WorldWideScience

Sample records for melanophores

  1. Melanophores for microtubule dynamics and motility assays.

    Science.gov (United States)

    Ikeda, Kazuho; Semenova, Irina; Zhapparova, Olga; Rodionov, Vladimir

    2010-01-01

    Microtubules (MTs) are cytoskeletal structures essential for cell division, locomotion, intracellular transport, and spatial organization of the cytoplasm. In most interphase cells, MTs are organized into a polarized radial array with minus-ends clustered at the centrosome and plus-ends extended to the cell periphery. This array directs transport of organelles driven by MT-based motor proteins that specifically move either to plus- or to minus-ends. Along with using MTs as tracks for cargo, motor proteins can organize MTs into a radial array in the absence of the centrosome. Transport of organelles and motor-dependent radial organization of MTs require MT dynamics, continuous addition and loss of tubulin subunits at minus- and plus-ends. A unique experimental system for studying the role of MT dynamics in these processes is the melanophore, which provides a useful tool for imaging of both dynamic MTs and moving membrane organelles. Melanophores are filled with pigment granules that are synchronously transported by motor proteins in response to hormonal stimuli. The flat shape of the cell and the radial organization of MTs facilitate imaging of dynamic MT plus-ends and monitoring of their interaction with membrane organelles. Microsurgically produced cytoplasmic fragments of melanophores are used to study the centrosome-independent rearrangement of MTs into a radial array. Here we describe the experimental approaches to study the role of MT dynamics in intracellular transport and centrosome-independent MT organization in melanophores. We focus on the preparation of cell cultures, microsurgery and microinjection, fluorescence labeling, and live imaging of MTs. 2010 Elsevier Inc. All rights reserved.

  2. Effect of X-ray irradiation on morphophysiological reactions of epidermal melanophor cells in the larvae of Rana temporaria L

    International Nuclear Information System (INIS)

    Popov, D.V.; Kalistratova, E.N.; Kaluzhina, A.V.

    1982-01-01

    Dynamics of physiological reactions of epidermal melanophors of larvae Rana temporaria L.. adapted to white and black backgrounds and irradiated with a dose of 700 R has been investigated. Ouring the first day after irradiation no day changes of melanophor index characteristic of intact tadpoles were discovered in whitebackground animals; melanophors preserve the aggregation state. Comparison of black background irradiated and control larvae didn't show confident differences in changes of their melanophor indices. Irradiation affects differently epidermal melanophors in the state of pigment dispersion and aggregation. It is suggested that pigment dispersion and aggregation in melanophor is realized at the expense of different cellular structures. It is shown that by the end of the experiment (21-st day) the amount of epidermal melanophor per surface unit is two times larger in black-ground larvae. General biological signaficance of revealed facts from the point of view of ontogenesis evolution is discussed

  3. Berberine-induced pigment dispersion in Bufo melanostictus melanophores by stimulation of beta-2 adrenergic receptors.

    Science.gov (United States)

    Ali, Sharique A; Naaz, Ishrat; Choudhary, Ram Kumar

    2014-02-01

    Reduced production of melanin by decreased or the absence of melanocytes leads to various hypopigmentation disorders, and the development of melanogenetic agents for photoprotection and hypopigmentation disorders is one of the top priority areas of research. Hence, the present study was carried out to elucidate the ability of berberine, a principal active ingredient present in the roots of the herb Berberis vulgaris to stimulate pigment dispersion in the isolated skin melanophores of the toad Bufo melanostictus. In the present study, mean melanophore size index of the isolated skin melanophores of B. melanostictus was assayed after treating with various concentrations of berberine. A marked melanin dispersion response leading to skin darkening was observed in the isolated melanophores of toad in response to berberine, which was found to be mediated through beta-2 adrenergic receptors. The physiologically significant dose-related melanin dispersion effects of berberine per se were found to be completely abolished by propranolol, which is a specific beta-2 adrenergic receptor blocker. These per se melanin dispersal effects were also found to be markedly potentiated by isoprenaline, which is a specific beta-adrenoceptor agonist. The results indicate that berberine causes a tremendous, dose-dependent, physiologically significant pigment dispersing in the isolated skin melanophores of B. melanostictus.

  4. PACAP system evolution and its role in melanophore function in teleost fish skin.

    Science.gov (United States)

    Cardoso, João C R; Félix, Rute C; Martins, Rute S T; Trindade, Marlene; Fonseca, Vera G; Fuentes, Juan; Power, Deborah M

    2015-08-15

    Pituitary adenylate cyclase-activating polypeptide (PACAP) administered to tilapia melanophores ex-vivo causes significant pigment aggregation and this is a newly identified function for this peptide in fish. The G-protein coupled receptors (GPCRs), adcyap1r1a (encoding Pac1a) and vipr2a (encoding Vpac2a), are the only receptors in melanophores with appreciable levels of expression and are significantly (p < 0.05) down-regulated in the absence of light. Vpac2a is activated exclusively by peptide histidine isoleucine (PHI), which suggests that Pac1a mediates the melanin aggregating effect of PACAP on melanophores. Paradoxically activation of Pac1a with PACAP caused a rise in cAMP, which in fish melanophores is associated with melanin dispersion. We hypothesise that the duplicate adcyap1ra and vipr2a genes in teleosts have acquired a specific role in skin and that the melanin aggregating effect of PACAP results from the interaction of Pac1a with Ramp that attenuates cAMP-dependent PKA activity and favours the Ca(2+)/Calmodulin dependent pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Irreversible stimulation of Xenopus melanophores by photoaffinity labelling with p-azidophenylalanine13-α-melanotropin

    NARCIS (Netherlands)

    Graan, P.N.E. de; Eberle, A.N.

    1980-01-01

    α-melanotropin induces pigment dispersion in melanophores and pigment formation in melanocytes and melanoma cells. The pigmentdispersingeffect of MSH is completely reversible in vitro, as the melanosomes reaggregate readily upon removal of the hormone. The primary site of action of

  6. Heterotrimeric Kinesin II Is the Microtubule Motor Protein Responsible for Pigment Dispersion in Xenopus Melanophores

    Science.gov (United States)

    Tuma, M. Carolina; Zill, Andrew; Le Bot, Nathalie; Vernos, Isabelle; Gelfand, Vladimir

    1998-01-01

    Melanophores move pigment organelles (melanosomes) from the cell center to the periphery and vice-versa. These bidirectional movements require cytoplasmic microtubules and microfilaments and depend on the function of microtubule motors and a myosin. Earlier we found that melanosomes purified from Xenopus melanophores contain the plus end microtubule motor kinesin II, indicating that it may be involved in dispersion (Rogers, S.L., I.S. Tint, P.C. Fanapour, and V.I. Gelfand. 1997. Proc. Natl. Acad. Sci. USA. 94: 3720–3725). Here, we generated a dominant-negative construct encoding green fluorescent protein fused to the stalk-tail region of Xenopus kinesin-like protein 3 (Xklp3), the 95-kD motor subunit of Xenopus kinesin II, and introduced it into melanophores. Overexpression of the fusion protein inhibited pigment dispersion but had no effect on aggregation. To control for the specificity of this effect, we studied the kinesin-dependent movement of lysosomes. Neither dispersion of lysosomes in acidic conditions nor their clustering under alkaline conditions was affected by the mutant Xklp3. Furthermore, microinjection of melanophores with SUK4, a function-blocking kinesin antibody, inhibited dispersion of lysosomes but had no effect on melanosome transport. We conclude that melanosome dispersion is powered by kinesin II and not by conventional kinesin. This paper demonstrates that kinesin II moves membrane-bound organelles. PMID:9852150

  7. The expression of melanopsin and clock genes in Xenopus laevis melanophores and their modulation by melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, A.P.C.; Obeid, N.N.; Castrucci, A.M.L.; Visconti, M.A. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-05-25

    Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression.

  8. The expression of melanopsin and clock genes in Xenopus laevis melanophores and their modulation by melatonin

    International Nuclear Information System (INIS)

    Bluhm, A.P.C.; Obeid, N.N.; Castrucci, A.M.L.; Visconti, M.A.

    2012-01-01

    Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression

  9. 5-HT receptor subtypes as key targets in mediating pigment dispersion within melanophores of teleost, Oreochromis mossambicus.

    Science.gov (United States)

    Salim, Saima; Ali, Ayesha S; Ali, Sharique A

    2013-02-01

    The presence of distinct class of 5-HT receptors in the melanophores of tilapia (Oreochromis mossambicus) is reported. The cellular responses to 5-HT (5-hydroxytryptamine), 5-HT(1), and 5-HT(2), agonists on isolated scale melanophores were observed with regard to pigment translocation within the cells. It was found that 5-HT exerted rapid and strong concentration dependent pigment granule dispersion within the melanophores. The threshold pharmacological dose of 5-HT that could elicit a measurable response was as low as 4.7×10(-12) M/L. Selective 5-HT(1) and 5-HT(2) agonists, sumatriptan and myristicin were investigated and resulted in dose-dependent pigment dispersion. The dispersing effects were effectively antagonized by receptor specific antagonists. It is suggested that 5-HT-induced physiological effects are mediated via distinct classes of receptors that possibly participate in modulation of pigmentary responses of the fish. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Carbon ion induced DNA double-strand breaks in melanophore B{sub 16}

    Energy Technology Data Exchange (ETDEWEB)

    Zengquan, Wei; Guangming, Zhou; Jufang, Wang; Jing, He; Qiang, Li; Wenjian, Li; Hongmei, Xie; Xichen, Cai; Huang, Tao; Bingrong, Dang; Guangwu, Han [Chinese Academy of Sciences, Lanzhou (China). Inst. of Modern Physics; Qingxiang, Gao [Lanzhou Univ. (China)

    1997-09-01

    DNA double-strand breaks (DSBs) in melanophore B{sub 16} induced by plateau and extended Bragg peak of 75 MeV/u {sup 12}C{sup 6+} ions were studied by using a technique of inverse pulsed-field gel electrophoresis (PIGE). DNA fragment lengths were distributed in two ranges: the larger in 1.4 Mbp-3.2 Mbp and the smaller in less than 1.2 Mbp. It indicates that distribution of DNA fragments induced by heavy ion irradiation is not stochastic and there probably are sensitive sites to heavy ions in DNA molecules of B{sub 16}. Percentage of DNA released from plug (PR) increased and trended towards a quasi-plateau {proportional_to}85% as dose increased. Content of the larger fragments decreased and flattened with increasing dose while content of the smaller ones increased and trended towards saturation. (orig.)

  11. Carbon ion induced DNA double-strand breaks in melanophore B16

    International Nuclear Information System (INIS)

    Wei Zengquan; Zhou Guangming; Wang Jufang; He Jing; Li Qiang; Li Wenjian; Xie Hongmei; Cai Xichen; Tao Huang; Dang Bingrong; Han Guangwu

    1997-01-01

    DNA double-strand breaks (DSBs) in melanophore B 16 induced by plateau and extended Bragg peak of 75 MeV/u 12 C 6+ ions were studied by using a technique of inverse pulsed-field gel electrophoresis (PIGE). DNA fragment lengths were distributed in two ranges: the larger in 1.4 Mbp-3.2 Mbp and the smaller in less than 1.2 Mbp. It indicates that distribution of DNA fragments induced by heavy ion irradiation is not stochastic and there probably are sensitive sites to heavy ions in DNA molecules of B 16 . Percentage of DNA released from plug (PR) increased and trended towards a quasi-plateau ∝85% as dose increased. Content of the larger fragments decreased and flattened with increasing dose while content of the smaller ones increased and trended towards saturation. (orig.)

  12. 5-HT receptors as novel targets for optimizing pigmentary responses in dorsal skin melanophores of frog, Hoplobatrachus tigerinus

    Science.gov (United States)

    Ali, Sharique A; Salim, Saima; Sahni, Tarandeep; Peter, Jaya; Ali, Ayesha S

    2012-01-01

    BACKGROUND AND PURPOSE Biochemical identification of 5-HT has revealed similar projection patterns across vertebrates. In CNS, 5-HT regulates major physiological functions but its peripheral functions are still emerging. The pharmacology of 5-HT is mediated by a diverse range of receptors that trigger different responses. Interestingly, 5-HT receptors have been detected in pigment cells indicating their role in skin pigmentation. Hence, we investigated the role of this monoaminergic system in amphibian pigment cells, melanophores, to further our understanding of its role in pigmentation biology together with its evolutionary significance. EXPERIMENTAL APPROACH Pharmacological profiling of 5-HT receptors was achieved using potent/selective agonists and antagonists. In vitro responses of melanophores were examined by Mean Melanophores Size Index assay. The melanophores of lower vertebrates are highly sensitive to external stimuli. The immediate cellular responses to drugs were defined in terms of pigment translocation within the cells. KEY RESULTS 5-HT exerted strong concentration-dependent pigment dispersion at threshold dose of 1 × 10−6 g·mL−1. Specific 5-HT1 and 5-HT2 receptor agonists, sumatriptan and myristicin. also induced dose-dependent dispersion. Yohimbine and metergoline synergistically antagonized sumatriptan-mediated dispersion, whereas trazodone partially blocked myristicin-induced dispersion. Conversely, 5-HT3 and 5-HT4 receptor agonists, 1 (3 chlorophenyl) biguanide (1,3 CPB) and 5-methoxytryptamine (5-MT), caused a dose-dependent pigment aggregation. The aggregatory effect of 1,3 CPB was completely blocked by ondansetron, whereas L-lysine partially blocked the effect of 5-MT. CONCLUSIONS AND IMPLICATIONS The results suggest that 5-HT-induced physiological effects are mediated via distinct classes of receptors, which possibly participate in the modulation of pigmentary responses in amphibian. PMID:21880033

  13. Regulation of Melanopsins and Per1 by α-MSH and Melatonin in Photosensitive Xenopus laevis Melanophores

    Directory of Open Access Journals (Sweden)

    Maria Nathália de Carvalho Magalhães Moraes

    2014-01-01

    Full Text Available α-MSH and light exert a dispersing effect on pigment granules of Xenopus laevis melanophores; however, the intracellular signaling pathways are different. Melatonin, a hormone that functions as an internal signal of darkness for the organism, has opposite effects, aggregating the melanin granules. Because light functions as an important synchronizing signal for circadian rhythms, we further investigated the effects of both hormones on genes related to the circadian system, namely, Per1 (one of the clock genes and the melanopsins, Opn4x and Opn4m (photopigments. Per1 showed temporal oscillations, regardless of the presence of melatonin or α-MSH, which slightly inhibited its expression. Melatonin effects on melanopsins depend on the time of application: if applied in the photophase it dramatically decreased Opn4x and Opn4m expressions, and abolished their temporal oscillations, opposite to α-MSH, which increased the melanopsins’ expressions. Our results demonstrate that unlike what has been reported for other peripheral clocks and cultured cells, medium changes or hormones do not play a major role in synchronizing the Xenopus melanophore population. This difference is probably due to the fact that X. laevis melanophores possess functional photopigments (melanopsins that enable these cells to primarily respond to light, which triggers melanin dispersion and modulates gene expression.

  14. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11.

    Science.gov (United States)

    Eom, Dae Seok; Inoue, Shinya; Patterson, Larissa B; Gordon, Tiffany N; Slingwine, Rebecca; Kondo, Shigeru; Watanabe, Masakatsu; Parichy, David M

    2012-01-01

    The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11). We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation.

  15. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11.

    Directory of Open Access Journals (Sweden)

    Dae Seok Eom

    Full Text Available The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11. We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation.

  16. Consistent melanophore spot patterns allow long-term individual recognition of Atlantic salmon Salmo salar.

    Science.gov (United States)

    Stien, L H; Nilsson, J; Bui, S; Fosseidengen, J E; Kristiansen, T S; Øverli, Ø; Folkedal, O

    2017-12-01

    The present study shows that permanent melanophore spot patterns in Atlantic salmon Salmo salar make it possible to use images of the operculum to keep track of individual fish over extended periods of their life history. Post-smolt S. salar (n = 246) were initially photographed at an average mass of 98 g and again 10 months later after rearing in a sea cage, at an average mass of 3088 g. Spots that were present initially remained and were the most overt (largest) 10 months later, while new and less overt spots had developed. Visual recognition of spot size and position showed that fish with at least four initial spots were relatively easy to identify, while identifying fish with less than four spots could be challenging. An automatic image analysis method was developed and shows potential for fast match processing of large numbers of fish. The current findings promote visual recognition of opercular spots as a welfare-friendly alternative to tagging in experiments involving salmonid fishes. © The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  17. Study of the effects of the casein derived bitter tastant on the melanophores in milieu with the melatonin receptors.

    Science.gov (United States)

    Mubashshir, Md; Ahmed, Fraz; Ovais, Mohd

    2011-10-01

    The present study was undertaken to ascertain whether the casein derived bitter tastant Cyclo (Leu-Trp) [CLT] has an affinity or not for the particular receptors of the pineal hormone, melatonin, on the melanophores of a major carp Labeo rohita (Ham.). The bitter tastant CLT, in the dose range of 3.34×10(-16) M to 3.34×10(-4) M, has induced an aggregatory effect but not in a dose dependent manner. Binding of CLT with the receptors may vary at different concentrations. Denervation of the melanophores has shown a complete inhibition of the CLT mediated aggregation. Prazosin has partially inhibited the aggregatory effect of CLT. Moreover, the bitter tastant's response is mediated through the α2 adrenoceptors only at particular dose ranges. The MT1 and MT2 melatonin receptor antagonist luzindole and the MT2 specific antagonist K185 have perfectly blocked the aggregatory effects of CLT. We have found that the CLT mediated aggregatory effect is dependent upon the release of neurotransmitters and the two subtypes of melatonin (MT) receptors (MT1 and MT2) possess a perfect affinity towards the bitter tastant CLT. Our study demands a need to further make a clinical research on the effects of bitter tastants on the physiology of the biological rhythm maintaining hormone melatonin.

  18. Photoaffinity labelling of MSH receptors on Anolis melanophores: irradiation technique and MSH photolabels for irreversible stimulation

    International Nuclear Information System (INIS)

    Eberle, A.N.

    1984-01-01

    Excised dorsal skin of Anolis carolinensis was exposed to high intensity UV-irradiation in the presence of different photoreactive alpha-MSH derivatives. The resulting covalent binding of the hormone to its receptor induced irreversible pigment dispersion. The duration of the longlasting response depended on the type and length of irradiation; it was maximal after two 5 min irradiation phases with a light intensity of approximately 180 mW/cm 2 and a spectrum from 310 to 550 nm, fresh hormone being added after the first phase. [N alpha-(4-Azidophenylacetyl-serine1]-alpha-MSH (I), [2'-(2-nitro-4-azidophenylsulphenyl)-tryptophan 9 ]-alpha-MSH (II) and [p-azidophenylalanine 13 ]-alpha-MSH (III) all inserted into the receptor to about the same extent, as judged from the persistence of the longlasting signal. In contrast, [D-alanine1, p-azidophenylalanin2 2 , norvaline 4 ]-alpha-MSH (IV) and [N alpha-(4-azidophenylacetyl)-serine1, leucine 9 ]-alpha-MSH (V) gave much less insertion and [leucine 9 , p-azidophenylalanine 13 ]-alpha-MSH (VI) hardly any insertion when applied in the same relative excess (5-fold the concentration inducing a maximal response). Covalent attachment of the cleavable photolabel [N alpha-(4-azidophenyl)-1, 3'-dithio-propionyl-serine1]-alpha-MSH (VII) and subsequent washing of the skin in buffer containing 1% beta-mercaptoethanol released the peptide from the receptor. Insertion of the C-terminal photolabel [p-azidophenylalanine 13 ]-alpha-MSH was reduced by the weak antagonist H-Phe-Ala-Trp-Gly-Gly-Pro-Val-NH 2 . These experiments prove that hormone receptors can be covalently labelled in tissue with very limited light transparency

  19. Cygnodraco mawsoni Waite, 1916

    African Journals Online (AJOL)

    1986-10-23

    Oct 23, 1986 ... lobe of caudal fin noticeably longer than upper lobe. The gut is long and straight, about a third of SL, and without a swollen section. The terminal vertebral ... triangular cluster of occipital melanophores; small melanophores on dorsal surface of at least posterior half of the gut; the larger, laterally dispersed ...

  20. Expression and physiological regulation of BDNF receptors in the neuroendocrine melanotrope cell of Xenopus laevis

    NARCIS (Netherlands)

    Kidane, A.H.; van Dooren, S.H.; Roubos, E.W.; Jenks, B.G.

    2007-01-01

    Brain-derived neurotrophic factor (BDNF) and alpha-melanophore-stimulating hormone (alpha-MSH) are co-sequestered in secretory granules in melanotrope cells of the pituitary pars intermedia of the amphibian Xenopus laevis. alpha-MSH is responsible for pigment dispersion in dermal melanophores during

  1. Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis.

    Science.gov (United States)

    Fukuzawa, Toshihiko

    2010-10-01

    Unusual light-reflecting pigment cells, "white pigment cells", specifically appear in the periodic albino mutant (a(p) /a(p)) of Xenopus laevis and localize in the same place where melanophores normally differentiate in the wild-type. The mechanism responsible for the development of unusual pigment cells is unclear. In this study, white pigment cells in the periodic albino were compared with melanophores in the wild-type, using a cell culture system and a tail-regenerating system. Observations of both intact and cultured cells demonstrate that white pigment cells are unique in (1) showing characteristics of melanophore precursors at various stages of development, (2) accumulating reflecting platelets characteristic of iridophores, and (3) exhibiting pigment dispersion in response to α-melanocyte stimulating hormone (α-MSH) in the same way that melanophores do. When a tadpole tail is amputated, a functionally competent new tail is regenerated. White pigment cells appear in the mutant regenerating tail, whereas melanophores differentiate in the wild-type regenerating tail. White pigment cells in the mutant regenerating tail are essentially similar to melanophores in the wild-type regenerating tail with respect to their localization, number, and response to α-MSH. In addition to white pigment cells, iridophores which are never present in the intact tadpole tail appear specifically in the somites near the amputation level in the mutant regenerating tail. Iridophores are distinct from white pigment cells in size, shape, blue light-induced fluorescence, and response to α-MSH. These findings strongly suggest that white pigment cells in the mutant arise from melanophore precursors and accumulate reflecting platelets characteristic of iridophores.

  2. Regeneration of neural crest derivatives in the Xenopus tadpole tail

    Directory of Open Access Journals (Sweden)

    Slack Jonathan MW

    2007-05-01

    Full Text Available Abstract Background After amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives has not previously been examined and is described in this paper. Results Labelling of the spinal cord by electroporation, or by orthotopic grafting of transgenic tissue expressing GFP, shows that no cells emigrate from the spinal cord in the course of regeneration. There is very limited regeneration of the spinal ganglia, but new neurons as well as fibre tracts do appear in the regenerated spinal cord and the regenerated tail also contains abundant peripheral innervation. The regenerated tail contains a normal density of melanophores. Cell labelling experiments show that melanophores do not arise from the spinal cord during regeneration, nor from the mesenchymal tissues of the skin, but they do arise by activation and proliferation of pre-existing melanophore precursors. If tails are prepared lacking melanophores, then the regenerates also lack them. Conclusion On regeneration there is no induction of a new neural crest similar to that seen in embryonic development. However there is some regeneration of neural crest derivatives. Abundant melanophores are regenerated from unpigmented precursors, and, although spinal ganglia are not regenerated, sufficient sensory systems are produced to enable essential functions to continue.

  3. Morphological differences in the skin of marble trout Salmo marmoratus and of brown trout Salmo trutta

    Czech Academy of Sciences Publication Activity Database

    Sivka, U.; Halačka, Karel; Sušnik Bajec, S.

    2012-01-01

    Roč. 50, č. 2 (2012), s. 255-262 ISSN 0239-8508 R&D Projects: GA AV ČR 1QS500450513 Institutional support: RVO:68081766 Keywords : melanophore * epidermis * dermis * colour pattern * pigmentation Subject RIV: EG - Zoology Impact factor: 1.101, year: 2012 http://czasopisma.viamedica.pl/fhc/article/view/14750

  4. Distribution and ultrastructure of pigment cells in the skins of normal and albino adult turbot, Scophthalmus Maximus

    Institute of Scientific and Technical Information of China (English)

    GUO Huarong; HUANG Bing; QI Fei; ZHANG Shicui

    2007-01-01

    The distribution and ultrastructure of pigment cells in skins of normal and albino adult turbots were examined with transmission electron microscopy (TEM). Three types of pigment cells of melanophore, iridophore and xanthophore have been recognized in adult turbot skins. The skin color depends mainly on the amount and distribution of melanophore and iridophore, as xanthophore is quite rare. No pigment cells can be found in the epidermis of the skins. In the pigmented ocular skin of the turbot, melanophore and iridophore are usually co-localized in the dermis. This is quite different from the distribution in larvae skin. In albino and white blind skins of adult turbots, however, only iridophore monolayer still exists, while the melanophore monolayer disappears. This cytological evidence explains why the albino adult turbot, unlike its larvae, could never resume its body color no matter what environmental and nutritional conditions were provided. Endocytosis is quite active in the cellular membrane of the iridophore. This might be related to the formation of reflective platelet and stability of the iridophore.

  5. Positive Relationship between Abdominal Coloration and Dermal Melanin Density in Phrynosomatid Lizards

    Science.gov (United States)

    Vanessa S. Quinn; Diana K. Hews

    2003-01-01

    Phrynosomatid lizards show considerable variation among species in the occurrence of a secondary sexual trait, blue abdominal coloration. The production of blue skin may be controlled by at least two cellular components, melanin in melanophores, and guanine in iridophores. To examine the hypothesis that a mechanism producing variation in abdominal coloration is...

  6. Ultrastructural and biochemical analysis of epidermal xanthophores and dermal chromatophores of the teleost Sparus aurata.

    Science.gov (United States)

    Ferrer, C; Solano, F; Zuasti, A

    1999-04-01

    We have studied the pigmentary system of the teleost Sparus aurata skin by electron microscopy and chromatographic analysis. Under electron microscopy, we found the dermis to contain the three major types of recognized chromatophores: melanophores, xanthophores and iridophores. Melanophores were more abundant in the dorsal region, whereas the iridophores were more abundant in the ventral region. The most important discovery was that of epidermal xanthophores. Epidermal xanthophores were the only chromatophores in the epidermis, something only found in S aurata and in a teleost species living in the Antartic sea. In contrast, the biochemical analysis did not establish any special characteristics: we found pteridine and flavin pigments located mostly in the pigmented dorsal region. Riboflavin and pterin were two of the most abundant coloured pigment types, but other colourless pigments such as xanthopterin and isoxanthopterin were also detected.

  7. Morphological and molecular characterization of dietary-induced pseudo-albinism during post-embryonic development of Solea senegalensis (Kaup, 1858.

    Directory of Open Access Journals (Sweden)

    Maria J Darias

    Full Text Available The appearance of the pseudo-albino phenotype was investigated in developing Senegalese sole (Solea senegalensis, Kaup 1858 larvae at morphological and molecular levels. In order to induce the development of pseudo-albinos, Senegalese sole larvae were fed Artemia enriched with high levels of arachidonic acid (ARA. The development of their skin pigmentation was compared to that of a control group fed Artemia enriched with a reference commercial product. The relative amount of skin melanophores, xanthophores and iridophores revealed that larval pigmentation developed similarly in both groups. However, results from different relative proportions, allocation patterns, shapes and sizes of skin chromatophores revealed changes in the pigmentation pattern between ARA and control groups from 33 days post hatching onwards. The new populations of chromatophores that should appear at post-metamorphosis were not formed in the ARA group. Further, spatial patterns of distribution between the already present larval xanthophores and melanophores were suggestive of short-range interaction that seemed to be implicated in the degradation of these chromatophores, leading to the appearance of the pseudo-albino phenotype. The expression profile of several key pigmentation-related genes revealed that melanophore development was promoted in pseudo-albinos without a sufficient degree of terminal differentiation, thus preventing melanogenesis. Present results suggest the potential roles of asip1 and slc24a5 genes on the down-regulation of trp1 expression, leading to defects in melanin production. Moreover, gene expression data supports the involvement of pax3, mitf and asip1 genes in the developmental disruption of the new post-metamorphic populations of melanophores, xanthophores and iridophores.

  8. Inductive differentiation of two neural lineages reconstituted in a microculture system from Xenopus early gastrula cells.

    Science.gov (United States)

    Mitani, S; Okamoto, H

    1991-05-01

    Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural

  9. Does MCH play a role on establishment or maintenance of social hierarchy in Nile tilapia?

    Science.gov (United States)

    Ramanzini, Guilherme Corrêa; Volpato, Gilson Luiz; Visconti, Maria Aparecida

    2018-01-01

    Body coloration has a fundamental role in animal communication by signaling sex, age, reproductive behavior, aggression, etc. Nile-tilapia exhibits dominance hierarchy and the dominants are paler than subordinates. During social interactions in these animals, these color changes occur rapidly, and normally the subordinates become dark. In teleosteans, from the great number of hormones and neurotransmitters involved in color changes, melanocyte hormone stimulates (α-MSH) and melanin concentrates hormone (MCH) are the most remarkable. The aim of this project was to investigate the role of MCH in the establishment of hierarchical dominance of the Nile-tilapia. We analyzed the effect of background coloration in the dominance hierarchy. It was then compared to the melanophore sensibility of dominants and subordinates' fishes to MCH; finally, it was checked if the social rank affects the number of these pigment cells in dominants and subordinated fishes. Fishes which have a social hierarchy established and adjusted individually to the background exhibits paler body coloration when a visual contact was possible, independently of previous social rank and background color. Probably, even recognizing each other, fishes could be defending their new territory. Melanophores of the subordinate fishes were more sensible to MCH than dominants. It suggests that dominants fishes, which are paler than subordinates, could be under a chronic effect of MCH, which could be due a desensitization of melanophores to this hormone. The opposite effect seems to be occurring on subordinate fishes. It was not observed a significant change in the number of melanophores when the fishes were exposed to a prolonged period of agonistic interaction. It is possible that the exposure time for this interaction might not have been sufficient to have any change in the number of these cells of dominants and subordinate fishes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. New species of miniature fish from Marajó Island, Pará, Brazil, with comments on its relationships (Characiformes: Characidae

    Directory of Open Access Journals (Sweden)

    Manoela M. F. Marinho

    Full Text Available A new miniature species of the family Characidae from Marajó Island, Pará State, Brazil is described and assigned to the genus Tyttobrycon. The new species can be distinguished from its congeners primarily by having multicuspid teeth on jaws, and additionally by having the combination of 5-7 premaxillary teeth, dorsal fin only with scattered melanophores and the presence of an adipose fin.

  11. Morphological and Molecular Characterization of Dietary-Induced Pseudo-Albinism during Post-Embryonic Development of Solea senegalensis (Kaup, 1858)

    Science.gov (United States)

    Darias, Maria J.; Andree, Karl B.; Boglino, Anaïs; Rotllant, Josep; Cerdá-Reverter, José Miguel; Estévez, Alicia; Gisbert, Enric

    2013-01-01

    The appearance of the pseudo-albino phenotype was investigated in developing Senegalese sole (Solea senegalensis, Kaup 1858) larvae at morphological and molecular levels. In order to induce the development of pseudo-albinos, Senegalese sole larvae were fed Artemia enriched with high levels of arachidonic acid (ARA). The development of their skin pigmentation was compared to that of a control group fed Artemia enriched with a reference commercial product. The relative amount of skin melanophores, xanthophores and iridophores revealed that larval pigmentation developed similarly in both groups. However, results from different relative proportions, allocation patterns, shapes and sizes of skin chromatophores revealed changes in the pigmentation pattern between ARA and control groups from 33 days post hatching onwards. The new populations of chromatophores that should appear at post-metamorphosis were not formed in the ARA group. Further, spatial patterns of distribution between the already present larval xanthophores and melanophores were suggestive of short-range interaction that seemed to be implicated in the degradation of these chromatophores, leading to the appearance of the pseudo-albino phenotype. The expression profile of several key pigmentation-related genes revealed that melanophore development was promoted in pseudo-albinos without a sufficient degree of terminal differentiation, thus preventing melanogenesis. Present results suggest the potential roles of asip1 and slc24a5 genes on the down-regulation of trp1 expression, leading to defects in melanin production. Moreover, gene expression data supports the involvement of pax3, mitf and asip1 genes in the developmental disruption of the new post-metamorphic populations of melanophores, xanthophores and iridophores. PMID:23874785

  12. Pigment pattern in jaguar/obelix zebrafish is caused by a Kir7.1 mutation: implications for the regulation of melanosome movement.

    Directory of Open Access Journals (Sweden)

    Motoko Iwashita

    2006-11-01

    Full Text Available Many animals have a variety of pigment patterns, even within a species, and these patterns may be one of the driving forces of speciation. Recent molecular genetic studies on zebrafish have revealed that interaction among pigment cells plays a key role in pattern formation, but the mechanism of pattern formation is unclear. The zebrafish jaguar/obelix mutant has broader stripes than wild-type fish. In this mutant, the development of pigment cells is normal but their distribution is altered, making these fish ideal for studying the process of pigment pattern formation. Here, we utilized a positional cloning method to determine that the inwardly rectifying potassium channel 7.1 (Kir7.1 gene is responsible for pigment cell distribution among jaguar/obelix mutant fish. Furthermore, in jaguar/obelix mutant alleles, we identified amino acid changes in the conserved region of Kir7.1, each of which affected K(+ channel activity as demonstrated by patch-clamp experiments. Injection of a bacterial artificial chromosome containing the wild-type Kir7.1 genomic sequence rescued the jaguar/obelix phenotype. From these results, we conclude that mutations in Kir7.1 are responsible for jaguar/obelix. We also determined that the ion channel function defect of melanophores expressing mutant Kir7.1 altered the cellular response to external signals. We discovered that mutant melanophores cannot respond correctly to the melanosome dispersion signal derived from the sympathetic neuron and that melanosome aggregation is constitutively activated. In zebrafish and medaka, it is well known that melanosome aggregation and subsequent melanophore death increase when fish are kept under constant light conditions. These observations indicate that melanophores of jaguar/obelix mutant fish have a defect in the signaling pathway downstream of the alpha2-adrenoceptor. Taken together, our results suggest that the cellular defect of the Kir7.1 mutation is directly responsible for

  13. Metabolism and Pigmentation Patterns during Metamorphosis of Plaice (Pleuronectes platessa) larvae

    DEFF Research Database (Denmark)

    Christensen, Mette Nørregaard; Korsgaard, Bodil

    1999-01-01

    Protein metabolism, growth and pigmentation patterns were studied during the process of metamorphosis in the plaice Pleuronectes platessa. Based on the morphological and concurrent metabolic observations the process of metamorphosis could be divided into three different phases: (1) premetamorphosis....... Calcium assimilation reached a plateau depicting complete ossification of the skeleton. Lipid catabolism dominated by the end of the metamorphosis process. Pigmentation appeared to develop in two marked phases. During premetamorphosis larval melanophores and xanthophores dominated the pigmentation pattern...

  14. Histology and ultrastructure of the integumental chromatophores in tokay gecko (Gekko gecko) (Linnaeus, 1758) skin.

    Science.gov (United States)

    Szydłowski, Paweł; Madej, Jan Paweł; Mazurkiewicz-Kania, Marta

    2017-01-01

    This paper describes the relationship between the arrangement of dermal chromatophores in tokay gecko ( Gekko gecko ) skin and the formation of wild-type colouration, with emphasis on the ultrastructure of chromatophores. The samples of the tokay gecko skin were collected from wild-type colouration adult specimens. Morphology and distribution of chromatophores was determined by using light microscopy and transmission electron microscopy. The present study revealed that orange/red coloured skin of G. gecko contained erythrophores, which were located under basement membrane, and usually comprised deeper situated iridophores and melanophores which were form single layer with iridophores or were occupying the deepest region of dermis. In orange/red coloured skin, erythrophores were the predominant chromatophores. However in blue areas these cells occurred in small numbers or were not noticed at all. In blue pigmented areas predominated iridophores and melanophores. Iridophores were found just under basement membrane, but this superficial location of iridophores occured only in areas without erythrophores. Distribution of erythrophores, melanophores, and iridophores determines the characteristic blue colour of the tokay gecko skin with orange/red dots on the whole body.

  15. Post-embryonic nerve-associated precursors to adult pigment cells: genetic requirements and dynamics of morphogenesis and differentiation.

    Directory of Open Access Journals (Sweden)

    Erine H Budi

    2011-05-01

    Full Text Available The pigment cells of vertebrates serve a variety of functions and generate a stunning variety of patterns. These cells are also implicated in human pathologies including melanoma. Whereas the events of pigment cell development have been studied extensively in the embryo, much less is known about morphogenesis and differentiation of these cells during post-embryonic stages. Previous studies of zebrafish revealed genetically distinct populations of embryonic and adult melanophores, the ectotherm homologue of amniote melanocytes. Here, we use molecular markers, vital labeling, time-lapse imaging, mutational analyses, and transgenesis to identify peripheral nerves as a niche for precursors to adult melanophores that subsequently migrate to the skin to form the adult pigment pattern. We further identify genetic requirements for establishing, maintaining, and recruiting precursors to the adult melanophore lineage and demonstrate novel compensatory behaviors during pattern regulation in mutant backgrounds. Finally, we show that distinct populations of latent precursors having differential regenerative capabilities persist into the adult. These findings provide a foundation for future studies of post-embryonic pigment cell precursors in development, evolution, and neoplasia.

  16. Morphological differences in the skin of marble trout Salmo marmoratus and of brown trout Salmo trutta

    Directory of Open Access Journals (Sweden)

    Urška Sivka

    2012-07-01

    Full Text Available Despite being genetically very closely related, the marble trout Salmo marmoratus and the brown trout Salmo trutta exhibit marked phenotypic differences, particularly with regard to skin pigmentation. Histological analysis of skin from the head and gill cover of differently aged individuals of the two species was carried out in order to characterize differences in skin structure. The basic structure of skin of the individuals studied corresponded with that described for other salmonids, though the head epidermis was somewhat thicker in S. marmoratus than in S. trutta, thickening with age in both species. Numerous secretory goblet cells and sporadic secretory sacciform cells were observed in the upper and middle part of the epidermis in both species. Melanophores were present in both species only in the dermis, and were bigger in S. marmoratus and present at lower average density than in S. trutta, and more or less constant across all age classes. In adult S. marmoratus with fully established marble pigmentation, light areas at low density with small (i.e. aggregated melanophores were present, while in S. trutta melanophores were more uniformly distributed.

  17. Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids.

    Science.gov (United States)

    Djurdjevič, Ida; Kreft, Mateja Erdani; Sušnik Bajec, Simona

    2015-11-01

    Skin pigmentation in animals is an important trait with many functions. The present study focused on two closely related salmonid species, marble trout (Salmo marmoratus) and brown trout (S. trutta), which display an uncommon labyrinthine (marble-like) and spot skin pattern, respectively. To determine the role of chromatophore type in the different formation of skin pigment patterns in the two species, the distribution and ultrastructure of chromatophores was examined with light microscopy and transmission electron microscopy. The presence of three types of chromatophores in trout skin was confirmed: melanophores; xanthophores; and iridophores. In addition, using correlative microscopy, erythrophore ultrastructure in salmonids was described for the first time. Two types of erythrophores are distinguished, both located exclusively in the skin of brown trout: type 1 in black spot skin sections similar to xanthophores; and type 2 with a unique ultrastructure, located only in red spot skin sections. Morphologically, the difference between the light and dark pigmentation of trout skin depends primarily on the position and density of melanophores, in the dark region covering other chromatophores, and in the light region with the iridophores and xanthophores usually exposed. With larger amounts of melanophores, absence of xanthophores and presence of erythrophores type 1 and type L iridophores in the black spot compared with the light regions and the presence of erythrophores type 2 in the red spot, a higher level of pigment cell organisation in the skin of brown trout compared with that of marble trout was demonstrated. Even though the skin regions with chromatophores were well defined, not all the chromatophores were in direct contact, either homophilically or heterophilically, with each other. In addition to short-range interactions, an important role of the cellular environment and long-range interactions between chromatophores in promoting adult pigment pattern

  18. Chromosomal studies on radiation-induced gynogenesis and diploid gynogenesis in the fish Oryzias latipes

    International Nuclear Information System (INIS)

    Ijiri, Kenichi

    1983-01-01

    When sperm of the fish Oryzias latipes exposed to radiation fertilize normal eggs, the 'Hertwig effect' occurs, namely a high mortality of embryos at low doses but a better survival at high doses. This phenomenon induced by ultraviolet light (UV) or gamma-rays was previously studied quantitatively using the survival frequencies of embryos at various stages during their development. From the genetic analysis of both UV and gamma-ray effects, using the wild-type sperm of this species and then checking the appearance of melanophores on the yolk sacs of embryos, it was suggested that sperm chromosomes do not participate in embryonic development at high doses. The number of chromosomes in cells of the embryos which survive till stage 26 were counted, finding haploid embryos in the dose region of the Hertwig phenomenon. The analysis of chromosome number was mostly in agreement with the genetic studies, but there existed a few cases in which these two methods of analysis did show the opposite results. From these data, the validity of the genetic studies based on the appearance of melanophores on the yolk sac is discussed. Attempts to produce diploid gynogenesis through the cold temperature treatment are also reported. (author)

  19. Hormonal regulation of colour change in eyes of a cryptic fish

    Directory of Open Access Journals (Sweden)

    Helen Nilsson Sköld

    2015-01-01

    Full Text Available Colour change of the skin in lower vertebrates such as fish has been a subject of great scientific and public interest. However, colour change also takes place in eyes of fish and while an increasing amount of data indicates its importance in behaviour, very little is known about its regulation. Here, we report that both eye and skin coloration change in response to white to black background adaptation in live sand goby Pomatoschistus minutes, a bentic marine fish. Through in vitro experiments, we show that noradrenaline and melanocyte concentrating hormone (MCH treatments cause aggregation of pigment organelles in the eye chromatophores. Daylight had no aggregating effect. Combining forskolin to elevate intracellular cyclic adenosine monophosphate (cAMP with MCH resulted in complete pigment dispersal and darkening of the eyes, whereas combining prolactin, adrenocorticotrophic hormone (ACTH or melanocyte stimulating hormone (α-MSH with MCH resulted in more yellow and red eyes. ACTH and MSH also induced dispersal in the melanophores, resulting in overall darker eyes. By comparing analysis of eyes, skin and peritoneum, we conclude that the regulation pattern is similar between these different tissues in this species which is relevant for the cryptic life strategy of this species. With the exception of ACTH which resulted in most prominent melanophore pigment dispersal in the eyes, all other treatments provided similar results between tissue types. To our knowledge, this is the first study that has directly analysed hormonal regulation of physiological colour change in eyes of fish.

  20. Regulation of eye and jaw colouration in three-spined stickleback Gasterosteus aculeatus.

    Science.gov (United States)

    Franco-Belussi, L; De Oliveira, C; Sköld, H N

    2018-03-25

    Fish can change their skin and eye colour for background matching and signalling. Males of Gasterosteus aculeatus develop ornamental blue eyes and a red jaw during the reproductive season, colours that are further enhanced during courtship. Here, the effects of different hormones on physiological colour changes in the eyes and jaws of male and female G. aculeatus were investigated in vitro. In an in vivo experiment, G. aculeatus were injected with a receptor blocker of a pivotal hormone (noradrenaline) that controls colour change. In males, noradrenaline had aggregating effects on melanophore and erythrophore pigments resulting in blue eyes and a pale jaw, whereas melanocyte-concentrating hormone (MCH) and melatonin resulted in a pale jaw only. When noradrenalin was combined with melanocyte stimulating hormone (MSH) or prolactin, the jaw became red, while the eyes remained blue. In vivo injection of yohimbine, an alpha-2 adrenoreceptor blocker, resulted in dispersion of melanophore pigment in the eyes and inhibited the blue colouration. Altogether, the data suggest that noradrenalin has a pivotal role in the short-term enhancement of the ornamental colouration of male G. aculeatus, potentially together with MSH or prolactin. This study also found a sex difference in the response to MCH, prolactin and melatonin, which may result from different appearance strategies in males, versus the more cryptic females. © 2018 The Fisheries Society of the British Isles.

  1. Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish

    Science.gov (United States)

    Irion, Uwe; Frohnhöfer, Hans Georg; Krauss, Jana; Çolak Champollion, Tuǧba; Maischein, Hans-Martin; Geiger-Rudolph, Silke; Weiler, Christian; Nüsslein-Volhard, Christiane

    2014-01-01

    Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin 41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leotK3, leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen, we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish; however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores. DOI: http://dx.doi.org/10.7554/eLife.05125.001 PMID:25535837

  2. New insights into melanosome transport in vertebrate pigment cells.

    Science.gov (United States)

    Aspengren, Sara; Hedberg, Daniel; Sköld, Helen Nilsson; Wallin, Margareta

    2009-01-01

    Pigment cells of lower vertebrates provide an excellent model to study organelle transport as they specialize in the translocation of pigment granules in response to defined chemical cues. This review will focus on the well-studied melanophore/melanocyte systems in fish, amphibians, and mammals. We will describe the roles of melanin, melanophores, and melanocytes in animals, current views on how the three motor proteins dynein, kinesin, and myosin-V are involved in melanosome transport along microtubules and actin filaments, and how signal transduction pathways regulate the activities of the motors to achieve aggregation and dispersion of melanosomes. We will also describe how melanosomes are transferred to surrounding skin cells in amphibians and mammals. Comparative studies have revealed that the ability of physiological color change is lost during evolution while the importance of morphological color change, mainly via transfer of pigment to surrounding skin cells, increases. In humans, pigment mainly has a role in protection against ultraviolet radiation, but also perhaps in the immune system.

  3. Inhibiting roles of melanin-concentrating hormone for skin pigment dispersion in barfin flounder, Verasper moseri.

    Science.gov (United States)

    Mizusawa, Kanta; Kobayashi, Yuki; Sunuma, Toshikazu; Asahida, Takashi; Saito, Yumiko; Takahashi, Akiyoshi

    2011-03-01

    Barfin flounders change their surface color pattern to match their background. We have reported evidence of the association between hormones and body color changes in this fish. First, bolus intraperitoneal injection with melanin-concentrating hormone (MCH) immediately turned the skin color pale, while injection with melanocyte-stimulating hormone (MSH) did not change the skin color. Second, gene expression levels of MCH change in response to background color, while those of MSH do not. We also reported the expression of an MCH receptor gene (Mch-r2) in the skin of this fish. In this study, we aimed to further evaluate the roles of MCH in skin color change. First, long-term adaptation of adult barfin flounder to black or white background colors induced significantly different pigment migration patterns in both melanophores and xanthophores (Ppigment-dispersing activity of MSH in a similar manner. Finally, we identified transcripts of Mch-r2 in cells isolated from both melanophores and xanthophores. Taken together, the evidence suggests that MCH aggregates pigments via MCH-R2 in concert with the nervous system by overcoming the melanin-dispersing activities of MSH in barfin flounder. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Fish pigmentation and the melanocortin system.

    Science.gov (United States)

    Cal, Laura; Suarez-Bregua, Paula; Cerdá-Reverter, José Miguel; Braasch, Ingo; Rotllant, Josep

    2017-09-01

    The melanocortin system is a complex neuroendocrine signaling mechanism involved in numerous physiological processes in vertebrates, including pigmentation, steroidogenesis and metabolic control. This review focuses at one of its most fascinating function in fish, its regulatory role in the control of pigmentation, in which the melanocortin 1 receptor (Mc1r), its agonist α-melanocyte stimulating hormone (α-Msh), and the endogenous antagonist agouti signaling protein (Asip1) are the main players. Functional control of Mc1r, which is highly expressed in fish skin and whose activation stimulates melanin production and melanosome dispersion in fish melanophores, is considered a key mechanism for vertebrate pigment phenotypes. The α-Msh peptide, the most documented Mc1r agonist involved in pigmentation, is produced in the pituitary gland, activating melanin synthesis by binding to Mc1r in fish melanophores. Finally, Asip1 is the putative factor for establishing the evolutionarily conserved dorso-ventral pigment pattern found across vertebrates. However, we are just starting to understand how other melanocortin system components are acting in this complex regulatory network. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Three new species of Hemibrycon (Characiformes: Characidae from the Magdalena River Basin, Colombia

    Directory of Open Access Journals (Sweden)

    César Román-Valencia

    2013-09-01

    Full Text Available Fish biodiversity of aquatic ecosystems is highly threatened by different economic activities driven by human populations, and its description is increasingly a priority. For the Cauca-Magdalena River system we have described 14 species, and the purpose of this paper was to describe three new species belonging to the same genus Hemibrycon from the Nare and Guatapé River drainages of the middle Magdalena River, Colombia. The description was based on a series of 200 specimens, and the use of morphometric, meristic and osteological characters, as well as fish distribution and morphogeometric analytical methods. We have found that Hemibrycon fasciatus n. sp. (n=54 differs from other species of Hemibrycon (that also have a vertical humeral spot in having: melanophores outlining the posterior margins of the scales along sides of body; humeral spot extending onto posterior margin of opercle; a dark lateral stripe, formed by deep pigment that is continuous with the peduncular spot; the toothed portion of the maxilla not reaching the dorsal margin of the dentary (vs. toothed portion of maxilla extending beyond dorsal margin of dentary; all maxillary teeth tricuspid (vs. some unicuspid teeth present on maxilla. H. cardalensis n. sp. (n=64 differs in having: a vertically elongate humeral spot that extends one or two scales below the lateral line canal. H. cardalensis n. sp. differs from all congeners in having the pigment of the caudal spot restricted to the ventral half of the caudal peduncle, and in having melanophores around the anterior scales of the lateral line. Hemibrycon antioquiae n. sp. (n=82 differs in having a circular humeral spot. It differs from the other species with a circular humeral spot, like H. mikrostiktos, in having a projection of disperse melanophores extending from the dorsal margin of the humeral spot to below the lateral stripe. Habitat data and environmental impacts caused by the construction of reservoirs for hydroelectric

  6. Histological Study on the Skin of Japanese Flounder Paralichthys olivaceus

    Institute of Scientific and Technical Information of China (English)

    ZHU Jie; ZHANG Xiumei; GAO Tianxiang

    2005-01-01

    Histological development of Japanese flounder Paralichthys olivaceus larval skin and ultrastructural difference of skin between reared normal and malpigmented Japanese flounder were studied with light microscopy (LM) and transmission electron microscopy (TEM). The results show that the skin develops slowly before the metamorphosis, while at the onset of metamorphosis, the skin develops quickly and becomes complete in structure till about 50 d after being hatched. Ultrastructural observation on the normal and malpigmented skins shows that the iridophore and melanophore are adjacent to each other. Profile and structure of the two kinds of pigment cells are more complete in the skin of normal ocular side than in the skin of pigmented blind side. The ultrastructure of typical chloride cell was observed in the skin of Japanese flounder larvae for the first time.

  7. Physiologically-induced changes in proopiomelanocortin mRNA levels in the pituitary gland of the amphibian Xenopus laevis.

    Science.gov (United States)

    Martens, G J; Weterings, K A; van Zoest, I D; Jenks, B G

    1987-03-13

    In the pars intermedia of the pituitary gland of the amphibian Xenopus laevis the level of mRNA encoding proopiomelanocortin (POMC), the precursor protein for alpha-melanophore-stimulating hormone (alpha-MSH), is shown to be dependent on physiological parameters. POMC mRNA levels in the pars intermedia of black-background-adapted Xenopus are much higher than those of white-adapted animals. These physiological changes in POMC mRNA levels are tissue-specific because they were not found in the pars distalis of the pituitary gland. Background transfer experiments revealed that modulation of POMC gene activity is much slower than changes in the secretion of alpha-MSH.

  8. New Record of Sillago sinica (Pisces: Sillaginidae in Korean Waters, and Re-identification of Sillago parvisquamis Previously Reported from Korea as S. sinica

    Directory of Open Access Journals (Sweden)

    Seung Eun Bae

    2013-10-01

    Full Text Available A single specimen of the genus Sillago, collected from Gwangyang, Korea, in May 2009, is characterized by XI first dorsal fin spines, 3 or 4 rows of melanophore pattern along the second dorsal fin membrane, and a darkish posterior margin of the caudal fin. Our specimen was identified as Sillago sinica reported as a new species; this identification is confirmed by mitochondrial DNA cytochrome oxidase subunit I sequences, which show that our specimen corresponds to S. sinica (d=0.000 and differs from the congeneric species Sillago parvisquamis (d=0.170. Comparisons of Korean specimens previously reported as S. parvisquamis with specimens of S. sinica show that the S. parvisquamis specimens are actually S. sinica. We propose the new Korean name “buk-bang-jeom-bo-ri-myeol” for S. sinica.

  9. Role of catecholamines and nitric oxide on pigment displacement of the chromatophores of freshwater snakehead teleost fish, Channa punctatus.

    Science.gov (United States)

    Biswas, Saikat P; Jadhao, Arun G; Palande, Nikhil V

    2014-04-01

    We are reporting for the first time that the catecholamines (adrenaline and noradrenaline) inhibit the effect of nitric oxide (NO) on melanosome dispersion in freshly isolated scales of the freshwater snakehead fish, Channa punctatus. We studied the effect of NO and catecholamines on the pigment displacement by observing the changes in the melanophore index. The scales when treated with solution containing NO donor sodium nitroprusside (SNP) showed dispersion of melanosomes, whereas NO synthase blocker N-omega-Nitro-L-arginine suppresses this action of SNP. Treatment with adrenaline and noradrenaline on the isolated scales caused aggregation of melanosomes. Scales treated with solution containing catecholamines and SNP resulted in aggregation of melanosomes suggesting that catecholamines mask the effect of SNP. These results suggest that the catecholamines are inhibiting the effect of NO and causing the aggregation of the melanosomes may be via surface receptors.

  10. Melanocortin systems on pigment dispersion in fish chromatophores.

    Science.gov (United States)

    Kobayashi, Yuki; Mizusawa, Kanta; Saito, Yumiko; Takahashi, Akiyoshi

    2012-01-01

    α-Melanocyte-stimulating hormone (α-MSH) is responsible for pigment dispersion in the chromatophores of fish and other tetrapods such as amphibians and reptiles. Recently, we discovered that α-MSH did not always stimulate pigment dispersion because this hormonal peptide exerted no effects on the melanophores of flounders. We assumed that the reduction of α-MSH activity was related to the co-expression of different α-MSH receptor subtypes - termed melanocortin receptors (MCR) - a member of G-protein-coupled receptors (GPCR) - based on several reports demonstrating that GPCR forms heterodimers with various properties that are distinct from those of the corresponding monomers. In this review, we summarize the relationships between the pigment-dispersing activity of α-MSH-related peptides, molecular forms of α-MSH-related peptides, and mcr subtypes expressed in fish chromatophores.

  11. Melanocortin systems on pigment dispersion in fish chromatophores

    Directory of Open Access Journals (Sweden)

    Yuki eKobayashi

    2012-02-01

    Full Text Available Alpha-Melanocyte-stimulating hormone (alpha-MSH is responsible for pigment dispersion in the chromatophores of fish and other tetrapods such as amphibians and reptiles. Recently, we discovered that alpha-MSH did not always stimulate pigment dispersion because this hormonal peptide exerted no effects on the melanophores of flounders. We assumed that the reduction of alpha-MSH activity was related to the co-expression of different alpha-MSH receptor subtypes—termed melanocortin receptors (MCR—a member of G-protein-coupled receptors (GPCR—based on several reports demonstrating that GPCR forms heterodimers with various properties that are distinct from those of the corresponding monomers. In this review, we summarize the relationships between the pigment-dispersing activity of alpha-MSH-related peptides, molecular forms of alpha-MSH-related peptides, and Mcr subtypes expressed in fish chromatophores.

  12. Biomimetic chromatophores for camouflage and soft active surfaces

    International Nuclear Information System (INIS)

    Rossiter, Jonathan; Yap, Bryan; Conn, Andrew

    2012-01-01

    Chromatophores are the pigment-containing cells in the skins of animals such as fish and cephalopods which have chromomorphic (colour-changing) and controllable goniochromic (iridescent-changing) properties. These animals control the optical properties of their skins for camouflage and, it is speculated, for communication. The ability to replicate these properties in soft artificial skin structures opens up new possibilities for active camouflage, thermal regulation and active photovoltaics. This paper presents the design and implementation of soft and compliant artificial chromatophores based on the cutaneous chromatophores in fish and cephalopods. We demonstrate artificial chromatophores that are actuated by electroactive polymer artificial muscles, mimicking the radially orientated muscles found in natural chromatophores. It is shown how bio-inspired chromomorphism may be achieved using both areal expansion of dielectric elastomer structures and by the hydrostatic translocation of pigmented fluid into an artificial dermal melanophore. (paper)

  13. A gene expression study of dorso-ventrally restricted pigment pattern in adult fins of Neolamprologus meeli, an African cichlid species

    Directory of Open Access Journals (Sweden)

    Ehsan Pashay Ahi

    2017-01-01

    Full Text Available Fish color patterns are among the most diverse phenotypic traits found in the animal kingdom. Understanding the molecular and cellular mechanisms that control in chromatophore distribution and pigmentation underlying this diversity is a major goal in developmental and evolutionary biology, which has predominantly been pursued in the zebrafish model system. Here, we apply results from zebrafish work to study a naturally occurring color pattern phenotype in the fins of an African cichlid species from Lake Tanganyika. The cichlid fish Neolamprologus meeli displays a distinct dorsal color pattern, with black and white stripes along the edges of the dorsal fin and of the dorsal half of the caudal fin, corresponding with differences in melanophore density. To elucidate the molecular mechanisms controlling the differences in dorsal and ventral color patterning in the fins, we quantitatively assessed the expression of 15 candidate target genes involved in adult zebrafish pigmentation and stripe formation. For reference gene validation, we screened the expression stability of seven widely expressed genes across the investigated tissue samples and identified tbp as appropriate reference. Relative expression levels of the candidate target genes were compared between the dorsal, striped fin regions and the corresponding uniform, grey-colored regions in the anal and ventral caudal fin. Dorso-ventral expression differences, with elevated levels in both white and black stripes, were observed in two genes, the melanosome protein coding gene pmel and in igsf11, which affects melanophore adhesion, migration and survival. Next, we predicted potential shared upstream regulators of pmel and igsf11. Testing the expression patterns of six predicted transcriptions factors revealed dorso-ventral expression difference of irf1 and significant, negative expression correlation of irf1 with both pmel and igsf11. Based on these results, we propose pmel, igsf11 and irf1 as

  14. Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development

    Directory of Open Access Journals (Sweden)

    Jimann Shin

    2012-11-01

    Neurofibromatosis type 1 (NF1 is a common, dominantly inherited genetic disorder that results from mutations in the neurofibromin 1 (NF1 gene. Affected individuals demonstrate abnormalities in neural-crest-derived tissues that include hyperpigmented skin lesions and benign peripheral nerve sheath tumors. NF1 patients also have a predisposition to malignancies including juvenile myelomonocytic leukemia (JMML, optic glioma, glioblastoma, schwannoma and malignant peripheral nerve sheath tumors (MPNSTs. In an effort to better define the molecular and cellular determinants of NF1 disease pathogenesis in vivo, we employed targeted mutagenesis strategies to generate zebrafish harboring stable germline mutations in nf1a and nf1b, orthologues of NF1. Animals homozygous for loss-of-function alleles of nf1a or nf1b alone are phenotypically normal and viable. Homozygous loss of both alleles in combination generates larval phenotypes that resemble aspects of the human disease and results in larval lethality between 7 and 10 days post fertilization. nf1-null larvae demonstrate significant central and peripheral nervous system defects. These include aberrant proliferation and differentiation of oligodendrocyte progenitor cells (OPCs, dysmorphic myelin sheaths and hyperplasia of Schwann cells. Loss of nf1 contributes to tumorigenesis as demonstrated by an accelerated onset and increased penetrance of high-grade gliomas and MPNSTs in adult nf1a+/−; nf1b−/−; p53e7/e7 animals. nf1-null larvae also demonstrate significant motor and learning defects. Importantly, we identify and quantitatively analyze a novel melanophore phenotype in nf1-null larvae, providing the first animal model of the pathognomonic pigmentation lesions of NF1. Together, these findings support a role for nf1a and nf1b as potent tumor suppressor genes that also function in the development of both central and peripheral glial cells as well as melanophores in zebrafish.

  15. Sunscreen for fish: co-option of UV light protection for camouflage.

    Directory of Open Access Journals (Sweden)

    Kaspar P Mueller

    Full Text Available Many animals change their body pigmentation according to illumination of their environment. In aquatic vertebrates, this reaction is mediated through aggregation or dispersion of melanin-filled vesicles (melanosomes in dermal pigment cells (melanophores. The adaptive value of this behavior is usually seen in camouflage by allowing the animal to visually blend into the background. When exposed to visible light from below, however, dark-adapted zebrafish embryos at the age of 2 days post fertilization (dpf surprisingly display dispersal instead of aggregation of melanosomes, i.e. their body coloration becomes dark on a bright background. Melanosomes of older embryos and early larvae (3-5 dpf on the other hand aggregate as expected under these conditions. Here we provide an explanation to this puzzling finding: Melanosome dispersion in larvae 3 dpf and older is efficiently triggered by ultraviolet (UV light, irrespective of the visual background, suggesting that the extent of pigmentation is a trade-off between threats from predation and UV irradiation. The UV light-induced dispersion of melanosomes thereby is dependent on input from retinal short wavelength-sensitive (SWS cone photoreceptors. In young embryos still lacking a functional retina, protection from UV light predominates, and light triggers a dispersal of melanosomes via photoreceptors intrinsic to the melanophores, regardless of the actual UV content. In older embryos and early larvae with functional retinal photoreceptors in contrast, this light-induced dispersion is counteracted by a delayed aggregation in the absence of UV light. These data suggest that the primary function of melanosome dispersal has evolved as a protective adaption to prevent UV damage, which was only later co-opted for camouflage.

  16. Sunscreen for Fish: Co-Option of UV Light Protection for Camouflage

    Science.gov (United States)

    Mueller, Kaspar P.; Neuhauss, Stephan C. F.

    2014-01-01

    Many animals change their body pigmentation according to illumination of their environment. In aquatic vertebrates, this reaction is mediated through aggregation or dispersion of melanin-filled vesicles (melanosomes) in dermal pigment cells (melanophores). The adaptive value of this behavior is usually seen in camouflage by allowing the animal to visually blend into the background. When exposed to visible light from below, however, dark-adapted zebrafish embryos at the age of 2 days post fertilization (dpf) surprisingly display dispersal instead of aggregation of melanosomes, i.e. their body coloration becomes dark on a bright background. Melanosomes of older embryos and early larvae (3–5 dpf) on the other hand aggregate as expected under these conditions. Here we provide an explanation to this puzzling finding: Melanosome dispersion in larvae 3 dpf and older is efficiently triggered by ultraviolet (UV) light, irrespective of the visual background, suggesting that the extent of pigmentation is a trade-off between threats from predation and UV irradiation. The UV light-induced dispersion of melanosomes thereby is dependent on input from retinal short wavelength-sensitive (SWS) cone photoreceptors. In young embryos still lacking a functional retina, protection from UV light predominates, and light triggers a dispersal of melanosomes via photoreceptors intrinsic to the melanophores, regardless of the actual UV content. In older embryos and early larvae with functional retinal photoreceptors in contrast, this light-induced dispersion is counteracted by a delayed aggregation in the absence of UV light. These data suggest that the primary function of melanosome dispersal has evolved as a protective adaption to prevent UV damage, which was only later co-opted for camouflage. PMID:24489905

  17. Development of eggs and larvae of Emmelichthys nitidus (Percoidei: Emmelichthyidae) in south-eastern Australia, including a temperature-dependent egg incubation model

    Science.gov (United States)

    Neira, Francisco J.; Keane, John P.; Lyle, Jeremy M.; Tracey, Sean R.

    2008-08-01

    Reared eggs and field-collected material were employed to describe the development of the pelagic eggs and larvae of Emmelichthys nitidus (Emmelichthyidae), a small (36 cm TL) mid-water schooling species common in shelf waters of temperate Australia. Hydrated oocytes from adults trawled from spawning grounds off eastern Tasmania were fertilized and reared to the yolk-sac larval stage, and the data employed to build a temperature-dependent egg incubation model. Embryogenesis lasted 96, 84 and 54 h at mean temperatures of 13.1, 14.4 and 16.5 °C respectively, and was divided into seven stages based on extent of epiboly until blastopore closure (stages I-III) and embryo growth (stages IV-VII). Eggs (1.00-1.05 mm diameter) are spherical with a smooth chorion, small perivitelline space and prominent, unsegmented yolk with a single, posteriorly-located oil globule (0.18-0.20 mm diameter) that becomes pigmented from stage III. Embryos have two distinct snout melanophores, and a paired melanophore row laterally along the trunk and tail. Morphological identification of eggs collected during surveys in October 2005 and 2006 was validated using quantitative PCR amplification of the mtDNA d-loop gene region unique to E. nitidus, producing an 80-100% agreement across all seven stages. Newly-emerged larvae (1.9-3.3 mm) possess a prominent yolk sac with the posteriorly-located, pigmented oil globule, mouth not yet functional and unpigmented eyes. Notochord flexion occurs between 5 and 8 mm while fins are formed by 12 mm. Larvae examined (3.3-17.4 mm) are lightly pigmented and possess percoid features such as an elongate to moderate body, coiled, triangular-shaped gut, preopercular spines and 24-25 myomeres; two prominent pigment patches opposite each other dorsally and ventrally along the tail are diagnostic. Variability of mean egg ages ( y) by temperature ( t) and stage ( i) was best described by the deterministic stage-to-age model y = 35.911exp[-(0.155 t + 0.262 i)] i2

  18. Una nueva especie de rana de cristal del género Hyalinobatrachium (Anura: Centrolenidae del Delta del Río Orinoco, Venezuela

    Directory of Open Access Journals (Sweden)

    J. Celsa Señaris

    2001-12-01

    Full Text Available Se describe una nueva especie de Hyalinobatrachium del grupo fleischmanni, H. mondolfii, de las planicies inundables del delta del río Orinoco, Venezuela. Hyalinobatrachium mondolfii se distingue del resto de las especies del grupo por la siguiente combinación de caracteres: peritoneo parietal translúcido, pericardio y peritoneos visceral y hepático blancos, coloración dorsal en vida verde claro con diminutos puntos amarillos y en preservativo crema uniforme con diminutos melanóforos oscuros (visibles solo bajo magnificación, huesos blancos en vida, palmeadura de manos y pies extensa, cabeza redondeada en vista dorsal e inclinada en vista lateral, piel dorsal granular y un canto con frecuencia fundamental superior a los 5 000 HzA new species of Hyalinobatrachium of the fleischmanni group, H. mondolfii, is described from the Orinoco delta floodplains in Venezuela. This new species can be distinguished from other congeners by the following combination of characters: parietal peritoneum clear, pericardium white, visceral and hepatic peritoneum white, color in life pale green with diminute yellow spots and, in preservative, cream with small dark melanophores (visible only under magnification, bones white in life, extense webbing, snout round in dorsal view and inclinate in lateral view, dorsal skin granulate and a advertisement call with a fundamental frequency greater than 5000 Hz

  19. Metal X-ray microanalysis in the olfactory system of rainbow trout exposed to low level of copper

    International Nuclear Information System (INIS)

    Julliard, A.K.; Astic, L.; Saucier, D.

    1995-01-01

    It has recently been shown that a chronic copper exposure induces specific degeneration of olfactory receptor cells in rainbow trout; however, the exact mechanism of action of the metal is not yet known. Using X-ray microanalysis in transmission electron microscopy, we have studied the distribution of metal in the olfactory system of fish exposed for 15,30 and 60 days to 20 μg/l of copper. This was done in order to determine if it was accumulated in receptor cells and transported into the central nervous system via the olfactory nerve. No copper accumulation was detected either in the olfactory epithelium, in the olfactory nerve or in the olfactory bulb. The heavy metal was exclusively found within melanosomes of melanophores located in the lamina propria. After 60 days of exposure, the copper content in melanosomes was about two-fold higher than that in controls. As far as some morphological recovery took place in the olfactory organ during the metal exposure, which lets us suppose that some detoxication mechanism occurs, it could be suggested that metanophores might be somehow involved in such a mechanism. (authors). 57 refs., 15 figs

  20. Generation and characterization of Kctd15 mutations in zebrafish.

    Directory of Open Access Journals (Sweden)

    Alison Heffer

    Full Text Available Potassium channel tetramerization domain containing 15 (Kctd15 was previously found to have a role in early neural crest (NC patterning, specifically delimiting the region where NC markers are expressed via repression of transcription factor AP-2a and inhibition of Wnt signaling. We used transcription activator-like effector nucleases (TALENs to generate null mutations in zebrafish kctd15a and kctd15b paralogs to study the in vivo role of Kctd15. We found that while deletions producing frame-shift mutations in each paralog showed no apparent phenotype, kctd15a/b double mutant zebrafish are smaller in size and show several phenotypes including some affecting the NC, such as expansion of the early NC domain, increased pigmentation, and craniofacial defects. Both melanophore and xanthophore pigment cell numbers and early markers are up-regulated in the double mutants. While we find no embryonic craniofacial defects, adult mutants have a deformed maxillary segment and missing barbels. By confocal imaging of mutant larval brains we found that the torus lateralis (TLa, a region implicated in gustatory networks in other fish, is absent. Ablation of this brain tissue in wild type larvae mimics some aspects of the mutant growth phenotype. Thus kctd15 mutants show deficits in the development of both neural crest derivatives, and specific regions within the central nervous system, leading to a strong reduction in normal growth rates.

  1. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?

    Science.gov (United States)

    Xie, Heng; Zhou, Fubo; Liu, Ling; Zhu, Guannan; Li, Qiang; Li, Chunying; Gao, Tianwen

    2016-01-01

    Vitiligo is a common depigmentation disorder characterized by a loss of functional melanocytes and melanin from epidermis, in which the autoantigens and subsequent autoimmunity caused by oxidative stress play significant roles according to hypotheses. Various factors lead to reactive oxygen species (ROS) overproduction in the melanocytes of vitiligo: the exogenous and endogenous stimuli that cause ROS production, low levels of enzymatic and non-enzymatic antioxidants, disturbed antioxidant pathways and polymorphisms of ROS-associated genes. These factors synergistically contribute to the accumulation of ROS in melanocytes, finally leading to melanocyte damage and the production of autoantigens through the following ways: apoptosis, accumulation of misfolded peptides and cytokines induced by endoplasmic reticulum stress as well as the sustained unfolded protein response, and an 'eat me' signal for phagocytic cells triggered by calreticulin. Subsequently, autoantigens presentation and dendritic cells maturation occurred mediated by the release of antigen-containing exosomes, adenosine triphosphate and melanosomal autophagy. With the involvement of inducible heat shock protein 70, cellular immunity targeting autoantigens takes the essential place in the destruction of melanocytes, which eventually results in vitiligo. Several treatments, such as narrow band ultraviolet, quercetin and α-melanophore-stimulating hormone, are reported to be able to lower ROS thereby achieving repigmentation in vitiligo. In therapies targeting autoimmunity, restore of regulatory T cells is absorbing attention, in which narrow band ultraviolet also plays a role. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Light reflection from crystal platelets in iridophores determines green or brown skin coloration in Takydromus lizards.

    Science.gov (United States)

    Kuriyama, Takeo; Esashi, Jyunko; Hasegawa, Masami

    2017-04-01

    Brown and green are the most commonly imitated colors in prey animals because both colors occur in a range of habitats. Many researchers have evaluated survival with respect to background color matching, but the pigment cell mechanisms underlying such coloration are not known. Dorsal coloration of East Asian Takydromus lizards has shifted from green to brown or from brown to green on multiple occasions during the diversification of the genus, thus giving us an opportunity to examine the cellular mechanisms of background color matching. Brown and green skin were found to differ with respect to the morphological characteristics of iridophores, with different thicknesses of the reflecting platelets and the cytoplasmic spacing between platelets, despite a shared vertical arrangement of pigment cells, i.e., xanthophores in the upper layer, iridophores in the middle layer, and melanophores at the bottom of the dermal layer, among the different Takydromus lizards. Iridophores of brown skin reflected longer wavelengths of light than those of green skin, which may be attributed to the thicker platelets and longer distances between platelets in brown skin. We discuss the potential role of genetic and intracellular mechanisms explaining the thickness and orientation of the light-reflecting platelets of iridophores in Takydromus lizards. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Skin Histology and Microtopography of Papuan White Snake (Micropechis ikaheka in Relation to Their Zoogeographical Distribution

    Directory of Open Access Journals (Sweden)

    KELIOPAS KREY

    2013-03-01

    Full Text Available Papuan white snake (Micropechis ikaheka is endemic to New Guinea (the region of the Papua and Papua New Guinea. Internal histology of skin layer and the microtopography structure on the surface scales of M. ikaheka were the aims of the study. This study also related to zoogeographical of the snake in Papua. Geographical skin color variation of M. ikaheka can be described in three groups, i.e. brown, yellow and black group. The three groups of the snake have specific zoogeography in the mainland of Papua and satellite islands to Papua New Guinea. Paraffin method used in this work showed approximately five layers i.e. oberhautchen, the beta (β-layer, the mesos layer, the alpha (α-layer, and the dermis in the snake skin. Although the paraffin method cannot explain the arrangement of pigment cells, however, the dark color on the dermis might contain melanophores that might cause dark color of the snake body. Overlapping scales formed the hinge region were flexible to assist the snakes when they moved across substrate. Scanning electron microscopy (SEM of the oberhautchen of all of M. ikaheka revealed no microornamentation. However, dorsal and ventral scales showed many follicles on the entire surface of the boundary scales.

  4. Sox5 Functions as a Fate Switch in Medaka Pigment Cell Development

    Science.gov (United States)

    Nagao, Yusuke; Suzuki, Takao; Shimizu, Atsushi; Kimura, Tetsuaki; Seki, Ryoko; Adachi, Tomoko; Inoue, Chikako; Omae, Yoshihiro; Kamei, Yasuhiro; Hara, Ikuyo; Taniguchi, Yoshihito; Naruse, Kiyoshi; Wakamatsu, Yuko; Kelsh, Robert N.; Hibi, Masahiko; Hashimoto, Hisashi

    2014-01-01

    Mechanisms generating diverse cell types from multipotent progenitors are crucial for normal development. Neural crest cells (NCCs) are multipotent stem cells that give rise to numerous cell-types, including pigment cells. Medaka has four types of NCC-derived pigment cells (xanthophores, leucophores, melanophores and iridophores), making medaka pigment cell development an excellent model for studying the mechanisms controlling specification of distinct cell types from a multipotent progenitor. Medaka many leucophores-3 (ml-3) mutant embryos exhibit a unique phenotype characterized by excessive formation of leucophores and absence of xanthophores. We show that ml-3 encodes sox5, which is expressed in premigratory NCCs and differentiating xanthophores. Cell transplantation studies reveal a cell-autonomous role of sox5 in the xanthophore lineage. pax7a is expressed in NCCs and required for both xanthophore and leucophore lineages; we demonstrate that Sox5 functions downstream of Pax7a. We propose a model in which multipotent NCCs first give rise to pax7a-positive partially fate-restricted intermediate progenitors for xanthophores and leucophores; some of these progenitors then express sox5, and as a result of Sox5 action develop into xanthophores. Our results provide the first demonstration that Sox5 can function as a molecular switch driving specification of a specific cell-fate (xanthophore) from a partially-restricted, but still multipotent, progenitor (the shared xanthophore-leucophore progenitor). PMID:24699463

  5. Sox5 functions as a fate switch in medaka pigment cell development.

    Directory of Open Access Journals (Sweden)

    Yusuke Nagao

    2014-04-01

    Full Text Available Mechanisms generating diverse cell types from multipotent progenitors are crucial for normal development. Neural crest cells (NCCs are multipotent stem cells that give rise to numerous cell-types, including pigment cells. Medaka has four types of NCC-derived pigment cells (xanthophores, leucophores, melanophores and iridophores, making medaka pigment cell development an excellent model for studying the mechanisms controlling specification of distinct cell types from a multipotent progenitor. Medaka many leucophores-3 (ml-3 mutant embryos exhibit a unique phenotype characterized by excessive formation of leucophores and absence of xanthophores. We show that ml-3 encodes sox5, which is expressed in premigratory NCCs and differentiating xanthophores. Cell transplantation studies reveal a cell-autonomous role of sox5 in the xanthophore lineage. pax7a is expressed in NCCs and required for both xanthophore and leucophore lineages; we demonstrate that Sox5 functions downstream of Pax7a. We propose a model in which multipotent NCCs first give rise to pax7a-positive partially fate-restricted intermediate progenitors for xanthophores and leucophores; some of these progenitors then express sox5, and as a result of Sox5 action develop into xanthophores. Our results provide the first demonstration that Sox5 can function as a molecular switch driving specification of a specific cell-fate (xanthophore from a partially-restricted, but still multipotent, progenitor (the shared xanthophore-leucophore progenitor.

  6. Larval development of Dagetichthys marginatus (Soleidae obtained from hormone-induced spawning under artificial rearing conditions

    Directory of Open Access Journals (Sweden)

    Ernst F. Thompson

    2007-09-01

    Full Text Available Dagetichthys marginatus (formerly Synaptura marginata larvae were laboratory-reared from wild caught adult broodstock as part of an aquaculture research project in temperate South Africa. A larval description for the species is provided in this paper. This work also represents the first larval description for the genus Dagetichthys, which is represented by five species, three of which occur in the western Indian Ocean. Larval development in D. marginatus is typical of Soleidae. Dagetichthys marginatus larvae are heavily pigmented, with four characteristic melanophore “blotches” on the finfold. These larvae are easily distinguished from other soleid larvae commonly encountered in temperate South Africa based on the large size at flexion (5-7.06 mm BL and the heavily pigmented body. Laboratory-reared postflexion larvae in this study showed similar meristic counts to those of wild caught adult fish. Despite the common occurrence of mature adults of this species in shallow marine waters off temperate South Africa, larvae are absent from nearshore ichthyoplankton catches. As yet, the spawning strategy of the species is unknown.

  7. Melatonin: the dark force.

    Science.gov (United States)

    Bergstrom, W H; Hakanson, D O

    1998-01-01

    Although the pineal gland was described 2,300 years ago, its functions remained obscure and productive research was limited until 1958, when Lerner and associates defined melatonin. In 1965 Wurtman and Axelrod advanced the "melatonin hypothesis," according to which the pineal gland acts as a transducer responding to changes in circumambient light by changing its rates of melatonin output. Sites and mechanisms of melatonin action are still poorly understood. Two consistent effects are the induction of sleep and an antigonadotropic influence on reproductive structure and behavior. The former is demonstrable and clinically useful in human subjects; the latter has been shown in birds, rodents, and sheep. Alteration of skin color by the contraction of melanophores was effected by pineal extracts before the discovery of melatonin. This phenomenon, seen in reptiles, amphibians, and fish, has received little recent attention. Areas of greater interest and potential importance include the antimitotic effects of melatonin on some types of tumor cells in culture and the apparent in vivo protection of immunocompetent lymphocytes during chronic stress, which reduces the functional capacity of lymphocytes in control rodents. Clinical application of the antimitotic and immunosupportive properties of melatonin seems likely in the near future. Unfortunately, this innocent molecule has been touted in two recent books and many advertisements as an aphrodisiac, rejuvenator, protector against disease, and general wonder-worker. Because interest in melatonin is high, all physicians can expect questions and may have use for the information provided in this review.

  8. Reconstructing Carotenoid-Based and Structural Coloration in Fossil Skin.

    Science.gov (United States)

    McNamara, Maria E; Orr, Patrick J; Kearns, Stuart L; Alcalá, Luis; Anadón, Pere; Peñalver, Enrique

    2016-04-25

    Evidence of original coloration in fossils provides insights into the visual communication strategies used by ancient animals and the functional evolution of coloration over time [1-7]. Hitherto, all reconstructions of the colors of reptile integument and the plumage of fossil birds and feathered dinosaurs have been of melanin-based coloration [1-6]. Extant animals also use other mechanisms for producing color [8], but these have not been identified in fossils. Here we report the first examples of carotenoid-based coloration in the fossil record, and of structural coloration in fossil integument. The fossil skin, from a 10 million-year-old colubrid snake from the Late Miocene Libros Lagerstätte (Teruel, Spain) [9, 10], preserves dermal pigment cells (chromatophores)-xanthophores, iridophores, and melanophores-in calcium phosphate. Comparison with chromatophore abundance and position in extant reptiles [11-15] indicates that the fossil snake was pale-colored in ventral regions; dorsal and lateral regions were green with brown-black and yellow-green transverse blotches. Such coloration most likely functioned in substrate matching and intraspecific signaling. Skin replicated in authigenic minerals is not uncommon in exceptionally preserved fossils [16, 17], and dermal pigment cells generate coloration in numerous reptile, amphibian, and fish taxa today [18]. Our discovery thus represents a new means by which to reconstruct the original coloration of exceptionally preserved fossil vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation.

    Science.gov (United States)

    Bertolesi, Gabriel E; Song, Yi N; Atkinson-Leadbeater, Karen; Yang, Jung-Lynn J; McFarlane, Sarah

    2017-07-01

    Lower vertebrates use rapid light-regulated changes in skin colour for camouflage (background adaptation) or during circadian variation in irradiance levels. Two neuroendocrine systems, the eye/alpha-melanocyte-stimulating hormone (α-MSH) and the pineal complex/melatonin circuits, regulate the process through their respective dispersion and aggregation of pigment granules (melanosomes) in skin melanophores. During development, Xenopus laevis tadpoles raised on a black background or in the dark perceive less light sensed by the eye and darken in response to increased α-MSH secretion. As embryogenesis proceeds, the pineal complex/melatonin circuit becomes the dominant regulator in the dark and induces lightening of the skin of larvae. The eye/α-MSH circuit continues to mediate darkening of embryos on a black background, but we propose the circuit is shut down in complete darkness in part by melatonin acting on receptors expressed by pituitary cells to inhibit the expression of pomc, the precursor of α-MSH. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The Loss of Vacuolar Protein Sorting 11 (vps11) Causes Retinal Pathogenesis in a Vertebrate Model of Syndromic Albinism

    Science.gov (United States)

    Thomas, Jennifer L.; Vihtelic, Thomas S.; denDekker, Aaron D.; Willer, Gregory; Luo, Xixia; Murphy, Taylor R.; Gregg, Ronald G.; Hyde, David R.

    2011-01-01

    Purpose. To establish the zebrafish platinum mutant as a model for studying vision defects caused by syndromic albinism diseases such as Chediak-Higashi syndrome, Griscelli syndrome, and Hermansky-Pudlak syndrome (HPS). Methods. Bulked segregant analysis and candidate gene sequencing revealed that the zebrafish platinum mutation is a single-nucleotide insertion in the vps11 (vacuolar protein sorting 11) gene. Expression of vps11 was determined by RT-PCR and in situ hybridization. Mutants were analyzed for pigmentation defects and retinal disease by histology, immunohistochemistry, and transmission electron microscopy. Results. Phenocopy and rescue experiments determined that a loss of Vps11 results in the platinum phenotype. Expression of vps11 appeared ubiquitous during zebrafish development, with stronger expression in the developing retina and retinal pigmented epithelium (RPE). Zebrafish platinum mutants exhibited reduced pigmentation in the body and RPE; however, melanophore development, migration, and dispersion occurred normally. RPE, photoreceptors, and inner retinal neurons formed normally in zebrafish platinum mutants. However, a gradual loss of RPE, an absence of mature melanosomes, and the subsequent degradation of RPE/photoreceptor interdigitation was observed. Conclusions. These data show that Vps11 is not necessary for normal retinal development or initiation of melanin biosynthesis, but is essential for melanosome maturation and healthy maintenance of the RPE and photoreceptors. PMID:21330665

  11. Regulation of microtubule-based transport by MAP4

    Science.gov (United States)

    Semenova, Irina; Ikeda, Kazuho; Resaul, Karim; Kraikivski, Pavel; Aguiar, Mike; Gygi, Steven; Zaliapin, Ilya; Cowan, Ann; Rodionov, Vladimir

    2014-01-01

    Microtubule (MT)-based transport of organelles driven by the opposing MT motors kinesins and dynein is tightly regulated in cells, but the underlying molecular mechanisms remain largely unknown. Here we tested the regulation of MT transport by the ubiquitous protein MAP4 using Xenopus melanophores as an experimental system. In these cells, pigment granules (melanosomes) move along MTs to the cell center (aggregation) or to the periphery (dispersion) by means of cytoplasmic dynein and kinesin-2, respectively. We found that aggregation signals induced phosphorylation of threonine residues in the MT-binding domain of the Xenopus MAP4 (XMAP4), thus decreasing binding of this protein to MTs. Overexpression of XMAP4 inhibited pigment aggregation by shortening dynein-dependent MT runs of melanosomes, whereas removal of XMAP4 from MTs reduced the length of kinesin-2–dependent runs and suppressed pigment dispersion. We hypothesize that binding of XMAP4 to MTs negatively regulates dynein-dependent movement of melanosomes and positively regulates kinesin-2–based movement. Phosphorylation during pigment aggregation reduces binding of XMAP4 to MTs, thus increasing dynein-dependent and decreasing kinesin-2–dependent motility of melanosomes, which stimulates their accumulation in the cell center, whereas dephosphorylation of XMAP4 during dispersion has an opposite effect. PMID:25143402

  12. Ultraviolet radiation induces dose-dependent pigment dispersion in crustacean chromatophores.

    Science.gov (United States)

    Gouveia, Glauce Ribeiro; Lopes, Thaís Martins; Neves, Carla Amorim; Nery, Luiz Eduardo Maia; Trindade, Gilma Santos

    2004-10-01

    Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm(2) for UVA and 2.15 J/cm(2) for UVB. Maximal response was achieved with 10.0 J/cm(2) UVA and 8.6 J/cm(2) UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm(2) UVA and 0.29 J/cm(2) UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.

  13. Homologies between the amino acid sequences of some vertebrate peptide hormones and peptides isolated from invertebrate sources.

    Science.gov (United States)

    De Loof, A; Schoofs, L

    1990-01-01

    1. The 4K-prothoracicotropic hormone (PTTH) or bombyxin and the melanization-reddish coloration hormone of the silkworm Bombyx mori resemble insulin and insulin-like growth factors. 2. The family of adipokinetic/red pigment concentrating hormones has some similarity with glucagon. 3. Members of the FMRFamide family are found in vertebrates as well as in invertebrates. 4. In Locusta, a molecule immunologically and biologically related to amphibian melanophore stimulating hormone has been partially characterized. 5. Enkephalins and enkephalin-related peptides occur in insects and other invertebrates. 6. Peptides belonging to the tachykinin family have been isolated from molluscan (Octopus) salivary glands and from insect nervous tissue (Locusta migratoria). 7. Invertebrate arginine-vasotocin homologs have been isolated from an insect (Locusta migratoria) and from a mollusc (Conus). 8. In Leucophaea, Locusta and Drosophila, peptides resembling those of the vertebrate gastrin/cholecystokinin family have been identified. 9. As the number of different neuro-/gut peptides with possible function(s) as hormone, neurotransmitter or neuromodulator is now estimated to be of the order of a few hundred, more similarities will probably show up in the near future.

  14. Melanocortin MC(4) receptor-mediated feeding and grooming in rodents.

    Science.gov (United States)

    Mul, Joram D; Spruijt, Berry M; Brakkee, Jan H; Adan, Roger A H

    2013-11-05

    Decades ago it was recognized that the pharmacological profile of melanocortin ligands that stimulated grooming behavior in rats was strikingly similar to that of Xenopus laevis melanophore pigment dispersion. After cloning of the melanocortin MC1 receptor, expressed in melanocytes, and the melanocortin MC4 receptor, expressed mainly in brain, the pharmacological profiles of these receptors appeared to be very similar and it was demonstrated that these receptors mediate melanocortin-induced pigmentation and grooming respectively. Grooming is a low priority behavior that is concerned with care of body surface. Activation of central melanocortin MC4 receptors is also associated with meal termination, and continued postprandial stimulation of melanocortin MC4 receptors may stimulate natural postprandial grooming behavior as part of the behavioral satiety sequence. Indeed, melanocortins fail to suppress food intake or induce grooming behavior in melanocortin MC4 receptor-deficient rats. This review will focus on how melanocortins affect grooming behavior through the melanocortin MC4 receptor, and how melanocortin MC4 receptors mediate feeding behavior. This review also illustrates how melanocortins were the most likely candidates to mediate grooming and feeding based on the natural behaviors they induced. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Posttranslational modifications of proopiomelanocortin in vertebrates and their biological significance

    Directory of Open Access Journals (Sweden)

    Akiyoshi eTakahashi

    2013-10-01

    Full Text Available Proopiomelanocortin (POMC is the precursor of several peptide hormones generated in the pituitary gland. After biosynthesis, POMC undergoes several posttranslational modifications, including proteolytic cleavage, acetylation, amidation, phosphorylation, glycosylation, and disulfide linkage formation, which generate mature POMC-derived peptides. Therefore, POMC is a useful model for the investigation of posttranslational modifications. These processes have been extensively investigated in mammals, primarily in rodents. In addition, over the last decade, much information has been obtained about the posttranslational processing of POMC in non-mammalian animals such as fish, amphibians, reptiles, and birds through sequencing and peptide identification by mass spectrometry. One POMC modification, acetylation, is known to modulate the biological activities of POMC-derived alpha-melanocyte-stimulating hormone (alpha-MSH having an acetyl group at N-terminal through potentiation or inhibition. This bidirectional regulation depends on its intrinsic roles in the tissue or cell; for example, alpha-MSH, as well as desacety-alpha-MSH, stimulates pigment dispersion in the xanthophores of a flounder. In contrast, alpha-MSH does not stimulate pigment dispersion in the melanophores of the same species, whereas desacetyl-alpha-MSH does. Regulation of pigment-dispersing activities may be associated with the subtle balance in the expression of receptor genes. In this review, we consider the posttranslational modifications of POMC in vertebrates from an evolutionary aspect, with a focus on the relationship between acetylation and the biological activities of alpha-MSH as an important consequence of posttranslational modification.

  16. Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor.

    Science.gov (United States)

    Armour, S L; Foord, S; Kenakin, T; Chen, W J

    1999-12-01

    Receptor-activity-modifying proteins (RAMPs) are a family of single transmembrane domain proteins shown to be important for the transport and ligand specificity of the calcitonin gene-related peptide (CGRP) receptor. In this report, we describe the analysis of pharmacological properties of the human calcitonin receptor (hCTR) coexpressed with different RAMPs with the use of the Xenopus laevis melanophore expression system. We show that coexpression of RAMP3 with human calcitonin receptor changed the relative potency of hCTR to human calcitonin (hCAL) and rat amylin. RAMP1 and RAMP2, in contrast, had little effect on the change of hCTR potency to hCAL or rat amylin. When coexpressed with RAMP3, hCTR reversed the relative potency by a 3.5-fold loss in sensitivity to hCAL and a 19-fold increase in sensitivity to rat amylin. AC66, an inverse agonist, produced apparent simple competitive antagonism of hCAL and rat amylin, as indicated by linear Schild regressions. The potency of AC66 was changed in the blockade of rat amylin but not hCAL responses with RAMP3 coexpression. The mean pK(B) for AC66 to hCAL was 9.4 +/- 0.3 without RAMP3 and 9.45 +/- 0.07 with RAMP3. For the antagonism of AC66 to rat amylin, the pK(B) was 9.25 +/- 0.15 without RAMP3 and 8.2 +/- 0.35 with RAMP3. The finding suggests that RAMP3 might modify the active states of calcitonin receptor in such a way as to create a new receptor phenotype that is "amylin-like." Irrespective of the physiological association of the new receptor species, the finding that a coexpressed membrane protein can completely change agonist and antagonist affinities for a receptor raises implications for screening in recombinant receptor systems.

  17. Sequence-Based Mapping and Genome Editing Reveal Mutations in Stickleback Hps5 Cause Oculocutaneous Albinism and the casper Phenotype

    Directory of Open Access Journals (Sweden)

    James C. Hart

    2017-09-01

    Full Text Available Here, we present and characterize the spontaneous X-linked recessive mutation casper, which causes oculocutaneous albinism in threespine sticklebacks (Gasterosteus aculeatus. In humans, Hermansky-Pudlak syndrome results in pigmentation defects due to disrupted formation of the melanin-containing lysosomal-related organelle (LRO, the melanosome. casper mutants display not only reduced pigmentation of melanosomes in melanophores, but also reductions in the iridescent silver color from iridophores, while the yellow pigmentation from xanthophores appears unaffected. We mapped casper using high-throughput sequencing of genomic DNA from bulked casper mutants to a region of the stickleback X chromosome (chromosome 19 near the stickleback ortholog of Hermansky-Pudlak syndrome 5 (Hps5. casper mutants have an insertion of a single nucleotide in the sixth exon of Hps5, predicted to generate an early frameshift. Genome editing using CRISPR/Cas9 induced lesions in Hps5 and phenocopied the casper mutation. Injecting single or paired Hps5 guide RNAs revealed higher incidences of genomic deletions from paired guide RNAs compared to single gRNAs. Stickleback Hps5 provides a genetic system where a hemizygous locus in XY males and a diploid locus in XX females can be used to generate an easily scored visible phenotype, facilitating quantitative studies of different genome editing approaches. Lastly, we show the ability to better visualize patterns of fluorescent transgenic reporters in Hps5 mutant fish. Thus, Hps5 mutations present an opportunity to study pigmented LROs in the emerging stickleback model system, as well as a tool to aid in assaying genome editing and visualizing enhancer activity in transgenic fish.

  18. A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis.

    Science.gov (United States)

    Bilandžija, Helena; Ma, Li; Parkhurst, Amy; Jeffery, William R

    2013-01-01

    Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish) and several albino cave-dwelling forms (cavefish), albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the melanin synthesis pathway. In addition to albinism, cavefish have evolved differences in behavior, including feeding and sleep, which are under the control of the catecholamine system. The catecholamine and melanin synthesis pathways diverge after beginning with the same substrate, L-tyrosine. Here we describe a novel relationship between the catecholamine and melanin synthesis pathways in Astyanax. Our results show significant increases in L-tyrosine, dopamine, and norepinephrine in pre-feeding larvae and adult brains of Pachón cavefish relative to surface fish. In addition, norepinephrine is elevated in cavefish adult kidneys, which contain the teleost homologs of catecholamine synthesizing adrenal cells. We further show that the oca2 gene is expressed during surface fish development but is downregulated in cavefish embryos. A key finding is that knockdown of oca2 expression in surface fish embryos delays the development of pigmented melanophores and simultaneously increases L-tyrosine and dopamine. We conclude that a potential evolutionary benefit of albinism in Astyanax cavefish may be to provide surplus L-tyrosine as a precursor for the elevated catecholamine synthesis pathway, which could be important for adaptation to the challenging cave environment.

  19. A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus.

    Directory of Open Access Journals (Sweden)

    Joshua B Gross

    2009-01-01

    Full Text Available The evolution of degenerate characteristics remains a poorly understood phenomenon. Only recently has the identification of mutations underlying regressive phenotypes become accessible through the use of genetic analyses. Focusing on the Mexican cave tetra Astyanax mexicanus, we describe, here, an analysis of the brown mutation, which was first described in the literature nearly 40 years ago. This phenotype causes reduced melanin content, decreased melanophore number, and brownish eyes in convergent cave forms of A. mexicanus. Crosses demonstrate non-complementation of the brown phenotype in F(2 individuals derived from two independent cave populations: Pachón and the linked Yerbaniz and Japonés caves, indicating the same locus is responsible for reduced pigmentation in these fish. While the brown mutant phenotype arose prior to the fixation of albinism in Pachón cave individuals, it is unclear whether the brown mutation arose before or after the fixation of albinism in the linked Yerbaniz/Japonés caves. Using a QTL approach combined with sequence and functional analyses, we have discovered that two distinct genetic alterations in the coding sequence of the gene Mc1r cause reduced pigmentation associated with the brown mutant phenotype in these caves. Our analysis identifies a novel role for Mc1r in the evolution of degenerative phenotypes in blind Mexican cavefish. Further, the brown phenotype has arisen independently in geographically separate caves, mediated through different mutations of the same gene. This example of parallelism indicates that certain genes are frequent targets of mutation in the repeated evolution of regressive phenotypes in cave-adapted species.

  20. A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis.

    Directory of Open Access Journals (Sweden)

    Helena Bilandžija

    Full Text Available Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish and several albino cave-dwelling forms (cavefish, albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the melanin synthesis pathway. In addition to albinism, cavefish have evolved differences in behavior, including feeding and sleep, which are under the control of the catecholamine system. The catecholamine and melanin synthesis pathways diverge after beginning with the same substrate, L-tyrosine. Here we describe a novel relationship between the catecholamine and melanin synthesis pathways in Astyanax. Our results show significant increases in L-tyrosine, dopamine, and norepinephrine in pre-feeding larvae and adult brains of Pachón cavefish relative to surface fish. In addition, norepinephrine is elevated in cavefish adult kidneys, which contain the teleost homologs of catecholamine synthesizing adrenal cells. We further show that the oca2 gene is expressed during surface fish development but is downregulated in cavefish embryos. A key finding is that knockdown of oca2 expression in surface fish embryos delays the development of pigmented melanophores and simultaneously increases L-tyrosine and dopamine. We conclude that a potential evolutionary benefit of albinism in Astyanax cavefish may be to provide surplus L-tyrosine as a precursor for the elevated catecholamine synthesis pathway, which could be important for adaptation to the challenging cave environment.

  1. Embryology of Maldives clownfish, Amphiprion nigripes (Amphiprioninae)

    Science.gov (United States)

    Ghosh, Swagat; Kumar, Thipramalai Thankappanpillai Ajith; Balasubramanian, Thangavel

    2012-06-01

    This study investigated the embryonic development of Maldives clownfish Amphiprion nigripes under natural conditions (28-30°C) at a lagoon of Agatti Island, Lakshadweep, India. The newly deposited fish egg was capsule-shaped and orange-red, with a (0.73 ± 0.04) mm3 yolk containing 5-10 fat globules. The embryonic development of fertilized eggs was divided into 26 stages and the time elapsing for each stage was recorded. Results showed that the cleavage was rapid, with the first division observed 1 h 20 min after fertilization. Blastulation occurred 4 h later, followed by gastrulation 12 h after fertilization, with a yolk volume of (0.61 ± 0.06) mm3. The organogenesis process started 22 h after fertilization when the blastopores closed and notochord formation began. The embryonic stage was recorded 24 h later, with the appearance of forebrain, midbrain, hindbrain, melanophores on yolk-sac and 22 somites, and a decreased yolk volume of (0.54 ± 0.08) mm3. Other organs developed well 31 h after fertilization, whereas the heart started beating and blood circulation began 78 h later. Red pigmentation (erytrophores) appeared 96 h after fertilization, with a small yolk volume of (0.22 ± 0.02) mm3. Mouth developed well and eyes were noticeable 120 h later, with head, pectoral fin and tail frequently moving 144 h after fertilization. The embryo reached the pre-hatching stage 168 h later and started to hatch after 170-180 h incubation. This study first detailed the embryonic development and yolk absorption of A. nigripes under natural conditions.

  2. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards

    Science.gov (United States)

    2013-01-01

    Background Color traits in animals play crucial roles in thermoregulation, photoprotection, camouflage, and visual communication, and are amenable to objective quantification and modeling. However, the extensive variation in non-melanic pigments and structural colors in squamate reptiles has been largely disregarded. Here, we used an integrated approach to investigate the morphological basis and physical mechanisms generating variation in color traits in tropical day geckos of the genus Phelsuma. Results Combining histology, optics, mass spectrometry, and UV and Raman spectroscopy, we found that the extensive variation in color patterns within and among Phelsuma species is generated by complex interactions between, on the one hand, chromatophores containing yellow/red pteridine pigments and, on the other hand, iridophores producing structural color by constructive interference of light with guanine nanocrystals. More specifically, we show that 1) the hue of the vivid dorsolateral skin is modulated both by variation in geometry of structural, highly ordered narrowband reflectors, and by the presence of yellow pigments, and 2) that the reflectivity of the white belly and of dorsolateral pigmentary red marks, is increased by underlying structural disorganized broadband reflectors. Most importantly, these interactions require precise colocalization of yellow and red chromatophores with different types of iridophores, characterized by ordered and disordered nanocrystals, respectively. We validated these results through numerical simulations combining pigmentary components with a multilayer interferential optical model. Finally, we show that melanophores form dark lateral patterns but do not significantly contribute to variation in blue/green or red coloration, and that changes in the pH or redox state of pigments provide yet another source of color variation in squamates. Conclusions Precisely colocalized interacting pigmentary and structural elements generate extensive

  3. Embryonic and larval development in barfin flounder Verasper moseri (Jordan and Gilbert)

    Science.gov (United States)

    Du, Rongbin; Wang, Yongqiang; Jiang, Haibin; Liu, Liming; Wang, Maojian; Li, Tianbao; Zhang, Shubao

    2010-01-01

    Broodstock of Verasper moseri (Jordan and Gilbert) aged 3-4 years old were selected, and reinforced cultivation was conducted to promote maturation under controlled water temperature and photoperiod conditions. Fertilized eggs were obtained by artificial fertilization, and the development of embryos, larvae and juveniles was observed continuously. The results showed that the fertilized eggs of V. moseri were spherical, with transparent yolk and homogeneous bioplasm, and had no oil globule inside. The average diameter of the eggs was 1.77±0.02 mm. The eggs of V. moseri were buoyant in water with salinity above 35. The cleavage type was typical discoidal. Young pigment cells appeared when olfactory plates began to form. Hatching occurred at 187 h after fertilization at a water temperature of 8.5°C. The newly hatched larvae, floating on the water surface, were transparent with an average total length of 4.69±0.15 mm. During the cultivation period, when the water temperature was raised from 9 to 14.5°C, 4-day old larvae showed more melanophores on the body surface, making the larvae gray in color. The pectoral fins began to develop, which enabled the larvae to swim horizontally and in a lively manner. On days 7-8, the digestive duct formed. The yolk sac was small and black. The yolk sac was absorbed on day 11. Larvae took food actively, and body length and body height clearly increased. The rudiments of dorsal and anal fin pterygiophores were discernible and caudal fin ray elements formed on day 19. On day 24, the larval notochord flexed upwards, and the rays of unpaired fins began to differentiate. Pigment cells converged on the dorsal and anal fin rays, and the mastoid teeth on the mandible appeared. On day 29, the left eyes of juveniles began to move upwards. Depigmentation began in some juveniles and they became sandy brown in color on day 37. Most juveniles began to settle on the bottom of the tank. The left eyes of juveniles migrated completely to the right

  4. Transcriptomics of morphological color change in polychromatic Midas cichlids.

    Science.gov (United States)

    Henning, Frederico; Jones, Julia C; Franchini, Paolo; Meyer, Axel

    2013-03-13

    Animal pigmentation has received much attention in evolutionary biology research due to its strong implications for adaptation and speciation. However, apart from a few cases the genetic changes associated with these evolutionary processes remain largely unknown. The Midas cichlid fish from Central America are an ideal model system for investigating pigmentation traits that may also play a role in speciation. Most Midas cichlids maintain their melanophores and exhibit a grayish (normal) color pattern throughout their lives. A minority of individuals, however, undergo color change and exhibit a distinctive gold or even white coloration in adulthood. The ontogenetic color change in the Midas cichlids may also shed light on the molecular mechanisms underlying pigmentation disorders in humans. Here we use next-generation sequencing (Illumina) RNAseq analyses to compare skin transcriptome-wide expression levels in three distinct stages of color transformation in Midas cichlids. cDNA libraries of scale tissue, for six biological replicates of each group, were generated and sequenced using Illumina technology. Using a combination of three differential expression (DE) analyses we identified 46 candidate genes that showed DE between the color morphs. We find evidence for two key DE patterns: a) genes involved in melanosomal pathways are up-regulated in normally pigmented fish; and b) immediate early and inflammatory response genes were up-regulated in transitional fish, a response that parallels some human skin disorders such as melanoma formation and psoriasis. One of the DE genes segregates with the gold phenotype in a genetic cross and might be associated with incipient speciation in this highly "species-rich" lineage of cichlids. Using transcriptomic analyses we successfully identified key expression differences between different color morphs of Midas cichlid fish. These differentially expressed genes have important implications for our understanding of the molecular

  5. Desarrollo embrionario-larval del pez tropical Hemirhamphus brasiliensis (Beloniformes: Hemirhamphidae a partir de huevos recolectados del medio natural

    Directory of Open Access Journals (Sweden)

    Jesús Rosas

    2008-09-01

    Full Text Available Se describe la formación del embrión y el desarrollo larval del pez Hemirhamphus brasiliensis Linnaeus, 1758, a partir de huevos en estado de mórula, recolectados en el alga parda Sargassum sp. Los huevos eran esféricos con un diámetro de 1923.54 ±72.35 µm, con numerosos filamentos coriónicos y estrías en su superficie. Durante las primeras 48 h, el embrión desarrolló la vesícula cefálica, los miomeros y el corazón, el cual se ubicó en el exterior de cuerpo impulsando sangre incolora, la cual se pigmentó de rojo posteriormente. Antes de la eclosión se desarrollaron el riñón, estómago, hígado y la vesícula biliar, las aletas pectorales, cuatro pares de arcos branquiales y la boca. Las larvas eclosionaron a la 114 h, presentando el cuerpo robusto en forma de torpedo, verde-amarillo con melanoforos dendriformes. Al nacer ingirieron metanauplios de Artemia. A las 72 h después de la eclosión se observó el esbozo de la aleta pélvica y a las 240 h se completó la metamorfosis.Embrionary-larval development of the tropical fish Hemirhamphus brasiliensis (Beloniformes: Hemirhamphidae from eggs collected in the wild. The embryo formation and larval development of Hemirhamphus brasiliensis Linnaeus, 1758 (Pisces: Hemirhamphidae is described from morula stage eggs collected on Sargassum sp. Thalii in the field (10°50’55.2" N y 64°09’467" W. The eggs were spherical, 1 923.54 ±72.35 µm diameter with several corionic filaments, and are striated. During the first 48 h the embryo developed cephalic vesicle, miomers, and a heart located on the external body surface, beating strongly and circulating colorless blood which became pigmented red later. Before hatching, the larva developed kidney, gut tract, liver and biliar vesicle, pectoral fins, four pairs of gill arches and the mouth. The larva hatched at 114 h, the body was torpedo-shaped, yellow-green, with several dendriform melanophores; the pelvic fin was observed 72 h post

  6. The role of rare morph advantage and conspicuousness in the stable gold-dark colour polymorphism of a crater lake Midas cichlid fish.

    Science.gov (United States)

    Torres-Dowdall, Julián; Golcher-Benavides, Jimena; Machado-Schiaffino, Gonzalo; Meyer, Axel

    2017-09-01

    Genetically based stable colour polymorphisms provide a unique opportunity to study the evolutionary processes that preserve genetic variability in the wild. Different mechanisms are proposed to promote the stability of polymorphisms, but only few empirical examples have been documented, resulting in an incomplete understanding of these mechanisms. A remarkable genetically determined stable colour polymorphism is found in the Nicaraguan Midas cichlid species complex (Amphilophus cf. citrinellus). All Midas cichlids start their life with a dark-grey coloration (dark morph), but individuals carrying the dominant "gold" allele (c. 10%) lose their melanophores later in life, revealing the underlying orange coloration (gold morph). How this polymorphism is maintained remains unclear. Two main hypotheses have been proposed, both suggesting differential predation upon colour morphs as the proximate mechanism. One predicts that the conspicuous gold morph is more likely to be preyed upon, but this disadvantage is balanced by their competitive dominance over the dark morph. The second hypothesis suggests a rare morph advantage where the rarer gold morph experiences less predation. Empirical evidence for either of these mechanisms is still circumstantial and inconclusive. We conducted two field experiments in a Nicaraguan crater lake using wax models simulating both morphs to determine predation pressure upon Midas cichlid colour morphs. First, we tested the interaction of coloration and depth on attack rate. Second, we tested the interaction of fish size and coloration. We contrasted the pattern of attacks from these experiments to the predicted predation patterns from the hypotheses proposed to explain the colour polymorphism's stability. Large models imitating colour morphs were attacked at similar rates irrespectively of their position in the water column. Yet, attacks upon small models resembling juveniles were directed mainly towards dark models. This resulted in a

  7. Histología y morfometría de piel del pez Eremophilus mutisii (Trychomecteridae, Siluriformes

    Directory of Open Access Journals (Sweden)

    Rocío Johanna Bonilla Lizarazo

    2008-06-01

    Full Text Available Se estudió la piel del pez dulceacuícola endémico de Colombia Eremophylus mutissi. Se tomaron muestras de piel (0.5x0.5 cm² de 11 especimenes en seis partes del cuerpo (mandíbulas, cabeza dorsal, tronco dorsal, tronco caudal, tronco medial y abdominal. Se fijaron en formaldehído al 4%, con deshidratación en etanol al 95 % e isopropanol al 99%, inclusión en parafina y cortes a 5 µm. La piel está constituida por dos capas cutáneas (epidermis y dermis y una capa subcutánea (hipodermis: la epidermis tiene tres capas con células secretoras, células epiteliales y pocas células gustativas; la dermis está separada de la epidermis por una membrana basal. Observamos fibroblastos, dos capas de melanóforos y algunos vasos sanguíneos; la hipodermis tiene un tejido adiposo vascularizado. La dermis es más delgada que la epidermis; la piel tiene más células tipo clava que células mucosas. El tronco medio tiene muchas células clava y células mucosas. La piel de E. mutissi parece tener una función principalmente protectora.Skin histology and morphometry of the fish Eremophilus mutisii (Trychomecteridae, Siluriformes. The tropical freshwater fish Eremophylus mutisii is endemic to the Cundinamarca highland in Colombia. Skin samples (0.5x0.5 cm² were taken from 11 specimens at six body parts (mandible, dorsal head, dorsal trunk, caudal trunk, medial trunk and abdominal area, fixed in 4% formaldehyde, dehydrated in 95% ethanol and 99% isopropanol, embedded in paraffin and sectioned at 5 µm. The skin is made of two mayor cutaneous layers (epidermis and dermis and a subcutaneous layer (hypodermis. The epidermis presents three layers with secretory cells, epithelial cells and a few taste buds; the dermis is separated from the epidermis by a basal membrane. We observed fibroblasts, two layers of melanophors and some blood vessels; the hypodermis has vascularized adipose tissue. Skin thickness changes with body area; the dermis is thicker than

  8. Desarrollo larvario de algunas especies del género Bregmaceros (Pisces: Bregmacerotidae del sureste del Golfo de México

    Directory of Open Access Journals (Sweden)

    Jorge Blas-Cabrera

    2006-06-01

    . houdei (six, 1.5-1.9 mm and B. macclellandi (three, 2.4, 3.4 and 5.4 mm. All specimens were collected in the southern Gulf of Mexico from November 27 through December 6, 1998. Larvae were identified to species, and descriptions were made based on pigmentation, and morphometric and meristic characteristics. We defined five development stages: preflexion, flexion, postflexion, transformation and juvenile. In the preflexion stage B. cantori displayed a greater growth in mouth size and head length relative to SL (positive allometry; there was negative allometry from the flexion to juvenile stage. B. cantori have the shortest body height and head length, thus being the thinnest; whereas B. macclellandi larvae are the most robust ones. From the four species reported from the southern Gulf of Mexico, B. atlanticus larvae are the most pigmented in both head and body, with an homogeneous pattern; B. macclellandi presents a different pigmentation pattern consisting in large melanophore groups with a body arrangement that changes from one stage to the next; additionally, from the preflexion stage it develops both the occipital radius and pelvic fins. B. houdei larvae measuring 1.5 to 1.9 mm have melanophores at the tip of the lower jaw and the head, as well as at the pectoral fin base. Larval development was more pronounced in this B. cantori and B. atlanticus than in specimens from higher latitudes. Rev. Biol. Trop. 54(2: 561-575. Epub 2006 Jun 01.

  9. Light as a central modulator of circadian rhythms, sleep and affect

    Science.gov (United States)

    LeGates, T.A.; Fernandez, D.C.; Hattar, S

    2014-01-01

    surprising discovery showed that a subpopulation of RGCs is intrinsically photosensitive and express the photopigment melanopsin. These cells were thus termed ipRGCs17–19. The melanopsin gene (Opn4) was originally cloned from Xenopus laevis dermal melanophores, and was shown to have orthologs in many mammalian species, including humans141. Sequence analysis shows that melanopsin shares more homology with invertebrate opsins than with vertebrate opsins, suggesting that melanopsin may use a different mechanism for light signaling than that used by the photopigments present in the rods and cones of vertebrates142. ipRGCs do not have modified membranes in which the photopigment can be concentrated: thus, melanopsin protein is expressed uniformly throughout the soma, dendrites, and the initial segment of the axon143. The lack of membrane specialization makes ipRGCs less sensitive to light than rods and cones. However, ipRGCs are able to incorporate light signals over extended period of time, resulting in an increase in their sensitivity during prolonged light stimulation. ipRGCs are most sensitive to wavelengths of light that are in the blue region of the light spectrum144, 145. As ganglion cells, ipRGCs also convey light information from rods and cones in addition to their intrinsic melanopsin-dependent pathway and can control a variety of light-mediated behaviors30.Originally, ipRGCs were thought to comprise a uniform population, however, recent discoveries revealed that ipRGCs are highly diverse, comprising at least five distinct subtypes (M1-M5) in rodents based on morphological and electrophysiological analyses22–29. The originally identified population is now known as M1 ipRGCs and project predominantly to brain regions involved in non-image forming visual functions, whereas the non-M1 ipRGCs show widespread projections to areas in the brain important for image formation. ipRGC subtypes express varying levels of the melanopsin protein and have different patterns of

  10. Pigmentação testicular em Physalaemus nattereri (Steindachner (Amphibia, Anura com observações anatômicas sobre o sistema pigmentar extracutâneo Testicular pigmentation in Physalaemus nattereri (Steindachner (Amphibia, Anura with anatomical observations on the extracutaneous pigmentary system

    Directory of Open Access Journals (Sweden)

    Classius de Oliveira

    2005-06-01

    fibrous connective tissue, commonly unprovided of pigments. This study tried to analyze the morphological characteristics of rare and conspicuous pigment-containing cells and their relationship with other structures. The pigment cells are variously and indistinctly also termed Kuppfer cells in the liver, pigment cells, extracutaneous pigment cells, pigmented macrophages, melanomacrophages, melanophage, melanophores and melanocytes in the liver, spleen and kidney and other visceral structures of exothermic vertebrates. Ten male samples of Physalaemus nattereri (Steindachner, 1863 (Leptodactylidae were used. After macroscopic analyses, the testicular fragments were submitted to the histological routine, fixed with karnovisky, embedded Historesin and coloration with Haematoxylin/Eosin. A rare peculiarity was the presence of numerous pigment-containing cells (melanocytes randomly distributed in the albuginea tunic and testicular interstitium, giving the testes a dark brown coloration. This unusual characteristic has been rarely described and in other lower vertebrates, the pigment cells can be found in different organs, constituting an extracutaneous pigmentary system of unknown function. Further, it was identified a conspicuous variation, as to presence and distribution pattern due to possible species-specific aspects. However, histologically there is no difference in the germ epithelium arrangement. Between the seminiferous locules, there is an inter-locular tissue composed by Leydig interstitial cells, fibroblasts, efferent ductules, melanocytes and blood vessels. This inter-locular tissue is relatively scarce, presenting melanocytes in all specimens analyzed intimate associated with blood vessels. They are irregular cells with numerous melanosomes and long cytoplasmic processes.