high-level wastes. To support the DWPF testing, the new minimelter was scaled to the DWPF melter based on melt surface area. This new minimelter will replace an existing system and provide a platform for the research and development necessary to support the SRTC vitrification core technology mission. The second new melter is the British Nuclear Fuels, Inc., research melter system (BNFL melter), which is a scaled version of the BNFL low-activity-waste (LAW) melter proposed for vitrification of LAW at Hanford. It is designed to process a relatively large amount of actual radiative Hanford tank waste and to gather data on the composition of off-gases that will be generated by the LAW melter. Both the minimelter and BNFL melter systems consist of five primary subsystems: melter vessel, off-gas treatment, feed, power supply, and instrumentation and controls. The configuration and design of these subsystems are tailored to match the current system requirements and provide the flexibility to support future DOE vitrification programs. This paper presents a detailed discussion of the unique design challenges represented by these two new melter systems

  15. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations

  16. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  17. Melter system technology testing for Hanford Site low-level tank waste vitrification

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1996-01-01

    Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for Complete melter feasibility and system operability immobilization of the low-level waste (LLW) tests, select reference melter(s), and establish reference derived from retrieval and pretreatment of the radioactive LLW glass formulation that meets complete systems defense wastes stored in 177 underground tanks, commercial requirements (June 1996). Available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference Submit conceptual design and initiate definitive design technologies for the new LLW vitrification mission

  18. Removal of CO2 in closed loop off-gas treatment systems

    International Nuclear Information System (INIS)

    Clemens, M.K.; Nelson, P.A.; Swift, W.M.

    1994-01-01

    A closed loop test system has been installed at Argonne National Laboratory (ANL) to demonstrate off-gas treatment, absorption, and purification systems to be used for incineration and vitrification of hazardous and mixed waste. Closed loop systems can virtually eliminate the potential for release of hazardous or toxic materials to the atmosphere during both normal and upset conditions. In initial tests, a 250,000 Btu/h (75 kW thermal) combustor was operated in an open loop to produce a combustion product gas. The CO 2 in these tests was removed by reaction with a fluidized bed of time to produce CaCO 3 . Subsequently, recirculation system was installed to allow closed loop operation with the addition of oxygen to the recycle stream to support combustion. Commercially marketed technologies for removal of CO 2 can be adapted for use on closed loop incineration systems. The paper also describes the Absorbent Solution Treatment (AST) process, based on modifications to commercially demonstrated gas purification technologies. In this process, a side loop system is added to the main loop for removing CO 2 in scrubbing towers using aqueous-based CO 2 absorbents. The remaining gas is returned to the incinerator with oxygen addition. The absorbent is regenerated by driving off the CO 2 and water vapor, which are released to the atmosphere. Contaminants are either recycled for further treatment or form precipitates which are removed during the purification and regeneration process. There are no direct releases of gases or particulates to the environment. The CO 2 and water vapor go through two changes of state before release, effectively separating these combustion products from contaminants released during incineration. The AST process can accept a wide range of waste streams. The system may be retrofitted to existing Facilities or included in the designs for new installations

  19. Peer review panel summary report for technical determination of mixed waste incineration off-gas systems for Rocky Flats

    International Nuclear Information System (INIS)

    1992-01-01

    A Peer Review Panel was convened on September 15-17, 1992 in Boulder, Co. The members of this panel included representatives from DOE, EPA, and DOE contractors along with invited experts in the fields of air pollution control and waste incineration. The primary purpose of this review panel was to make a technical determination of a hold, test and release off gas capture system should be implemented in the proposed RF Pland mixed waste incineration system; or if a state of the art continuous air pollution control and monitoring system should be utilized as the sole off-gas control system. All of the evaluations by the panel were based upon the use of the fluidized bed unit proposed by Rocky Flats and cannot be generalized to other systems

  20. FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; BARDAKCI T; GONG W; D' ANGELO NA; SCHATZ TR; PEGG IL

    2011-12-29

    This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter{trademark} 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m{sup 2}/d. Previous testing on the DMIOOO system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the

  1. The development and design of the off-gas treatment system for the thermal oxide reprocessing plant (THORP) at Sellafield

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, P.I. [British Nuclear Fuels, Sellafield (United Kingdom); Buckley, C.P.; Miller, W.W. [British Nuclear Fuels, Risley (United Kingdom)

    1995-02-01

    British Nuclear Fuels completed construction of its Thermal Oxide Reprocessing Plant (THORP) at Sellafield in 1992, at a cost of 1,850M. After Government and Regulatory approval, active commissioning was initiated on 17 January 1994. From the outset, the need to protect the workforce, the public and the environment in general from the plant`s discharges was clearly recognised. The design intent was to limit radiation exposure of members of the general public to As Low as Reasonably Practicable. Furthermore no member of the most highly exposed group should receive an annual dose exceeding 50 microsieverts from either the aerial or marine discharge routes. This paper describes how the design intent has been met with respect to aerial discharges. It outlines the development programme which was undertaken to address the more demanding aspects of the performance specification. This ranged from small-scale experiments with irradiated fuel to inactive pilot plant trials and full-scale plant measurements. The resulting information was then used, with the aid of mathematical models, in the design of an off-gas treatment system which could achieve the overall goal. The principal species requiring treatment in the THORP off-gas system are iodine-129, carbon-14, nitrogen oxides (NOx), fuel dust particles and aerosols containing plutonium or mixed fission products. The paper describes the combination of abatement equipment used in different parts of the plant, including counter-current absorption columns, electrostatic precipitators, dehumidifiers and High Efficiency Particulate Air filters. Because a number of separate off-gas streams are combined before discharge, special depression control systems were developed which have already proved successful during plant commissioning. BNFL is confident that the detailed attention given to the development and design phases of the THORP off-gas system will ensure good performance when the plant moves into fully radioactive operation.

  2. Design and optimization of a combined fuel reforming and solid oxide fuel cell system with anode off-gas recycling

    International Nuclear Information System (INIS)

    Lee, Tae Seok; Chung, J.N.; Chen, Yen-Cho

    2011-01-01

    Highlights: → In this work, an analytical, parametric study is performed to evaluate the feasibility and performance of a combined fuel reforming and SOFC system. → Specifically the effects of adding the anode off-gas recycling and recirculation components and the CO 2 absorbent unit are investigated. → The AOG recycle ratio increases with increasing S/C ratio and the addition of AOG recycle eliminates the need for external water consumption. → The key finding is that for the SOFC operating at 900 deg. C with the steam to carbon ratio at 5 and no AOG recirculation, the system efficiency peaks. - Abstract: An energy conversion and management concept for a combined system of a solid oxide fuel cell coupled with a fuel reforming device is developed and analyzed by a thermodynamic and electrochemical model. The model is verified by an experiment and then used to evaluate the overall system performance and to further suggest an optimal design strategy. The unique feature of the system is the inclusion of the anode off-gas recycle that eliminates the need of external water consumption for practical applications. The system performance is evaluated as a function of the steam to carbon ratio, fuel cell temperature, anode off gas recycle ratio and CO 2 adsorption percentage. For most of the operating conditions investigated, the system efficiency starts at around 70% and then monotonically decreases to the average of 50% at the peak power density before dropping down to zero at the limiting current density point. From an engineering application point of view, the proposed combined fuel reforming and SOFC system with a range of efficiency between 50% and 70% is considered very attractive. It is suggested that the optimal system is the one where the SOFC operates around 900 deg. C with S/C ratio higher than 3, maximum CO 2 capture, and minimum AOG recirculation.

  3. Americium/Curium Melter 2A Pilot Tests

    International Nuclear Information System (INIS)

    Smith, M.E.; Fellinger, A.P.; Jones, T.M.; Miller, C.B.; Miller, D.H.; Snyder, T.K.; Stone, M.E.; Witt, D.C.

    1998-05-01

    Isotopes of americium (Am) and curium (Cm) were produced in the past at the Savannah River Site (SRS) for research, medical, and radiological applications. These highly radioactive and valuable isotopes have been stored in an SRS reprocessing facility for a number of years. Vitrification of this solution will allow the material to be more safely stored until it is transported to the DOE Oak Ridge Reservation for use in research and medical applications. To this end, the Am/Cm Melter 2A pilot system, a full-scale non- radioactive pilot plant of the system to be installed at the reprocessing facility, was designed, constructed and tested. The full- scale pilot system has a frit and aqueous feed delivery system, a dual zone bushing melter, and an off-gas treatment system. The main items which were tested included the dual zone bushing melter, the drain tube with dual heating and cooling zones, glass compositions, and the off-gas system which used for the first time a film cooler/lower melter plenum. Most of the process and equipment were proven to function properly, but several problems were found which will need further work. A system description and a discussion of test results will be given

  4. Letter report: Evaluation of LFCM off-gas system technologies for the HWVP

    Energy Technology Data Exchange (ETDEWEB)

    Goles, R.W.; Mishima, J.; Schmidt, A.J.

    1996-03-01

    Radioactive high-level liquid waste (HLLW), a byproduct of defense nuclear fuel reprocessing activities, is currently being stored in underground tanks at several US sites. Because its mobility poses significant environmental risks, HLLW is not a suitable waste form for long-term storage. Thus, high-temperature processes for solidifying and isolating the radioactive components of HLLW have been developed and demonstrated by the US Department of Energy (DOE) and its contractors. Vitrification using liquidfed ceramic melters (LFCMs) is the reference process for converting US HLLW into a borosilicate glass. Two vitrification plants are currently under construction in the United States: the West Valley Demonstration Plant (WVDP) being built at the former West Valley Nuclear Fuels Services site in West Valley, New York; and the Defense Waste Processing Facility (DWPF), which is currently 85% complete at DOE`s Savannah River Plant (SRP). A third facility, the Hanford Waste Vitrification Plant (HWVP), is being designed at DOE`s Hanford Site.

  5. Letter report: Evaluation of LFCM off-gas system technologies for the HWVP

    International Nuclear Information System (INIS)

    Goles, R.W.; Mishima, J.; Schmidt, A.J.

    1996-03-01

    Radioactive high-level liquid waste (HLLW), a byproduct of defense nuclear fuel reprocessing activities, is currently being stored in underground tanks at several US sites. Because its mobility poses significant environmental risks, HLLW is not a suitable waste form for long-term storage. Thus, high-temperature processes for solidifying and isolating the radioactive components of HLLW have been developed and demonstrated by the US Department of Energy (DOE) and its contractors. Vitrification using liquidfed ceramic melters (LFCMs) is the reference process for converting US HLLW into a borosilicate glass. Two vitrification plants are currently under construction in the United States: the West Valley Demonstration Plant (WVDP) being built at the former West Valley Nuclear Fuels Services site in West Valley, New York; and the Defense Waste Processing Facility (DWPF), which is currently 85% complete at DOE's Savannah River Plant (SRP). A third facility, the Hanford Waste Vitrification Plant (HWVP), is being designed at DOE's Hanford Site

  6. Modular design of a reprocessing plant dissolver off-gas system. Variations, flexibility and stage of development

    International Nuclear Information System (INIS)

    Henrich, E.; Huefner, R.

    1984-01-01

    Simple and economic control of the volatile radionuclides in a reprocessing plant requires two equally important prerequisites: suitable processing in the plant head-end and reliable operation of the dissolver off-gas (DOG) purification system. A small number of DOG purification modules was selected from various alternatives. The major selection criteria are removal efficiency, simplicity, convenient operating conditions and flexibility that provide compatibility with other off-gas treatment steps, subsequent waste treatment and different processing modes in the head-end. The behaviour of noxious materials was investigated in nitric acid off-gas scrubbers of different design and for a wide range of operating modes and conditions. A concentration range of nitric acid from very dilute to hyperazeotropic concentrations and a temperature range from -55 deg. C to above room temperature as well as the use of hydrogen peroxide were studied on an engineering scale. Nitrous gases and iodine can be removed to the trace level at special operating modes. Aerosol and iodine filters are discussed briefly. A selective absorption process using CF 2 Cl 2 solvent for noble gas and 14 C removal was developed on a laboratory scale. It operates at low temperatures and atmospheric pressure. Xe and Kr were separated using two absorption columns. Pilot-plant scale noble gas scrubbers are under construction and are being integrated into the existing test facility. A series of process steps has been chosen for integrated process demonstration runs on an engineering scale. The integrated DOG system consists of several scrubbers and filters operating at atmospheric pressure. The temperature decreases stepwise, without producing large changes in the opposite direction, providing compatibility within the process train

  7. Slurry feed variability in West Valley's melter feed tank and sampling system

    International Nuclear Information System (INIS)

    Fow, C.L.; Kurath, D.E.; Pulsipher, B.A.; Bauer, B.P.

    1989-04-01

    The present plan for disposal of high-level wastes at West Valley is to vitrify the wastes for disposal in deep geologic repository. The vitrification process involves mixing the high-level wastes with glass-forming chemicals and feeding the resulting slurry to a liquid-fed ceramic melter. Maintaining the quality of the glass product and proficient melter operation depends on the ability of the melter feed system to produce and maintain a homogeneous mixture of waste and glass-former materials. To investigate the mixing properties of the melter feed preparation system at West Valley, a statistically designed experiment was conducted using synthetic melter feed slurry over a range of concentrations. On the basis of the statistical data analysis, it was found that (1) a homogeneous slurry is produced in the melter feed tank, (2) the liquid-sampling system provides slurry samples that are statistically different from the slurry in the tank, and (3) analytical measurements are the major source of variability. A statistical quality control program for the analytical laboratory and a characterization test of the actual sampling system is recommended. 1 ref., 5 figs., 1 tab

  8. Final Report Start-Up And Commissioning Tests On The Duramelter 1200 HLW Pilot Melter System Using AZ-101 HLW Simulants VSL-01R0100-2, Rev. 0, 1/20/03

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Brandys, M.; Wilson, C.N.; Schatz, T.R.; Gong, W.; Pegg, I.L.

    2011-01-01

    This document provides the final report on data and results obtained from commissioning tests performed on the one-third scale DuraMelter(trademark) 1200 (DM 1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part BI (1). Both melters have similar melt surface areas (1.2 m 2 ) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plan. This report is a followup to the previously issued Preliminary Data Summary Report. The DM1200 system will be used for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. This will include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The results presented in this report are from the initial series of short-duration tests that were conducted to support the start-up and commissioning of this system prior to conducting the main body of development tests that have been planned for this system. These tests were directed primarily at system 'debugging,' operator training, and procedure refinement. The AZ-101 waste simulant and glass composition that was used for previous testing was selected for these tests.

  9. FINAL REPORT START-UP AND COMMISSIONING TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-01R0100-2 REV 0 1/20/03

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; BRANDYS M; WILSON CN; SCHATZ TR; GONG W; PEGG IL

    2011-12-29

    This document provides the final report on data and results obtained from commissioning tests performed on the one-third scale DuraMelter{trademark} 1200 (DM 1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part BI [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plan. This report is a followup to the previously issued Preliminary Data Summary Report. The DM1200 system will be used for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. This will include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The results presented in this report are from the initial series of short-duration tests that were conducted to support the start-up and commissioning of this system prior to conducting the main body of development tests that have been planned for this system. These tests were directed primarily at system 'debugging,' operator training, and procedure refinement. The AZ-101 waste simulant and glass composition that was used for previous testing was selected for these tests.

  10. Organic iodine removal from simulated dissolver off-gas systems utilizing silver-exchanged mordenite

    International Nuclear Information System (INIS)

    Jubin, R.T.

    1981-01-01

    The removal of methyl iodide by adsorption onto silver mordenite was studied using a simulated off-gas from the fuel dissolution step of a nuclear fuel reprocessing plant. The adsorption of methyl iodide on silver mordenite was examined for the effect of NO/sub x/, humidity, iodine concentration, filter temperature, silver loadings and filter pretreatment. The highest iodine loading achieved in these tests was 142 mg CH 3 I per g of substrate on fully exchanged zeolite, approximately the same as elemental iodine loadings. A filter using fully exchanged silver mordenite operating at 200 0 C obtained higher iodine loadings than a similar filter operating at 150 0 C. Pretreatment of the sorbent bed with hydrogen rather than dry air, at a temperature of 200 0 C, also improved the loading. Variations in the methyl iodide concentration had minimal effects on the overall loading. Filters exposed to moist air streams attained higher loadings than those in contact with dry air. Partially exchanged silver mordenite achieved higher silver utilizations than the fully exchanged material. The partially exchanged mordenite also achieved higher loadings at 200 0 C than at 250 0 C. The iodine loaded onto these beds was not stripped at 500 0 C by either 4.5% hydrogen or 100% hydrogen; however, the iodine could be removed by air at 500 0 C, and the bed could be reloaded. A study of the regeneration characteristics of fully exchanged silver mordenite indicates limited adsorbent capacity after complete removal of the iodine with 4.5% hydrogen in the regeneration gas stream at 500 0 C. The loss of adsorbent capacity is much higher for silver mordenite regenerated in a stainless steel filter housing than in a glass filter housing

  11. FINAL REPORT INTEGRATED DM1200 MELTER TESTING USING AZ 102 AND C 106/AY-102 HLW SIMULANTS: HLW SIMULANT VERIFICATION VSL-05R5800-1 REV 0 6/27/05

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The data provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of

  12. System Design Description and Requirements for Modeling the Off-Gas Systems for Fuel Recycling Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daryl R. Haefner; Jack D. Law; Troy J. Tranter

    2010-08-01

    This document provides descriptions of the off-gases evolved during spent nuclear fuel processing and the systems used to capture the gases of concern. Two reprocessing techniques are discussed, namely aqueous separations and electrochemical (pyrochemical) processing. The unit operations associated with each process are described in enough detail so that computer models to mimic their behavior can be developed. The document also lists the general requirements for the desired computer models.

  13. Vitrification melter study

    International Nuclear Information System (INIS)

    Jones, J.A.

    1995-04-01

    This report presents the results of a study performed to identify the most promising vitrification melter technologies that the Department of Energy (EM-50) might pursue with available funding. The primary focus was on plasma arc systems and graphite arc melters. The study was also intended to assist EM-50 in evaluating competing technologies, formulating effective technology strategy, developing focused technology development projects, and directing the work of contractors involved in vitrification melter development

  14. Laboratory Optimization Tests of Decontamination of Cs, Sr, and Actinides from Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-06

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also substantially decrease the LAW vitrification mission duration and quantity of glass waste.

  15. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    International Nuclear Information System (INIS)

    Bickford, D.F.

    1993-01-01

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE's needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included

  16. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D.F.

    1993-12-31

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

  17. Reforming results of a novel radial reactor for a solid oxide fuel cell system with anode off-gas recirculation

    Science.gov (United States)

    Bosch, Timo; Carré, Maxime; Heinzel, Angelika; Steffen, Michael; Lapicque, François

    2017-12-01

    A novel reactor of a natural gas (NG) fueled, 1 kW net power solid oxide fuel cell (SOFC) system with anode off-gas recirculation (AOGR) is experimentally investigated. The reactor operates as pre-reformer, is of the type radial reactor with centrifugal z-flow, has the shape of a hollow cylinder with a volume of approximately 1 L and is equipped with two different precious metal wire-mesh catalyst packages as well as with an internal electric heater. Reforming investigations of the reactor are done stand-alone but as if the reactor would operate within the total SOFC system with AOGR. For the tests presented here it is assumed that the SOFC system runs on pure CH4 instead of NG. The manuscript focuses on the various phases of reactor operation during the startup process of the SOFC system. Startup process reforming experiments cover reactor operation points at which it runs on an oxygen to carbon ratio at the reactor inlet (ϕRI) of 1.2 with air supplied, up to a ϕRI of 2.4 without air supplied. As confirmed by a Monte Carlo simulation, most of the measured outlet gas concentrations are in or close to equilibrium.

  18. Online gas composition estimation in solid oxide fuel cell systems with anode off-gas recycle configuration

    Science.gov (United States)

    Dolenc, B.; Vrečko, D.; Juričić, Ð.; Pohjoranta, A.; Pianese, C.

    2017-03-01

    Degradation and poisoning of solid oxide fuel cell (SOFC) stacks are continuously shortening the lifespan of SOFC systems. Poisoning mechanisms, such as carbon deposition, form a coating layer, hence rapidly decreasing the efficiency of the fuel cells. Gas composition of inlet gases is known to have great impact on the rate of coke formation. Therefore, monitoring of these variables can be of great benefit for overall management of SOFCs. Although measuring the gas composition of the gas stream is feasible, it is too costly for commercial applications. This paper proposes three distinct approaches for the design of gas composition estimators of an SOFC system in anode off-gas recycle configuration which are (i.) accurate, and (ii.) easy to implement on a programmable logic controller. Firstly, a classical approach is briefly revisited and problems related to implementation complexity are discussed. Secondly, the model is simplified and adapted for easy implementation. Further, an alternative data-driven approach for gas composition estimation is developed. Finally, a hybrid estimator employing experimental data and 1st-principles is proposed. Despite the structural simplicity of the estimators, the experimental validation shows a high precision for all of the approaches. Experimental validation is performed on a 10 kW SOFC system.

  19. Off-gas and air cleaning systems for accident conditions in nuclear power plants

    International Nuclear Information System (INIS)

    1993-01-01

    This report surveys the design principles and strategies for mitigating the consequences of abnormal events in nuclear power plants by the use of air cleaning systems. Equipment intended for use in design basis accident and severe accident conditions is reviewed, with reference to designs used in IAEA Member States. 93 refs, 48 figs, 23 tabs

  20. Maximum organic carbon limits at different melter feed rates (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed

  1. Melter Dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, BS

    2000-10-01

    The U.S. Department of Energy (DOE) has been utilizing vitrification processes to convert high-level radioactive waste forms into a stable glass for disposal in waste repositories. Vitrification facilities at the Savannah River Site (SRS) and at the West Valley Demonstration Project (WVDP) are converting liquid high level waste (HLW) by combining it with a glass-forming media to form a borosilicate glass, which will ensure safe long-term storage. Large, slurry fed melters, which are utilized for this process, were anticipated to have a finite life, on the order of two to three years, at which time they would have to be replaced using remote methods, due to the high radiation fields. In actuality the melters useable life span has, to date, have exceeded original life span estimates. Initial plans called for the removal of failed melters by placing the melter assembly into a container and storing in a concrete vault on the vitrification plant site pending size reduction, segregation, containerization, and shipment to appropriate storage facilities. Separate facilities for the processing of the failed melters currently do not exist. Options for handling these melters include (1) locating a facility to conduct the size reduction, characterization, and containerization as originally planned; (2) long-term storage or disposal of the complete melter assembly; and (3) attempting to refurbish the melter and to reuse the melter assembly. The focus of this report is to look at methods and issues pertinent to size reduction and/or melter refurbishment. In particular, removal of glass as a part of a refurbishment or for the purposes of reducing contamination levels (allowing for disposal of a greater proportion of the melter as low level waste) will be addressed.

  2. Final Report - Glass Formulation Development and DM10 Melter Testing with ORP LAW Glasses, VSL-09R1510-2, Rev. 0, dated 6/12/09

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Matlack, K. S.; Joseph, I.; Muller, I. S.; Gong, W.

    2013-11-13

    The principal objective of the work described in this Final Report is to extend the glass formulation methodology developed in the earlier work by development of acceptable glass compositions for four LAW compositions specified by ORP that cover the range of sulfate to sodium and potassium to sodium ratios expected in Hanford LAW. The glass formulations were designed to exclude titanium and iron as glass former additives, while tin and vanadium as glass former additives were evaluated for beneficial effects in increasing waste loading in the glasses. This was accomplished through a combination of crucible-scale tests and tests on the DM10 melter system. This melter is the most efficient melter platform for screening glass compositions over a wide range of sulfate concentrations and therefore was selected for the present tests. The current tests provide information on melter processing characteristics and off-gas data, including sulfur incorporation and partitioning.

  3. Evaluation of the mixing system for the West Valley melter feed hold tank

    Energy Technology Data Exchange (ETDEWEB)

    Fow, C.L.; Kurath, D.E.; Pulsipher, B.A.

    1989-01-01

    High-level radioactive liquid wastes are currently stored in underground tanks at several Department of Energy facilities. The current plan for management of these wastes is to convert them to a durable borosilicate glass, then isolate the glass in a deep geologic repository. The process for converting the wastes to glass involves mixing the high-level wastes with glass-forming chemicals, then transforming the resulting slurry into glass using a high-temperature furnace known as a slurry-fed ceramic melter. Maintaining the quality of the glass product and proficient melter operation depends on the ability of the waste slurry preparation and feed systems to produce and maintain a homogeneous mixture of waste and glass-former materials. This document reviews current technology. 11 refs., 18 figs., 15 tabs.

  4. Final Report - Glass Formulation Testing to Increase Sulfate Volatilization from Melter, VSL-04R4970-1, Rev. 0, dated 2/24/05

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Matlack, K. A.; Pegg, I. L.; Gong, W.

    2013-11-13

    The principal objectives of the DM100 and DM10 tests were to determine the impact of four different organics and one inorganic feed additive on sulfate volatilization and to determine the sulfur partitioning between the glass and the off-gas system. The tests provided information on melter processing characteristics and off-gas data including sulfur incorporation and partitioning. A series of DM10 and DM100 melter tests were conducted using a LAW Envelope A feed. The testing was divided into three parts. The first part involved a series of DM10 melter tests with four different organic feed additives: sugar, polyethylene glycol (PEG), starch, and urea. The second part involved two confirmatory 50-hour melter tests on the DM100 using the best combination of reductants and conditions based on the DM10 results. The third part was performed on the DM100 with feeds containing vanadium oxide (V{sub 2}O{sub 5}) as an inorganic additive to increase sulfur partitioning to the off-gas. Although vanadium oxide is not a reductant, previous testing has shown that vanadium shows promise for partitioning sulfur to the melter exhaust, presumably through its known catalytic effect on the SO{sub 2}/SO{sub 3} reaction. Crucible-scale tests were conducted prior to the melter tests to confirm that the glasses and feeds would be processable in the melter and that the glasses would meet the waste form (ILAW) performance requirements. Thus, the major objectives of these tests were to: Perform screening tests on the DM10 followed by tests on the DM100-WV system using a LAW -Envelope A feed with four organic additives to assess their impact on sulfur volatilization. Perform tests on the DM100-WV system using a LAW -Envelope A feed containing vanadium oxide to assess its impact on sulfur volatilization. Determine feed processability and product quality with the above additives. Collect melter emissions data to determine the effect of additives on sulfur partitioning and melter emissions

  5. Off-gas control project

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Smith, I.M.

    1978-06-01

    A program to develop and study off-gas abatement techniques has recently been initiated at Whiteshell Nuclear Research Establishment (WNRE). This report provides information on the properties and expected behaviour of reprocessing plant off-gases, and outlines the experimental program to be undertaken. (author)

  6. Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith III, F. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how the varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.

  7. Adsorption Model for Off-Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  8. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    International Nuclear Information System (INIS)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  9. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  10. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  11. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion

  12. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Yaroslav [Gas Technology Inst., Des Plaines, IL (United States); Kozlov, Aleksandr [Gas Technology Inst., Des Plaines, IL (United States)

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel

  13. Treatment of off-gas from radioactive waste incinerators

    International Nuclear Information System (INIS)

    1989-01-01

    An effective process reducing volume of radioactive wastes is incineration of combustible wastes. Appropriate design of the off-gas treatment system is necessary to ensure that any releases of airborne radionuclides into the environment are kept below acceptable limits. In many cases, the off-gas system must be designed to accommodate chemical constituents in the gas stream. The purpose of this publication is to provide the most up-to-date information regarding off-gas treatment as well as an account of some of the developments so as to aid users in the selection of an integrated system for a particular application. The choice of incinerator/off-gas system combination depends on the wastes to be treated, as well as other factors, such as regulatory requirements. Current problems and development needs are discussed. Following comprehensive discussions of the various factors affecting a choice, various incinerator and off-gas treatment systems are recommended for the various types of wastes that may be treated: low PVC content solid, high PVC content solid, organic liquid and resins. The economics or costs of the off-gas system and an evaluation of the overall cost effectiveness of incineration or direct burial is not discussed in detail. This publication is specifically directed toward technical aspects and addresses: incineration types and origin, sources and characteristics of off-gas streams; descriptions of available technologies for off-gas treatment; basic component design requirements and component description; operational experience of plants in active operation and their current practices; legal aspects and safety requirements; remaining problems to be solved and development trends in plant design and component structure. This report seeks to broaden and enhance the understanding of the developed technology and to indicate areas where improvements can be made by further research and development. 110 refs

  14. Connecting section and associated systems concept for the spray calciner/in-can melter process

    International Nuclear Information System (INIS)

    Petkus, L.L.; Gorton, P.S.; Blair, H.T.

    1981-06-01

    For a number of years, researchers at the Pacific Northwest Laboratory have been developing processes and equipment for converting high-level liquid wastes to solid forms. One of these processes is the Spray Calciner/In-Can Melter system. To immobilize high-level liquid wastes, this system must be operated remotely, and the calcine must be reliably conveyed from the calciner to the melting furnace. A concept for such a remote conveyance system was developed at the Pacific Northwest Laboratory, and equipment was tested under full-scale, nonradioactive conditions. This concept and the design of demonstration equipment are described, and the results of equipment operation during experimental runs of 7 d are presented. The design includes a connecting section and its associated systems - a canister sypport and alignment concept and a weight-monitoring system for the melting furnace. Overall, the runs demonstrated that the concept design is an acceptable method of connecting the two pieces of process equipment together. Although the connecting section has not been optimized in all areas of concern, it provides a first-generation design of a production-oriented system

  15. Design of a mixing system for simulated high-level nuclear waste melter feed slurries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M.E.; McCarthy, D.; Muhlstein, K.D.

    1986-03-01

    The Nuclear Waste Treatment Program development program consists of coordinated nonradioactive and radioactive testing combined with numerical modeling of the process to provide a complete basis for design and operation of a vitrification facility. The radioactive demonstration tests of equipment and processes are conducted before incorporation in radioactive pilot-scale melter systems for final demonstration. The mixing system evaluation described in this report was conducted as part of the nonradioactive testing. The format of this report follows the sequence in which the design of a large-scale mixing system is determined. The initial program activity was concerned with gaining an understanding of the theoretical foundation of non-Newtonian mixing systems. Section 3 of this report describes the classical rheological models that are used to describe non-Newtonian mixing systems. Since the results obtained here are only valid for the slurries utilized, Section 4, Preparation of Simulated Hanford and West Valley Slurries, describes how the slurries were prepared. The laboratory-scale viscometric and physical property information is summarized in Section 5, Laboratory Rheological Evaluations. The bench-scale mixing evaluations conducted to define the effects of the independent variables described above on the degree of mixing achieved with each slurry are described in Section 6. Bench-scale results are scaled-up to establish engineering design requirements for the full-scale mixing system in Section 7. 24 refs., 37 figs., 44 tabs.

  16. A system of miniaturized stirred bioreactors for parallel continuous cultivation of yeast with online measurement of dissolved oxygen and off-gas.

    Science.gov (United States)

    Klein, Tobias; Schneider, Konstantin; Heinzle, Elmar

    2013-02-01

    Chemostat cultivation is a powerful tool for physiological studies of microorganisms. We report the construction and application of a set of eight parallel small-scale bioreactors with a working volume of 10 mL for continuous cultivation. Hungate tubes were used as culture vessels connected to multichannel-peristaltic pumps for feeding fresh media and removal of culture broth and off-gas. Water saturated air is sucked into the bioreactors by applying negative pressure, and small stirrer bars inside the culture vessels allow sufficient mixing and oxygen transfer. Optical sensors are used for non-invasive online measurement of dissolved oxygen, which proved to be a powerful indicator of the physiological state of the cultures, particularly of steady-state conditions. Analysis of culture exhaust-gas by means of mass spectrometry enables balancing of carbon. The capacity of the developed small-scale bioreactor system was validated using the fission yeast Schizosaccharomyces pombe, focusing on the metabolic shift from respiratory to respiro-fermentative metabolism, as well as studies on consumption of different substrates such as glucose, fructose, and gluconate. In all cases, an almost completely closed carbon balance was obtained proving the reliability of the experimental setup. Copyright © 2012 Wiley Periodicals, Inc.

  17. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  18. Spray Calciner/In-Can Melter high-level waste solidification technical manual

    International Nuclear Information System (INIS)

    Larson, D.E.

    1980-09-01

    This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application

  19. Spray Calciner/In-Can Melter high-level waste solidification technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E. (ed.)

    1980-09-01

    This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application.

  20. Volatilization of heavy metals and radionuclides from soil heated in an induction ''cold'' crucible melter

    International Nuclear Information System (INIS)

    Aloy, A.S.; Belov, V.Z.; Trofimenko, A.S.; Dmitriev, S.A.; Stefanovsky, S.V.; Gombert, D.; Knecht, D.A.

    1997-01-01

    The behavior of heavy metals and radionuclides during high-temperature treatment is very important for the design and operational capabilities of the off-gas treatment system, as well as for a better understanding of the nature and forms of the secondary waste. In Russia, a process for high-temperature melting in an induction heated cold crucible system is being studied for vitrification of Low Level Waste (LLW) flyash and SYNROC production with simulated high level waste (HLW). This work was done as part of a Department of Energy (DOE) funded research project for thermal treatment of mixed low level waste (LLW). Soil spiked with heavy metals (Cd, Pb) and radionuclides (Cs-137, U-239, Pu-239) was used as a waste surrogate. The soil was melted in an experimental lab-scale system that consisted of a high-frequency generator (1.76 MHz, 60 kW), a cold crucible melter (300 mm high and 90 mm in diameter), a shield box, and an off-gas system. The process temperature was 1,350--1,400 C. Graphite and silicon carbide were used as sacrificial conductive materials to start heating and initial melting of the soil batch. The off-gas system was designed in such a manner that after each experiment, it can be disconnected to collect and analyze all deposits to determine the mass balance. The off-gases were also sampled during an experiment to analyze for hydrogen, NO x , carbon dioxide, carbon monoxide and chlorine formation. This paper describes distribution and mass balance of metals and radionuclides in various parts of the off-gas system. The leach rate of the solidified blocks identified by the PCT method is also reported

  1. Melter Disposal Strategic Planning Document

    Energy Technology Data Exchange (ETDEWEB)

    BURBANK, D.A.

    2000-09-25

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  2. NEXT GENERATION MELTER(S) FOR VITRIFICATION OF HANFORD WASTE STATUS AND DIRECTION

    Energy Technology Data Exchange (ETDEWEB)

    RAMSEY WG; GRAY MF; CALMUS RB; EDGE JA; GARRETT BG

    2011-01-13

    Vitrification technology has been selected to treat high-level waste (HLW) at the Hanford Site, the West Valley Demonstration Project and the Savannah River Site (SRS), and low activity waste (LAW) at Hanford. In addition, it may potentially be applied to other defense waste streams such as sodium bearing tank waste or calcine. Joule-heated melters (already in service at SRS) will initially be used at the Hanford Site's Waste Treatment and Immobilization Plant (WTP) to vitrify tank waste fractions. The glass waste content and melt/production rates at WTP are limited by the current melter technology. Significant reductions in glass volumes and mission life are only possible with advancements in melter technology coupled with new glass formulations. The Next Generation Melter (NGM) program has been established by the U.S. Department of Energy's (DOE's), Environmental Management Office of Waste Processing (EM-31) to develop melters with greater production capacity (absolute glass throughput rate) and the ability to process melts with higher waste fractions. Advanced systems based on Joule-Heated Ceramic Melter (JHCM) and Cold Crucible Induction Melter (CCIM) technologies will be evaluated for HLW and LAW processing. Washington River Protection Solutions (WRPS), DOE's tank waste contractor, is developing and evaluating these systems in cooperation with EM-31, national and university laboratories, and corporate partners. A primary NGM program goal is to develop the systems (and associated flowsheets) to Technology Readiness Level 6 by 2016. Design and testing are being performed to optimize waste glass process envelopes with melter and balance of plant requirements. A structured decision analysis program will be utilized to assess the performance of the competing melter technologies. Criteria selected for the decision analysis program will include physical process operations, melter performance, system compatibility and other parameters.

  3. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment

    Energy Technology Data Exchange (ETDEWEB)

    R. T. Jubin; D. M. Strachan; N. R. Soelberg

    2013-09-01

    Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. This report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.

  4. Investigation of processing advanced waste forms in Cold Crucible Induction Melter systems

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Jay A. [Nexergy Technical, LLC, Falls Church, Virginia (United States)

    2013-07-01

    The Cold Crucible Induction Melter (CCIM) technology has been identified in several independent reviews and studies as a potential alternative or supplemental vitrification technology for specific U.S. Department of Energy (DOE) high level radioactive waste (HLW) streams. These inventories have unique chemistries, such as high alumina, high iron, high chromium, etc., that are not amenable to efficient immobilization in conventional borosilicate glass (BSG) matrices. Advanced waste forms, such as iron phosphate glass (FePG), high crystalline BSG (HC-BSG), and alumino-silicate glass-ceramic (GC) have been shown to provide significantly improved immobilization matrices for these challenging waste streams, including dramatically improved waste loadings; however, they are difficult to efficiently process in the baseline joule-heated ceramic melters (JHCMs). The CCIM technology can effectively process these advanced waste forms at the desired high waste loadings. This paper describes the most recent collaborative activities between the DOE Office of Environmental Management (DOE EM) and various Russian institutions in modeling, development and testing of advanced waste forms in CCIMs, including FePG and HC-BSG formulations. Additionally, past interactions with other international partners, including France and Korea, are described. Finally, recent enhancements to CCIM processing related to modeling, draining techniques and automated control, which were collaboratively developed, will be discussed. (authors)

  5. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF REDOX EFFECTS USING HLW AZ-101 AND C-106/AY-102 SIMULANTS VSL-04R4800-1 REV 0 5/6/

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; LUTZE W; BIZOT PM; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 and C-106/AY-102 HLW simulants. The tests reported herein are a subset of three tests from a larger series of tests described in the Test Plan for the work; results from the remaining tests will be reported separately. Three nine day tests, one with AZ-101 and two with C-106/AY-102 feeds were conducted with variable amounts of added sugar to address the effects of redox. The test with AZ-101 included ruthenium spikes to also address the effects of redox on ruthenium volatility. One of tests addressed the effects of increased flow-sheet nitrate levels using C-106/AY-102 feeds. With high nitrate/nitrite feeds (such as WTP LAW feeds), reductants are required to prevent melt foaming and deleterious effects on glass production rates. Sugar is the baseline WTP reductant for this purpose. WTP HLW feeds typically have relatively low nitrate/nitrite content in comparison to the organic carbon content and, therefore, have typically not required sugar additions. However, HLW feed variability, particularly with respect to nitrate levels, may necessitate the use of sugar in some instances. The tests reported here investigate the effects of variable sugar additions to the melter feed as well as elevated nitrate levels in the waste. Variables held constant to the extent possible included melt temperature, bubbling rate, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW feeds with variable amounts of added sugar and increased nitrate levels; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and

  6. Final Report Integrated DM1200 Melter Testing Of Redox Effects Using HLW AZ-101 And C-106/AY-102 Simulants VSL-04R4800-1, Rev. 0, 5/6/04

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Gong, W.; Bardakci, T.; D'Angelo, N.A.; Lutze, W.; Bizot, P.M.; Callow, R.A.; Brandys, M.; Kot, W.K.; Pegg, I.L.

    2011-01-01

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 and C-106/AY-102 HLW simulants. The tests reported herein are a subset of three tests from a larger series of tests described in the Test Plan for the work; results from the remaining tests will be reported separately. Three nine day tests, one with AZ-101 and two with C-106/AY-102 feeds were conducted with variable amounts of added sugar to address the effects of redox. The test with AZ-101 included ruthenium spikes to also address the effects of redox on ruthenium volatility. One of tests addressed the effects of increased flow-sheet nitrate levels using C-106/AY-102 feeds. With high nitrate/nitrite feeds (such as WTP LAW feeds), reductants are required to prevent melt foaming and deleterious effects on glass production rates. Sugar is the baseline WTP reductant for this purpose. WTP HLW feeds typically have relatively low nitrate/nitrite content in comparison to the organic carbon content and, therefore, have typically not required sugar additions. However, HLW feed variability, particularly with respect to nitrate levels, may necessitate the use of sugar in some instances. The tests reported here investigate the effects of variable sugar additions to the melter feed as well as elevated nitrate levels in the waste. Variables held constant to the extent possible included melt temperature, bubbling rate, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW feeds with variable amounts of added sugar and increased nitrate levels; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and

  7. Technetium Retention In WTP Law Glass With Recycle Flow-Sheet DM10 Melter Testing VSL-12R2640-1 REV 0

    International Nuclear Information System (INIS)

    Abramowitz, Howard; Callow, Richard A.; Joseph, Innocent

    2012-01-01

    Melter tests were conducted to determine the retention of technetium and other volatiles in glass while processing simulated Low Activity Waste (LAW) streams through a DM10 melter equipped with a prototypical off-gas system that concentrates and recycles fluid effiuents back to the melter feed. To support these tests, an existing DM10 system installed at Vitreous State Laboratory (VSL) was modified to add the required recycle loop. Based on the Hanford Tank Waste Treatment and Immobilization Plant (WTP) LAW off-gas system design, suitably scaled versions of the Submerged Bed Scrubber (SBS), Wet Electrostatic Precipitator (WESP), and TLP vacuum evaporator were designed, built, and installed into the DM10 system. Process modeling was used to support this design effort and to ensure that issues associated with the short half life of the 99m Tc radioisotope that was used in this work were properly addressed and that the system would be capable of meeting the test objectives. In particular, this required that the overall time constant for the system was sufficiently short that a reasonable approach to steady state could be achieved before the 99m Tc activity dropped below the analytical limits of detection. The conceptual design, detailed design, flow sheet development, process model development, Piping and Instrumentation Diagram (P and ID) development, control system design, software design and development, system fabrication, installation, procedure development, operator training, and Test Plan development for the new system were all conducted during this project. The new system was commissioned and subjected to a series of shake-down tests before embarking on the planned test program. Various system performance issues that arose during testing were addressed through a series of modifications in order to improve the performance and reliability of the system. The resulting system provided a robust and reliable platform to address the test objectives

  8. TECHNETIUM RETENTION IN WTP LAW GLASS WITH RECYCLE FLOW-SHEET DM10 MELTER TESTING VSL-12R2640-1 REV 0

    Energy Technology Data Exchange (ETDEWEB)

    Abramowitz, Howard [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Brandys, Marek [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Cecil, Richard [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; D& #x27; Angelo, Nicholas [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Matlack, Keith S. [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Muller, Isabelle S. [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Pegg, Ian L. [Energy Solutions, Federal EPC, Inc., Columbia, MD (United States); Callow, Richard A. [Energy Solutions, Federal EPC, Inc., Columbia, MD (United States); Joseph, Innocent

    2012-12-11

    Melter tests were conducted to determine the retention of technetium and other volatiles in glass while processing simulated Low Activity Waste (LAW) streams through a DM10 melter equipped with a prototypical off-gas system that concentrates and recycles fluid effiuents back to the melter feed. To support these tests, an existing DM10 system installed at Vitreous State Laboratory (VSL) was modified to add the required recycle loop. Based on the Hanford Tank Waste Treatment and Immobilization Plant (WTP) LAW off-gas system design, suitably scaled versions of the Submerged Bed Scrubber (SBS), Wet Electrostatic Precipitator (WESP), and TLP vacuum evaporator were designed, built, and installed into the DM10 system. Process modeling was used to support this design effort and to ensure that issues associated with the short half life of the {sup 99m}Tc radioisotope that was used in this work were properly addressed and that the system would be capable of meeting the test objectives. In particular, this required that the overall time constant for the system was sufficiently short that a reasonable approach to steady state could be achieved before the {sup 99m}Tc activity dropped below the analytical limits of detection. The conceptual design, detailed design, flow sheet development, process model development, Piping and Instrumentation Diagram (P&ID) development, control system design, software design and development, system fabrication, installation, procedure development, operator training, and Test Plan development for the new system were all conducted during this project. The new system was commissioned and subjected to a series of shake-down tests before embarking on the planned test program. Various system performance issues that arose during testing were addressed through a series of modifications in order to improve the performance and reliability of the system. The resulting system provided a robust and reliable platform to address the test objectives.

  9. Test plan for glass melter system technologies for vitrification of hign-sodium content low-level radioactive liquid waste, Project No. RDD-43288

    International Nuclear Information System (INIS)

    Higley, B.A.

    1995-01-01

    This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock ampersand Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing

  10. Oxygen enriched combustion system performance study. Phase 2: 100 percent oxygen enriched combustion in regenerative glass melters, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tuson, G.B.; Kobayashi, H.; Campbell, M.J.

    1994-08-01

    The field test project described in this report was conducted to evaluate the energy and environmental performance of 100% oxygen enriched combustion (100% OEC) in regenerative glass melters. Additional objectives were to determine other impacts of 100% OEC on melter operation and glass quality, and to verify on a commercial scale that an on-site Pressure Swing Adsorption oxygen plant can reliably supply oxygen for glass melting with low electrical power consumption. The tests constituted Phase 2 of a cooperative project between the United States Department of Energy, and Praxair, Inc. Phase 1 of the project involved market and technical feasibility assessments of oxygen enriched combustion for a range of high temperature industrial heating applications. An assessment of oxygen supply options for these applications was also performed during Phase 1, which included performance evaluation of a pilot scale 1 ton per day PSA oxygen plant. Two regenerative container glass melters were converted to 100% OEC operation and served as host sites for Phase 2. A 75 ton per day end-fired melter at Carr-Lowrey Glass Company in Baltimore, Maryland, was temporarily converted to 100% OEC in mid- 1990. A 350 tpd cross-fired melter at Gallo Glass Company in Modesto, California was rebuilt for permanent commercial operation with 100% OEC in mid-1991. Initially, both of these melters were supplied with oxygen from liquid storage. Subsequently, in late 1992, a Pressure Swing Adsorption oxygen plant was installed at Gallo to supply oxygen for 100% OEC glass melting. The particular PSA plant design used at Gallo achieves maximum efficiency by cycling the adsorbent beds between pressurized and evacuated states, and is therefore referred to as a Vacuum/Pressure Swing Adsorption (VPSA) plant.

  11. Separation technology for radioactive iodine from off-gas streams of nuclear facilities

    International Nuclear Information System (INIS)

    Fukasawa, Tetsuo; Funabashi, Kiyomi; Kondo, Yoshikazu.

    1994-01-01

    Iodine separation technology using an inorganic adsorption material has been investigated in order to apply the technology to the off-gas treatment systems of nuclear facilities. Iodine removal efficiencies were checked by laboratory experiments using simulated off-gas streams of various conditions and the developed adsorbent, silver impregnated alumina (AgA). Laboratory test results demonstrated effective iodine removal with high decontamination factors (DF's) at relatively high temperatures (≥100degC). Then the removal efficiency were confirmed using actual off-gas streams sampled from the dissolver off-gas treatment system of the Karlsruhe reprocessing plant. The DF's were over 10 3 with the AgA bed depth of 10 cm and showed little change during the adsorption period, which indicated applicability of the iodine removal technology with AgA to nuclear fuel reprocessing plants. Iodine absorption capacity and its release property were also investigated using simulated off-gas streams. The former had a value of ∼0.22 g/g-AgA and this value could well predict the breakthrough property. The adsorbed iodine was judged stable during the storage of AgA saturated with iodine in air at temperatures below 500degC and in water at ∼20degC after changing the adsorbed iodine form from AgIO 3 to AgI. Thus, the separation technology provided effective and stable iodine separation from the off-gas of nuclear facilities. (author)

  12. Tunable, self-powered integrated arc plasma-melter vitrification system for waste treatment and resource recovery

    Science.gov (United States)

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides a relatively compact self-powered, tunable waste conversion system and apparatus which has the advantage of highly robust operation which provides complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The system provides the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or by an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced or without further use of the gases generated by the conversion process. The apparatus may be employed as a self-powered or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production.

  13. Preliminary melter performance assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, M.L.; Eyler, L.L.; Mahoney, L.A.; Cooper, M.F.; Whitney, L.D.; Shafer, P.J.

    1994-08-01

    The Melter Performance Assessment activity, a component of the Pacific Northwest Laboratory`s (PNL) Vitrification Technology Development (PVTD) effort, was designed to determine the impact of noble metals on the operational life of the reference Hanford Waste Vitrification Plant (HWVP) melter. The melter performance assessment consisted of several activities, including a literature review of all work done with noble metals in glass, gradient furnace testing to study the behavior of noble metals during the melting process, research-scale and engineering-scale melter testing to evaluate effects of noble metals on melter operation, and computer modeling that used the experimental data to predict effects of noble metals on the full-scale melter. Feed used in these tests simulated neutralized current acid waste (NCAW) feed. This report summarizes the results of the melter performance assessment and predicts the lifetime of the HWVP melter. It should be noted that this work was conducted before the recent Tri-Party Agreement changes, so the reference melter referred to here is the Defense Waste Processing Facility (DWPF) melter design.

  14. Off-gas Adsorption Model and Simulation - OSPREY

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J Rutledge

    2013-10-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed.

  15. Off-gas adsorption model and simulation - OSPREY

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, V.J. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID (United States)

    2013-07-01

    A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and Recovery (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed. (author)

  16. Design/Installation and Structural Integrity Assessment of Bethel Valley Low-Level Waste collection and transfer system upgrade for Building 3092 (central off-gas scrubber facility) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-10-01

    This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in response to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lined concrete vault, replacing an existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. Ne scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation. A formal design certification statement is included herein on Page 53, a certification covering the installation shall be executed prior to placing the modified facility into service

  17. Design/installation and structural integrity assessment of Bethel Valley low-level waste collection and transfer system upgrade for Building 3092 (Central Off-Gas Scrubber Facility) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-01-01

    This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in responsible to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lines concrete vault, replacing and existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. New scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation

  18. Design/installation and structural integrity assessment of Bethel Valley low-level waste collection and transfer system upgrade for Building 3092 (Central Off-Gas Scrubber Facility) at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in responsible to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lines concrete vault, replacing and existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. New scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation.

  19. Lid heater for glass melter

    Science.gov (United States)

    Phillips, Terrance D.

    1993-01-01

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes.

  20. The West Valley Demonstration Project's vitrification system operating experience

    International Nuclear Information System (INIS)

    Pope, J.M.; Barnes, S.M.

    1989-01-01

    A full-sized, integrated vitrification system is being tested at the West Valley Demonstration Project (WVDP) to establish its operational characteristics that will allow a quality, high-level nuclear waste (HLW) glass product to be consistently produced. Recently, this nonradioactive verification testing has emphasized (a) ensuring flow sheet and feed makeup chemistry that enables well-balanced melter performance, (b) achieving design basis melter throughput rates at steady-state operating conditions, and (c) demonstrating that the release limit of NO x is met by the vitrification off-gas system. The West Valley vitrification process testing is rapidly converging to demonstrate that the acceptance specification in the glass product and the environmental requirements on the off-gas will indeed be met, thereby providing the basis for approval to begin radioactive operations in 1992

  1. Modified IRC bench-scale arc melter for waste processing

    International Nuclear Information System (INIS)

    Eddy, T.L.; Sears, J.W.; Grandy, J.D.; Kong, P.C.; Watkins, A.D.

    1994-03-01

    This report describes the INEL Research Center (IRC) arc melter facility and its recent modifications. The arc melter can now be used to study volatilization of toxic and high vapor pressure metals and the effects of reducing and oxidizing (redox) states in the melt. The modifications include adding an auger feeder, a gas flow control and monitoring system, an offgas sampling and exhaust system, and a baghouse filter system, as well as improving the electrode drive, slag sampling system, temperature measurement and video monitoring and recording methods, and oxidation lance. In addition to the volatilization and redox studies, the arc melter facility has been used to produce a variety of glass/ceramic waste forms for property evaluation. Waste forms can be produced on a daily basis. Some of the melts performed are described to illustrate the melter's operating characteristics

  2. Off-gas considerations for a vitrification plant in the republic of Korea

    International Nuclear Information System (INIS)

    Chun, Ung Kyung; Park, Jong Kil; Yang, Kyung Hwa; Song, Myung Jae

    1997-01-01

    The Republic of Korea is in the process of preparing for its first ever vitrification plant to handle low and intermediate-level radioactive waste from her pressurized water reactors (PWRs). KEPRI, in coordination with her partners, will design, construct, and erect a pilot plant using data from the orientation tests. The pilot plant will be the basis for the development of the final objective, the establishment of an industrial scale vitrification installation in the Republic of Korea. Throughout these projects, the major goal is to minimize the harmful effects of the final waste form to the environment. The gaseous effluents emissions from the facility will need to be managed to meet the environmental regulations concerning gaseous releases into the environment of the Republic of Korea. The focus of this paper is on the considerations for the treatment of the off-gas for a low and intermediate-level radioactive waste treatment vitrification installation in the Republic of Korea. Off-gas considerations will span a wide-range of areas such as waste characteristics, thermal treatment systems, off-gas regulations, off-gas characteristics, assessment of air pollution control devices, systems assessments, numerical modelling, economics etc. Off-gas regulations in Korea are becoming tighter and will likely change from year to year. In terms of both off-gas treatment equipment performance and public protection, the amount and nature (e.g. chemical behavior and morphology) of the species are important. The emissions may be classified as toxic metals, radionuclides, hydrocarbons, particulate matter, and acid gases. Air pollution control technologies are generally classified as wet or dry technologies covering over 40 different air pollution control devices (APCDs) with varying removal efficiencies for the different types of off-gas. In general, the state of the art systems for vitrification technologies incorporate the basic functions such as further oxidation of products

  3. Melter Glass Removal and Dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, BS

    2000-10-31

    The U.S. Department of Energy (DOE) has been using vitrification processes to convert high-level radioactive waste forms into a stable glass for disposal in waste repositories. Vitrification facilities at the Savannah River Site (SRS) and at the West Valley Demonstration Project (WVDP) are converting liquid high-level waste (HLW) by combining it with a glass-forming media to form a borosilicate glass, which will ensure safe long-term storage. Large, slurry fed melters, which are used for this process, were anticipated to have a finite life (on the order of two to three years) at which time they would have to be replaced using remote methods because of the high radiation fields. In actuality the melters useable life spans have, to date, exceeded original life-span estimates. Initial plans called for the removal of failed melters by placing the melter assembly into a container and storing the assembly in a concrete vault on the vitrification plant site pending size-reduction, segregation, containerization, and shipment to appropriate storage facilities. Separate facilities for the processing of the failed melters currently do not exist. Options for handling these melters include (1) locating a facility to conduct the size-reduction, characterization, and containerization as originally planned; (2) long-term storing or disposing of the complete melter assembly; and (3) attempting to refurbish the melter and to reuse the melter assembly. The focus of this report is to look at methods and issues pertinent to size-reduction and/or melter refurbishment in particular, removing the glass as a part of a refurbishment or to reduce contamination levels (thus allowing for disposal of a greater proportion of the melter as low level waste).

  4. Joule-Heated Ceramic-Lined Melter to Vitrify Liquid Radioactive Wastes Containing Am241 Generated From MOX Fuel Fabrication in Russia

    International Nuclear Information System (INIS)

    Smith, E C; Bowan II, B W; Pegg, I; Jardine, L J

    2004-01-01

    contains. Silver is widely used as an additive in glass making. However, its solubility is known to be limited in borosilicate glasses. Further, silver, which is present as a nitrate salt in the waste, can be easily reduced to molten silver in the melting process. Molten silver, if formed, would be difficult to reintroduce into the glass matrix and could pose operating difficulties for the glass melter. This will place a limitation on the waste loading of the melter feed material to prevent the separation of silver from the waste within the melter. If the silver were recovered in the MOx fabrication process, which is currently under consideration, the composition of the glass would likely be limited only by the thermal heat load from the incorporated 241 Am. The resulting mass of glass used to encapsulate the waste could then be reduced by a factor of approximately three. The vitrification process used to treat the waste stream is proposed to center on a joule-heated ceramic lined slurry fed melter. Glass furnaces of this type are used in the United States to treat high-level waste (HLW) at the: Defense Waste Processing Facility, West Valley Demonstration Project, and to process the Hanford tank waste. The waste will initially be blended with glass-forming chemicals, which are primarily sand and boric acid. The resulting slurry is pumped to the melter for conversion to glass. The melter is a ceramic lined metal box that contains a molten glass pool heated by passing electric current through the glass. Molten glass from the melter is poured into canisters to cool and solidify. They are then sealed and decontaminated to form the final waste disposal package. Emissions generated in the melter from the vitrification process are treated by an off-gas system to remove radioactive contamination and destroy nitrogen oxides (NOx)

  5. Small-Scale High Temperature Melter-1 (SSHTM-1) Data Package. Appendix B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This appendix provides the data for Alternate HTM Flowsheet 2 (Glycolic Acid) melter feed preparation activities in both the laboratory- and small-scale testing. The first section provides an outline of this appendix. The melter feed preparation data are presented in the next two main sections, laboratory melter feed preparation data and small-scale melter feed preparation data. Section 3.0 provides the laboratory data which is discussed in the main body of the Small-Scale High Temperature-1 (SSHTM-1) Data Package, milestone C95-02.02Y. Section 3.1 gives the flowsheet in outline form as used in the laboratory-scale tests. This section also includes the ``Laboratory Melter Feed Preparation Activity Log`` which gives A chronological account of the test in terms of time, temperature, slurry pH, and specific observations about slurry appearance, acid addition rates, and samples taken. The ``Laboratory Melter Feed Preparation Activity Log`` provides a road map to the reader by which all the activity and data from the laboratory can be easily accessed. A summary of analytical data is presented next, section 3.2, which covers starting materials and progresses to the analysis of the melter feed. The next section, 3.3, characterizes the off-gas generation that occurs during the slurry processing. The following section, 3.4, provides the rheology data gathered including gram waste oxide loading information for the various slurries tested. The final section, 3.5, includes data from standard crucible redox testing. Section 4.0 provides the small-scale data in parallel form to section 3.0. Section 5.0 concludes with the references for this appendix.

  6. Control of DWPF melter feed composition

    International Nuclear Information System (INIS)

    Brown, K.G.; Edwards, R.E.; Postles, R.L.; Randall, C.T.

    1989-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility

  7. Determination of halogen content in glass for assessment of melter decontamination factors

    International Nuclear Information System (INIS)

    Goles, R.W.

    1996-03-01

    Melter decontamination factor (DF) values for the halogens (fluorine, chlorine, and iodine) are important to the Hanford Waste Vitrification Plant (HWVP) process because of the potential influence of DF on secondary-waste recycle strategies (fluorine and chlorine) as well as its impact on off-gas emissions (iodine). This study directly establishes the concentrations of halides-in HWVP simulated reference glasses rather than relying on indirect off-gas data. For fluorine and chlorine, pyrohydrolysis coupled with halide (ion chromatographic) detection has proven to be a useful analytical approach suitable for glass matrices, sensitive enough for the range of halogens encountered, and compatible with remote process support applications. Results obtained from pyrohydrolytic analysis of pilot-scale ceramic melter (PSCM) -22 and -23 glasses indicate that the processing behavior of fluorine and chlorine is quite variable even under similar processing conditions. Specifically, PSCM-23 glass exhibited a ∼90% halogen (F and Cl) retention efficiency, while only 20% was incorporated in PSCM-22 glass. These two sets of very dissimilar test results clearly do not form a sufficient basis for establishing design DF values for fluorine and chlorine. Because the present data do not provide any new halogen volatility information, but instead reconfirm the validity of previously obtained offgas derived values, melter DF values of 4, 2, and 1 for fluorine, chlorine, and iodine, respectively, are recommended for adoption; these values were conservatively established by a team of responsible engineers at Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL) on the basis of average behavior for many comparable melter tests. In the absence of further HWVP process data, these average melter DFs are the best values currently available

  8. History of the small cylindrical melter

    International Nuclear Information System (INIS)

    Allen, T.L.; Iverson, D.C.; Plodinec, M.J.

    1985-08-01

    The small cylindrical melter (SCM) was designed to provide engineering data useful for operation and design of full-scale glass melters for vitrification of high-level radioactive waste. This melter was part of the research and development program for the Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Extensive corrosion testing of melter materials of construction (Monofrax K3, Inconel 690), simulated radioactive waste glass characterization, and melter component development were conducted in support of the DWPF full-scale melter design. 66 figs., 14 tabs

  9. Sorption Modeling and Verification for Off-Gas Treatment

    International Nuclear Information System (INIS)

    Tavlarides, Lawrence L.; Lin, Ronghong; Nan, Yue; Yiacoumi, Sotira; Tsouris, Costas; Ladshaw, Austin; Sharma, Ketki; Gabitto, Jorge; DePaoli, David

    2015-01-01

    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient

  10. Sorption Modeling and Verification for Off-Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tavlarides, Lawrence L. [Syracuse Univ., NY (United States); Lin, Ronghong [Syracuse Univ., NY (United States); Nan, Yue [Syracuse Univ., NY (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Sharma, Ketki [Georgia Inst. of Technology, Atlanta, GA (United States); Gabitto, Jorge [Prairie View A & M Univ., Prairie View, TX (United States); DePaoli, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-29

    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient

  11. Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

    2015-01-01

    This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in which hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.

  12. Development of silver impregnated alumina for iodine separation from off-gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Funabashi, Kiyomi; Fukasawa, Tetsuo; Kikuchi, Makoto [Energy Research Laboratory, Hitachi (Japan)] [and others

    1995-02-01

    An inorganic iodine adsorbent, silver impregnated alumina (AgA), has been developed to separate iodine effectively from off-gas streams of nuclear facilities and to decrease the volume of waste (spent adsorbent). Iodine removal efficiency was improved at relatively high humidity by using alumina carrier with two different pore diameters. Waste volume reduction was achieved by impregnating relatively large amounts of silver into the alumina pores. The developed adsorbent was tested first with simulated off-gas streams under various experimental conditions and finally with actual off-gas streams of the Karlsruhe reprocessing plant. The decontamination factor (DF) was about 100 with the AgA bed depth of 2cm at 70% relative humidity, which was a DF one order higher than that when AgA with one pore size was used. Iodine adsorption capacity was checked by passing excess iodine into the AgA bed. Values were about 0.12 and 0.35 g-I/cm`-AgA bed for 10 and 24wt% silver impregnated AgA, respectively. The results obtained in this study demonstrated the applicability of the developed AgA to the off-gas treatment system of nuclear facilities.

  13. Graphite electrode arc melter demonstration Phase 2 test results

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; O`Connor, W.K.; Oden, L.L.; Turner, P.C.

    1996-06-01

    Several U.S. Department of Energy organizations and the U.S. Bureau of Mines have been collaboratively conducting mixed waste treatment process demonstration testing on the near full-scale graphite electrode submerged arc melter system at the Bureau`s Albany (Oregon) Research Center. An initial test series successfully demonstrated arc melter capability for treating surrogate incinerator ash of buried mixed wastes with soil. The conceptual treatment process for that test series assumed that buried waste would be retrieved and incinerated, and that the incinerator ash would be vitrified in an arc melter. This report presents results from a recently completed second series of tests, undertaken to determine the ability of the arc melter system to stably process a wide range of {open_quotes}as-received{close_quotes} heterogeneous solid mixed wastes containing high levels of organics, representative of the wastes buried and stored at the Idaho National Engineering Laboratory (INEL). The Phase 2 demonstration test results indicate that an arc melter system is capable of directly processing these wastes and could enable elimination of an up-front incineration step in the conceptual treatment process.

  14. Graphite electrode arc melter demonstration Phase 2 test results

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; O'Connor, W.K.; Oden, L.L.; Turner, P.C.

    1996-06-01

    Several U.S. Department of Energy organizations and the U.S. Bureau of Mines have been collaboratively conducting mixed waste treatment process demonstration testing on the near full-scale graphite electrode submerged arc melter system at the Bureau's Albany (Oregon) Research Center. An initial test series successfully demonstrated arc melter capability for treating surrogate incinerator ash of buried mixed wastes with soil. The conceptual treatment process for that test series assumed that buried waste would be retrieved and incinerated, and that the incinerator ash would be vitrified in an arc melter. This report presents results from a recently completed second series of tests, undertaken to determine the ability of the arc melter system to stably process a wide range of open-quotes as-receivedclose quotes heterogeneous solid mixed wastes containing high levels of organics, representative of the wastes buried and stored at the Idaho National Engineering Laboratory (INEL). The Phase 2 demonstration test results indicate that an arc melter system is capable of directly processing these wastes and could enable elimination of an up-front incineration step in the conceptual treatment process

  15. Off-gas treatment and characterization for a radioactive in situ vitrification test

    International Nuclear Information System (INIS)

    Oma, K.H.; Timmerman, C.L.

    1985-01-01

    Effluents released to the off gas during the in situ vitrification (ISV) of a test site have been characterized. The site consisted of a 19 L waste package of soil containing 600 nCi/g transuranic and 30,000 nCi/g mixed fission products surrounded by uncontaminated soil. Radioactive isotopes present in the package were 241 Am, /sup 238/239/Pu, 137 Cs, 106 Ru, 90 Sr, and 60 Co. The ISV process melted the waste package and surrounding soil and immobilized the radionuclides in place, producing a durable, 8.6 metric ton glass and crystalline monolith. The test successfully demonstrated that the process provides containment of radioactive material. No release to the environment was detected during processing or cooldown. Due to the high temperatures during processing, some gases were released into the off-gas hood that was placed over the test site. The hood was maintained at a light negative pressure to contain any volatile or entrained material during processing. Gases passed from the hood to an off-gas treatment system where they were treated using a venturi-ejector scrubber, a tandem nozzle gas cleaner scrubber followed by a condenser, heater, and two stages of HEPA filters. The off-gas treatment system is located in the semi-trailer to allow transport of the process to other potential test sites. Retention of all radionuclides by the vitrified zone was greater than 99%. Soil-to-off-gas decontamination factors (DFs) for transuranic elements averaged greater than 4000 and for fission products, DFs ranged from 130 for 137 Cs to 3100 for 90 Sr

  16. Off-Gas Adsorption Model Capabilities and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Kevin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, Amy K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Law, Jack [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    Off-gas treatment is required to reduce emissions from aqueous fuel reprocessing. Evaluating the products of innovative gas adsorption research requires increased computational simulation capability to more effectively transition from fundamental research to operational design. Early modeling efforts produced the Off-Gas SeParation and REcoverY (OSPREY) model that, while efficient in terms of computation time, was of limited value for complex systems. However, the computational and programming lessons learned in development of the initial model were used to develop Discontinuous Galerkin OSPREY (DGOSPREY), a more effective model. Initial comparisons between OSPREY and DGOSPREY show that, while OSPREY does reasonably well to capture the initial breakthrough time, it displays far too much numerical dispersion to accurately capture the real shape of the breakthrough curves. DGOSPREY is a much better tool as it utilizes a more stable set of numerical methods. In addition, DGOSPREY has shown the capability to capture complex, multispecies adsorption behavior, while OSPREY currently only works for a single adsorbing species. This capability makes DGOSPREY ultimately a more practical tool for real world simulations involving many different gas species. While DGOSPREY has initially performed very well, there is still need for improvement. The current state of DGOSPREY does not include any micro-scale adsorption kinetics and therefore assumes instantaneous adsorption. This is a major source of error in predicting water vapor breakthrough because the kinetics of that adsorption mechanism is particularly slow. However, this deficiency can be remedied by building kinetic kernels into DGOSPREY. Another source of error in DGOSPREY stems from data gaps in single species, such as Kr and Xe, isotherms. Since isotherm data for each gas is currently available at a single temperature, the model is unable to predict adsorption at temperatures outside of the set of data currently

  17. Iodine Adsorption by Ag-Aerogel under Prototypical Vessel Off-Gas Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    U.S. regulations will require the removal of 129I from the off-gas streams of any used nuclear fuel (UNF) reprocessing plant prior to discharge of the off-gas to the environment. The required plant decontamination factor for iodine will vary based on fuel burnup, cooling time, and other factors but is very likely to be >1000 and could be as high as 8000. Multiple off-gas streams within a UNF reprocessing plant combine prior to environmental release, and each of these streams contains some amount of iodine. To achieve the decontamination factors (DFs) that are likely to be required by regulations, iodine removal from the vessel off-gas will be necessary. The vessel off-gas contains iodine at very dilute concentrations (ppb levels), and will also contain water vapor. Iodine species present are likely to include both elemental and organic iodides. There will also be solvent vapors and volatile radiolysis products. The United States has considered the use of silver-based sorbents for removal of iodine from UNF off-gas streams, but little is known about the behavior of those sorbents at very dilute iodine concentrations. The purpose of this study was to expose silver-functionalized silica aerogel (AgAerogel) to a prototypical vessel off-gas stream containing 40 ppb methyl iodide to obtain information about organic iodine capture by silver-sorbents at very low iodine concentrations. The design of this extended duration testing was such that information about the rate of adsorption, the penetration of the iodine species, and the overall system DF could be obtained. Results show that CH3I penetrates into a AgAerogel sorbent bed to a depth of 3.9 cm under prototypical vessel off-gas conditions. An iodine loading of 22 mg I/g AgAerogel was observed in the first 0.3 cm of the bed. Of the iodine delivered to the system, 48% could not be accounted for, and future efforts will investigate this concern. Direct calculation of the decontamination factor is not

  18. Compilation of information on melter modeling

    International Nuclear Information System (INIS)

    Eyler, L.L.

    1996-03-01

    The objective of the task described in this report is to compile information on modeling capabilities for the High-Temperature Melter and the Cold Crucible Melter and issue a modeling capabilities letter report summarizing existing modeling capabilities. The report is to include strategy recommendations for future modeling efforts to support the High Level Waste (BLW) melter development

  19. Final Report Melter Tests With AZ-101 HLW Simulant Using A Duramelter 100 Vitrification System VSL-01R10N0-1, Rev. 1, 2/25/02

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Pegg, I.L.

    2011-01-01

    This report provides data, analyses, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic of America (VSL) to determine the processing rates that are achievable with AZ-101 HLW simulants and corresponding melter feeds on a DuraMelter 100 (DM100) vitrification system. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. Tests conducted during Part B1 (VSL-00R2590-2) on the DM1000 vitrification system installed at the Vitreous State Laboratory of The Catholic University of America showed that, without the use of bubblers, glass production rates with AZ-101 and C-106/AY-102 simulants were significantly lower than the Project design basis rate of 0.4 MT/m 2 /d. Conversely, three-fold increases over the design basis rate were demonstrated with the use of bubblers. Furthermore, an un-bubbled control test using a replica of the melter feed used in cold commissioning tests at West Valley reproduced the rates that were observed with that feed on the WVDP production melter. More recent tests conducted on the DM1200 system, which more closely represents the present RPP-WTP design, are in general agreement with these earlier results. Screening tests conducted on the DM10 system have provided good indications of the larger-scale processing rates with bubblers (for both HL W and LAW feeds) but significantly overestimated the DM1000 un-bubbled rate observed for C-106/AY-102 melter feeds. This behavior is believed to be a consequence of the role of

  20. FINAL REPORT MELTER TESTS WITH AZ-101 HLW SIMULANT USING A DURAMELTER 100 VITRIFICATION SYSTEM VSL-01R10N0-1 REV 1 2/25/02

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL

    2011-12-29

    This report provides data, analyses, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic of America (VSL) to determine the processing rates that are achievable with AZ-101 HLW simulants and corresponding melter feeds on a DuraMelter 100 (DM100) vitrification system. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. Tests conducted during Part B1 (VSL-00R2590-2) on the DM1000 vitrification system installed at the Vitreous State Laboratory of The Catholic University of America showed that, without the use of bubblers, glass production rates with AZ-101 and C-106/AY-102 simulants were significantly lower than the Project design basis rate of 0.4 MT/m{sup 2}/d. Conversely, three-fold increases over the design basis rate were demonstrated with the use of bubblers. Furthermore, an un-bubbled control test using a replica of the melter feed used in cold commissioning tests at West Valley reproduced the rates that were observed with that feed on the WVDP production melter. More recent tests conducted on the DM1200 system, which more closely represents the present RPP-WTP design, are in general agreement with these earlier results. Screening tests conducted on the DM10 system have provided good indications of the larger-scale processing rates with bubblers (for both HL W and LAW feeds) but significantly overestimated the DM1000 un-bubbled rate observed for C-106/AY-102 melter feeds. This behavior is believed to be a consequence of the role of

  1. Laboratory-Scale Melter for Determination of Melting Rate of Waste Glass Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, Michael J.; Buchmiller, William C.; Matyas, Josef

    2012-01-09

    The purpose of this study was to develop the laboratory-scale melter (LSM) as a quick and inexpensive method to determine the processing rate of various waste glass slurry feeds. The LSM uses a 3 or 4 in. diameter-fused quartz crucible with feed and off-gas ports on top. This LSM setup allows cold-cap formation above the molten glass to be directly monitored to obtain a steady-state melting rate of the waste glass feeds. The melting rate data from extensive scaled-melter tests with Hanford Site high-level wastes performed for the Hanford Tank Waste Treatment and Immobilization Plant have been compiled. Preliminary empirical model that expresses the melting rate as a function of bubbling rate and glass yield were developed from the compiled database. The two waste glass feeds with most melter run data were selected for detailed evaluation and model development and for the LSM tests so the melting rates obtained from LSM tests can be compared with those from scaled-melter tests. The present LSM results suggest the LSM setup can be used to determine the glass production rates for the development of new glass compositions or feed makeups that are designed to increase the processing rate of the slurry feeds.

  2. Method for treating a nuclear process off-gas stream

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.-C.

    1981-01-01

    A method is described for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. The method involves a sequence of adsorption and desorption steps which are specified. Particular reference is made to the separation of xenon and krypton from the off-gas stream, and to the use of silver-exchanged mordenite as the adsorbent. (U.K.)

  3. Vitrification of SRP waste by a slurry-fed ceramic melter

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1980-01-01

    Savannah River Plant (SRP) high-level waste (HLW) can be vitrified by feeding a slurry, instead of a calcine, to a joule-heated ceramic melter. Potential advantages of slurry feeding include (1) use of simpler equipment, (2) elimination of handling easily dispersed radioactive powder, (3) simpler process control, (4) effective mixing, (5) reduced off-gas volume, and (6) cost savings. Assessment of advantages and disadvantages of slurry feeding along with experimental studies indicate that slurry feeding is a promising way of vitrifying waste

  4. HWVP melter lifetime prediction letter

    Energy Technology Data Exchange (ETDEWEB)

    Eyler, L.L.; Mahoney, L.A.; Elliott, M.L.

    1996-03-01

    Preliminary predictions were made of the time to reach hypothesized operational limits of the HWVP melter due to build up of a noble metals sludge layer on the melter floor. Predictions were made with the TEMPEST computer program, Version T2.9h, for use in the MPA activity in the Pacific Northwest Laboratory`s (PNL) Hanford Waste Vitrification Plant (HWVP) Technology Development (PHTD) effort. The NWEST computer program (Trent and Eyler 1993) is a PNL-MA-70/Part 2 -- Good Practices Standard (QA Level III) research and development software tool.

  5. Hanford low-level vitrification melter testing -- Master list of data submittals

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1995-01-01

    The Westinghouse Hanford Company (WHC) is conducting a two-phased effort to evaluate melter system technologies for vitrification of liquid low-level radioactive waste (LLW) streams. The evaluation effort includes demonstration testing of selected glass melter technologies and technical reports regarding the applicability of the glass melter technologies to the vitrification of Hanford LLW tank waste. The scope of this document is to identify and list vendor document submittals in technology demonstration support of the Hanford Low-Level Waste Vitrification melter testing program. The scope of this document is limited to those documents responsive to the Statement of Work, accepted and issued by the LLW Vitrification Program. The purpose of such a list is to maintain configuration control of vendor supplied data and to enable ready access to, and application of, vendor supplied data in the evaluation of melter technologies for the vitrification of Hanford low-level tank wastes

  6. DWPF Melter No.2 Prototype Bus Bar Test Report

    International Nuclear Information System (INIS)

    Gordon, J.

    2003-01-01

    Characterization and performance testing of a prototype DWPF Melter No.2 Dome Heater Bus Bar are described. The prototype bus bar was designed to address the design features of the existing system which may have contributed to water leaks on Melter No.1. Performance testing of the prototype revealed significant improvement over the existing design in reduction of both bus bar and heater connection maximum temperature, while characterization revealed a few minor design and manufacturing flaws in the bar. The prototype is recommended as an improvement over the existing design. Recommendations are also made in the area of quality control to ensure that critical design requirements are met

  7. Instrumentation for remote monitoring and control of liquid-fed ceramic melters

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, J.H. Jr.; Wise, B.M.; Spanner, G.E.; Barnes, S.M.

    1985-12-01

    New and existing instrumentation for the monitoring and control of the liquid-fed ceramic melter (LFCM) process have been tested and evaluated. The use of thermocouples for the monitoring of the glass melting process to assure a quality product and to monitor the condition of the melter equipment is well developed. Additional information about the operation of the melter including foaming, feeding, and cold cap coverage can be obtained from the temperature data. A melter viewing system consisting of an infrared camera and associated electronics has been demonstrated to provide clear pictures of the melter interior and cold cap surface during melter operation. The pneumatic level detection system functions well for measuring glass specific gravity and glass level in the melter. Further testing is needed to assess its capabilities for indicating overfeeding, bridging of the cold cap, and foaming. Acoustic monitoring was examined for detection of foaming and overfeeding, and time domain reflectometry was considered for detection of glass level, foaming, and salt formation.

  8. Continuous chemical cold traps for reprocessing off-gas purification

    International Nuclear Information System (INIS)

    Henrich, E.; Bauder, U.; Steinhardt, H.J.; Bumiller, W.

    1985-01-01

    Absorption of nitrogen oxides and iodine from simulated reprocessing plant off-gas streams has been studied using nitric acid and nitric acid/hydrogen peroxide mixtures at low temperatures. The experiments were carried out at the laboratory and on the engineering scale. The pilot plant scale column has 0.8 m diameter and 16 absorption plates at 0.2 m spacing. Cooling coils on the plates allow operating temperatures down to -60 0 C. The NO concentration in the feed gas usually has been 1% by volume and the flow rate 4-32 m 3 (STP) per hour. The iodine behavior has been studied using I-123 tracer. Results of the study are presented. The chemistry of the processes and the advantages and disadvantages in correlation to the various applications for an off-gas purification in a reprocessing plant are compared and discussed. The processes are compatible with the PUREX process and do not produce additional waste

  9. DWPF Glass Melter Technology Manual: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics include: melter overview, design basis, materials, vessel configuration, insulation, refractory configuration, electrical isolation, electrodes, riser and pour spout heater design, dome heaters, feed tubes, drain valves, differential pressure pouring, and melter test results. Information is conveyed using many diagrams and photographs.

  10. DWPF Glass Melter Technology Manual: Volume 1

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics include: melter overview, design basis, materials, vessel configuration, insulation, refractory configuration, electrical isolation, electrodes, riser and pour spout heater design, dome heaters, feed tubes, drain valves, differential pressure pouring, and melter test results. Information is conveyed using many diagrams and photographs

  11. High-Intensity Plasma Glass Melter Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Gonterman, J. Ronald; Weinstein, Michael A.

    2006-10-27

    The purpose of this project was to demonstrate the energy efficiency and reduced emissions that can be obtained with a dual torch DC plasma transferred arc-melting system. Plasmelt Glass Technologies, LLC was formed to solicit and execute the project, which utilize a full-scale test melter system. The system is similar to the one that was originally constructed by Johns Manville, but Plasmelt has added significant improvements to the torch design and melter system that has extended the original JM short torch lives. The original JM design has been shown to achieve melt rates 5 to 10 times faster than conventional gas or electric melting, with improved energy efficiency and reduced emissions. This project began on 7/28/2003 and ended 7/27/06. A laboratory scale melter was designed, constructed, and operated to conduct multiple experimental melting trials on various glass compositions. Glass quality was assessed. Although the melter design is generic and equally applicable to all sectors within the glass industry, the development of this melter has focused primarily on fiberglass with additional exploratory melting trials of frits, specialty, and minerals-melting applications. Throughput, energy efficiency, and glass quality have been shown to be heavily dependent on the selected glass composition. During this project, Plasmelt completed the proof-of-concept work in our Boulder, CO Lab to show the technical feasibility of this transferred-arc plasma melter. Late in the project, the work was focused on developing the processes and evaluating the economic viability of plasma melting aimed at the specific glasses of interest to specific client companies. Post project work is on going with client companies to address broader non-glass materials such as refractories and industrial minerals. Exploratory melting trials have been conducted on several glasses of commercial interest including: C-glass, E-glass, S-Glass, AR-Glass, B-glass, Lighting Glass, NE-Glass, and various

  12. LFCM [liquid-fed ceramic melter] vitrification technology: Quarterly progress report, January--March 1987

    International Nuclear Information System (INIS)

    Brouns, R. A.; Allen, C. R.; Powell, J. A.

    1988-05-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to describe the progress in developing, testing, applying and documenting liquid-fed ceramic melter vitrification technology. Progress in the following technical subject areas during the second quarter of FY 1987 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, and process/product modeling. 23 refs., 14 figs., 10 tabs

  13. Research-scale melter test report

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, M.F.; Elliott, M.L.; Eyler, L.L.; Freeman, C.J.; Higginson, J.J.; Mahoney, L.A.; Powell, M.R.

    1994-05-01

    The Melter Performance Assessment (MPA) activity in the Pacific Northwest Laboratory`s (PNL) Hanford Waste Vitrification Plant (HWVP) Technology Development (PHTD) effort is intended to determine the impact of noble metals on the operational life of the reference HWVP melter. As a part of this activity, a parametric melter test was completed using a Research-Scale Melter (RSM). The RSM is a small, approximately 1/100-scale melter, 6-in.-diameter, that allows rapid changing of process conditions and subsequent re-establishment of a steady-state condition. The test matrix contained nine different segments that varied the melter operating parameters (glass and plenum temperatures) and feed properties (oxide concentration, redox potential, and noble metal concentrations) so that the effects of these parameters on noble metal agglomeration on the melter floor could be evaluated. The RSM operated for 48 days and consumed 1,300 L of feed, equating to 153 tank turnovers. The run produced 531 kg of glass. During the latter portion of the run, the resistance between the electrodes decreased. Upon destructive examination of the melter, a layer of noble metals was found on the bottom. This was surprising because the glass residence time in the RSM is only 10% of the HWVP plant melter. The noble metals layer impacted the melter significantly. Approximately 1/3 of one paddle electrode was melted or corroded off. The cause is assumed to be localized heating from short circuiting of the electrode to the noble metal layer. The metal layer also removed approximately 1/2 in. of the refractory on the bottom of the melter. The mechanism for this damage is not presently known.

  14. Development of the plutonium oxide vitrification system

    International Nuclear Information System (INIS)

    Marshall, K.M.; Marra, J.C.; Coughlin, J.T.; Calloway, T.B.; Schumacher, R.F.; Zamecnik, J.R.; Pareizs, J.M.

    1998-01-01

    Repository disposal of plutonium in a suitable, immobilized form is being considered as one option for the disposition of surplus weapons-usable plutonium. Accelerated development efforts were completed in 1997 on two potential immobilization forms to facilitate downselection to one form for continued development. The two forms studied were a crystalline ceramic based on Synroc technology and a lanthanide borosilicate (LaBS) glass. As part of the glass development program, melter design activities and component testing were completed to demonstrate the feasibility of using glass as an immobilization medium. A prototypical melter was designed and built in 1997. The melter vessel and drain tube were constructed of a Pt/Rh alloy. Separate induction systems were used to heat the vessel and drain tube. A Pt/Rh stirrer was incorporated into the design to facilitate homogenization of the melt. Integrated powder feeding and off-gas systems completed the overall design. Concurrent with the design efforts, testing was conducted using a plutonium surrogate LaBS composition in an existing (near-scale) melter to demonstrate the feasibility of processing the LaBS glass on a production scale. Additionally, the drain tube configuration was successfully tested using a plutonium surrogate LaBS glass

  15. DWPF Glass Melter Technology Manual: Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter.

  16. Olefin recovery from FCC off-gas can pay off

    International Nuclear Information System (INIS)

    Brahn, M.G.

    1992-01-01

    This paper reports on olefins recovery from refinery FCC offgas streams which offers an attractive cash flow from olefins from a tail-gas stream that has typically been consumed as refinery fuel. Such recovery schemes can be employed in refineries or olefins plants, and can be tailored to fit individual requirements. Mobil Chemical Co. has operated such a dephlegmator-based off-gas recovery unit at its Beaumont, Tex., olefin plant since 1987. It reported that the project was paid out within 11 months of initial start-up

  17. Remote viewing of melter interior Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1986-01-01

    A remote system has been developed and demonstrated for continuous reviewing of the interior of a glass melter, which is used to vitrify highly radioactive waste. The system is currently being implemented with the Defense Waste Processing Facility (DWPF) now under construction at the Savannah River Plant (SRP). The environment in which the borescope/TV unit is implemented combines high temperature, high ionizing radiation, low light, spattering, deposition, and remote maintenance

  18. GTS Duratek, Phase I Hanford low-level waste melter tests: 100-kg melter offgas report

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, W.C. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-11-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the 100-kg melter offgas report on testing performed by GTS Duratek, Inc., in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The document contains the complete offgas report on the 100-kg melter as prepared by Parsons Engineering Science, Inc. A summary of this report is also contained in the GTS Duratek, Phase I Hanford Low-Level Waste Melter Tests: Final Report (WHC-SD-WM-VI-027).

  19. Control of DWPF [Defense Waste Processing Facility] melter feed composition

    International Nuclear Information System (INIS)

    Edwards, R.E. Jr.; Brown, K.G.; Postles, R.L.

    1990-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility. 13 refs., 3 figs., 1 tab

  20. Sorption Modeling and Verification for Off-Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tavlarides, Lawrence [Syracuse Univ., NY (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Gabitto, Jorge [Prairie View Texas A& M; DePaoli, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-20

    This project was successfully executed to provide valuable adsorption data and improve a comprehensive model developed in previous work by the authors. Data obtained were used in an integrated computer program to predict the behavior of adsorption columns. The model is supported by experimental data and has been shown to predict capture of off gas similar to that evolving during the reprocessing of nuclear waste. The computer program structure contains (a) equilibrium models of off-gases with the adsorbate; (b) mass-transfer models to describe off-gas mass transfer to a particle, diffusion through the pores of the particle, and adsorption on the active sites of the particle; and (c) incorporation of these models into fixed bed adsorption modeling, which includes advection through the bed. These models are being connected with the MOOSE (Multiphysics Object-Oriented Simulation Environment) software developed at the Idaho National Laboratory through DGOSPREY (Discontinuous Galerkin Off-gas SeParation and REcoverY) computer codes developed in this project. Experiments for iodine and water adsorption have been conducted on reduced silver mordenite (Ag0Z) for single layered particles. Adsorption apparatuses have been constructed to execute these experiments over a useful range of conditions for temperatures ranging from ambient to 250°C and water dew points ranging from -69 to 19°C. Experimental results were analyzed to determine mass transfer and diffusion of these gases into the particles and to determine which models best describe the single and binary component mass transfer and diffusion processes. The experimental results were also used to demonstrate the capabilities of the comprehensive models developed to predict single-particle adsorption and transients of the adsorption-desorption processes in fixed beds. Models for adsorption and mass transfer have been developed to mathematically describe adsorption kinetics and transport via diffusion and advection

  1. Canadian development program for off-gas management in nuclear facilities

    International Nuclear Information System (INIS)

    Sridhar, T.S.

    1983-01-01

    The Canadian program for the development and evaluation of processes and technology for the separation and containment of radioactive species in off-gases is directed towards the following specific aspects: 1) assessment of available treatment technology and evaluation of future clean-up requirements; 2) development and engineering evaluation, under realistic conditions, of promising new processes that would be inherently simpler and safer; and 3) specification of off-gas emission control systems for future nuclear facilities based on the most favourable technology. The program is being carried out by Atomic Energy of Canada Limited in collaboration with the electrical utility, Ontario Hydro, and selected Canadian universities. A brief description is presented of methods for removing tritium and carbon-14 from the moderator systems of CANDU power reactors, methods for removing iodine from the off-gases of a molybdenum-99 production facility at the Chalk River Nuclear Laboratories, and procedures for monitoring the off-gas effluent composition in the Thorium Fuel Reprocessing Experiment (TFRE) facility at the Whiteshell Nuclear Research Establishment

  2. High-Intensity Plasma Glass Melter

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-01-01

    Modular high-intensity plasma melter promises improved performance, reduced energy use, and lower emissions. The glass industry has used the same basic equipment for melting glass for the past 100 years.

  3. High-level waste melter alternatives assessment report

    International Nuclear Information System (INIS)

    Calmus, R.B.

    1995-02-01

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program's (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant's melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy

  4. High-level waste melter alternatives assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Calmus, R.B.

    1995-02-01

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program`s (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant`s melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy.

  5. Melter development needs assessment for RWMC buried wastes

    International Nuclear Information System (INIS)

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form [Iron-Enriched Basalt (IEB) glass/ceramic]. The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended

  6. Organic Iodine Adsorption by AgZ under Prototypical Vessel Off-Gas Conditions

    International Nuclear Information System (INIS)

    Bruffey, Stephanie H.; Jubin, Robert Thomas; Jordan, J. A.

    2016-01-01

    U.S. regulations will require the removal of 129 I from the off-gas streams of any used nuclear fuel (UNF) reprocessing plant prior to discharge of the off-gas to the environment. Multiple off-gas streams within a UNF reprocessing plant combine prior to release, and each of these streams contains some amount of iodine. For an aqueous UNF reprocessing plant, these streams include the dissolver off-gas, the cell off-gas, the vessel off-gas (VOG), the waste off-gas and the shear off-gas. To achieve regulatory compliance, treatment of multiple off-gas streams within the plant must be performed. Preliminary studies have been completed on the adsorption of I 2 onto silver mordenite (AgZ) from prototypical VOG streams. The study reported that AgZ did adsorb I 2 from a prototypical VOG stream, but process upsets resulted in an uneven feed stream concentration. The experiments described in this document both improve the characterization of I 2 adsorption by AgZ from dilute gas streams and further extend it to include characterization of the adsorption of organic iodides (in the form of CH 3 I) onto AgZ under prototypical VOG conditions. The design of this extended duration testing was such that information about the rate of adsorption, the penetration of the iodine species, and the effect of sorbent aging on iodine removal in VOG conditions could be inferred.

  7. Control of radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Smith, P.K.; Hrma, P.; Bowan, B.W.

    1987-01-01

    Radioactive waste-glass melters require physical control limits and redox control of glass to assure continuous operation, and maximize production rates. Typical waste-glass melter operating conditions, and waste-glass chemical reaction paths are discussed. Glass composition, batching and melter temperature control are used to avoid the information of phases which are disruptive to melting or reduce melter life. The necessity and probable limitations of control for electric melters with complex waste feed compositions are discussed. Preliminary control limits, their bases, and alternative control methods are described for use in the Defense Waste Processing Facility (DWPF) at the US Department of Energy's Savannah River Plant (SRP), and at the West Valley Demonstration Project (WVDP). Slurries of simulated high level radioactive waste and ground glass frit or glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, and their effect on waste-glass production rates. Relatively high melting rates of waste batches containing mixtures of reducing agents (formic acid, sucrose) and nitrates are attributable to exothermic reactions which occur at critical stages in the vitrification process. The effect of foaming on waste glass production rates is analyzed, and limits defined for existing waste-glass melters, based upon measurable thermophysical properties. Through balancing the high nitrate wastes of the WVDP with reducing agents, the high glass melting rates and sustained melting without foaming required for successful WVDP operations have been demonstrated. 65 refs., 4 figs., 15 tabs

  8. Bench-scale arc melter for R&D in thermal treatment of mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800{degrees}C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter`s ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions.

  9. Evaluation of the HEPA filter in-place test method in a corrosive off-gas environment

    International Nuclear Information System (INIS)

    Murphy, L.P.; Wong, M.A.; Girton, R.C.

    1978-01-01

    Experiments were performed to determine if the combined effects of temperature, humidity, and oxides of nitrogen (NO/sub x/) hinder the in-place testing of high-efficiency particulate air (HEPA) filters used for cleaning the off-gas from a nuclear waste solidification facility. The laboratory system that was designed to simulate the process off-gas contained two HEPA filters in series with sample ports before each filter and after the filter bank. The system also included a reaction bomb for partial conversion of NO to NO 2 . Instrumentation measured stream flow, humidity, NO/sub x/ concentration, and temperature. Comparison measurements of the DOP concentrations were made by a forward light-scattering photometer and a single particle intra-cavity laser particle spectrometer. Experimental conditions could be varied, but maximum system capabilities were 95% relative humidity, 90 0 C, and 10,000 ppM of NO/sub x/. A 2 3 factorial experimental design was used for the test program. This design determined the main effects of each factor plus the interactions of the factors in combination. The results indicated that water vapor and NO/sub x/ interfere with the conventional photometer measurements. Suggested modifications that include a unique sample dryer are described to correct the interferences. The laser particle spectrometer appears to be an acceptable instrument for measurements under adverse off-gas conditions

  10. Final Report - Testing of Optimized Bubbler Configuration for HLW Melter VSL-13R2950-1, Rev. 0, dated 6/12/2013

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Callow, R. A.; Joseph, I.; Matlack, K. S.; Kot, W. K.

    2013-11-13

    The principal objective of this work was to determine the glass production rate increase and ancillary effects of adding more bubbler outlets to the current WTP HLW melter baseline. This was accomplished through testing on the HLW Pilot Melter (DM1200) at VSL. The DM1200 unit was selected for these tests since it was used previously with several HLW waste streams including the four tank wastes proposed for initial processing at Hanford. This melter system was also used for the development and optimization of the present baseline WTP HLW bubbler configuration for the WTP HLW melter, as well as for MACT testing for both HLW and LAW. Specific objectives of these tests were to: Conduct DM1200 melter testing with the baseline WTP bubbling configuration and as augmented with additional bubblers. Conduct DM1200 melter testing to differentiate the effects of total bubbler air flow and bubbler distribution on glass production rate and cold cap formation. Collect melter operating data including processing rate, temperatures at a variety of locations within the melter plenum space, melt pool temperature, glass melt density, and melter pressure with the baseline WTP bubbling configuration and as augmented with additional bubblers. Collect melter exhaust samples to compare particulate carryover for different bubbler configurations. Analyze all collected data to determine the effects of adding more bubblers to the WTP HLW melter to inform decisions regarding future lid re-designs. The work used a high aluminum HLW stream composition defined by ORP, for which an appropriate simulant and high waste loading glass formulation were developed and have been previously processed on the DM1200.

  11. Cold-Crucible Design Parameters for Next Generation HLW Melters

    International Nuclear Information System (INIS)

    Gombert, D.; Richardson, J.; Aloy, A.; Day, D.

    2002-01-01

    The cold-crucible induction melter (CCIM) design eliminates many materials and operating constraints inherent in joule-heated melter (JHM) technology, which is the standard for vitrification of high-activity wastes worldwide. The cold-crucible design is smaller, less expensive, and generates much less waste for ultimate disposal. It should also allow a much more flexible operating envelope, which will be crucial if the heterogeneous wastes at the DOE reprocessing sites are to be vitrified. A joule-heated melter operates by passing current between water-cooled electrodes through a molten pool in a refractory-lined chamber. This design is inherently limited by susceptibility of materials to corrosion and melting. In addition, redox conditions and free metal content have exacerbated materials problems or lead to electrical short-circuiting causing failures in DOE melters. In contrast, the CCIM design is based on inductive coupling of a water-cooled high-frequency electrical coil with the glass, causing eddycurrents that produce heat and mixing. A critical difference is that inductance coupling transfers energy through a nonconductive solid layer of slag coating the metal container inside the coil, whereas the jouleheated design relies on passing current through conductive molten glass in direct contact with the metal electrodes and ceramic refractories. The frozen slag in the CCIM design protects the containment and eliminates the need for refractory, while the corrosive molten glass can be the limiting factor in the JH melter design. The CCIM design also eliminates the need for electrodes that typically limit operating temperature to below 1200 degrees C. While significant marketing claims have been made by French and Russian technology suppliers and developers, little data is available for engineering and economic evaluation of the technology, and no facilities are available in the US to support testing. A currently funded project at the Idaho National Engineering

  12. Arc melter demonstration baseline test results

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O`Connor, W.K.; Turner, P.C.

    1994-07-01

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process.

  13. Study of plasma off-gas treatment from spent ion exchange resin pyrolysis.

    Science.gov (United States)

    Castro, Hernán Ariel; Luca, Vittorio; Bianchi, Hugo Luis

    2017-03-23

    Polystyrene divinylbenzene-based ion exchange resins are employed extensively within nuclear power plants (NPPs) and research reactors for purification and chemical control of the cooling water system. To maintain the highest possible water quality, the resins are regularly replaced as they become contaminated with a range of isotopes derived from compromised fuel elements as well as corrosion and activation products including 14 C, 60 Co, 90 Sr, 129 I, and 137 Cs. Such spent resins constitute a major proportion (in volume terms) of the solid radioactive waste generated by the nuclear industry. Several treatment and conditioning techniques have been developed with a view toward reducing the spent resin volume and generating a stable waste product suitable for long-term storage and disposal. Between them, pyrolysis emerges as an attractive option. Previous work of our group suggests that the pyrolysis treatment of the resins at low temperatures between 300 and 350 °C resulted in a stable waste product with a significant volume reduction (>50%) and characteristics suitable for long-term storage and/or disposal. However, another important issue to take into account is the complexity of the off-gas generated during the process and the different technical alternatives for its conditioning. Ongoing work addresses the characterization of the ion exchange resin treatment's off-gas. Additionally, the application of plasma technology for the treatment of the off-gas current was studied as an alternative to more conventional processes utilizing oil- or gas-fired post-combustion chambers operating at temperatures in excess of 1000 °C. A laboratory-scale flow reactor, using inductively coupled plasma, operating under sub-atmospheric conditions was developed. Fundamental experiments using model compounds have been performed, demonstrating a high destruction and removal ratio (>99.99%) for different reaction media, at low reactor temperatures and moderate power consumption

  14. HLW Melter Control Strategy Without Visual Feedback VSL-12R2500-1 Rev 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Callow, Richard A. [The Catholic University of America, Washington, DC (United States); Abramowitz, Howard [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Brandys, Marek [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States)

    2012-11-13

    Plans for the treatment of high level waste (HL W) at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) are based upon the inventory of the tank wastes, the anticipated performance of the pretreatment processes, and current understanding of the capability of the borosilicate glass waste form [I]. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat and mass transfer and increase glass melting rates. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of ~ 1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HL W waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150°C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage.

  15. HLW Melter Control Strategy Without Visual Feedback VSL-12R2500-1 Rev 0

    International Nuclear Information System (INIS)

    Kruger, A A.; Joseph, Innocent; Matlack, Keith S.; Callow, Richard A.; Abramowitz, Howard; Pegg, Ian L.; Brandys, Marek; Kot, Wing K.

    2012-01-01

    Plans for the treatment of high level waste (HL W) at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) are based upon the inventory of the tank wastes, the anticipated performance of the pretreatment processes, and current understanding of the capability of the borosilicate glass waste form [I]. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat and mass transfer and increase glass melting rates. The WTP HLW melter has a glass surface area of 3.75 m 2 and depth of ∼ 1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HL W waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150°C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage

  16. Air ionization as a control technology for off-gas emissions of volatile organic compounds.

    Science.gov (United States)

    Kim, Ki-Hyun; Szulejko, Jan E; Kumar, Pawan; Kwon, Eilhann E; Adelodun, Adedeji A; Reddy, Police Anil Kumar

    2017-06-01

    High energy electron-impact ionizers have found applications mainly in industry to reduce off-gas emissions from waste gas streams at low cost and high efficiency because of their ability to oxidize many airborne organic pollutants (e.g., volatile organic compounds (VOCs)) to CO 2 and H 2 O. Applications of air ionizers in indoor air quality management are limited due to poor removal efficiency and production of noxious side products, e.g., ozone (O 3 ). In this paper, we provide a critical evaluation of the pollutant removal performance of air ionizing system through comprehensive review of the literature. In particular, we focus on removal of VOCs and odorants. We also discuss the generation of unwanted air ionization byproducts such as O 3 , NOx, and VOC oxidation intermediates that limit the use of air-ionizers in indoor air quality management. Copyright © 2017. Published by Elsevier Ltd.

  17. Time-dependent analysis of dissolver off-gas cleaning installations in a reprocessing plant

    International Nuclear Information System (INIS)

    Nagel, K.; Furrer, J.; Becker, G.; Obrowski, W.; Seghal, Y.P.; Weymann, J.

    1983-01-01

    The iodine- and aerosol-filtering test facility PASSAT of the Nuclear Research Centre in Karlsruhe has been investigated using a method which allows time-dependent analyses under accident conditions. This method which is closely related to fault-tree analysis needs subdivision in barriers of the system, and their logical combination in a tree. The barriers have binary states: defect and intact. The defect state will be described by a fault tree, whereas the intact state includes dependences of a barrier operation on physical parameters. The intact state enables time-dependent calculations. Calculations have been done for iodine filtering, because the best known entrance data are given. Results demonstrate clearly that the amount of iodine released increases only if both heaters failed, which heat the off-gas from 30 0 C to 80 0 C and then to 130 0 C. Additionally the integrated amount of iodine released depends on time period between the failures of the heaters

  18. Analysis of the DWPF glass pouring system using neural networks

    International Nuclear Information System (INIS)

    Calloway, T.B. Jr.; Jantzen, C.M.

    1997-01-01

    Neural networks were used to determine the sensitivity of 39 selected Melter/Melter Off Gas and Melter Feed System process parameters as related to the Defense Waste Processing Facility (DWPF) Melter Pour Spout Pressure during the overall analysis and resolution of the DWPF glass production and pouring issues. Two different commercial neural network software packages were used for this analysis. Models were developed and used to determine the critical parameters which accurately describe the DWPF Pour Spout Pressure. The model created using a low-end software package has a root mean square error of ± 0.35 inwc ( 2 = 0.77) with respect to the plant data used to validate and test the model. The model created using a high-end software package has a R 2 = 0.97 with respect to the plant data used to validate and test the model. The models developed for this application identified the key process parameters which contribute to the control of the DWPF Melter Pour Spout pressure during glass pouring operations. The relative contribution and ranking of the selected parameters was determined using the modeling software. Neural network computing software was determined to be a cost-effective software tool for process engineers performing troubleshooting and system performance monitoring activities. In remote high-level waste processing environments, neural network software is especially useful as a replacement for sensors which have failed and are costly to replace. The software can be used to accurately model critical remotely installed plant instrumentation. When the instrumentation fails, the software can be used to provide a soft sensor to replace the actual sensor, thereby decreasing the overall operating cost. Additionally, neural network software tools require very little training and are especially useful in mining or selecting critical variables from the vast amounts of data collected from process computers

  19. Airborne waste management technology applicable for use in reprocessing plants for control of iodine and other off-gas constituents

    International Nuclear Information System (INIS)

    Jubin, R.T.

    1988-02-01

    Extensive work in the area of iodine removal from reprocessing plant off-gas streams using various types of solid sorbent materials has been conducted worldwide over the past two decades. This work has focused on the use of carbon filters, primarily for power plant applications. More recently, the use of silver-containing sorbents has been the subject of considerable research. The most recent work in the United States has addressed the use of silver-exchanged faujasites and mordenites. The chemical reactions of iodine with silver on the sorbent are not well defined, but it is generally believed that chemisorbed iodides and iodates are formed. The process for iodine recovery generally involves passage of the iodine-laden gas stream through a packed bed of the adsorbent material preheated to a temperature of about 150/degree/C. Most iodine removal system designs utilizing silver-containing solid sorbents assume only a 30 to 50% silver utilization. Based on laboratory tests, potentially 60 to 70% of the silver contained in the sorbents can be reacted with iodine. To overcome the high cost of silver associated with these materials, various approaches have been explored. Among these are the regeneration of the silver-containing sorbent by stripping the iodine and trapping the iodine on a sorbent that has undergone only partial silver exchange and is capable of attaining a much higher silver utilization. This summary report describes the US work in regeneration of iodine-loaded solid sorbent material. In addition, the report discusses the broader subject of plant off-gas treatment including system design. The off-gas technologies to recovery No/sub x/ and to recover and dispose of Kr, 14 C, and I are described as to their impacts on the design of an integrated off-gas system. The effect of ventilation philosophy for the reprocessing plant is discussed as an integral part of the overall treatment philosophy of the plant off-gas. 103 refs., 5 figs., 8 tabs

  20. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-02-27

    observed in any of the pour stream glass samples. Spinel was observed at the bottom of DWPF Melter 1 as a result of K-3 refractory corrosion. Issues have occurred with accumulation of spinel in the pour spout during periods of operation at higher waste loadings. Given that both DWPF melters were or have been in operation for greater than 8 years, the service life of the melters has far exceeded design expectations. It is possible that the DWPF liquidus temperature approach is conservative, in that it may be possible to successfully operate the melter with a small degree of allowable crystallization in the glass. This could be a viable approach to increasing waste loading in the glass assuming that the crystals are suspended in the melt and swept out through the riser and pour spout. Additional study is needed, and development work for WTP might be leveraged to support a different operating limit for the DWPF. Several recommendations are made regarding considerations that need to be included as part of the WTP crystal tolerant strategy based on the DWPF development work and operational data reviewed here. These include: Identify and consider the impacts of potential heat sinks in the WTP melter and glass pouring system; Consider the contributions of refractory corrosion products, which may serve to nucleate additional crystals leading to further accumulation; Consider volatilization of components from the melt (e.g., boron, alkali, halides, etc.) and determine their impacts on glass crystallization behavior; Evaluate the impacts of glass REDuction/OXidation (REDOX) conditions and the distribution of temperature within the WTP melt pool and melter pour chamber on crystal accumulation rate; Consider the impact of precipitated crystals on glass viscosity; Consider the impact of an accumulated crystalline layer on thermal convection currents and bubbler effectiveness within the melt pool; Evaluate the impact of spinel accumulation on Joule heating of the WTP melt pool; and

  1. Evaluation of Ruthenium Capture Methods for Tritium Pretreatment Off-Gas Streams

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strachan, Denis M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    In the reprocessing of used nuclear fuel, radioactive elements are released into various plant off-gas streams. While much research and development has focused on the abatement of the volatile nuclides 3H, 14C, 85Kr, and 129I, the potential release of semivolatile isotopes that could also report to the off-gas streams in a reprocessing facility has been examined. Ruthenium (as 106Ru) has been identified as one of the semivolatile nuclides requiring the greatest degree of abatement prior to discharging the plant off-gas to the environment.

  2. Experimental Plan for Crystal Accumulation Studies in the WTP Melter Riser

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-28

    This experimental plan defines crystal settling experiments to be in support of the U.S. Department of Energy – Office of River Protection crystal tolerant glass program. The road map for development of crystal-tolerant high level waste glasses recommends that fluid dynamic modeling be used to better understand the accumulation of crystals in the melter riser and mechanisms of removal. A full-scale version of the Hanford Waste Treatment and Immobilization Plant (WTP) melter riser constructed with transparent material will be used to provide data in support of model development. The system will also provide a platform to demonstrate mitigation or recovery strategies in off-normal events where crystal accumulation impedes melter operation. Test conditions and material properties will be chosen to provide results over a variety of parameters, which can be used to guide validation experiments with the Research Scale Melter at the Pacific Northwest National Laboratory, and that will ultimately lead to the development of a process control strategy for the full scale WTP melter. The experiments described in this plan are divided into two phases. Bench scale tests will be used in Phase 1 (using the appropriate solid and fluid simulants to represent molten glass and spinel crystals) to verify the detection methods and analytical measurements prior to their use in a larger scale system. In Phase 2, a full scale, room temperature mockup of the WTP melter riser will be fabricated. The mockup will provide dynamic measurements of flow conditions, including resistance to pouring, as well as allow visual observation of crystal accumulation behavior.

  3. DWPF Glass Melter Technology Manual: Volume 3

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs

  4. DWPF Glass Melter Technology Manual: Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs.

  5. Off-Gas Analysis During the Vitrification of Hanford Radioactive Waste Samples

    International Nuclear Information System (INIS)

    Ha, B.C.; Ferrara, D.M.; Crawford, C.L.; Choi, A.S.; Bibler, N.E.

    1998-01-01

    This paper describes the off-gas analysis of samples collected during the radioactive vitrification experiments. Production and characterization of the Hanford waste-containing LAW and HAW glasses are presented in related reports from this conference

  6. Bench-scale arc melter for R ampersand D in thermal treatment of mixed wastes

    International Nuclear Information System (INIS)

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800 degrees C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter's ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions

  7. FINAL REPORT DETERMINATION OF THE PROCESSING RATE OF RPP WTP HLW SIMULANTS USING A DURAMELTER J 1000 VITRIFICATION SYSTEM VSL-00R2590-2 REV 0 8/21/00

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEREZ-CARDENAS F; PEGG IL

    2011-12-29

    increased plenum temperatures due to increased thermal radiation from the melt surface (which mayor may not be desirable but the flexibility to choose may be lost). Increased volatilization is an issue both in terms of the increased challenge to the off-gas system as well as for the ability to effectively close the recycle loops for volatile species that must be immobilized in the glass product, most notably technetium and cesium. For these reasons, improved information is needed on the specific glass production rates of RPP-WTP HLW streams in DuraMelterJ systems over a range of operating conditions. Unlike the RPP-WTP LAW program, for which a pilot melter system to provide large-scale throughout information is already in operation, there is no comparable HLW activity; the results of the present study are therefore especially important. This information will reduce project risk by reducing the uncertainty associated with the amount of conservatism that mayor may not be associated with the baseline RPP-WTP HLW melter sizing decision. After the submission of the first Test Plan for this work, the RPP-WTP requested revisions to include tests to determine the processing rates that are achievable without bubbling, which was driven by the potential advantages of omitting bubblers from the HLW melter design in terms of reduced maintenance. A further objective of this effort became the determination of whether the basis of design processing rate could be achieved without bubbling. Ideally, processing rate tests would be conducted on a full-scale RPP-WTP melter system with actual HLW materials, but that is clearly unrealistic during Part B1. As a practical compromise the processing rate determinations were made with HL W simulants on a DuraMelter J system at as close to full scale as possible and the DM 1000 system at VSL was selected for that purpose. That system has a melt surface area of 1.2 m{sup 2}, which corresponds to about one-third scale based on the specific glass

  8. Final Report Determination Of The Processing Rate Of RPP-WTP HLW Simulants Using A Duramelter J 1000 Vitrification System VSL-00R2590-2, Rev. 0, 8/21/00

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Perez-Cardenas, F.; Pegg, I.L.

    2011-01-01

    temperatures due to increased thermal radiation from the melt surface (which mayor may not be desirable but the flexibility to choose may be lost). Increased volatilization is an issue both in terms of the increased challenge to the off-gas system as well as for the ability to effectively close the recycle loops for volatile species that must be immobilized in the glass product, most notably technetium and cesium. For these reasons, improved information is needed on the specific glass production rates of RPP-WTP HLW streams in DuraMelterJ systems over a range of operating conditions. Unlike the RPP-WTP LAW program, for which a pilot melter system to provide large-scale throughout information is already in operation, there is no comparable HLW activity; the results of the present study are therefore especially important. This information will reduce project risk by reducing the uncertainty associated with the amount of conservatism that mayor may not be associated with the baseline RPP-WTP HLW melter sizing decision. After the submission of the first Test Plan for this work, the RPP-WTP requested revisions to include tests to determine the processing rates that are achievable without bubbling, which was driven by the potential advantages of omitting bubblers from the HLW melter design in terms of reduced maintenance. A further objective of this effort became the determination of whether the basis of design processing rate could be achieved without bubbling. Ideally, processing rate tests would be conducted on a full-scale RPP-WTP melter system with actual HLW materials, but that is clearly unrealistic during Part B1. As a practical compromise the processing rate determinations were made with HL W simulants on a DuraMelter J system at as close to full scale as possible and the DM 1000 system at VSL was selected for that purpose. That system has a melt surface area of 1.2 m 2 , which corresponds to about one-third scale based on the specific glass processing rate of 0.4 MT/m 2 /d

  9. Performance test report for the 1000 kg melter

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, W.C.

    1995-11-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the 100 kg melter offgas report on testing performed by GTS Duratek Inc., in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV- 384215. The document contains the complete offgas report on the 100 kg melter as prepared by Parsons Engineering Science, Inc. A summary of this report is also contained in the ``GTS Duratek, Phase 1 Hanford Low-Level Waste Melter Tests: Final Report`` (WHC-SD-VI-027).

  10. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    International Nuclear Information System (INIS)

    Pence, D.T.; Kirstein, B.E.

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m 3 /h (15-ft 3 /min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed

  11. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Pence, D T; Kirstein, B E

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m/sup 3//h (15-ft/sup 3//min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed.

  12. Melter Throughput Enhancements for High-Iron HLW

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Gan, Hoa [The Catholic University of America, Washington, DC (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Chaudhuri, Malabika [The Catholic University of America, Washington, DC (United States); Kot, Wing [The Catholic University of America, Washington, DC (United States)

    2012-12-26

    This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and the maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.

  13. Melter Throughput Enhancements for High-Iron HLW

    International Nuclear Information System (INIS)

    Kruger, A. A.; Gan, Hoa; Joseph, Innocent; Pegg, Ian L.; Matlack, Keith S.; Chaudhuri, Malabika; Kot, Wing

    2012-01-01

    This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and the maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions

  14. Scaled Vitrification System III (SVS III) Process Development and Laboratory Tests at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Jain, V.; Barnes, S.M.; Bindi, B.G.; Palmer, R.A.

    2000-01-01

    At the West Valley Demonstration Project (WVDP),the Vitrification Facility (VF)is designed to convert the high-level radioactive waste (HLW)stored on the site to a stable glass for disposal at a Department of Energy (DOE)-specified federal repository. The Scaled Vitrification System III (SVS-III)verification tests were conducted between February 1995 and August 1995 as a supplemental means to support the vitrification process flowsheet, but at only one seventh the scale.During these tests,the process flowsheet was refined and optimized. The SVS-III test series was conducted with a focus on confirming the applicability of the Redox Forecasting Model, which was based on the Index of Feed Oxidation (IFO)developed during the Functional and Checkout Testing of Systems (FACTS)and SVS-I tests. Additional goals were to investigate the prototypical feed preparation cycle and test the new target glass composition. Included in this report are the basis and current designs of the major components of the Scale Vitrification System and the results of the SVS-III tests.The major subsystems described are the feed preparation and delivery, melter, and off-gas treatment systems. In addition,the correlation between the melter's operation and its various parameters;which included feed rate,cold cap coverage,oxygen reduction (redox)state of the glass,melter power,plenum temperature,and airlift analysis;were developed

  15. Recommendations for rheological testing and modelling of DWPF melter feed slurries

    International Nuclear Information System (INIS)

    Shadday, M.A. Jr.

    1994-08-01

    The melter feed in the DWPF process is a non-Newtonian slurry. In the melter feed system and the sampling system, this slurry is pumped at a wide range of flow rates through pipes of various diameters. Both laminar and turbulent flows are encountered. Good rheology models of the melter feed slurries are necessary for useful hydraulic models of the melter feed and sampling systems. A concentric cylinder viscometer is presently used to characterize the stress/strain rate behavior of the melter feed slurries, and provide the data for developing rheology models of the fluids. The slurries exhibit yield stresses, and they are therefore modelled as Bingham plastics. The ranges of strain rates covered by the viscometer tests fall far short of the entire laminar flow range, and therefore hydraulic modelling applications of the present rheology models frequently require considerable extrapolation beyond the range of the data base. Since the rheology models are empirical, this cannot be done with confidence in the validity of the results. Axial pressure drop versus flow rate measurements in a straight pipe can easily fill in the rest of the laminar flow range with stress/strain rate data. The two types of viscometer tests would be complementary, with the concentric cylinder viscometer providing accurate data at low strain rates, near the yield point if one exists, and pipe flow tests providing data at high strain rates up to and including the transition to turbulence. With data that covers the laminar flow range, useful rheological models can be developed. In the Bingham plastic model, linear behavior of the shear stress as a function of the strain rate is assumed once the yield stress is exceeded. Both shear thinning and shear thickening behavior have been observed in viscometer tests. Bingham plastic models cannot handle this non-linear behavior, but a slightly more complicated yield/power law model can

  16. Design and operating features of the high-level waste vitrification system for the West Valley demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Siemens, D.H.; Beary, M.M.; Barnes, S.M.; Berger, D.N.; Brouns, R.A.; Chapman, C.C.; Jones, R.M.; Peters, R.D.; Peterson, M.E.

    1986-03-01

    A liquid-fed joule-heated ceramic melter system is the reference process for immobilization of the high-level liquid waste in the US and several foreign countries. This system has been under development for over ten years at Pacific Northwest Laboratory and other national laboratories operated for the US Department of Energy. Pacific Northwest Laboratory contributed to this research through its Nuclear Waste Treatment Program and used applicable data to design and test melters and related systems using remote handling of simulated radioactive wastes. This report describes the equipment designed in support of the high-level waste vitrification program at West Valley, New York. Pacific Northwest Laboratory worked closely with West Valley Nuclear Services Company to design a liquid-fed ceramic melter, a liquid waste preparation and feed tank and pump, an off-gas treatment scrubber, and an enclosed turntable for positioning the waste canisters. Details of these designs are presented including the rationale for the design features and the alternatives considered.

  17. Physical and numerical modeling of Joule-heated melters

    International Nuclear Information System (INIS)

    Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

    1985-10-01

    The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs

  18. Development of the krypton absorption in liquid carbon dioxide (KALC) process for HTGR off-gas reprocessing

    International Nuclear Information System (INIS)

    Glass, R.W.; Beaujean, H.W.R.; Cochran, H.D. Jr.; Haas, P.A.; Levins, D.M.; Woods, W.M.

    1975-01-01

    Reprocessing of High-Temperature Gas-Cooled Reactor (HTGR) fuel involves burning of the graphite-matrix elements to release the fuel for recovery purposes. The resulting off-gas is primarily CO 2 with residual amounts of N 2 , O 2 , and CO, together with fission products. Trace quantities of krypton-85 must be recovered in a concentrated form from the gas stream, but processes commonly employed for rare gas removal and concentration are not suitable for use with off-gas from graphite burning. The KALC (Krypton Absorption in Liquid CO 2 ) process employs liquid CO 2 as a volatile solvent for the krypton and is, therefore, uniquely suited to the task. Engineering development of the KALC process is currently under way at the Oak Ridge National Laboratory (ORNL) and the Oak Ridge Gaseous Diffusion Plant (ORGDP). The ORNL system is designed for close study of the individual separation operations involved in the KALC process, while the ORGDP system provides a complete pilot facility for demonstrating combined operations on a somewhat larger scale. Packed column performance and process control procedures have been of prime importance in the initial studies. Computer programs have been prepared to analyze and model operational performance of the KALC studies, and special sampling and in-line monitoring systems have been developed for use in the experimental facilities. (U.S.)

  19. Corrosion study of stainless steels in a dissolver off-gas environment

    International Nuclear Information System (INIS)

    Suzuki, K.; Tsukaue, Y.; Yoshida, K.; Hirose, Y.

    1991-01-01

    Iodine induced corrosion characteristics of stainless steels have been studied under various case of simulated dissolver off-gas environment. No corrosion of any kind of stainless steel so far tested was observed under typical dissolver off-gas environment, containing HNO 3 and NOx as well as I 2 . Pitting corrosion was observed, however, in humid air containing I 2 but no HNO 3 nor NOx, depending upon I 2 concentration on certain types of stainless steel. The higher content of Mo in stainless steels, the less depth of pitting was measured. A mechanism based on iodine concentration in water film on metal surface, was proposed to explain above phenomena. (author)

  20. Removal of carbon dioxide in reprocessing spent nuclear fuel off gas by adsorption

    International Nuclear Information System (INIS)

    Fukumatsu, Teruki; Munakata, Kenzo; Tanaka, Kenji; Yamatsuki, Satoshi; Nishikawa, Masabumi

    1998-01-01

    The off gas produced by reprocessing spent nuclear fuel includes various radioactivities and these nuclei should be removed. In particular, 14 C mainly released as the form of carbon dioxide is one of the most required gaseous radioactivities to be removed because it has long a half-life. One of the methods to remove gaseous nuclei is the use of adsorption technique. The off gas contains water vapor which influences adsorption process of carbon dioxide. In this report, behavior of adsorption of carbon dioxide on various adsorbent and influence on adsorption behavior of carbon dioxide by containing water vapor are discussed. (author)

  1. Control of high level radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs

  2. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    Energy Technology Data Exchange (ETDEWEB)

    Oden, L.L.; O`Connor, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.

  3. SRAT CHEMISTRY AND ACID CONSUMPTION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D; David Best, D; Bradley Pickenheim, B

    2008-12-03

    products with frit 418 and a matching set of eight SME products with spherically beaded frit 418. The requirement to produce two 25 gallon batches of melter feed for the melter feed rheology modifier program fell under a separate task plan. One supporting 4-L SRAT simulation was performed with mercury, since the 22-L melter feed preparation runs had no mercury due to melter off-gas constraints. As a result of this work, a timeline of reactions has been developed showing the sequence of major reactions occurring during and shortly after acid addition. The traditional-style simulant used in this testing had fairly well defined speciation which enabled the reactions being observed to be related to acid consumption. The new coprecipitated simulants have somewhat different speciation, and it will be necessary to validate some of the conclusions from this testing using sample data from SRAT simulations with coprecipitated simulant. Noble metal dissolution data on timing and concentration were presented in a separate report discussing hydrogen generation. A few of those results will be brought into this report as part of the description of the SRAT chemistry timeline. The noble metal and mercury concentrations used in the preliminary flowsheet studies are summarized in Table 1 along with the ranges covered in this study.

  4. Removal of I, Rn, Xe and Kr from off gas streams using PTFE membranes

    Science.gov (United States)

    Siemer, Darryl D.; Lewis, Leroy C.

    1990-01-01

    A process for removing I, R, Xe and Kr which involves the passage of the off gas stream through a tube-in-shell assembly, whereby the tubing is a PTFE membrane which permits the selective passages of the gases for removing and isolating the gases.

  5. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, David K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States)

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.

  6. Cullet Manufacture Using the Cylindrical Induction Melter

    International Nuclear Information System (INIS)

    Miller, D. H.

    2000-01-01

    The base process for vitrification of the Am/Cm solution stored in F-canyon uses 25SrABS cullet as the glass former. A small portion of the cullet used in the SRTC development work was purchased from Corning while the majority was made in the 5 inch Cylindrical Induction Melter (CIM5). Task 1.01 of TTR-NMSS/SE-006, Additional Am-Cm Process Development Studies, requested that a process for the glass former (cullet) fabrication be specified. This report provides the process details for 25SrAB cullet production thereby satisfying Task 1.01

  7. Graphite fuels combustion off-gas treatment options

    International Nuclear Information System (INIS)

    Kirkham, R.J.; Lords, R.E.

    1993-03-01

    Scenarios for burning bulk graphite and for burning crushed fuel particles from graphite spent nuclear fuels have been considered. Particulates can be removed with sintered metal filters. Subsequent cooling would then condense semi-volatile fission products into or onto a particulate. These particulates would be trapped by a second sintered metal filter or downstream packed bed. A packed bed scrub column can be used to eliminate most of the iodine-129 and tritium. A molecular sieve bed is proposed to collect the residual 129 I and other tramp radionuclides downstream (Ruthenium, etc.). Krypton-85 can be recovered, if need be, either by cryogenics or by the KALC process (Krypton Adsorption in Liquid Carbon dioxide). Likewise carbon-14 in the form of carbon dioxide could be collected with a caustic or lime scrub solution and incorporated into a grout. Sulfur dioxide present will be well below regulatory concern level of 4.0 tons per year and most of it would be removed by the scrubber. Carbon monoxide emissions will depend on the choice of burner and start-up conditions. Should the system exceed the regulatory concern level, a catalytic converter in the final packed bed will be provided. Radon and its daughters have sufficiently short half-lives (less than two minutes). If necessary, an additional holdup bed can be added before the final HEPA filters or additional volume can be added to the molecular sieve bed to limit radon emissions. The calculated total effective dose equivalent at the Idaho National Engineering Laboratory boundary from a single release of all the 3 , 14 C, 85 Kr, and 129 I in the total fuel mass if 0.43 mrem/year

  8. I-129, Kr-85, C-14 and NO/sub x/ removal from spent fuel dissolver off-gas at atmospheric pressure and at reduced off-gas flow

    International Nuclear Information System (INIS)

    Henrich, E.; Huefner, R.

    1981-01-01

    A dissolver off-gas (DOG) system suitable for a LWR, FBR or HTR spent fuel reprocessing plant is described, incorporating the following features: (1) the DOG flow is reduced to a reasonably small volume, using fumeless dissolution conditions, by maintaining high concentrations, the retention procedures are simplified and accompanied by an economic reduction of the equipment size; (2) all process operations are conducted at atmospheric or subatmospheric pressure, including noble gas removal by selective absorption, without using high temperature processes; (3) all processes, except HEPA filtering, are continuous and do not accumulate large amounts of waste nuclides, the DOG process sequence is mutually compatible with itself and with processing in the headend, showing on-line redundancy for the removal of the most radiotoxic nuclides; and (4) the DOG system only deviates slightly from proven technology. The stage of development and relevant results are given both for a lab. scale and a pilot plant scale

  9. Demonstration of fly-ash filter for trapping volatile radioactive cesium in off-gas stream

    International Nuclear Information System (INIS)

    Chun, K. S.; Park, J. J.; Shon, J. S.; Shin, J. M.; Choi, K. W.

    2000-02-01

    The object of this study is to design and operate the fly ash filter unit for trapping cesium in the vitrification pilot process of radioactive waste in the low and medium level. It is necessary to reuse fly ash, which is a kind of waste from coal fired power plant, in trapping cesium generated from vitrification process and improving safety and removal efficiency of off gas treatment system. According to the XRD analysis on the trapping cesium compounds by the fly ash filter, the thermally stable pollucite phase was formed when the SO x or NO x was used as the carrier gas. The trapping efficiency of volatile cesium by the fly ash filter was decreased with the increase of face velocity, whereas the efficiency was increased with the increase of the reaction temperature. And also, by increasing the reaction time, the efficiency was decreased. The trapping efficiency of volatile cesium by the fly ash filter was higher than 99.5 percent under the air or NO x /air as a carrier gas, however, the efficiency was decreased to 99.0 percent under the NO x /N 2 as a carrier gas. By the way, the effect of NO x in the vitrification pilot process might be negligible due to the supply of the significant amount of oxygen. However, because using the SO x as the carrier gas the efficiency was slightly decreased to 93.5 percent, the influence of the SO x on the trapping cesium by the fly ash filter seems to be concerned in that pilot process. The fly ash filter unit was performed in the vitrification pilot process, but the trapping efficiency of cesium by that filter could not measured because analytical instruments can not detect the cesium. However, it is confirmed that the the stainless steel 310 can be used for the material of filter frame and housing and shows the corrosion resistance at high temperature (1000 deg C). (author)

  10. Analysis of fire and smoke threat to off-gas HEPA filters in a transuranium processing plant

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1988-01-01

    The author performed an analysis of fire risk to the high-efficiency particulate air (HEPA) filters that provide ventilation containment for a transuranium processing plant at the Oak Ridge National Laboratory. A fire-safety survey by an independent fire-protection consulting company had identified the HEPA filters in the facility's off-gas containment ventilation system as being at risk from fire effects. Independently studied were the ventilation networks and flow dynamics, and typical fuel loads were analyzed. It was found that virtually no condition for fire initiation exists and that, even if a fire started, its consequences would be minimal as a result of standard shut-down procedures. Moreover, the installed fire-protection system would limit any fire and thus would further reduce smoke or heat exposure to the ventilation components. 4 references, 4 figures, 5 tables

  11. Test Plan: Phase 1, Hanford LLW melter tests, GTS Duratek, Inc

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    This document provides a test plan for the conduct of vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384215] is GTS Duratek, Inc., Columbia, Maryland. The GTS Duratek project manager for this work is J. Ruller. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a DuraMelter trademark vitrification system

  12. Test Plan: Phase 1, Hanford LLW melter tests, GTS Duratek, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, W.C.

    1995-06-14

    This document provides a test plan for the conduct of vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384215] is GTS Duratek, Inc., Columbia, Maryland. The GTS Duratek project manager for this work is J. Ruller. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a DuraMelter{trademark} vitrification system.

  13. Report - Melter Testing of New High Bismuth HLW Formulations VSL-13R2770-1

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Kot, W. K.; Gan, H.; Matlack, K. S.

    2013-11-13

    The primary objective of the work described was to test two glasses formulated for a high bismuth waste stream on the DM100 melter system. Testing was designed to determine processing characteristics and production rates, assess the tendency for foaming, and confirm glass properties. The glass compositions tested were previously developed to maintain high waste loadings and processing rates while suppressing the foaming observed in previous tests

  14. Carbon dioxide-krypton separation and radon removal from nuclear-fuel-reprocessing off-gas streams

    International Nuclear Information System (INIS)

    Hirsch, P.M.; Higuchi, K.Y.; Abraham, L.

    1982-07-01

    General Atomic Company (GA) is conducting pilot-plant-scale tests that simulate the treatment of radioactive and other noxious volatile and gaseous constituents of off-gas streams from nuclear reprocessing plants. This paper reports the results of engineering-scale tests performed on the CO 2 /krypton separation and radon holdup/decay subsystems of the GA integrated off-gas treatment system. Separation of CO 2 from krypton-containing gas streams is necessary to facilitate subsequent waste processing and krypton storage. Molecular sieve 5A achieved this separation in dissolver off-gas streams containing relatively low krypton and CO 2 concentrations and in krypton-rich product streams from processes such as the krypton absorption in liquid carbon dioxide (KALC) process. The CO 2 /krypton separation unit is a 30.5-cm-diameter x 1.8-m-long column containing molecular sieve 5A. The loading capacity for CO 2 was determined for gas mixtures containing 250 ppM to 2.2% CO 2 and 170 to 750 ppM krypton in either N 2 or air. Gas streams rich in CO 2 were diluted with N 2 to reduce the temperature rise from the heat of adsorption, which would otherwise affect loading capacity. The effluent CO 2 concentration prior to breakthrough was less than 10 ppM, and the adsorption capacity for krypton was negligible. Krypton was monitored on-line with a time-of-flight mass spectrometer and its concentration determined quantitatively by a method of continuous analysis, i.e., selected-ion monitoring. Radon-220 was treated by holdup and decay on a column of synthetic H-mordenite. The Rn-220 concentration was monitored on-line with flow-through diffused-junction alpha detectors. Single-channel analyzers were utilized to isolate the 6.287-MeV alpha energy band characteristic of Rn-220 decay from energy bands due to daughter products

  15. Carbon dioxide-krypton separation and radon removal from nuclear-fuel-reprocessing off-gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, P.M.; Higuchi, K.Y.; Abraham, L.

    1982-07-01

    General Atomic Company (GA) is conducting pilot-plant-scale tests that simulate the treatment of radioactive and other noxious volatile and gaseous constituents of off-gas streams from nuclear reprocessing plants. This paper reports the results of engineering-scale tests performed on the CO/sub 2//krypton separation and radon holdup/decay subsystems of the GA integrated off-gas treatment system. Separation of CO/sub 2/ from krypton-containing gas streams is necessary to facilitate subsequent waste processing and krypton storage. Molecular sieve 5A achieved this separation in dissolver off-gas streams containing relatively low krypton and CO/sub 2/ concentrations and in krypton-rich product streams from processes such as the krypton absorption in liquid carbon dioxide (KALC) process. The CO/sub 2//krypton separation unit is a 30.5-cm-diameter x 1.8-m-long column containing molecular sieve 5A. The loading capacity for CO/sub 2/ was determined for gas mixtures containing 250 ppM to 2.2% CO/sub 2/ and 170 to 750 ppM krypton in either N/sub 2/ or air. Gas streams rich in CO/sub 2/ were diluted with N/sub 2/ to reduce the temperature rise from the heat of adsorption, which would otherwise affect loading capacity. The effluent CO/sub 2/ concentration prior to breakthrough was less than 10 ppM, and the adsorption capacity for krypton was negligible. Krypton was monitored on-line with a time-of-flight mass spectrometer and its concentration determined quantitatively by a method of continuous analysis, i.e., selected-ion monitoring. Radon-220 was treated by holdup and decay on a column of synthetic H-mordenite. The Rn-220 concentration was monitored on-line with flow-through diffused-junction alpha detectors. Single-channel analyzers were utilized to isolate the 6.287-MeV alpha energy band characteristic of Rn-220 decay from energy bands due to daughter products.

  16. Regulatory Off-Gas Analysis from the Evaporator of Hanford Simulated Waste Spiked with Organic Compounds

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2002-01-01

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, remaining low activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation prior to being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile and pesticide compounds, and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River Technology Center. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using EPA SW-846 Methods

  17. Dissolver Off-gas Hot Operations Authorization (AFCI CETE Milestone Report)

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, Robert Thomas [ORNL

    2009-06-01

    The head-end processing of the Coupled-End-to-End (CETE) Demonstration includes fuel receipt, fuel disassembly, exposure of fuel (e.g., by segmenting the fuel pins), voloxidation of the fuel to separate tritium, and fuel dissolution. All of these processing steps with the exception of the dissolution step will be accomplished in the Irradiated Fuels Examination Laboratory (IFEL) (Building 3525). The final headend step will be performed in the Radiochemical Engineering Development Center (Building 7920). The primary purpose of the fuel dissolution step is to prepare the solid fuel for subsequent liquid separations steps. This is accomplished by dissolving the fuel solids using nitric acid. During the dissolution process gases are evolved. Oxides of nitrogen are the primary off-gas components generated by the reactions of nitric acid and the fuel oxides however, during the dissolution and sparging of the resulting solution, iodine, C-14 as carbon dioxide, xenon, and krypton gasses are also released to the off-gas stream. The Dissolver Off-gas treatment rack provides a means of trapping these volatile fission products and other gases via various trapping media. Specifically the rack will recover iodine on a solid sorbent bed, scrub NOx in a water/acid column, scrub CO{sub 2} in a caustic scrubber column, remove moisture with solid sorbent drier beds and recover Xe and Kr using solid absorbent beds. The primary purpose of this experimental rack and the off-gas rack associated with the voloxidation equipment located at IFEL is to close the material balances around the volatile gases and to provide an understanding of the impacts of specific processing conditions on the fractions of the volatile components released from the various head-end processing steps.

  18. Thermal Cycling on Fatigue Failure of the Plutonium Vitrification Melter

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Jeffrey; Gorczyca, Jennifer

    2009-02-11

    One method for disposition of excess plutonium is vitrification into cylindrical wasteforms. Due to the hazards of working with plutonium, the vitrification process must be carried out remotely in a shielded environment. Thus, the equipment must be easily maintained. With their simple design, induction melters satisfy this criterion, making them ideal candidates for plutonium vitrification. However, due to repeated heating and cooling cycles and differences in coefficients of thermal expansion of contacting materials fatigue failure of the induction melter is of concern. Due to the cost of the melter, the number of cycles to failure is critical. This paper presents a method for determining the cycles to failure for an induction melter by using the results from thermal and structural analyses as input to a fatigue failure model.

  19. A Literature Survey to Identify Potentially Volatile Iodine-Bearing Species Present in Off-Gas Streams

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, S. H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, B. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strachan, D. M. [Strata-G, Knoxville, TN (United States); Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riley, B. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-30

    Four radionuclides have been identified as being sufficiently volatile in the reprocessing of nuclear fuel that their gaseous release needs to be controlled to meet regulatory requirements (Jubin et al. 2011, 2012). These radionuclides are 3H, 14C, 85Kr, and 129I. Of these, 129I has the longest half-life and potentially high biological impact. Accordingly, control of the release of 129I is most critical with respect to the regulations for the release of radioactive material in stack emissions. It is estimated that current EPA regulations (EPA 2010) would require any reprocessing plant in the United States to limit 129I release to less than 0.05 Ci/MTIHM for a typical fuel burnup of 55 gigawatt days per metric tonne (GWd/t) (Jubin 2011). The study of inorganic iodide in off-gas systems has been almost exclusively limited to I2 and the focus of organic iodide studies has been CH3I. In this document, we provide the results of an examination of publically available literature that is relevant to the presence and sources of both inorganic and organic iodine-bearing species in reprocessing plants. We especially focus on those that have the potential to be poorly sequestered with traditional capture methodologies. Based on the results of the literature survey and some limited thermodynamic modeling, the inorganic iodine species hypoiodous acid (HOI) and iodine monochloride (ICl) were identified as potentially low-sorbing iodine species that could present in off-gas systems. Organic species of interest included both short chain alkyl iodides such as methyl iodide (CH3I) and longer alkyl iodides up to iodododecane (C10H21I). It was found that fuel dissolution may provide conditions conducive to HOI formation and has been shown to result in volatile long-chain alkyl iodides, though these may not volatilize until later in the reprocessing sequence. Solvent extraction processes were found to be significant sources of various organic iodine-bearing species; formation of these

  20. Comparison of thermochemically calculated and measured dioxin contents in the off-gas of a sinter plant

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, P.; Eriksson, G.; Neuschuelz, D. [Lehrstuhl fuer Theoretische Huettenkunde, Aachen (Germany)

    1997-12-31

    Polychlorinated dibenzo-p-dioxins and dibenzo-furans form a family of more than 200 compounds which are relatively stable in the biosphere and tend to accumulate in the human body. The tetra- to hexa-chlorinated dioxins and furans are considered highly toxic. To facilitate the assessment of the total toxicity of dioxin and furan mixtures, the estimated toxic effects of the individual compounds relative to the 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) were introduced as Toxic Equivalent Factors which yield, when multiplied with the respective concentrations, the Toxic Equivalent (TE) of the mixture. Toxic dioxins and furans are unintentionally formed in a number of industrial combustion processes such as waste incineration and iron ore sintering, in the chemical industry and in household heating. To keep the emissions as low as possible, off-gas clearing systems for the collection of dioxins and furans are increasingly prescribed by the authorities. In addition, it appears desirable to select process conditions that are unfavourable for the formation of these compounds. A simulation of the relevant processes on the basis of thermodynamic data may be helpful in defining such process conditions. To simulate dioxin formation in the sintering process, all major gas-solid reactions taking place in the sinter bed must also be simulated. A sufficiently accurate reproduction of the off-gas compositions along the length of the sinter strand requires detailed assumptions concerning the relative amounts of `active` O{sub 2} as well as the distribution of reacting carbon and water over the strand length. From this basis, an equilibrium calculation for the gas/solid reactions at the sintering temperature of 1150 deg C and an equilibrium calculation restricted to the gas phase at 700 deg C produced values for the concentrations of the major off-gas constituents in very good agreement with the measured values. The further assumption that below 700 deg C all reactions are frozen

  1. High-Level Waste Melter Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Perez Jr, Joseph M; Bickford, Dennis F; Day, Delbert E; Kim, Dong-Sang; Lambert, Steven L; Marra, Sharon L; Peeler, David K; Strachan, Denis M; Triplett, Mark B; Vienna, John D; Wittman, Richard S

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  2. Modeling a Cold Crucible Induction Heated Melter

    International Nuclear Information System (INIS)

    Hawkes, G.L.

    2003-01-01

    FIDAP has been used to simulate melting of radioactive waste glass in a cold crucible induction heated melter. A model has been created that couples the magnetic vector potential (real and imaginary) to a transient startup of the melting process. This magnetic field is coupled with mass, momentum, and energy equations that vary with time and position as the melt grows. The coupling occurs with the electrical conductivity of the glass as it rises above the melt temperature of the glass and heat is generated. Natural convection within the molten glass helps determine the shape of the melt as it progresses in time. An electromagnetic force is also implemented that is dependent on the electrical properties and frequency of the coil. This study shows the progression of the melt shape with time along with temperatures, power input, velocities, and magnetic vector potential. A power controller is implemented that controls the primary coil current and power

  3. Melting characteristics of a plasma torch melter according to the waste feeding method

    International Nuclear Information System (INIS)

    Kim, T. W.; Choi, J. R.; Park, S. C.; Lu, C. S.; Park, J. K.; Hwang, T. W.; Shin, S. W.

    2001-01-01

    By using a batch type plasma torch melting system, continuous feeding and melting tests of non-combustible waste were executed. Using the results, the establishment of a heat transfer model and its verification were executed; the characteristics of the molten slag, exhaust gas, fly dust, volatilization of Cs, and leaching of slag were analyzed. In order to establish the heat transfer mode, the followings were considered; the electrical energy supplied to the plasma torch, the absorbed energy to the plasma torch for generating the plasma gas, the absorbed energy to the cooling water of the plasma torch, the energy supplied to the melter from the plasma gas by radiant heat, the energy loss through the exhaust gas, the waste melting energy, and the heating energy of an inner crucible and the melter. The concrete and soil were melted for the verification of the model. The waste was fed through waste feeder by the amount of 0.5kg or 1kg that was calculated by using the model. The experiment for the verification resulted in that the model was fitted well until the melter was heated sufficiently. If the electrical energy of 128kW were supplied to the plasma torch, energy balance of the plasma melting system was calculated with the model: the absorbed energy to the plasma torch for generating the plasma gas (27kW), the absorbed energy to the cooling water of the plasma torch (0∼ 36kW), the energy loss through the exhaust gas (5 ∼ 8kW), the waste melting energy (14kW), and the heating energy of an inner crucible and the melter (82 ∼ 43kW)

  4. NEXT GENERATION MELTER OPTIONEERING STUDY - INTERIM REPORT

    Energy Technology Data Exchange (ETDEWEB)

    GRAY MF; CALMUS RB; RAMSEY G; LOMAX J; ALLEN H

    2010-10-19

    The next generation melter (NOM) development program includes a down selection process to aid in determining the recommended vitrification technology to implement into the WTP at the first melter change-out which is scheduled for 2025. This optioneering study presents a structured value engineering process to establish and assess evaluation criteria that will be incorporated into the down selection process. This process establishes an evaluation framework that will be used progressively throughout the NGM program, and as such this interim report will be updated on a regular basis. The workshop objectives were achieved. In particular: (1) Consensus was reached with stakeholders and technology providers represented at the workshop regarding the need for a decision making process and the application of the D{sub 2}0 process to NGM option evaluation. (2) A framework was established for applying the decision making process to technology development and evaluation between 2010 and 2013. (3) The criteria for the initial evaluation in 2011 were refined and agreed with stakeholders and technology providers. (4) The technology providers have the guidance required to produce data/information to support the next phase of the evaluation process. In some cases it may be necessary to reflect the data/information requirements and overall approach to the evaluation of technology options against specific criteria within updated Statements of Work for 2010-2011. Access to the WTP engineering data has been identified as being very important for option development and evaluation due to the interface issues for the NGM and surrounding plant. WRPS efforts are ongoing to establish precisely data that is required and how to resolve this Issue. It is intended to apply a similarly structured decision making process to the development and evaluation of LAW NGM options.

  5. MASBAL: A computer program for predicting the composition of nuclear waste glass produced by a slurry-fed ceramic melter

    International Nuclear Information System (INIS)

    Reimus, P.W.

    1987-07-01

    This report is a user's manual for the MASBAL computer program. MASBAL's objectives are to predict the composition of nuclear waste glass produced by a slurry-fed ceramic melter based on a knowledge of process conditions; to generate simulated data that can be used to estimate the uncertainty in the predicted glass composition as a function of process uncertainties; and to generate simulated data that can be used to provide a measure of the inherent variability in the glass composition as a function of the inherent variability in the feed composition. These three capabilities are important to nuclear waste glass producers because there are constraints on the range of compositions that can be processed in a ceramic melter and on the range of compositions that will be acceptable for disposal in a geologic repository. MASBAL was developed specifically to simulate the operation of the West Valley Component Test system, a commercial-scale ceramic melter system that will process high-level nuclear wastes currently stored in underground tanks at the site of the Western New York Nuclear Services Center (near West Valley, New York). The program is flexible enough, however, to simulate any slurry-fed ceramic melter system. 4 refs., 16 figs., 5 tabs

  6. Formation rate of ammonium nitrate in the off-gas line of SRAT and SME in DWPF

    International Nuclear Information System (INIS)

    Lee, L.

    1992-01-01

    A mathematical model for the formation rate of ammonium nitrate in the off-gas line of the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mixed Evaporator (SME) in DWPF has been developed. The formation rate of ammonium nitrate in the off-gas line depends on pH, temperature, volume and total concentration of ammonia and ammonium ion. Based on a typical SRAT and SME cycle in DWPF, this model predicts the SRAT contributes about 50 lbs of ammonium nitrate while SME contributes about 60 lbs of ammonium nitrate to the off-gas line

  7. Thermal stress analysis of an Am/Cm stabilization bushing melter

    International Nuclear Information System (INIS)

    Gong, C.; Hardy, B.J.

    1996-01-01

    Decades of nuclear material production at the Savannah River Site (SRS) has resulted in the generation of large quantities of the isotopes Am 243 and Cm 244 . Currently, the Am and Cm isotopes are stored as a nitric acid solution in a tank. The Am and Cm isotopes have great commercial value but must be transferred to the Oak Ridge National Laboratory (ORNL) for processing. The nitric acid solution contains other isotopes and is intensely radioactive, which makes storage a problem and precludes shipment in the liquid form. In order to stabilize the material for onsite storage and to permit transport the material from SRS to ORNL, it has been proposed that the Am and Cm be separated from other isotopes in the solution and vitrified. The vitrification process in the Platinum-Rhodium alloy vessel generates a wide spectrum of temperature distributions. The melter is partially supported by a suspension system and confined by the flexible insulation. The combination of the fluctuation of temperature distribution and variable boundary conditions, induces stresses and strains in the melter. The thermal stress analysis is carried out with the finite element code ABAQUS. This analysis is closely associated with the design, manufacture and testing of the melter. The results were compared with the test data

  8. Off-Gas Treatment: Evaluation of Nano-structured Sorbents for Selective Removal of Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek; Aston, D. Eric; Sabharwall, Piyush

    2018-03-30

    Reprocessing of used nuclear fuel (UNF) is expected to play an important role for sustainable development of nuclear energy by increasing the energy extracted from the fuel and reducing the generation of the high level waste (HLW). However, aqueous reprocessing of UNF is accompanied by emission of off-gas streams containing radioactive nuclides including iodine, krypton, xenon, carbon, and tritium. Volatile iodine (129I), and krypton (85Kr) are long lived isotopes which have adverse effects on the environment as well as human health. Development of methods for the capture and long-term storage of radioactive gases is of crucial importance in order to manage their emissions that are anticipated to increase significantly with the growth of nuclear energy. For more than 70 years, porous solid sorbents have been in the forefront of radioactive contaminant removal due to promising results and their advantages such as high removal efficiency, low maintenance cost, simple equipment design and operation over other techniques. The research conducted in this project has focused on development of a novel nanostructured sorbent and its application for the capture of the above two contaminants of interest. Nanostructured carbon polyhedrons supported on Engelhard Titanosilicate-10 sorbent was synthesized using hydrothermal methods and subjected to structural and compositional characterization using various techniques including electron microscopy, Raman, x-ray diffraction and BET surface area analysis. Dynamic sorption experiments conducted using a flow-through column setup yielded information on the thermodynamics and kinetics of sorption in single-contaminant and multi-contaminant streams. Parameters varied in the study included carbon loading, temperature, contact time, contaminant concentration and humidity. The behavior of the system was modeled using models available in literature as well as development of a mass-transfer model from fundamental principles. Experimental

  9. Power distribution for an Am/Cm bushing melter

    International Nuclear Information System (INIS)

    Gong, C.; Hardy, B.J.

    1996-01-01

    Decades of nuclear material production at the Savannah River Site (SRS) has resulted in the generation of large quantities of the isotopes Am 243 and Cm 244 . Currently, the Am and Cm isotopes are stored as a nitric acid solution in a tank. The Am and Cm isotopes have great commercial value but must be transferred to ORNL for processing. The nitric acid solution contains other isotopes and is intensely radioactive, which makes storage a problem and precludes shipment in the liquid form. In order to stabilize the material for onsite storage and to permit transport the material from SRS to ORNL, it has been proposed that the Am and Cm be separated from other isotopes in the solution and vitrified. Vitrification will be effected by depositing a liquid feed stream containing the isotopes in solution, together with a stream of glass frit, onto the top of a molten glass pool in a melter. The glass is non-conducting and the melter is a Platinum/Rhodium alloy vessel which is heated by passing an electric current through it. Because most of the power is required to evaporate the liquid feed at the top of the glass pool, power demands differ for the upper and lower parts of the melter. In addition, the melter is batch fed so that the local power requirements vary with time. In order to design a unique split power supply, which ensures adequate local power delivery, an analysis of the melter power distribution was performed with the ABAQUS finite element code. ABAQUS was used to calculate the electric potential and current density distributions in the melter for a variety of current and potential boundary conditions. The results of the calculation were compared with test data and will be used to compute power densities for input to a computational fluid dynamics model for the melter

  10. Off-gas dust in an experimental blast furnace:Part 1: Characterization of flue dust, sludge and shaft fines

    OpenAIRE

    Leimalm, Ulrika; Lundgren, Maria; Sundqvist Ökvist, Lena; Björkman, Bo

    2010-01-01

    In blast furnace (BF) ironmaking, efforts are made to decrease coke consumption, which can be done by increasing the pulverized coal injection rate (PCR). This will cause changes in in-furnace reduction conditions, burden distribution, demands on raw material strength, etc. In order to maintain stable operation, but also to obtain low amounts of material losses through the off-gas, it is important to understand fines generation and behaviour in the BF. Off-gas dust and shaft fines generated i...

  11. AZUR. A plant for purification of dissolver off-gas from WAK

    International Nuclear Information System (INIS)

    Beaujean, H.W.; Tillessen, U.; Engelhardt, G.; Israel, G.

    1977-01-01

    The construction of AZUR means a considerable contribution to the eventual licensing and construction of a corresponding plant for the German reprocessing and waste-disposal center; because, according to the recommendation given by the German Commission on Radiological Protection, not only aerosols and iodine, but also krypton is to be removed on a long-term basis from the dissolver off-gas. During operation of AZUR under the realistic, hot conditions of a reprocessing plant results are expected confirming the possibility of industrial realization as well as demonstrating the operational availability under all safety requirements. (orig.) [de

  12. Letter Report on the Issue of Noble Metals in the DWPF Melter

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, N.D.

    2001-09-05

    This report presents some historical data from the radioactive operation of the DWPF melter. Some of the data seem to indication that the melter is displaying symptoms that may be linked to accumulation of noble metal or other conductive material on the melter floor. The complex and often competing effects of waste composition, glass pool temperatures, and operating conditions must also be considered.

  13. Control of high-level radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Coleman, C.J.

    1990-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize Savannah River Site High Level Waste as a durable borosilicate glass for permanent disposal in a repository. The DWPF will be controlled based on glass composition. The following discussion is a preliminary analysis of the capability of the laboratory methods that can be used to control the glass composition, and the relationships between glass durability and glass properties important to glass melting. The glass durability and processing properties will be controlled by controlling the chemical composition of the glass. The glass composition will be controlled by control of the melter feed transferred from the Slurry Mix Evaporator (SME) to the Melter Feed Tank (MFT). During cold runs, tests will be conducted to demonstrate the chemical equivalence of glass sampled from the pour stream and glass removed from cooled canisters. In similar tests, the compositions of glass produced from slurries sampled from the SME and MFT will be compared to final product glass to determine the statistical relationships between melter feed and glass product. The total error is the combination of those associated with homogeneity in the SME or MFT, sampling, preparation of samples for analysis, instrument calibration, analysis, and the composition/property model. This study investigated the sensitivity of estimation of property data to the combination of variations from sampling through analysis. In this or a similar manner, the need for routine glass product sampling will be minimized, and glass product characteristics will be assured before the melter feed is committed to the melter

  14. Online remote radiological monitoring during operation of Advance Vitrification System (AVS), Tarapur

    International Nuclear Information System (INIS)

    Deokar, U.V.; Kulkarni, V.V.; Mathew, P.; Khot, A.R.; Singh, K.K.; Kamlesh; Deshpande, M.D.; Kulkarni, Y.

    2010-01-01

    Advanced Vitrification System (AVS) is commissioned for vitrification of high level waste (HLW) by using Joule heated ceramic melter first time in India. The HLW is generated in fuel reprocessing plant. For radiological surveillance of plant, Health Physics Unit (HPU) had installed 37 Area Gamma Monitors (AGM), 7 Continuous Air Monitors (CAM) and all types of personal contamination monitors. Exposure control is a major concern in operating plant. Therefore in addition to installed monitors, we have developed online remote radiation monitoring system to minimize exposures to the surveyor and operator. This also helped in volume reduction of secondary waste. The reliability and accuracy of the online monitoring system is confirmed by calibrating the system by comparing TLD and DRD readings and by theoretical analysis. In addition some modifications were carried in HP instruments to make them user friendly. This paper summarizes different kinds of remote radiological monitoring systems installed for online monitoring of Melter off Gas (MOG) filter, Hood filter, three exhaust filter banks, annulus air sampling and over pack monitoring in AVS. Our online remote monitoring system has helped the plant management to plan in advance for replacement of these filters, which resulted in considerable saving of collective dose. (author)

  15. Remediation of MTBE from drinking water: air stripping followed by off-gas adsorption.

    Science.gov (United States)

    Ramakrishnan, Balaji; Sorial, George A; Speth, Thomas F; Clark, Patrick; Zaffiro, Alan; Patterson, Craig; Hand, David W

    2004-05-01

    The widespread use of methyl tertiary butyl ether (MTBE) as an oxygenate in gasoline has resulted in the contamination of a large number of ground and surface water sources. Even though air stripping has been proven to be an effective treatment technology for MTBE removal, off-gas treatment often is required in conjunction with it. This study evaluated the combined treatment technologies of air stripping followed by off-gas adsorption on a pilot scale for the treatment of MTBE-contaminated water. The effect of air/water ratios on the treatment efficiency was studied, and the mass transfer coefficient was determined. Air/water ratios of 105:1, 151:1, 177:1, 190:1, 202:1, and 206:1 were used, and a treatment efficiency of >99% was achieved for all the runs conducted. The depth of packing required to achieve maximum treatment efficiency decreased with increasing air/water ratio. Relative humidity (RH) impacts on the MTBE adsorption capacity of a granular activated carbon (GAC) and carbonaceous resin were determined from pilot plant studies. Breakthrough profiles obtained from the pilot plant studies conducted at 20, 30, and 50% RH indicated that GAC has a higher adsorptive capacity than resin. The adsorptive capacity of GAC decreased with increasing RH, whereas RH did not impact the resin adsorptive capacity.

  16. Response of a glass melter to steam explosion

    Energy Technology Data Exchange (ETDEWEB)

    Yau, W F; Durant, W S

    1984-01-01

    As part of the safety assessment in the design of the glass melter for large-scale immobilization of high-level radioactive wastes, structural considerations of the containment shell include its dynamic responses to abnormal loading conditions such as that caused by a steam explosion. The postulated steam explosion, conservatively given an energy content equivalent to 13 pounds of TNT, is capable of exerting sudden pressures greater than 300 psi but less than 410 psi on the melter wall. By use of thin-shell theory, the equations of motion satisfying the discontinuity conditions at junctions of shells with different curvatures are solved analytically. Results of stress analysis ensure elastic responses of the containment structure of the melter. 6 references, 3 figures, 1 table.

  17. Density of simulated americium/curium melter feed solution

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.S.

    1997-09-22

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to Oak Ridge National Laboratory and use in heavy isotope production programs. Prior to vitrification, a series of in-tank oxalate precipitation and nitric/oxalic acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Following nitric acid dissolution and oxalate destruction, the solution will be denitrated and evaporated to a dissolved solids concentration of approximately 100 g/l (on an oxide basis). During the Am/Cm vitrification, an airlift will be used to supply the concentrated feed solution to a constant head tank which drains through a filter and an in-line orifice to the melter. Since the delivery system is sensitive to the physical properties of the feed, a simulated solution was prepared and used to measure the density as a function of temperature between 20 to 70{degrees} C. The measured density decreased linearly at a rate of 0.0007 g/cm3/{degree} C from an average value of 1.2326 g/cm{sup 3} at 20{degrees} C to an average value of 1.1973g/cm{sup 3} at 70{degrees} C.

  18. Density of simulated americium/curium melter feed solution

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1997-01-01

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to Oak Ridge National Laboratory and use in heavy isotope production programs. Prior to vitrification, a series of in-tank oxalate precipitation and nitric/oxalic acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Following nitric acid dissolution and oxalate destruction, the solution will be denitrated and evaporated to a dissolved solids concentration of approximately 100 g/l (on an oxide basis). During the Am/Cm vitrification, an airlift will be used to supply the concentrated feed solution to a constant head tank which drains through a filter and an in-line orifice to the melter. Since the delivery system is sensitive to the physical properties of the feed, a simulated solution was prepared and used to measure the density as a function of temperature between 20 to 70 degrees C. The measured density decreased linearly at a rate of 0.0007 g/cm3/degree C from an average value of 1.2326 g/cm 3 at 20 degrees C to an average value of 1.1973g/cm 3 at 70 degrees C

  19. Final Report - Effects of High Spinel and Chromium Oxide Crystal Contents on Simulated HLW Vitrification in DM100 Melter Tests, VSL-09R1520-1, Rev. 0, dated 6/22/09

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Matlack, K. S.; Kot, W.; Pegg, I. L.; Chaudhuri, M.; Lutze, W.

    2013-11-13

    The principal objective of the work was to evaluate the effects of spinel and chromium oxide particles on WTP HLW melter operations and potential impacts on melter life. This was accomplished through a combination of crucible-scale tests, settling and rheological tests, and tests on the DM100 melter system. Crucible testing was designed to develop and identify HLW glass compositions with high waste loadings that exhibit formation of crystalline spinel and/or chromium oxide phases up to relatively high crystal contents (i.e., > 1 vol%). Characterization of crystal settling and the effects on melt rheology was performed on the HLW glass formulations. Appropriate candidate HLW glass formulations were selected, based on characterization results, to support subsequent melter tests. In the present work, crucible melts were formulated that exhibit up to about 4.4 vol% crystallization.

  20. Control of radioactive waste-glass melters: Part 3, Glass electrical stability

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D F; Propst, R C; Plodinec, M J

    1988-01-01

    Pilot waste-glass melter operations have indicated a tendency for noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Changes in melter geometry are being considered in Japan, Germany, and the United States to permit draining of the noble metals to reduce their effects. Physical modeling of melter electrical patterns, electrode/waste-glass electrochemistry, and non-linear electrical behavior have been evaluated for typical waste-glass. Major melter design changes should not be necessary for the US Department of Energy's Defense Waste Processing Facility (DWPF). Top electrodes will not be significantly affected. Minor alterations in melter design, monitoring of electrical characteristics, and adjustment of bottom electrode currents can provide protection from shorting if noble metals accumulate. 31 refs., 4 figs., 4 tabs.

  1. Evaluation of liquid-fed ceramic melter scale-up correlations

    International Nuclear Information System (INIS)

    Koegler, S.S.; Mitchell, S.J.

    1988-08-01

    This study was conducted to determine the parameters governing factors of scale for liquid-fed ceramic melters (LFCMs) in order to design full-scale melters using smaller-scale melter data. Results of melter experiments conducted at Pacific Northwest Laboratory (PNL) and Savannah River Laboratory (SRL) are presented for two feed compositions and five different liquid-fed ceramic melters. The melter performance data including nominal feed rate and glass melt rate are correlated as a function of melter surface area. Comparisons are made between the actual melt rate data and melt rates predicted by a cold cap heat transfer model. The heat transfer model could be used in scale-up calculations, but insufficient data are available on the cold cap characteristics. Experiments specifically designed to determine heat transfer parameters are needed to further develop the model. 17 refs

  2. Gas-Solid Reaction Properties of Fluorine Compounds and Solid Adsorbents for Off-Gas Treatment from Semiconductor Facility

    Directory of Open Access Journals (Sweden)

    Shinji Yasui

    2012-01-01

    Full Text Available We have been developing a new dry-type off-gas treatment system for recycling fluorine from perfluoro compounds present in off-gases from the semiconductor industry. The feature of this system is to adsorb the fluorine compounds in the exhaust gases from the decomposition furnace by using two types of solid adsorbents: the calcium carbonate in the upper layer adsorbs HF and converts it to CaF2, and the sodium bicarbonate in the lower layer adsorbs HF and SiF4 and converts them to Na2SiF6. This paper describes the fluorine compound adsorption properties of both the solid adsorbents—calcium carbonate and the sodium compound—for the optimal design of the fixation furnace. An analysis of the gas-solid reaction rate was performed from the experimental results of the breakthrough curve by using a fixed-bed reaction model, and the reaction rate constants and adsorption capacity were obtained for achieving an optimal process design.

  3. Detailed off-gas measurements for improved modelling of the aeration performance at the WWTP of Eindhoven.

    Science.gov (United States)

    Amerlinck, Y; Bellandi, G; Amaral, A; Weijers, S; Nopens, I

    2016-01-01

    At wastewater treatment plants (WWTPs), the aerobic conversion processes in the bioreactor are driven by the presence of dissolved oxygen (DO). Within these conversion processes, the oxygen transfer is a rate limiting step as well as being the largest energy consumer. Despite this high importance, WWTP models often lack detail on the aeration part. An extensive measurement campaign with off-gas tests was performed at the WWTP of Eindhoven to provide more information on the performance and behaviour of the aeration system. A high spatial and temporal variability in the oxygen transfer efficiency was observed. Applying this gathered system knowledge in the aeration model resulted in an improved prediction of the DO concentrations. Moreover, an important consequence of this was that ammonium predictions could be improved by resetting the ammonium half-saturation index for autotrophs to its default value. This again proves the importance of balancing sub-models with respect to the need for model calibration as well as model predictive power.

  4. Radiation exposure control by estimation of multiplication factors for online remote radiation monitoring systems at vitrification plant

    International Nuclear Information System (INIS)

    Deokar, U.V.; Kulkarni, V.V.; Khot, A.R.; Mathew, P.; Kamlesh; Purohit, R.G.; Sarkar, P.K.

    2012-01-01

    Vitrification Plant is commissioned for vitrification of high level liquid waste (HLW) generated in nuclear fuel cycle operations by using Joule Heated Ceramic Melter first time in India. Exposure control is a major concern in operating plant. Therefore in addition to installed monitors, we have developed online remote radiation monitoring system to minimize number of entries in amber areas and to reduce the exposure to the surveyor and operator. This also helped in volume reduction of secondary waste. The reliability and accuracy of the online monitoring system is confirmed with actual measurements and by theoretical shielding calculations. The multiplication factors were estimated for remote on line monitoring of Melter Off Gas (MOG) filter, Hood filter, three exhaust filter banks, and over-pack monitoring. This paper summarizes - how the online remote monitoring system helped in saving of 128.52 person-mSv collective dose (14.28% of budgeted dose). The system also helped in the reduction of 2.6 m 3 of Cat-I waste. Our online remote monitoring system has helped the plant management to plan in advance for replacement of these filters, which resulted in considerable saving in collective dose and secondary waste

  5. Separation of krypton from dissolver off-gas of a reprocessing plant using preparative gas chromatography

    International Nuclear Information System (INIS)

    Matoni, M.

    1984-02-01

    Kr-85 can be separated from the pre-purified purge air in the final processing step of the purification phase for dissolver off-gases of a reprocessing plant with the aid of preparative gas chromatography. Activated carbon adsorbers in combination with helium as carrier gas permits maximum gas mixture through-flow. A separation temperature of 30 0 C is considered optimal. An adsorbent volume of 40 dm 3 is necessary for processing the residual gas flow of 2.5 Nm 3 /h; the adsorbent is divided between 2 columns linked in series each of which are 2 m long with an internal diameter of 100 mm. The helium flow required is five times greater than the off-gas flow. The degree of purity for krypton is greater than 90% for a decontamination factor of greater than 1000. (orig./HP) [de

  6. DATA SUMMARY REPORT SMALL SCALE MELTER TESTING OF HLW ALGORITHM GLASSES MATRIX1 TESTS VSL-07S1220-1 REV 0 7/25/07

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; PEGG IL

    2011-12-29

    Eight tests using different HLW feeds were conducted on the DM100-BL to determine the effect of variations in glass properties and feed composition on processing rates and melter conditions (off-gas characteristics, glass processing, foaming, cold cap, etc.) at constant bubbling rate. In over seven hundred hours of testing, the property extremes of glass viscosity, electrical conductivity, and T{sub 1%}, as well as minimum and maximum concentrations of several major and minor glass components were evaluated using glass compositions that have been tested previously at the crucible scale. Other parameters evaluated with respect to glass processing properties were +/-15% batching errors in the addition of glass forming chemicals (GFCs) to the feed, and variation in the sources of boron and sodium used in the GFCs. Tests evaluating batching errors and GFC source employed variations on the HLW98-86 formulation (a glass composition formulated for HLW C-106/AY-102 waste and processed in several previous melter tests) in order to best isolate the effect of each test variable. These tests are outlined in a Test Plan that was prepared in response to the Test Specification for this work. The present report provides summary level data for all of the tests in the first test matrix (Matrix 1) in the Test Plan. Summary results from the remaining tests, investigating minimum and maximum concentrations of major and minor glass components employing variations on the HLW98-86 formulation and glasses generated by the HLW glass formulation algorithm, will be reported separately after those tests are completed. The test data summarized herein include glass production rates, the type and amount of feed used, a variety of measured melter parameters including temperatures and electrode power, feed sample analysis, measured glass properties, and gaseous emissions rates. More detailed information and analysis from the melter tests with complete emission chemistry, glass durability, and

  7. Decomposition of volatile organic compounds and polycyclic aromatic hydrocarbons in industrial off-gas by electron beams: A review

    International Nuclear Information System (INIS)

    Paur, H.R.

    1998-01-01

    The electron beam induced decomposition of volatile organic compounds (e.g. aromatic compounds, esters, chlorinated hydrocarbons) and polycyclic aromatic hydrocarbons (e.g. chlorinated dibenzo-dioxins) in industrial off gas has been investigated by several research groups in Germany and Japan. The method was shown to be effective for cleaning the waste gas of a paint factory, the waste air discharged from an automobile tunnel, the off gas cleaning from a groundwater remediation plant and the flue gas of a waste incinerator. The electron beam process achieves high removal efficiencies for volatile organic compounds. Reaction models have been developed, which suggest that the organic compounds are oxidized by hydroxyl radicals. The electron beam process may treat very large off-gas volumes at ambient temperatures and has a low energy consumption. The production of secondary wastes can be avoided or minimized. Compared to conventional methods the investment and operation costs of the process seem to be attractive for selected applications

  8. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of 2017 experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    A full-scale, transparent mock-up of the Hanford Tank Waste Treatment and Immobilization Project High Level Waste glass melter riser and pour spout has been constructed to allow for testing with visual feedback of particle settling, accumulation, and resuspension when operating with a controlled fraction of crystals in the glass melt. Room temperature operation with silicone oil and magnetite particles simulating molten glass and spinel crystals, respectively, allows for direct observation of flow patterns and settling patterns. The fluid and particle mixture is recycled within the system for each test.

  9. A model for utilizing industrial off-gas to support microalgae cultivation for biodiesel in cold climates

    International Nuclear Information System (INIS)

    Laamanen, Corey A.; Shang, Helen; Ross, Gregory M.; Scott, John A.

    2014-01-01

    Highlights: • Development of a model to assess process-coupled algae production in cold climates. • Algae growth temperatures in open tanks can be maintained with industrial off-gas. • Indirect and direct heat application from industrial off-gasses are assessed. • CO 2 -rich off-gas can be bubbled into algae tanks to provide a carbon source. • A nickel smelter’s off-gas is used to demonstrate how waste heat can be repurposed. - Abstract: Lipids produced by microalgae are a promising biofuel feedstock. However, as most commercial mass production of microalgae is in open raceway ponds it is generally considered only a practical option in regions where year-round ambient temperatures remain above 15 °C. To address this issue it has been proposed to couple microalgae production with industries that produce large amounts of waste heat and carbon dioxide (CO 2 ). The CO 2 would provide a carbon source for the microalgae and the waste heat would allow year-round cultivation to be extended to regions that experience seasonal ambient temperatures well below 15 °C. To demonstrate this concept, a dynamic model has been constructed that predicts the impact on algal pond temperature from both bubbled-in off-gas and heat indirectly recovered from off-gas. Simulations were carried out for a variety of global locations using the quantity off-gas and waste energy from a smelter’s operations to determine the volume of microalgae that could be maintained above 15 °C. The results demonstrate the feasibility of year-round microalgae production in climates with relatively cold winter seasons

  10. West Valley Demonstration Project vitrification process equipment Functional and Checkout Testing of Systems (FACTS)

    International Nuclear Information System (INIS)

    Carl, D.E.; Paul, J.; Foran, J.M.; Brooks, R.

    1990-01-01

    The Vitrification Facility (VF) at the West Valley Demonstration Project was designed to convert stored radioactive waste into a stable glass for disposal in a federal repository. The Functional and Checkout Testing of Systems (FACTS) program was conducted from 1984 to 1989. During this time new equipment and processes were developed, installed, and implemented. Thirty-seven FACTS tests were conducted, and approximately 150,000 kg of glass were made by using nonradioactive materials to simulate the radioactive waste. By contrast, the planned radioactive operation is expected to produce approximately 500,000 kg of glass. The FACTS program demonstrated the effectiveness of equipment and procedures in the vitrification system, and the ability of the VF to produce quality glass on schedule. FACTS testing also provided data to validate the WVNS waste glass qualification method and verify that the product glass would meet federal repository acceptance requirements. The system was built and performed to standards which would have enabled it to be used in radioactive service. As a result, much of the VF tested, such as the civil construction, feed mixing and holding vessels, and the off-gas scrubber, will be converted for radioactive operation. The melter was still in good condition after being at temperature for fifty-eight of the sixty months of FACTS. However, the melter exceeded its recommended design life and will be replaced with a similar melter. Components that were not designed for remote operation and maintenance will be replaced with remote-use items. The FACTS testing was accomplished with no significant worker injury or environmental releases. During the last FACTS run, the VF processes approximated the remote-handling system that will be used in radioactive operations. Following this run the VF was disassembled for conversion to a radioactive process. Functional and checkout testing of new components will be performed prior to radioactive operation

  11. Innovative method for increased methane recovery from two-phase anaerobic digestion of food waste through reutilization of acidogenic off-gas in methanogenic reactor.

    Science.gov (United States)

    Yan, Bing Hua; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-10-01

    In this study, the performance of a two-phase anaerobic digestion reactor treating food waste with the reutilization of acidogenic off-gas was investigated with the objective to improve the hydrogen availability for the methanogenic reactor. As a comparison a treatment without off-gas reutilization was also set up. Results showed that acidogenic off-gas utilization in the upflow anaerobic sludge blanket (UASB) reactor increased the methane recovery up to 38.6%. In addition, a 27% increase in the production of cumulative chemical oxygen demand (COD) together with an improved soluble microbial products recovery dominated by butyrate was observed in the acidogenic leach bed reactor (LBR) with off-gas reutilization. Of the increased methane recovery, ∼8% was contributed by the utilization of acidogenic off-gas in UASB. Results indicated that utilization of acidogenic off-gas in methanogenic reactor is a viable technique for improving overall methane recovery. Copyright © 2016. Published by Elsevier Ltd.

  12. Heat Transfer Model of a Small-Scale Waste Glass Melter with Cold Cap Layer

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard

    2016-09-01

    At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surface of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative

  13. Radiation exposure control by estimation of multiplication factors for online remote radiation monitoring systems at Vitrification Plant

    International Nuclear Information System (INIS)

    Deokar, Umesh V.; Kukarni, V.V.; Khot, A.R.; Mathew, P.; Kamlesh; Purohit, R.G.; Sarkar, P.K.

    2011-01-01

    Vitrification Plant is commissioned for vitrification of high-level liquid waste generated in Nuclear Fuel Cycle operations by using Joule Heated Ceramic Melter first time in India. Exposure control is a major concern in operating plant. Therefore, in addition to installed monitors, we have developed online remote radiation monitoring system to minimize number of entries in amber areas and to reduce the exposure to the surveyor and operator. This also helped in volume reduction of secondary waste. The reliability and accuracy of the online monitoring system is confirmed with actual measurements and by theoretical shielding calculations. The multiplication factors were estimated for remote online monitoring of Melter off Gas (MOG) filter, Hood filter, three exhaust filter banks, and overpack monitoring. This paper summarizes how the online remote monitoring system had helped in saving of 128.52 Person-mSv collective dose (14.28% of budgeted dose) and also there was 2.6 m 3 reduction in generation of Cat-I waste. (author)

  14. Comparison of the rotary calciner-metallic melter and the slurry-fed ceramic melter technologies for vitrifying West Valley high-level wastes

    International Nuclear Information System (INIS)

    Chapman, C.C.

    1983-01-01

    Two processes which are believed applicable and available for vitrification of West Valley's high-level (HLW) wastes were technically evaluated and compared. The rotary calciner-metallic melter (AVH) and the slurry-fed ceramic melter (SFCM) were evaluated under the following general categories: process flow sheet, remote operability, safety and environmental considerations, and estimated cost and schedules

  15. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    International Nuclear Information System (INIS)

    Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

    1995-01-01

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development's VOC's in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry

  16. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

    1995-01-23

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development`s VOC`s in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry.

  17. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    International Nuclear Information System (INIS)

    Shine, E. P.; Poirier, M. R.

    2013-01-01

    statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy's extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative sampling

  18. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    Energy Technology Data Exchange (ETDEWEB)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy's extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative

  19. GTS Duratek, phase I Hanford low-level waste melter tests: Final report

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense waste stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the final report on testing performed by GTS Duratek Inc. in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The report contains description of the tests, observations, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. The document also contains summaries of the melter offgas reports issued as separate documents for the 100 kg melter (WHC-SD-WM-VI-028) and for the 1000 kg melter (WHC-SD-WM-VI-029)

  20. Advanced waste form and melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-02

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these "troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approached to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.

  1. GTS Duratek, phase I Hanford low-level waste melter tests: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, W.C.

    1995-10-26

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense waste stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the final report on testing performed by GTS Duratek Inc. in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The report contains description of the tests, observations, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. The document also contains summaries of the melter offgas reports issued as separate documents for the 100 kg melter (WHC-SD-WM-VI-028) and for the 1000 kg melter (WHC-SD-WM-VI-029).

  2. Materials and design experience in a slurry-fed electric glass melter

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, S.M.; Larson, D.E.

    1981-08-01

    The design of a slurry-fed electric gas melter and an examination of the performance and condition of the construction materials were completed. The joule-heated, ceramic-lined melter was constructed to test the applicability of materials and processes for high-level waste vitrification. The developmental Liquid-Fed Ceramic Melter (LFCM) was operated for three years with simulated high-level waste and was subjected to conditions more severe than those expected for a nuclear waste vitrification plant.

  3. Retrofit design of a boil-off gas handling process in liquefied natural gas receiving terminals

    International Nuclear Information System (INIS)

    Park, Chansaem; Song, Kiwook; Lee, Sangho; Lim, Youngsub; Han, Chonghun

    2012-01-01

    Generation of Boil-off gas (BOG) in liquefied natural gas (LNG) receiving terminals considerably affects operating costs and the safety of the facility. For the above reasons, a proper BOG handling process is a major determinant in the design of a LNG receiving terminal. This study proposes the concept of a retrofit design for a BOG the handling process using a fundamental analysis. A base design was determined for a minimum send-out case in which the BOG handling becomes the most difficult. In the proposed design, the cryogenic energy of the LNG stream is used to cool other streams inside the process. It leads to a reduction in the operating costs of the compressors in the BOG handling process. Design variables of the retrofit design were optimized with non-linear programming to maximize profitability. Optimization results were compared with the base design to show the effect of the proposed design. The proposed design provides a 22.7% energy saving ratio and a 0.176 year payback period. -- Highlights: ► A retrofit design of the BOG handling process was proposed to maximize energy savings. ► The superstructure of the proposed design was developed based on a thermodynamic analysis. ► In the proposed design, the cryogenic energy of the LNG stream was utilized to directly cool down the BOG streams. ► The payback period of the proposed design is sufficiently short for investment in industry.

  4. Computational Fluid Dynamics Modeling of Bubbling in a Viscous Fluid for Validation of Waste Glass Melter Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Alexander William [Idaho National Laboratory; Guillen, Donna Post [Idaho National Laboratory

    2016-01-01

    At the Hanford site, radioactive waste stored in underground tanks is slated for vitrification for final disposal. A comprehensive knowledge of the glass batch melting process will be useful in optimizing the process, which could potentially reduce the cost and duration of this multi-billion dollar cleanup effort. We are developing a high-fidelity heat transfer model of a Joule-heated ceramic lined melter to improve the understanding of the complex, inter-related processes occurring with the melter. The glass conversion rates in the cold cap layer are dependent on promoting efficient heat transfer. In practice, heat transfer is augmented by inserting air bubblers into the molten glass. However, the computational simulations must be validated to provide confidence in the solutions. As part of a larger validation procedure, it is beneficial to split the physics of the melter into smaller systems to validate individually. The substitution of molten glass for a simulant liquid with similar density and viscosity at room temperature provides a way to study mixing through bubbling as an isolated effect without considering the heat transfer dynamics. The simulation results are compared to experimental data obtained by the Vitreous State Laboratory at the Catholic University of America using bubblers placed within a large acrylic tank that is similar in scale to a pilot glass waste melter. Comparisons are made for surface area of the rising air bubbles between experiments and CFD simulations for a variety of air flow rates and bubble injection depths. Also, computed bubble rise velocity is compared to a well-accepted expression for bubble terminal velocity.

  5. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat

  6. Characterization of Ceramic Material Produced From a Cold Crucible Induction Melter Test

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-30

    This report summarizes the results from characterization of samples from a melt processed surrogate ceramic waste form. Completed in October of 2014, the first scaled proof of principle cold crucible induction melter (CCIM) test was conducted to process a Fe-hollandite-rich titanate ceramic for treatment of high level nuclear waste. X-ray diffraction, electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the CCIM material produced. Core samples at various radial locations from the center of the CCIM were taken. These samples were also sectioned and analyzed vertically. Together, the various samples were intended to provide an indication of the homogeneity throughout the CCIM with respect to phase assemblage, chemical composition, and chemical durability. Characterization analyses confirmed that a crystalline ceramic with desirable phase assemblage was produced from a melt using a CCIM. Hollandite and zirconolite were identified in addition to possible highly-substituted pyrochlore and perovskite. Minor phases rich in Fe, Al, or Cs were also identified. Remarkably only minor differences were observed vertically or radially in the CCIM material with respect to chemical composition, phase assemblage, and durability. This recent CCIM test and the resulting characterization in conjunction with demonstrated compositional improvements support continuation of CCIM testing with an improved feed composition and improved melter system.

  7. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Tongan [Pacific Northwest National Laboratory, Richland Washington; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington; Dixon, Derek R. [Pacific Northwest National Laboratory, Richland Washington; Kim, Dongsang [Pacific Northwest National Laboratory, Richland Washington; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington; Bonham, Charles C. [Pacific Northwest National Laboratory, Richland Washington; VanderVeer, Bradley J. [Pacific Northwest National Laboratory, Richland Washington; Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington; Weese, Brigitte L. [Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Pacific Northwest National Laboratory, Richland Washington

    2017-12-07

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to the high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.

  8. Tributyl phosphate removal from reprocessing off-gas streams using a selected sorbent

    International Nuclear Information System (INIS)

    Parker, G.B.

    1980-01-01

    Laboratory experiments used small laboratory-scale columns packed with selected sorbent materials to remove tributyl phosphate (TBP) and iodine at conditions approaching those in actual reprocessing off-gas streams. The sorbent materials for TBP removal were placed upstream of iodine sorbent materials to protect the iodine sorbent from the deleterious effects of TBP. Methyl iodide in an airstream containing 30% TBP in normal paraffin hydrocarbons (NPH) and water vapor was metered to two packed columns of sorbents simultaneously (in parallel). One column contained a segment of 8-in. x 14-in. mesh alumina sorbent for TBP removal, the other did not. The measure of the effectiveness of TBP sorbent materials for TBP removal was determined by comparing the iodine retention of the iodine sorbent materials in the two parallel columns. Results from an 18 wt % Ag substituted mordenite iodine sorbent indicated that the iodine retention capacity of the sorbent was reduced 60% by the TBP and that the column containing iodine sorbent material protected by the alumina TBP sorbent retained 30 times more iodine than the column without TBP sorbent. TBP concentration was up to 500 mg/m 3 . Similar experiments using a 7 wt % Ag impregnated silica gel indicated that the TBP vapor had little effect on the iodine retention of the silica gel material. The stoichiometric maximum amount of iodine was retained by the silica gel material. Further experiments were conducted assessing the effects of NO 2 on iodine retention of this 7 wt % Ag sorbent. After the two columns were loaded with iodine in the presence of TBP (in NPH), one column was subjected to 2 vol % NO 2 in air. From visual comparison of the two columns, it appeared that the NO 2 regenerated the silica gel iodine sorbent and that iodine was washed off the silica gel iodine sorbent leaving the sorbent in the original state

  9. Vitrification of Cesium-Laden Organic Ion Exchange Resin in a Stirred Melter

    Energy Technology Data Exchange (ETDEWEB)

    Cicero-Herman, C.A [Westinghouse Savannah River Company, AIKEN, SC (United States); Sargent, T.N.; Overcamp, T.J.; Bickford, D.F.

    1997-07-09

    The goal of this research was a feasibility study for vitrifying the organic ion exchange resin in a stirred-tank melter. Tests were conducted to determine the fate of cesium including the feed, exit glass, and offgas streams and to assess any impact of feeding the resin on the melter or its performance.

  10. Statistical process control applied to the liquid-fed ceramic melter process

    International Nuclear Information System (INIS)

    Pulsipher, B.A.; Kuhn, W.L.

    1987-09-01

    In this report, an application of control charts to the apparent feed composition of a Liquid-Fed Ceramic Melter (LFCM) is demonstrated by using results from a simulation of the LFCM system. Usual applications of control charts require the assumption of uncorrelated observations over time. This assumption is violated in the LFCM system because of the heels left in tanks from previous batches. Methods for dealing with this problem have been developed to create control charts for individual batches sent to the feed preparation tank (FPT). These control charts are capable of detecting changes in the process average as well as changes in the process variation. All numbers reported in this document were derived from a simulated demonstration of a plausible LFCM system. In practice, site-specific data must be used as input to a simulation tailored to that site. These data directly affect all variance estimates used to develop control charts. 64 refs., 3 figs., 2 tabs

  11. Off-gas monitor system for the detection of a failed fuel cladding tube

    International Nuclear Information System (INIS)

    Yuasa, Yoshiyuki; Oosaki, Masahiko; Naito, Makoto.

    1984-01-01

    Purpose: To rapidly and reliably detect failures in a fuel cladding tube thereby prevent accidents. Method: Off-gases discharged from an air extractor are mixed at a certain ratio with cleaning water and gamma spectra for short-life radioactive rare gases and for long-life radioactive rare gases in the off-gases are measured by gamma ray detectors. The spectra are analyzed by a Pulse-height analyzer so as to quantitatively determine the nuclides of radioactive rare gases thereby calculate the release rate on each of the nuclides. Further, a central data-processing unit calculates the composition ratio of each release models about recoil, diffusion and equilibrium in the whole radioactive rare gases based on the release rate. As the total value of the release rate is rapidly increased, recoil part will be decreased suddenly and the diffusion and equilibrium parts will be increased by so much, upon failure of a fuel can; thus the failure can rapidly be detected. (Sekiya, K.)

  12. DOE mixed waste metals partition in a rotary kiln wet off-gas system

    International Nuclear Information System (INIS)

    Burns, D.B.; Looper, M.G.

    1994-01-01

    In 1996, the Savannah River Site plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. Test burns were conducted using surrogate CIF wastes spiked with hazardous metals and organics. The partition of metals between the kiln bottom ash, scrubber blowdown solution, and stack gas was measured as a function of kiln temperature, waste chloride content, and waste form (liquid or solid). Three waste simulants were used in these tests, a high and low chloride solid waste mix (paper, plastic, latex, PVC), and a liquid waste mix (benzene and chlorobenzene). An aqueous solution containing: antimony, arsenic, barium, cadmium, chromium, lead, mercury, nickel, silver, and thallium was added to the waste to determine metals fate under various combustion conditions. Test results were used to divide the metals into three general groups, volatile, semi-volatile, and nonvolatile metals. Mercury was the only volatile metal. No mercury remained in the kiln bottom ash under any incineration condition. Lead, cadmium, thallium, and silver exhibited semi-volatile behavior. The partition between the kiln ash, blowdown, and stack gas depended on incineration conditions. Chromium, nickel, barium, antimony, and arsenic exhibited nonvolatile behavior, with greater than 90 wt % of the metal remaining in the kiln bottom ash. Incineration temperature had a significant effect on the partition of volatile and semi-volatile metals, and no effect on nonvolatile metal partition. As incineration temperatures were increased, the fraction of metal leaving the kiln increased. Three metals, lead, cadmium, and mercury showed a relationship between chloride concentration in the waste and metals partition. Increasing the concentration of chlorides in the waste or burning liquid waste versus solid waste resulted in a larger fraction of metal exiting the kiln

  13. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF BUBBLER CONFIGURATIONS USING HLW AZ-101 SIMULANTS VSL-04R4800-4 REV 0 10/5/04

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; LUTZE W; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 HLW simulants. The tests reported herein are a subset of six tests from a larger series of tests described in the Test Plan for the work; results from the other tests have been reported separately. The solids contents of the melter feeds were based on the WTP baseline value for the solids content of the feeds from pretreatment which changed during these tests from 20% to 15% undissolved solids resulting in tests conducted at two feed solids contents. Based on the results of earlier tests with single outlet 'J' bubblers, initial tests were performed with a total bubbling rate of 651 pm. The first set of tests (Tests 1A-1E) addressed the effects of skewing this total air flow rate back and forth between the two installed bubblers in comparison to a fixed equal division of flow between them. The second set of tests (2A-2D) addressed the effects of bubbler depth. Subsequently, as the location, type and number of bubbling outlets were varied, the optimum bubbling rate for each was determined. A third (3A-3C) and fourth (8A-8C) set of tests evaluated the effects of alternative bubbler designs with two gas outlets per bubbler instead of one by placing four bubblers in positions simulating multiple-outlet bubblers. Data from the simulated multiple outlet bubblers were used to design bubblers with two outlets for an additional set of tests (9A-9C). Test 9 was also used to determine the effect of small sugar additions to the feed on ruthenium volatility. Another set of tests (10A-10D) evaluated the effects on production rate of spiking the feed with chloride and sulfate. Variables held constant to the extent possible included melt temperature, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The feed rate was increased to the point that a constant, essentially complete, cold cap was

  14. Resistance heater for use in a glass melter

    Science.gov (United States)

    Routt, K.R.; Porter, M.A.

    1984-01-01

    A resistance heating element that includes: a resistance heating medium of a mixture of electrically conductive and insulative particles in powdered form mixed together in predetermined proportions to achieve a given resistivity; a hollow outer electrode surrounding the resistance heating medium; and an inner electrode coaxially disposed within said outer electrode. In its preferred embodiments, the electrically conductive powder is selected from the group consisting essentially of graphite, Inconel alloy, molybdenum, nichrome alloy and stainless steel, while the insulator powder is silicon dioxide or alumina. The resistance heating element, being resistant to damage from mechanical shock and corrosion at elevated temperatures, is used in a glass melter.

  15. Technical Exchange on Improved Design and Performance of High Level Waste Melters - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    SK Sundaram; ML Elliott; D Bickford

    1999-11-19

    SIA Radon is responsible for management of low- and intermediate-level radioactive waste (LILW) produced in Central Russia. In cooperation with Minatom organizations Radon carries out R and D programs on treatment of simulated high level waste (HLW) as well. Radon scientists deal with a study of materials for LILW, HLW, and Nuclear Power Plants (NPP) wastes immobilization, and development and testing of processes and technologies for waste treatment and disposal. Radon is mostly experienced in LILW vitrification. This experience can be carried over to HLW vitrification especially in field of melting systems. The melter chosen as a basic unit for the vitrification plant is a cold crucible. Later on Radon experience in LILW vitrification as well as our results on simulated HLW vitrification are briefly described.

  16. RHEOLOGICAL AND ELEMENTAL ANALYSES OF SIMULANT SB5 SLURRY MIX EVAPORATOR-MELTER FEED TANK SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.

    2010-02-08

    (OH){sub 2} and Mn(OH){sub 2} caused the increase in yield stress. The low pH run exhibited as much as an order of magnitude greater B and Li (frit components) leachate concentrations in the supernate. At high pH a decrease of B leaching was found and this was attributed to adsorption onto Mg(OH){sub 2}. A second leaching experiment was performed without any sludge to deconvolute the leach rate behavior of Frit 418 from those of the SB5 sludge-Frit 418 system. At high pH, the sludgeless system demonstrated very fast leaching of all the frit components, primarily due to fast dissolution of the main component, silica, by hydroxide anion; various semiconductor studies have established this reactivity. Overall, the frit-water system exhibited greater leaching from a factor two to almost three orders of magnitude (varying by conditions and species). The slower leaching of the sludge system is possibly due to a greater ionic strength or smaller driving force. Another possible reason is a physical effect, coating of the frit particles with sludge; this would increase the mass transfer resistance to leaching. Based on this study, the cause of clogs in the melter feed loop is still unknown. A possible explanation is that the SME product, like the simulant, is too thin and could contribute to a loss of two-phase flow which could cause plugging of a restricted and poorly mixed zone like the melter feed loop. This is feasible since a previous study of a slurry showed an increase in resistance to flow at lower flow rates. Testing with a radioactive SME sample is underway and should help understand this potential mechanism.

  17. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of FY2016 experiements

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States); Miller, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-12-01

    Five experiments were completed with the full-scale, room temperature Hanford Waste Treatment and Immobilization Plant (WTP) high-level waste (HLW) melter riser test system to observe particle flow and settling in support of a crystal tolerant approach to melter operation. A prototypic pour rate was maintained based on the volumetric flow rate. Accumulation of particles was observed at the bottom of the riser and along the bottom of the throat after each experiment. Measurements of the accumulated layer thicknesses showed that the settled particles at the bottom of the riser did not vary in thickness during pouring cycles or idle periods. Some of the settled particles at the bottom of the throat were re-suspended during subsequent pouring cycles, and settled back to approximately the same thickness after each idle period. The cause of the consistency of the accumulated layer thicknesses is not year clear, but was hypothesized to be related to particle flow back to the feed tank. Additional experiments reinforced the observation of particle flow along a considerable portion of the throat during idle periods. Limitations of the system are noted in this report and may be addressed via future modifications. Follow-on experiments will be designed to evaluate the impact of pouring rate on particle re-suspension, the influence of feed tank agitation on particle accumulation, and the effect of changes in air lance positioning on the accumulation and re-suspension of particles at the bottom of the riser. A method for sampling the accumulated particles will be developed to support particle size distribution analyses. Thicker accumulated layers will be intentionally formed via direct addition of particles to select areas of the system to better understand the ability to continue pouring and re-suspend particles. Results from the room temperature system will be correlated with observations and data from the Research Scale Melter (RSM) at Pacific Northwest National Laboratory

  18. Current status of the active test at RRP and development programs for the advanced melter

    International Nuclear Information System (INIS)

    Kanehira, Norio

    2016-01-01

    The vitrification facility in Rokkasho Reprocessing Plant started the active tests to solidify HAW into the glass in 2007 which was the examination of the final stage before the operation, but the active test had to be discontinued due to the trouble of glass melter operation with down of pouring by deposit of noble metals on the melter bottom. After the equipment and operating conditions were improved in response to the result of the mock-up tests, a series of active tests were restarted active tests in May, 2012. These tests were finished with enough confirmation of stability in the state such as glass temperature and controlling the noble metals. JNFL has been developed the advanced melter, Joule heated ceramic melter, and the design of the advanced melter is largely different from the existing one. For the confirmation of the advanced melter performances, the full-scale inactive tests had been performed and successfully finished. This paper describes outline of development for advanced melter in Rokkasho Reprocessing Plant. (author)

  19. Compilation of information on modeling of inductively heated cold crucible melters

    International Nuclear Information System (INIS)

    Lessor, D.L.

    1996-03-01

    The objective of this communication, Phase B of a two-part report, is to present information on modeling capabilities for inductively heated cold crucible melters, a concept applicable to waste immobilization. Inductively heated melters are those in which heat is generated using coils around, rather than electrodes within, the material to be heated. Cold crucible or skull melters are those in which the melted material is confined within unmelted material of the same composition. This phase of the report complements and supplements Phase A by Loren Eyler, specifically by giving additional information on modeling capabilities for the inductively heated melter concept. Eyler discussed electrically heated melter modeling capabilities, emphasizing heating by electrodes within the melt or on crucible walls. Eyler also discussed requirements and resources for the computational fluid dynamics, heat flow, radiation effects, and boundary conditions in melter modeling; the reader is referred to Eyler's discussion of these. This report is intended for use in the High Level Waste (HLW) melter program at Hanford. We sought any modeling capabilities useful to the HLW program, whether through contracted research, code license for operation by Department of Energy laboratories, or existing codes and modeling expertise within DOE

  20. Noble metal (NM) behavior during simulated HLLW vitrification in induction melter with cold crucible

    International Nuclear Information System (INIS)

    Demin, A.V.; Matyunin, Y.I.; Fedorova, M.I.

    1995-01-01

    The investigation of noble metal (Ru, Rh, Pd) properties in, glass melts are connected with their specific behaviors during HLLW vitrification. Ruthenium, rhodium and palladium volatilities and heterogeneous platinoid phases forming on melts are investigated in reasonable details conformably to Joule's heating ceramic melters. The vitrification conditions in melters with induction heating of melts are differ from the vitrification ones in ceramic melters on some numbers of parameters (the availability of significant temperature gradients and convection flows in melts, short time of molten mass updating in melter and probability of definite interaction between high-frequency field and melt inhomogeneities). The results of simulated HLLW solidification modelling of the vitrification process in induction melter with cold crucible to produce phosphate and boron-silicate materials are presented. The properties of received glasses and behavior of platinoids are shown to have analogies and distinctions in comparison with compounds, synthesized in ceramic melter. The structures of dispersed particles of NM heterogeneous phases forming in glass melts prepared in induction melter with cold crucible are identified. The results of investigations show, that the marked distinctions between two processes can influence (in definite degree) as on property of synthesized materials, as on behavior of platinoid during vitrifications

  1. Technical and economic evaluation of processes for krypton-85 recovery from power fuel-reprocessing plant off-gas

    International Nuclear Information System (INIS)

    Waggoner, R.C.

    1982-08-01

    A technical and economical analysis has been made of methods for collecting and concentrating krypton from the off-gas from a typical nuclear fuel reprocessing plant. The methods considered were cryogenic distillation, fluorocarbon absorption, mordenite adsorption, and selective permeation. The conclusions reached were: Cryogenic distillation is the only demonstrated route to date. Fluorocarbon absorption may offer economic and technical advantages if fully developed and demonstrated. Mordenite adsorption has been demonstrated only on a bench scale and is estimated to cost more than either cryogenic distillation or fluorocarbon absorption. Selective permeation through a silicone rubber membrane is not sufficiently selective for the route to be cost effective

  2. Analytical method for assessing the gamma-ray exposure resulting from continuously discharged radioactive off-gas

    International Nuclear Information System (INIS)

    Sowa, W.; Krueger, F.W.

    1980-01-01

    A simple model for computing the medium gamma dose rate under the radioactive off-gas plume of a continuously emitting source is described, in which the plume is assumed to be a radioactive slab source with a specific source strength inversely proportional to the distance from the release point but not varying with height above ground level. The model results in dose rates slightly higher than those obtained by means of METEOR II, the programme recommended for such computations in the GDR. However, it has the advantage of requiring only a pocket electronic calculator as calculating device. (author)

  3. Vectra GSI, Inc. low-level waste melter testing Phase 1 test report

    Energy Technology Data Exchange (ETDEWEB)

    Stegen, G.E.; Wilson, C.N.

    1996-02-21

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Vectra GSI, Inc. was one of seven vendors selected for Phase 1 of the melter demonstration tests using simulated LLW that were completed during fiscal year 1995. The attached report prepared by Vectra GSI, Inc. describes results of melter testing using slurry feed and dried feeds. Results of feed drying and prereaction tests using a fluid bed calciner and rotary dryer also are described.

  4. Vectra GSI, Inc. low-level waste melter testing Phase 1 test report

    International Nuclear Information System (INIS)

    Stegen, G.E.; Wilson, C.N.

    1996-01-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Vectra GSI, Inc. was one of seven vendors selected for Phase 1 of the melter demonstration tests using simulated LLW that were completed during fiscal year 1995. The attached report prepared by Vectra GSI, Inc. describes results of melter testing using slurry feed and dried feeds. Results of feed drying and prereaction tests using a fluid bed calciner and rotary dryer also are described

  5. FINAL REPORT DM1200 TESTS WITH AZ 101 HLW SIMULANTS VSL-03R3800-4 REV 0 2/17/04

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; BARDAKCI T; D' ANGELO NA; GONG W; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM 1200 HLW Pilot Melter during processing of simulated HLW AZ-101 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW AZ-101 feed; determine the effect of bubbling rate and feed solids content on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post-test inspections of system components. The test objectives (including test success criteria), along with how they were met, are outlined in a table.

  6. Investigation of air cleaning processes for removing tributyl phosphate vapors from fuel reprocessing off-gas streams

    International Nuclear Information System (INIS)

    Parker, G.B.; Schwendiman, L.C.

    1979-01-01

    Tributyl phosphate (TBP) is used as an extractant in combination with the solvent dodecane in the dissolution process in a conventional nuclear fuel reprocessing plant. When recycled acid is used in the process, the dissolver off-gas (DOG) may contain small amounts of TBP and dodecane vapor. The vessel off-gas (VOG) will also contain TBP vapors in even higher fractions. Under some conditions, TBP vapor in these gas streams adversely affects the performance of silver-loaded solid sorbent beds used in the treatment of these streams to remove iodine and organic iodide compounds. An investigation is reported of the use of inorganic solid sorbent beds located upstream of the silver-loaded sorbent beds to remove TBP and extend the useful life of the silver beds. Laboratory scale experiments have been conducted using selected inorganic solid sorbent materials which have specific properties indicating their effectiveness for removing TBP or similar organic compounds. Results indicated 4 inorganic materials would retain greater than 95% of inlet TBP over a 3-hour run time. These four materials are being tested in a small packed glass column arrangement using variations in TBP concentration, face velocity and column temperature. As a part of this work, a sensitive quantitative analysis technique was developed enabling continous real time analysis of TBP vapor concentrations, as low as 1 x 10 -7 g/l, so that breakthrough progression can be measured

  7. Startup of a Joule-heated glass melter with a graphite slurry

    International Nuclear Information System (INIS)

    Allen, T.L.; Routt, K.R.; Porter, M.A.

    1983-01-01

    This paper discusses the theoretical equations and physical and electrical property data of various graphite slurries for starting up a glass melter. An application test is also included to demonstrate the graphite slurry startup technique

  8. EFFECT OF MELTER-FEED-MAKEUP ON VITRIFICATION PROCESS

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.; Schweiger, M.J.; Humrickhouse, C.J.; Moody, J.A.; Tate, R.M.; Tegrotenhuis, N.E.; Arrigoni, B.M.; Rodriguez, C.P.

    2009-01-01

    Increasing the rate of glass processing in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will allow shortening the life cycle of waste cleanup at the Hanford Site. While the WTP melters have approached the limit of increasing the rate of melting by enhancing the heat transfer rate from molten glass to the cold cap, a substantial improvement can still be achieved by accelerating the feed-to-glass conversion kinetics. This study investigates how the feed-to-glass conversion process responds to the feed makeup. By identifying the means of control of primary foam formation and silica grain dissolution, it provides data needed for a meaningful and economical design of large-scale experiments aimed at achieving faster melting

  9. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS, TEST PLAN 09T1690-1

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Pegg, I.L.; Joseph, I.

    2009-01-01

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and

  10. Hanford Waste Vitrification Program process development: Melt testing subtask, pilot-scale ceramic melter experiment, run summary

    International Nuclear Information System (INIS)

    Nakaoka, R.K.; Bates, S.O.; Elmore, M.R.; Goles, R.W.; Perez, J.M.; Scott, P.A.; Westsik, J.H.

    1996-03-01

    Hanford Waste Vitrification Program (HWVP) activities for FY 1985 have included engineering and pilot-scale melter experiments HWVP-11/HBCM-85-1 and HWVP-12/PSCM-22. Major objectives designated by HWVP fo these tests were to evaluate the processing characteristics of the current HWVP melter feed during actual melter operation and establish the product quality of HW-39 borosilicate glass. The current melter feed, defined during FY 85, consists of reference feed (HWVP-RF) and glass-forming chemicals added as frit

  11. Hanford Waste Vitrification Program process development: Melt testing subtask, pilot-scale ceramic melter experiment, run summary

    Energy Technology Data Exchange (ETDEWEB)

    Nakaoka, R.K.; Bates, S.O.; Elmore, M.R.; Goles, R.W.; Perez, J.M.; Scott, P.A.; Westsik, J.H.

    1996-03-01

    Hanford Waste Vitrification Program (HWVP) activities for FY 1985 have included engineering and pilot-scale melter experiments HWVP-11/HBCM-85-1 and HWVP-12/PSCM-22. Major objectives designated by HWVP fo these tests were to evaluate the processing characteristics of the current HWVP melter feed during actual melter operation and establish the product quality of HW-39 borosilicate glass. The current melter feed, defined during FY 85, consists of reference feed (HWVP-RF) and glass-forming chemicals added as frit.

  12. U.S. Bureau of Mines, Phase 1 Hanford low-level waste melter tests. Final report

    International Nuclear Information System (INIS)

    Eaton, W.C.; Oden, L.L.; O'Connor, W.K.

    1995-11-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the melter offgas report on testing performed by the U.S. Department of the Interior, Bureau of Mines, Albany Research Center in Albany, Oregon. The Bureau of Mines (one of the seven vendors selected) was chosen to demonstrate carbon electrode melter technology (also called carbon arc or electric arc) under WHC Subcontract number MMI-SVV-384216. The report contains description of the tests, observation, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. Testing consisted of melter feed preparation and three melter tests, the first of which was to fulfill the requirements of the statement of work (WHC-SD-EM-RD-044), and the second and third were to address issues identified during the first test. The document also contains summaries of the melter offgas report issued as a separate document U.S. Bureau of Mines, Phase 1 Hanford Low-Level Waste Melter Tests: Melter Offgas Report (WHC-SD-WM-VI-032)

  13. Milestone Report - M3FT-15OR03120213 - A Literature Survey to Identify Potentially Problematic Volatile Iodine-Bearing Species Present in Off-Gas Streams

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strachan, Denis M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    Four radionuclides have been identified as being sufficiently volatile in the reprocessing of nuclear fuel that their gaseous release needs to be controlled to meet U.S. regulatory requirements (Jubin et al. 2011, 2012). These radionuclides are 3H, 14C, 85Kr, and 129I. Of these, 129I has the longest half-life and potentially highest biological impact. Accordingly, control of the release of 129I is most critical with respect to U.S. regulations for the release of radioactive material in stack emissions. Current U.S. Environmental Protection Agency regulation governing nuclear facilities (40 CFR 190) states that the total quantity of radioactive materials entering the general environment from the entire uranium fuel cycle, per gigawatt-year of electrical energy produced by the fuel cycle, must contain less than 5 mCi of 129I. The study of inorganic iodide in off-gas systems has been almost exclusively limited to I2, and the focus of organic iodide studies has been CH3I.

  14. Plastic scintillator based 85Kr monitor for coral off gas monitoring

    International Nuclear Information System (INIS)

    Dhanasekaran, A.; Ajoy, K.C.; Akila, R.; Santhanam, R.; Rajagopal, V.; Jose, M.T.

    2012-01-01

    Monitoring the release of tritium and 85 Kr from the reprocessing operations is carried out in VOG system of CORAL (COmpact Reprocessing of Advanced fuels in Lead cells) with a sampling system designed accordingly to meet the requirements. While tritium is being collected in the system using the well established bubbler method which is analysed off-line and 85 Kr is monitored on-line using a GM detector. Existing sampling was modified due to practical difficulties experienced. After the experience of few campaigns of measurements, consequent modifications carried out in sampling setup, the GM based 85 Kr monitoring system was replaced with a plastic scintillator based system. This paper highlights the subsequent performance evaluation of the system carried out at CORAL. (author)

  15. Assessment of water/glass interactions in waste glass melter operation

    Energy Technology Data Exchange (ETDEWEB)

    Postma, A.K.; Chapman, C.C.; Buelt, J.L.

    1980-04-01

    A study was made to assess the possibility of a vapor explosion in a liquid-fed glass melter and during off-standard conditions for other vitrification processes. The glass melter considered is one designed for the vitrification of high-level nuclear wastes and is comprised of a ceramic-lined cavity with electrodes for joule heating and processing equipment required to add feed and withdraw glass. Vapor explosions needed to be considered because experience in other industrial processes has shown that violent interactions can occur if a hot liquid is mixed with a cooler, vaporizable liquid. Available experimental evidence and theoretical analyses indicate that destructive glass/water interactions are low probability events, if they are possible at all. Under standard conditions, aspects of liquid-fed melter operation which work against explosive interactions include: (1) the aqueous feed is near its boiling point; (2) the feed contains high concentrations of suspended particles; (3) molten glass has high viscosity (greater than 20 poise); and (4) the glass solidifies before film boiling can collapse. While it was concluded that vapor explosions are not expected in a liquid-fed melter, available information does not allow them to be ruled out altogether. Several precautionary measures which are easily incorporated into melter operation procedures were identified and additional experiments were recommended.

  16. Assessment of water/glass interactions in waste glass melter operation

    International Nuclear Information System (INIS)

    Postma, A.K.; Chapman, C.C.; Buelt, J.L.

    1980-04-01

    A study was made to assess the possibility of a vapor explosion in a liquid-fed glass melter and during off-standard conditions for other vitrification processes. The glass melter considered is one designed for the vitrification of high-level nuclear wastes and is comprised of a ceramic-lined cavity with electrodes for joule heating and processing equipment required to add feed and withdraw glass. Vapor explosions needed to be considered because experience in other industrial processes has shown that violent interactions can occur if a hot liquid is mixed with a cooler, vaporizable liquid. Available experimental evidence and theoretical analyses indicate that destructive glass/water interactions are low probability events, if they are possible at all. Under standard conditions, aspects of liquid-fed melter operation which work against explosive interactions include: (1) the aqueous feed is near its boiling point; (2) the feed contains high concentrations of suspended particles; (3) molten glass has high viscosity (greater than 20 poise); and (4) the glass solidifies before film boiling can collapse. While it was concluded that vapor explosions are not expected in a liquid-fed melter, available information does not allow them to be ruled out altogether. Several precautionary measures which are easily incorporated into melter operation procedures were identified and additional experiments were recommended

  17. Enhancement of the life of refractories through the operational experience of plasma torch melter

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Young Pyo [Technology Institute, Korea Radioactive waste Agency (KORAD), Daejeon (Korea, Republic of); Choi, Jaang Young [Chungnam National University, Daejeon (Korea, Republic of)

    2016-06-15

    The properties of wastes for melting need to be considered to minimize the maintenance of refractory and to discharge the molten slags smoothly from a plasma torch melter. When the nonflammable wastes from nuclear facilities such as concrete debris, glass, sand, etc., are melted, they become acid slags with low basicity since the chemical composition has much more acid oxides than basic oxides. A molten slag does not have good characteristics of discharge and is mainly responsible for the refractory erosion due to its low liquidity. In case of a stationary plasma torch melter with a slant tapping port on the wall, a fixed amount of molten slags remains inside of tapping hole as well as the melter inside after tapping out. Nonmetallic slags keep the temperature higher than melting point of metal because metallic slags located on the bottom of melter by specific gravity difference are simultaneously melted when dual mode plasma torch operates in transferred mode. In order to minimize the refractory erosion, the compatible refractories are selected considering the temperature inside the melter and the melting behavior of slags whether to contact or noncontact with molten slags. An acidic refractory shall not be installed in adjacent to a basic refractory for the resistibility against corrosion.

  18. The recovery of waste and off-gas in Large Combustion Plants subject to IPPC National Permit in Italy.

    Science.gov (United States)

    Di Marco, Giuseppe; Manuzzi, Raffaella

    2018-03-01

    The recovery of off-gas, waste, and biomass in Large Combustion Plants for energy production gives the opportunity to recycle waste and by-products and to recover materials produced in agricultural and industrial activities. The paper illustrates the Italian situation regarding the production of energy from off-gas, biomass, and waste in Large Combustion Plants subject to Integrated Pollution Prevention and Control (IPPC) National Permit. Moreover, it focuses on the 4 Italian Large Combustion Plants producing energy from biomass and waste. For these ones it illustrates the specific issues related to and provides a description of the solutions adopted in the 4 Italian plants. Given that air emission performance is the most relevant aspect of this kind of plants, the paper specifically focuses and reports results about this subject. In particular, in Italy among 113 LCPs subject to IPPC National Permit we have found that 4 plants use as fuel waste (i.e. solid or liquid biomasses and Solid Recovered Fuels), or a mixture of waste and traditional fuels (co-combustion of Solid Recovered Fuels and coal), and that 11 plants use as fuel off-gases listed in Annex X (i.e. Refinery Fuel Gas, Syngas, and gases produced in iron and steel industries). Moreover, there are 2 IPPC chemical plants that recovery energy from different off-gases not listed in Annex X. Regarding the 4 LCPs that produce energy from waste combustion or co-combustion, we find that they take into account all the specific issues related to this kind of plants (i.e. detailed waste characterization, waste acceptance procedures, waste handling and storage, waste pretreatment and emissions to air), and adopt solutions that are best available techniques to prevent pollution. Moreover for one of these plants, the only one for which we have a significant set of monitoring data because it obtained the IPPC National Permit in 2008, we find that energy efficiency and air emissions of the principal pollutants are in

  19. Effect of melter feed foaming on heat flux to the cold cap

    Energy Technology Data Exchange (ETDEWEB)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in the laboratory-scale melter.

  20. Modeling principles applied to the simulation of a joule-heated glass melter

    International Nuclear Information System (INIS)

    Routt, K.R.

    1980-05-01

    Three-dimensional conservation equations applicable to the operation of a joule-heated glass melter were rigorously examined and used to develop scaling relationships for modeling purposes. By rigorous application of the conservation equations governing transfer of mass, momentum, energy, and electrical charge in three-dimensional cylindrical coordinates, scaling relationships were derived between a glass melter and a physical model for the following independent and dependent variables: geometrical size (scale), velocity, temperature, pressure, mass input rate, energy input rate, voltage, electrode current, electrode current flux, total power, and electrical resistance. The scaling relationships were then applied to the design and construction of a physical model of the semiworks glass melter for the Defense Waste Processing Facility. The design and construction of such a model using glycerine plus LiCl as a model fluid in a one-half-scale Plexiglas tank is described

  1. Test plan for BWID Phase 2 electric arc melter vitrification tests

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Turner, P.C.; Oden, L.L.; Anderson, G.L.

    1994-10-01

    This test plan describes the Buried Waste Integrated Demonstration (BWID), Phase 2, electric arc melter, waste treatment evaluation tests to be performed at the US Bureau of Mines (USBM) Albany Research Center. The BWID Arc Melter Vitrification Project is being conducted to evaluate and demonstrate existing industrial arc melter technology for thermally treating mixed transuranic-contaminated wastes and soils. Phase 1 baseline tests, performed during fiscal year 1993 at the USBM, were conducted on waste feeds representing incinerated buried mixed wastes and soils. In Phase 2, surrogate feeds will be processed that represent actual as-retrieved buried wastes from the Idaho National Engineering Laboratory`s Subsurface Disposal Area at the Radioactive Waste Management Complex.

  2. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.

    2017-11-01

    The effectiveness of HLW vitrification is limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layer, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction of accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~53.8 ± 3.7 µm/h determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.

  3. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    Energy Technology Data Exchange (ETDEWEB)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-10-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  4. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    Energy Technology Data Exchange (ETDEWEB)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-09-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  5. Vitrification of noble metals containing NCAW simulant with an engineering scale melter (ESM): Campaign report

    Energy Technology Data Exchange (ETDEWEB)

    Grunewald, W.; Roth, G.; Tobie, W.; Weisenburger, S.; Weiss, K.; Elliott, M.; Eyler, L.L.

    1996-03-01

    ESM has been designed as a 10th-scale model of the DWPF-type melter, currently the reference melter for nitrification of Hanford double shell tankwaste. ESM and related equipment have been integrated to the existing mockup vitrification plant VA-WAK at KfK. On June 2-July 10, 1992, a shakedown test using 2.61 m{sup 3} of NCAW (neutralized current acid waste) simulant without noble metals was performed. On July 11-Aug. 30, 1992, 14.23 m{sup 3} of the same simulant with nominal concentrations of Ru, Rh, and Pd were vitrified. Objective was to investigate the behavior of such a melter with respect to discharge of noble metals with routine glass pouring via glass overflow. Results indicate an accumulation of noble metals in the bottom area of the flat-bottomed ESM. About 65 wt% of the noble metals fed to the melter could be drained out, whereas 35 wt% accumulated in the melter, based on analysis of glass samples from glass pouring stream in to the canisters. After the melter was drained at the end of the campaign through a bottom drain valve, glass samples were taken from the residual bottom layer. The samples had significantly increased noble metals content (factor of 20-45 to target loading). They showed also a significant decrease of the specific electric resistance compared to bulk glass (factor of 10). A decrease of 10- 15% of the resistance between he power electrodes could be seen at the run end, but the total amount of noble metals accumulated was not yet sufficient enough to disturb the Joule heating of the glass tank severely.

  6. Rheological Studies on Pretreated Feed and Melter Feed from AW-101 and AN-107

    International Nuclear Information System (INIS)

    Bredt, Paul R; Swoboda, Robert G

    2001-01-01

    Rheological and physical properties testing were conducted on actual AN-107 and AW-101 pretreated feed samples prior to the addition of glass formers. Analyses were repeated following the addition of glass formers. The AN-107 and AW-101 pretreated feeds were tested at the target sodium values of nominally 6, 8, and 10 M. The AW-101 melter feeds were tested at these same concentrations, while the AN-107 melter feeds were tested at 5, 6, and 8 M with respect to sodium. These data on actual waste are required to validate and qualify results obtained with simulants

  7. Advanced waste form and Melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (also with high Al2O3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both

  8. Noble Metals and Spinel Settling in High Level Waste Glass Melters

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K.; Perez, Joseph M.

    2000-09-30

    In the continuing effort to support the Defense Waste Processing Facility (DWPF), the noble metals issue is addressed. There is an additional concern about the amount of noble metals expected to be present in the future batches that will be considered for vitrification in the DWPF. Several laboratory, as well as melter-scale, studies have been completed by various organizations (mainly PNNL, SRTC, and WVDP in the USA). This letter report statuses the noble metals issue and focuses at the settling of noble metals in melters.

  9. Evaluation of a Novel Temperature Sensing Probe for Monitoring and Controlling Glass Temperature in a Joule-Heated Glass Melter

    International Nuclear Information System (INIS)

    Watkins, A. D.; Musick, C. A.; Cannon, C.; Carlson, N. M.; Mullenix, P.D.; Tillotson, R. D.

    1999-01-01

    A self-verifying temperature sensor that employs advanced contact thermocouple probe technology was tested in a laboratory-scale, joule-heated, refractory-lined glass melter used for radioactive waste vitrification. The novel temperature probe monitors melt temperature at any given level of the melt chamber. The data acquisition system provides the real-time temperature for molten glass. Test results indicate that the self-verifying sensor is more accurate and reliable than classic platinum/rhodium thermocouple and sheath assemblies. The results of this test are reported as well as enhancements being made to the temperature probe. To obtain more reliable temperature measurements of the molten glass for improving production efficiency and ensuring consistent glass properties, optical sensing was reviewed for application in a high temperature environment

  10. Hydroxylamine a potential reagent for dissolution off gas scrubbing in nuclear spent fuel reprocessing: kinetics of the iodine reduction

    International Nuclear Information System (INIS)

    Cau Dit Coumes, C.; Devisme, F.; Chopin, J.; Vargas, S.

    1996-01-01

    Iodine, which can be released inside the containment buildings when accident occurs, can be traced, in normal operating conditions, at the back end of the fuel cycle. Hydroxylamine has been selected as a regent of potential interest to trap iodine in the dissolution off gas treatment. The kinetics of the reaction between hydroxylamine and iodine has been studied in a narrow range of pH(1-2), with hydroxylamine in excess (ratios of hydroxylamine to iodine initial concentrations varying from 2 to 40), at constant temperature (30 deg. C) and ionic strength (0.1 mol/l). Spectrophotometry and voltametry have been coupled for analytical solved using a investigation. The problem of the rapid mixing of the reactants has been solved using a continuous reactor. Tri-iodine has been shown non reactive towards hydroxylamine. An initial rate law have been proposed, pointing out the first order of the reaction with respect to hydroxylamine and iodine, and the inhibitory effect and hydrogen ions. Nitrous acid has been identified as a transitory product. Nitrous oxide and nitrogen monoxide have been detected by gas chromatography, the ratio of the amounts of products formed depending on acidity. The complexity of the overall reaction has been ascribed to the competition of hour reactions (I 2 + I I 3 - NH 3 OH + + 2 I 2 + H 2 O ->HNO 2 + 4 I - + 5 H + ; NH 3 OH + + HNO 2 -> N 2 O + 2 H 2 O + H-+ 2HNO 2 + 2 I - + 2H-+ -> 2 NO + I 2 + H 2 O). (authors)

  11. Glass science tutorial: Lecture number-sign 2, Operating electric glass melters. James N. Edmonson, Lecturer

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1994-10-01

    This report contains basic information on electric furnaces used for glass melting and on the properties of glass useful for the stabilization of radioactive wastes. Furnace nomenclature, furnace types, typical silicate glass composition and properties, thermal conductivity information, kinetics of the melting process, glass furnace refractory materials composition and thermal conductivity, and equations required for the operation of glass melters are included

  12. Crystal-Tolerant Glass Approach For Mitigation Of Crystal Accumulation In Continuous Melters Processing Radioactive Waste

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Rodriguez, Carmen P.; Lang, Jesse B.; Huckleberry, Adam R.; Matyas, Josef; Owen, Antoinette T.

    2012-01-01

    High-level radioactive waste melters are projected to operate in an inefficient manner as they are subjected to artificial constraints, such as minimum liquidus temperature (T L ) or maximum equilibrium fraction of crystallinity at a given temperature. These constraints substantially limit waste loading, but were imposed to prevent clogging of the melter with spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2 O 4 ]. In the melter, the glass discharge riser is the most likely location for crystal accumulation during idling because of low glass temperatures, stagnant melts, and small diameter. To address this problem, a series of lab-scale crucible tests were performed with specially formulated glasses to simulate accumulation of spinel in the riser. Thicknesses of accumulated layers were incorporated into empirical model of spinel settling. In addition, T L of glasses was measured and impact of particle agglomeration on accumulation rate was evaluated. Empirical model predicted well the accumulation of single crystals and/or smallscale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction of accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ∼14.9 +- 1 nm/s determined for this glass will result in ∼26 mm thick layer in 20 days of melter idling

  13. A Joule-Heated Melter Technology For The Treatment And Immobilization Of Low-Activity Waste

    International Nuclear Information System (INIS)

    Kelly, S.E.

    2011-01-01

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of joule-heated ceramic lined melters and their application to Hanford's low-activity waste.

  14. The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J Rutledge; Vince Maio

    2013-10-01

    Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

  15. A JOULE-HEATED MELTER TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    KELLY SE

    2011-04-07

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of joule-heated ceramic lined melters and their application to Hanford's low-activity waste.

  16. AKUT: a process for the separation of aerosols, krypton, and tritium from burner off-gas in HTR-fuel reprocessing

    International Nuclear Information System (INIS)

    Laser, M.; Barnert-Wiemer, H.; Beaujean, H.; Merz, E.; Vygen, H.

    1975-01-01

    The AKUT process consists of the following process steps: (1) aerosol retention by an electrostatic separator followed by HEPA filters, (2) oxidation of CO with O 2 or reaction of excess O 2 with CO, respectively, (3) compression, (4) scrubbing and/or liquefaction, (5) separation of krypton by distillation, and (6) separation of tritiated water and iodine by adsorption or chemical reaction. Liquefied off-gas with low permanent gas content resulting from graphite burning with oxygen may be distilled at ambient temperature. Off-gas with higher permanent gas content from burning with oxygen enriched air must be processed at lower temperature. The ambient temperature flow sheet is preferable from an economic as well as safety point of view. (U.S.)

  17. TTP SR1-6-WT-31, Milestone C.3-2 Annual Report on Clemson/INEEL Melter Work

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D.F.

    1999-10-20

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements.

  18. Evaluation of new concepts for in situ vitrification: Power system, melt insulation, and off-gas containment

    International Nuclear Information System (INIS)

    Luey, J.; Powell, T.D.; Heath, W.O.; Richardson, R.L.

    1992-07-01

    In situ vitrification (ISV) is a thermal process that converts contaminated soil into a highly leach-resistant material resembling natural obsidian. The ISV process was developed by the Pacific Northwest Laboratory (PNL)(a) for the US Department of Energy (DOE) to treat soils contaminated with transuranics. Since 1980, ISV has grown from a concept to an innovative technology through bench-, engineering-, intermediate-, and full-scale tests. Efforts by PNL have developed ISV into a technology considered available for limited deployment to remediate contaminated soil. The technology has been transferred to a licensee for commercial application. In September 1991, PNL conducted an operational acceptance test (OAT) of the modified engineering-scale unit. The OAT provided an opportunity to conduct proof-of-principle testing of new concepts for ISV technology. This additional testing was permitted since it was determined that testing of these new concepts would have no impact on the OAT objective. In discussing the proof-of-principle portion of the engineering-scale test, this report presents conclusions from this work and also describes the conceptual bases of the tested concepts, the engineering-scale test equipment and setup, and test results

  19. Processing of Oak Ridge B ampersand C pond sludge surrogate in the transportable vitrification system

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Young, S.R.; Peeler, D.K.; Smith, M.E.

    1997-01-01

    The Transportable Vitrification System (TVS) developed at the Savannah River Site is designed to process low-level and mixed radioactive wastes into a stable glass product. The TVS consists of a feed preparation and delivery system, a joule-heated melter, and an offgas treatment system. Surrogate Oak Ridge Reservation (ORR) B ampersand amp;C pond sludge was treated in a demonstration of the TVS system at Clemson University and at ORR. After initial tests with soda-lime-silica (SLS) feed, three melter volumes of glass were produced from the surrogate feed. A forthcoming report will describe glass characterization; and melter feeding, operation, and glass pouring. Melter operations described will include slurry characterization and feeding, factors affecting feed melt rates, glass pouring and pour rate constraints, and melter operating temperatures. Residence time modeling of the melter will also be discussed. Characterization of glass; including composition, predicted liquidity and viscosity, Toxic Characteristic Leaching Procedure (TCLP), and devitrification will be covered. Devitrification was a concern in glass container tests and was found to be mostly dependent on the cooling rate. Crucible tests indicated that melter shutdown with glass containing Fe and Li was also a devitrification concern, so the melter was flushed with SLS glass before cooldown

  20. Melter technology evaluation for vitrification of Hanford Site low-level waste

    International Nuclear Information System (INIS)

    Wilson, C.N.; Burgard, K.C.; Weber, E.T.; Brown, N.R.

    1995-04-01

    The current plan at the Hanford Site, in accordance with the Tri-Party Agreement among Washington State, the US Environmental Protection Agency, and the US Department of Energy, is to convert the low-level tank waste fraction into a silicate glass. The low-level waste will be composed primarily of sodium nitrate and nitrite salts concentrated in a highly alkaline aqueous solution. The capability to process up to 200 metric tons/day off glass will be established to produce an estimated 210,000 m 3 for onsite disposal. A program to test and evaluate high-capacity melter technologies is in progress. Testing performed by seven different industrial sources using Joule heating, combustion, plasma, and carbon arc melters is described

  1. Modifying the rheological properties of melter feed for the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Blair, H.T.; McMakin, A.H.

    1986-03-01

    Selected high-level nuclear wastes from the Hanford Site may be vitrified in the future Hanford Waste Vitrification Plant (HWVP) by Rockwell Hanford Company, the contractor responsible for reprocessing and waste management at the Hanford Site. The Pacific Northwest Laboratory (PNL), is responsible for providing technical support for the HWVP. In this capacity, PNL performed rheological evaluations of simulated HWVP feed in order to determine which processing factors could be modified to best optimize the vitrification process. To accomplish this goal, a simulated HWVP feed was first created and characterized. Researchers then evaluated how the chemical and physical form of the glass-forming additives affected the rheological properties and melting behavior of melter feed prepared with the simulated HWVP feed. The effects of adding formic acid to the waste were also evaluated. Finally, the maximum melter feed concentration with acceptable rheological properties was determined

  2. SETTLING OF SPINEL IN A HIGH-LEVEL WASTE GLASS MELTER

    International Nuclear Information System (INIS)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-01

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 decrees C to create a melt that becomes glass on cooling

  3. Effect of melter feed foaming on heat flux to the cold cap

    Science.gov (United States)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in quenched cold caps from the laboratory-scale melter.

  4. Determination of heat conductivity and thermal diffusivity of waste glass melter feed: Extension to high temperatures

    International Nuclear Information System (INIS)

    Rice, Jarrett A.; Pokorny, Richard; Schweiger, Michael J.; Hrma, Pavel R.

    2014-01-01

    The heat conductivity (λ) and the thermal diffusivity (a) of reacting glass batch, or melter feed, control the heat flux into and within the cold cap, a layer of reacting material floating on the pool of molten glass in an all-electric continuous waste glass melter. After previously estimating λ of melter feed at temperatures up to 680 deg C, we focus in this work on the λ(T) function at T > 680 deg C, at which the feed material becomes foamy. We used a customized experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples, which monitored the evolution of the temperature field while the crucible with feed was heated at a constant rate from room temperature up to 1100°C. Approximating measured temperature profiles by polynomial functions, we used the heat transfer equation to estimate the λ(T) approximation function, which we subsequently optimized using the finite-volume method combined with least-squares analysis. The heat conductivity increased as the temperature increased until the feed began to expand into foam, at which point the conductivity dropped. It began to increase again as the foam turned into a bubble-free glass melt. We discuss the implications of this behavior for the mathematical modeling of the cold cap

  5. Flammability Control In A Nuclear Waste Vitrification System

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, John R.; Choi, Alexander S.; Johnson, Fabienne C.; Miller, Donald H.; Lambert, Daniel P.; Stone, Michael E.; Daniel, William E. Jr.

    2013-07-25

    The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: 1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; 2) adjust feed rheology; and 3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid in pretreatment has been studied to eliminate the production of hydrogen in the pretreatment systems, which requires nuclear grade monitoring equipment. An alternative reductant, glycolic acid, has been studied as a substitute for formic acid. However, in the melter, the potential for greater formation of flammable gases exists with glycolic acid. Melter flammability is difficult to control because flammable mixtures can be formed during surges in offgases that both increase the amount of flammable species and decrease the temperature in the vapor space of the melter. A flammable surge can exceed the 60% of the LFL with no way to mitigate it. Therefore, careful control of the melter feed composition based on scaled melter surge testing is required. The results of engineering scale melter tests with the formic-nitric flowsheet and the use of these data in the melter flammability model are presented.

  6. Tank waste remediation system high-level waste vitrification system development and testing requirements

    International Nuclear Information System (INIS)

    Calmus, R.B.

    1995-01-01

    This document provides the fiscal year (FY) 1995 recommended high-level waste melter system development and testing (D and T) requirements. The first phase of melter system testing (FY 1995) will focus on the feasibility of high-temperature operation of recommended high-level waste melter systems. These test requirements will be used to establish the basis for defining detailed testing work scope, cost, and schedules. This document includes a brief summary of the recommended technologies and technical issues associated with each technology. In addition, this document presents the key D and T activities and engineering evaluations to be performed for a particular technology or general melter system support feature. The strategy for testing in Phase 1 (FY 1995) is to pursue testing of the recommended high-temperature technologies, namely the high-temperature, ceramic-lined, joule-heated melter, referred to as the HTCM, and the high-frequency, cold-wall, induction-heated melter, referred to as the cold-crucible melter (CCM). This document provides a detailed description of the FY 1995 D and T needs and requirements relative to each of the high-temperature technologies

  7. Efficient carbon dioxide utilization and simultaneous hydrogen enrichment from off-gas of acetone-butanol-ethanol fermentation by succinic acid producing Escherichia coli.

    Science.gov (United States)

    He, Aiyong; Kong, Xiangping; Wang, Chao; Wu, Hao; Jiang, Min; Ma, Jiangfeng; Ouyang, Pingkai

    2016-08-01

    The off-gas from acetone-butanol-ethanol (ABE) fermentation was firstly used to be CO2 source (co-substrate) for succinic acid production. The optimum ratio of H2/CO2 indicated higher CO2 partial pressures with presence of H2 could enhance C4 pathway flux and reductive product productivity. Moreover, when an inner recycling bioreactor was used for CO2 recycling at a high total pressure (0.2Mpa), a maximum succinic acid concentration of 65.7g·L(-1) was obtained, and a productivity of 0.76g·L(-1)·h(-1) and a high yield of 0.86g·g(-1) glucose were achieved. Furthermore, the hydrogen content was simultaneously enriched to 92.7%. These results showed one successful attempt to reuse the off-gas of ABE fermentation which can be an attractive CO2 source for succinic acid production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter. Preliminary settling and resuspension testing

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    The full-scale, room-temperature Hanford Tank Waste Treatment and Immobilization Plant (WTP) High-Level Waste (HLW) melter riser test system was successfully operated with silicone oil and magnetite particles at a loading of 0.1 vol %. Design and construction of the system and instrumentation, and the selection and preparation of simulant materials, are briefly reviewed. Three experiments were completed. A prototypic pour rate was maintained, based on the volumetric flow rate. Settling and accumulation of magnetite particles were observed at the bottom of the riser and along the bottom of the throat after each experiment. The height of the accumulated layer at the bottom of the riser, after the first pouring experiment, approximated the expected level given the solids loading of 0.1 vol %. More detailed observations of particle resuspension and settling were made during and after the third pouring experiment. The accumulated layer of particles at the bottom of the riser appeared to be unaffected after a pouring cycle of approximately 15 minutes at the prototypic flow rate. The accumulated layer of particles along the bottom of the throat was somewhat reduced after the same pouring cycle. Review of the time-lapse recording showed that some of the settling particles flow from the riser into the throat. This may result in a thicker than expected settled layer in the throat.

  9. Final Report - Engineering Study for DWPF Bubblers, VSL-10R1770-1, Rev. 0, dated 12/22/10

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Joseph, I.; Matlack, K. S.; Kot, W. K.; Diener, G. A.; Pegg, I. L.; Callow, R. A.

    2013-11-13

    The objective of this work was to perform an engineering assessment of the impact of implementation of bubblers to improve mixing of the glass pool, and thereby increase throughput, in the Defense Waste Processing Facility (DWPF) on the melter and off-gas system. Most of the data used for this evaluation were from extensive melter tests performed on non-SRS feeds. This information was supplemented by more recent results on SRS HLW simulants that were tested on a melter system at VSL under contracts from ORP and SRR. Per the work scope, the evaluation focused on the following areas: Glass production rate; Corrosion of melter components; Power requirements; Pouring stability; Off-gas characteristics; Safety and flammability.

  10. Demonstration of an approach to waste form qualification through simulation of liquid-fed ceramic melter process operations

    International Nuclear Information System (INIS)

    Reimus, P.W.; Kuhn, W.L.; Peters, R.D.; Pulsipher, B.A.

    1986-07-01

    During fiscal year 1982, the US Department of Energy (DOE) assigned responsibility for managing civilian nuclear waste treatment programs in the United States to the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory (PNL). One of the principal objectives of this program is to establish relationships between vitrification process control and glass quality. Users of the liquid-fed ceramic melter (LFCM) process will need such relationships in order to establish acceptance of vitrified high-level nuclear waste at a licensed federal repository without resorting to destructive examination of the canisters. The objective is to be able to supply a regulatory agency with an estimate of the composition, durability, and integrity of the glass in each waste glass canister produced from an LFCM process simply by examining the process data collected during the operation of the LFCM. The work described here will continue through FY-1987 and culminate in a final report on the ability to control and monitor an LFCM process through sampling and process control charting of the LFCM feed system

  11. Demonstration of an approach to waste form qualification through simulation of liquid-fed ceramic melter process operations

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, P.W.; Kuhn, W.L.; Peters, R.D.; Pulsipher, B.A.

    1986-07-01

    During fiscal year 1982, the US Department of Energy (DOE) assigned responsibility for managing civilian nuclear waste treatment programs in the United States to the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory (PNL). One of the principal objectives of this program is to establish relationships between vitrification process control and glass quality. Users of the liquid-fed ceramic melter (LFCM) process will need such relationships in order to establish acceptance of vitrified high-level nuclear waste at a licensed federal repository without resorting to destructive examination of the canisters. The objective is to be able to supply a regulatory agency with an estimate of the composition, durability, and integrity of the glass in each waste glass canister produced from an LFCM process simply by examining the process data collected during the operation of the LFCM. The work described here will continue through FY-1987 and culminate in a final report on the ability to control and monitor an LFCM process through sampling and process control charting of the LFCM feed system.

  12. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  13. ENHANCED DOE HIGH LEVEL WASTE MELTER THROUGHPUT STUDIES: SRNL GLASS SELECTION STRATEGY

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    2008-01-23

    The Department of Energy has authorized a team of glass formulation and processing experts at the Savannah River National Laboratory (SRNL), the Pacific Northwest National Laboratory (PNNL), and the Vitreous State Laboratory (VSL) at Catholic University of America to develop a systematic approach to increase high level waste melter throughput (by increasing waste loading with minimal or positive impacts on melt rate). This task is aimed at proof-of-principle testing and the development of tools to improve waste loading and melt rate, which will lead to higher waste throughput. Four specific tasks have been proposed to meet these objectives (for details, see WSRC-STI-2007-00483): (1) Integration and Oversight, (2) Crystal Accumulation Modeling (led by PNNL)/Higher Waste Loading Glasses (led by SRNL), (3) Melt Rate Evaluation and Modeling, and (4) Melter Scale Demonstrations. Task 2, Crystal Accumulation Modeling/Higher Waste Loading Glasses is the focus of this report. The objective of this study is to provide supplemental data to support the possible use of alternative melter technologies and/or implementation of alternative process control models or strategies to target higher waste loadings (WLs) for the Defense Waste Processing Facility (DWPF)--ultimately leading to higher waste throughputs and a reduced mission life. The glass selection strategy discussed in this report was developed to gain insight into specific technical issues that could limit or compromise the ability of glass formulation efforts to target higher WLs for future sludge batches at the Savannah River Site (SRS). These technical issues include Al-dissolution, higher TiO{sub 2} limits and homogeneity issues for coupled-operations, Al{sub 2}O{sub 3} solubility, and nepheline formation. To address these technical issues, a test matrix of 28 glass compositions has been developed based on 5 different sludge projections for future processing. The glasses will be fabricated and characterized based on

  14. DWPF waste glass Product Composition Control System

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system.

  15. DWPF waste glass Product Composition Control System

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.G.; Postles, R.L.

    1992-07-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system.

  16. Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D'Amico, N.

    1994-01-01

    This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D'Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace

  17. EVALUATION OF MIXING IN THE SLURRY MIX EVAPORATOR AND MELTER FEED TANK

    International Nuclear Information System (INIS)

    MARINIK, ANDREW

    2004-01-01

    The Defense Waste Processing Facility (DWPF) vitrifies High Level radioactive Waste (HLW) currently stored in underground tanks at the Savannah River Site (SRS). The HLW currently being processed is a waste sludge composed primarily of metal hydroxides and oxides in caustic slurry. These slurries are typically characterized as Bingham Plastic fluids. The HLW undergoes a pretreatment process in the Chemical Process Cell (CPC) at DWPF. The processed HLW sludge is then transferred to the Sludge Receipt and Adjustment Tank (SRAT) where it is acidified with nitric and formic acid then evaporated to concentrate the solids. Reflux boiling is used to strip mercury from the waste and then the waste is transferred to the Slurry Mix Evaporator tank (SME). Glass formers are added as a frit slurry to the SME to prepare the waste for vitrification. This mixture is evaporated in the SME to the final concentration target. The frit slurry mixture is then transferred to the Melter Feed Tank (MFT) to be fed to the melter

  18. The Development of an Innovative Vertical Floatation Melter and Scrap Dryer for Use in the Aluminum Processing Industry

    Energy Technology Data Exchange (ETDEWEB)

    Robert De Saro

    2004-08-24

    The project aimed at the development of a Vertical Floatation melter, for application to the aluminum industry. This is intended to improve both the energy efficiency and environmental performance of aluminum melting furnaces. Phase I of this project dealt primarily with the initial research effort. Phase II, dealt with pilot-scale testing.

  19. A state-of-the-art report on the off-gas treatment technology generated from the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, Hoo Geun; Park, Geun Il; Choi, Byung Seon; Lee, Kee Won; Cho, Il Hoon; Kim, Jung Kook; Park, Hyun Soo

    1997-10-01

    This state-of-the-art report describes various technologies for offgas treatment. It provides comprehensive treatment technologies of the extensive subject such as particulates, radioactive iodine, carbon dioxide, Kr/Xe and Cs/Ru. This report also incorporates the wastes generation and its characteristics as well as the historical and current management practices. A number of review articles by experts in various area of concern and some of the removal systems that have been designed for power plants and, particularly, for spent fuel reusing plants are also involved. As a result, it can be drawn that the drying processes for offgas treatment have much benefits in standpoints of simplicity, economy, disposal safety and resource reuse rather than the wet processes. (author). 226 refs., 38 tabs., 44 figs

  20. An assessment of off-gas treatment technologies for application to thermal treatment of Department of Energy wastes

    International Nuclear Information System (INIS)

    Dalton, J.D.; Gillins, R.L.; Harris, T.L.; Wollerman, A.L.

    1992-09-01

    The purpose of this report is to describe available air pollution control technologies for pollutants generated by thermal treatment of DOE wastes. A basic process for selecting air pollution control devices is summarized. Types of air pollutants generated by thermal treatment units are described, as well as the factors that influence the types and quantities of pollutants generated. This report also reviews applicable regulatory emission requirements. A listing of available and emerging air pollution control technologies and a brief introduction to the basic engineering principles involved in collecting each of the pollutants are presented. Section 7 of this report contains two types of evaluations for air pollution control devices. First, comparative evaluations of individual technologies are presented, based upon criteria generally relevant to DOE facilities. Using this evaluation system, the spray dryer absorber received the highest rating for acid-gas removal; high-efficiency particulate air (HEPA) filters received the highest rating for particulate removal; activated carbon adsorption received the highest rating for the removal of both toxic metals and residual hydrocarbons; and selective catalytic reduction received the highest rating for nitrogen oxide abatement. Also evaluated in Sect. 7 is the expected performance of different types of pollution control systems on two hypothetical waste streams. The waste streams were defined based upon typical DOE wastes and thermal treatment technologies. Section 8 presents conclusions for this report. Two appendixes are included with this report. The first appendix contains a brief description of all the technologies evaluated and the second lists of some of the vendors for each of the technologies that was evaluated

  1. Experimental Optimization and Modeling of Sodium Sulfide Production from H2S-Rich Off-Gas via Response Surface Methodology and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Bashipour Fatemeh

    2017-03-01

    Full Text Available The existence of hydrogen sulfide (H2S in the gas effluents of oil, gas and petrochemical industries causes environmental pollution and equipment corrosion. These gas streams, called off-gas, have high H2S concentration, which can be used to produce sodium sulfide (Na2S by H2S reactive absorption. Na2S has a wide variety of applications in chemical industries. In this study, the reactive absorption process was performed using a spray column. Response Surface Methodology (RSM was applied to design and optimize experiments based on Central Composite Design (CCD. The individual and interactive effects of three independent operating conditions on the weight percent of the produced Na2S (Y were investigated by RSM: initial NaOH concentration (10-20% w/w, scrubbing solution temperature (40-60 °C and liquid-to-gas volumetric ratio (15 × 10−3 to 25 × 10−3. Furthermore, an Artificial Neural Network (ANN model was used to predict Y. The results from RSM and ANN models were compared with experimental data by the regression analysis method. The optimum operating conditions specified by RSM resulted in Y of 15.5% at initial NaOH concentration of 19.3% w/w, scrubbing solution temperature of 40 °C and liquid-to-gas volumetric ratio of 24.6 × 10−3 v/v.

  2. TTP SR1-6-WT-31, Milestone C.3-2 annual report on Clemson/INEEL melter work. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D.F.

    1999-12-17

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements.

  3. Numerical modeling of liquid feeding in the liquid-fed ceramic melter

    International Nuclear Information System (INIS)

    Hjelm, R.L.; Donovan, T.E.

    1979-10-01

    A modeling scheme developed by the Pacific Northwest Laboratory numerically simulates the behavior of the Liquid-Fed Ceramic Melter (LFCM) during liquid feeding. The computer code VECTRA (Vorticity Energy Code for TRansport Analysis) was used to simulate the LFCM in the idling and liquid feeding modes. Results for each simulation include molten glass temperature profiles and isotherm contour plots, stream function contour plots, heat generation rate contour plots, refractory isotherms, and heat balances. The results indicated that the model showed no major deviations from real LFCM behavior and that high throughput should be attainable. They also indicated that reboil was a possibility as a steady liquid feeding state was approached, very steep temperature gradients exist in the Monofrax K-3, and that phase separation could occur in the bottom corners during liquid feeding and over the entire floor while idling

  4. Physical modeling of joule heated ceramic glass melters for high level waste immobilization

    International Nuclear Information System (INIS)

    Quigley, M.S.; Kreid, D.K.

    1979-03-01

    This study developed physical modeling techniques and apparatus suitable for experimental analysis of joule heated ceramic glass melters designed for immobilizing high level waste. The physical modeling experiments can give qualitative insight into the design and operation of prototype furnaces and, if properly verified with prototype data, the physical models could be used for quantitative analysis of specific furnaces. Based on evaluation of the results of this study, it is recommended that the following actions and investigations be undertaken: It was not shown that the isothermal boundary conditions imposed by this study established prototypic heat losses through the boundaries of the model. Prototype wall temperatures and heat fluxes should be measured to provide better verification of the accuracy of the physical model. The VECTRA computer code is a two-dimensional analytical model. Physical model runs which are isothermal in the Y direction should be made to provide two-dimensional data for more direct comparison to the VECTRA predictions. The ability of the physical model to accurately predict prototype operating conditions should be proven before the model can become a reliable design tool. This will require significantly more prototype operating and glass property data than were available at the time of this study. A complete set of measurements covering power input, heat balances, wall temperatures, glass temperatures, and glass properties should be attempted for at least one prototype run. The information could be used to verify both physical and analytical models. Particle settling and/or sludge buildup should be studied directly by observing the accumulation of the appropriate size and density particles during feeding in the physical model. New designs should be formulated and modeled to minimize the potential problems with melter operation identifed by this study

  5. Physical modeling of joule heated ceramic glass melters for high level waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Quigley, M.S.; Kreid, D.K.

    1979-03-01

    This study developed physical modeling techniques and apparatus suitable for experimental analysis of joule heated ceramic glass melters designed for immobilizing high level waste. The physical modeling experiments can give qualitative insight into the design and operation of prototype furnaces and, if properly verified with prototype data, the physical models could be used for quantitative analysis of specific furnaces. Based on evaluation of the results of this study, it is recommended that the following actions and investigations be undertaken: It was not shown that the isothermal boundary conditions imposed by this study established prototypic heat losses through the boundaries of the model. Prototype wall temperatures and heat fluxes should be measured to provide better verification of the accuracy of the physical model. The VECTRA computer code is a two-dimensional analytical model. Physical model runs which are isothermal in the Y direction should be made to provide two-dimensional data for more direct comparison to the VECTRA predictions. The ability of the physical model to accurately predict prototype operating conditions should be proven before the model can become a reliable design tool. This will require significantly more prototype operating and glass property data than were available at the time of this study. A complete set of measurements covering power input, heat balances, wall temperatures, glass temperatures, and glass properties should be attempted for at least one prototype run. The information could be used to verify both physical and analytical models. Particle settling and/or sludge buildup should be studied directly by observing the accumulation of the appropriate size and density particles during feeding in the physical model. New designs should be formulated and modeled to minimize the potential problems with melter operation identifed by this study.

  6. Off gas film cooler cleaner

    Science.gov (United States)

    Dhingra, H.S.; Koch, W.C.; Burns, D.C.

    1997-08-26

    An apparatus is described for cleaning depositions of particulate matter from the inside of tubular piping while the piping is in use. The apparatus is remote controlled in order to operate in hazardous environments. A housing containing brush and shaft assemblies is mounted on top of the tubular piping. Pneumatic cylinders provide linear motion. A roller nut bearing provides rotary motion. The combined motion causes the brush assembly to rotate as it travels along the tube dislodging particulate matter. 5 figs.

  7. Enhanced alcohol titre and ratio in carbon monoxide-rich off-gas fermentation of Clostridium carboxidivorans through combination of trace metals optimization with variable-temperature cultivation.

    Science.gov (United States)

    Shen, Shaohuang; Gu, Yang; Chai, Changsheng; Jiang, Weihong; Zhuang, Yingping; Wang, Yonghong

    2017-09-01

    Bioconversion of C1 gases to produce chemicals has good application prospects. Here, the combination of trace metals optimization using a statistical method with variable-temperature cultivation was used to enhance alcohol synthesis during CO-rich off-gas fermentation by Clostridium carboxidivorans P7. Based on ATCC medium 1754, the optimum concentration of the trace metals was found to be 5-fold Ni 2+ , Co 2+ , SeO 4 2+ , and WO 4 2+ ; 3.48-fold Cu 2+ ; 0.55-fold MoO 4 2+ ; 0.5-fold Zn 2+ and (NH 4 ) 2 SO 4 ·FeSO 4 ·6H 2 O; and additional 44.32μM FeCl 3 ·6H 2 O. The production of alcohol and organic acid changed to 4.40g/L and 0.50g/L from 2.16g/L and 2.37g/L, respectively, yielding an increase of alcohol-to-product ratio from 47.7% to 89.8%. By fermenting with the optimized medium and timed control of the incubation temperature (37°C [0-24h]-25°C [24-144h]), the alcohol titre further increased to 6.97g/L with 1.67g/L butanol and 1.33g/L hexanol, exceeding those previously reported for strain P7. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Silicate Based Glass Formulations for Immobilization of U.S. Defense Wastes Using Cold Crucible Induction Melters

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L.; Kim, Dong-Sang; Schweiger, Michael J.; Marra, James C.; Lang, Jesse B.; Crum, Jarrod V.; Crawford, Charles L.; Vienna, John D.

    2014-05-22

    The cold crucible induction melter (CCIM) is an alternative technology to the currently deployed liquid-fed, ceramic-lined, Joule-heated melter for immobilizing of U.S. tank waste generated from defense related reprocessing. In order to accurately evaluate the potential benefits of deploying a CCIM, glasses must be developed specifically for that melting technology. Related glass formulation efforts have been conducted since the 1990s including a recent study that is first documented in this report. The purpose of this report is to summarize the silicate base glass formulation efforts for CCIM testing of U.S. tank wastes. Summaries of phosphate based glass formulation and phosphate and silicate based CCIM demonstration tests are reported separately (Day and Ray 2013 and Marra 2013, respectively). Combined these three reports summarize the current state of knowledge related to waste form development and process testing of CCIM technology for U.S. tank wastes.

  9. Development of the high-level waste high-temperature melter feed preparation flowsheet for vitrification process testing

    International Nuclear Information System (INIS)

    Seymour, R.G.

    1995-01-01

    High-level waste (HLW) feed preparation flowsheet development was initiated in fiscal year (FY) 1994 to evaluate alternative flowsheets for preparing melter feed for high-temperature melter (HTM) vitrification testing. Three flowsheets were proposed that might lead to increased processing capacity relative to the Hanford Waste Vitrification Plant (HWVP) and that were flexible enough to use with other HLW melter technologies. This document describes the decision path that led to the selection of flowsheets to be tested in the FY 1994 small-scale HTM tests. Feed preparation flowsheet development for the HLW HTM was based on the feed preparation flowsheet that was developed for the HWVP. This approach allowed the HLW program to build upon the extensive feed preparation flowsheet database developed under the HWVP Project. Primary adjustments to the HWVP flowsheet were to the acid adjustment and glass component additions. Developmental background regarding the individual features of the HLW feed preparation flowsheets is provided. Applicability of the HWVP flowsheet features to the new HLW vitrification mission is discussed. The proposed flowsheets were tested at the laboratory-scale at Pacific Northwest Laboratory. Based on the results of this testing and previously established criteria, a reductant-based flowsheet using glycolic acid and a nitric acid-based flowsheet were selected for the FY 1994 small-scale HTM testing

  10. Development of the high-level waste high-temperature melter feed preparation flowsheet for vitrification process testing

    Energy Technology Data Exchange (ETDEWEB)

    Seymour, R.G.

    1995-02-17

    High-level waste (HLW) feed preparation flowsheet development was initiated in fiscal year (FY) 1994 to evaluate alternative flowsheets for preparing melter feed for high-temperature melter (HTM) vitrification testing. Three flowsheets were proposed that might lead to increased processing capacity relative to the Hanford Waste Vitrification Plant (HWVP) and that were flexible enough to use with other HLW melter technologies. This document describes the decision path that led to the selection of flowsheets to be tested in the FY 1994 small-scale HTM tests. Feed preparation flowsheet development for the HLW HTM was based on the feed preparation flowsheet that was developed for the HWVP. This approach allowed the HLW program to build upon the extensive feed preparation flowsheet database developed under the HWVP Project. Primary adjustments to the HWVP flowsheet were to the acid adjustment and glass component additions. Developmental background regarding the individual features of the HLW feed preparation flowsheets is provided. Applicability of the HWVP flowsheet features to the new HLW vitrification mission is discussed. The proposed flowsheets were tested at the laboratory-scale at Pacific Northwest Laboratory. Based on the results of this testing and previously established criteria, a reductant-based flowsheet using glycolic acid and a nitric acid-based flowsheet were selected for the FY 1994 small-scale HTM testing.

  11. Thermal analysis of the failed equipment storage vault system

    International Nuclear Information System (INIS)

    Jerrell, J.; Lee, S.Y.; Shadday, A.

    1995-07-01

    A storage facility for failed glass melters is required for radioactive operation of the Defense Waste Processing Facility (DWPF). It is currently proposed that the failed melters be stored in the Failed Equipment Storage Vaults (FESV's) in S area. The FESV's are underground reinforced concrete structures constructed in pairs, with adjacent vaults sharing a common wall. A failed melter is to be placed in a steel Melter Storage Box (MSB), sealed, and lowered into the vault. A concrete lid is then placed over the top of the FESV. Two melters will be placed within the FESV/MSB system, separated by the common wall. There is no forced ventilation within the vault so that the melter is passively cooled. Temperature profiles in the Failed Equipment Storage Vault Structures have been generated using the FLOW3D software to model heat conduction and convection within the FESV/MSB system. Due to complexities in modeling radiation with FLOW3D, P/THERMAL software has been used to model radiation using the conduction/convection temperature results from FLOW3D. The final conjugate model includes heat transfer by conduction, convection, and radiation to predict steady-state temperatures. Also, the FLOW3D software has been validated as required by the technical task request

  12. Submerged combustion melting processes for producing glass and similar materials, and systems for carrying out such processes

    Science.gov (United States)

    Charbonneau, Mark William

    2015-08-04

    Processes of controlling submerged combustion melters, and systems for carrying out the methods. One process includes feeding vitrifiable material into a melter vessel, the melter vessel including a fluid-cooled refractory panel in its floor, ceiling, and/or sidewall, and heating the vitrifiable material with a burner directing combustion products into the melting zone under a level of the molten material in the zone. Burners impart turbulence to the molten material in the melting zone. The fluid-cooled refractory panel is cooled, forming a modified panel having a frozen or highly viscous material layer on a surface of the panel facing the molten material, and a sensor senses temperature of the modified panel using a protected thermocouple positioned in the modified panel shielded from direct contact with turbulent molten material. Processes include controlling the melter using the temperature of the modified panel. Other processes and systems are presented.

  13. Extended Development Work to Validate a HLW Calcine Waste Form via INL's Cold Crucible Induction Melter

    Energy Technology Data Exchange (ETDEWEB)

    James A. King; Vince Maio

    2011-09-01

    To accomplish calcine treatment objectives, the Idaho Clean-up Project contractor, CWI, has chosen to immobilize the calcine in a glass-ceramic via the use of a Hot-Isostatic-Press (HIP); a treatment selection formally documented in a 2010 Record of Decision (ROD). Even though the HIP process may prove suitable for the calcine as specified in the ROD and validated in a number of past value engineering sessions, DOE is evaluating back-up treatment methods for the calcine as a result of the technical, schedule, and cost risk associated with the HIPing process. Consequently DOE HQ has requested DOE ID to make INL's bench-scale cold-crucible induction melter (CCIM) available for investigating its viability as a process alternate to calcine treatment. The waste form is the key component of immobilization of radioactive waste. Providing a solid, stable, and durable material that can be easily be stored is the rationale for immobilization of radioactive waste material in glass, ceramic, or glass-ceramics. Ceramic waste forms offer an alternative to traditional borosilicate glass waste forms. Ceramics can usually accommodate higher waste loadings than borosilicate glass, leading to smaller intermediate and long-term storage facilities. Many ceramic phases are known to possess superior chemical durability as compared to borosilicate glass. However, ceramics are generally multiphase systems containing many minor phase that make characterization and prediction of performance within a repository challenging. Additionally, the technologies employed in ceramic manufacture are typically more complex and expensive. Thus, many have proposed using glass-ceramics as compromise between in the more inexpensive, easier to characterize glass waste forms and the more durable ceramic waste forms. Glass-ceramics have several advantages over traditional borosilicate glasses as a waste form. Borosilicate glasses can inadvertently devitrify, leading to a less durable product that could

  14. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  15. Iron Phosphate Glass for Vitrifying Hanford AZ102 LAW in Joule Heated and Cold Crucible Induction Melters

    Energy Technology Data Exchange (ETDEWEB)

    Day, Delbert E.; Brow, R. K.; Ray, C. S.; Kim, Cheol-Woon; Reis, Signo T.; Vienna, John D.; Peeler, David K.; Johnson, Fabienne; Hansen, E. K.; Sevigny, Gary J.; Soelberg, Nicolas R.; Pegg, Ian L.; Gan, Hao

    2012-01-05

    An iron phosphate composition for vitrifying a high sulfate (~17 wt%) and high alkali (~80 wt%) low activity Hanford waste, known as AZ102 LAW, has been developed for processing in a Joule Heated Melter (JHM) or a Cold Crucible Induction Melter (CCIM). This composition produced a glass waste form, designated as MS26AZ102F-2, with a waste loading of 26 wt% of the AZ102 which corresponded to a total alkali and sulfate (SO3) content of 21 and 4.2 wt%, respectively. A slurry (7M Na) of MS26AZ102F-2 simulant was melted continuously at temperatures between 1030 and 1090°C for 10 days in a small JHM at PNNL and for 7 days in a CCIM at INL. The as-cast glasses produced in both melters and in trial laboratory experiments along with their CCC-treated counterparts met the DOE LAW requirements for the Product Consistency Test (PCT) and the Vapor Hydration Test (VHT). These glass waste forms retained up to 77 % of the SO3 (3.3 wt%), 100% of the Cesium, and 33 to 44% of the rhenium, surrogate for Tc-99, all of which either exceeded or were comparable to the retention limit for these species in borosilicate glass nuclear waste form. Analyses of commercial K-3 refractory lining and the Inconel 693 metal electrodes used in JHM indicated only minimum corrosion of these components by the iron phosphate glass. This is the first time that an iron phosphate composition (slurry feed) was melted continuously in the JHM and CCIM, thereby, demonstrating that iron phosphate glasses can be used as alternative hosts for vitrifying nuclear waste.

  16. Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy`s Mound Plant, Miamisburg, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating the need for an environmental impact statement.

  17. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    Science.gov (United States)

    Xu, Kai; Hrma, Pavel; Washton, Nancy; Schweiger, Michael J.; Kruger, Albert A.

    2017-01-01

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700 °C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500 °C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (∼8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.

  18. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  19. Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste

  20. WOLGA 2.1 - a FORTRAN-77-code for calculation of the short-term gamma submersion dose rate caused by gamma radiation of a radioactive off-gas plume

    International Nuclear Information System (INIS)

    Huebschmann, W.; Papadopoulos, D.; Baer, M.; Honcu, S.

    1992-08-01

    The WOLGA 2.1 computer code calculates the short-term gamma submersion dose rate caused by the radioactive off-gas plume of a single source located at a point near the ground. It is assumed that the off-gas plume maintains its direction and form and that a double Gaussian function describes the distribution of radioactivity within the plume. The activity is assumed to be released from a stack or a building. The buildup factor and the mass attenuation coefficient in air are interpolated - dependent on the gamma energy - from recent results of calculations. The dose rate is calculated for up to 600 defined locations or for a polar grid so that isodose charts can be drawn. The subdivision of the plume into a finite number of volume elements can be chosen freely. It can be so finely divided that the error of the result obtained is less than about 3%. The gamma dispersion factor normalized to a wind velocity of 1 m/s is shown in diagrams for 6 dispersion categories, for emission levels from 0 up to 200 m and for a gamma energy of 1 MeV. These diagrams are consistent with the Allgemeine Verwaltungsvorschrift referring to Para. 45 of the German Radiation Protection Order. (orig.) [de

  1. Behavior of technetium in nuclear waste vitrification processes.

    Science.gov (United States)

    Pegg, Ian L

    Nearly 100 tests were performed with prototypical melters and off-gas system components to investigate the extents to which technetium is incorporated into the glass melt, partitioned to the off-gas stream, and captured by the off-gas treatment system components during waste vitrification. The tests employed several simulants, spiked with 99m Tc and Re (a potential surrogate), of the low activity waste separated from nuclear wastes in storage in the Hanford tanks, which is planned for immobilization in borosilicate glass. Single-pass technetium retention averaged about 35 % and increased significantly with recycle of the off-gas treatment fluids. The fraction escaping the recycle loop was very small.

  2. Phase 1 Testing Results of Immobilization of WTP Effluent Management Facility Evaporator Bottoms Core Simulant

    International Nuclear Information System (INIS)

    Cozzi, Alex D.; McCabe, Daniel J.

    2017-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate, along with entrained, volatile, and semi-volatile metals, such as Hg, As, and Se. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate that get recycled to the melter, and is a key objective of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of earlier tasks was to formulate and prepare a

  3. Phase 1 Testing Results of Immobilization of WTP Effluent Management Facility Evaporator Bottoms Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, Alex D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-05

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate, along with entrained, volatile, and semi-volatile metals, such as Hg, As, and Se. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate that get recycled to the melter, and is a key objective of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of earlier tasks was to formulate and prepare a

  4. Application of evolved gas analysis to cold-cap reactions of melter feeds for nuclear waste vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.; Rodriguez, Carmen P.; Schweiger, Michael J.

    2014-04-30

    In the vitrification of nuclear wastes, the melter feed (a mixture of nuclear waste and glass-forming and modifying additives) experiences multiple gas-evolving reactions in an electrical glass-melting furnace. We employed the thermogravimetry-gas chromatography-mass spectrometry (TGA-GC-MS) combination to perform evolved gas analysis (EGA). Apart from identifying the gases evolved, we performed quantitative analysis relating the weighed sum of intensities of individual gases linearly proportional with the differential themogravimetry. The proportionality coefficients were obtained by three methods based on the stoichiometry, least squares, and calibration. The linearity was shown to be a good first-order approximation, in spite of the complicated overlapping reactions.

  5. Rapid Conditioning for the Next Generation Melting System

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David M. [Gas Technology Institute, Des Plaines, IL (United States)

    2015-06-17

    This report describes work on Rapid Conditioning for the Next Generation Melting System under US Department of Energy Contract DE-FC36-06GO16010. The project lead was the Gas Technology Institute (GTI). Partners included Owens Corning and Johns Manville. Cost share for this project was provided by NYSERDA (the New York State Energy Research and Development Authority), Owens Corning, Johns Manville, Owens Illinois, and the US natural gas industry through GTI’s SMP and UTD programs. The overreaching focus of this project was to study and develop rapid refining approaches for segmented glass manufacturing processes using high-intensity melters such as the submerged combustion melter. The objectives of this project were to 1) test and evaluate the most promising approaches to rapidly condition the homogeneous glass produced from the submerged combustion melter, and 2) to design a pilot-scale NGMS system for fiberglass recycle.

  6. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating

  7. Vitrification process equipment design for the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Chapman, C.C.; Drosjack, W.P.

    1988-10-01

    The vitrification process and equipment design is nearing completion for the West Valley Project. This report provides the basis and current status for the design of the major vessels and equipment within the West Valley Vitrification Plant. A review of the function and key design features of the equipment is also provided. The major subsystems described include the feed preparation and delivery systems, the melter, the canister handling systems, and the process off-gas system. 11 refs., 33 figs., 4 tabs

  8. Development of 85Kr separation from the off-gas of the large reprocessing plant: Findings of the prototype test plants ADAMO and KRETA

    International Nuclear Information System (INIS)

    Ammon, R. von; Bumiller, W.; Hutter, E.; Neffe, G.

    1977-01-01

    Operation of the KRETA and ADAMO test plants so far has shown that rectification of the ternary system N 2 -Kr-Xe is possible if certain limiting concentrations of Kr and Xe in the feedwater are kept. At Xe concentrations [de

  9. LWR fuel reprocessing and recycle program. Quarterly report, July 1--September 30, 1976. [Shear; voloxidation; dissolution; Purex; off-gas adsorption; MOX fuel fabrication; environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Vondra, B.L.

    1976-11-01

    Two additional dissolutions were made using irradiated fuel for the H.B. Robinson II reactor; the solids are being characterized. An extension of time was given for bid proposals for a model /sup 1///sub 2/-ton/day voloxidizer. Preliminary heat transfer tests of a rotary kiln voloxidizer were completed. Residence times were measured in a 6-in. dia. tube; results were in agreement with those obtained in a previous test with a commercial kiln. The remaining fluorocarbon adsorption process pilot-plant tests scheduled under campaign 3 were completed; more than 99.99% of the carbon dioxide and xenon impurities were removed. Studies of stainless steel corrosion by R-12 solutions in presence of iodine and water are continuing. Methyl iodide was found to be miscible in R-12. An ORNL/SRL survey study was made of commercial and potential spent LWR fuel reprocessors to identify unresolved shearing and related head-end problems. Areas of difficulty were categorized as: (A) mechanical technology, (B) safety technology, (C) waste disposal, and (D) a pressing need for an LWR fuel Reference Information Center. A new hot-cell domestic shearing system must be developed, and remote operability and maintenance must be demonstrated at high throughputs. 22 tables, 10 fig. (DLC)

  10. Potentiality of hydroxylamine nitrate as a scrubbing reagent to trap iodine and nitrogen oxides in nuclear spent fuel dissolution off-gas

    International Nuclear Information System (INIS)

    Cau Dit Coumes, C.

    1998-01-01

    The management of low and medium-level radioactive effluents, newly implemented in Cogema-La Hague plants, foresee to replace tarring by vitrification. This process change imposes to greatly reduce the saline content of the effluents and in particular the sodium content to improve the leaching resistance of glass. Studies have been carried out to find a substitute to soda, today used to trap iodine and nitrogen oxides by counterflow washing of spent fuel dissolution gases. The aim of this work is to evaluate the potentialities of hydroxylamine nitrate. After a presentation of the chemistry of iodine and inorganic nitrogenous compounds, the reactions susceptible to take place inside the washing column are identified. An experimental study of of the reactions of hydroxylamine with molecular iodine, methyl iodide, nitrous acid, and nitrogen oxides (NO, NO 2 , N 2 O 3 and N 2 O 4 ) has permitted to precise in each case, the products, the stoichiometry, the kinetics and the reaction mechanisms. The results obtained show that only an hydroxylamine acid solution allows to simultaneously reduce iodine into iodide and to eliminate the nitrous acid formed by the hydrolysis of nitrogen oxides. Two models of the iodine/iodide/nitrous acid/hydroxylamine reaction system are proposed in acid environment. The first one, established from the kinetic laws of the reactions involved, has only a restricted domain of validity. The second one, obtained by applying the experimental research methodology, is valid over a wider experimental domain and has been used to determine the favorable conditions for the simultaneous and fast reduction of iodine and nitrous acid by hydroxylamine. (J.S.)

  11. Hydroxylamine as a potential reagent for dissolution off gas scrubbing in spent fuel reprocessing: kinetics of the iodine reduction. An example of similarity between the studies on the chemistry of iodine in reactor safety and in spent fuel reprocessing

    International Nuclear Information System (INIS)

    Cau Dit Coumes, C.; Devisme, F.; Vargas, S.; Chopin-Dumas, J.

    1996-01-01

    Iodine, which can be released inside the containment building when an accident occurs, can be traced, in normal operating conditions, at the back end of the fuel cycle. Hydroxylamine has been selected as a reagent of potential interest to trap iodine in the dissolution off gas treatment. The kinetics of the reaction between hydroxylamine and iodine has been studied in a narrow range of pH (1-2), with hydroxylamine in excess (ratios of hydroxylamine to iodine initial concentrations varying from 2 to 40), at constant temperature (30 o C) and ionic strength (0.1 mol/L). Spectrophotometry and voltametry have been coupled for analytical investigation. The problem of the rapid mixing of the reactants has been solved using a continuous reactor. Triiodide has been shown non reactive towards hydroxylamine. An initial rate law has been proposed, pointing out the first order of the reaction with respect to hydroxylamine and iodine, and the inhibitory effect of iodide and hydrogen ions. Nitrous acid has been identified as a transitory product. Nitrous oxide and nitrogen monoxide have been detected by gas chromatography, the ratio of the amounts of products formed depending on acidity. The complexity of the overall reaction has been ascribed to the competition of four reactions as previously proposed in the literature. (author) 8 figs., 1 tab., 13 refs

  12. Hydroxylamine as a potential reagent for dissolution off gas scrubbing in spent fuel reprocessing: kinetics of the iodine reduction. An example of similarity between the studies on the chemistry of iodine in reactor safety and in spent fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Cau Dit Coumes, C.; Devisme, F. [Commissariat a l`Energie Atomique, CE/VRH, Bagnols-sur-Ceze (France); Vargas, S.; Chopin-Dumas, J. [Laboratoire d`Electrochimie Inorganique, ENSSPICAM, Marseille (France)

    1996-12-01

    Iodine, which can be released inside the containment building when an accident occurs, can be traced, in normal operating conditions, at the back end of the fuel cycle. Hydroxylamine has been selected as a reagent of potential interest to trap iodine in the dissolution off gas treatment. The kinetics of the reaction between hydroxylamine and iodine has been studied in a narrow range of pH (1-2), with hydroxylamine in excess (ratios of hydroxylamine to iodine initial concentrations varying from 2 to 40), at constant temperature (30{sup o}C) and ionic strength (0.1 mol/L). Spectrophotometry and voltametry have been coupled for analytical investigation. The problem of the rapid mixing of the reactants has been solved using a continuous reactor. Triiodide has been shown non reactive towards hydroxylamine. An initial rate law has been proposed, pointing out the first order of the reaction with respect to hydroxylamine and iodine, and the inhibitory effect of iodide and hydrogen ions. Nitrous acid has been identified as a transitory product. Nitrous oxide and nitrogen monoxide have been detected by gas chromatography, the ratio of the amounts of products formed depending on acidity. The complexity of the overall reaction has been ascribed to the competition of four reactions as previously proposed in the literature. (author) 8 figs., 1 tab., 13 refs.

  13. Iron Phosphate Glass for Vitrifying Hanford AZ102 LAW in Joule Heated and Cold Crucible Induction Melters - 12240

    Energy Technology Data Exchange (ETDEWEB)

    Day, Delbert E.; Brow, Richard K.; Ray, Chandra S.; Reis, Signo T. [Missouri University of Science and Technology, 1870 Miner Circle, Rolla, MO 65409 (United States); Kim, Cheol-Woon [MO-SCI Corporation, 4040 HyPoint North, Rolla, MO 65401 (United States); Vienna, John D.; Sevigny, Gary [Pacific North West National Laboratory, Battelle Blvd., Richland, WA 99352 (United States); Peeler, David; Johnson, Fabienne C.; Hansen, Eric K. [Savannah River National Laboratory, Savannah River Site, 999-W, Aiken, SC 29803 (United States); Soelberg, Nick [Idaho National Laboratory, 2525 Fremont Avenue, Idaho Falls, ID 83415 (United States); Pegg, Ian L.; Gan, Hao [Catholic University of America, 620 Michigan Avenue, N.E., Washington, DC 20064 (United States)

    2012-07-01

    An iron phosphate composition for vitrifying a high sulfate (∼17 wt%) and high alkali (∼80 wt%) Hanford low activity waste (LAW), known as AZ-102 LAW, has been developed for processing in a Joule Heated Melter (JHM) or a Cold Crucible Induction Melter (CCIM). This composition produced a glass waste form, designated as MS26AZ102F-2, with a waste loading of 26 wt% of the AZ-102 which corresponded to a total alkali and sulfate (represented as SO{sub 3}) content of 21 and 4.4 wt%, respectively. A slurry (7 M Na{sup +}) of MS26AZ102F-2 simulant was melted continuously at temperatures between 1030 and 1090 deg. C for 10 days in a small JHM at PNNL and for 70 hours in a CCIM at INL. The as-cast glasses produced in both melters and in trial laboratory experiments along with their canister centerline cooled (CCC) counterparts met the requirements for the Product Consistency Test (PCT) and the Vapor Hydration Test (VHT) responses in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract. These glass waste forms retained up to 77 % of the SO{sub 3} (3.3 wt%), 100% of the Cesium, and 33 to 44% of the rhenium (used as a surrogate for Tc) all of which either exceeded or were comparable to the retention limit for these species in borosilicate glass nuclear waste form. Analyses of commercial K-3 refractory lining and the Inconel 693 metal electrodes used in JHM indicated only minimum corrosion of these components by the iron phosphate glass. This is the first time that an iron phosphate composition was melted continuously in a slurry fed JHM and in the US, thereby, demonstrating that iron phosphate glasses can be used as alternative hosts for vitrifying nuclear waste. The following conclusions are drawn from the results of the present work. (1) An iron phosphate composition, designated as MS26AZ102F-2, containing 26 wt% of the simulated high sulfate (17 wt%), high alkali (80 wt%) Hanford AZ-102 LAW meets all the criteria for processing in a JHM and CCIM. This

  14. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    International Nuclear Information System (INIS)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates

  15. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-09-26

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  16. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Techology and Engineering Center FY-2001 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Alan Keith; Kirkham, Robert John; Losinski, Sylvester John

    2001-09-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  17. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract no. 13460

    International Nuclear Information System (INIS)

    Yanochko, Ronald M; Corcoran, Connie

    2012-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling

  18. Final Report Summary Of DM 1200 Operation At VSL VSL-06R6710-2, Rev. 0, 9/7/06

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Diener, G.; Bardakci, T.; Pegg, I.L.

    2011-01-01

    The principal objective of this report was to summarize the testing experience on the DuraMelter 1200 (DMI200), which is the High Level Waste (HLW) Pilot Melter located at the Vitreous State Laboratory (VSL). Further objectives were to provide descriptions of the history of all modifications and maintenance, methods of operation, problems and unit failures, and melter emissions and performance while processing a variety of simulated HL W and low activity waste (LAW) feeds for the Hanford Waste Treatment and Immobilization Plant (WTP) and employing a variety of operating methods. All of these objectives were met. The River Protection Project - Hanford Waste Treatment and Immobilization Plant (RPP-WTP) Project has undertaken a 'tiered' approach to vitrification development testing involving computer-based glass formulation, glass property-composition models, crucible melts, and continuous melter tests of increasing, more realistic scales. Melter systems ranging from 0.02 to 1.2 m 2 installed at the Vitreous State Laboratory (VSL) have been used for this purpose, which, in combination with the 3.3 m 2 low activity waste (LAW) Pilot Melter at Duratek, Inc., span more than two orders of magnitude in melt surface area. In this way, less-costly small-scale tests can be used to define the most appropriate tests to be conducted at the larger scales in order to extract maximum benefit from the large-scale tests. For high level waste (HLW) vitrification development, a key component in this approach is the one-third scale DuraMelter 1200 (DM 1200), which is the HLW Pilot Melter that has been installed at VSL with an integrated prototypical off-gas treatment system. That system replaced the DM1000 system that was used for HLW throughput testing during Part B1. Both melters have similar melt surface areas (1.2 m 2 ) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. In particular, the DM1200 provides for testing on a vitrification

  19. FINAL REPORT SUMMARY OF DM 1200 OPERATION AT VSL VSL-06R6710-2 REV 0 9/7/06

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; DIENER G; BARDAKCI T; PEGG IL

    2011-12-29

    The principal objective of this report was to summarize the testing experience on the DuraMelter 1200 (DMI200), which is the High Level Waste (HLW) Pilot Melter located at the Vitreous State Laboratory (VSL). Further objectives were to provide descriptions of the history of all modifications and maintenance, methods of operation, problems and unit failures, and melter emissions and performance while processing a variety of simulated HL W and low activity waste (LAW) feeds for the Hanford Waste Treatment and Immobilization Plant (WTP) and employing a variety of operating methods. All of these objectives were met. The River Protection Project - Hanford Waste Treatment and Immobilization Plant (RPP-WTP) Project has undertaken a 'tiered' approach to vitrification development testing involving computer-based glass formulation, glass property-composition models, crucible melts, and continuous melter tests of increasing, more realistic scales. Melter systems ranging from 0.02 to 1.2 m{sup 2} installed at the Vitreous State Laboratory (VSL) have been used for this purpose, which, in combination with the 3.3 m{sup 2} low activity waste (LAW) Pilot Melter at Duratek, Inc., span more than two orders of magnitude in melt surface area. In this way, less-costly small-scale tests can be used to define the most appropriate tests to be conducted at the larger scales in order to extract maximum benefit from the large-scale tests. For high level waste (HLW) vitrification development, a key component in this approach is the one-third scale DuraMelter 1200 (DM 1200), which is the HLW Pilot Melter that has been installed at VSL with an integrated prototypical off-gas treatment system. That system replaced the DM1000 system that was used for HLW throughput testing during Part B1. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. In particular, the DM1200 provides for

  20. Preconceptual ABC design definition and system configuration layout

    International Nuclear Information System (INIS)

    Barthold, W.

    1995-03-01

    This document is the conceptual design document for the follow-on to the Molten Salt Breeder Reactor, known as the ABC type reactor. It addresses blanket design options, containment options, off-gas systems, drainage systems, and components/layouts of the primary, secondary, and tertiary systems, and it contains a number of diagrams for the configuration of the major systems

  1. Investigation of U3O8 immobilization in the GP-91 borosilicate glass by induction melter with a cold crucible (CCIM)

    International Nuclear Information System (INIS)

    Matyunin, Y.I.; Demin, A.V.; Smelova, T.V.; Yudintsev, S.V.; Lapina, M.I.

    1997-01-01

    One of the most promising and intensively developed methods for the solidification of high-level wastes is their vitrification with the use of a cold crucible induction melter (CCIM), which offers a number of advantages over ceramic melter. This work is concerned with comparison studies on the behavior of uranium in vitreous borosilicate materials synthesized by the traditional technique (melting in muffle furnaces) and CCIM method. The incorporation of uranium oxide U 3 O 8 into the GP-91 borosilicate glass with the use of CCIM technology is investigated. The limiting solubility of uranium in the GP-91 borosilicate glass is evaluated. The phase composition of precipitated dispersed particles based on uranium is determined. Some physicochemical properties of synthesized materials are explored. Investigations into the behavior of uranium in borosilicate glass prepared in the CCIM show a feasibility to synthesize the X-ray amorphous homogeneous borosilicate glasses incorporating as much as 25 - 28 wt% uranium, which is 4 - 5 times larger than that in glasses obtained by the traditional method. (author)

  2. Vitrification of surrogate mixed wastes in a graphite electrode arc melter

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Chambers, A.G.; Ball, L.

    1995-01-01

    Demonstration tests for vitrifying mixed wastes and contaminated soils have been conducted using a small (800 kVA), industrial-scale, three-phase AC, graphite electrode furnace located at the Albany Research Center of the United States Bureau of Mines (USBM). The feed mixtures were non-radioactive surrogates of various types of mixed (radioactive and hazardous), transuranic-contaminated wastes stored and buried at the Idaho National Engineering Laboratory (INEL). The feed mixtures were processed with added soil from the INEL. Objectives being evaluated include (1) equipment capability to achieve desired process conditions and vitrification products for different feed compositions, (2) slag and metals tapping capability, (3) partitioning of transuranic elements and toxic metals among the furnace products, (4) slag, fume, and metal products characteristics, and (5) performance of the feed, furnace and air pollution control systems. The tests were successfully completed in mid-April 1995. A very comprehensive process monitoring, sampling and analysis program was included in the test program. Sample analysis, data reduction, and results evaluation are currently underway. Initial results indicate that the furnace readily processed around 20,000 lb of widely ranging feed mixtures at feedrates of up to 1,100 lb/hr. Continuous feeding and slag tapping was achieved. Molten metal was also tapped twice during the test program. Offgas emissions were efficiently controlled as expected by a modified air pollution control system

  3. Volatilization characteristics of cesium according to the waste melting method in a plasma torch melter

    International Nuclear Information System (INIS)

    Kim, T. W.; Cho, H. Z.; Park, S. C.; Park, J. K.; Shin, S. W.

    2001-01-01

    By using a batch type plasma torch melting system, melting tests of non-combustible waste were conducted. The relationship between the volatility of cesium and torch power was evaluated. The surrogates used in the tests were natural soil with 0.5 g of non-radioactive cesium (CsCl) per 1 kg of soil. The moisture content of soil was 9.5 wt%. No significant difference in retention ratio (86 ∼ 90 wt%) of cesium in molten slag was founded according to the torch power. The faster melting with high power, the more retentions of cesium into the slag was obtained. Reaching test (TCLP) results for all waste forms were low enough to meet the EPA criteria

  4. Evaluation of materials and surface treatments for the DWPF melter pour spout bellows protective liner

    Energy Technology Data Exchange (ETDEWEB)

    Imrich, K.J.; Bickford, D.F.; Wicks, G.G.

    1997-06-27

    A study was undertaken to evaluate a variety of materials and coatings for the DWPF pour spout bellows liner. The intent was to identify materials that would minimize or eliminate adherence of glass on the bellows liner wall and help minimize possible pluggage during glass pouring operations in DWPF. Glass has been observed adhering to the current bellow`s liner, which is made of 304L stainless steel. Materials were identified which successfully allowed molten glass to hit these surfaces and not adhere. Results of this study suggest that if these materials are used in the pouring system glass could still fall into the canister without appreciable plugging, even if an unstable glass stream is produced. The materials should next be evaluated under the most realistic DWPF conditions possible. Other findings of this study include the following: (1) increasing coupon thickness produced a favorable increase in the glass sticking temperature; (2) highly polished surfaces, with the exception of the oxygen-free copper coupon coated with Armoloy dense chromium, did not produce a significant improvement in the glass sticking temperature, increasing angle of contact of the coupon to the falling glass did not yield a significant performance improvement; (3) electroplating with gold and silver and various diffusion coatings did not produce a significant increase in the glass sticking temperature. However, they may provide added oxidation and corrosion resistance for copper and bronze liners. Boron nitride coatings delaminated immediately after contact with the molten glass.

  5. Evaluation of materials and surface treatments for the DWPF melter pour spout bellows protective liner

    International Nuclear Information System (INIS)

    Imrich, K.J.; Bickford, D.F.; Wicks, G.G.

    1997-01-01

    A study was undertaken to evaluate a variety of materials and coatings for the DWPF pour spout bellows liner. The intent was to identify materials that would minimize or eliminate adherence of glass on the bellows liner wall and help minimize possible pluggage during glass pouring operations in DWPF. Glass has been observed adhering to the current bellow's liner, which is made of 304L stainless steel. Materials were identified which successfully allowed molten glass to hit these surfaces and not adhere. Results of this study suggest that if these materials are used in the pouring system glass could still fall into the canister without appreciable plugging, even if an unstable glass stream is produced. The materials should next be evaluated under the most realistic DWPF conditions possible. Other findings of this study include the following: (1) increasing coupon thickness produced a favorable increase in the glass sticking temperature; (2) highly polished surfaces, with the exception of the oxygen-free copper coupon coated with Armoloy dense chromium, did not produce a significant improvement in the glass sticking temperature, increasing angle of contact of the coupon to the falling glass did not yield a significant performance improvement; (3) electroplating with gold and silver and various diffusion coatings did not produce a significant increase in the glass sticking temperature. However, they may provide added oxidation and corrosion resistance for copper and bronze liners. Boron nitride coatings delaminated immediately after contact with the molten glass

  6. INEL Operable Unit 7-13 Retrieval/Ex Situ Thermal Treatment configuration options: INEL Buried Waste Integrated Demonstration Systems Analysis project

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J.G.; Rudin, M.J.; O`Brien, M.C.; Morrison, J.L.; Raivo, B.

    1992-07-01

    The mission of the Buried Waste Integrated Demonstration (BWID) Systems Analysis project is to identify and evaluate cradle-to-grave systems for the remediation of Transuranic (TRU)Contaminated Waste Pits and Trenches within the Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). The BWID program will use the results of the BWID Systems Analysis in conjunction with identified Department of Energy (DOE) Complex buried waste needs to develop a long-term strategy for improving buried waste remediation capabilities throughout the DOE system. This report presents Buried Waste Retrieval/Ex Situ Thermal Treatment configuration option concepts in the form of block diagrams. These configuration options are: Retrieval/Melter Treatment; Retrieval/Metal Sort/Thermal Treatment; Retrieval/No Sort/Incineration/Melter Treatment; Retrieval/Interim Storage/Melter Treatment; Retrieval/Interim Storage/Metal Sort/Thermal Treatment; and Retrieval/Interim Storage/No Sort/Incineration/Melter Treatment. Each option is presented as a complete end-to-end system.

  7. Preparation and evaporation of Hanford Waste treatment plant direct feed low activity waste effluent management facility simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Howe, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-07

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to the LAW melter. The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatoryimpacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step. This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from the EMF

  8. Site-Specific Technical Report for the Evaluation of Thermatrix GS Series Flameless Thermal Oxidizer for Off-Gas Treatment of Soil Vapors with Volatile Organic Compounds at the Source Area Reduction System, Former Lowry Air Force Base, Colorado

    National Research Council Canada - National Science Library

    Archabal, Steven

    1998-01-01

    The Air Force Center for Environmental Excellence (AFCEE) has sponsored an ongoing program to promote the use of cost-effective soil vapor treatment technologies in conjunction with soil vapor extraction (SVE...

  9. Technetium Inventory, Distribution, and Speciation in Hanford Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rapko, Brian M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pegg, Ian L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-11-13

    The purpose of this report is three fold: 1) assemble the available information regarding Tc inventory, distribution between phases, and speciation in Hanford’s 177 storage tanks into a single, detailed, comprehensive assessment; 2) discuss the fate (distribution/speciation) of Tc once retrieved from the storage tanks and processed into final waste forms; and 3) discuss/document in less detail the available data on the inventory of Tc in other “pools” such as the vadose zone below inactive cribs and trenches, below single-shell tanks (SSTs) that have leaked, and in the groundwater below the Hanford Site. This report was revised in September 2014 to add detail and correct inaccuracies in Section 5.0 on the fate of technetium (Tc) recycle from the off-gas systems downstream of the low-activity waste (LAW) melters back to the melters, based on several reports that were not found in the original literature search on the topic. The newly provided reports, from experts active in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) glass studies, the Vitreous State Laboratory at The Catholic University of America (VSL) melter and off-gas system demonstrations and overall WTP systems analysis, were not originally found on electronic databases commonly searched. The major revisions to Section 5.0 also required changes to Section 7.0 (Summary and Conclusions) and this executive summary.

  10. Effects of Quartz Particle Size and Sucrose Addition on Melting Behavior of a Melter Feed for High-Level Waste Glass

    International Nuclear Information System (INIS)

    Marcial, Jose; Hrma, Pavel R.; Schweiger, Michael J.; Swearingen, Kevin J.; Tegrotenhuis, Nathan E.; Henager, Samuel H.

    2010-01-01

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5 C/min up to 1200 C. The initial size of quartz particles in feed ranged from 5 to 195 (micro)m. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds with 5-(micro)m quartz particles; particles (ge) 150 (micro)m formed clusters. Particles of 5 (micro)m completely dissolved by 900 C whereas particles (ge) 150 (micro)m did not fully dissolve even when the temperature reached 1200 C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles.

  11. Redox Control For Hanford HLW Feeds VSL-12R2530-1, REV 0

    International Nuclear Information System (INIS)

    Kruger, A. A.; Matlack, Keith S.; Pegg, Ian L.; Kot, Wing K.; Joseph, Innocent

    2012-01-01

    The principal objectives of this work were to investigate the effects of processing simulated Hanford HLW at the estimated maximum concentrations of nitrates and oxalates and to identify strategies to mitigate any processing issues resulting from high concentrations of nitrates and oxalates. This report provides results for a series of tests that were performed on the DM10 melter system with simulated C-106/AY-102 HLW. The tests employed simulated HLW feeds containing variable amounts of nitrates and waste organic compounds corresponding to maximum concentrations proj ected for Hanford HLW streams in order to determine their effects on glass production rate, processing characteristics, glass redox conditions, melt pool foaming, and the tendency to form secondary phases. Such melter tests provide information on key process factors such as feed processing behavior, dynamic effects during processing, processing rates, off-gas amounts and compositions, foaming control, etc., that cannot be reliably obtained from crucible melts

  12. Redox Control For Hanford HLW Feeds VSL-12R2530-1, REV 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States)

    2012-12-13

    The principal objectives of this work were to investigate the effects of processing simulated Hanford HLW at the estimated maximum concentrations of nitrates and oxalates and to identify strategies to mitigate any processing issues resulting from high concentrations of nitrates and oxalates. This report provides results for a series of tests that were performed on the DM10 melter system with simulated C-106/AY-102 HLW. The tests employed simulated HLW feeds containing variable amounts of nitrates and waste organic compounds corresponding to maximum concentrations proj ected for Hanford HLW streams in order to determine their effects on glass production rate, processing characteristics, glass redox conditions, melt pool foaming, and the tendency to form secondary phases. Such melter tests provide information on key process factors such as feed processing behavior, dynamic effects during processing, processing rates, off-gas amounts and compositions, foaming control, etc., that cannot be reliably obtained from crucible melts.

  13. Membrane System for the Recovery of Volatile Organic Compounds from Remediation Off-Gases. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    Membrane Technology and Research, Inc.'s (MTR's) membrane-based off-gas treatment technology separates the organic components from the off-gas stream, producing a VOC-free air stream that can be discharged or recycled to the gas-generating process. The membrane system produces a constant, high-quality air discharge stream irrespective of the feed-air composition. The system also produces a concentrated liquid VOC stream for disposal. Any water vapor present in the off-gas is removed as condensed dischargeable water. Benefits: Applicable to a broad range of off-gas generating sources. Target streams are off-gas from soil remediation by in situ vacuum extraction or air and steam sparging, and soil vitrification Suitable for remote sites: systems require minimal site preparation, little operator attention once installed, electrical power but no other utilities, and no expendable chemicals Minimizes waste volume: dischargeable air and water are produced, and VOCs removed from the feed gas ar e concentrated into a condensed liquid. No other waste streams result Treats off-gases containing both flammable and nonflammable and chlorinated and nonchlorinated VOCs Cost competitive with other technologies in the VOC concentration range 100-1,000 ppm and offers significant cost reduction at higher VOC concentrations Systems are easily moved and transported to new sites with a minimum of refurbishing or modification Generates no air emissions, minimizing permitting issues and speeding up the start of a clean-up operation Technology: Removal of VOCs from air streams with membranes is a relatively new technology

  14. Mercury reduction and removal during high-level radioactive waste processing and vitrification

    International Nuclear Information System (INIS)

    Eibling, R.E.; Fowler, J.R.

    1981-01-01

    A reference process for immobilizing the high-level radioactive waste in borosilicate glass has been developed at the Savannah River Plant. This waste contains a substantial amount of mercury from separations processing. Because mercury will not remain in borosilicate glass at the processing temperature, mercury must be removed before vitrification or must be handled in the off-gas system. A process has been developed to remove mercury by reduction with formic acid prior to vitrification. Additional benefits of formic acid treatment include improved sludge handling and glass melter redox control

  15. Final Report - Enhanced LAW Glass Formulation Testing, VSL-07R1130-1, Rev. 0, dated 10/05/07

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Matlack, K. S.; Joseph, I.; Muller, I. S.; Gong, W.

    2013-11-13

    The principal objective of this work was to extend the glass formulation methodology developed in the earlier work [2, 5, 6] for Envelope A, B and C waste compositions for development of compliant glass compositions targeting five high sodium-sulfur waste loading regions. This was accomplished through a combination of crucible-scale tests, and tests on the DM10 melter system. The DM10 was used for several previous tests on LAW compositions to determine the maximum feed sulfur concentrations that can be processed without forming secondary sulfate phases on the surface of the melt pool. This melter is the most efficient melter platform for screening glass compositions over a wide range of sulfate concentrations and therefore was selected for the present tests. The tests were conducted to provide information on melter processing characteristics and off-gas data, including sulfur incorporation and partitioning. As described above, the main objective was to identify the limits of waste loading in compliant glass formulations spanning the range of expected Na{sub 2}O and SO{sub 3} concentrations in the LAW glasses.

  16. Phase 2 testing results of immobilization of WTP effluent management facility vaporator bottoms simulant

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-08

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the primary off-gas system. This work examined three waste form formulations based on previous testing with related simulants: 8 wt% ordinary portland cement (OPC), 47 wt% blast furnace slag (BFS), 45 wt% fly ash (FA) known as Cast Stone formulation; 20 wt% Aquaset® II-GH and 80 wt% BFS; 20 wt% OPC and 80 wt% BFS. These tests successfully produced one waste form that set within five days (Cast Stone formulation); however the other two formulations, Aquaset® II-GH/BFS and OPC/BFS, took approximately eight and fourteen days to set, respectively.

  17. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate

  18. The Impact of Waste Loading on Viscosity in the Frit 418-SB3 System

    International Nuclear Information System (INIS)

    PEELER, DAVID

    2004-01-01

    In this report, data are provided to gain insight into the potential impact of a lower viscosity glass on melter stability (i.e., pressure spikes, cold cap behavior) and/or pour stream stability. High temperature viscosity data are generated for the Frit 418-SB3 system as a function of waste loading (from 30 to 45 percent) and compared to similar data from other systems that have been (or are currently being) processed through the Defense Waste Processing Facility (DWPF) melter. The data are presented in various formats to potentially align the viscosity data with physical observations at various points in the melter system or critical DWPF processing unit operations. The expectations is that the data will be provided adequate insight into the vitrification parameters which might evolve into working solutions as DWPF strives to maximize waste throughput. This report attempts to provide insight into a physical interpretation of the data from a DWPF perspective. The theories present ed are certainly not an all inclusive list and the order in which they are present does imply a ranking, probability, or likelihood that the proposed theory is even plausible. The intent of this discussion is to provide a forum in which the viscosity data can be discussed in relation to possible mechanisms which could potentially lead to a workable solution as discussed in relation to possible solution as higher overall attainment is striven for during processing of the current or future sludge batches

  19. Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratory‘s Bench -Scale Cold Crucible Induction Melter

    Energy Technology Data Exchange (ETDEWEB)

    Vince Maio

    2011-08-01

    This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine

  20. Off-gas filtration and releases: bag filters

    International Nuclear Information System (INIS)

    Hennart, D.M.J.G.

    1985-01-01

    During high-temperature incineration of radioactive waste, some metal oxides are volatilized and carried out with the off-gases. During cooling those oxides react with acidic components generated by the combustion of the fuel oil or of the waste itself. This results in a submicronic crystalline dust in which cesium isotopes are concentrated. Bag filters have been selected at S.C.K./C.E.N. to carry out the first step of dust separation. Two baghouses equipped with Teflon bags with a total filtering area of 100 m 2 have been installed. The bags are cleaned on line by compressed air backflow. The residual dust content is below 3 mg/m 3 , which is sufficiently low to be removed by HEPA filters. The baghouses were put into operation in October 1981 and since then have been on line for about 3000 hours. Some bags had to be replaced after a fire in mid-1983. (orig.)

  1. Evaporation of iodine-containing off-gas scrubber solution

    Science.gov (United States)

    Partridge, J.A.; Bosuego, G.P.

    1980-07-14

    Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.

  2. Processing device for re-processing off-gas

    International Nuclear Information System (INIS)

    Tsukagami, Yosoji; Yamazaki, Hitoshi; Nakao, Genroku; Kodama, Hiroshi.

    1989-01-01

    In a step of dissolving spent fuels with concentrated nitric acid, off-gases mainly composed of steams and NOx, etc. are formed. In the step of processing the off-gases, a number of small semi-spherical water droplets are formed to the inner wall surface of the device due to the cooling effect of a condenser. Iodine or oxygen in the gas phase is dissolved into the water droplets to form hard iodine oxides, by which the water droplets are adhered in a semi-spherical state to bring about such a condition that pitting corrosion or gap corrosion is liable to occur. In view of the above, means for supplying a liquid including surface active agent capable of flowing due to the falling or rotation of the liquid relative is disposed to the inner wall surface from the top end of the condenser. The semi-spherical water droplets are washed out by the aqueous solution. Further, it is possible to form liquid membranes of uniform thickness due to the effect of reducing the surface tension of the water droplets by means of the surface active agent, to prevent corrosion of the device. (T.M.)

  3. Final Report - Melt Rate Enhancement for High Aluminum HLW Glass Formulation, VSL-08R1360-1, Rev. 0, dated 12/19/08

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Chaudhuri, M.; Gong, W.; Gan, H.; Matlack, K. S.; Bardakci, T.; Kot, W.

    2013-11-13

    The principal objective of the work reported here was to develop and identify HLW glass compositions that maximize waste processing rates for the aluminum limted waste composition specified by ORP while maintaining high waste loadings and acceptable glass properties. This was accomplished through a combination of crucible-scale tests, confirmation tests on the DM100 melter system, and demonstration at pilot scale (DM1200). The DM100-BL unit was selected for these tests since it was used previously with the HLW waste streams evaluated in this study, was used for tests on HLW glass compositions to support subsequent tests on the HLW Pilot Melter, conduct tests to determine the effect of various glass properties (viscosity and conductivity) and oxide concentrations on glass production rates with HLW feed streams, and to assess the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition. The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. These tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Once DM100 tests were completed, one of the compositions was selected for further testing on the DM1200; the DM1200 system has been used for processing a variety of simulated Hanford waste streams. Tests on the larger melter provide processing data at one third of the scale of the actual WTP HLW melter and, therefore, provide a more accurate and reliable assessment of production rates and potential processing issues. The work focused on maximizing waste processing rates for high aluminum HLW compositions. In view of the diversity of forms of aluminum in the Hanford tanks, tests were also conducted on the DM100 to determine the effect of changes in the form of aluminum on feed properties and production rate. In addition, the work evaluated the effect on production rate of modest increases

  4. Research and development on air cleaning system of reprocessing plant in Japan

    International Nuclear Information System (INIS)

    Naruki, K.

    1985-01-01

    Present status in Japan of R and D on air cleaning systems, especially of the fuel reprocessing plant is summarized. The description is centered on the R and D and experience of Tokai-reprocessing plant, which covers the plant air cleaning system, effort carried out for decreasing I 2 effluence in the actual vented off-gas, and R and D for recovery of Kr and 3 H. Some experimental results for the evaluation of HEPA filter are also described

  5. Design of microwave vitrification systems for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    White, T.L.; Wilson, C.T.; Schaich, C.R. [Oak Ridge National Lab., TN (United States); Bostick, T.L. [Oak Ridge K-25 Site, TN (United States)

    1995-12-31

    Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of Department of Energy (DOE) radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915-MHz, 75-kW microwave vitrification system or ``microwave melter`` is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge.

  6. Design of microwave vitrification systems for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    White, T.L.; Wilson, C.T.; Schaick, C.R. [Oak Ridge National Lab., TN (United States); Bostick, W.D. [Oak Ridge K-25 Site, TN (United States)

    1996-04-01

    Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of DOE radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915 MHz, 75 kW microwave vitrification system or `microwave melter` is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge.

  7. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  8. Technetium Immobilization Forms Literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.; Cantrell, Kirk J.; Serne, R. Jeffrey; Qafoku, Nikolla

    2014-05-01

    Of the many radionuclides and contaminants in the tank wastes stored at the Hanford site, technetium-99 (99Tc) is one of the most challenging to effectively immobilize in a waste form for ultimate disposal. Within the Hanford Tank Waste Treatment and Immobilization Plant (WTP), the Tc will partition between both the high-level waste (HLW) and low-activity waste (LAW) fractions of the tank waste. The HLW fraction will be converted to a glass waste form in the HLW vitrification facility and the LAW fraction will be converted to another glass waste form in the LAW vitrification facility. In both vitrification facilities, the Tc is incorporated into the glass waste form but a significant fraction of the Tc volatilizes at the high glass-melting temperatures and is captured in the off-gas treatment systems at both facilities. The aqueous off-gas condensate solution containing the volatilized Tc is recycled and is added to the LAW glass melter feed. This recycle process is effective in increasing the loading of Tc in the LAW glass but it also disproportionally increases the sulfur and halides in the LAW melter feed which increases both the amount of LAW glass and either the duration of the LAW vitrification mission or the required supplemental LAW treatment capacity.

  9. Options for the Separation and Immobilization of Technetium

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-30

    Among radioactive constituents present in the Hanford tank waste, technetium-99 (Tc) presents a unique challenge in that it is significantly radiotoxic, exists predominantly in the liquid low-activity waste (LAW), and has proven difficult to effectively stabilize in a waste form for ultimate disposal. Within the Hanford Tank Waste Treatment and Immobilization Plant, the LAW fraction will be converted to a glass waste form in the LAW vitrification facility, but a significant fraction of Tc volatilizes at the high glass-melting temperatures and is captured in the off-gas treatment system. This necessitates recycle of the off-gas condensate solution to the LAW glass melter feed. The recycle process is effective in increasing the loading of Tc in the immobilized LAW (ILAW), but it also disproportionately increases the sulfur and halides in the LAW melter feed, which have limited solubility in the LAW glass and thus significantly reduce the amount of LAW (glass waste loading) that can be vitrified and still maintain good waste form properties. This increases both the amount of LAW glass and either the duration of the LAW vitrification mission or requires the need for supplemental LAW treatment capacity. Several options are being considered to address this issue. Two approaches attempt to minimize the off-gas recycle by removing Tc at one of several possible points within the tank waste processing flowsheet. The separated Tc from these two approaches must then be dispositioned in a manner such that the Tc can be safely disposed. Alternative waste forms that do not have the Tc volatility issues associated with the vitrification process are being sought for immobilization of Tc for subsequent storage and disposal. The first objective of this report is to provide insights into the compositions and volumes of the Tc-bearing waste streams including the ion exchange eluate from processing LAW and the off-gas condensate from the melter. The first step to be assessed will be the

  10. Factory test results on NOx recycle system using pressure swing adsorption method (PSA-method) for Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Sakai, Masami; Nakamura, Kou; Shimizu, Yoshinao; Kubota, Masaru; Takeishi, Masayuki; Kumura, Seiji

    2005-01-01

    At Rokkasho Reprocessing Plant (RRR), a great deal of NOx is mainly used as oxidizing reagent of Pu. This NOx has been conventionally manufactured by reaction of sodium nitrite and nitric acid. Problem, however, was how to process the radioactive waste materials left after immunization of the non-radioactive sodium nitrite occurring in manufacturing and the residual NOx used in the reprocessing. This paper reports the factory test results on the recycle system for NOx from denitrating tower off-gas using PSA method (vacuum pressure swing adsorption method) which has been developed to reduce waste materials occurring in the manufacture of NOx and the processing of residual NOx in the off-gas. (author)

  11. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Odriscoll, R; Allan Barnes, A; Jim Coleman, J; Timothy Glover, T; Robert Hopkins, R; Dan Iverson, D; Jeff Leita, J

    2008-01-15

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in a 6% waste throughput increase based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (5%), glass surge (siphon) protection software (2%), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2%) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3%) for a total increase in canister production of 12%. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed.

  12. Design and installation of a laboratory-scale system for radioactive waste treatment

    International Nuclear Information System (INIS)

    Berger, D.N.; Knox, C.A.; Siemens, D.H.

    1980-05-01

    Described are the mechanical design features and remote installation of a laboratory-scale radiochemical immobilization system which is to provide a means at Pacific Northwest Laboratory of studying effluents generated during solidification of high-level liquid radioactive waste. Detailed are the hot cell, instrumentation, two 4-in. and 12-in. service racks, the immobilization system modules - waste feed, spray calciner unit, and effluent - and a gamma emission monitor system for viewing calcine powder buildup in the spray calciner/in-can melter

  13. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  14. System design description for the whole element furnace testing system

    International Nuclear Information System (INIS)

    Ritter, G.A.; Marschman, S.C.; MacFarlan, P.J.; King, D.A.

    1998-05-01

    This document provides a detailed description of the Hanford Spent Nuclear Fuel (SNF) Whole Element Furnace Testing System located in the Postirradiation Testing Laboratory G-Cell (327 Building). Equipment specifications, system schematics, general operating modes, maintenance and calibration requirements, and other supporting information are provided in this document. This system was developed for performing cold vacuum drying and hot vacuum drying testing of whole N-Reactor fuel elements, which were sampled from the 105-K East and K West Basins. The proposed drying processes are intended to allow dry storage of the SNF for long periods of time. The furnace testing system is used to evaluate these processes by simulating drying sequences with a single fuel element and measuring key system parameters such as internal pressures, temperatures, moisture levels, and off-gas composition

  15. Vitrification of cesium-contaminated organic ion exchange resin

    International Nuclear Information System (INIS)

    Sargent, T.N. Jr.

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass

  16. Vitrification of cesium-contaminated organic ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, Jr., Thomas N. [Clemson Univ., SC (United States)

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass.

  17. Efficiency and losses analysis of low-pressure feed water heater in steam propulsion system during ship maneuvering period

    OpenAIRE

    Mrzljak, Vedran; Poljak, Igor; Medica-Viola, Vedran

    2016-01-01

    Dominant propulsion systems of today’s LNG carriers are steam propulsion systems. Although a number of alternatives are developed, only steam propulsion systems in LNG carriers can fulfill a double function: the function of propulsion and on the other side the combustion of large amounts of BOG (Boil Off Gas) in one or more steam generators. In this paper was provided an analysis of the low-pressure feed water heater, as one of the important components of LNG carrier steam propulsion system. ...

  18. Design of equipment used for high-level waste vitrification at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Vance, R.F.; Brill, B.A.; Carl, D.E. [and others

    1997-06-01

    The equipment as designed, started, and operated for high-level radioactive waste vitrification at the West Valley Demonstration Project in western New York State is described. Equipment for the processes of melter feed make-up, vitrification, canister handling, and off-gas treatment are included. For each item of equipment the functional requirements, process description, and hardware descriptions are presented.

  19. Design of equipment used for high-level waste vitrification at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.; Brill, B.A.; Carl, D.E.

    1997-06-01

    The equipment as designed, started, and operated for high-level radioactive waste vitrification at the West Valley Demonstration Project in western New York State is described. Equipment for the processes of melter feed make-up, vitrification, canister handling, and off-gas treatment are included. For each item of equipment the functional requirements, process description, and hardware descriptions are presented

  20. Qualification of helium measurement system for detection of fuel failures in a BWR

    Science.gov (United States)

    Larsson, I.; Sihver, L.; Loner, H.; Grundin, A.; Helmersson, J.-O.; Ledergerber, G.

    2014-05-01

    There are several methods for surveillance of fuel integrity during the operation of a boiling water reactor (BWR). The detection of fuel failures is usually performed by analysis of grab samples of off-gas and coolant activities, where a measured increased level of ionizing radiation serves as an indication of new failure or degradation of an already existing one. At some nuclear power plants the detection of fuel failures is performed by on-line nuclide specific measurements of the released fission gases in the off-gas system. However, it can be difficult to distinguish primary fuel failures from degradation of already existing failures. In this paper, a helium measuring system installed in connection to a nuclide specific measuring system to support detection of fuel failures and separate primary fuel failures from secondary ones is presented. Helium measurements provide valuable additional information to measurements of the gamma emitting fission gases for detection of primary fuel failures, since helium is used as a fill gas in the fuel rods during fabrication. The ability to detect fuel failures using helium measurements was studied by injection of helium into the feed water systems at the Forsmark nuclear power plant (NPP) in Sweden and at the nuclear power plant Leibstadt (KKL) in Switzerland. In addition, the influence of an off-gas delay line on the helium measurements was examined at KKL by injecting helium into the off-gas system. By using different injection rates, several types of fuel failures with different helium release rates were simulated. From these measurements, it was confirmed that the helium released by a failed fuel can be detected. It was also shown that the helium measurements for the detection of fuel failures should be performed at a sampling point located before any delay system. Hence, these studies showed that helium measurements can be useful to support detection of fuel failures. However, not all fuel failures which occurred at

  1. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION. FINAL REPORT 08R1360-1

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.; Pegg, I.L.; Joseph, I.; Bardakci, T.; Gan, H.; Gong, W.; Chaudhuri, M.

    2010-01-01

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  2. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  3. Design and performance of feed-delivery systems for simulated radioactive waste slurries

    International Nuclear Information System (INIS)

    Perez, J.M. Jr.

    1983-02-01

    Processes for vitrifying simulated high-level radioactive waste have been developed at the Pacific Northwest Laboratory (PNL) over the last several years. Paralleling this effort, several feed systems used to deliver the simulated waste slurry to the melter have been tested. Because there had been little industrial experience in delivering abrasive slurries at feed rates of less than 10 L/min, early experience helped direct the design of more-dependable systems. Also, as feed delivery requirements changed, the feed system was modified to meet these new requirements. The various feed systems discussed in this document are part of this evolutionary process, so they have not been ranked against each other. The four slurry feed systems discussed are: (1) vertical-cantilevered centrifugal pump system; (2) airlift feed systems; (3) pressurized-loop systems; and (4) positive-displacement pump system. 20 figures, 11 tables

  4. Thermodynamic and Microstructural Mechanisms in the Corrosion of Advanced Ceramic Tc-bearing Waste Forms and Thermophysical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Thomas [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Mechanical Engineering

    2017-09-01

    Technetium-99 (Tc, t1/2 = 2.13x105 years) is a challenge from a nuclear waste perspective and is one of the most abundant, long-lived radioisotopes found in used nuclear fuel (UNF). Within the Hanford Tank Waste Treatment and Immobilization Plant, technetium volatilizes at typical glass melting temperature, is captured in the off-gas treatment system and recycled back into the feed to eventually increase Tc-loadings of the glass. The aim of this NEUP project was to provide an alternative strategy to immobilize fission technetium as durable ceramic waste form and also to avoid the accumulation of volatile technetium within the off gas melter system in the course of vitrifying radioactive effluents in a ceramic melter. During this project our major attention was turned to the fabrication of chemical durable mineral phases where technetium is structurally bond entirely as tetravalent cation. These mineral phases will act as the primary waste form with optimal waste loading and superior resistance against leaching and corrosion. We have been very successful in fabricating phase-pure micro-gram amounts of lanthanide-technetium pyrochlores by dry-chemical synthesis. However, upscaling to a gram-size synthesis route using either dry- or wet-chemical processing was not always successful, but progress can be reported on a variety of aspects. During the course of this 5-year NEUP project (including a 2-year no-cost extension) we have significantly enhanced the existing knowledge on the fabrication and properties of ceramic technetium waste forms.

  5. Empirical model for calculating vapor-liquid equilibrium and associated phase enthalpy for the CO2--O2--Kr--Xe system for application to the KALC process

    International Nuclear Information System (INIS)

    Glass, R.W.; Gilliam, T.M.; Fowler, V.L.

    1976-01-01

    An empirical model is presented for vapor-liquid equilibria and enthalpy for the CO 2 -O 2 system. In the model, krypton and xenon in very low concentrations are combined with the CO 2 -O 2 system, thereby representing the total system of primary interest in the High-Temperature Gas-Cooled Reactor program for removing krypton from off-gas generated during the reprocessing of spent fuel. Selected properties of the individual and combined components being considered are presented in the form of tables and empirical equations

  6. FY98 final report for the expedited technology demonstration project: demonstration test results for the integrated MSO waste treatment system

    International Nuclear Information System (INIS)

    Adamson, M G; Hipple, D L; Hopper, R W; Hsu, P C.

    1998-01-01

    Molten Salt Oxidation (MSO) is a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility in which an integrated pilot-scale MSO treatment system is being tested and demonstrated. The system consists of a MSO vessel with a dedicated off-gas treatment system, a salt recycle system, feed preparation equipment, and a ceramic final waste forms immobilization system. This integrated system was designed and engineered based on operational experience with an engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. The MSO/off-gas system has been operational since December 1997. The salt recycle system and the ceramic final forms immobilization became operational in May and August, 1998, respectively. We have tested the MSO facility with various organic feeds, including chlorinated solvents, tributyl phosphate/kerosene, PCB-contaminated waste oils ampersand solvents, booties, plastic pellets, ion exchanged resins, activated carbon, radioactive-spiked organics, and well-characterized low-level liquid mixed wastes. MSO is shown to be a versatile technology for hazardous waste treatment and may be a solution to many waste disposal problems in DOE sites. This report presents the results obtained from operation of the integrated pilot-scale MSO treatment system through September 1998, and therefore represents a final report for fiscal year 1998 activities

  7. Comparison of high temperature gas particulate collectors for low level radwaste incinerator volume reduction systems

    International Nuclear Information System (INIS)

    Moscardini, R.L.; Johnston, J.R.; Waters, R.M.; Zievers, J.F.

    1983-01-01

    Incinerator system off-gases must be treated to prevent the release of particulates, noxious gases and radioactive elements to the environment. Fabric filters, venturi scrubbers, cyclone separators, an ceramic or metal filter candles have been used for particulate removal. Dry high temperature particulate collectors have the advantage of not creating additional liquid wastes. This paper presents a graphical comparison of different methods for filtering particles from high temperature incineration system off-gases. Eight methods of off-gas handling are compared. A much larger group may be present, but some judicious selection of different, but related systems was done for this paper based on experience with the Combustion Engineering Waste Incineration System (CE/WIS) Prototype. The eight types are: Inertial Devices, Electrostatic Precipitators (ESP), Standard Fabric Bags, Woven Ceramic Bags, Granular Beds, Sintered Metal Tubes, Felted Ceramic Bags and Ceramic Filter Candles. For high temperature LLRW particulate collection in incinerator off-gas systems, ceramic filter candles are the best overall choice

  8. Borosilicate glass as a matrix for immobilization of SRP high-level waste

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1980-01-01

    Approximately 22 million gallons of high-level radioactive defense waste are currently being stored in large underground tanks located on the Savannah River Plant (SRP) site in Aiken, South Carolina. One option now being considered for long-term management of this waste involves removing the waste from the tanks, chemically processing the waste, and immobilizing the potentially harmful radionuclides in the waste into a borosilicate glass matrix. The technology for producing waste glass forms is well developed and has been demonstrated on various scales using simulated as well as radioactive SRP waste. Recently, full-scale prototypical equipment has been made operational at SRP. This includes both a joule-heated ceramic melter and an in-can melter. These melters are a part of an integrated vitrification system which is under evaluation and includes a spray calciner, direct liquid feed apparatus, and various elements of an off-gas system. Two of the most important properties of the waste glass are mechanical integrity and leachability. Programs are in progress at SRL aimed at minimizing thermally induced cracking by carefully controlling cooling cycles and using ceramic liners or coatings. The leachability of SRP waste glass has been studied under many different conditions and consistently found to be low. For example, the leachability of actual SRP waste glass was found to be 10 -6 to 10 -5 g/(cm 2 )(day) initially and decreasing to 10 -9 to 10 -8 g/(cm 2 )(day) after 100 days. Waste glass is also being studied under anticipated storage conditions. In brine at 90 0 C, the leachability is about 5 x 10 -8 g/(cm 2 )(day) after 60 days. The effects of other geological media including granite, basalt, shale, and tuff are also being studied as part of the multibarrier isolation system

  9. Static Thermochemical Model of COREX Melter Gasifier

    Science.gov (United States)

    Srishilan, C.; Shukla, Ajay Kumar

    2018-02-01

    COREX is one of the commercial smelting reduction processes. It uses the finer size ore and semi-soft coal instead of metallurgical coke to produce hot metal from iron ore. The use of top gas with high calorific value as a by-product export gas makes the process economical and green. The predictive thermochemical model of the COREX process presented here enables rapid computation of process parameters such as (1) required amount of ore, coal, and flux; (2) amount of slag and gas generated; and (3) gas compositions (based on the raw material and desired hot metal quality). The model helps in predicting the variations in process parameters with respect to the (1) degree of metallization and (2) post-combustion ratio for given raw material conditions. In general reduction in coal, flux, and oxygen, the requirement is concomitant with an increase in the degree of metallization and post-combustion ratio. The model reported here has been benchmarked using industrial data obtained from the JSW Steel Plant, India.

  10. COMBINED RETENTION OF MOLYBDENUM AND SULFUR IN SIMULATED HIGH LEVEL WASTE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2009-10-16

    This study was undertaken to investigate the effect of elevated sulfate and molybdenum concentrations in nuclear waste glasses. A matrix of 24 glasses was developed and the glasses were tested for acceptability based on visual observations, canister centerline-cooled heat treatments, and chemical composition analysis. Results from the chemical analysis of the rinse water from each sample were used to confirm the presence of SO{sup 2-}{sub 4} and MoO{sub 3} on the surface of glasses as well as other components which might form water soluble compounds with the excess sulfur and molybdenum. A simple, linear model was developed to show acceptable concentrations of SO{sub 4}{sup 2-} and MoO{sub 3} in an example waste glass composition. This model was constructed for scoping studies only and is not ready for implementation in support of actual waste vitrification. Several other factors must be considered in determining the limits of sulfate and molybdenum concentrations in the waste vitrification process, including but not limited to, impacts on refractory and melter component corrosion, effects on the melter off-gas system, and impacts on the chemical durability and crystallization of the glass product.

  11. Draft, development and optimization of a fuel cell system for residential power generation with steam reformer; Entwurf, Aufbau und Optimierung eines PEM-Brennstoffzellensystems zur Hausenergieversorgung mit Dampfreformer

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H.

    2006-05-17

    The first development cycle of a residential power generation system is described. A steam reformer was chosen to produce hydrogen out of natural gas. After carbon monoxide purification with a preferential oxidation (PrOx) unit the hydrogen rich reformat gas is feed to the anode of the PEM-fuel cell, where due to the internal reaction with air oxygen form the cathode side water, heat and electricity is produced. Due to an incomplete conversion the anode off gas contains hydrogen and residual methane, which is feed to the burner of the steam reformer to reduce the needed amount of external fuel to heat the steam reformer. To develop the system the components are separately investigated and optimized in their construction or operation to meet the system requirements. After steady state and dynamic characterization of the components they were coupled one after another to build the system. To operate the system a system control was developed to operate and characterize this complex system. After characterization the system was analyzed for further optimization. During the development of the system inventions like a water cooled PrOx, an independent fuel cell controller or a burner for anodic off gas recirculation were made. The work gives a look into the interactions between the components and allows to understand the problems by coupling such components. (orig.)

  12. Effect of air infiltration in the reactor refrigerant on the radiation measurement systems of gaseous effluents treatment

    International Nuclear Information System (INIS)

    Zorrilla, S.; Padilla, I.

    1991-01-01

    The system of treatment of gassy effluents of the CLV, well-known as the off-gas this gifted one in turn of a mensuration system and registration (monitoring) that consists of diverse established radiation monitors in the discharge point to the atmosphere and in other intermediate points of the process. The purpose of the monitoring system is to maintain continually informed to the operators about the effectiveness of the treatment system, to take registrations of the total quantity of liberated radioactive materials and to give warning by means of an alarm system of any abnormal situation that could end in an approach to the limits marked by the technical specifications. In September 1989 an event happened in the one that the high alarms corresponding to the post-treatment of the off-gas were activated. For this situation the personnel proceeded to diminish the power of the reactor to be able to investigate the causes that gave place to the event. It was observed that the alarms of the monitor were activated by significant infiltrations of air in the primary circuit of the refrigerant, for what it was proceeded to enlarge the scales of the implied monitor or to reduce the sensibility of their readings

  13. Final Report - Glass Formulation Development and Testing for DWPF High AI2O3 HLW Sludges, VSL-10R1670-1, Rev. 0, dated 12/20/10

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Kot, W. K.; Gan, H.; Matlack, K. S.

    2013-11-13

    The principal objective of the work described in this Final Report is to develop and identify glass frit compositions for a specified DWPF high-aluminum based sludge waste stream that maximizes waste loading while maintaining high production rate for the waste composition provided by ORP/SRS. This was accomplished through a combination of crucible-scale, vertical gradient furnace, and confirmation tests on the DM100 melter system. The DM100-BL unit was selected for these tests. The DM100-BL was used for previous tests on HLW glass compositions that were used to support subsequent tests on the HLW Pilot Melter. It was also used to process compositions with waste loadings limited by aluminum, bismuth, and chromium, to investigate the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition, to process glass formulations at compositional and property extremes, and to investigate crystal settling on a composition that exhibited one percent crystals at 963{degrees}C (i.e., close to the WTP limit). The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. The tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Specific objectives for the melter tests are as follows: Determine maximum glass production rates without bubbling for a simulated SRS Sludge Batch 19 (SB19). Demonstrate a feed rate equivalent to 1125 kg/m{sup 2}/day glass production using melt pool bubbling. Process a high waste loading glass composition with the simulated SRS SB19 waste and measure the quality of the glass product. Determine the effect of argon as a bubbling gas on waste processing and the glass product including feed processing rate, glass redox, melter emissions, etc.. Determine differences in feed processing and glass characteristics for SRS SB19 waste simulated by the co-precipitated and direct

  14. Nuclear Waste Treatment Program annual report for FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Brouns, R.A.; Powell, J.A. (comps.)

    1989-11-01

    Much emphasis continues to be on the transfer of remote design technology for components integral to the West Valley Demonstration Project's (WVDP) vitrification process. In addition to preparing equipment specifications and drawings, Pacific Northwest Laboratory (PNL) staff also participated in numerous design coordination meetings and reviews of drawings prepared by other WVDP contractors. Nearly 200 jumper drawings for the vitrification cell were prepared by this program in FY 1988. The remote jumpers connect vessels in the cell to each other for the transfer of solutions and provide for the flow of materials, instrumentation signals, and power from outside the cell. Analysis required in preparing the jumper designs involved balance, thermal stress, seismic, set-down stress, and displacement calculations. Design efforts were begun on the canister decontamination and swipe station and on the remote maintenance station. Equipment selection and layouts of the vitrification off-gas treatment system, including a reamer to remotely clean the melter off-gas line, were finalized. Also finalized were the designs for the high-efficiency particulate air (HEPA) filter assemblies for heating, cooling and air conditioning of the vitrification cell.

  15. Health Physics experience during production of vitrified waste canisters at Advanced Vitrification System

    International Nuclear Information System (INIS)

    Deokar, U.V.; Mathew, P.; Khot, A.R.; Ganesh, G.; Tripathi, R.M.

    2016-01-01

    In Advanced Vitrification System (AVS-2) High Level Liquid Waste (HLW) from reprocessing plant was vitrified in glass matrix using Joule Heating Ceramic Melter (JHCM). During operation of JHCM health physics unit has developed remote online monitoring system to reduce collective dose and secondary waste. About 28.5 % of authorized collective dose was saved by remote online monitoring system to HP surveyor and plant operator. For measurement of radiation level on overpack the correlation factor of 10 was established between online monitor reading and over pack contact radiation level. This paper summarizes our HP experience during vitrification of 200 canisters at Advance Vitrification System-2 Tarapur. This was achieved by collective dose consumption of 66 % of authorized dose. Our effective radiological monitoring program has significantly reduced the personal exposure and generation of secondary waste

  16. Development and optimization of a high temperature coupling system thermoanalyzer/mass spectrometer

    International Nuclear Information System (INIS)

    Jagdfeld, H.J.

    1983-11-01

    The development of a high temperature coupling system was accomplished to carry out thermodynamic investigations during glass melting to solidify highly radioactive fission products into glass at a temperature up to 1200 0 C. The actual problem consisted of the fact that the gas species evaporating from the melter have to pass without condensation or without change of their composition a multistage pressure reducing system to enter the analysator unit of the mass spectrometer in the high vacuum. With the systems, offered at present, this is only possible up to approximately 450 0 C. The development of a new high temperature coupling included investigations of the gas dynamics, raw materials and thermic behaviour. (orig./EF) [de

  17. MEMBRANE SYSTEM FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM REMEDIATION OFF-GASES

    International Nuclear Information System (INIS)

    Wijmans, J.G.

    2003-01-01

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used to remediate soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Currently, carbon adsorption and catalytic incineration are the most common methods of treating these gas streams. Membrane Technology and Research, Inc. (MTR) proposed an alternative treatment technology based on selective membranes that separate the organic components from the gas stream, producing a VOC-free air stream. This technology can be applied to off-gases produced by various remediation activities and the systems can be skid-mounted and automated for easy transportation and unattended operation. The target performance for the membrane systems is to produce clean air (less than 10 ppmv VOC) for discharge or recycle, dischargeable water (less than 1 ppmw VOC), and a concentrated liquid VOC phase. This report contains the results obtained during Phase II of a two-phase project. In Phase I, laboratory experiments were carried out to demonstrate the feasibility of the proposed approach. In the subsequent Phase II project, a demonstration system was built and operated at the McClellan Air Force Base near Sacramento, California. The membrane system was fed with off-gas from a Soil Vacuum Extraction (SVE) system. The work performed in Phase II demonstrated that the membrane system can reduce the VOC concentration in remediation off-gas to 10 ppmv, while producing a concentrated VOC phase and dischargeable water containing less than 1 ppmw VOC. However, the tests showed that the presence of 1 to 3% carbon dioxide in the SVE off-gas reduced the treatment capacity of the system by a factor of three to four. In an economic analysis, treatment costs of the membrane

  18. Analysis on Storage Off-Gas Emissions from Woody, Herbaceous, and Torrefied Biomass

    Directory of Open Access Journals (Sweden)

    Jaya Shankar Tumuluru

    2015-03-01

    Full Text Available Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off‑gas emissions during storage. Storage canisters with gas‑collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO emissions at both 20 and 40 °C (1600 and 13,000 ppmv, whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO2 emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, at 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO2, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO2 is highest for switchgrass and CH4 is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.

  19. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    Science.gov (United States)

    Mendelsohn, Marshall H [Downers Grove, IL; Livengood, C David [Lockport, IL

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  20. Methods of Gas Phase Capture of Iodine from Fuel Reprocessing Off-Gas: A Literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Daryl Haefner

    2007-02-01

    A literature survey was conducted to collect information and summarize the methods available to capture iodine from fuel reprocessing off-gases. Techniques were categorized as either wet scrubbing or solid adsorbent methods, and each method was generally described as it might be used under reprocessing conditions. Decontamination factors are quoted only to give a rough indication of the effectiveness of the method. No attempt is made to identify a preferred capture method at this time, although activities are proposed that would provide a consistent baseline that would aid in evaluating technologies.

  1. Radioactive gas removing device from off-gas from nuclear reactor facility

    International Nuclear Information System (INIS)

    Funabashi, Kiyomi; Nishino, Yoshitaka; Yamaguchi, Tetsuo; Kurokawa, Hideaki; Miura, Eiichi; Matsumoto, Takayuki; Sawa, Toshio.

    1992-01-01

    The device of the present invention removes a small amount of radioactive gases ( 14 CO 2 and the like) at high efficiency from off gases of a nuclear reactor facility and solidifies them. That is, a module comprising a bundle of hydrophobic porous hollow thread membranes or gas separation hollow thread membranes is disposed. Off-gases are caused to flow to the inside of the hollow thread membranes and a NaOH aqueous solution is circulated as an absorption liquid to the outer side from a tank. Carbon dioxide in the off-gases is absorbed in the form of sodium carbonate by way of the hollow thread membranes. The absorption liquid is transferred from the tank to a securing vessel. An aqueous solution of barium chloride is added to the solidifying vessel as a solidifying liquid. Then, sodium carbonate is precipitated as barium carbonate. Further, if an aqueous solution of barium chloride is used as the absorption liquid, the solidifying vessel or the solidifying liquid is no more necessary. Since the device utilizes chemical reaction, it absorbs carbon dioxide efficiently. As a result, the concentration of gaseous carbon dioxide on the side of the hollow thread membrane liquid is reduced to make the diffusion in the hollow thread membrane faster and high removing efficiency can be obtained. (I.S.)

  2. Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment

    Science.gov (United States)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2013-10-01

    Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.

  3. Properties of the platinoid fission products during vitrification of high-level radioactive waste

    Science.gov (United States)

    Gong, W.; Lutze, W.; Perez-Cardenas, F.; Matlack, K. S.; Pegg, I. L.

    2006-05-01

    the prototypical off-gas treatment system. In the course of several weeks of testing, a total mass of 28,500 kg of glass was produced and sampled. The effect of operating conditions on the behavior of the platinoids was evaluated, including mixing the melt by bubbling with air vs. not bubbling, and the effects of reducing conditions (by adding sugar to the feed). Tests were conducted with Ru, Rh, Pd (0.17% total oxides) or Ru only (0.09 wt%) in the final glass product. The fractions of the platinoids discharged with the glass, deposited in the melter, and/or released to the off-gas were calculated from the analytical data. In addition, mathematical modeling of the distribution and movement of platinoid crystals within the melt was conducted for various furnace operating conditions. This modeling captured the flow, electrical, and thermal fields within the melt and included coupling of the local material properties to the local temperature. The experimental data on platinoid particle size and morphology were used to provide input for modeling their flow and sedimentation behavior with the objective of estimating accumulation rates and spatial distributions. The modeled deposition of the crystals was found to be uneven, with piles in the corners and thicker layers on slanted bottom surfaces. Consequently, contiguous electrical shorting paths could develop more quickly than what would be assumed based on uniform deposition. This paper will present the results from the experimental and modeling work and discuss their implications for melter lifetime estimation.

  4. Non-combustible solid waste treatment system

    International Nuclear Information System (INIS)

    Takada, Takashi; Kurahashi, Takafumi; Karita, Yoichi

    1995-01-01

    An induction heat melting system which gets a high volume reduction and a stable product in regard to strength, and good containment of radionuclide, is being developed. This system uses the heat from the ceramic canister itself previously placed in the induction heat melting furnace what is called the in-can type ceramic canister. As a results, this melting solidification system is applicable for the treatment of non-combustible solid waste made up of several different types of waste. This paper describes the basic process flow of the induction heat melting system, melting test results using a mock-up plant and radionuclide behavior test results which include radionuclide volatilization rate during the melting and decontamination performance data of the off-gas treatment system using a hot test apparatus. This paper also describes an outline of system, performance of system such as volume reduction ratio and treatment capacity, the safety design and safety measures of system about the non-combustible solid waste treatment system using this induction heat melting system. (author)

  5. HYDROFLUORIC ACID SCRUBBER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    PANESKO JV; MERRITT HD

    2011-05-18

    Each year over a million gallons of water are used to scrub hydrogen fluoride (HP) vapors from waste off-gas streams. Use of other potential scrubber solutions such as potassium hydroxide (KOH), aluminum nitrate nonahydrate (ANN), and monobasic aluminum nitrate (monoban) would result in significant volume reductions. A laboratory study was initiated to (1) demonstrate the effectiveness of these scrubber solutions to sorb HF, (2) determine if unexpected reactions occurred at flowsheet conditions, and (3) determine the consequences of deviation from flowsheet conditions. Caustic or aluminum scrubber solutions remove hydrogen fluoride from off-gas streams. Solids which appear with aluminum could be avoided by heating the scrubber solution.

  6. Design study of advanced nuclear fuel recycle system. Conceptual study of recycle system using molten salt

    International Nuclear Information System (INIS)

    Kakehi, I.; Shirai, N.; Hatano, M.; Kajitani, M.; Yonezawa, S.; Kawai, T.; Kawamura, F.; Tobe, K.; Takahashi, K.

    1996-12-01

    For the purpose of developing the future nuclear fuel recycle system, the design study of the advanced nuclear fuel recycle system is being conducted. This report describes intermediate accomplishments in the conceptual system study of the advanced nuclear fuel recycle system. Fundamental concepts of this system is the recycle system using molten salt which intend to break through the conventional concepts of purex and pellet fuel system. Contents of studies in this period are as follows, 1)feasibility study of the process by Cd-cathode for nitride fuel, 2)application study for the molten salt of low melting point (AlCl3+organic salt), 3)research for decladding (advantage of decladding by heat treatment), 4)behavior of FPs in electrorefining (behavior of iodine and volatile FP chlorides, FPs behavior in chlorination), 5)criticality analysis in electrorefiner, 6)drawing of off-gas flow diagram, 7)drawing of process machinery concept (cathode processor, vibration packing), 8)evaluation for the amounts of the high level radioactive wastes, 9)quality of the recycle fuels (FPs contamination of recycle fuel), 10)conceptual study of in-cell handling system, 11)meaning of the advanced nuclear fuel recycle system. The conceptual system study will be completed in describing concepts of the system and discussing issues for the developments. (author)

  7. DWPF COAL-CARBON WASTE ACCEPTANCE CRITERIA LIMIT EVALUATION BASED ON EXPERIMENTAL WORK (TANK 48 IMPACT STUDY)

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Choi, A.

    2010-10-15

    This report summarizes the results of both experimental and modeling studies performed using Sludge Batch 10 (SB10) simulants and FBSR product from Tank 48 simulant testing in order to develop higher levels of coal-carbon that can be managed by DWPF. Once the Fluidized Bed Steam Reforming (FBSR) process starts up for treatment of Tank 48 legacy waste, the FBSR product stream will contribute higher levels of coal-carbon in the sludge batch for processing at DWPF. Coal-carbon is added into the FBSR process as a reductant and some of it will be present in the FBSR product as unreacted coal. The FBSR product will be slurried in water, transferred to Tank Farm and will be combined with sludge and washed to produce the sludge batch that DWPF will process. The FBSR product is high in both water soluble sodium carbonate and unreacted coal-carbon. Most of the sodium carbonate is removed during washing but all of the coal-carbon will remain and become part of the DWPF sludge batch. A paper study was performed earlier to assess the impact of FBSR coal-carbon on the DWPF Chemical Processing Cell (CPC) operation and melter off-gas flammability by combining it with SB10-SB13. The results of the paper study are documented in Ref. 7 and the key findings included that SB10 would be the most difficult batch to process with the FBSR coal present and up to 5,000 mg/kg of coal-carbon could be fed to the melter without exceeding the off-gas flammability safety basis limits. In the present study, a bench-scale demonstration of the DWPF CPC processing was performed using SB10 simulants spiked with varying amounts of coal, and the resulting seven CPC products were fed to the DWPF melter cold cap and off-gas dynamics models to determine the maximum coal that can be processed through the melter without exceeding the off-gas flammability safety basis limits. Based on the results of these experimental and modeling studies, the presence of coal-carbon in the sludge feed to DWPF is found to have

  8. Sulfur Partitioning During Vitrification of INEEL Sodium Bearing Waste: Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Darab, John G.; Graham, Dennis D.; Macisaac, Brett D.; Russell, Renee L.; Smith, Harry D.; Vienna, John D.; Peeler, David K.

    2001-07-31

    The sodium bearing tank waste (SBW) at Idaho National Engineering and Environmental Laboratory (INEEL) contains high concentrations of sulfur (roughly 5 mass% of SO3 on a nonvolatile oxide basis). The amount of sulfur that can be feed to the melter will ultimately determine the loading of SBW in glass produced by the baseline (low-temperature, joule-heated, liquid-fed, ceramic-lined) melter. The amount of sulfur which can be fed to the melter is determined by several major factors including: the tolerance of the melter for an immiscible salt layer accumulation, the solubility of sulfur in the glass melt, the fraction of sulfur removed to the off-gas, and the incorporation of sulfur into the glass up to it?s solubility limit. This report summarizes the current status of testing aimed at determining the impacts of key chemical and physical parameters on the partitioning of sulfur between the glass, a molten salt, and the off-gas.

  9. Feasibility and conceptual design for a mobile incineration system for combustible LLW

    International Nuclear Information System (INIS)

    1982-09-01

    Since volume reduction by incineration, with subsequent solidification before shipping, can result in typical overall reductions between 40 to 1 and 60 to 1 (depending on density), there are strong economic incentives for small generators to incinerate their low-level radioactive wastes, and minimize the volumes for which they must pay to ship and bury. Because of these factors, the concept of a Mobile Incineration System (MIS) appears to be a viable alternative for small generators. This report covers the conceptual design of a MIS consisting of a controlled-air incinerator with the required off-gas treatment system mounted on two semi-trailers which can be brought to the site of the small generator. It also covers the regulatory and licensing aspects, as well as the economics related to the design. 17 tables

  10. Development of a combined soil-wash/in-furnace vitrification system for soil remediation at DOE sites

    International Nuclear Information System (INIS)

    Pegg, I.L.; Guo, Y.; Lahoda, E.J.; Lai, Shan-Tao; Muller, I.S.; Ruller, J.; Grant, D.C.

    1993-01-01

    This report addresses research and development of technologies for treatment of radioactive and hazardous waste streams at DOE sites. Weldon Spring raffinate sludges were used in a direct vitrification study to investigate their use as fluxing agents in glass formulations when blended with site soil. Storm sewer sediments from the Oak Ridge, TN, Y-12 facility were used for soil washing followed by vitrification of the concentrates. Both waste streams were extensively characterized. Testing showed that both mercury and uranium could be removed from the Y-12 soil by chemical extraction resulting in an 80% volume reduction. Thermal desorption was used on the contaminant-enriched minority fraction to separate the mercury from the uranium. Vitrification tests demonstrated that high waste loading glasses could be produced from the radioactive stream and from the Weldon Spring wastes which showed very good leach resistance, and viscosities and electrical conductivities in the range suitable for joule-heated ceramic melter (JHCM) processing. The conceptual process described combines soil washing, thermal desorption, and vitrification to produce clean soil (about 90% of the input waste stream), non-radioactive mercury, and a glass wasteform; the estimated processing costs for that system are about $260--$400/yd 3 . Results from continuous melter tests performed using Duratek's advanced JHCM (Duramelter) system are also presented. Since life cycle cost estimates are driven largely by volume reduction considerations, the large volume reductions possible with these multi-technology, blended waste stream approaches can produce a more leach resistant wasteform at a lower overall cost than alternative technologies such as cementation

  11. 2013 CEF RUN - PHASE 1 DATA ANALYSIS AND MODEL VALIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.

    2014-05-08

    Phase 1 of the 2013 Cold cap Evaluation Furnace (CEF) test was completed on June 3, 2013 after a 5-day round-the-clock feeding and pouring operation. The main goal of the test was to characterize the CEF off-gas produced from a nitric-formic acid flowsheet feed and confirm whether the CEF platform is capable of producing scalable off-gas data necessary for the revision of the DWPF melter off-gas flammability model; the revised model will be used to define new safety controls on the key operating parameters for the nitric-glycolic acid flowsheet feeds including total organic carbon (TOC). Whether the CEF off-gas data were scalable for the purpose of predicting the potential flammability of the DWPF melter exhaust was determined by comparing the predicted H{sub 2} and CO concentrations using the current DWPF melter off-gas flammability model to those measured during Phase 1; data were deemed scalable if the calculated fractional conversions of TOC-to-H{sub 2} and TOC-to-CO at varying melter vapor space temperatures were found to trend and further bound the respective measured data with some margin of safety. Being scalable thus means that for a given feed chemistry the instantaneous flow rates of H{sub 2} and CO in the DWPF melter exhaust can be estimated with some degree of conservatism by multiplying those of the respective gases from a pilot-scale melter by the feed rate ratio. This report documents the results of the Phase 1 data analysis and the necessary calculations performed to determine the scalability of the CEF off-gas data. A total of six steady state runs were made during Phase 1 under non-bubbled conditions by varying the CEF vapor space temperature from near 700 to below 300°C, as measured in a thermowell (T{sub tw}). At each steady state temperature, the off-gas composition was monitored continuously for two hours using MS, GC, and FTIR in order to track mainly H{sub 2}, CO, CO{sub 2}, NO{sub x}, and organic gases such as CH{sub 4}. The standard

  12. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    International Nuclear Information System (INIS)

    Powell, J.; Reich, M.; Barletta, R.

    1996-01-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small (∼1 m 3 ) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ''secondary.'' The induced current in the ''secondary'' heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., ∼1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature

  13. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.; Reich, M.; Barletta, R.

    1996-03-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small ({approximately}1 m{sup 3}) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ``secondary.`` The induced current in the ``secondary`` heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., {approximately}1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature.

  14. DEMONSTRATION BULK VITRIFICATION SYSTEM (DBVS) EXTERNAL REVIEW

    International Nuclear Information System (INIS)

    HONEYMAN, J.O.

    2007-01-01

    The Hanford mission to retrieve and immobilize 53 million gallons of radioactive waste from 177 underground storage tanks will be accomplished using a combination of processing by the waste treatment plant currently under construction, and a supplemental treatment that would process low-activity waste. Under consideration for this treatment is bulk vitrification, a versatile joule-heated melter technology which could be deployed in the tank farms. The Department proposes to demonstrate this technology under a Research, Development and Demonstration (RD and D) permit issued by the Washington State Department of Ecology using both non-radioactive simulant and blends of actual tank waste. From the demonstration program, data would be obtained on cost and technical performance to enable a decision on the potential use of bulk vitrification as the supplemental treatment technology for Hanford. An independent review by sixteen subject matter experts was conducted to assure that the technical basis of the demonstration facility design would be adequate to meet the objectives of the Demonstration Bulk Vitrification System (DBVS) program. This review explored all aspects of the program, including flowsheet chemistry, project risk, vitrification, equipment design and nuclear safety, and was carried out at a time when issues can be identified and corrected. This paper describes the mission need, review approach, technical recommendations and follow-on activities for the DBVS program

  15. TESTS WITH HIGH-BISMUTH HLW GLASSES FINAL REPORT VSL-10R1780-1, Rev. 0; 12/13/10

    International Nuclear Information System (INIS)

    Matlack, K.S.; Kruger, A.A.; Joseph, I.; Gan, H.; Kot, W.K.; Chaudhuri, M.; Mohr, R.K.; Mckeown, D.A.; Bardakei, T.; Gong, W.; Buecchele, A.C.; Pegg, I.L.

    2011-01-01

    This Final Report describes the testing of glass formulations developed for Hanford High Level Waste (HLW) containing high concentrations of bismuth. In previous work on high-bismuth HLW streams specified by the Office of River Protection (ORP), fully compliant, high waste loading compositions were developed and subjected to melter testing on the DM100 vitrification system. However, during heat treatment according to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW canister centerline cooling (CCC) curves, crucible melts of the high-bismuth glasses were observed to foam. Clearly, such an occurrence during cooling of actual HLW canisters would be highly undesirable. Accordingly, the present work involves larger-scale testing to determine whether this effect occurs under more prototypical conditions, as well as crucible-scale tests to determine the causes and potentially remediate the observed foaming behavior. The work included preparation and characterization of crucible melts designed to determine the underlying causes of the foaming behavior as well as to assess potential mitigation strategies. Testing was also conducted on the DM1200 HLW Pilot melter with a composition previously tested on the DM100 and shown to foam during crucible-scale CCC heat treatment. The DM1200 tests evaluated foaming of glasses over a range of bismuth concentrations poured into temperature-controlled, 55-gallon drums which have a diameter that is close to that of the full-scale WTP HLW canisters. In addition, the DM1200 tests provided the first large-scale melter test data on high-bismuth WTP HLW compositions, including information on processing rates, cold cap behavior and off-gas characteristics, and data from this waste composition on the prototypical DM1200 off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for ORP on the same waste composition. The scope of this study was outlined in a Test Plan that was

  16. TESTS WITH HIGH-BISMUTH HLW GLASSES FINAL REPORT VSL-10R1780-1 REV 0 12/13/10

    Energy Technology Data Exchange (ETDEWEB)

    MATLACK KS; KRUGER AA; JOSEPH I; GAN H; KOT WK; CHAUDHURI M; MOHR RK; MCKEOWN DA; BARDAKEI T; GONG W; BUECCHELE AC; PEGG IL

    2011-01-05

    This Final Report describes the testing of glass formulations developed for Hanford High Level Waste (HLW) containing high concentrations of bismuth. In previous work on high-bismuth HLW streams specified by the Office of River Protection (ORP), fully compliant, high waste loading compositions were developed and subjected to melter testing on the DM100 vitrification system. However, during heat treatment according to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW canister centerline cooling (CCC) curves, crucible melts of the high-bismuth glasses were observed to foam. Clearly, such an occurrence during cooling of actual HLW canisters would be highly undesirable. Accordingly, the present work involves larger-scale testing to determine whether this effect occurs under more prototypical conditions, as well as crucible-scale tests to determine the causes and potentially remediate the observed foaming behavior. The work included preparation and characterization of crucible melts designed to determine the underlying causes of the foaming behavior as well as to assess potential mitigation strategies. Testing was also conducted on the DM1200 HLW Pilot melter with a composition previously tested on the DM100 and shown to foam during crucible-scale CCC heat treatment. The DM1200 tests evaluated foaming of glasses over a range of bismuth concentrations poured into temperature-controlled, 55-gallon drums which have a diameter that is close to that of the full-scale WTP HLW canisters. In addition, the DM1200 tests provided the first large-scale melter test data on high-bismuth WTP HLW compositions, including information on processing rates, cold cap behavior and off-gas characteristics, and data from this waste composition on the prototypical DM1200 off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for ORP on the same waste composition. The scope of this study was outlined in a Test Plan that was

  17. Development of remote handling techniques for the HLLW solidification plant

    International Nuclear Information System (INIS)

    Tosha, Yoshitsugu; Iwata, Toshio; Inada, Eiichi; Nagaki, Hiroshi; Yamamoto, Masao

    1982-01-01

    To develop the techniques for the remote maintenance of the equipment in a HLLW (high-level liquid waste) solidification plant, the mock-up test facility (MTF) has been designed and constructed. Before its construction, the specific mock-up equipment was manufactured and tested. The results of the test and the outline of the MTF are described. As the mock-up equipment, a denitrater-concentrator, a ceramic melter and a canister handling equipment were selected. Remote operation was performed according to the maintenance program, and the evaluation of the component was conducted on the easiness of operation, performance, and the suitability to remote handling equipment. As a result of the test, four important elements were identified; they were guides, lifting fixtures, remote handling bolts, and remote pipe connectors. Many improvements of these elements were achieved, and reflected in the design of the MTF. The MTF is a steel-framed and slate-covered building (25 mL x 20 mW x 27 mH) with five storys of test bases. It contains the following four main systems: pretreatment and off-gas treatment system, glass melting system, canister handling system and secondary waste liquid recovery system. Further development of the remote maintenance techniques is expected through the test in the MTF. (Aoki, K.)

  18. System and method for the analysis of one or more compounds and/or species produced by a solution-based nuclear reactor

    Science.gov (United States)

    Policke, Timothy A; Nygaard, Eric T

    2014-05-06

    The present invention relates generally to both a system and method for determining the composition of an off-gas from a solution nuclear reactor (e.g., an Aqueous Homogeneous Reactor (AHR)) and the composition of the fissioning solution from those measurements. In one embodiment, the present invention utilizes at least one quadrupole mass spectrometer (QMS) in a system and/or method designed to determine at least one or more of: (i) the rate of production of at least one gas and/or gas species from a nuclear reactor; (ii) the effect on pH by one or more nitrogen species; (iii) the rate of production of one or more fission gases; and/or (iv) the effect on pH of at least one gas and/or gas species other than one or more nitrogen species from a nuclear reactor.

  19. Dynamic oxygen transfer measurements under operating conditions as a basis for the optimization of ventilation systems; Dynamische Sauerstoffeintragsmessungen unter Betriebsbedingungen als Grundlage zur Optimierung von Belueftungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Libra, J.A.; Biskup, M.; Wiesmann, U. [Technische Univ. Berlin (Germany). Inst. fuer Verfahrenstechnik; Sahlmann, C.; Gnirss, R. [Berliner Wasserbetriebe, Berlin (Germany)

    1999-07-01

    The largest single energy consumer at sewage treatment plants is the ventilation system of activated sludge tanks. This is why controlling and optimizing ventilation systems is the most appropriate approach to the cutting down of energy costs. The present paper reports on measurements of dynamic oxygen transfer by means of the off-gas method under operating conditions at the Berlin-Ruhleben sewage treatment plant. (orig.) [German] Der groesste Einzelenergieverbraucher auf Klaerwerken ist das Belueftungssystem von Belebungsbecken. Deshalb ist die Kontrolle und Optimierung der Belueftungssysteme der geeignete Weg zur Verringerung der Energiekosten. In diesem Beitrag wird ueber Messungen des dynamischen Sauerstoffeintrags mit der Abluft-Methode unter Betriebsbedingungen im Klaerwerk Berlin-Ruhleben berichtet. (orig.)

  20. Systems

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Papers in this session describe the concept of mined geologic disposal system and methods for ensuring that the system, when developed, will meet all technical requirements. Also presented in the session are analyses of system parameters, such as cost and nuclear criticality potential, as well as a technical analysis of a requirement that the system permit retrieval of the waste for some period of time. The final paper discusses studies under way to investigate technical alternatives or complements to the mined geologic disposal system. Titles of the presented papers are: (1) Waste Isolation System; (2) Waste Isolation Economics; (3) BWIP Technical Baseline; (4) Criticality Considerations in Geologic Disposal of High-Level Waste; (5) Retrieving Nuclear Wastes from Repository; (6) NWTS Programs for the Evaluation of Technical Alternatives or Complements to Mined Geologic Repositories - Purpose and Objectives

  1. systems

    Directory of Open Access Journals (Sweden)

    Alexander Leonessa

    2000-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  2. Contaminated Materials Treatment Program annual report for FY 1989

    International Nuclear Information System (INIS)

    Ross, W.A.; Powell, J.A.

    1990-08-01

    The Western New York Nuclear Services Center reprocessed nuclear fuel for five years until operations were terminated in 1972. Underground tanks at the site contain high-level waste (HLW) generated during the reprocessing operations. Based on original agreements, the state of New York has assumed responsibility for the wastes and the site. The Department of Energy (DOE) is assisting New York State, through the West Valley Demonstration Project (WVDP), in processing and solidifying the HLW. The site contractor for the WVDP is West Valley Nuclear Services Co., Inc. (WVNS). The Pacific Northwest Laboratory (PNL), through the West Valley Support Project, has been supporting WVNS and DOE in establishing vitrification and waste processing technology and capability at the West Valley Site. The specific objective of the West Valley Support Project during FY 1989 were to complete designs of remote equipment, assist in characterizing the WVNS feed, sampling, ceramic melter and off-gas systems, provide chemical analysis of the radioactive wastes and testing of future processes with actual radioactive wastes, provide testing and modeling studies of the reference WV waste product, and conduct special studies, such as evaluating corrosion of the waste tanks and supporting operation of the supernatant treatment system. 13 refs., 13 figs., 5 tabs

  3. Selective Reversible Absorption of the Industrial Off-Gas Components CO2 and NOx by Ionic Liquids

    DEFF Research Database (Denmark)

    Kaas-Larsen, Peter Kjartan; Thomassen, P.; Schill, Leonhard

    2016-01-01

    carriers in the form of so-called Supported Ionic Liquid Phase (SILP) materials. The potential of selected ionic liquids for absorption of CO2 and NOx are demonstrated and the possible interference of other gases influencing the stability and absorption capacity of the ionic liquids are investigated......Ionic liquids are promising new materials for climate and pollution control by selective absorption of CO2 and NOx in industrial off-gases. In addition practical cleaning of industrial off gases seems to be attractive by use of ionic liquids distributed on the surface of porous, high surface area...

  4. High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-12-01

    Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus’ process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

  5. Development of the preparation technology of macroporous sorbent for industrial off-gas treatment including 14C

    International Nuclear Information System (INIS)

    Cho, Il Hoon; Cho, Young Hyun; Park, Guen Il; Kim, In Tae; Kim, June Hyung; Ahn, Byung Kil

    2001-01-01

    For environmental and health effects due to increasing levels of pollution in the atmosphere, it is necessary to develop environmentally sound technologies for the treatment of greenhouse gases (CO 2 , CH 4 , CFC, etc.) and acid gases (SOx, NOx, etc.). Specifically, advanced technology for CO 2 capturing is currently one of the most important environmental issues in worldwide. 14 CO 2 , specially which has been gradually emerging issue in the nuclear facilities, is generated about 330 ppm from the CANDU (Canadian Deuterium Uranium Reactor) nuclear power plant and the DUPIC (Direct Use of spent PWR fuel in CANDU reactors) process which is the process of spent fuel treatment. For this purpose, it is necessary to develop the most efficient treatment technology of CO 2 capture by various lime materials in semi- or dry process, it should be also considering a removal performance, waste recycling and safety of disposal. In order to develop a highly active slaked lime as a sorbent for CO 2 and high temperature desulfurization, macroporous slaked lime is necessarily prepared by modified swelling process and equipment, which was developed under carrying out this project. And also for the optimal removal process of off-gases the removal performance tests of various sorbents and the effects of relative humidity and bed depth on the removal capacity must be considered

  6. Earth melter and method of disposing of feed materials

    Science.gov (United States)

    Chapman, C.C.

    1994-10-11

    An apparatus, and method of operating the apparatus is described, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials. 3 figs.

  7. US bureau of mines small-scale arc melter tests

    International Nuclear Information System (INIS)

    O'Connor, W.K.; Oden, L.L.; Turner, P.C.; Davis, D.L.

    1993-01-01

    The US Bureau of Mines, in cooperation with the Idaho National Engineering Laboratory (INEL), conducted over 30 hours of melting tests to vitrify simulated low-level radioactive wastes from the INEL. Radioactive Waste Management Complex (RWMC). Five separate waste compositions were investigated, each consisting of noncontaminated soil from the RWMC and surrogate materials used to simulate the actual buried wastes. The RWMC soil and five waste compositions were melted in a 50-lb, single-phase electric arc furnace with a water-cooled shell. These tests were conducted to determine melting parameters in preparation for a large-scale melting campaign to be conducted in the Bureau's 1-metric ton (mt), water-cooled-wall, 3-phase electric arc furnace. Bulk chemical composition was determined for each of the feed materials and for the slag, metal, fume solids, and offgas furnace products, and distributions were calculated for the key elements. The material balance for the furnace operation indicates that from 63 to 84 pct of the feed reported to the slag. Cerium, used as the surrogate for the radionuclides in the wastes, demonstrated an extremely strong affinity for the slag product. Although slag temperatures as low as 1,250 C were recorded when melting the RWMC soil, temperatures in excess of 1,600 C were necessary to achieve the fluidity required for a successful slag tap

  8. Review of failures in nuclear air cleaning systems (1975--1978)

    International Nuclear Information System (INIS)

    Moeller, D.W.

    1979-01-01

    During the period from January 1, 1975 through June 30, 1978, over 9,000 Licensee Event Reports (LERs) pertaining to the operation of commercial light water nuclear power plants in the US were reported to the Nuclear Regulatory Commission. Of these reports, over 1,200 (approximately 13%) pertained to failures in air monitoring, ventilating and cleaning systems. For BWR installations, over half of the reported events related to failures in equipment for monitoring the performance of air cleaning systems as contrasted to failures in the systems themselves. In PWR installations, failures in monitoring equipment amounted to about 32% of the total. Reported problem areas in BWR installations included the primary containment and standby gas treatment and off-gas systems, as well as the High Pressure Coolant Injection and Reactor Core Isolation Systems. For PWR installations, reported problem areas included primary containment and associated spray systems and waste processing equipment. Although data on reported failures in power reactor installations can be interpreted in a variety of ways, one message is clear. There is a need for research on the development of more reliable equipment for sampling and monitoring air systems. Equipment that provides inaccurate data on the performance of such systems can lead to as many problems as inadequacies in the systems themselves

  9. Demonstration of the iodine and NO/sub x/ removal systems in the Oak Ridge National Laboratory (ORNL) Integrated Equipment Test (IET) facility

    International Nuclear Information System (INIS)

    Jubin, R.T.; Lewis, B.E.

    1986-01-01

    The overall iodine removal performance of the condensers during phase-two experiments was good (i.e., very small amounts of iodine were recycled), with removal efficiency for both condensers ranging from 0.35 to 6.29%. The removal efficiency for the first condenser ranged from 0.03 to 5.78%, and the second condenser, from 0.02 to 3.42%. In all the cases studied, the overall iodine removal efficiency appeared to be smallest, with the first condenser operating near 50 0 C. While the 50 0 C operating temperature is not necessarily the optimum temperature, the data appear to indicate that the optimum is bounded by 50 and 70 0 C. Phase three of the Integrated Equipment Test dissolver off-gas (DOG) system tests verified the operation of the dual condensers and the NO/sub x/ scrubber column under a variety of operating conditions. The removal efficiencies of the condensers were higher than anticipated, generally approx.20% in these tests. The scrubber provided an NO/sub x/ effluent of approx.0.4 to 1.0% during the entire campaign, which is consistent with the acceptable NO/sub x/ levels in the off-gas to Iodox. In addition, this 0.4-to-1.0% NO/sub x/ level in the scrubber effluent confirms the BRET design decision to omit the NO/sub x/ scrubber in a system with a DOG NO/sub x/ concentration of approx.1.0%

  10. Corrosion assessment of refractory materials for high temperature waste vitrification

    International Nuclear Information System (INIS)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-01-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosion coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials

  11. systems

    Directory of Open Access Journals (Sweden)

    Patrick L. Brockett

    1978-01-01

    Full Text Available Suppose S={{Xnj,   j=1,2,…,kn}} is an infinitesimal system of random variables whose centered sums converge in law to a (necessarily infinitely divisible distribution with Levy representation determined by the triple (γ,σ2,M. If {Yj,   j=1,2,…} are independent indentically distributed random variables independent of S, then the system S′={{YjXnj,j=1,2,…,kn}} is obtained by randomizing the scale parameters in S according to the distribution of Y1. We give sufficient conditions on the distribution of Y in terms of an index of convergence of S, to insure that centered sums from S′ be convergent. If such sums converge to a distribution determined by (γ′,(σ′2,Λ, then the exact relationship between (γ,σ2,M and (γ′,(σ′2,Λ is established. Also investigated is when limit distributions from S and S′ are of the same type, and conditions insuring products of random variables belong to the domain of attraction of a stable law.

  12. SYSTEM

    Directory of Open Access Journals (Sweden)

    K. Swarnalatha

    2013-01-01

    Full Text Available Risk analysis of urban aquatic systems due to heavy metals turns significant due to their peculiar properties viz. persis tence, non-degradab ility, toxicity, and accumulation. Akkulam Veli (AV, an urba n tropical lake in south India is subjected to various environmental stresses due to multiple waste discharge, sand mining, developmental activities, tour ism related activitie s etc. Hence, a comprehensive approach is adopted for risk assessment using modified degree of contamination factor, toxicity units based on numerical sediment quality guidelines (SQGs, and potentialecological risk indices. The study revealed the presence of toxic metals such as Cr, C d, Pb and As and the lake is rated under ‘low ecological risk’ category.

  13. Characterization of Simulant LAW Envelope A, B, and C with Glass Formers

    International Nuclear Information Syste