WorldWideScience

Sample records for medium-chain-length polyhydroxyalkanoates mcl-phas

  1. Perspectives of medium chain length poly(hydroxyalkanoates), a versatile set of bacterial bioplastics

    Science.gov (United States)

    Witholt; Kessler

    1999-06-01

    Medium chain length (mcl) poly(hydroxyalkanoic acids) (PHAs) are polyesters accumulated by fluorescent Pseudomonads and other bacteria. Work on the genetics of mcl-PHA formation has led to polymer synthesis in recombinant bacteria and plants. Several high and medium cost applications are now emerging. With optimized bacterial mcl-PHA synthesis on inexpensive agro-substrates and the development of plant-based mcl-PHAs in the next decade, the production economics of these bioplastics will ultimately permit their sustainable production for bulk applications.

  2. Production of Medium Chain Length Polyhydroxyalkanoates From Oleic Acid Using Pseudomonas putida PGA1 by Fed Batch Culture

    Directory of Open Access Journals (Sweden)

    Sidik Marsudi

    2010-10-01

    Full Text Available Bacterial polyhydroxyalkanoates (PHAs are a class of p0lymers currently receiving much attention because of their potential as renewable and biodegradable plastics. A wide variety of bacteria has been reported to produce PHAs including Pseudomonas strains. These strains are known as versatile medium chain length PHAs (PHAs-mcl producers using fatty acids as carbon source. Oleic acid was used to produce PHAs-mcl using Pseudomonas putida PGA 1 by continuous feeding of both nitrogen and carbon source, in a fed batch culture. During cell growth, PHAs also accumulated, indicating that PHA production in this organism is growth associated. Residual cell increased until the nitrogen source was depleted. At the end of fermentation, final cell concentration, PHA content, and roductivity were 30.2 g/L, 44.8 % of cell dry weight, and 0.188 g/l/h, respectively.

  3. Evaluation of medium-chain-length polyhydroxyalkanoate production by Pseudomonas putida LS46 using biodiesel by-product streams.

    Science.gov (United States)

    Fu, Jilagamazhi; Sharma, Umesh; Sparling, Richard; Cicek, Nazim; Levin, David B

    2014-07-01

    Medium-chain-length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46 was analyzed in shake-flask-based batch reactions, using pure chemical-grade glycerol (PG), biodiesel-derived "waste" glycerol (WG), and biodiesel-derived "waste" free fatty acids (WFA). Cell growth, substrate consumption, mcl-PHA accumulation within the cells, and the monomer composition of the synthesized biopolymers were monitored. The patterns of mcl-PHA synthesis in P. putida LS46 cells grown on PG and WG were similar but differed from that of cells grown with WFA. Polymer accumulation in glycerol-based cultures was stimulated by nitrogen limitation and plateaued after 48 h in both PG and WG cultures, with a total accumulation of 17.9% cell dry mass and 16.3% cell dry mass, respectively. In contrast, mcl-PHA synthesis was independent of nitrogen concentration in P. putida LS46 cells cultured with WFA, which accumulated to 29% cell dry mass. In all cases, the mcl-PHAs synthesized consisted primarily of 3-hydroxyoctanoate (C(8)) and 3-hydroxydecanoate (C(10)). WG and WFA supported similar or greater cell growth and mcl-PHA accumulation than PG under the experimental conditions used. These results suggest that biodiesel by-product streams could be used as low-cost carbon sources for sustainable mcl-PHA production.

  4. Synthesis of Medium-Chain-Length Polyhydroxyalkanoate Homopolymers, Random Copolymers, and Block Copolymers by an Engineered Strain of Pseudomonas entomophila.

    Science.gov (United States)

    Wang, Ying; Chung, Ahleum; Chen, Guo-Qiang

    2017-04-01

    Medium-chain-length polyhydroxyalkanoates (mcl-PHAs), widely used in medical area, are commonly synthesized by Pseudomonas spp. This study tries to use β-oxidation pathways engineered P. entomophila to achieve single source of a series of mcl-monomers for microbial production of PHA homopolymers. The effort is proven successful for the first time to obtain a wide range of mcl-PHA homopolymers from engineered P. entomophila LAC23 grown on various fatty acids, respectively, ranging from poly(3-hydroxyheptanoate) to poly(3-hydroxytetradecanoate). Effects of a PHA monomer chain length on thermal and crystallization properties including the changes of T m , T g , and T d5% are investigated. Additionally, strain LAC23 is used to synthesize random copolymers of 3-hydroxyoctanoate (3HO) and 3-hydroxydodecanoate (3HDD) or 3-hydroxytetradecanoates, their compositions could be controlled by adjusting the ratios of two related fatty acids. Meanwhile, block copolymer P(3HO)-b-P(3HDD) is synthesized by the same strain. It is found for the first time that even- and odd number mcl-PHA homopolymers have different physical properties. When the gene of the PHA synthase in the engineered P. entomophila is replaced by phaC from Aeromonas hydrophila 4AK4, poly(3-hydroxybutyrate-co-30 mol%-3-hydroxyhexanoate) is synthesized. Therefore, P. entomophila can be used to synthesize the whole range of PHA (C7-C14) homopolymers, random- and block copolymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440

    Directory of Open Access Journals (Sweden)

    Le Meur Sylvaine

    2012-08-01

    Full Text Available Abstract Background Pseudomonas putida KT2440 is able to synthesize large amounts of medium-chain-length polyhydroxyalkanoates (mcl-PHAs. To reduce the substrate cost, which represents nearly 50% of the total PHA production cost, xylose, a hemicellulose derivate, was tested as the growth carbon source in an engineered P. putida KT2440 strain. Results The genes encoding xylose isomerase (XylA and xylulokinase (XylB from Escherichia coli W3110 were introduced into P. putida KT2440. The recombinant KT2440 exhibited a XylA activity of 1.47 U and a XylB activity of 0.97 U when grown on a defined medium supplemented with xylose. The cells reached a maximum specific growth rate of 0.24 h-1 and a final cell dry weight (CDW of 2.5 g L-1 with a maximal yield of 0.5 g CDW g-1 xylose. Since no mcl-PHA was accumulated from xylose, mcl-PHA production can be controlled by the addition of fatty acids leading to tailor-made PHA compositions. Sequential feeding strategy was applied using xylose as the growth substrate and octanoic acid as the precursor for mcl-PHA production. In this way, up to 20% w w-1 of mcl-PHA was obtained. A yield of 0.37 g mcl-PHA per g octanoic acid was achieved under the employed conditions. Conclusions Sequential feeding of relatively cheap carbohydrates and expensive fatty acids is a practical way to achieve more cost-effective mcl-PHA production. This study is the first reported attempt to produce mcl-PHA by using xylose as the growth substrate. Further process optimizations to achieve higher cell density and higher productivity of mcl-PHA should be investigated. These scientific exercises will undoubtedly contribute to the economic feasibility of mcl-PHA production from renewable feedstock.

  6. Production of Polyhydroxyalkanoates from Sludge Palm Oil Using Pseudomonas putida S12.

    Science.gov (United States)

    Kang, Du-Kyeong; Lee, Cho-Ryong; Lee, Sun Hee; Bae, Jung-Hoon; Park, Young-Kwon; Rhee, Young Ha; Sung, Bong Hyun; Sohn, Jung-Hoon

    2017-05-28

    Polyhydroxyalkanoates (PHAs) are biodegradable plastics produced by bacteria, but their use in diverse applications is prohibited by high production costs. To reduce these costs, the conversion by Pseudomonas strains of P HAs from crude s ludge p alm oil ( SPO) a s an inexpensive renewable raw material was tested. Pseudomonas putida S12 was found to produce the highest yield (~41%) of elastomeric medium-chain-length (MCL)-PHAs from SPO. The MCL-PHA characteristics were analyzed by gas-chromatography/mass spectrometry, gel permeation chromatography, and differential scanning calorimetry. These findings may contribute to more widespread use of PHAs by reducing PHA production costs.

  7. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity.

    Science.gov (United States)

    Manso Cobos, Isabel; Ibáñez García, María Isabel; de la Peña Moreno, Fernando; Sáez Melero, Lara Paloma; Luque-Almagro, Víctor Manuel; Castillo Rodríguez, Francisco; Roldán Ruiz, María Dolores; Prieto Jiménez, María Auxiliadora; Moreno Vivián, Conrado

    2015-06-10

    Cyanide is one of the most toxic chemicals produced by anthropogenic activities like mining and jewelry industries, which generate wastewater residues with high concentrations of this compound. Pseudomonas pseudoalcaligenes CECT5344 is a model microorganism to be used in detoxification of industrial wastewaters containing not only free cyanide (CN(-)) but also cyano-derivatives, such as cyanate, nitriles and metal-cyanide complexes. Previous in silico analyses suggested the existence of genes putatively involved in metabolism of short chain length (scl-) and medium chain length (mcl-) polyhydroxyalkanoates (PHAs) located in three different clusters in the genome of this bacterium. PHAs are polyesters considered as an alternative of petroleum-based plastics. Strategies to optimize the bioremediation process in terms of reducing the cost of the production medium are required. In this work, a biological treatment of the jewelry industry cyanide-rich wastewater coupled to PHAs production as by-product has been considered. The functionality of the pha genes from P. pseudoalcaligenes CECT5344 has been demonstrated. Mutant strains defective in each proposed PHA synthases coding genes (Mpha(-), deleted in putative mcl-PHA synthases; Spha(-), deleted in the putative scl-PHA synthase) were generated. The accumulation and monomer composition of scl- or mcl-PHAs in wild type and mutant strains were confirmed by gas chromatography-mass spectrometry (GC-MS). The production of PHAs as by-product while degrading cyanide from the jewelry industry wastewater was analyzed in batch reactor in each strain. The wild type and the mutant strains grew at similar rates when using octanoate as the carbon source and cyanide as the sole nitrogen source. When cyanide was depleted from the medium, both scl-PHAs and mcl-PHAs were detected in the wild-type strain, whereas scl-PHAs or mcl-PHAs were accumulated in Mpha(-) and Spha(-), respectively. The scl-PHAs were identified as homopolymers of 3

  8. The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate.

    Science.gov (United States)

    Nikodinovic, Jasmina; Kenny, Shane T; Babu, Ramesh P; Woods, Trevor; Blau, Werner J; O'Connor, Kevin E

    2008-09-01

    Here, we report the use of petrochemical aromatic hydrocarbons as a feedstock for the biotechnological conversion into valuable biodegradable plastic polymers--polyhydroxyalkanoates (PHAs). We assessed the ability of the known Pseudomonas putida species that are able to utilize benzene, toluene, ethylbenzene, p-xylene (BTEX) compounds as a sole carbon and energy source for their ability to produce PHA from the single substrates. P. putida F1 is able to accumulate medium-chain-length (mcl) PHA when supplied with toluene, benzene, or ethylbenzene. P. putida mt-2 accumulates mcl-PHA when supplied with toluene or p-xylene. The highest level of PHA accumulated by cultures in shake flask was 26% cell dry weight for P. putida mt-2 supplied with p-xylene. A synthetic mixture of benzene, toluene, ethylbenzene, p-xylene, and styrene (BTEXS) which mimics the aromatic fraction of mixed plastic pyrolysis oil was supplied to a defined mixed culture of P. putida F1, mt-2, and CA-3 in the shake flasks and fermentation experiments. PHA was accumulated to 24% and to 36% of the cell dry weight of the shake flask and fermentation grown cultures respectively. In addition a three-fold higher cell density was achieved with the mixed culture grown in the bioreactor compared to shake flask experiments. A run in the 5-l fermentor resulted in the utilization of 59.6 g (67.5 ml) of the BTEXS mixture and the production of 6 g of mcl-PHA. The monomer composition of PHA accumulated by the mixed culture was the same as that accumulated by single strains supplied with single substrates with 3-hydroxydecanoic acid occurring as the predominant monomer. The purified polymer was partially crystalline with an average molecular weight of 86.9 kDa. It has a thermal degradation temperature of 350 degrees C and a glass transition temperature of -48.5 degrees C.

  9. Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder

    NARCIS (Netherlands)

    Walle, van der G.A.M.; Buisman, F.J.H.; Weusthuis, R.A.; Eggink, G.

    1999-01-01

    Unsaturated medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) produced by Pseudomonas putida from linseed oil fatty acids (LOFA) and tall oil fatty acids (TOFA), were used as the polymer binder in the formulation of high solid alkyd-like paints. The relatively high concentration of

  10. Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases.

    Science.gov (United States)

    Cheng, Jiujun; Charles, Trevor C

    2016-09-01

    Bacterially produced biodegradable polyhydroxyalkanoates (PHAs) with versatile properties can be achieved using different PHA synthases (PhaCs). This work aims to expand the diversity of known PhaCs via functional metagenomics and demonstrates the use of these novel enzymes in PHA production. Complementation of a PHA synthesis-deficient Pseudomonas putida strain with a soil metagenomic cosmid library retrieved 27 clones expressing either class I, class II, or unclassified PHA synthases, and many did not have close sequence matches to known PhaCs. The composition of PHA produced by these clones was dependent on both the supplied growth substrates and the nature of the PHA synthase, with various combinations of short-chain-length (SCL) and medium-chain-length (MCL) PHA. These data demonstrate the ability to isolate diverse genes for PHA synthesis by functional metagenomics and their use for the production of a variety of PHA polymer and copolymer mixtures.

  11. Transcriptome analysis of Pseudomonas mediterranea and P. corrugata plant pathogens during accumulation of medium-chain-length PHAs by glycerol bioconversion.

    Science.gov (United States)

    Licciardello, Grazia; Ferraro, Rosario; Russo, Marcella; Strozzi, Francesco; Catara, Antonino F; Bella, Patrizia; Catara, Vittoria

    2017-07-25

    Pseudomonas corrugata and P. mediterranea are soil inhabitant bacteria, generally living as endophytes on symptomless plants and bare soil, but also capable of causing plant diseases. They share a similar genome size and a high proteome similarity. P. corrugata produces many biomolecules which play an important role in bacterial cell survival and fitness. Both species produce different medium-chain-length PHAs (mcl-PHAs) from the bioconversion of glycerol to a transparent film in P. mediterranea and a sticky elastomer in P. corrugata. In this work, using RNA-seq we investigated the transcriptional profiles of both bacteria at the early stationary growth phase with glycerol as the carbon source. Quantitative analysis of P. mediterranea transcripts versus P. corrugata revealed that 1756 genes were differentially expressed. A total of 175 genes were significantly upregulated in P. mediterranea, while 217 were downregulated. The largest group of upregulated genes was related to transport systems and stress response, energy and central metabolism, and carbon metabolism. Expression levels of most genes coding for enzymes related to PHA biosynthesis and central metabolic pathways showed no differences or only slight variations in pyruvate metabolism. The most relevant result was the significantly increased expression in P. mediterranea of genes involved in alginate production, an important exopolysaccharide, which in other Pseudomonas spp. plays a key role as a virulence factor or in stress tolerance and shows many industrial applications. In conclusion, the results provide useful information on the co-production of mcl-PHAs and alginate from glycerol as carbon source by P. mediterranea in the design of new strategies of genetic regulation to improve the yield of bioproducts or bacterial fitness. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Characterization of a Novel Subgroup of Extracellular Medium-Chain-Length Polyhydroxyalkanoate Depolymerases from Actinobacteria

    Science.gov (United States)

    Gangoiti, Joana; Santos, Marta; Prieto, María Auxiliadora; de la Mata, Isabel; Llama, María J.

    2012-01-01

    Nineteen medium-chain-length (mcl) poly(3-hydroxyalkanoate) (PHA)-degrading microorganisms were isolated from natural sources. From them, seven Gram-positive and three Gram-negative bacteria were identified. The ability of these microorganisms to hydrolyze other biodegradable plastics, such as short-chain-length (scl) PHA, poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), and poly(l-lactide) (PLA), has been studied. On the basis of the great ability to degrade different polyesters, Streptomyces roseolus SL3 was selected, and its extracellular depolymerase was biochemically characterized. The enzyme consisted of one polypeptide chain of 28 kDa with a pI value of 5.2. Its maximum activity was observed at pH 9.5 with chromogenic substrates. The purified enzyme hydrolyzed mcl PHA and PCL but not scl PHA, PES, and PLA. Moreover, the mcl PHA depolymerase can hydrolyze various substrates for esterases, such as tributyrin and p-nitrophenyl (pNP)-alkanoates, with its maximum activity being measured with pNP-octanoate. Interestingly, when poly(3-hydroxyoctanoate-co-3-hydroxyhexanoate [11%]) was used as the substrate, the main hydrolysis product was the monomer (R)-3-hydroxyoctanoate. In addition, the genes of several Actinobacteria strains, including S. roseolus SL3, were identified on the basis of the peptide de novo sequencing of the Streptomyces venezuelae SO1 mcl PHA depolymerase by tandem mass spectrometry. These enzymes did not show significant similarity to mcl PHA depolymerases characterized previously. Our results suggest that these distinct enzymes might represent a new subgroup of mcl PHA depolymerases. PMID:22865072

  13. Production of polyhydroxyalkanoates (PHAs) in transgenic potato

    NARCIS (Netherlands)

    Romano, A.

    2002-01-01

    Polyhydroxyalkanoates (PHAs) represent a large class of microbial polyesters which are widely distributed in prokaryotes. Because of the current environmental concerns related to the use of mineral-oil-based plastics, PHAs gained a considerable interest for

  14. Strategies for Automated Control of the Bioproduction of Mcl-PHA Biopolymers

    Directory of Open Access Journals (Sweden)

    P. Hrnčiřík

    2017-10-01

    Full Text Available Medium-chain-length polyhydroxyalkanoates (mcl-PHAs are polyesters synthesized by numerous bacteria as storage material. Despite being promising candidates for biodegradable materials of industrial interest and environmental value, their usage is still rather limited because of high production costs. One of the areas with considerable potential for further improvements is control of the production process. This paper deals with the experimental work related to the design of control strategies for mcl-PHA biopolymer production process (Pseudomonas putida KT2442 fed-batch cultivations. For this bioprocess, a set of five control strategies (two main and three auxiliary strategies have been proposed, together with the proper sequence of their switching during the fed-batch part of the production process. The application of these strategies with octanoic acid as a sole carbon source resulted in intracellular PHA content (max. mass fraction 65 % of mcl-PHA in cell dry mass (g g–1 and PHA productivity (max. 0.89 g L–1 h–1 comparable to the best results reported in the literature for this type of strain and carbon substrate.

  15. Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder.

    Science.gov (United States)

    van der Walle, G A; Buisman, G J; Weusthuis, R A; Eggink, G

    1999-01-01

    Unsaturated medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) produced by Pseudomonas putida from linseed oil fatty acids (LOFA) and tall oil fatty acids (TOFA), were used as the polymer binder in the formulation of high solid alkyd-like paints. The relatively high concentration of unsaturated alkyl side chains incorporated into the PHA resins resulted in oxidative drying PHA paints having excellent coating properties. The homogeneously pigmented PHA coatings yielded high-gloss, smooth and strong films upon curing and showed an excellent flexibility, a good adhesion to different substrates, cohesive film properties and resistance to chipping.

  16. Screening of polyhydroxyalkanoate-producing bacteria and PhaC-encoding genes in two hypersaline microbial mats from Guerrero Negro, Baja California Sur, Mexico

    Directory of Open Access Journals (Sweden)

    Carolina A. Martínez-Gutiérrez

    2018-05-01

    Full Text Available Hypersaline microbial mats develop through seasonal and diel fluctuations, as well as under several physicochemical variables. Hence, resident microorganisms commonly employ strategies such as the synthesis of polyhydroxyalkanoates (PHAs in order to resist changing and stressful conditions. However, the knowledge of bacterial PHA production in hypersaline microbial mats has been limited to date, particularly in regard to medium-chain length PHAs (mcl-PHAs, which have biotechnological applications due to their plastic properties. The aim of this study was to obtain evidence for PHA production in two hypersaline microbial mats of Guerrero Negro, Mexico by searching for PHA granules and PHA synthase genes in isolated bacterial strains and environmental samples. Six PHA-producing strains were identified by 16S rRNA gene sequencing; three of them corresponded to a Halomonas sp. In addition, Paracoccus sp., Planomicrobium sp. and Staphylococcus sp. were also identified as PHA producers. Presumptive PHA granules and PHA synthases genes were detected in both sampling sites. Moreover, phylogenetic analysis showed that most of the phylotypes were distantly related to putative PhaC synthases class I sequences belonging to members of the classes Alphaproteobacteria and Gammaproteobacteria distributed within eight families, with higher abundances corresponding mainly to Rhodobacteraceae and Rhodospirillaceae. This analysis also showed that PhaC synthases class II sequences were closely related to those of Pseudomonas putida, suggesting the presence of this group, which is probably involved in the production of mcl-PHA in the mats. According to our state of knowledge, this study reports for the first time the occurrence of phaC and phaC1 sequences in hypersaline microbial mats, suggesting that these ecosystems may be a novel source for the isolation of short- and medium-chain length PHA producers.

  17. A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate

    Directory of Open Access Journals (Sweden)

    Zinn Manfred

    2011-04-01

    Full Text Available Abstract Background The substitution of plastics based on fossil raw material by biodegradable plastics produced from renewable resources is of crucial importance in a context of oil scarcity and overflowing plastic landfills. One of the most promising organisms for the manufacturing of medium-chain-length polyhydroxyalkanoates (mcl-PHA is Pseudomonas putida KT2440 which can accumulate large amounts of polymer from cheap substrates such as glucose. Current research focuses on enhancing the strain production capacity and synthesizing polymers with novel material properties. Many of the corresponding protocols for strain engineering rely on the rifampicin-resistant variant, P. putida KT2442. However, it remains unclear whether these two strains can be treated as equivalent in terms of mcl-PHA production, as the underlying antibiotic resistance mechanism involves a modification in the RNA polymerase and thus has ample potential for interfering with global transcription. Results To assess PHA production in P. putida KT2440 and KT2442, we characterized the growth and PHA accumulation on three categories of substrate: PHA-related (octanoate, PHA-unrelated (gluconate and poor PHA substrate (citrate. The strains showed clear differences of growth rate on gluconate and citrate (reduction for KT2442 > 3-fold and > 1.5-fold, respectively but not on octanoate. In addition, P. putida KT2442 PHA-free biomass significantly decreased after nitrogen depletion on gluconate. In an attempt to narrow down the range of possible reasons for this different behavior, the uptake of gluconate and extracellular release of the oxidized product 2-ketogluconate were measured. The results suggested that the reason has to be an inefficient transport or metabolization of 2-ketogluconate while an alteration of gluconate uptake and conversion to 2-ketogluconate could be excluded. Conclusions The study illustrates that the recruitment of a pleiotropic mutation, whose effects might

  18. Production of medium-chain-length polyhydroxyalkanoate by Pseudomonas oleovorans grown in sugary cassava extract supplemented with andiroba oil

    Directory of Open Access Journals (Sweden)

    Diego Aires da Silva

    2014-12-01

    Full Text Available Pseudomonas oleovorans were grown on sugary cassava extracts supplemented with andiroba oil for the synthesis of a mediumchain- length polyhydroxyalkanoate (PHA MCL. The concentration of total sugars in the extract was approximately: 40 g/L in culture 1, 15 g/L in cultures 2 and 3, and 10 g/L in culture 4. Supplementation with 1% andiroba oil and 0.2 g/L of (NH42HPO4 was performed 6.5 hours after growth in culture 3, and supplementation with the same amount of andiroba oil and 2.4 g/L of (NH42HPO4 was performed at the beginning of growth in culture 4. The synthesis resulted mainly in 3-hydroxy-decanoate and 3-hydroxy-dodecanoate units; 3-hydroxy-butyrate, 3-hydroxy-hexanoate; and 3-hydroxy-octanoate monomers were also produced but in smaller proportions. P. oleovorans significantly accumulated PHA MCL in the deceleration phase of growth with an oxygen limitation but with sufficient nitrogen concentration to maintain cell growth. The sugary cassava extract supplemented with andiroba oil proved to be a potential substrate for PHA MCL production.

  19. High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes.

    Directory of Open Access Journals (Sweden)

    Mariela V Catone

    Full Text Available Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB, a short chain length polyhydroxyalkanoate (sclPHA infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA. All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC in comparison with the mclPHA core genome genes (phaC1 and phaC2 indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases.

  20. Optimization of Water/Oil/Surfactant System for Preparation of Medium-Chain-Length Poly-3-Hydroxyalkanoates (mcl-PHA)-Incorporated Nanoparticles via Nanoemulsion Templating Technique.

    Science.gov (United States)

    Ishak, K A; Annuar, M Suffian M; Ahmad, N

    2017-12-01

    Polymeric nanoparticles gain a widespread interest in food and pharmaceutical industries as delivery systems that encapsulate, protect, and release lipophilic compounds such as omega-3 fatty acids, fat-soluble vitamins, carotenoids, carvedilol, cyclosporine, and ketoprofen. In this study, medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA)-incorporated nanoparticle was developed via facile organic solvent-free nanoemulsion templating technique. The water content (W/surfactant-to-oil (S/O)), S/O, and Cremophor EL-to-Span 80 (Cremo/Sp80) ratios were first optimized using response surface methodology (RSM) to obtain nanoemulsion template prior to incorporation of mcl-PHA. Their effects on nanoemulsion formation were investigated. The mcl-PHA-incorporated nanoparticle system showed a good preservation capability of β-carotene and extended storage stability.

  1. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements.

    Science.gov (United States)

    Anjum, Anbreen; Zuber, Mohammad; Zia, Khalid Mahmood; Noreen, Aqdas; Anjum, Muhammad Naveed; Tabasum, Shazia

    2016-08-01

    Traditional mineral oil based plastics are important commodity to enhance the comfort and quality of life but the accumulation of these plastics in the environment has become a major universal problem due to their low biodegradation. Solution to the plastic waste management includes incineration, recycling and landfill disposal methods. These processes are very time consuming and expensive. Biopolymers are important alternatives to the petroleum-based plastics due to environment friendly manufacturing processes, biodegradability and biocompatibility. Therefore use of novel biopolymers, such as polylactide, polysaccharides, aliphatic polyesters and polyhydroxyalkanoates is of interest. PHAs are biodegradable polyesters of hydroxyalkanoates (HA) produced from renewable resources by using microorganisms as intracellular carbon and energy storage compounds. Even though PHAs are promising candidate for biodegradable polymers, however, the production cost limit their application on an industrial scale. This article provides an overview of various substrates, microorganisms for the economical production of PHAs and its copolymers. Recent advances in PHAs to reduce the cost and to improve the performance of PHAs have also been discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis.

    Science.gov (United States)

    Tribelli, Paula M; Di Martino, Carla; López, Nancy I; Raiger Iustman, Laura J

    2012-09-01

    Diesel is a widely distributed pollutant. Bioremediation of this kind of compounds requires the use of microorganisms able to survive and adapt to contaminated environments. Pseudomonas extremaustralis is an Antarctic bacterium with a remarkable survival capability associated to polyhydroxyalkanoates (PHAs) production. This strain was used to investigate the effect of cell growth conditions--in biofilm versus shaken flask cultures--as well as the inocula characteristics associated with PHAs accumulation, on diesel degradation. Biofilms showed increased cell growth, biosurfactant production and diesel degradation compared with that obtained in shaken flask cultures. PHA accumulation decreased biofilm cell attachment and enhanced biosurfactant production. Degradation of long-chain and branched alkanes was observed in biofilms, while in shaken flasks only medium-chain length alkanes were degraded. This work shows that the PHA accumulating bacterium P. extremaustralis can be a good candidate to be used as hydrocarbon bioremediation agent, especially in extreme environments.

  3. Lignin valorization through integrated biological funneling and chemical catalysis

    Science.gov (United States)

    Linger, Jeffrey G.; Vardon, Derek R.; Guarnieri, Michael T.; Karp, Eric M.; Hunsinger, Glendon B.; Franden, Mary Ann; Johnson, Christopher W.; Chupka, Gina; Strathmann, Timothy J.; Pienkos, Philip T.; Beckham, Gregg T.

    2014-01-01

    Lignin is an energy-dense, heterogeneous polymer comprised of phenylpropanoid monomers used by plants for structure, water transport, and defense, and it is the second most abundant biopolymer on Earth after cellulose. In production of fuels and chemicals from biomass, lignin is typically underused as a feedstock and burned for process heat because its inherent heterogeneity and recalcitrance make it difficult to selectively valorize. In nature, however, some organisms have evolved metabolic pathways that enable the utilization of lignin-derived aromatic molecules as carbon sources. Aromatic catabolism typically occurs via upper pathways that act as a “biological funnel” to convert heterogeneous substrates to central intermediates, such as protocatechuate or catechol. These intermediates undergo ring cleavage and are further converted via the β-ketoadipate pathway to central carbon metabolism. Here, we use a natural aromatic-catabolizing organism, Pseudomonas putida KT2440, to demonstrate that these aromatic metabolic pathways can be used to convert both aromatic model compounds and heterogeneous, lignin-enriched streams derived from pilot-scale biomass pretreatment into medium chain-length polyhydroxyalkanoates (mcl-PHAs). mcl-PHAs were then isolated from the cells and demonstrated to be similar in physicochemical properties to conventional carbohydrate-derived mcl-PHAs, which have applications as bioplastics. In a further demonstration of their utility, mcl-PHAs were catalytically converted to both chemical precursors and fuel-range hydrocarbons. Overall, this work demonstrates that the use of aromatic catabolic pathways enables an approach to valorize lignin by overcoming its inherent heterogeneity to produce fuels, chemicals, and materials. PMID:25092344

  4. Mesorhizobium bacterial strains isolated from the legume Lotus corniculatus are an alternative source for the production of polyhydroxyalkanoates (PHAs) to obtain bioplastics.

    Science.gov (United States)

    Marcos-García, Marta; García-Fraile, Paula; Filipová, Alena; Menéndez, Esther; Mateos, Pedro F; Velázquez, Encarna; Cajthaml, Tomáš; Rivas, Raúl

    2017-07-01

    Polyhydroxyalkanoic acids (PHAs) are natural polyesters that can be used to produce bioplastics which are biodegradable. Numerous microorganisms accumulate PHAs as energy reserves. Combinations of different PHAs monomers lead to the production of bioplastics with very different properties. In the present work, we show the capability of strains belonging to various phylogenetic lineages within the genus Mesorhizobium, isolated from Lotus corniculatus nodules, to produce different PHA monomers. Among our strains, we found the production of 3-hydroxybutyrate, 3-hydroxyvalerate, 3-hydroxydodecanoate, and 3-hydroxyhexadecanoate. Most of the PHA-positive strains were phylogenetically related to the species M. jarvisii. However, our findings suggest that the ability to produce different monomers forming PHAs is strain-dependent.

  5. Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate.

    Science.gov (United States)

    Guzik, Maciej W; Kenny, Shane T; Duane, Gearoid F; Casey, Eoin; Woods, Trevor; Babu, Ramesh P; Nikodinovic-Runic, Jasmina; Murray, Michael; O'Connor, Kevin E

    2014-05-01

    A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer.

  6. Bacterial polyhydroxyalkanoates: Still fabulous?

    Science.gov (United States)

    Możejko-Ciesielska, Justyna; Kiewisz, Robert

    2016-11-01

    Bacterial polyhydroxyalkanoates (PHA) are polyesters accumulated as carbon and energy storage materials under limited growth conditions in the presence of excess carbon sources. They have been developed as biomaterials with unique properties for the past many years being considered as a potential substitute for conventional non-degradable plastics. Due to the increasing concern towards global climate change, depleting petroleum resource and problems with an utilization of a growing number of synthetic plastics, PHAs have gained much more attention from industry and research. These environmentally friendly microbial polymers have great potential in biomedical, agricultural, and industrial applications. However, their production on a large scale is still limited. This paper describes the backgrounds of PHAs and discussed the current state of knowledge on the polyhydroxyalkanoates. Ability of bacteria to convert different carbon sources to PHAs, the opportunities and challenges of their introduction to global market as valuable renewable products have been also discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs).

    Science.gov (United States)

    Wang, Huizheng; Zhang, Kai; Zhu, Jie; Song, Weiwei; Zhao, Li; Zhang, Xiuguo

    2013-01-01

    Polyhydroxyalkanoates (PHAs) have attracted increasing attention as "green plastic" due to their biodegradable, biocompatible, thermoplastic, and mechanical properties, and considerable research has been undertaken to develop low cost/high efficiency processes for the production of PHAs. MaoC-like hydratase (MaoC), which belongs to (R)-hydratase involved in linking the β-oxidation and the PHA biosynthetic pathways, has been identified recently. Understanding the regulatory mechanisms of (R)-hydratase catalysis is critical for efficient production of PHAs that promise synthesis an environment-friendly plastic. We have determined the crystal structure of a new MaoC recognized from Phytophthora capsici. The crystal structure of the enzyme was solved at 2.00 Å resolution. The structure shows that MaoC has a canonical (R)-hydratase fold with an N-domain and a C-domain. Supporting its dimerization observed in structure, MaoC forms a stable homodimer in solution. Mutations that disrupt the dimeric MaoC result in a complete loss of activity toward crotonyl-CoA, indicating that dimerization is required for the enzymatic activity of MaoC. Importantly, structure comparison reveals that a loop unique to MaoC interacts with an α-helix that harbors the catalytic residues of MaoC. Deletion of the loop enhances the enzymatic activity of MaoC, suggesting its inhibitory role in regulating the activity of MaoC. The data in our study reveal the regulatory mechanism of an (R)-hydratase, providing information on enzyme engineering to produce low cost PHAs.

  8. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs.

    Directory of Open Access Journals (Sweden)

    Huizheng Wang

    Full Text Available Polyhydroxyalkanoates (PHAs have attracted increasing attention as "green plastic" due to their biodegradable, biocompatible, thermoplastic, and mechanical properties, and considerable research has been undertaken to develop low cost/high efficiency processes for the production of PHAs. MaoC-like hydratase (MaoC, which belongs to (R-hydratase involved in linking the β-oxidation and the PHA biosynthetic pathways, has been identified recently. Understanding the regulatory mechanisms of (R-hydratase catalysis is critical for efficient production of PHAs that promise synthesis an environment-friendly plastic.We have determined the crystal structure of a new MaoC recognized from Phytophthora capsici. The crystal structure of the enzyme was solved at 2.00 Å resolution. The structure shows that MaoC has a canonical (R-hydratase fold with an N-domain and a C-domain. Supporting its dimerization observed in structure, MaoC forms a stable homodimer in solution. Mutations that disrupt the dimeric MaoC result in a complete loss of activity toward crotonyl-CoA, indicating that dimerization is required for the enzymatic activity of MaoC. Importantly, structure comparison reveals that a loop unique to MaoC interacts with an α-helix that harbors the catalytic residues of MaoC. Deletion of the loop enhances the enzymatic activity of MaoC, suggesting its inhibitory role in regulating the activity of MaoC.The data in our study reveal the regulatory mechanism of an (R-hydratase, providing information on enzyme engineering to produce low cost PHAs.

  9. A kinetic model for growth and biosynthesis of medium-chain-length poly-(3-hydroxyalkanoates in Pseudomonas putida

    Directory of Open Access Journals (Sweden)

    M. S. M. Annuar

    2008-06-01

    Full Text Available A kinetic model is presented giving a mathematical description of batch culture of Pseudomonas putida PGA1 grown using saponified palm kernel oil as carbon source and ammonium as the limiting nutrient. The growth of the micro-organism is well-described using Tessier-type model which takes into account the inhibitory effect of ammonium at high concentrations. The ammonium consumption rate by the cells is related in proportion to the rate of growth. The intracellular production of medium-chain-length poly-(3-hydroxyalkanoates (PHA MCL by P. putida PGA1 cells is reasonably modeled by the modified Luedeking-Piret kinetics, which incorporate a function of product synthesis inhibition (or reduction by ammonium above a threshold level.

  10. Current trends in biodegradable polyhydroxyalkanoates.

    Science.gov (United States)

    Chanprateep, Suchada

    2010-12-01

    The microbial polyesters known as polyhydroxyalkanoates (PHAs) positively impact global climate change scenarios by reducing the amount of non-degradable plastic used. A wide variety of different monomer compositions of PHAs has been described, as well as their future prospects for applications where high biodegradability or biocompatibility is required. PHAs can be produced from renewable raw materials and are degraded naturally by microorganisms that enable carbon dioxide and organic compound recycling in the ecosystem, providing a buffer to climate change. This review summarizes recent research on PHAs and addresses the opportunities as well as challenges for their place in the global market. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation.

    Science.gov (United States)

    Srivastava, S K; Tripathi, Abhishek Dutt

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are intracellular reserve material stored by gram-negative bacteria under nutrient-limited condition. PHAs are utilized in biodegradable plastics (bio-plastics) synthesis due to their similarity with conventional synthetic plastic. In the present study, the effect of addition of saturated and unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) on the production of PHAs by the soil bacterium Alcaligenes sp. NCIM 5085 was studied. Fatty acid supplementation in basal media produced saturated and unsaturated PHAs of medium and short chain length. Gas chromatography analysis of palmitic acid-supplemented media showed the presence of short chain length (scl) PHAs which could potentially serve as precursors for bio-plastic production. The scl PHA was subsequently characterized as PHB by NMR and FTIR. On the other hand, oleic acid and linoleic acid addition showed both saturated and unsaturated PHAs of different chain lengths. Palmitic acid showed maximum PHB content of 70.8 % at concentration of 15 g l -1 under shake flask cultivation. When shake flask cultivation was scaled up in a 7.5-l bioreactor (working volume 3 l), 7.6 g l -1 PHA was produced with a PHB yield (Y P/X ) and productivity of 75.89 % and 0.14 g l -1  h, respectively.

  12. In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates

    NARCIS (Netherlands)

    Poblete-Castro, I.; Binger, D.; Rodrigues, A.; Becker, J.; Martins Dos Santos, V.A.P.; Wittmann, C.

    2013-01-01

    Here, we present systems metabolic engineering driven by in-silico modeling to tailor Pseudomonas putida for synthesis of medium chain length PHAs on glucose. Using physiological properties of the parent wild type as constraints, elementary flux mode analysis of a large-scale model of the metabolism

  13. Biosynthesis and composition of bacterial poly(hydroxyalkanoates).

    Science.gov (United States)

    Anderson, A J; Haywood, G W; Dawes, E A

    1990-04-01

    It is well established that Alcaligenes eutrophus can accumulate a copolymer containing 3-hydroxybutyrate and 3-hydroxyvalerate, but longer 3-hydroxyacid monomers have not been reported to occur in this organism. The properties of the enzymes of poly(hydroxyalkanoate) (PHA) biosynthesis are discussed and it is proposed that the substrate specificity of the polymerizing enzyme restricts the range of monomer units incorporated into PHA. Various other bacteria produce similar copolymers from propionic acid and/or valeric acid. A number of Pseudomonas species accumulate PHAs containing longer-chain monomer units from linear alkanoic acids, alkanes and alcohols.

  14. Bacillus subtilis as potential producer for polyhydroxyalkanoates.

    Science.gov (United States)

    Singh, Mamtesh; Patel, Sanjay Ks; Kalia, Vipin C

    2009-07-20

    Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB), the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process - for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.

  15. Bacillus subtilis as potential producer for polyhydroxyalkanoates

    Directory of Open Access Journals (Sweden)

    Patel Sanjay KS

    2009-07-01

    Full Text Available Abstract Polyhydroxyalkanoates (PHAs are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB, the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process – for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.

  16. Synthesis of Diblock copolymer poly-3-hydroxybutyrate -block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation weakened Pseudomonas putida KT2442

    DEFF Research Database (Denmark)

    Tripathi, Lakshmi; Wu, Lin-Ping; Chen, Jinchun

    2012-01-01

    ), thermo- and mechanical analysis. NMR confirmed the existence of diblock copolymers consisting of 58 mol% PHB as the short chain length block with 42 mol% PHHx as the medium chain length block. The block copolymers had two glass transition temperatures (Tg) at 2.7°C and -16.4°C, one melting temperature...... (Tm) at 172.1°C and one cool crystallization temperature (Tc) at 69.1°C as revealed by differential scanning calorimetry (DSC), respectively. This is the first microbial short-chain-length (scl) and medium-chain-length (mcl) PHA block copolymer reported. CONCLUSIONS: It is possible to produce PHA......BACKGROUND: Block polyhydroxyalkanoates (PHA) were reported to be resistant against polymer aging that negatively affects polymer properties. Recently, more and more attempts have been directed to make PHA block copolymers. Diblock copolymers PHB-b-PHHx consisting of poly-3-hydroxybutyrate (PHB...

  17. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.

    Science.gov (United States)

    Urtuvia, Viviana; Villegas, Pamela; González, Myriam; Seeger, Michael

    2014-09-01

    Petroleum-based plastics constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is of increasing interest. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are biodegradable plastics. Life cycle assessment indicates that PHB is more beneficial than petroleum-based plastics. In this report, bacterial production of PHAs and their industrial applications are reviewed and the synthesis of PHAs in Burkholderia xenovorans LB400 is described. PHAs are synthesized by a large number of microorganisms during unbalanced nutritional conditions. These polymers are accumulated as carbon and energy reserve in discrete granules in the bacterial cytoplasm. 3-hydroxybutyrate and 3-hydroxyvalerate are two main PHA units among 150 monomers that have been reported. B. xenovorans LB400 is a model bacterium for the degradation of polychlorobiphenyls and a wide range of aromatic compounds. A bioinformatic analysis of LB400 genome indicated the presence of pha genes encoding enzymes of pathways for PHA synthesis. This study showed that B. xenovorans LB400 synthesize PHAs under nutrient limitation. Staining with Sudan Black B indicated the production of PHAs by B. xenovorans LB400 colonies. The PHAs produced were characterized by GC-MS. Diverse substrates for the production of PHAs in strain LB400 were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Isolation and Screening of Polyhydroxyalkanoates Producing Bacteria from Pulp, Paper, and Cardboard Industry Wastes

    Directory of Open Access Journals (Sweden)

    Anish Kumari Bhuwal

    2013-01-01

    Full Text Available Background. Polyhydroxyalkanoates (PHAs are storage materials that accumulate by various bacteria as energy and carbon reserve materials. They are biodegradable, environmentally friendly, and also biocompatible bioplastics. Unlike petrochemical-based plastics that take several decades to fully degrade, PHAs can be completely degraded within a year by variety of microorganisms into CO2 and water. In the present study, we aim to utilize pulp, paper, and cardboard industry sludge and waste water for the isolation and screening of polyhydroxyalkanoates (PHAs accumulating bacteria and production of cost-effective PHB using cardboard industry waste water. Results. A total of 42 isolates showed black-blue coloration when stained with Sudan black B, a preliminary screening agent for lipophilic compounds, and a total of 15 isolates showed positive result with Nile blue A staining, a more specific dye for PHA granules. The isolates NAP11 and NAC1 showed maximum PHA production 79.27% and 77.63% with polymer concentration of 5.236 g/L and 4.042 g/L with cardboard industry waste water. Both of the selected isolates, NAP11 and NAC1, were classified up to genus level by studying their morphological and biochemical characteristics and were found to be Enterococcus sp., Brevundimonas sp. and, respectively. Conclusion. The isolates Enterococcus sp. NAP11 and Brevundimonas sp. NAC1 can be considered as good candidates for industrial production of PHB from cardboard industry waste water. We are reporting for the first time the use of cardboard industry waste water as a cultivation medium for the PHB production.

  19. Isolation and Screening of Polyhydroxyalkanoates Producing Bacteria from Pulp, Paper, and Cardboard Industry Wastes

    Science.gov (United States)

    Bhuwal, Anish Kumari; Singh, Gulab; Aggarwal, Neeraj Kumar; Goyal, Varsha; Yadav, Anita

    2013-01-01

    Background. Polyhydroxyalkanoates (PHAs) are storage materials that accumulate by various bacteria as energy and carbon reserve materials. They are biodegradable, environmentally friendly, and also biocompatible bioplastics. Unlike petrochemical-based plastics that take several decades to fully degrade, PHAs can be completely degraded within a year by variety of microorganisms into CO2 and water. In the present study, we aim to utilize pulp, paper, and cardboard industry sludge and waste water for the isolation and screening of polyhydroxyalkanoates (PHAs) accumulating bacteria and production of cost-effective PHB using cardboard industry waste water. Results. A total of 42 isolates showed black-blue coloration when stained with Sudan black B, a preliminary screening agent for lipophilic compounds, and a total of 15 isolates showed positive result with Nile blue A staining, a more specific dye for PHA granules. The isolates NAP11 and NAC1 showed maximum PHA production 79.27% and 77.63% with polymer concentration of 5.236 g/L and 4.042 g/L with cardboard industry waste water. Both of the selected isolates, NAP11 and NAC1, were classified up to genus level by studying their morphological and biochemical characteristics and were found to be Enterococcus sp., Brevundimonas sp. and, respectively. Conclusion. The isolates Enterococcus sp. NAP11 and Brevundimonas sp. NAC1 can be considered as good candidates for industrial production of PHB from cardboard industry waste water. We are reporting for the first time the use of cardboard industry waste water as a cultivation medium for the PHB production. PMID:24288534

  20. Synthetic routes to degradable copolymers deriving from the biosynthesized polyhydroxyalkanoates: A mini review

    Directory of Open Access Journals (Sweden)

    Y. Ke

    2016-01-01

    Full Text Available Polyhydroxyalkanoates are a family of natural polyesters being produced as intracellular carbon and energy reserves by a wide variety of microorganisms. They have developed rapidly in both research and development efforts globally in the last 15 years. Till now, over 100 different types of PHAs have been successfully biosynthesized using both genetic engineering and fermentation techniques. Their unique biodegradable, biocompatible and thermoplastic characteristics make PHAs promising candidates for the commodity and biomedical applications. This review focused on the chemical synthesis of the derivatives of the biosynthesized PHAs.

  1. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery.

    Science.gov (United States)

    Jiang, Guozhan; Hill, David J; Kowalczuk, Marek; Johnston, Brian; Adamus, Grazyna; Irorere, Victor; Radecka, Iza

    2016-07-19

    Polyhydroxyalkanoates (PHAs) are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs' biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels' production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs.

  2. Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics: progress and prospects.

    Science.gov (United States)

    Kumar, Abhishek; Srivastava, Janmejai K; Mallick, Nirupama; Singh, Akhilesh K

    2015-01-01

    Ubiquitous conventional plastics, generally manufactured from finite, nonsustainable fossil fuels are non-biodegradable wonder entities but their ill effect on Mother Nature has subsequently raised major environmental concerns like their safe disposal, solid waste management and several potential hazards. Such concerns have fuelled initiatives for research globally towards development of sustainable and eco-friendly bioplastics. The new generation of plastics called 'bioplastics' are polymers of long chain of repeating monomer units that are classified as photodegradable, semi-biodegradable, chemically synthesized and polyhydroxyalkanoates (PHAs). The commonly emerged novel bioplastics are polyesters of hydroxyalkanoates (HAs) called PHAs, which are lipoidic storage materials found in the cytosol of vast and diverse forms of bacteria. Among 150 different PHAs known so far, poly- 3-hydroxybutyrate is the most common and comprehensively characterized PHA. Interestingly, PHAs are only completely biodegradable plastics with material properties comparable to conventional plastics that can be achieved by regulating the co-monomers incorporation into PHAs backbone. PHA bioplastics are exploited in the form of user-friendly goods viz. films, absorbable sutures, bone plates, drug carriers, etc. Besides advantages, such useful entity(s) has major shortcomings as well like high production cost compared to conventional plastics. Precisely, in PHAs production, about fifty percent of the overall price is due to the carbon substrates. Consequently, exploring novel cost-effective substrates is a major compulsion for successful commercialization of this bioplastic, which is anticipated to reduce the cost of production as a result of advancing and intensifying research work. This review presents an insight and patent developments in the field of PHAs bioplastics.

  3. Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway.

    Science.gov (United States)

    Hoffmann, N; Steinbüchel, A; Rehm, B H

    2000-11-01

    Various pseudomonads are capable of the synthesis of polyhydroxyalkanoate (PHA), composed of medium chain length (MCL) 3-hydroxy fatty acids (C6-C14), when grown on simple carbon sources such as, for example, gluconate or acetate. In Pseudomonas putida, the fatty acid de novo synthesis and PHA synthesis are linked by the transacylase PhaG. Southern hybridization experiments with digoxigenin-labeled phaG(Pp) from P. putida and genomic DNA from various pseudomonads indicate that phaG homologues are present in various other pseudomonads. Although P. oleovorans does not accumulate PHA(MCL) from non-related carbon sources, its genomic DNA reveals a strong hybridization signal. We employed PCR to amplify this phaG homologue. The respective PCR product comprising the coding region of phaG(Po) was cloned into pBBR1MCS-2, resulting in plasmid pBHR84. DNA sequencing revealed that putative PhaG(Po) from P. oleovorans exhibited about 95% amino acid sequence identity to PhaG(Pp) from P. putida. Reverse transcriptase-PCR analysis demonstrated that phaG(Po) was not transcribed even tinder inducing conditions, i.e. in the presence of gluconate as carbon source, whereas induction of phaG(Pp) transcription was obtained in P. putida. When octanoate was used as sole carbon source, only low levels of phaG mRNA were detected in P. putida. Plasmid pBHR84 complemented the phaG-negative mutant PhaG(N)-21 from P. putida. Interestingly, reintroduction of phaG(Po) under lac promoter control into the natural host P. oleovorans established PHA(MCL) synthesis from non-related carbon sources in this bacterium. These data indicated that phaG(Po) in P. oleovorans is not functionally expressed and does not exert its original function.

  4. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery

    Directory of Open Access Journals (Sweden)

    Guozhan Jiang

    2016-07-01

    Full Text Available Polyhydroxyalkanoates (PHAs are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs’ biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels’ production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs.

  5. Cloning and heterologous expression of a novel subgroup of class IV polyhydroxyalkanoate synthase genes from the genus Bacillus.

    Science.gov (United States)

    Mizuno, Kouhei; Kihara, Takahiro; Tsuge, Takeharu; Lundgren, Benjamin R; Sarwar, Zaara; Pinto, Atahualpa; Nomura, Christopher T

    2017-01-01

    Many microorganisms harbor genes necessary to synthesize biodegradable plastics known as polyhydroxyalkanoates (PHAs). We surveyed a genomic database and discovered a new cluster of class IV PHA synthase genes (phaRC). These genes are different in sequence and operon structure from any previously reported PHA synthase. The newly discovered PhaRC synthase was demonstrated to produce PHAs in recombinant Escherichia coli.

  6. Polyhydroxyalkanoates: bioplastics with a green agenda.

    Science.gov (United States)

    Keshavarz, Tajalli; Roy, Ipsita

    2010-06-01

    Production of polyhydroxyalkanoates (PHAs) has been investigated for more than eighty years but recently a number of factors including increase in the price of crude oil and public awareness of the environmental issues have become a notable driving force for extended research on biopolymers. The versatility of PHAs has made them good candidates for the study of their potential in a variety of areas from biomedical/medical fields to food, packaging, textile and household material. While production costs are still a drawback to wider usage of these biopolymers, their application as low volume high cost items is becoming a reality. The future trend is to focus on the development of more efficient and economical processes for PHA production, isolation, purification and improvement of PHA material properties. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Improved detergent-based recovery of polyhydroxyalkanoates (PHAs).

    Science.gov (United States)

    Yang, Yung-Hun; Brigham, Christopher; Willis, Laura; Rha, ChoKyun; Sinskey, Anthony

    2011-05-01

    Extracting polyhydroxyalkanoate (PHA) polymer from bacterial cells often involves harsh conditions, including use of environmentally harmful solvents. We evaluated different detergents under various conditions to extract PHA from Ralstonia eutropha and Escherichia coli cells. Most detergents tested recovered highly pure PHA polymer from cells in amounts that depended on the percentage of polymer present in the cell. Detergents such as linear alkylbenzene sulfonic acid (LAS-99) produced a high yield of high purity polymer, and less detergent was needed compared to the amount of SDS to produce comparable yields. LAS-99 also has the advantage of being biodegradable and environmentally safe. Chemical extraction of PHA with detergents could potentially minimize or eliminate the need to use harsh organic solvents, thus making industrial PHA production a cleaner technology process. © Springer Science+Business Media B.V. 2011

  8. Polyhydroxyalkanoates: A way to sustainable development of bioplastics

    Directory of Open Access Journals (Sweden)

    Roopesh Jain

    2010-01-01

    Full Text Available This paper reviews role of polyhydroxyalkanoates (PHAs for sustainable development of bioplastics. PHAs are polyesters of hydroxyalkanoates with the general structural and have been investigated by biologists, chemists, engineers and other experts over the past many years. Bio-based and biodegradable plastics can form the basis for environmentally referable and sustainable alternative to current materials based exclusively on petroleum feed stocks. The result of the efforts made by scientist sought solution in form of biopolymer obtained either from microorganism or plants source and likely to replace currently used synthetic polymers as bioplastic. Applications of PHA as bioplastics, fine chemicals, implant biomaterials, and medicines have been developed. The PHA polymers promise to extend significantly the range of biomaterials as suitable alternative of plastic.

  9. Microbial production of polyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida.

    Science.gov (United States)

    Li, Shi Yan; Dong, Cui Ling; Wang, Shen Yu; Ye, Hai Mu; Chen, Guo-Qiang

    2011-04-01

    Polyhydroxyalkanoate (PHA) synthesis genes phaPCJ(Ac) cloned from Aeromonas caviae were transformed into Pseudomonas putida KTOY06ΔC, a mutant of P. putida KT2442, resulting in the ability of the recombinant P. putida KTOY06ΔC (phaPCJ(A.c)) to produce a short-chain-length and medium-chain-length PHA block copolymer consisting of poly-3-hydroxybutyrate (PHB) as one block and random copolymer of 3-hydroxyvalerate (3HV) and 3-hydroxyheptanoate (3HHp) as another block. The novel block polymer was studied by differential scanning calorimetry (DSC), nuclear magnetic resonance, and rheology measurements. DSC studies showed the polymer to possess two glass transition temperatures (T(g)), one melting temperature (T(m)) and one cool crystallization temperature (T(c)). Rheology studies clearly indicated a polymer chain re-arrangement in the copolymer; these studies confirmed the polymer to be a block copolymer, with over 70 mol% homopolymer (PHB) of 3-hydroxybutyrate (3HB) as one block and around 30 mol% random copolymers of 3HV and 3HHp as the second block. The block copolymer was shown to have the highest tensile strength and Young's modulus compared with a random copolymer with similar ratio and a blend of homopolymers PHB and PHVHHp with similar ratio. Compared with other commercially available PHA including PHB, PHBV, PHBHHx, and P3HB4HB, the short-chain- and medium-chain-length block copolymer PHB-b-PHVHHp showed differences in terms of mechanical properties and should draw more attentions from the PHA research community. © Springer-Verlag 2010

  10. In silico design of PHA synthase and its validation by PHAs producing bacterial isolates

    Directory of Open Access Journals (Sweden)

    Susrita Sahoo

    2017-10-01

    Full Text Available Biopolymers are important alternatives to the petroleum-based plastics due to environment friendly manufacturing processes, biodegradability and biocompatibility. Therefore use of novel biopolymers such as polylactide, polysaccharides, aliphatic polyesters and polyhydroxyalkonoates (PHAs is of interest. PHAs are biodegradable polyesters of hydroxyalkanoates (HA produced from renewable resources by using microorganisms as intracellular carbon and energy storage compounds.  Even though PHAs are promising candidate for biodegradable polymers, however, the production cost limits their application on an industrial scale. Therefore an attempt was made to model different PHAs synthases which are the key enzyme in the biosynthesis of Polyhydroxyalkanoates as the structural information of this enzyme is in dark veil.Then molecular docking  of class I  PHA  Synthase from Ralstonia Eutrophia was done to study the PHA synthase activity. As there are lots of strain which needs to explore for the production of PHA. This investigation leads to find out the most industrial applicable microbes. Few bacterial isolates from soil sample were screened for production of PHA followed by the validation of the enzymatic activity and its product characterization to understand its structural properties.

  11. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates.

    Science.gov (United States)

    Sathiyanarayanan, Ganesan; Saibaba, Ganesan; Kiran, George Seghal; Yang, Yung-Hun; Selvin, Joseph

    2017-05-01

    Marine sponges are filter feeding porous animals and usually harbor a remarkable array of microorganisms in their mesohyl tissues as transient and resident endosymbionts. The marine sponge-microbial interactions are highly complex and, in some cases, the relationships are thought to be truly symbiotic or mutualistic rather than temporary associations resulting from sponge filter-feeding activity. The marine sponge-associated bacteria are fascinating source for various biomolecules that are of potential interest to several biotechnological industries. In recent times, a particular attention has been devoted to bacterial biopolymer (polyesters) such as intracellular polyhydroxyalkanoates (PHAs) produced by sponge-associated bacteria. Bacterial PHAs act as an internal reserve for carbon and energy and also are a tremendous alternative for fossil fuel-based polymers mainly due to their eco-friendliness. In addition, PHAs are produced when the microorganisms are under stressful conditions and this biopolymer synthesis might be exhibited as one of the survival mechanisms of sponge-associated or endosymbiotic bacteria which exist in a highly competitive and stressful sponge-mesohyl microenvironment. In this review, we have emphasized the industrial prospects of marine bacteria for the commercial production of PHAs and special importance has been given to marine sponge-associated bacteria as a potential resource for PHAs.

  12. Potential and Prospects of Continuous Polyhydroxyalkanoate (PHA Production

    Directory of Open Access Journals (Sweden)

    Martin Koller

    2015-05-01

    Full Text Available Together with other so-called “bio-plastics”, Polyhydroxyalkanoates (PHAs are expected to soon replace established polymers on the plastic market. As a prerequisite, optimized process design is needed to make PHAs attractive in terms of costs and quality. Nowadays, large-scale PHA production relies on discontinuous fed-batch cultivation in huge bioreactors. Such processes presuppose numerous shortcomings such as nonproductive time for reactor revamping, irregular product quality, limited possibility for supply of certain carbon substrates, and, most of all, insufficient productivity. Therefore, single- and multistage continuous PHA biosynthesis is increasingly investigated for production of different types of microbial PHAs; this goes for rather crystalline, thermoplastic PHA homopolyesters as well as for highly flexible PHA copolyesters, and even blocky-structured PHAs consisting of alternating soft and hard segments. Apart from enhanced productivity and constant product quality, chemostat processes can be used to elucidate kinetics of cell growth and PHA formation under constant process conditions. Furthermore, continuous enrichment processes constitute a tool to isolate novel powerful PHA-producing microbial strains adapted to special environmental conditions. The article discusses challenges, potential and case studies for continuous PHA production, and shows up new strategies to further enhance such processes economically by developing unsterile open continuous processes combined with the application of inexpensive carbon feedstocks.

  13. Biosynthesis of medium chain length alkanes for bio-aviation fuel by metabolic engineered Escherichia coli.

    Science.gov (United States)

    Wang, Meng; Nie, Kaili; Cao, Hao; Xu, Haijun; Fang, Yunming; Tan, Tianwei; Baeyens, Jan; Liu, Luo

    2017-09-01

    The aim of this work was to study the synthesis of medium-chain length alkanes (MCLA), as bio-aviation product. To control the chain length of alkanes and increase the production of MCLA, Escherichia coli cells were engineered by incorporating (i) a chain length specific thioesterase from Umbellularia californica (UC), (ii) a plant origin acyl carrier protein (ACP) gene and (iii) the whole fatty acid synthesis system (FASs) from Jatropha curcas (JC). The genetic combination was designed to control the product spectrum towards optimum MCLA. Decanoic, lauric and myristic acid were produced at concentrations of 0.011, 0.093 and 1.657mg/g, respectively. The concentration of final products nonane, undecane and tridecane were 0.00062mg/g, 0.0052mg/g, and 0.249mg/g respectively. Thioesterase from UC controlled the fatty acid chain length in a range of 10-14 carbons and the ACP gene with whole FASs from JC significantly increased the production of MCLA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Polyhydroxyalkanoate (PHA: Review of synthesis, characteristics, processing and potential applications in packaging

    Directory of Open Access Journals (Sweden)

    E. Bugnicourt

    2014-11-01

    Full Text Available Polyhydroxyalkanoates (PHAs are gaining increasing attention in the biodegradable polymer market due to their promising properties such as high biodegradability in different environments, not just in composting plants, and processing versatility. Indeed among biopolymers, these biogenic polyesters represent a potential sustainable replacement for fossil fuel-based thermoplastics. Most commercially available PHAs are obtained with pure microbial cultures grown on renewable feedstocks (i.e. glucose under sterile conditions but recent research studies focus on the use of wastes as growth media. PHA can be extracted from the bacteria cell and then formulated and processed by extrusion for production of rigid and flexible plastic suitable not just for the most assessed medical applications but also considered for applications including packaging, moulded goods, paper coatings, non-woven fabrics, adhesives, films and performance additives. The present paper reviews the different classes of PHAs, their main properties, processing aspects, commercially available ones, as well as limitations and related improvements being researched, with specific focus on potential applications of PHAs in packaging.

  15. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.

    Science.gov (United States)

    Lim, Janice; You, Mingliang; Li, Jian; Li, Zibiao

    2017-10-01

    Polyhydroxyalkanoates (PHAs) are a class of biodegradable polymers derived from microorganisms. On top of their biodegradability and biocompatibility, different PHA types can contribute to varying mechanical and chemical properties. This has led to increasing attention to the use of PHAs in numerous biomedical applications over the past few decades. Bone tissue engineering refers to the regeneration of new bone through providing mechanical support while inducing cell growth on the PHA scaffolds having a porous structure for tissue regeneration. This review first introduces the various properties PHA scaffold that make them suitable for bone tissue engineering such as biocompatibility, biodegradability, mechanical properties as well as vascularization. The typical fabrication techniques of PHA scaffolds including electrospinning, salt-leaching and solution casting are further discussed, followed by the relatively new technology of using 3D printing in PHA scaffold fabrication. Finally, the recent progress of using different types of PHAs scaffold in bone tissue engineering applications are summarized in intrinsic PHA/blends forms or as composites with other polymeric or inorganic hybrid materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Short-chain fatty acids and poly-beta-hydroxyalkanoates: (New) Biocontrol agents for a sustainable animal production.

    Science.gov (United States)

    Defoirdt, Tom; Boon, Nico; Sorgeloos, Patrick; Verstraete, Willy; Bossier, Peter

    2009-01-01

    Because of the risk of antibiotic resistance development, there is a growing awareness that antibiotics should be used more carefully in animal production. However, a decreased use of antibiotics could result in a higher frequency of pathogenic bacteria, which in its turn could lead to a higher incidence of infections. Short-chain fatty acids (SCFAs) have long been known to exhibit bacteriostatic activity. These compounds also specifically downregulate virulence factor expression and positively influence the gastrointestinal health of the host. As a consequence, there is currently considerable interest in SCFAs as biocontrol agents in animal production. Polyhydroxyalkanoates (PHAs) are polymers of beta-hydroxy short-chain fatty acids. Currently, PHAs are applied as replacements for synthetic polymers. These biopolymers can be depolymerised by many different microorganisms that produce extracellular PHA depolymerases. Interestingly, different studies provided some evidence that PHAs can also be degraded upon passage through the gastrointestinal tract of animals and consequently, adding these compounds to the feed might result in biocontrol effects similar to those described for SCFAs.

  17. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates.

    OpenAIRE

    Anderson, A J; Dawes, E A

    1990-01-01

    Polyhydroxyalkanoates (PHAs), of which polyhydroxybutyrate (PHB) is the most abundant, are bacterial carbon and energy reserve materials of widespread occurrence. They are composed of 3-hydroxyacid monomer units and exist as a small number of cytoplasmic granules per cell. The properties of the C4 homopolymer PHB as a biodegradable thermoplastic first attracted industrial attention more than 20 years ago. Copolymers of C4 (3-hydroxybutyrate [3HB]) and C5 (3-hydroxyvalerate [3HV]) monomer unit...

  18. Advances in cyanobacterial polyhydroxyalkanoates production.

    Science.gov (United States)

    Singh, Akhilesh Kumar; Mallick, Nirupama

    2017-11-01

    Polyhydroxyalkanoates (PHAs) have received much attention in the current scenario due to their attractive material properties, namely biodegradability, biocompatibility, thermoplasticity, hydrophobicity, piezoelectricity and stereospecificity. All these properties make them highly competitive for various industrial applications similar to non-degradable conventional plastics. In PHA biosynthesis, PHA synthase acts as a natural catalyst for PHA polymerization process using the (R)-hydroxyacyl-CoA as substrate. Cyanobacteria can accumulate PHAs under photoautotrophic and/or mixotrophic growth conditions with organic substrates such as acetate, glucose, propionate, valerate, and so on. The natural incidence of PHA accumulation by the cyanobacteria is known since 1966. Nevertheless, PHA accumulation in cyanobacteria based on the cell biomass and volumetric productivity is critically lower than the heterotrophic bacteria. Consequently, cyanobacteria are nowadays not considered for commercial production of PHAs. Thus, strain improvements by genetic modification, new cultivation and harvesting techniques, advanced photobioreactor development, efficient and sustainable downstream processes, alternate economical carbon sources and usage of various metabolic inhibitors are suggested for enhancing cyanobacterial PHA accumulation. In addition, identification of transcriptional regulators like RNA polymerase sigma factor (SigE) and a response regulator (Rre37) together with the recent major scientific breakthrough on the existence of complete Krebs cycle in cyanobacteria would be helpful in taking PHA production from cyanobacteria to a new-fangled height in near future. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Secondary Structural Models (16S rRNA of Polyhydroxyalkanoates Producing Bacillus Species Isolated from Different Rhizospheric Soil: Phylogenetics and Chemical Analysis

    Directory of Open Access Journals (Sweden)

    Swati Mohapatra

    2016-09-01

    Full Text Available Polyhydroxyalkanoates (PHAs producing bacterial isolates are gaining more importance over the world due to the synthesis of a biodegradable polymer which is extremely desirable to substitute synthetic plastics. PHAs are produced by various microorganisms under certain stress conditions. In this study, sixteen bacterial isolates characterized previously by partial 16S rRNA gene sequencing (NCBI Accession No. KF626466 to KF626481 were again stained by Nile red after three years of preservation in order to confirm their ability to accumulate PHAs. Also, phylogenetic analysis carried out in the present investigation evidenced that the bacterial species belonging to genus Bacillus are the dominant flora of the rhizospheric region, with a potentiality of biodegradable polymer (PHAs production. Again, RNA secondary structure prediction hypothesized that there is no direct correlation between RNA folding pattern stability with a rate of PHAs production among the selected isolates of genus Bacillus.

  20. Volatile fatty acids influence on the structure of microbial communities producing PHAs

    Directory of Open Access Journals (Sweden)

    Slawomir Ciesielski

    2014-06-01

    Full Text Available Polyhydroxyalkanoates (PHAs can be produced by microorganisms and are a biodegradable alternative to fossil-fuel based plastics. Currently, the focus is on reducing production costs by exploring alternative substrates for PHAs production, and on producing copolymers which are less brittle than monomers. Accordingly, this study used a substrate consisting of wastewater from waste-glycerol fermentation, supplemented with different amounts of acetic and propionic acids. These substrates were used to feed mixed microbial communities enriched from activated sludge in a sequencing batch reactor. A reactor supplemented with 2 mL of acetic acid produced 227.8 mg/L of a homopolymer of hydroxybutyrate (3HB; 4 mL of acetic acid produced 279.8 mg/L 3HB; whereas 4 mL of propionic acid produced 673.0 mg/L of a copolymer of 3HB and 3HV (hydroxyvalerate. Ribosomal Intergenic Spacer Analysis (RISA was used to show the differences between the communities created in the reactors. Thauera species predominated in biomass that produced 3HB; Paracoccus denitrificans in the biomass that produced 3HB-co-3HV. Because P. denitrificans produced the more desirable copolymer, it may be advantageous to promote its growth in PHAs-producing reactors by adding propionate.

  1. Identificación de bacterias productoras de Polihidroxialcanoatos (PHAs en suelos contaminados con desechos de fique

    Directory of Open Access Journals (Sweden)

    Silvia Alexandra Sánchez Moreno

    2012-07-01

    Full Text Available Título en ingles: Identification of polyhydroxyalkanoate-producing bacteria in soils contaminated with fique wastes Resumen: Los Polihidroxialcanoatos (PHAs son biopolímeros con características similares a los plásticos sintéticos, pero rápidamente biodegradables dado su origen microbiano. En esta investigación se aislaron 248 colonias bacteriales de suelos contaminados con residuos del beneficio de fique en Guarne (Antioquia, evaluándose su capacidad como productoras de PHAs. Se realizaron tinciones con rojo y azul de Nilo y detección por PCR del gen PhaC. Las bacterias positivas a dichas pruebas, fueron identificadas utilizando análisis filogenético de secuencias de 16S del ADNr y pruebas bioquímicas. Finalmente, se evaluó, mediante cromatografía de gases con detector selectivo de masas GC-MS/SIM, la naturaleza química del biopolímero, a partir de la biomasa generada en un ensayo de fermentación en cultivo sumergido, con medio mínimo de sales suplementado con glucosa como fuente de carbono. Cuatro cepas de los morfotipos bacteriales encontrados, presentaron potencial para producir PHAs, de los cuales dos fueron identificados como miembros de la especie Bacillus megaterium, uno como B. mycoides y el otro como Gordonia sp. El gen PhaC se detectó en los dos aislamientos de B. megaterium. El análisis cromatográfico permitió detectar al Polihidroxibutirato (PHB como el principal componente de los PHAs presentes en B. megaterium, cuantificándose entre 63.8 mg/g y 95.3 mg/g de PHB en los ensayos de fermentación. Las bacterias aisladas tienen potencial en la producción de PHAs a partir de residuos agroindustriales, incluyendo el jugo de fique, lo que contribuiría a la reducción de su condición contaminante. Palabras clave: ADNr 16S; Bacillus; biopolímeros; Furcraea bedinghausii; PhaC. Abstract: Polyhydroxyalkanoates (PHAs are biodegradable biopolymers of bacterial origin with properties similar to conventional plastics. In

  2. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent.

    Science.gov (United States)

    Gumel, Ahmad Mohammed; Annuar, Mohamad Suffian Mohamad; Heidelberg, Thorsten

    2012-01-01

    The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW) basis were observed when fatty acids ranging from octanoic acid (C(8:0)) to oleic acid (C(18:1)) were used as sole carbon and energy source. Molecular weight of the polymer was found to be ranging from 55.7 to 77.7 kDa. Depending on the type of fatty acid used, the (1)H NMR and GCMSMS analyses of the chiral polymer showed a composition of even and odd carbon atom chain with monomer length of C4 to C14 with C8 and C10 as the principal monomers. No unsaturated monomer was detected. Thermo-chemical analyses showed the accumulated PHA to be semi-crystalline polymer with good thermal stability, having a thermal degradation temperature (T(d)) of 264.6 to 318.8 (± 0.2) (o)C, melting temperature (T(m)) of 43. (± 0.2) (o)C, glass transition temperature (T(g)) of -1.0 (± 0.2) (o)C and apparent melting enthalpy of fusion (ΔH(f)) of 100.9 (± 0.1) J g(-1).

  3. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent.

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammed Gumel

    Full Text Available The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW basis were observed when fatty acids ranging from octanoic acid (C(8:0 to oleic acid (C(18:1 were used as sole carbon and energy source. Molecular weight of the polymer was found to be ranging from 55.7 to 77.7 kDa. Depending on the type of fatty acid used, the (1H NMR and GCMSMS analyses of the chiral polymer showed a composition of even and odd carbon atom chain with monomer length of C4 to C14 with C8 and C10 as the principal monomers. No unsaturated monomer was detected. Thermo-chemical analyses showed the accumulated PHA to be semi-crystalline polymer with good thermal stability, having a thermal degradation temperature (T(d of 264.6 to 318.8 (± 0.2 (oC, melting temperature (T(m of 43. (± 0.2 (oC, glass transition temperature (T(g of -1.0 (± 0.2 (oC and apparent melting enthalpy of fusion (ΔH(f of 100.9 (± 0.1 J g(-1.

  4. Evaluation of short-chain-length polyhydroxyalkanoate accumulation in Bacillus aryabhattai

    Directory of Open Access Journals (Sweden)

    Aneesh Balakrishna Pillai

    Full Text Available Abstract This study was focused on the polyhydroxybutyrate (PHB accumulation property of Bacillus aryabhattai isolated from environment. Twenty-four polyhydroxyalkanoate (PHA producers were screened out from sixty-two environmental bacterial isolates based on Sudan Black B colony staining. Based on their PHA accumulation property, six promising isolates were further screened out. The most productive isolate PHB10 was identified as B. aryabhattai PHB10. The polymer production maxima were 3.264 g/L, 2.181 g/L, 1.47 g/L, 1.742 g/L and 1.786 g/L in glucose, fructose, maltose, starch and glycerol respectively. The bacterial culture reached its stationary and declining phases at 18 h and 21 h respectively and indicated growth-associated PHB production. Nuclear Magnetic Resonance (NMR spectra confirmed the material as PHB. The material has thermal stability between 30 and 140 °C, melting point at 170 °C and maximum thermal degradation at 287 °C. The molecular weight and poly dispersion index of the polymer were found as 199.7 kDa and 2.67 respectively. The bacterium B. aryabhattai accumulating PHB up to 75% of cell dry mass utilizing various carbon sources is a potential candidate for large scale production of bacterial polyhydroxybutyrate.

  5. Effect of Difference in Fatty Acid Chain Lengths of Medium- Chain Lipids on Lipid/Surfactant/Water Phase Diagrams and Drug Solubility

    Directory of Open Access Journals (Sweden)

    Hetal N. Prajapati

    2011-09-01

    Full Text Available Lipids consisting of medium chain fatty acids are commonly used in the development of lipid-based selfemulsifying and self-microemulsifying drug delivery systems. However, no systematic approach to selecting one lipid over another has been reported in the literature. In this study, propylene glycol (PG monoester (PG monocaprylate, Capmul PG-8® and PG diester (PG dicaprylocaprate, Captex 200P® of C8-fatty acids were compared with PG monoester (PG monolaurate, Capmul PG-12® and PG diester (PG dilaurate, Capmul PG-2L® of C12-fatty acids with respect to their phase diagrams, and especially for their ability to form microemulsions in the presence of a common surfactant, Cremophor EL®, and water. The solubility of two model drugs, danazol and probucol, in the lipids and lipid/surfactant mixtures were also compared. The effect of the chain length of medium-chain fatty acids (C8 versus C12 on the phase diagrams of the lipids was minimal. Both shorter and longer chain lipids formed essentially similar microemulsion and emulsion regions in the presence of Cremophor EL® and water, although the C12-fatty acid esters formed larger gel regions in the phase diagrams than the C8-fatty acid esters. When monoesters were mixed with their respective diesters at 1:1 ratios, larger microemulsion regions with lower lipid particle sizes were observed compared to those obtained with individual lipids alone. While the solubility of both danazol and probucol increased greatly in all lipids studied, compared to their aqueous solubility, the solubility in C12-fatty acid esters was found to be lower than in C8-fatty acid esters when the lipids were used alone. This difference in solubility due to the difference in fatty acid chain length, practically disappeared when the lipids were combined with the surfactant.

  6. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates.

    Science.gov (United States)

    Anderson, A J; Dawes, E A

    1990-12-01

    Polyhydroxyalkanoates (PHAs), of which polyhydroxybutyrate (PHB) is the most abundant, are bacterial carbon and energy reserve materials of widespread occurrence. They are composed of 3-hydroxyacid monomer units and exist as a small number of cytoplasmic granules per cell. The properties of the C4 homopolymer PHB as a biodegradable thermoplastic first attracted industrial attention more than 20 years ago. Copolymers of C4 (3-hydroxybutyrate [3HB]) and C5 (3-hydroxyvalerate [3HV]) monomer units have modified physical properties; e.g., the plastic is less brittle than PHB, whereas PHAs containing C8 to C12 monomers behave as elastomers. This family of materials is the centre of considerable commercial interest, and 3HB-co-3HV copolymers have been marketed by ICI plc as Biopol. The known polymers exist as 2(1) helices with the fiber repeat decreasing from 0.596 nm for PHB to about 0.45 nm for C8 to C10 polymers. Novel copolymers with a backbone of 3HB and 4HB have been obtained. The native granules contain noncrystalline polymer, and water may possibly act as a plasticizer. Although the biosynthesis and regulation of PHB are generally well understood, the corresponding information for the synthesis of long-side-chain PHAs from alkanes, alcohols, and organic acids is still incomplete. The precise mechanisms of action of the polymerizing and depolymerizing enzymes also remain to be established. The structural genes for the three key enzymes of PHB synthesis from acetyl coenzyme A in Alcaligenes eutrophus have been cloned, sequenced, and expressed in Escherichia coli. Polymer molecular weights appear to be species specific. The factors influencing the commercial choice of organism, substrate, and isolation process are discussed. The physiological functions of PHB as a reserve material and in symbiotic nitrogen fixation and its presence in bacterial plasma membranes and putative role in transformability and calcium signaling are also considered.

  7. Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system.

    Science.gov (United States)

    Ntaikou, I; Valencia Peroni, C; Kourmentza, C; Ilieva, V I; Morelli, A; Chiellini, E; Lyberatos, G

    2014-10-20

    The operational efficiency of a two stage pilot scale system for polyhydroxyalkanoates (PHAs) production from three phase olive oil mill wastewater (OMW) was investigated in this study. A mixed anaerobic, acidogenic culture derived from a municipal wastewater treatment plant, was used in the first stage, aiming to the acidification of OMW. The effluent of the first bioreactor that was operated in continuous mode, was collected in a sedimentation tank in which partial removal of the suspended solids was taking place, and was then forwarded to an aerobic reactor, operated in sequential batch mode under nutrient limitation. In the second stage an enriched culture of Pseudomonas sp. was used as initial inoculum for the production of PHAs from the acidified waste. Clarification of the acidified waste, using aluminium sulphate which causes flocculation and precipitation of solids, was also performed, and its effect on the composition of the acidified waste as well as on the yields and properties of PHAs was investigated. It was shown that clarification had no significant qualitative or quantitative effect on the primary carbon sources, i.e. short chain fatty acids and residual sugars, but only on the values of total suspended solids and total chemical oxygen demand of the acidified waste. The type and thermal characteristics of the produced PHAs were also similar for both types of feed. However the clarification of the waste seemed to have a positive impact on final PHAs yield, measured as gPHAs/100g of VSS, which reached up to 25%. Analysis of the final products via nuclear magnetic resonance spectroscopy revealed the existence of 3-hydroxybutyrate (3HB) and 3-hydroxyoctanoate (HO) units, leading to the conclusion that the polymer could be either a blend of P3HB and P3HO homopolymers or/and the 3HB-co-3HO co-polymer, an unusual polymer occurring in nature with advanced properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Bio-plastic (P-3HB-co-3HV) from Bacillus circulans (MTCC 8167) and its biodegradation.

    Science.gov (United States)

    Phukon, Pinkee; Saikia, Jyoti Prasad; Konwar, Bolin Kumar

    2012-04-01

    Polyhydroxyalkanoates (PHAs) are naturally occurring polyesters synthesized by bacteria for carbon and energy storage and it has commercial potential as bioplastic. The bacterial species Bacillus circulans MTCC 8167, isolated from crude oil contaminated soil, can efficiently produce medium chain length polyhydroxyalkanoates (P-3HB-co-3HV) from cheap carbon sources like dextrose. The molecular mass of P-3HB-co-3HV was reported as 5.1×10(4)Da with polydispersity index of 1.21 by gel permeation chromatography. In the present investigation different bacteria and fungi species were used for testing the biodegradability of the extracted polymer. The FTIR spectra of the biodegraded PHBV film showed a decrease in the peak from 1735 cm(-1) (untreated film) to 1675 cm(-1), and disappearance of a peak present in the control at 2922 cm(-1) indicating the breakdown of ester (>C=O) or O-R group and -C=H bond, respectively. From biodegradability testing, the tested microorganisms were found to have decisive contribution to the biodegradation of P-3HB-co-3HV polymer. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Medium-chain fatty acids undergo elongation before β-oxidation in fibroblasts

    International Nuclear Information System (INIS)

    Jones, Patricia M.; Butt, Yasmeen; Messmer, Bette; Boriak, Richard; Bennett, Michael J.

    2006-01-01

    Although mitochondrial fatty acid β-oxidation (FAO) is considered to be well understood, further elucidation of the pathway continues through evaluation of patients with FAO defects. The FAO pathway can be examined by measuring the 3-hydroxy-fatty acid (3-OHFA) intermediates. We present a unique finding in the study of this pathway: the addition of medium-chain fatty acids to the culture media of fibroblasts results in generation of 3-OHFAs which are two carbons longer than the precursor substrate. Cultured skin fibroblasts from normal and LCHAD-deficient individuals were grown in media supplemented with various chain-length fatty acids. The cell-free medium was analyzed for 3-OHFAs by stable-isotope dilution gas-chromatography/mass-spectrometry. Our finding suggests that a novel carbon chain-length elongation process precedes the oxidation of medium-chain fatty acids. This previously undescribed metabolic step may have important implications for the metabolism of medium-chain triglycerides, components in the dietary treatment of a number of disorders

  10. Enhancing the Production of Polyhydroxyalkanoate Biopolymer by Azohydromonas Australica Using a Simple Empty and Fill Bioreactor Cultivation Strategy

    OpenAIRE

    G. Gahlawat; A. K. Srivastava

    2018-01-01

    Polyhydroxyalkanoates (PHAs) are biodegradable polymers which are considered as an effective alternative for conventional plastics due to their mechanical properties similar to the latter. However, widespread use of these polymers is still hampered due to their high cost of production. This shortcoming could partly be resolved by obtaining high yields and productivity. In the present study, a drain-and-fill strategy of repeated-batch cultivation was adopted for the enhanced production of p...

  11. Novel extracellular medium-chain-length polyhydroxyalkanoate depolymerase from Streptomyces exfoliatus K10 DSMZ 41693

    DEFF Research Database (Denmark)

    Martinez, Virginia; de Santos, Patricia Gómez; García-Hidalgo, Javier

    2015-01-01

    reaction product. Markedly, PhaZSex2 is able to degrade functionalized polymers containing thioester groups in the side chain (PHACOS), releasing functional thioester-based monomers and oligomers demonstrating the potentiality of this novel biocatalyst for the industrial production of enantiopure (R)-3...

  12. Synthesis of Diblock copolymer poly-3-hydroxybutyrate -block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation weakened Pseudomonas putida KT2442.

    Science.gov (United States)

    Tripathi, Lakshmi; Wu, Lin-Ping; Chen, Jinchun; Chen, Guo-Qiang

    2012-04-05

    Block polyhydroxyalkanoates (PHA) were reported to be resistant against polymer aging that negatively affects polymer properties. Recently, more and more attempts have been directed to make PHA block copolymers. Diblock copolymers PHB-b-PHHx consisting of poly-3-hydroxybutyrate (PHB) block covalently bonded with poly-3-hydroxyhexanoate (PHHx) block were for the first time produced successfully by a recombinant Pseudomonas putida KT2442 with its β-oxidation cycle deleted to its maximum. The chloroform extracted polymers were characterized by nuclear magnetic resonance (NMR), thermo- and mechanical analysis. NMR confirmed the existence of diblock copolymers consisting of 58 mol% PHB as the short chain length block with 42 mol% PHHx as the medium chain length block. The block copolymers had two glass transition temperatures (Tg) at 2.7°C and -16.4°C, one melting temperature (Tm) at 172.1°C and one cool crystallization temperature (Tc) at 69.1°C as revealed by differential scanning calorimetry (DSC), respectively. This is the first microbial short-chain-length (scl) and medium-chain-length (mcl) PHA block copolymer reported. It is possible to produce PHA block copolymers of various kinds using the recombinant Pseudomonas putida KT2442 with its β-oxidation cycle deleted to its maximum. In comparison to a random copolymer poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (P(HB-co-HHx)) and a blend sample of PHB and PHHx, the PHB-b-PHHx showed improved structural related mechanical properties.

  13. Viscoelastic, Spectroscopic, and Microscopic Characterization of Novel Bio-Based Plasticized Poly(vinyl chloride Compound

    Directory of Open Access Journals (Sweden)

    Mei Chan Sin

    2014-01-01

    Full Text Available Plasticized poly(vinyl chloride (PVC is one of the most widely consumed commodity plastics. Nevertheless, the commonly used plasticizers, particularly phthalates, are found to be detrimental to the environment and human health. This study aimed to investigate the ability of an alternative greener material, medium-chain-length polyhydroxyalkanoates (mcl-PHA, a kind of biopolyester and its thermally degraded oligoesters, to act as a compatible bioplasticizer for PVC. In this study, mcl-PHA were synthesized by Pseudomonas putida PGA1 in shake flask fermentation using saponified palm kernel oil (SPKO and subsequently moderately thermodegraded to low molecular weight oligoesters (degPHA. SEM, ATR-FTIR, 1H-NMR, and DMA were conducted to study the film morphology, microstructure, miscibility, and viscoelastic properties of the PVC-PHA and PVC/degPHA binary blends. Increased height and sharpness of tan δmax⁡ peak for all binary blends reveal an increase in chain mobility in the PVC matrix and high miscibility within the system. The PVC-PHA miscibility is possibly due to the presence of specific interactions between chlorines of PVC with the C=O group of PHA as evidenced by spectroscopic analyses. Dynamic viscoelastic measurements also showed that mcl-PHA and their oligoesters could reduce the Tg of PVC, imparting elasticity to the PVC compounds and decreasing the stiffness of PVC.

  14. Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate).

    Science.gov (United States)

    Kenny, Shane T; Runic, Jasmina Nikodinovic; Kaminsky, Walter; Woods, Trevor; Babu, Ramesh P; Keely, Chris M; Blau, Werner; O'Connor, Kevin E

    2008-10-15

    The conversion of the petrochemical polymer polyethylene terephthalate (PET) to a biodegradable plastic polyhydroxyal-kanoate (PHA) is described here. PET was pyrolised at 450 degrees C resulting in the production of a solid, liquid, and gaseous fraction. The liquid and gaseous fractions were burnt for energy recovery, whereas the solid fraction terephthalic acid (TA) was used as the feedstock for bacterial production of PHA. Strains previously reported to grow on TA were unable to accumulate PHA. We therefore isolated bacteria from soil exposed to PET granules at a PET bottle processing plant From the 32 strains isolated, three strains capable of accumulation of medium chain length PHA (mclPHA) from TA as a sole source of carbon and energy were selected for further study. These isolates were identified using 16S rDNA techniques as P. putida (GO16), P. putida (GO19), and P. frederiksbergensis (GO23). P. putida GO16 and GO19 accumulate PHA composed predominantly of a 3-hydroxydecanoic acid monomer while P. frederiksbergensis GO23 accumulates 3-hydroxydecanoic acid as the predominant monomer with increased amounts of 3-hydroxydodecanoic acid and 3-hydroxydodecenoic acid compared to the other two strains. PHA was detected in all three strains when nitrogen depleted below detectable levels in the growth medium. Strains GO16 and GO19 accumulate PHA at a maximal rate of approximately 8.4 mg PHA/l/h for 12 h before the rate of PHA accumulation decreased dramatically. Strain GO23 accumulates PHA at a lower maximal rate of 4.4 mg PHA/l/h but there was no slow down in the rate of PHA accumulation over time. Each of the PHA polymers is a thermoplastic with the onset of thermal degradation occurring around 308 degrees C with the complete degradation occurring by 370 degrees C. The molecular weight ranged from 74 to 123 kDa. X-ray diffraction indicated crystallinity of the order of 18-31%. Thermal analysis shows a low glass transition (-53 degrees C) with a broad melting

  15. A screening method for the isolation of polyhydroxyalkanoate-producing purple non-sulfur photosynthetic bacteria from natural seawater

    Directory of Open Access Journals (Sweden)

    Mieko Higuchi-Takeuchi

    2016-09-01

    Full Text Available Polyhydroxyalkanoates (PHAs are a family of biopolyesters accumulated by a variety of microorganisms as carbon and energy storage under starvation conditions. We focused on marine purple non-sulfur photosynthetic bacteria as host microorganisms for PHA production and developed a method for their isolation from natural seawater. To identify novel PHA-producing marine purple non-sulfur photosynthetic bacteria, natural seawaters were cultured in nutrient-rich medium for purple non-sulfur photosynthetic bacteria, and twelve pink- or red-pigmented colonies were picked up. Gas chromatography mass spectrometry analysis revealed that four isolates synthesized PHA at levels ranging from 0.5 to 24.4 wt% of cell dry weight. The 16S ribosomal RNA sequence analysis revealed that one isolate (HM2 showed 100% identity to marine purple non-sulfur photosynthetic bacteria. In conclusion, we have demonstrated in this study that PHA-producing marine purple non-sulfur photosynthetic bacteria can be isolated from natural seawater under nutrient-rich conditions.

  16. Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, Shane T.; Nikodinovic Runic, Jasmina; O' Connor, Kevin E. [University College Dublin (Ireland). School of Biomolecular and Biomedical Sciences; Kaminsky, Walter [Hamburg Univ. (Germany). Inst. of Technical and Macromolecular Chemistry; Woods, Trevor; Babu, Ramesh P. [Dublin Univ. (Ireland). Materials Ireland Polymer Research Center

    2012-08-15

    Sodium terephthalate (TA) produced from a PET pyrolysis product and waste glycerol (WG) from biodiesel manufacture were supplied to Pseudomonas putida GO16 in a fed-batch bioreactor. Six feeding strategies were employed by altering the sequence of TA and WG feeding. P. putida GO16 reached 8.70 g/l cell dry weight (CDW) and 2.61 g/l PHA in 48 h when grown on TA alone. When TA and WG were supplied in combination, biomass productivity (g/l/h) was increased between 1.3- and 1.7-fold and PHA productivity (g/l/h) was increased 1.8- to 2.2-fold compared to TA supplied alone. The monomer composition of the PHA accumulated from TA or WG was predominantly composed of 3-hydroxydecanoic acid. PHA monomers 3-hydroxytetradeeanoic acid and 3-hydroxytetradecenoic acid were not present in PHA accumulated from TA alone but were present when WG was supplied to the fermentation. When WG was either the sole carbon source or the predominant carbon source supplied to the fermentation the molecular weight of PHA accumulated was lower compared to PHA accumulated when TA was supplied as the sole substrate. Despite similarities in data for the properties of the polymers, PHAs produced with WG present in the PHA accumulation phase were tacky while PHA produced where TA was the sole carbon substrate in the polymer accumulation phase exhibited little or no tackiness at room temperature. The co-feeding of WG to fermentations allows for increased utilisation of TA. The order of feeding of WG and TA has an effect on TA utilisation and polymer properties. (orig.)

  17. Enhancing the Production of Polyhydroxyalkanoate Biopolymer by Azohydromonas Australica Using a Simple Empty and Fill Bioreactor Cultivation Strategy

    Directory of Open Access Journals (Sweden)

    G. Gahlawat

    2018-01-01

    Full Text Available Polyhydroxyalkanoates (PHAs are biodegradable polymers which are considered as an effective alternative for conventional plastics due to their mechanical properties similar to the latter. However, widespread use of these polymers is still hampered due to their high cost of production. This shortcoming could partly be resolved by obtaining high yields and productivity. In the present study, a drain-and-fill strategy of repeated-batch cultivation was adopted for the enhanced production of polyhydroxybutyrate PHB using Azohydromonas australica. In this strategy, 20 % (v/v of the culture broth was removed from the reactor and supplemented with an equal volume of fresh medium. This strategy demonstrated a 3.3 fold and 1.8 fold increase in PHB concentration and productivity, respectively, as compared to batch cultivation. Repeated cultivation had also the benefit of avoiding non-productive time required for cleaning, refilling and sterilization of bioreactor during batch, thereby increasing the overall volumetric productivity and industrial importance of the process.

  18. Intracellular organisation of polyhydroxyalkanoate inclusion bodies: a role for small angle neutron scattering?

    International Nuclear Information System (INIS)

    Foster, L.J.R.; Holden, P.J.; Garvey, C.J.; Russell, R.A.; Stone, D.J.M.

    2003-01-01

    Full text: Polyhydroxyalkanoates (PHAs) are a diverse family of bacterially produced biopolyesters. Their biodegradability, and in some cases biocompatibility, suggest applications ranging from bioplastics to biomedical implantation devices. Despite extensive interest in their production and potential applications, little is known about their intracellular organisation. Microbial PHAs are synthesised by microorganisms under conditions of nutrient stress and can comprise up to 90% of the dry cell mass. The formation and organisation of these PHA inclusion bodies requires clarification. Such investigations have important implications for the biotechnological production of PHAs in microbes and other organisms, for downstream processing and in vitro precision polymerisation. Morphological and biochemical evidence supports two different models for the intracellular organisation of PHAs. Steinbuchel and coworkers propose a simple model of amorphous PHA enclosed by a single protein membrane consisting of structural proteins (PHAsins) and enzymes responsible for synthesis and degradation. In contrast, Fuller and coworkers have theorised a more complex system of PHA encompassed by a PHAsin bilayer separated by phospholipid. The polymerase and depolymerase enzymes are proposed to be associated with an incomplete inner PHAsin layer. It may be that such models are genera or species specific, since both proposals were derived from research on different species producing different types of PHA. Our initial investigations have focussed on in vivo deuteration of polyhydroxyoctanoate, produced by Pseudomonas oleovorans, both in fermentation on natural and deuterated substrates and during Small Angle Neutron Scattering by whole cells using AUSANS. The nature of the structural questions and our preliminary findings including contrast variation data will be discussed

  19. Poly(hydroxyalkanoates for Food Packaging: Application and Attempts towards Implementation

    Directory of Open Access Journals (Sweden)

    M. Koller

    2014-09-01

    Full Text Available Plastics are well-established for convenient and safe packaging and distribution of food and feed goods. At present, this special sector of the plastic market displays remarkably increasing quantities of its annual production. Caused by the ongoing limitation and strongly fluctuating prices of fossil feedstocks, classically used for plastic production, there is an evident trend to switch towards so-called “bio-plastics”. Especially for bulk applications such as food packaging, a broad implementation of “bio-plastics” constitutes a future-oriented strategy to restrict the dependence of global industry on fossil feedstocks, and to diminish current problematic environmental issues arising from plastic disposal. However, food packaging demands a great deal of the utilized packaging material. This encompasses tailored mechanical properties such as low brittleness and adequate tensile strength, a sufficient barrier for oxygen, CO2, and aromatic flavors, high UV-resistance, and high water retention-capacity to block the food´s moisture content, or to prevent humidity, respectively. Due to their hydrophobic character and the broad flexibility of their mechanical features, prokaryotic poly(hydroxyalkanoates (PHAs are considered as promising materials to compete with petro-plastics on the food-packaging market. Nevertheless, short-comings in particular aspects of their material performance and economics of their biosynthesis and purification constitute stumbling blocks on the long way towards broad implementation of PHAs for food packaging. This article discusses advantages and drawbacks of PHAs as food packaging materials, and demonstrates how desired properties can be improved by the designing of novel composite materials, and also encompassing techniques by applying nanoparticles.

  20. Isolation and recovery of microbial polyhydroxyalkanoates

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available The deleterious environmental impacts caused by plastic wastes have attracted worldwide concern. The biobased and biodegradable polyhydroxyalkanoate (PHA appears to be one of the potential candidates to replace some conventional plastics. However, high production cost of PHAs has limited their market penetration. The major cost absorbing factors are the upstream fermentation processes and the downstream PHA recovery technologies. The latter significantly affects the overall process economics. Various recovery technologies have been proposed and studied in small scales in the laboratory as well as in industrial scales. These include solvent extraction, chemical digestion, enzymatic treatment and mechanical disruption, supercritical fluid disruption, flotation techniques, use of gamma irradiation and aqueous two-phase system. This paper reviews all the recovery methods known to date and compares their efficiency and the quality of the resulting PHA. Some of the large-scale production of PHA and the strategies employed to reduce the production cost are also discussed.

  1. PHA bioplastics, biochemicals, and energy from crops.

    Science.gov (United States)

    Somleva, Maria N; Peoples, Oliver P; Snell, Kristi D

    2013-02-01

    Large scale production of polyhydroxyalkanoates (PHAs) in plants can provide a sustainable supply of bioplastics, biochemicals, and energy from sunlight and atmospheric CO(2). PHAs are a class of polymers with various chain lengths that are naturally produced by some microorganisms as storage materials. The properties of these polyesters make them functionally equivalent to many of the petroleum-based plastics that are currently in the market place. However, unlike most petroleum-derived plastics, PHAs can be produced from renewable feedstocks and easily degrade in most biologically active environments. This review highlights research efforts over the last 20 years to engineer the production of PHAs in plants with a focus on polyhydroxybutryrate (PHB) production in bioenergy crops with C(4) photosynthesis. PHB has the potential to be a high volume commercial product with uses not only in the plastics and materials markets, but also in renewable chemicals and feed. The major challenges of improving product yield and plant fitness in high biomass yielding C(4) crops are discussed in detail. Plant Biotechnology Journal © 2013 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  2. Production of functionalized polyhydroxyalkanoates by genetically modified Methylobacterium extorquens strains

    Directory of Open Access Journals (Sweden)

    Miguez Carlos B

    2010-09-01

    Full Text Available Abstract Background Methylotrophic (methanol-utilizing bacteria offer great potential as cell factories in the production of numerous products from biomass-derived methanol. Bio-methanol is essentially a non-food substrate, an advantage over sugar-utilizing cell factories. Low-value products as well as fine chemicals and advanced materials are envisageable from methanol. For example, several methylotrophic bacteria, including Methylobacterium extorquens, can produce large quantities of the biodegradable polyester polyhydroxybutyric acid (PHB, the best known polyhydroxyalkanoate (PHA. With the purpose of producing second-generation PHAs with increased value, we have explored the feasibility of using M. extorquens for producing functionalized PHAs containing C-C double bonds, thus, making them amenable to future chemical/biochemical modifications for high value applications. Results Our proprietary M. extorquens ATCC 55366 was found unable to yield functionalized PHAs when fed methanol and selected unsaturated carboxylic acids as secondary substrates. However, cloning of either the phaC1 or the phaC2 gene from P. fluorescens GK13, using an inducible and regulated expression system based on cumate as inducer (the cumate switch, yielded recombinant M. extorquens strains capable of incorporating modest quantities of C-C double bonds into PHA, starting from either C6= and/or C8=. The two recombinant strains gave poor results with C11=. The strain containing the phaC2 gene was better at using C8= and at incorporating C-C double bonds into PHA. Solvent fractioning indicated that the produced polymers were PHA blends that consequently originated from independent actions of the native and the recombinant PHA synthases. Conclusions This work constitutes an example of metabolic engineering applied to the construction of a methanol-utilizing bacterium capable of producing functionalized PHAs containing C-C double bonds. In this regard, the PhaC2 synthase

  3. Growth kinetics, effect of carbon substrate in biosynthesis of mcl-PHA by Pseudomonas putida Bet001.

    Science.gov (United States)

    Gumel, A M; Annuar, M S M; Heidelberg, T

    2014-01-01

    Growth associated biosynthesis of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. Models with substrate inhibition terms described well the kinetics of its growth. Selected fatty acids (C8:0 to C18:1) and ammonium were used as carbon and nitrogen sources during growth and PHA biosynthesis, resulting in PHA accumulation of about 50 to 69% (w/w) and PHA yields ranging from 10.12 g L(-1) to 15.45 g L(-1), respectively. The monomer composition of the PHA ranges from C4 to C14, and was strongly influenced by the type of carbon substrate fed. Interestingly, an odd carbon chain length (C7) monomer was also detected when C18:1 was fed. Polymer showed melting temperature (T m) of 42.0 (± 0.2) °C, glass transition temperature (T g) of -1.0 (± 0.2) °C and endothermic melting enthalpy of fusion (ΔHf) of 110.3 (± 0.1) J g(-1). The molecular weight (M w) range of the polymer was relatively narrow between 55 to 77 kDa.

  4. Growth kinetics, effect of carbon substrate in biosynthesis of mcl-PHA by Pseudomonas putida Bet001

    Directory of Open Access Journals (Sweden)

    A.M. Gumel

    2014-06-01

    Full Text Available Growth associated biosynthesis of medium chain length poly-3-hydroxyalkanoates (mcl-PHA in Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. Models with substrate inhibition terms described well the kinetics of its growth. Selected fatty acids (C8:0 to C18:1 and ammonium were used as carbon and nitrogen sources during growth and PHA biosynthesis, resulting in PHA accumulation of about 50 to 69% (w/w and PHA yields ranging from 10.12 g L-1 to 15.45 g L-1, respectively. The monomer composition of the PHA ranges from C4 to C14, and was strongly influenced by the type of carbon substrate fed. Interestingly, an odd carbon chain length (C7 monomer was also detected when C18:1 was fed. Polymer showed melting temperature (Tm of 42.0 (± 0.2 °C, glass transition temperature (Tg of -1.0 (± 0.2 °C and endothermic melting enthalpy of fusion (ΔHf of 110.3 (± 0.1 J g-1. The molecular weight (Mw range of the polymer was relatively narrow between 55 to 77 kDa.

  5. Cellular and physiological effects of medium-chain triglycerides.

    NARCIS (Netherlands)

    Wanten, G.J.A.; Naber, A.H.J.

    2004-01-01

    From a nutritional standpoint, saturated triglycerides with a medium (6 to 12) carbon chain length (MCT) have traditionally been regarded as biologically inert substances, merely serving as a source of fuel calories that is relatively easily accessible for metabolic breakdown compared with long

  6. Evaluation of Factors Affecting Polyhydroxyalkanoates Production by Comamonas sp. EB172 Using Central Composite Design

    Directory of Open Access Journals (Sweden)

    Noor Azman Mohd Johar

    2012-09-01

    Full Text Available Aims: Statistical approach, central composite design (CCD was used to investigate the complex interaction among temperature (25-37 °C, initial medium pH (5-9, inoculum size (4-10 % (v/v, concentration of (NH42SO4 (0-1 g/L and concentration of mixed organic acids (5-10 g/L in the production of polyhydroxyalkanoates by Comamonas sp. EB172.Methodology and Results: Mixed organic acids derived from anaerobically treated palm oil mill effluent (POME containing acetic:propionic:butyric (ratio of 3:1:1 were used as carbon source in the batch culture of Comamonas sp. EB172 to produce polyhydoxyalkanoates (PHAs. The analysis of variance (ANOVA showed that all five factors were significantly important in the batch fermentation by shake flask with a P value of less than 0.001. The optimal temperature, initial medium pH, inoculum size, concentration of (NH42SO4 and concentration of mixed organic acids were 30 °C, 7.04, 4.0 % (v/v, 0.01 g/L and 5.05 g/L respectively.Conclusion, significance and impact of study: Optimization of the production medium containing mixed organic acids has improved the PHA production for more than 2 folds. Under optimal condition in the shake flask fermentation, the predicted growth is 2.98 g/L of dry cell weight (DCW with 47.07 wt % of PHA content. The highest yield of PHA was 0.28 g of PHA per g mixed organic acids.

  7. Importance of medium chain fatty acids in animal nutrition

    Science.gov (United States)

    Baltić, B.; Starčević, M.; Đorđević, J.; Mrdović, B.; Marković, R.

    2017-09-01

    Fats in animal and human nutrition are a common subject of research. These studies most often pay attention to particular fat groups (saturated, unsaturated, polyunsaturated fats or fats grouped by the length of their fatty acid chains into short, medium or long chain fatty acids). Medium chain fatty acids (MCFAs) have two main sources: milk and coconut oil. To date, research has shown these acids have positive effects on health, production, feed digestibility and lower body and muscle fats in broilers and swine. MCFAs possess antibacterial, anticoccidial and antiviral effects. Also, it has been proven that these acids act synergistically if they are used together with organic acids, essential oils, or probiotics. Nowadays, commercial MCFA products are available for use in animal nutrition as feed additives.

  8. Characterisation of polyhydroxyalkanoate copolymers with controllable four-monomer composition.

    Science.gov (United States)

    Dai, Yu; Lambert, Lynette; Yuan, Zhiguo; Keller, Jurg

    2008-03-20

    Polyhydroxyalkanoate (PHA) copolymers comprising the four monomers 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 3-hydroxy-2-methylvalerate (3HMV) and 3-hydroxy-2-methylbutyrate (3HMB) were generated using the recently discovered Defluviicoccus vanus-related glycogen accumulating organisms (DvGAOs) under anaerobic conditions without applying any nutrient limitations. The composition could be manipulated in a defined range by modifying the ratio of propionate and acetate provided in the feed stream. The PHAs produced were characterised as random copolymers (from propionate alone) or a mixture of random copolymers (from mixture of propionate and acetate) through microstructure analysis using 13C NMR spectroscopy. The sequence distribution of all eight comonomer pairs in the carbonyl region of 3HB and 3HV was identified and assigned with confidence utilising two-dimensional heteronuclear multiple bond coherence (HMBC) spectroscopy. Weight average molecular weights were in the range 390-560 kg/mol. Differential scanning calorimetry (DSC) traces showed that the melting temperature (Tm) varied between 70 and 161 degrees C and glass transition temperature (Tg) ranged from -8 to 0 degrees C. The incorporation of considerable amounts of 3HMV and 3HMB monomer units introduced additional "defects" into the PHBV copolymer structure and hence greatly lowered the crystallinity. The data indicate the potential of these four-monomer PHAs to be employed for practical applications, considering their favourable properties and the cost-effective production process using a mixed culture and simple carbon sources.

  9. Fungal degradation of polyhydroxyalkanoates and a semiquantitative assay for screening their degradation by terrestrial fungi.

    Science.gov (United States)

    Matavulj, M; Molitoris, H P

    1992-12-01

    The current problems with decreasing fossile resources and increasing environmental pollution by petrochemical-based plastics have stimulated investigations to find biosynthetic materials which are also biodegradable. Bacterial reserve materials such as polyhydroxyalkanoates (PHA) have been discovered to possess thermoplastic properties and can be synthesized from renewable resources. Poly-beta-hydroxybutyric acid (PHB) is at present the most promising PHA; and BIOPOL, its copolymer with poly-beta-hydroxy-valerate (PHV), is already industrially produced (ICI, UK), and used as packaging material (WELLA, FRG). According to the literature, PHA degradation has so far mainly been observed in bacteria; only under certain environmental conditions has fungal degradation of PHAs been indicated. Since fungi constitute an important part of microbial populations participating in degradation processes, a simple screening method for fungal degradation of BIOPOL, a PHA-based plastic, was developed. Several media with about 150 fungal strains from different terrestrial environments and belonging to different systematic and ecological groups were used. PHA depolymerization was tested on three PHB-based media, each with 0.1% BIOPOL or PHB homopolymer causing turbidity of the medium. The media contained either a comparatively low or high content of organic carbon (beside PHA) or were based on mineral medium with PHA as the principal source of carbon. The degradation activity was detectable due to formation of a clear halo around the colony (Petri plates) or a clear zone under the colony (test tubes).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates.

    Science.gov (United States)

    Albuquerque, Priscilla B S; Malafaia, Carolina B

    2018-02-01

    Since the last two decades, the use of synthetic materials has increased and become more frequent in this capitalist system. Polymers used as raw materials are usually disposed very rapidly and considered serious damages when they return to the environment. Because of this behaviour, there was an increasing in the global awareness by minimizing the waste generated, in addition to the scientific community concern for technological alternatives to solve this problem. Alternatively, biodegradable polymers are attracting special interest due to their inherent properties, which are similar to the ones of the conventional plastics. Bioplastics covers plastics made from renewable resources, including plastics that biodegrade under controlled conditions at the end of their use phase. Polyhydroxyalkanoates (PHAs) are polyesters composed of hydroxy acids, synthesized by a variety of microorganisms as intracellular carbon and energy storage. These environmentally friendly biopolymers have excellent potential in domestic, agricultural, industrial and medical field, however their production on a large scale is still limited. This review considered the most recent scientific publications on the production of bioplastics based on PHAs, their structural characteristics and the exploitation of different renewable sources of raw materials. In addition, there were also considered the main biotechnological applications of these biopolymers. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization.

    Science.gov (United States)

    Franden, Mary Ann; Jayakody, Lahiru N; Li, Wing-Jin; Wagner, Neil J; Cleveland, Nicholas S; Michener, William E; Hauer, Bernhard; Blank, Lars M; Wierckx, Nick; Klebensberger, Janosch; Beckham, Gregg T

    2018-06-07

    Ethylene glycol is used as a raw material in the production of polyethylene terephthalate, in antifreeze, as a gas hydrate inhibitor in pipelines, and for many other industrial applications. It is metabolized by aerobic microbial processes via the highly toxic intermediates glycolaldehyde and glycolate through C2 metabolic pathways. Pseudomonas putida KT2440, which has been engineered for environmental remediation applications given its high toxicity tolerance and broad substrate specificity, is not able to efficiently metabolize ethylene glycol, despite harboring putative genes for this purpose. To further expand the metabolic portfolio of P. putida, we elucidated the metabolic pathway to enable ethylene glycol via systematic overexpression of glyoxylate carboligase (gcl) in combination with other genes. Quantitative reverse transcription polymerase chain reaction demonstrated that all of the four genes in genomic proximity to gcl (hyi, glxR, ttuD, and pykF) are transcribed as an operon. Where the expression of only two genes (gcl and glxR) resulted in growth in ethylene glycol, improved growth and ethylene glycol utilization were observed when the entire gcl operon was expressed. Both glycolaldehyde and glyoxal inhibit growth in concentrations of ethylene glycol above 50 mM. To overcome this bottleneck, the additional overexpression of the glycolate oxidase (glcDEF) operon removes the glycolate bottleneck and minimizes the production of these toxic intermediates, permitting growth in up to 2 M (~124 g/L) and complete consumption of 0.5 M (31 g/L) ethylene glycol in shake flask experiments. In addition, the engineered strain enables conversion of ethylene glycol to medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Overall, this study provides a robust P. putida KT2440 strain for ethylene glycol consumption, which will serve as a foundational strain for further biocatalyst development for applications in the remediation of waste polyester plastics and

  12. Obtención de polihidroxialcanoatos (PHA a partir de cultivos mixtos microbianos usando efluentes ricos en ácidos grasos volátiles como sustrato

    Directory of Open Access Journals (Sweden)

    Rolando Calero

    2015-10-01

      The aim of this work is about the study of bioreactors in obtaining biopolymers (polyhydroxyalkanoate by mixed microbial sources using cheese whey from the dairy industry as a substrate. To obtain polyhydroxyalkanoates (PHAs is necessary to start with  an enrichment process of the bacterial strain in a sequential batch reactor (SBR where the microbial culture is subjected to a selection process in order to achieve the highest levels of polymer reserve. The substrate used is mainly compound of volatile short chain fatty obtained in a preliminary stage of treatment in an anaerobic reactor wherein the sugar content of the whey is subjected to a process of acids fermentation. Once enriched the bacterial cultures with great capacity of storage of PHAs, we proceed in other reactor process known as a Fed-Batch in order to obtain a maximum production of biopolymer. In this experiment the PHA obtaining was about 42% compared with  the activate biomass.

  13. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats.

    Science.gov (United States)

    Riedel, Sebastian L; Jahns, Stefan; Koenig, Steven; Bock, Martina C E; Brigham, Christopher J; Bader, Johannes; Stahl, Ulf

    2015-11-20

    Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters considered as alternatives to petroleum-based plastics. Ralstonia eutropha is a model organism for PHA production. Utilizing industrially rendered waste animal fats as inexpensive carbon feedstocks for PHA production is demonstrated here. An emulsification strategy, without any mechanical or chemical pre-treatment, was developed to increase the bioavailability of solid, poorly-consumable fats. Wild type R. eutropha strain H16 produced 79-82% (w/w) polyhydroxybutyrate (PHB) per cell dry weight (CDW) when cultivated on various fats. A productivity of 0.3g PHB/(L × h) with a total PHB production of 24 g/L was achieved using tallow as carbon source. Using a recombinant strain of R. eutropha that produces poly(hydroxybutyrate-co-hydroxyhexanoate) [P(HB-co-HHx)], 49-72% (w/w) of PHA per CDW with a HHx content of 16-27 mol% were produced in shaking flask experiments. The recombinant strain was grown on waste animal fat of the lowest quality available at lab fermenter scale, resulting in 45 g/L CDW with 60% (w/w) PHA per CDW and a productivity of 0.4 g PHA/(L × h). The final HHx content of the polymer was 19 mol%. The use of low quality waste animal fats as an inexpensive carbon feedstock exhibits a high potential to accelerate the commercialization of PHAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Recovery of polyhydroxyalkanoates from municipal secondary wastewater sludge.

    Science.gov (United States)

    Kumar, Manish; Ghosh, Pooja; Khosla, Khushboo; Thakur, Indu Shekhar

    2018-05-01

    In the current study, the feasibility of utilizing municipal secondary wastewater sludge for Polyhydroxyalkanoate (PHA) extraction was improved by optimization of various parameters (temperature, duration and concentration of sludge solids). Optimized process parameters resulted in PHA recovery of 0.605 g, significantly higher than un-optimized conditions. The characterization of PHA was carried out by GC-MS, FT-IR and NMR ( 1 H and 13 C) spectroscopy. The PHA profile was found to be dominated by mcl PHA (58%) along with other diverse PHA. The results of the present study show rich diversity of PHA extracted from a raw material which is readily available at minimal cost. In conclusion, exploring the potential of wastes for production of bioplastics not only reduces the cost of bioplastic production, but also provides a sustainable means for waste management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84.

    Science.gov (United States)

    Wang, Jinghong; Wu, Xiaosu; Simonavicius, Nicole; Tian, Hui; Ling, Lei

    2006-11-10

    Free fatty acids (FFAs) play important physiological roles in many tissues as an energy source and as signaling molecules in various cellular processes. Elevated levels of circulating FFAs are associated with obesity, dyslipidemia, and diabetes. Here we show that GPR84, a previously orphan G protein-coupled receptor, functions as a receptor for medium-chain FFAs with carbon chain lengths of 9-14. Medium-chain FFAs elicit calcium mobilization, inhibit 3',5'-cyclic AMP production, and stimulate [35S]guanosine 5'-O-(3-thiotriphosphate) binding in a GPR84-dependent manner. The activation of GPR84 by medium-chain FFAs couples primarily to a pertussis toxin-sensitive G(i/o) pathway. In addition, we show that GPR84 is selectively expressed in leukocytes and markedly induced in monocytes/macrophages upon activation by lipopolysaccharide. Furthermore, we demonstrate that medium-chain FFAs amplify lipopolysaccharide-stimulated production of the proinflammatory cytokine interleukin-12 p40 through GPR84. Our results indicate a role for GPR84 in directly linking fatty acid metabolism to immunological regulation.

  16. [Preparation and characterization of polyhydroxyalkanoate bioplastics with antibacterial activity].

    Science.gov (United States)

    Lou, Qiuli; Ma, Yiming; Che, Xuemei; Zhong, Jin; Sun, Xiaoxia; Zhang, Haoqian

    2016-08-25

    Polyhydroxyalkanoates (PHAs), as a novel class of biopolymer, are attracting more attention due to their diverse material properties and environment-independent biodegradability. Here we report the preparation of PHA exhibiting efficient antibacterial activity by embedding Nisin, a food additive generally recognized as safe, into poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), a type of PHA with high biocompatibility. We first prepared Nisin-containing PHBHHx films using solvent casting method. Confocal laser scanning microscopy analysis showed that a well-mixed integrated structure of the films with an even distribution of the Nisin particles in the PHBHHx matrices. Then the antimicrobial activity of PHBHHx/Nisin films against Micrococcus luteus was quantified on agar plate by measuring the size of inhibition zone. Cultivation in liquid media further confirmed the releasing of Nisin from the films and the long-time antibacterial activity. Results showed that the threshold of Nisin concentration for long-time and effective inhibition against bacteria growth is 25 μg/g. These results altogether establish a technological foundation for the application of PHA in biomedicine and food industry.

  17. The Molecular Level Characterization of Biodegradable Polymers Originated from Polyethylene Using Non-Oxygenated Polyethylene Wax as a Carbon Source for Polyhydroxyalkanoate Production.

    Science.gov (United States)

    Johnston, Brian; Jiang, Guozhan; Hill, David; Adamus, Grazyna; Kwiecień, Iwona; Zięba, Magdalena; Sikorska, Wanda; Green, Matthew; Kowalczuk, Marek; Radecka, Iza

    2017-08-28

    There is an increasing demand for bio-based polymers that are developed from recycled materials. The production of biodegradable polymers can include bio-technological (utilizing microorganisms or enzymes) or chemical synthesis procedures. This report demonstrates the corroboration of the molecular structure of polyhydroxyalkanoates (PHAs) obtained by the conversion of waste polyethylene (PE) via non-oxygenated PE wax (N-PEW) as an additional carbon source for a bacterial species. The N-PEW, obtained from a PE pyrolysis reaction, has been found to be a beneficial carbon source for PHA production with Cupriavidus necator H16. The production of the N-PEW is an alternative to oxidized polyethylene wax (O-PEW) (that has been used as a carbon source previously) as it is less time consuming to manufacture and offers fewer industrial applications. A range of molecular structural analytical techniques were performed on the PHAs obtained; which included nuclear magnetic resonance (NMR) and electrospray ionisation tandem mass spectrometry (ESI-MS/MS). Our study showed that the PHA formed from N-PEW contained 3-hydroxybutyrate (HB) with 11 mol% of 3-hydroxyvalerate (HV) units.

  18. Polyhydroxyalcanoates of strains of Azospirillum spp. isolated of roots of Lycopersicon esculentum Mill. “tomato” and Oryza sativa L. “rice” in Lambayeque

    Directory of Open Access Journals (Sweden)

    Katty Baca

    2010-12-01

    Full Text Available In this work was determined the concentration of polyhydroxyalkanoates (PHAs of Azospirillum strains isolated from roots of Lycopersicon esculentum Mill "tomato" and Oryza sativa L. "rice" as an alternative to accumulation of petroleum-based plastics. Previously disinfected root were plated in Nfb semisolid medium where nitrogen-fixing bacteria were recognized by a whitish film on the surface and turn from green to blue. The genus Azospirillum was identified in Congo red agar medium, obtained 96 isolates of A. lipoferum and A. brasilense on tomato and rice. Batch fermentation was performed with broth Azotobacter modified feeding a saturated solution of malic acid every 12 hours and were stained with Sudan Black B. Strains were selected with the greatest number of PHAs granules (in tomato, 18 of A. lipoferum and 2 of A. brasilense; in rice, 10 of A. lipoferum and 10 of A. brasilense and quantified the biomass and PHAs. PHAs concentration reached 0.661 gL-1 in A. lipoferum KM(T-73 and 0.738 gL-1 in A. brasilense KM(T-19, both isolated from tomato. Strains of A. lipoferum and A. brasilense isolated from tomato reached a higher concentration of biomass and PHAs against the strains of rice.

  19. Polyhydroyalkanoates: from Basic Research and Molecular Biology to Application

    Directory of Open Access Journals (Sweden)

    Amro Abd alFattah Amara

    2010-09-01

    Full Text Available This review describes the Polyhydroxyalkanoate (PHA, an intracellular biodegradable microbial polymer. PHAs is formed from different types of three hydroxyalkanoic acids monomers, each unit forms an ester bond with the hydroxyl group of the other one and the hydroxyl substituted carbon has R configuration. The C-3 atom in β position is branched with at least one carbon atom in the form of methyl group (C1 to thirteen carbons in the form of tridecyl (C13. This alkyl side chain is not necessarily saturated. PHAs are biosynthesized through regulated pathways by specific enzymes. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reducing equivalents. PHAs are converted again to soluble components by PHAs depolymerases and the degraded materials enter various metabolic pathways. Until now, four classes of enzymes responsible for PHAs polymerization are known. PHAs were well studied regarding their promising applications, physical, chemical and biological properties. PHAs are biodegradable, biocompatible, have good material properties, renewable and can be used in many applications. The most limiting factor in PHAs commercialization is their high cost compared to the petroleum plastics. This review highlights the new knowledge and that established by the pioneers in this field as well as the factors, which affect PHAs commercialization.

  20. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell.

    Science.gov (United States)

    Hindatu, Y; Annuar, M S M; Subramaniam, R; Gumel, A M

    2017-06-01

    Insufficient power generation from a microbial fuel cell (MFC) hampers its progress towards utility-scale development. Electrode modification with biopolymeric materials could potentially address this issue. In this study, medium-chain-length poly-3-hydroxyalkanoates (PHA)/carbon nanotubes (C) composite (CPHA) was successfully applied to modify the surface of carbon cloth (CC) anode in MFC. Characterization of the functional groups on the anodic surface and its morphology was carried out. The CC-CPHA composite anode recorded maximum power density of 254 mW/m 2 , which was 15-53% higher than the MFC operated with CC-C (214 mW/m 2 ) and pristine CC (119 mW/m 2 ) as the anode in a double-chambered MFC operated with Escherichia coli as the biocatalyst. Electrochemical impedance spectroscopy and cyclic voltammetry showed that power enhancement was attributed to better electron transfer capability by the bacteria for the MFC setup with CC-CPHA anode.

  1. Increasing polyhydroxyalkanoate (PHA) yields from Cupriavidus necator by using filtered digestate liquors.

    Science.gov (United States)

    Passanha, Pearl; Esteves, Sandra R; Kedia, Gopal; Dinsdale, Richard M; Guwy, Alan J

    2013-11-01

    The production of polyhydroxyalkanoates (PHAs) using digestate liquor as culture media is a novel application to extend the existing uses of digestates. In this study, two micro-filtered digestates (0.22 μm) were evaluated as a source of complex culture media for the production of PHA by Cupriavidus necator as compared to a conventional media. Culture media using a mixture of micro-filtered liquors from food waste and from wheat feed digesters showed a maximum PHA accumulation of 12.29 g/l PHA, with 90% cell dry weight and a yield of 0.48 g PHA/g VFA consumed, the highest reported to date for C. necator studies. From the analysis of the starting and residual media, it was concluded that ammonia, potassium, magnesium, sulfate and phosphate provided in the digestate liquors were vital for the initial growth of C. necator whereas copper, iron and nickel may have played a significant role in PHA accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Calculation of Physicochemical Properties for Short- and Medium-Chain Chlorinated Paraffins

    Science.gov (United States)

    Glüge, Juliane; Bogdal, Christian; Scheringer, Martin; Buser, Andreas M.; Hungerbühler, Konrad

    2013-06-01

    Short- and medium-chain chlorinated paraffins are potential PBT chemicals (persistent, bioaccumulative, toxic) and short-chain chlorinated paraffins are under review for inclusion in the UNEP Stockholm Convention on Persistent Organic Pollutants. Despite their high production volume of more than one million metric tonnes per year, only few data on their physicochemical properties are available. We calculated subcooled-liquid vapor pressure, subcooled-liquid solubility in water and octanol, Henry's law constant for water and octanol, as well as the octanol-water partition coefficient with the property calculation methods COSMOtherm, SPARC, and EPI Suite™, and compared the results to experimental data from the literature. For all properties, good or very good agreement between calculated and measured data was obtained for COSMOtherm; results from SPARC were in good agreement with the measured data except for subcooled-liquid water solubility, whereas EPI Suite™ showed the largest discrepancies for all properties. After critical evaluation of the three property calculation methods, a final set of recommended property data for short- and medium-chain chlorinated paraffins was derived. The calculated property data show interesting relationships with chlorine content and carbon chain length. Increasing chlorine content does not cause pronounced changes in water solubility and octanol-water partition coefficient (KOW) as long as it is below 55%. Increasing carbon chain length leads to strong increases in KOW and corresponding decreases in subcooled-liquid water solubility. The present data set can be used in further studies to assess the environmental fate and human exposure of this relevant compound class.

  3. 75 FR 39036 - Public Housing Assessment System (PHAS): Management Operations Certification

    Science.gov (United States)

    2010-07-07

    ... System (PHAS): Management Operations Certification AGENCY: Office of the Chief Information Officer, HUD... management operations. The information is used to assess the management performance of PHAs. DATES: Comments... following information: Title of Proposal: Public Housing Assessment System (PHAS): Management Operations...

  4. Synthetic Biology of Polyhydroxyalkanoates (PHA).

    Science.gov (United States)

    Meng, De-Chuan; Chen, Guo-Qiang

    Microbial polyhydroxyalkanoates (PHA) are a family of biodegradable and biocompatible polyesters which have been extensively studied using synthetic biology and metabolic engineering methods for improving production and for widening its diversity. Synthetic biology has allowed PHA to become composition controllable random copolymers, homopolymers, and block copolymers. Recent developments showed that it is possible to establish a microbial platform for producing not only random copolymers with controllable monomers and their ratios but also structurally defined homopolymers and block copolymers. This was achieved by engineering the genome of Pseudomonas putida or Pseudomonas entomophiles to weaken the β-oxidation and in situ fatty acid synthesis pathways, so that a fatty acid fed to the bacteria maintains its original chain length and structures when incorporated into the PHA chains. The engineered bacterium allows functional groups in a fatty acid to be introduced into PHA, forming functional PHA, which, upon grafting, generates endless PHA variety. Recombinant Escherichia coli also succeeded in producing efficiently poly(3-hydroxypropionate) or P3HP, the strongest member of PHA. Synthesis pathways of P3HP and its copolymer P3HB3HP of 3-hydroxybutyrate and 3-hydroxypropionate were assembled respectively to allow their synthesis from glucose. CRISPRi was also successfully used to manipulate simultaneously multiple genes and control metabolic flux in E. coli to obtain a series of copolymer P3HB4HB of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB). The bacterial shapes were successfully engineered for enhanced PHA accumulation.

  5. Citrobacter farmeri phas32, an isolate from bean (Phaseolus vulgaris farm soil with high phytase production

    Directory of Open Access Journals (Sweden)

    Maryam Ebrahimian

    2017-12-01

    Full Text Available Introduction: Phytase hydrolyzes phytic acid and enhances bioavailability of phosphorus and other nutritive minerals for monogastric animals, so it is commonly used as an important food additive. Materials and methods: The aim of this study was isolation of phytase producing bacteria from one of Shushtar's bean farms, Southwest of Iran by phytase screening medium (PSM and optimization of the growth and enzyme productive conditions by the best isolate. Results: The best isolate was identified as Citrobacter farmeri strain phas32. Optimized conditions for phytase production by this isolate were 30˚C, pH 7, 0.25% phytic acid and 48 h incubation and phytase enzyme of phas32 had the best activity at 65˚C and pH 8.5. Enzyme unit and its molecular weight were 31 U/ml and 40 KD, respectively. Discussion and conclusion: Finally, based on these results it can be concluded that the Citrobacter farmeri strain phas32 is potent phytase producer that can be used for large scale enzyme production.

  6. PHA Production in Aerobic Mixed Microbial Cultures

    NARCIS (Netherlands)

    Johnson, K.

    2010-01-01

    Polyhydroxyalkanoate (PHA) is a common intracellular energy and carbon storage material in bacteria, which is considered as a bioplastic due to its plastic like properties. PHAs are versatile materials which are biodegradable and made from renewable resources. Commercial production of PHAs is

  7. Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates.

    Science.gov (United States)

    Yu, P H; Chua, H; Huang, A L; Ho, K P

    1999-01-01

    Broader usage of biodegradable plastics in packaging and disposable products as a solution to environmental problems would heavily depend on further reduction of costs and the discovery of novel biodegradable plastics with improved properties. As the first step in our pursuit of eventual usage of industrial food wastewater as nutrients for microorganisms to synthesise environmental-friendly bioplastics, we investigated the usage of soya wastes from a soya milk dairy, and malt wastes from a beer brewery plant as the carbon sources for the production of polyhydroxyalkanoates (PHA) by selected strain of microorganism. Bench experiments showed that Alcaligenes latus DSM 1124 used the nutrients from malt and soya wastes to biosynthesise PHAs. The final dried cell mass and specific polymer production of A. latus DSM 1124 were 32g/L and 70% polymer/cells (g/g), 18.42 g/L and 32.57% polymer/cell (g/g), and 28 g/L and 36% polymer/cells (g/g), from malt waste, soya waste, and from sucrose, respectively. These results suggest that many types of food wastes might be used as the carbon source for the production of PHA.

  8. Bioavailability of seocalcitol I: Relating solubility in biorelevant media with oral bioavailability in rats--effect of medium and long chain triglycerides

    DEFF Research Database (Denmark)

    Grove, Mette; Pedersen, Gitte P; Nielsen, Jeanet L

    2005-01-01

    Simulated intestinal media (SIM) containing bile salt (BS) and phospholipids (PL) with and without medium chain lipolytic products (MC-LP) or long chain lipolytic products (LC-LP) were developed to study the solubility of seocalcitol. Both MC-LP and LC-LP were studied in order to investigate...... the influence of fatty acid chain length on the in vitro solubility of seocalcitol. The same solubility of seocalcitol was found in media containing either MC-LP or LC-LP. The bioavailability after oral administration of seocalcitol dissolved in medium chain triglyceride (MCT), long chain triglyceride (LCT...

  9. Finite fission chain length and symmetry around prompt-criticality

    International Nuclear Information System (INIS)

    Xie Qilin; Yin Yanpeng; Gao Hui; Huang Po; Fang Xiaoqiang

    2012-01-01

    Probability distribution of finite fission chain length was derived by assuming that all neutrons behave identically. Finite fission chain length was also calculated using a zero-dimension Monte-Carlo method based on point kinetics. Then symmetry of finite fission chain length probability distribution around prompt-criticality was deduced, which helps understanding the emission rate of delayed neutrons and initiation of fission chain in super-prompt-critical system. (authors)

  10. Production of Medium-Chain-Length Poly(3-Hydroxyalkanoates from Saponified Palm Kernel Oil by Pseudomonas putida: Kinetics of Batch and Fed-Batch Fermentations

    Directory of Open Access Journals (Sweden)

    Annuar, M. S. M.

    2006-01-01

    Full Text Available The kinetics of medium-chain-length poly(3-hydroxyalkanoates, PHAMCL production by Pseudomonas putida PGA1 in batch and fed-batch fermentations were studied. With saponified palm kernel oil (SPKO supplying the free fatty acids mixture as the sole carbon and energy source, PHAMCL accumulation is encouraged under ammonium-limited condition, which is a nitrogen stress environment. The amount of PHAMCL accumulated and its specific production rate, qPHA were influenced by the residual ammonium concentration level in the culture medium. It was observed that in both fermentation modes, when the residual ammonium was exhausted (< 0.05 gL-1, the PHAMCL accumulation (11.9% and qPHA (0.0062 h-1 were significantly reduced. However, this effect can be reversed by feeding low amount of ammonium to the culture, resulting in significantly improved PHAMCL yield (71.4% and specific productivity (0.6 h-1. It is concluded that the feeding of low ammonium concentration to the culture medium during the PHAMCL accumulation has a positive effect on sustaining the PHAMCL biosynthetic capability of the organism. It was also found that increasing SPKO concentration in the medium significantly reduced (up to 50% the volumetric oxygen transfer coefficient (KLa of the fermentation system.

  11. Polyhydroxyalkanoate biosynthesis by oxalotrophic bacteria from high Andean soil

    Directory of Open Access Journals (Sweden)

    Roger David Castillo-Arteaga

    2018-02-01

    Full Text Available Oxalate is a highly oxidized organic acid anion used as a carbon and energy source by oxalotrophic bacteria. Oxalogenic plants convert atmospheric CO2 into oxalic acid and oxalic salts. Oxalate-salt formation acts as a carbon sink in terrestrial ecosystems via the oxalate-carbonate pathway (OCP. Oxalotrophic bacteria might be implicated in other carbon-storage processes, including the synthesis of polyhydroxyalkanoates (PHAs. More recently, a variety of bacteria from the Andean region of Colombia in Nariño have been reported for their PHA-producing abilities. These species can degrade oxalate and participate in the oxalate-carbonate pathway. The aim of this study was to isolate and characterize oxalotrophic bacteria with the capacity to accumulate PHA biopolymers. Plants of the genus Oxalis were collected and bacteria were isolated from the soil adhering to the roots. The isolated bacterial strains were characterized using biochemical and molecular biological methods. The consumption of oxalate in culture was quantified, and PHA production was monitored in batch fermentation. The polymeric composition was characterized using gas chromatography. Finally, a biosynthetic pathway based on our findings and on those from published sources is proposed. Strains of Bacillus spp. and Serratia sp. were found to metabolize calcium oxalate and synthesize PHA.

  12. Identificación Molecular de Bacterias Productoras de Polihidroxialcanoatos en Subproductos de Lácteos y Caña de Azúcar / Molecular Identification of Polyhydroxyalkanoate-Producing Bacteria Isolated from Dairy and Sugarcane Residues

    Directory of Open Access Journals (Sweden)

    Ana Carolina Cardona Echavarría

    2013-12-01

    Full Text Available Los polihidroxialcanoatos (PHAs son bioplásticostermoestables sintetizados por algunas bacterias, que losacumulan como reservas de carbono en forma de inclusiones citoplasmáticas. Estos compuestos se constituyen en una opción para la sustitución de polímeros sintéticos no biodegradables. En este trabajo se evaluó la presencia de bacterias productoras de PHAs en lactosueros derivados de la producción de quesos, y en melaza, cachaza y bagazo de caña de azúcar. El aislamiento bacteriano se realizó en medio mínimo de sales suplementadocon glucosa al 2% y 1 μL mL-1 de rojo Nilo (0,1%. Las colonias que presentaron fluorescencia a 340 nm en este medio, se evaluaron nuevamente mediante microscopía de fluorescenciacon azul Nilo. Aquellas cepas que resultaron positivas para ambaspruebas fueron consideradas como potenciales productoras de PHAs e identificadas por secuenciación de la región 16S del ADN ribosomal. Seguidamente se evaluó, en algunas de éstas, la presencia del gen phaC mediante PCR con cebadores específicos. Se detectaron 38 cepas productoras de PHAs, representando 18morfotipos bacterianos. Fueron identificadas en los sustratosde lactosuero cepas pertenecientes a los géneros Lactococcus, Klebsiella, Pseudomonas, Enterobacter y Enterococcus; mientras que en los subproductos de caña de azúcar se encontraron cepas de los géneros Bacillus, Enterobacter, Pantoea, Klebsiellay Gluconobacter. El gen phaC se detectó por PCR en 16 bacterias que presentaron los arreglos genéticos I y IV. Este trabajo abre la posibilidad de emplear las bacterias obtenidas en procesos alternativos, ambientalmente sostenibles y generadores de valoragregado, para la disposición final de subproductos y residuos agroindustriales. / Polyhydroxyalkanoates (PHAs are thermostable bioplastics produced by bacteria and stored as inclusion bodies to serve as a reserve carbon source. These compounds are a goodalternative to non-biodegradable synthetic plastics

  13. 75 FR 43197 - Public Housing Assessment System (PHAS): Asset Management Transition Year 2 Extension

    Science.gov (United States)

    2010-07-23

    ... System (PHAS): Asset Management Transition Year 2 Extension AGENCY: Office of the Assistant Secretary for...): Asset Management Transition Year 2 Information (75 FR 1632), dated January 12, 2010, for PHAs with... Assessment System (PHAS): Asset Management Transition Year Information and Uniform Financial Reporting...

  14. Effect of temperature on atom-atom collision chain length in metals

    International Nuclear Information System (INIS)

    Makarov, A.A.; Demkin, N.A.; Lyashchenko, B.G.

    1981-01-01

    Focused atom-atom collision chain lengths are calculated for fcc-crystals with account of thermal oscillations. The model of solid spheres with the Born-Merier potential has been used in the calculations. The dependence of chain lengths on the temperature, energy and movement direction of the first chain atom for Cu, Au, Ag, Pb, Ni is considered. The plot presented shows that the chain lengths strongly decrease with temperature growth, for example, for the gold at T=100 K the chain length equals up to 37 interatomic spacings, whereas at T=1000 K their length decreases down to 5 interatomic distances. The dependence of the energy loss by the chain atoms on the atom number in the chain is obtained in a wide range of crystal temperature and the primary chain atom energy [ru

  15. Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans.

    Science.gov (United States)

    Alva Munoz, Luis Esteban; Riley, Mark R

    2008-08-01

    Utilization of wastes from agriculture is becoming increasingly important due to concerns of environmental impact. The goals of this work were to evaluate the ability of an unusual organism, Saccharophagus degradans (ATCC 43961), to degrade the major components of plant cell walls and to evaluate the ability of S. degradans to produce polyhydroxyalkanoates (PHAs, also known as bioplastics). S. degradans can readily attach to cellulosic fibers, degrade the cellulose, and utilize this as the primary carbon source. The growth of S. degradans was assessed in minimal media (MM) containing glucose, cellobiose, avicel, and bagasse with all able to support growth. Cells were able to attach to avicel and bagasse fibers; however, growth on these insoluble fibers was much slower and led to a lower maximal biomass production than observed with simple sugars. Lignin in MM alone did not support growth, but did support growth upon addition of glucose, although with an increased adaptation phase. When culture conditions were switched to a nitrogen depleted status, PHA production commences and extends for at least 48 h. At early stationary phase, stained inclusion bodies were visible and two chronologically increasing infrared light absorbance peaks at 1,725 and 1,741 cm(-1) confirmed the presence of PHAs. This work demonstrates for what we believe to be the first time, that a single organism can degrade insoluble cellulose and under similar conditions can produce and accumulate PHA. Additional work is necessary to more fully characterize these capabilities and to optimize the PHA production and purification. (c) 2008 Wiley Periodicals, Inc.

  16. Topological analysis of polymeric melts: chain-length effects and fast-converging estimators for entanglement length.

    Science.gov (United States)

    Hoy, Robert S; Foteinopoulou, Katerina; Kröger, Martin

    2009-09-01

    Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length N_{e} which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive, and test new estimators which eliminate these systematic errors using information obtainable from the variation in entanglement characteristics with chain length. The new estimators produce accurate results for N_{e} from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.

  17. PEGylation on mixed monolayer gold nanoparticles: Effect of grafting density, chain length, and surface curvature.

    Science.gov (United States)

    Lin, Jiaqi; Zhang, Heng; Morovati, Vahid; Dargazany, Roozbeh

    2017-10-15

    PEGylation on nanoparticles (NPs) is widely used to prevent aggregation and to mask NPs from the fast clearance system in the body. Understanding the molecular details of the PEG layer could facilitate rational design of PEGylated NPs that maximize their solubility and stealth ability without significantly compromising the targeting efficiency and cellular uptake. Here, we use molecular dynamics (MD) simulation to understand the structural and dynamic the PEG coating of mixed monolayer gold NPs. Specifically, we modeled gold NPs with PEG grafting densities ranging from 0-2.76chain/nm 2 , chain length with 0-10 PEG monomers, NP core diameter from 5nm to 500nm. It is found that the area accessed by individual PEG chains gradually transits from a "mushroom" to a "brush" conformation as NP surface curvature become flatter, whereas such a transition is not evident on small NPs when grafting density increases. It is shown that moderate grafting density (∼1.0chain/nm 2 ) and short chain length are sufficient enough to prevent NPs from aggregating in an aqueous medium. The effect of grafting density on solubility is also validated by dynamic light scattering measurements of PEGylated 5nm gold NPs. With respect to the shielding ability, simulations predict that increase either grafting density, chain length, or NP diameter will reduce the accessibility of the protected content to a certain size molecule. Interestingly, reducing NP surface curvature is estimated to be most effective in promoting shielding ability. For shielding against small molecules, increasing PEG grafting density is more effective than increasing chain length. A simple model that includes these three investigated parameters is developed based on the simulations to roughly estimate the shielding ability of the PEG layer with respect to molecules of different sizes. The findings can help expand our current understanding of the PEG layer and guide rational design of PEGylated gold NPs for a particular

  18. Influence of sludge retention time on tolerance of copper toxicity for polyphosphate accumulating organisms linked to polyhydroxyalkanoates metabolism and phosphate removal.

    Science.gov (United States)

    Tsai, Yung-Pin; Chen, Hsiu-Ting

    2011-12-01

    This study explored the influence of sludge retention time (SRT) on tolerance of copper invasion for polyphosphate accumulating organisms (PAOs) in an enhanced biological phosphorus removal (EBPR). The experimental data showed the anaerobic polyhydroxyalkanoates (PHA) storage for the sludge at 10d SRT was less influenced by copper invasion than those at 5d and 15d SRTs. The reaction of PAOs aerobically taking up phosphate for the sludge at 5d or 15d SRT almost ceased at 2 mg Cu L(-1), whereas PAOs in the sludge at 10d SRT retained half of the ability to take up phosphate. Both the PHAs degradation and synthesis rates decreased with increasing copper concentration, regardless of the SRTs. However, the copper inhibition of the former was greater than that of the later. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. 76 FR 10050 - Changes to the Public Housing Assessment System (PHAS): Management Operations Scoring Notice

    Science.gov (United States)

    2011-02-23

    ... Housing Assessment System (PHAS): Management Operations Scoring Notice SUMMARY: This notice provides... issuing scores under the management operations indicator of the Public Housing Assessment System (PHAS... notice is to provide additional information about the scoring process for the PHAS management operations...

  20. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Wu, Hui; San, Ka-Yiu

    2014-11-01

    Free fatty acids (FFAs) can be used as precursors for the production of biofuels or chemicals. Different composition of FFAs will be useful for further modification of the biofuel/biochemical quality. Microbial biosynthesis of even chain FFAs can be achieved by introducing an acyl-acyl carrier protein thioesterase gene into E. coli. In this study, odd straight medium chain FFAs production was investigated by using metabolic engineered E. coli carrying acyl-ACP thioesterase (TE, Ricinus communis), propionyl-CoA synthase (Salmonella enterica), and β-ketoacyl-acyl carrier protein synthase III (four different sources) with supplement of extracellular propionate. By using these metabolically engineered E. coli, significant quantity of C13 and C15 odd straight-chain FFAs could be produced from glucose and propionate. The highest concentration of total odd straight chain FFAs attained was 1205 mg/L by the strain HWK201 (pXZ18, pBHE2), and 85% of the odd straight chain FFAs was C15. However, the highest percentage of odd straight chain FFAs was achieved by the strain HWK201 (pXZ18, pBHE3) of 83.2% at 48 h. This strategy was also applied successfully in strains carrying different TE, such as the medium length acyl-ACP thioesterase gene from Umbellularia californica. C11 and C13 became the major odd straight-chain FFAs. © 2014 Wiley Periodicals, Inc.

  1. Constraints on food chain length arising from regional metacommunity dynamics

    Science.gov (United States)

    Calcagno, Vincent; Massol, François; Mouquet, Nicolas; Jarne, Philippe; David, Patrice

    2011-01-01

    Classical ecological theory has proposed several determinants of food chain length, but the role of metacommunity dynamics has not yet been fully considered. By modelling patchy predator–prey metacommunities with extinction–colonization dynamics, we identify two distinct constraints on food chain length. First, finite colonization rates limit predator occupancy to a subset of prey-occupied sites. Second, intrinsic extinction rates accumulate along trophic chains. We show how both processes concur to decrease maximal and average food chain length in metacommunities. This decrease is mitigated if predators track their prey during colonization (habitat selection) and can be reinforced by top-down control of prey vital rates (especially extinction). Moreover, top-down control of colonization and habitat selection can interact to produce a counterintuitive positive relationship between perturbation rate and food chain length. Our results show how novel limits to food chain length emerge in spatially structured communities. We discuss the connections between these constraints and the ones commonly discussed, and suggest ways to test for metacommunity effects in food webs. PMID:21367786

  2. 24 CFR 902.47 - Management operations portion of total PHAS points.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Management operations portion of... Operations § 902.47 Management operations portion of total PHAS points. Of the total 100 points available for a PHAS score, a PHA may receive up to 30 points based on the Management Operations Indicator. ...

  3. The diverse nature of saturated fats and the case of medium-chain triglycerides: how one recommendation may not fit all.

    Science.gov (United States)

    Bhavsar, Nilam; St-Onge, Marie-Pierre

    2016-03-01

    The adverse cardiovascular health effects of saturated fats have been debated recently since the publication of studies reporting no increase in cardiovascular risk with saturated fat intakes. We purport that this may be because of the varied nature of saturated fats, which range in length from 2 to over 20 carbon atoms, and review evidence surrounding the cardiovascular health effects of medium-chain triglycerides (MCT). MCTs are saturated fats of shorter chain length than other, more readily consumed saturated fats. Studies have reported that consumption of MCT may lead to improvements in body composition without adversely affecting cardio-metabolic risk factors. There may also be synergistic actions between MCT and n-3 polyunsaturated fats that may lead to improvements in cardiovascular health. It is clinically relevant to distinguish between sources of saturated fats for cardiovascular health. Medium, and possibly shorter chain, saturated fats behave differently than long-chain saturated fats and should not be judged similarly when it comes to their cardio-metabolic health effects. Given their neutral, and potentially beneficial cardiovascular health effects, they should not be categorized together.

  4. Knocking out the MFE-2 gene of Candida bombicola leads to improved medium-chain sophorolipid production.

    Science.gov (United States)

    Van Bogaert, Inge N A; Sabirova, Julia; Develter, Dirk; Soetaert, Wim; Vandamme, Erick J

    2009-06-01

    The nonpathogenic yeast Candida bombicola synthesizes sophorolipids. These biosurfactants are composed of the disaccharide sophorose linked to a long-chain hydroxy fatty acid and have potential applications in the food, pharmaceutical, cosmetic and cleaning industries. In order to expand the range of application, a shift of the fatty acid moiety towards medium-chain lengths would be recommendable. However, the synthesis of medium-chain sophorolipids by C. bombicola is a challenging objective. First of all, these sophorolipids can only be obtained by fermentations on unconventional carbon sources, which often have a toxic effect on the cells. Furthermore, medium-chain substrates are partially metabolized in the beta-oxidation pathway. In order to redirect unconventional substrates towards sophorolipid synthesis, the beta-oxidation pathway was blocked on the genome level by knocking out the multifunctional enzyme type 2 (MFE-2) gene. The total gene sequence of the C. bombicola MFE-2 (6033 bp) was cloned (GenBank accession number EU371724), and the obtained nucleotide sequence was used to construct a knock-out cassette. Several knock-out mutants with the correct geno- and phenotype were evaluated in a fermentation on 1-dodecanol. All mutants showed a 1.7-2.9 times higher production of sophorolipids, indicating that in those strains the substrate is redirected towards the sophorolipid synthesis.

  5. Enhancing the stability of colloidal silver nanoparticles using polyhydroxyalkanoates (PHA) from Bacillus circulans (MTCC 8167) isolated from crude oil contaminated soil.

    Science.gov (United States)

    Phukon, Pinkee; Saikia, Jyoti Prasad; Konwar, Bolin Kumar

    2011-09-01

    Polyhydroxyalkanoate (PHA) was produced by growing Bacillus circulans (MTCC 8167) in the specific detection medium. The identification of the polymer as PHA was confirmed by fluorescence microscopy. The PHA was purified and characterized using FT-IR. The silver nanoparticles (SNP) were synthesized from AgNO3 in the dispersed colloids of PHA (0.085%) using NaBH4 (sodium borohydrate as reducing agent). The stability was tested using wave length scanning with a UV-Vis spectrophotometer and finally with transmission electron microscopy. The PHA stabilized solution was found to be stable for 30 days as against the low stability of silver nanoparticles (SNP) solution alone. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Dependence of the product chain-length on detergents for long-chain E-polyprenyl diphosphate synthases

    Science.gov (United States)

    Pan, Jian-Jung; Ramamoorthy, Gurusankar; Poulter, C. Dale

    2013-01-01

    Long-chain E-polyprenyl diphosphate synthases (E-PDS) catalyze repetitive addition of isopentenyl diphosphate (IPP) to the growing prenyl chain of an allylic diphosphate. The polyprenyl diphosphate products are required for the biosynthesis of ubiquinones and menaquinones required for electron transport during oxidative phosphorylation to generate ATP. In vitro, the long-chain PDSs require addition of phospholipids or detergents to the assay buffer to enhance product release and maintain efficient turnover. During preliminary assays of product chain-length with anionic, zwitterionic, and non-ionic detergents, we discovered considerable variability. Examination of a series of non-ionic PEG detergents with several long-chain E-PDSs from different organisms revealed that in vitro incubations with nonaethylene glycol monododecyl ether or Triton X-100 typically gave chain lengths that corresponded to those of the isoprenoid moieties in respiratory quinones synthesized in vivo. In contrast incubations in buffer with n-butanol, CHAPS, DMSO, n-octyl-β-glucopyranoside, or β-cyclodextrin or in buffer without detergent typically proceeded more slowly and gave a broad range of chain lengths. PMID:23802587

  7. The Chain-Length Distribution in Subcritical Systems

    International Nuclear Information System (INIS)

    Nolen, Steven Douglas

    2000-01-01

    The individual fission chains that appear in any neutron multiplying system provide a means, via neutron noise analysis, to unlock a wealth of information regarding the nature of the system. This work begins by determining the probability density distributions for fission chain lengths in zero-dimensional systems over a range of prompt neutron multiplication constant (K) values. This section is followed by showing how the integral representation of the chain-length distribution can be used to obtain an estimate of the system's subcritical prompt multiplication (MP). The lifetime of the chains is then used to provide a basis for determining whether a neutron noise analysis will be successful in assessing the neutron multiplication constant, k, of the system in the presence of a strong intrinsic source. A Monte Carlo transport code, MC++, is used to model the evolution of the individual fission chains and to determine how they are influenced by spatial effects. The dissertation concludes by demonstrating how experimental validation of certain global system parameters by neutron noise analysis may be precluded in situations in which the system K is relatively low and in which realistic detector efficiencies are simulated

  8. The Chain-Length Distribution in Subcritical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nolen, Steven Douglas [Texas A & M Univ., College Station, TX (United States)

    2000-06-01

    The individual fission chains that appear in any neutron multiplying system provide a means, via neutron noise analysis, to unlock a wealth of information regarding the nature of the system. This work begins by determining the probability density distributions for fission chain lengths in zero-dimensional systems over a range of prompt neutron multiplication constant (K) values. This section is followed by showing how the integral representation of the chain-length distribution can be used to obtain an estimate of the system's subcritical prompt multiplication (MP). The lifetime of the chains is then used to provide a basis for determining whether a neutron noise analysis will be successful in assessing the neutron multiplication constant, k, of the system in the presence of a strong intrinsic source. A Monte Carlo transport code, MC++, is used to model the evolution of the individual fission chains and to determine how they are influenced by spatial effects. The dissertation concludes by demonstrating how experimental validation of certain global system parameters by neutron noise analysis may be precluded in situations in which the system K is relatively low and in which realistic detector efficiencies are simulated.

  9. Inhibition of gastrin-stimulated gastric acid secretion by medium-chain triglycerides and long-chain triglycerides in healthy young men.

    NARCIS (Netherlands)

    Maas, M.I.M.; Hopman, W.P.M.; Katan, M.B.; Jansen, J.B.M.J.

    1996-01-01

    Long-chain triglycerides inhibit gastric acid secretion, but the effect of medium-chain triglycerides in humans is unknown. We compared the effects of intraduodenally perfused saline, medium-chain and long-chain triglycerides on gastrin-stimulated gastric acid secretion and cholecystokinin release.

  10. Synthesis of medium-chain length capsinoids from coconut oil catalyzed by Candida rugosa lipases.

    Science.gov (United States)

    Trbojević Ivić, Jovana; Milosavić, Nenad; Dimitrijević, Aleksandra; Gavrović Jankulović, Marija; Bezbradica, Dejan; Kolarski, Dušan; Veličković, Dušan

    2017-03-01

    A commercial preparation of Candida rugosa lipases (CRL) was tested for the production of capsinoids by esterification of vanillyl alcohol (VA) with free fatty acids (FA) and coconut oil (CO) as acyl donors. Screening of FA chain length indicated that C8-C12 FA (the most common FA found in CO triglycerides) are the best acyl-donors, yielding 80-85% of their specific capsinoids. Hence, when CO, which is rich in these FA, was used as the substrate, a mixture of capsinoids (vanillyl caprylate, vanillyl decanoate and vanillyl laurate) was obtained. The findings presented here suggest that our experimental method can be applied for the enrichment of CO with capsinoids, thus giving it additional health promoting properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Enhanced Agarose and Xylan Degradation for Production of Polyhydroxyalkanoates by Co-Culture of Marine Bacterium, Saccharophagus degradans and Its Contaminant, Bacillus cereus

    Directory of Open Access Journals (Sweden)

    Shailesh S. Sawant

    2017-02-01

    Full Text Available Over reliance on energy or petroleum products has raised concerns both in regards to the depletion of their associated natural resources as well as their increasing costs. Bioplastics derived from microbes are emerging as promising alternatives to fossil fuel derived petroleum plastics. The development of a simple and eco-friendly strategy for bioplastic production with high productivity and yield, which is produced in a cost effective manner utilising abundantly available renewable carbon sources, would have the potential to result in an inexhaustible global energy source. Here we report the biosynthesis of bioplastic polyhydroxyalkanoates (PHAs in pure cultures of marine bacterium, Saccharophagus degradans 2-40 (Sde 2-40, its contaminant, Bacillus cereus, and a co-culture of these bacteria (Sde 2-40 and B. cereus degrading plant and algae derived complex polysaccharides. Sde 2-40 degraded the complex polysaccharides agarose and xylan as sole carbon sources for biosynthesis of PHAs. The ability of Sde 2-40 to degrade agarose increased after co-culturing with B. cereus. The association of Sde 2-40 with B. cereus resulted in increased cell growth and higher PHA production (34.5% of dry cell weight from xylan as a carbon source in comparison to Sde 2-40 alone (22.7% of dry cell weight. The present study offers an innovative prototype for production of PHA through consolidated bioprocessing of complex carbon sources by pure and co-culture of microorganisms.

  12. Structure-guided investigation of lipopolysaccharide O-antigen chain length regulators reveals regions critical for modal length control.

    Science.gov (United States)

    Kalynych, Sergei; Ruan, Xiang; Valvano, Miguel A; Cygler, Miroslaw

    2011-08-01

    The O-antigen component of the lipopolysaccharide (LPS) represents a population of polysaccharide molecules with nonrandom (modal) chain length distribution. The number of the repeat O units in each individual O-antigen polymer depends on the Wzz chain length regulator, an inner membrane protein belonging to the polysaccharide copolymerase (PCP) family. Different Wzz proteins confer vastly different ranges of modal lengths (4 to >100 repeat units), despite having remarkably conserved structural folds. The molecular mechanism responsible for the selective preference for a certain number of O units is unknown. Guided by the three-dimensional structures of PCPs, we constructed a panel of chimeric molecules containing parts of two closely related Wzz proteins from Salmonella enterica and Shigella flexneri which confer different O-antigen chain length distributions. Analysis of the O-antigen length distribution imparted by each chimera revealed the region spanning amino acids 67 to 95 (region 67 to 95), region 200 to 255, and region 269 to 274 as primarily affecting the length distribution. We also showed that there is no synergy between these regions. In particular, region 269 to 274 also influenced chain length distribution mediated by two distantly related PCPs, WzzB and FepE. Furthermore, from the 3 regions uncovered in this study, region 269 to 274 appeared to be critical for the stability of the oligomeric form of Wzz, as determined by cross-linking experiments. Together, our data suggest that chain length determination depends on regions that likely contribute to stabilize a supramolecular complex.

  13. Potential of Diverse Prokaryotic Organisms for Glycerol-based Polyhydroxyalkanoate Production

    Directory of Open Access Journals (Sweden)

    Martin Koller

    2015-06-01

    Full Text Available The potential and performance of various Gram-negative, Gram-positive and archaeal wild type microorganisms, and bacterial mixed cultures, as well as the application of genetically engineered strains as whole-cell biocatalysts for glycerol-based polyhydroxyalkanoate production are analyzed and assessed. This encompasses the comparison of growth and polyhydroxyalkanoate accumulation kinetics, thermo-mechanical properties of isolated glycerol-based polyhydroxyalkanoate of different composition on the monomeric level, and the presentation of mathematical models developed to describe glycerol-based polyhydroxyalkanoate production processes. For all these aspects, the article provides a detailed compilation of the contemporary state of knowledge, and gives an outlook to expected future developments.

  14. Effect of Amphiphilic Alkyl Chain Length Upon Purified LATEX Stability

    International Nuclear Information System (INIS)

    Amira Amir Hassan; Amir Hashim Mohd Yatim

    2015-01-01

    Rubber particles in purified latex (PL) are stabilized by a film of protein and fatty acid soap (surfactant). Saturated straight-chain fatty acid soaps can assist an enhancement of latex stability. However, whether the alkyl chain length plays an important role in increasing the stability is still an issue. The aim of this study is to investigate the effect of alkyl chain length of anionic surfactant on the stability of purified latex. The fatty acid soap of decanoate (9), laurate (11), sodium dodecyl sulphate (SDS) (12) and palmitate (15) were used. The numbers in parentheses indicating the number of carbon present in alkyl chain of the soap. The results showed that the impact of alkyl chain length on the stability of latex is in the order of laurate > decanoate > SDS > palmitate > purified latex accordingly. The alkyl chain length does giving a significant effect on latex stability after longer stirring time. The particle size of latex with the presence of surfactant is greater compare to a single particle itself due to extension of particles diameter. Thus suitable interaction of the nonpolar tail of surfactant with the hydrophobic regions of latex surface played a major role in maintaining a stable latex system. (author)

  15. Nuclide transport of decay chain in the fractured rock medium: a model using continuous time Markov process

    International Nuclear Information System (INIS)

    Younmyoung Lee; Kunjai Lee

    1995-01-01

    A model using continuous time Markov process for nuclide transport of decay chain of arbitrary length in the fractured rock medium has been developed. Considering the fracture in the rock matrix as a finite number of compartments, the transition probability for nuclide from the transition intensity between and out of the compartments is represented utilizing Chapman-Kolmogorov equation, with which the expectation and the variance of nuclide distribution for the fractured rock medium could be obtained. A comparison between continuous time Markov process model and available analytical solutions for the nuclide transport of three decay chains without rock matrix diffusion has been made showing comparatively good agreement. Fittings with experimental breakthrough curves obtained with nonsorbing materials such as NaLS and uranine in the artificial fractured rock are also made. (author)

  16. Mixed culture polyhydroxyalkanoates production from sugar molasses: the use of a 2-stage CSTR system for culture selection.

    Science.gov (United States)

    Albuquerque, M G E; Concas, S; Bengtsson, S; Reis, M A M

    2010-09-01

    Polyhydroxyalkanoates (PHAs) are promising biodegradable polymers. The use of mixed microbial cultures (MMC) and low cost feedstocks have a positive impact on the cost-effectiveness of the process. It has typically been carried out in Sequencing Batch Reactors (SBR). In this study, a 2-stage CSTR system (under Feast and Famine conditions) was used to effectively select for PHA-storing organisms using fermented molasses as feedstock. The effect of influent substrate concentration (60-120 Cmmol VFA/L) and HRT ratio between the reactors (0.2-0.5h/h) on the system's selection efficiency was assessed. It was shown that Feast reactor residual substrate concentration impacted on the selective pressure for PHA storage (due to substrate-dependent kinetic limitation). Moreover, a residual substrate concentration coming from the Feast to the Famine reactor did not jeopardize the physiological adaptation required for enhanced PHA storage. The culture reached a maximum PHA content of 61%. This success opens new perspectives to the use of wastewater treatment infrastructure for PHA production, thus valorizing either excess sludge or wastewaters. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Antibiotics-free stable polyhydroxyalkanoate (PHA) production from carbon dioxide by recombinant cyanobacteria.

    Science.gov (United States)

    Akiyama, Hideo; Okuhata, Hiroshi; Onizuka, Takuo; Kanai, Shozo; Hirano, Masahiko; Tanaka, Satoshi; Sasaki, Ken; Miyasaka, Hitoshi

    2011-12-01

    A practical antibiotics-free plasmid expression system in cyanobacteria was developed by using the complementation of cyanobacterial recA null mutation with the EscherichiacolirecA gene on the plasmid. This system was applied to the production of polyhydroxyalkanoate (PHA), a biodegradable plastic, and the transgenic cyanobacteria stably maintained the pha genes for PHA production in the antibiotics-free medium, and accumulated up to 52% cell dry weight of PHA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Stochastic Simulation of a Full-Chain Reptation Model with Constraint Release, Chain-Length Fluctuations and Chain Stretching

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Schieber, Jay D.

    1999-01-01

    A self-consistent reptation model that includes chain stretching, chain-length fluctuations, segment connectivity and constraint release is used to predict transient and steady flows. Quantitative comparisons are made with entangledsolution data. The model is able to capture quantitatively all...

  19. Characterization and optimization of antibiotic resistant bacterial strains for polyhydroxyalkanoates (phas) production

    International Nuclear Information System (INIS)

    Rehman, S. U.; Jamil, N.; Hussain, S.

    2005-01-01

    In this investigation, sugarcane soil, sewage water and soil containing long chain hydrocarbons was screened to obtain bacterial strains that were able to synthesize poly-beta-hydroxyalkanoates (PHA). The potential to synthesize PHA was tested qualitatively by Sudan Black staining of colonies growing in glucose and sucrose. Sixteen bacterial strains were isolated, purified and characterized for Gram reaction, biochemical analysis and PHA production. Isolates showed a wide range of tolerance to different commonly used antibiotics. PHA extraction was done by solvent extraction and hypochlorite digestion method. PHA production was optimized for different nitrogen concentrations. (author)

  20. 75 FR 4100 - Enterprise Income Verification (EIV) System-Debts Owed to PHAs and Terminations

    Science.gov (United States)

    2010-01-26

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5376-N-04] Enterprise Income Verification (EIV) System-Debts Owed to PHAs and Terminations AGENCY: Office of the Chief Information Officer... Following Information Title of Proposal: Enterprise Income Verification (EIV) System- Debts Owed to PHAs and...

  1. The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: Highlights from a multi-level omics approach

    Directory of Open Access Journals (Sweden)

    Poblete-Castro Ignacio

    2012-03-01

    Full Text Available Abstract Background Pseudomonas putida KT2442 is a natural producer of polyhydroxyalkanoates (PHAs, which can substitute petroleum-based non-renewable plastics and form the basis for the production of tailor-made biopolymers. However, despite the substantial body of work on PHA production by P. putida strains, it is not yet clear how the bacterium re-arranges its whole metabolism when it senses the limitation of nitrogen and the excess of fatty acids as carbon source, to result in a large accumulation of PHAs within the cell. In the present study we investigated the metabolic response of KT2442 using a systems biology approach to highlight the differences between single- and multiple-nutrient-limited growth in chemostat cultures. Results We found that 26, 62, and 81% of the cell dry weight consist of PHA under conditions of carbon, dual, and nitrogen limitation, respectively. Under nitrogen limitation a specific PHA production rate of 0.43 (g·(g·h-1 was obtained. The residual biomass was not constant for dual- and strict nitrogen-limiting growth, showing a different feature in comparison to other P. putida strains. Dual limitation resulted in patterns of gene expression, protein level, and metabolite concentrations that substantially differ from those observed under exclusive carbon or nitrogen limitation. The most pronounced differences were found in the energy metabolism, fatty acid metabolism, as well as stress proteins and enzymes belonging to the transport system. Conclusion This is the first study where the interrelationship between nutrient limitations and PHA synthesis has been investigated under well-controlled conditions using a system level approach. The knowledge generated will be of great assistance for the development of bioprocesses and further metabolic engineering work in this versatile organism to both enhance and diversify the industrial production of PHAs.

  2. Supply Chain adoption in Small and Medium-Sized Enterprises (SMEs)

    DEFF Research Database (Denmark)

    Juhl, Mathias Thim; Bernon, Mike

    Purpose: The importance of having a competitive supply chain strategy is not to be underestimated (Underwood & Agg 2012; Aronow et al. 2014). Despite the importance of creating strong supply chain capabilities, small and medium-sized enterprises (SMEs) find it difficult to implement supply chain...... and customer needs. Research Approach: An exploratory case study of five small and medium sized manufacturing companies was undertaken using in-depth interviews and business reports. Combined with relevant literature, the case study interviews provide basis for a discussion on the current adoption of supply...... needs and a low interaction in the supply chain, to having an “outside-in” perspective (Day & Moorman 2013) and development of capabilities that support long-term competitive advantage. The case studies revealed two significant factors to support consistency between supply chain capabilities...

  3. A biodegradable rubber by crosslinking poly(hydroxyalkanoate) from Pseudomonas oleovorans

    NARCIS (Netherlands)

    DEKONING, GJM; VANBILSEN, HMM; LEMSTRA, PJ; HAZENBERG, W; Witholt, B.; Preusting, H.; VANDERGALIEN, JG; SCHIRMER, A; JENDROSSEK, D

    1994-01-01

    Poly((R)-3-hydroxyalkanoate)s (PHAs) are bacterial storage polyesters, currently receiving much attention because of their potential application as biodegradable and biocompatible plastics. Among them are the PHAs from Pseudomonas oleovorans, which are semicrystalline elastomers. Their applicability

  4. 76 FR 10047 - Changes to the Public Housing Assessment System (PHAS): Financial Condition Scoring Notice

    Science.gov (United States)

    2011-02-23

    ... accepted accounting principles (GAAP)-based financial information. This notice updates and clarifies the... Housing Assessment System (PHAS): Financial Condition Scoring Notice AGENCY: Office of the Assistant... under the financial condition indicator of the Public Housing Assessment System (PHAS). This notice...

  5. 24 CFR 902.68 - Technical review of results of PHAS Indicators #1 or #4.

    Science.gov (United States)

    2010-04-01

    ... both reviews, a request for technical review must be submitted in writing to the Director of the Real... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Technical review of results of PHAS... HOUSING AND URBAN DEVELOPMENT PUBLIC HOUSING ASSESSMENT SYSTEM PHAS Scoring § 902.68 Technical review of...

  6. Mcl-1 Ubiquitination: Unique Regulation of an Essential Survival Protein

    Directory of Open Access Journals (Sweden)

    Barbara Mojsa

    2014-05-01

    Full Text Available Mcl-1 is an anti-apoptotic protein of the Bcl-2 family that is essential for the survival of multiple cell lineages and that is highly amplified in human cancer. Under physiological conditions, Mcl-1 expression is tightly regulated at multiple levels, involving transcriptional, post-transcriptional and post-translational processes. Ubiquitination of Mcl-1, that targets it for proteasomal degradation, allows for rapid elimination of the protein and triggering of cell death, in response to various cellular events. In the last decade, a number of studies have elucidated different pathways controlling Mcl-1 ubiquitination and degradation. Four different E3 ubiquitin-ligases (e.g., Mule, SCFβ-TrCP, SCFFbw7 and Trim17 and one deubiquitinase (e.g., USP9X, that respectively mediate and oppose Mcl-1 ubiquitination, have been formerly identified. The interaction between Mule and Mcl-1 can be modulated by other Bcl-2 family proteins, while recognition of Mcl-1 by the other E3 ubiquitin-ligases and deubiquitinase is influenced by phosphorylation of specific residues in Mcl-1. The protein kinases and E3 ubiquitin-ligases that are involved in the regulation of Mcl-1 stability vary depending on the cellular context, highlighting the complexity and pivotal role of Mcl-1 regulation. In this review, we attempt to recapitulate progress in understanding Mcl-1 regulation by the ubiquitin-proteasome system.

  7. Polyhydroxyalkanoate production by a novel bacterium Massilia sp. UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene.

    Science.gov (United States)

    Han, Xuerong; Satoh, Yasuharu; Kuriki, Yumi; Seino, Teruyuki; Fujita, Shinji; Suda, Takanori; Kobayashi, Takanori; Tajima, Kenji

    2014-11-01

    We successfully isolated one microorganism (UMI-21) from Ulva, a green algae that contains starch. The strain UMI-21 can produce polyhydroxyalkanoate (PHA) from starch, maltotriose, or maltose as a sole carbon source. Taxonomic studies and 16S rDNA sequence analysis revealed that strain UMI-21 was phylogenetically related to species of the genus Massilia. The PHA content under the cultivation condition using a 10-L jar fermentor was 45.5% (w/w). This value was higher than that obtained after cultivation in a flask, suggesting the possibility of large-scale PHA production by UMI-21 from starch. A major issue for the industrial production of microbial PHAs is the very high production cost. Starch is a relatively inexpensive substrate that is also found in abundant seaweeds such as Ulva. Therefore, the strain isolated in this study may be very useful for producing PHA from seaweeds containing polysaccharides such as starch. In addition, a 3.7-kbp DNA fragment containing the whole PHA synthase gene (phaC) was obtained from the strain UMI-21. The results of open reading frame (ORF) analysis suggested that the DNA fragment contained two ORFs, which were composed of 1740 (phaC) and 564 bp (phaR). The deduced amino acid sequence of PhaC from strain UMI-21 shared high similarity with PhaC from Ralstonia eutropha, which is a representative PHA-producing bacterium with a class I PHA synthase. This is the first report for the cloning of the PHA synthase gene from Massilia species. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. A life-cycle assessment of poly-hydroxybutyrate extraction from microbial biomass using dimethylcarbonate

    DEFF Research Database (Denmark)

    Righi, Serena; Baioli, Filippo; Samorì, Chiara

    2016-01-01

    Plastic materials have wide commercial applicability. However, they are made from non-renewable resources and are characterised by resistance to degradation. Poly-hydroxyalkanoates (PHAs) provides one example of a polymer biodegradable, biocompatible and produced from renewable raw materials...

  9. Bacillus and biopolymer: Prospects and challenges

    Directory of Open Access Journals (Sweden)

    Swati Mohapatra

    2017-12-01

    Full Text Available The microbially derived polyhydroxyalkanoates biopolymers could impact the global climate scenario by replacing the conventional non-degradable, petrochemical-based polymer. The biogenesis, characterization and properties of PHAs by Bacillus species using renewable substrates have been elaborated by many for their wide applications. On the other hand Bacillus species are advantageous over other bacteria due to their abundance even in extreme ecological conditions, higher growth rates even on cheap substrates, higher PHAs production ability, and the ease of extracting the PHAs. Bacillus species possess hydrolytic enzymes that can be exploited for economical PHAs production. This review summarizes the recent trends in both non-growth and growth associated PHAs production by Bacillus species which may provide direction leading to future research towards this growing quest for biodegradable plastics, one more critical step ahead towards sustainable development.

  10. Targeting Mcl-1 for Radiosensitization of Pancreatic Cancers

    Directory of Open Access Journals (Sweden)

    Dongping Wei

    2015-02-01

    Full Text Available In order to identify targets whose inhibition may enhance the efficacy of chemoradiation in pancreatic cancer, we previously conducted an RNAi library screen of 8,800 genes. We identified Mcl-1 (myeloid cell leukemia-1, an anti-apoptotic member of the Bcl-2 family, as a target for sensitizing pancreatic cancer cells to chemoradiation. In the present study we investigated Mcl-1 inhibition by either genetic or pharmacological approaches as a radiosensitizing strategy in pancreatic cancer cells. Mcl-1 depletion by siRNA produced significant radiosensitization in BxPC-3 and Panc-1 cells in association with Caspase-3 activation and PARP cleavage, but only minimal radiosensitization in MiaPaCa-2 cells. We next tested the ability of the recently identified, selective, small molecule inhibitor of Mcl-1, UMI77, to radiosensitize in pancreatic cancer cells. UMI77 caused dissociation of Mcl-1 from the pro-apoptotic protein Bak and produced significant radiosensitization in BxPC-3 and Panc-1 cells, but minimal radiosensitization in MiaPaCa-2 cells. Radiosensitization by UMI77 was associated with Caspase-3 activation and PARP cleavage. Importantly, UMI77 did not radiosensitize normal small intestinal cells. In contrast, ABT-737, an established inhibitor of Bcl-2, Bcl-XL, and Bcl-w, failed to radiosensitize pancreatic cancer cells suggesting the unique importance of Mcl-1 relative to other Bcl-2 family members to radiation survival in pancreatic cancer cells. Taken together, these results validate Mcl-1 as a target for radiosensitization of pancreatic cancer cells and demonstrate the ability of small molecules which bind the canonical BH3 groove of Mcl-1, causing displacement of Mcl-1 from Bak, to selectively radiosensitize pancreatic cancer cells.

  11. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  12. Direct observation of the edge spin structure and chain length dependence of a finite haldane chain by high field ESR measurements

    International Nuclear Information System (INIS)

    Yoshida, Makoto; Ohta, Hitoshi; Ito, Toshimitsu; Ajiro, Yoshitami

    2006-01-01

    We have performed high field and multi-frequency ESR measurements of finite length S=1 antiferromagnetic chains in Y 2 BaNi 0.96 Mg 0.04 O 5 . Owing to the high spectral resolution by high fields and high frequencies, observed ESR signals can be separated into the contributions of the finite chains with various chain lengths. Our results clearly show that the edge spins actually interact with each other through the quantum spin chain and the interaction depends on the chain length N. (author)

  13. Biosynthesis and Lipase-Catalysed Hydrolysis of 4-Hydroxybutyrate-Containing Polyhydroxyalkanoates from Delftia acidovorans

    Directory of Open Access Journals (Sweden)

    Diana Hooi-Ean Ch’ng

    2012-09-01

    Full Text Available Aims: Polyhydroxyalkanoates (PHA having various molar fractions of 4-hydroxybutyrate has been successfully synthesized by Delftia acidovorans.Methodology and results: The monomer compositions of the PHA were varied by cultivating the bacterium in a mixture of 1,4-butanediol and sodium valerate, γ-butyrolactone and sodium valerate as well as 4-hydroxybutyric acid and sodium valerate, which resulted in the production of PHA terpolymers. Although the highest terpolymer content achieved was only 57 wt% of the dry cell weight, the 4HB molar fractions can be regulated from 2-50 mol% when culture conditions such as initial pH, inoculum concentration and aeration were varied. The in vitro degradation of [P(3HB-co-50 % 4HB] synthesized by D. acidovorans were also studied by monitoring the erosion rate of the copolymer in aqueous solutions of lipases (Lipase A ‘Amano’ 12 and Newlase F. Results have shown that the types of lipases, concentration of lipase solution and pH of the buffer solution influenced the degradation rate of the PHA copolymer.Conclusion, significance and impact of the study: The overall results have shown that D. acidovorans is a very promising strain for the production of 4HB containing PHAs with specific compositions which are very suitable to be tailor made into biodegradable and biocompatible materials for medical applications.

  14. Protein sequences clustering of herpes virus by using Tribe Markov clustering (Tribe-MCL)

    Science.gov (United States)

    Bustamam, A.; Siswantining, T.; Febriyani, N. L.; Novitasari, I. D.; Cahyaningrum, R. D.

    2017-07-01

    The herpes virus can be found anywhere and one of the important characteristics is its ability to cause acute and chronic infection at certain times so as a result of the infection allows severe complications occurred. The herpes virus is composed of DNA containing protein and wrapped by glycoproteins. In this work, the Herpes viruses family is classified and analyzed by clustering their protein-sequence using Tribe Markov Clustering (Tribe-MCL) algorithm. Tribe-MCL is an efficient clustering method based on the theory of Markov chains, to classify protein families from protein sequences using pre-computed sequence similarity information. We implement the Tribe-MCL algorithm using an open source program of R. We select 24 protein sequences of Herpes virus obtained from NCBI database. The dataset consists of three types of glycoprotein B, F, and H. Each type has eight herpes virus that infected humans. Based on our simulation using different inflation factor r=1.5, 2, 3 we find a various number of the clusters results. The greater the inflation factor the greater the number of their clusters. Each protein will grouped together in the same type of protein.

  15. Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB.

    Science.gov (United States)

    Löwe, Hannes; Hobmeier, Karina; Moos, Manuel; Kremling, Andreas; Pflüger-Grau, Katharina

    2017-01-01

    One of the major challenges for the present and future generations is to find suitable substitutes for the fossil resources we rely on today. Cyanobacterial carbohydrates have been discussed as an emerging renewable feedstock in industrial biotechnology for the production of fuels and chemicals, showing promising production rates when compared to crop-based feedstock. However, intrinsic capacities of cyanobacteria to produce biotechnological compounds are limited and yields are low. Here, we present an approach to circumvent these problems by employing a synthetic bacterial co-culture for the carbon-neutral production of polyhydroxyalkanoates (PHAs) from CO 2 . The co-culture consists of two bio - modules : Bio - module I , in which the cyanobacterial strain Synechococcus elongatus cscB fixes CO 2 , converts it to sucrose, and exports it into the culture supernatant; and bio - module II , where this sugar serves as C-source for Pseudomonas putida cscAB and is converted to PHAs that are accumulated in the cytoplasm. By applying a nitrogen-limited process, we achieved a maximal PHA production rate of 23.8 mg/(L day) and a maximal titer of 156 mg/L. We will discuss the present shortcomings of the process and show the potential for future improvement. These results demonstrate the feasibility of mixed cultures of S. elongatus cscB and P. putida cscAB for PHA production, making room for the cornucopia of possible products that are described for P. putida . The construction of more efficient sucrose-utilizing P. putida phenotypes and the optimization of process conditions will increase yields and productivities and eventually close the gap in the contemporary process. In the long term, the co-culture may serve as a platform process, in which P. putida is used as a chassis for the implementation of synthetic metabolic pathways for biotechnological production of value-added products.

  16. Medium-chain, triglyceride-containing lipid emulsions increase human neutrophil beta2 integrin expression, adhesion, and degranulation.

    Science.gov (United States)

    Wanten, G J; Geijtenbeek, T B; Raymakers, R A; van Kooyk, Y; Roos, D; Jansen, J B; Naber, A H

    2000-01-01

    To test the hypothesis that lipid emulsions with different triglyceride structures have distinct immunomodulatory properties, we analyzed human neutrophil adhesion and degranulation after lipid incubation. Neutrophils, isolated from the blood of 10 healthy volunteers, were incubated in medium or physiologic (2.5 mmol/L) emulsions containing long-chain (LCT), medium-chain (MCT), mixed LCT/MCT, or structured (SL) triglycerides. Expression of adhesion molecules and degranulation markers was evaluated by flow cytometry. Also, functional adhesion was investigated by means of a flow cytometric assay using fluorescent beads coated with the integrin ligand intercellular adhesion molecule (ICAM)-1. Although LCT and SL had no effect, LCT/MCT significantly increased expression of the beta2 integrins lymphocyte-function-associated antigen 1 (+18%), macrophage antigen 1 (+387%), p150,95 (+82%), and (alphaDbeta2 (+230%). Degranulation marker expression for azurophilic (CD63, +210%) and specific granules (CD66b, +370%) also significantly increased, whereas L-selectin (CD62L, -70%) decreased. The effects of LCT/MCT were mimicked by the MCT emulsion. ICAM-1 adhesion (% beads bound) was increased by LCT/MCT (34% +/- 4%), whereas LCT (19% +/-3%) and SL (20% +/- 2%) had no effect compared with medium (17% +/- 3%). LCT/MCT and MCT, contrary to LCT and SL emulsions, increased neutrophil beta2 integrin expression, adhesion, and degranulation. Apart from other emulsion constituents, triglyceride chain length might therefore be a key feature in the interaction of lipid emulsions and the phagocyte immune system.

  17. Mcl-1 dynamics influence mitotic slippage and death in mitosis.

    Science.gov (United States)

    Sloss, Olivia; Topham, Caroline; Diez, Maria; Taylor, Stephen

    2016-02-02

    Microtubule-binding drugs such as taxol are frontline treatments for a variety of cancers but exactly how they yield patient benefit is unclear. In cell culture, inhibiting microtubule dynamics prevents spindle assembly, leading to mitotic arrest followed by either apoptosis in mitosis or slippage, whereby a cell returns to interphase without dividing. Myeloid cell leukaemia-1 (Mcl-1), a pro-survival member of the Bcl-2 family central to the intrinsic apoptosis pathway, is degraded during a prolonged mitotic arrest and may therefore act as a mitotic death timer. Consistently, we show that blocking proteasome-mediated degradation inhibits taxol-induced mitotic apoptosis in a Mcl-1-dependent manner. However, this degradation does not require the activity of either APC/C-Cdc20, FBW7 or MULE, three separate E3 ubiquitin ligases implicated in targeting Mcl-1 for degradation. This therefore challenges the notion that Mcl-1 undergoes regulated degradation during mitosis. We also show that Mcl-1 is continuously synthesized during mitosis and that blocking protein synthesis accelerates taxol induced death-in-mitosis. Modulating Mcl-1 levels also influences slippage; overexpressing Mcl-1 extends the time from mitotic entry to mitotic exit in the presence of taxol, while inhibiting Mcl-1 accelerates it. We suggest that Mcl-1 competes with Cyclin B1 for binding to components of the proteolysis machinery, thereby slowing down the slow degradation of Cyclin B1 responsible for slippage. Thus, modulating Mcl-1 dynamics influences both death-in-mitosis and slippage. However, because mitotic degradation of Mcl-1 appears not to be under the control of an E3 ligase, we suggest that the notion of network crosstalk is used with caution.

  18. Characterization of amylose nanoparticles prepared via nanoprecipitation: Influence of chain length distribution.

    Science.gov (United States)

    Chang, Yanjiao; Yang, Jingde; Ren, Lili; Zhou, Jiang

    2018-08-15

    The influence of chain length distribution of amylose on size and structure of the amylose nanoparticles (ANPs) prepared through nanoprecipitation was investigated. Amylose with different chain length distributions was obtained by β-amylase treating amylose paste for different times and measured by size exclusion chromatography (SEC) and fluorophore-assisted carbohydrate electrophoresis (FACE). ANPs prepared via precipitation were characterized by using dynamic light scattering (DLS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results showed that the β-amylase treatments led to decrease in chain length of amylose, and it was the most important factor affecting size of ANPs. When hydrolysis degree of amylose was 52.8%, mean size of ANPs decreased from 206.4 nm to 102.7 nm. All the ANPs displayed a V-type crystalline structure and the effect of amylose chain length on crystallinity of the precipitated ANPs was negligible in the investigated range. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems.

    Science.gov (United States)

    Young, Hillary S; McCauley, Douglas J; Dunbar, Robert B; Hutson, Michael S; Ter-Kuile, Ana Miller; Dirzo, Rodolfo

    2013-03-01

    Many different drivers, including productivity, ecosystem size, and disturbance, have been considered to explain natural variation in the length of food chains. Much remains unknown about the role of these various drivers in determining food chain length, and particularly about the mechanisms by which they may operate in terrestrial ecosystems, which have quite different ecological constraints than aquatic environments, where most food chain length studies have been thus far conducted. In this study, we tested the relative importance of ecosystem size and productivity in influencing food chain length in a terrestrial setting. We determined that (1) there is no effect of ecosystem size or productive space on food chain length; (2) rather, food chain length increases strongly and linearly with productivity; and (3) the observed changes in food chain length are likely achieved through a combination of changes in predator size, predator behavior, and consumer diversity along gradients in productivity. These results lend new insight into the mechanisms by which productivity can drive changes in food chain length, point to potential for systematic differences in the drivers of food web structure between terrestrial and aquatic systems, and challenge us to consider how ecological context may control the drivers that shape food chain length.

  20. 24 CFR 943.148 - What procurement standards apply to PHAs selecting partners for a joint venture?

    Science.gov (United States)

    2010-04-01

    ... PHAs selecting partners for a joint venture? 943.148 Section 943.148 Housing and Urban Development... VENTURES Subsidiaries, Affiliates, Joint Ventures in Public Housing § 943.148 What procurement standards apply to PHAs selecting partners for a joint venture? (a) The requirements of part 85 of this title are...

  1. Production and Characterization of Polyhydroxyalkanoates and Native Microorganisms Synthesized from Fatty Waste

    Directory of Open Access Journals (Sweden)

    Javier Ricardo Gómez Cardozo

    2016-01-01

    Full Text Available Polyhydroxyalkanoates (PHAs are biodegradable and biocompatible plastics. They are synthesized by a wide variety of microorganisms (i.e., fungi and bacteria and some organisms such as plants, which share characteristics with petrochemical-based plastics. The most recent studies focus on finding inexpensive substrates and extraction strategies that allow reducing product costs, thus moving into a widespread market, the market for petroleum-based plastics. In this study, the production of polyhydroxybutyrate (PHB was evaluated using the native strains, Bacillus megaterium, Bacillus sp., and Lactococcus lactis, and glycerol reagent grade (GRG, residual glycerol (RGSB byproduct of biodiesel from palm oil, Jatropha oil, castor oil, waste frying oils, and whey as substrates. Different bacteria-substrate systems were evaluated thrice on a laboratory scale under different conditions of temperature, pH, and substrate concentration, employing 50 mL of broth in 250 mL. The bacterial growth was tested in all systems; however, the B. megaterium GRG system generated the highest accumulation of PHA. The previous approach was allowed to propose a statistical design optimization with RGSB (i.e., RGSB, 15 g/L, pH 7.0, and 25°C. This system reached 2.80 g/L of PHB yield and was the optimal condition tested; however, the optimal biomass 5.42 g/L occurs at pH 9.0 and 25°C, with a substrate concentration of 22 g/L.

  2. HTLV-1 tax stabilizes MCL-1 via TRAF6-dependent K63-linked polyubiquitination to promote cell survival and transformation.

    Directory of Open Access Journals (Sweden)

    Young Bong Choi

    2014-10-01

    Full Text Available The human T-cell leukemia virus type 1 (HTLV-1 Tax protein hijacks the host ubiquitin machinery to activate IκB kinases (IKKs and NF-κB and promote cell survival; however, the key ubiquitinated factors downstream of Tax involved in cell transformation are unknown. Using mass spectrometry, we undertook an unbiased proteome-wide quantitative survey of cellular proteins modified by ubiquitin in the presence of Tax or a Tax mutant impaired in IKK activation. Tax induced the ubiquitination of 22 cellular proteins, including the anti-apoptotic BCL-2 family member MCL-1, in an IKK-dependent manner. Tax was found to promote the nondegradative lysine 63 (K63-linked polyubiquitination of MCL-1 that was dependent on the E3 ubiquitin ligase TRAF6 and the IKK complex. Tax interacted with and activated TRAF6, and triggered its mitochondrial localization, where it conjugated four carboxyl-terminal lysine residues of MCL-1 with K63-linked polyubiquitin chains, which stabilized and protected MCL-1 from genotoxic stress-induced degradation. TRAF6 and MCL-1 played essential roles in the survival of HTLV-1 transformed cells and the immortalization of primary T cells by HTLV-1. Therefore, K63-linked polyubiquitination represents a novel regulatory mechanism controlling MCL-1 stability that has been usurped by a viral oncogene to precipitate cell survival and transformation.

  3. HTLV-1 Tax Stabilizes MCL-1 via TRAF6-Dependent K63-Linked Polyubiquitination to Promote Cell Survival and Transformation

    Science.gov (United States)

    Choi, Young Bong; Harhaj, Edward William

    2014-01-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax protein hijacks the host ubiquitin machinery to activate IκB kinases (IKKs) and NF-κB and promote cell survival; however, the key ubiquitinated factors downstream of Tax involved in cell transformation are unknown. Using mass spectrometry, we undertook an unbiased proteome-wide quantitative survey of cellular proteins modified by ubiquitin in the presence of Tax or a Tax mutant impaired in IKK activation. Tax induced the ubiquitination of 22 cellular proteins, including the anti-apoptotic BCL-2 family member MCL-1, in an IKK-dependent manner. Tax was found to promote the nondegradative lysine 63 (K63)-linked polyubiquitination of MCL-1 that was dependent on the E3 ubiquitin ligase TRAF6 and the IKK complex. Tax interacted with and activated TRAF6, and triggered its mitochondrial localization, where it conjugated four carboxyl-terminal lysine residues of MCL-1 with K63-linked polyubiquitin chains, which stabilized and protected MCL-1 from genotoxic stress-induced degradation. TRAF6 and MCL-1 played essential roles in the survival of HTLV-1 transformed cells and the immortalization of primary T cells by HTLV-1. Therefore, K63-linked polyubiquitination represents a novel regulatory mechanism controlling MCL-1 stability that has been usurped by a viral oncogene to precipitate cell survival and transformation. PMID:25340740

  4. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by Dover Chemical

    Science.gov (United States)

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  5. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by Qualice, LLC

    Science.gov (United States)

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  6. Effects of impurities in biodiesel-derived glycerol on growth and expression of heavy metal ion homeostasis genes and gene products in Pseudomonas putida LS46.

    Science.gov (United States)

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V; Zhang, Xiangli; Fristensky, Brian; Wilkins, John A; Cicek, Nazim; Sparling, Richard; Levin, David B

    2015-07-01

    Biodiesel production-derived waste glycerol (WG) was previously investigated as potential carbon source for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46. In this study, we evaluated the effect of impurities in the WG on P. putida LS46 physiology during exponential growth and corresponding changes in transcription and protein expression profiles compared with cells grown on pure, reagent grade glycerol. High concentration of metal ions, such as Na(+), and numbers of heavy metals ion, such as copper, ion, zinc, were detected in biodiesel-derived WG. Omics analysis from the corresponding cultures suggested altered expression of genes involved in transport and metabolism of ammonia and heavy metal ions. Expression of three groups of heavy metal homeostasis genes was significantly changed (mostly upregulated) in WG cultures and included the following: copper-responded cluster 1 and 2 genes, primarily containing cusABC; two copies of copAB and heavy metal translocating P-type ATPase; Fur-regulated, TonB-dependent siderophore receptor; and several cobalt/zinc/cadmium transporters. Expression of these genes suggests regulation of intracellular concentrations of heavy metals during growth on biodiesel-derived glycerol. Finally, a number of genes involved in adapting to, or metabolizing free fatty acids and other nonheavy metal contaminants, such as Na(+), were also upregulated in P. putida LS46 grown on biodiesel-derived glycerol.

  7. Medium-chain triglycerides in infant formulas and their relation to plasma ketone body concentrations.

    Science.gov (United States)

    Wu, P Y; Edmond, J; Auestad, N; Rambathla, S; Benson, J; Picone, T

    1986-04-01

    A mild ketosis is known to prevail in the mother, fetus, and newborn infant during the 3rd trimester and in the early neonatal period. It has been shown that during an equivalent period in the rat ketone bodies are readily oxidized and serve as key substrates for lipogenesis in brain. Since medium-chain triglycerides are known to be ketogenic, preterm infants may benefit from dietary medium-chain triglycerides beyond the point of enhanced fat absorption. Our objective was to determine the ketogenic response in preterm infants (gestational age: 33 +/- 0.8 wk) fed three different isocaloric formulas by measuring the concentrations of 3-hydroxybutyrate and acetoacetate in the plasma of these infants. At the time of entrance to the study the infants were receiving 110 kcal/kg/24 h. Study I (11 infants): the infants were fed sequentially in the order; PM 60/40 (PM), Special Care Formula (SCF), and Similac 20 (SIM). In SCF greater than 50% of the fat consists of medium-chain length fatty acids while PM and SIM contain about 25%. The concentration of 3-hydroxybutyrate in plasma was significantly higher when infants were fed SCF than PM and SIM [0.14 +/- 0.03, 0.06 +/- 0.01, and 0.05 +/- 0.01 mM, respectively (p less than 0.01)]. Study II (12 infants); the infants were fed SCF, then SIM, or the reverse. The concentration of acetoacetate in plasma was 0.05 +/- 0.01 and 0.03 +/- 0.01 mM when infants were fed SCF and SIM, respectively (0.1 greater than p greater than 0.05). The concentrations of 3-hydroxybutyrate in plasma were similar to those measured in study I for the respective formulas.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. How Chain Length and Charge Affect Surfactant Denaturation of Acyl Coenzyme A Binding Protein (ACBP)

    DEFF Research Database (Denmark)

    Andersen, Kell Kleiner; Otzen, Daniel

    2009-01-01

    maltoside (DDM). The aim has been to determine how surfactant chain length and micellar charge affect the denaturation mechanism. ACBP denatures in two steps irrespective of surfactant chain length, but with increasing chain length, the potency of the denaturant rises more rapidly than the critical micelle......Using intrinsic tryptophan fluorescence, equilibria and kinetics of unfolding of acyl coenzyme A binding protein (ACBP) have been investigated in sodium alkyl sulfate surfactants of different chain length (8-16 carbon atoms) and with different proportions of the nonionic surfactant dodecyl...... constants increases linearly with denaturant concentration below the cmc but declines at higher concentrations. Both shortening chain length and decreasing micellar charge reduce the overall kinetics of unfolding and makes the dependence of unfolding rate constants on surfactant concentration more complex...

  9. Novel Strategies for Production of Medium and High Chain Length Alcohols

    NARCIS (Netherlands)

    Lopez Contreras, A.M.; Kuit, W.; Springer, J.; Claassen, P.A.M.

    2011-01-01

    Fermentation-derived ethanol is currently widely used as transport fuel, both as such or as a blending component in gasoline (Antoni et al. 2007; Mielenz 2001). However, longer chain alcohols have higher energy densities and are less soluble in water than ethanol, which are important advantages for

  10. Exploring the impact of the side-chain length on peptide/RNA binding events.

    Science.gov (United States)

    Sbicca, Lola; González, Alejandro López; Gresika, Alexandra; Di Giorgio, Audrey; Closa, Jordi Teixido; Tejedor, Roger Estrada; Andréola, Marie-Line; Azoulay, Stéphane; Patino, Nadia

    2017-07-19

    The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (K D ) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.

  11. miR-193b Regulates Mcl-1 in Melanoma.

    Science.gov (United States)

    Chen, Jiamin; Zhang, Xiao; Lentz, Cindy; Abi-Daoud, Marie; Paré, Geneviève C; Yang, Xiaolong; Feilotter, Harriet E; Tron, Victor A

    2011-11-01

    MicroRNAs play important roles in gene regulation, and their expression is frequently dysregulated in cancer cells. In a previous study, we reported that miR-193b represses cell proliferation and regulates cyclin D1 in melanoma cells, suggesting that miR-193b could act as a tumor suppressor. Herein, we demonstrate that miR-193b also down-regulates myeloid cell leukemia sequence 1 (Mcl-1) in melanoma cells. MicroRNA microarray profiling revealed that miR-193b is expressed at a significantly lower level in malignant melanoma than in benign nevi. Consistent with this, Mcl-1 is detected at a higher level in malignant melanoma than in benign nevi. In a survey of melanoma samples, the level of Mcl-1 is inversely correlated with the level of miR-193b. Overexpression of miR-193b in melanoma cells represses Mcl-1 expression. Previous studies showed that Mcl-1 knockdown cells are hypersensitive to ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-X(L), and Bcl-w. Similarly, overexpression of miR-193b restores ABT-737 sensitivity to ABT-737-resistant cells. Furthermore, the effect of miR-193b on the expression of Mcl-1 seems to be mediated by direct interaction between miR-193b and seed and seedless pairing sequences in the 3' untranslated region of Mcl-1 mRNA. Thus, this study provides evidence that miR-193b directly regulates Mcl-1 and that down-regulation of miR-193b in vivo could be an early event in melanoma progression. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by INEOS Chlor Americas

    Science.gov (United States)

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  13. Nordic MCL2 trial update

    DEFF Research Database (Denmark)

    Geisler, Christian H; Kolstad, Arne; Laurell, Anna

    2012-01-01

    Mantle cell lymphoma (MCL) is a heterogenic non-Hodgkin lymphoma entity, with a median survival of about 5 years. In 2008 we reported the early - based on the median observation time of 4 years - results of the Nordic Lymphoma Group MCL2 study of frontline intensive induction immunochemotherapy...... and autologous stem cell transplantation (ASCT), with more than 60% event-free survival at 5 years, and no subsequent relapses reported. Here we present an update after a median observation time of 6·5 years. The overall results are still excellent, with median overall survival and response duration longer than...

  14. Estratégias de cultivo para produção dos plásticos biodegradáveis poli(3-Hidroxibutirato e poli(3-hidroxibutirato-co-3-hidroxivalerato por bactérias Cultivation strategies for production of the biodegradable plastics poly(3-hydroxybutyrate and poly(3-hydroxybutyrate-co-3-hydroxyvalerate by bacteria

    Directory of Open Access Journals (Sweden)

    Cláudia Regina Squio

    2004-08-01

    Full Text Available Polyhydroxyalkanoates (PHAs are carbon and energy storage materials that are accumulated as intracellular granules in a variety of microorganisms during unbalanced growth. PHAs have drawn attention due to their properties similar to conventional plastics and complete biodegradability. They can be used for food and cosmetics packaging, and in medicine and agriculture. However, their applicability is reduced because of their high production cost compared to conventional plastics. An overview on production strategies of poly(3-hydroxybutyrate and poly(3-hydroxybutyrate-co-3-hydroxyvalerate aiming at reducing the production costs is presented.

  15. Isolation and Characterization of PHA-Producing Bacteria from Propylene Oxide Saponification Wastewater Residual Sludge.

    Science.gov (United States)

    Li, Ruirui; Gu, Pengfei; Fan, Xiangyu; Shen, Junyu; Wu, Yulian; Huang, Lixuan; Li, Qiang

    2018-03-21

    A polyhydroxyalkanoate (PHA)-producing strain was isolated from propylene oxide (PO) saponification wastewater activated sludge and was identified as Brevundimonas vesicularis UJN1 through 16S rDNA sequencing and Biolog microbiological identification. Single-factor and response surface methodology experiments were used to optimize the culture medium and conditions. The optimal C/N ratio was 100/1.04, and the optimal carbon and nitrogen sources were sucrose (10 g/L) and NH 4 Cl (0.104 g/L) respectively. The optimal culture conditions consisted of initial pH of 6.7 and an incubation temperature of 33.4 °C for 48 h, with 15% inoculum and 100 mL medium at an agitation rate of 180 rpm. The PHA concentration reached 34.1% of the cell dry weight and increased three times compared with that before optimization. The only report of PHA-producing bacteria by Brevundimonas vesicularis showed that the conversion rate of PHAs using glucose as the optimal carbon source was 1.67%. In our research, the conversion rate of PHAs with sucrose as the optimal carbon source was 3.05%, and PHA production using sucrose as the carbon source was much cheaper than that using glucose as the carbon source.

  16. PhaC Synthases and PHA Depolymerases: The Enzymes that Produce and Degrade Plastic

    Directory of Open Access Journals (Sweden)

    Amro A. Amara

    2011-12-01

    Full Text Available PHAs are a group of intracellular biodegradable polymer produced by (most bacteria under unbalanced growth conditions. A series of enzymes are involved in different PHAs synthesis, however PhaC synthases are responsible for the polymerization step. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reduces equivalents. PHAs are converted again to soluble components by another pathways and enzymes for the degradation process. PHAs depolymerases are the responsible enzymes. This review is designed to give the non-specialists a condense background about PHAs especially for researcher and students in medicinal and pharmaceutical filled. ABSTRAK: PHAs (polyhydroxyalkanoate merupakan sekumpulan polimer terbiodegradasikan intrasel yang dihasilkan oleh (kebanyakan bakteria di bawah keadaan tumbesaran tak seimbang. Satu rangkaian enzim terlibat dalam sistesis PHAs yang berbeza, namun sintesis PhaC bertanggungjawab dalam peringkat pempolimeran. PHAs dikumpulkan dalam sel bakteria dari bentuk larut dan tak larut sebagai bahan simpan di dalam jasad terangkum semasa nutrisi tak seimbang atau untuk menyelamatkan organisma daripada pengurangan tak keseimbangan. PHAs ditukarkan sekali lagi kepada komponen larut dengan cara lain dan enzim lain untuk proses degradasi. PHAs depoly-merases (enzim yang memangkin penguraian makro molekul kepada molekul yang lebih mudah merupakan enzim yang bertanggunjawab. Kajian semula ini direka untuk memberi mereka yang bukan pakar, satu ringkasan tentang PHAs terutamanya penyelidik dan penuntut dalam bidang peubatan dan farmaseutikal.

  17. Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Anupama Shrivastav

    2013-01-01

    Full Text Available Drug delivery technology is emerging as an interdisciplinary science aimed at improving human health. The controlled delivery of pharmacologically active agents to the specific site of action at the therapeutically optimal rate and dose regimen has been a major goal in designing drug delivery systems. Over the past few decades, there has been considerable interest in developing biodegradable drug carriers as effective drug delivery systems. Polymeric materials from natural sources play an important role in controlled release of drug at a particular site. Polyhydroxyalkanoates, due to their origin from natural sources, are given attention as candidates for drug delivery materials. Biodegradable and biocompatible polyhydroxyalkanoates are linear polyesters produced by microorganisms under unbalanced growth conditions, which have emerged as potential polymers for use as biomedical materials for drug delivery due to their unique physiochemical and mechanical properties. This review summarizes many of the key findings in the applications of polyhydroxyalkanoates and polyhydroxyalkanoate nanoparticles for drug delivery system.

  18. Detection of the enzymatically-active polyhydroxyalkanoate synthase subunit gene, phaC, in cyanobacteria via colony PCR.

    Science.gov (United States)

    Lane, Courtney E; Benton, Michael G

    2015-12-01

    A colony PCR-based assay was developed to rapidly determine if a cyanobacterium of interest contains the requisite genetic material, the PHA synthase PhaC subunit, to produce polyhydroxyalkanoates (PHAs). The test is both high throughput and robust, owing to an extensive sequence analysis of cyanobacteria PHA synthases. The assay uses a single detection primer set and a single reaction condition across multiple cyanobacteria strains to produce an easily detectable positive result - amplification via PCR as evidenced by a band in electrophoresis. In order to demonstrate the potential of the presence of phaC as an indicator of a cyanobacteria's PHA accumulation capabilities, the ability to produce PHA was assessed for five cyanobacteria with a traditional in vivo PHA granule staining using an oxazine dye. The confirmed in vivo staining results were then compared to the PCR-based assay results and found to be in agreement. The colony PCR assay was capable of successfully detecting the phaC gene in all six of the diverse cyanobacteria tested which possessed the gene, while exhibiting no undesired product formation across the nine total cyanobacteria strains tested. The colony PCR quick prep provides sufficient usable DNA template such that this assay could be readily expanded to assess multiple genes of interest simultaneously. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Infinite coherence time of edge spins in finite-length chains

    Science.gov (United States)

    Maceira, Ivo A.; Mila, Frédéric

    2018-02-01

    Motivated by the recent observation that exponentially long coherence times can be achieved for edge spins in models with strong zero modes, we study the impact of level crossings in finite-length spin chains on the dynamics of the edge spins. Focusing on the X Y spin-1 /2 chain with a transverse or longitudinal magnetic field, two models relevant to understanding recent experimental results on cobalt adatoms, we show that the edge spins can remain coherent for an infinite time even for a finite-length chain if the magnetic field is tuned to a value at which there is a level crossing. Furthermore, we show that the edge spins remain coherent for any initial state for the integrable case of a transverse field because all states have level crossings at the same value of the field, while the coherence time is increasingly large for lower temperatures in the case of a longitudinal field, which is nonintegrable.

  20. [Synthesis of reserve polyhydroxyalkanoates by luminescent bacteria].

    Science.gov (United States)

    Boiandin, A N; Kalacheva, G S; Rodicheva, E K; Volova, T G

    2008-01-01

    The ability of marine luminescent bacteria to synthesize polyesters of hydroxycarboxylic acids (polyhydroxyalkanoates, PHA) as reserve macromolecules was studied. Twenty strains from the collection of the luminescent bacteria CCIBSO (WDSM839) of the Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, assigned to different taxa (Photobacterium leiognathi, Ph. phosphoreum, Vibrio harveyi, and V. fischeri) were analyzed. The most productive strains were identified, and the conditions ensuring high polymer yields in batch culture (40-70% of the cell dry mass weight) were determined. The capacity of synthesizing two- and three-component polymers containing hydroxybutyric acid as the main monomer and hydroxyvaleric and hydroxyhexanoic acids was revealed in Ph. leiognathi and V. harveyi strains. The results allow luminescent microorganisms to be regarded as new producers of multicomponent polyhydroxyalkanoates.

  1. Diffusion of radionuclide chains through an adsorbing medium

    International Nuclear Information System (INIS)

    Burkholder, H.C.; DeFigh-Price, C.

    1977-01-01

    The diffusion of radionuclide chains from an underground nuclear waste disposal site through the surrounding geologic medium to the surface is investigated for impulse and band releases. Numerical calculation of the analytical solutions shows that differences in adsorption characteristics among chain members and radioactive decay during transit reduce radionuclide discharges to the biosphere. Results suggest that molecular diffusion is unlikely to be an important transfer mechanism from geologic isolation, and that disposal of radionuclides in deep geologic formations and in the seabed under conditions of very low or nonexistent water flow is likely to be very effective in preventing radioactivity releases to the biosphere

  2. Low frequency sonic waves assisted cloud point extraction of polyhydroxyalkanoate from Cupriavidus necator.

    Science.gov (United States)

    Murugesan, Sivananth; Iyyaswami, Regupathi

    2017-08-15

    Low frequency sonic waves, less than 10kHz were introduced to assist cloud point extraction of polyhydroxyalkanoate from Cupriavidus necator present within the crude broth. Process parameters including surfactant system variables and sonication parameters were studied for their effect on extraction efficiency. Introduction of low frequency sonic waves assists in the dissolution of microbial cell wall by the surfactant micelles and release of cellular content, polyhydroxyalkanoate granules released were encapsulated by the micelle core which was confirmed by crotonic acid assay. In addition, sonic waves resulted in the separation of homogeneous surfactant and broth mixture into two distinct phases, top aqueous phase and polyhydroxyalkanoate enriched bottom surfactant rich phase. Mixed surfactant systems showed higher extraction efficiency compared to that of individual Triton X-100 concentrations, owing to increase in the hydrophobicity of the micellar core and its interaction with polyhydroxyalkanoate. Addition of salts to the mixed surfactant system induces screening of charged surfactant head groups and reduces inter-micellar repulsion, presence of ammonium ions lead to electrostatic repulsion and weaker cation sodium enhances the formation of micellar network. Addition of polyethylene glycol 8000 resulted in increasing interaction with the surfactant tails of the micelle core there by reducing the purity of polyhydroxyalkanoate. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Neutron chain length distributions in subcritical systems

    International Nuclear Information System (INIS)

    Nolen, S.D.; Spriggs, G.

    1999-01-01

    In this paper, the authors present the results of the chain-length distribution as a function of k in subcritical systems. These results were obtained from a point Monte Carlo code and a three-dimensional Monte Carlo code, MC++. Based on these results, they then attempt to explain why several of the common neutron noise techniques, such as the Rossi-α and Feynman's variance-to-mean techniques, are difficult to perform in highly subcritical systems using low-efficiency detectors

  4. Superhydrophilic surfaces from short and medium chain solvo-surfactants

    Directory of Open Access Journals (Sweden)

    Valentin Romain

    2013-01-01

    Full Text Available Pure monoglycerides (GM-Cs and glycerol carbonate esters (GCE-Cs are two families of oleochemical molecules composed of a polar part, glycerol for GM-Cs, glycerol carbonate for GCE-Cs, and a fatty acid lipophilic part. From a chemical point of view, GM-Cs include two free oxygen atoms in the hydroxyl functions and one ester function between the fatty acid and the glycerol parts. GCE-Cs contain two blocked oxygen atoms in the cyclic carbonate backbone and three esters functions: two endocyclic in the five-membered cyclic carbonate function, one exocyclic between the fatty acid and glycerol carbonate parts. At the physico-chemical level, GMCs and GCE-Cs are multifunctional molecules with amphiphilic structures: a common hydrophobic chain to the both families and a polar head, glycerol for GMs and glycerol carbonate for GCE-Cs. Physicochemical properties depend on chain lengths, odd or even carbon numbers on the chain, and glyceryl or cyclocarbonic polar heads. The solvo-surfactant character of GM-Cs and overall GCE-Cs were discussed through the measurements of critical micellar concentration (CMC or critical aggregation concentration (CAC. These surface active glycerol esters/glycerol carbonate esters were classified following their hydrophilic/hydrophobic character correlated to their chain length (LogPoctanol/water = f(atom carbon number. Differential scanning calorimetry and optical polarized light microscopy allow us to highlight the selfassembling properties of the glycerol carbonate esters alone and in presence of water. We studied by thermal analysis the polymorphic behaviour of GCE-Cs, and the correlation between their melting points versus the chain lengths. Coupling the self-aggregation and crystallization properties, superhydrophilic surfaces were obtained by formulating GM-Cs and GCE-Cs. An efficient durable water-repellent coating of various metallic and polymeric surfaces was allowed. Such surfaces coated by self-assembled fatty acid

  5. The Crc protein inhibits the production of polyhydroxyalkanoates in Pseudomonas putida under balanced carbon/nitrogen growth conditions.

    Science.gov (United States)

    La Rosa, Ruggero; de la Peña, Fernando; Prieto, María Axiliadora; Rojo, Fernando

    2014-01-01

    Pseudomonas putida synthesizes polyhydroxyalkanoates (PHAs) as storage compounds. PHA synthesis is more active when the carbon source is in excess and the nitrogen source is limiting, but can also occur at a lower rate under balanced carbon/nitrogen ratios. This work shows that PHA synthesis is controlled by the Crc global regulator, a protein that optimizes carbon metabolism by inhibiting the expression of genes involved in the use of non-preferred carbon sources. Crc acts post-transcriptionally. The mRNAs of target genes contain characteristic catabolite activity (CA) motifs near the ribosome binding site. Sequences resembling CA motifs can be predicted for the phaC1 gene, which codes for a PHA polymerase, and for phaI and phaF, which encode proteins associated to PHA granules. Our results show that Crc inhibits the translation of phaC1 mRNA, but not that of phaI or phaF, reducing the amount of PHA accumulated in the cell. Crc inhibited PHA synthesis during exponential growth in media containing a balanced carbon/nitrogen ratio. No inhibition was seen when the carbon/nitrogen ratio was imbalanced. This extends the role of Crc beyond that of controlling the hierarchical utilization of carbon sources and provides a link between PHA synthesis and the global regulatory networks controlling carbon flow. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Novel odd/even effect of alkylene chain length on the photopolymerizability of organogelators.

    Science.gov (United States)

    Aoki, Ken'ichi; Kudo, Masabumi; Tamaoki, Nobuyuki

    2004-10-28

    [reaction: see text] Starting from diactylene diacarboxylic acids, we have synthesized a series of photopolymerizable organogelators that possess simple amide structures, different alkylene chain lengths, and either optically active or racemic 3,7-dimethyl-1-octylamine units. The alkylene chain length of these compounds exhibits a prominent odd/even effect with respect to the photopolymerization in the gel state and is accompanied by a stereostructural effect on the gelation ability.

  7. The role of medium range order on phase transitions in chain silicates upon compression

    International Nuclear Information System (INIS)

    Serghiou, G; Chopelas, A; Boehler, R

    2004-01-01

    Raman spectroscopic measurements of the tetrahedrally coordinated crystal MnSiO 3 (rhodonite) in an argon pressure medium show that it becomes amorphous above 33 GPa. This observation consolidates our findings and explanation for the global structural trends exhibited by the extended chain silicate family AA'BO 3 (AA': Mg, Ca, Mn, Fe; B: Si) upon compression. In particular, crystals of this family are made of two types of building blocks coined P and C. Those crystals comprised solely of P blocks transform to dense higher coordinated crystalline phases; those comprised of P and C blocks, such as MnSiO 3 rhodonite, become amorphous; whereas those comprised solely of C blocks show both crystalline and amorphous regions upon compression. The reason that this medium range order length scale (building block scale) classification is correlated with the type of transitions taking place upon compression is due to the instability of C blocks and C-P interfaces with respect to P blocks and P-P interfaces at high pressures

  8. Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production.

    Science.gov (United States)

    Kourmentza, Constantina; Plácido, Jersson; Venetsaneas, Nikolaos; Burniol-Figols, Anna; Varrone, Cristiano; Gavala, Hariklia N; Reis, Maria A M

    2017-06-11

    Sustainable biofuels, biomaterials, and fine chemicals production is a critical matter that research teams around the globe are focusing on nowadays. Polyhydroxyalkanoates represent one of the biomaterials of the future due to their physicochemical properties, biodegradability, and biocompatibility. Designing efficient and economic bioprocesses, combined with the respective social and environmental benefits, has brought together scientists from different backgrounds highlighting the multidisciplinary character of such a venture. In the current review, challenges and opportunities regarding polyhydroxyalkanoate production are presented and discussed, covering key steps of their overall production process by applying pure and mixed culture biotechnology, from raw bioprocess development to downstream processing.

  9. Lipase-catalyzed acidolysis of canola oil with caprylic acid to produce medium-, long- and medium-chain-type structured lipids

    DEFF Research Database (Denmark)

    Wang, Yingyao; Xia, Luan; Xu, Xuebing

    2012-01-01

    Lipase-catalyzed acidolysis of canola oil with caprylic acid was performed to produce structured lipids (SLs) containing medium-chain fatty acid (M) at position sn-1,3 and long-chain fatty acid (L) at the sn-2 position in a solvent-free system. Six commercial lipases from different sources were...

  10. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    Science.gov (United States)

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing. © 2015 FEBS.

  11. With medium-chain triglycerides, higher and faster oxygen radical production by stimulated polymorphonuclear leukocytes occurs.

    Science.gov (United States)

    Kruimel, J W; Naber, A H; Curfs, J H; Wenker, M A; Jansen, J B

    2000-01-01

    Parenteral lipid emulsions are suspected of suppressing the immune function. However, study results are contradictory and mainly concern the conventional long-chain triglyceride emulsions. Polymorphonuclear leukocytes were preincubated with parenteral lipid emulsions. The influence of the lipid emulsions on the production of oxygen radicals by these stimulated leukocytes was studied by measuring chemiluminescence. Three different parenteral lipid emulsions were tested: long-chain triglycerides, a physical mixture of medium- and long-chain triglycerides, and structured triglycerides. Structured triglycerides consist of triglycerides where the medium- and long-chain fatty acids are attached to the same glycerol molecule. Stimulated polymorphonuclear leukocytes preincubated with the physical mixture of medium- and long-chain triglycerides showed higher levels of oxygen radicals (p triglycerides or structured triglycerides. Additional studies indicated that differences in results of various lipid emulsions were not caused by differences in emulsifier. The overall production of oxygen radicals was significantly lower after preincubation with the three lipid emulsions compared with controls without lipid emulsion. A physical mixture of medium- and long-chain triglycerides induced faster production of oxygen radicals, resulting in higher levels of oxygen radicals, compared with long-chain triglycerides or structured triglycerides. This can be detrimental in cases where oxygen radicals play either a pathogenic role or a beneficial one, such as when rapid phagocytosis and killing of bacteria is needed. The observed lower production of oxygen radicals by polymorphonuclear leukocytes in the presence of parenteral lipid emulsions may result in immunosuppression by these lipids.

  12. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast

    DEFF Research Database (Denmark)

    Zhu, Zhiwei; Zhou, Yongjin J.; Kang, Min Kyoung

    2017-01-01

    Microbial synthesis of medium chain aliphatic hydrocarbons, attractive drop-in molecules to gasoline and jet fuels, is a promising way to reduce our reliance on petroleum-based fuels. In this study, we enabled the synthesis of straight chain hydrocarbons (C7–C13) by yeast Saccharomyces cerevisiae...

  13. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry.

    Science.gov (United States)

    Chen, Guo-Qiang

    2009-08-01

    Biopolyesters polyhydroxyalkanoates (PHA) produced by many bacteria have been investigated by microbiologists, molecular biologists, biochemists, chemical engineers, chemists, polymer experts and medical researchers. PHA applications as bioplastics, fine chemicals, implant biomaterials, medicines and biofuels have been developed and are covered in this critical review. Companies have been established or involved in PHA related R&D as well as large scale production. Recently, bacterial PHA synthesis has been found to be useful for improving robustness of industrial microorganisms and regulating bacterial metabolism, leading to yield improvement on some fermentation products. In addition, amphiphilic proteins related to PHA synthesis including PhaP, PhaZ or PhaC have been found to be useful for achieving protein purification and even specific drug targeting. It has become clear that PHA and its related technologies are forming an industrial value chain ranging from fermentation, materials, energy to medical fields (142 references).

  14. Effect of process variables on the production of Polyhydroxyalkanoates by activated sludge

    Directory of Open Access Journals (Sweden)

    Mokhtarani Nader

    2012-09-01

    Full Text Available Abstract Polyhydroxyalkanoates are known to be temporarily stored by microorganisms in activated sludge, especially in anaerobic-aerobic processes. Due to the problems resulted from the disposals of plastic wastes and excess sludge of wastewater treatment plants, the production of polyhydroxyalkanoates by treating activated sludge and determining the effect of process variables were the main issues of this paper. In this research, an anaerobic-aerobic sequencing batch reactor was used to make microorganism adapted and a batch aerobic reactor was used for enriching them. The variables affecting polyhydroxyalkanoates production including aeration time, sludge retention time, and volatile fatty acids concentration of the influent in sequencing batch reactor, and also carbon to nitrogen ratio and cultivation time in polymer production reactor, were investigated using Taguchi statistical approach to determine optimum conditions. The maximum polymer production of 29% was achieved at sludge retention time of 5–10 days, aeration time of 2 hours, supplementation of 40% of volatile fatty acids in the influent and increasing of carbon to nitrogen ratio of polymer production reactor to above 25 g/g. Based on the results, in optimum conditions, the volatile fatty acids concentration which increased the production of polyhydroxyalkanoates up to 49% was the most effective variable. Carbon to nitrogen ratio, sludge retention time and aeration time were ranked as the next affecting parameters. Although the polyhydroxyalkanoates content achieved in present study is much lower than that by pure culture, but the proposed method may still serve well as an environmental friendly means to convert waste into valuable product.

  15. Effect of Process Variables on the Production of Polyhydroxyalkanoates by Activated Sludge

    Directory of Open Access Journals (Sweden)

    Nader Mokhtarani

    2012-09-01

    Full Text Available Polyhydroxyalkanoates are known to be temporarily stored by microorganisms in activated sludge, especially in anaerobic-aerobic processes. Due to the problems resulted from the disposals of plastic wastes and excess sludge of wastewater treatment plants, the production of polyhydroxyalkanoates by treating activated sludge anddetermining the effect of process variables were the main issues of this paper. In this research, an anaerobic-aerobic sequencing batch reactor was used to make microorganism adapted and a batch aerobic reactor was used for enriching them. The variables affecting polyhydroxyalkanoates production including aeration time, sludge retention time, and volatile fatty acids concentration of the influent in sequencing batch reactor, and also carbon to nitrogenratio and cultivation time in polymer production reactor, were investigated using Taguchi statistical approach to determine optimum conditions. The maximum polymer production of 29% was achieved at sludge retention time of 5–10 days, aeration time of 2 hours, supplementation of 40% of volatile fatty acids in the influent and increasing of carbon to nitrogen ratio of polymer production reactor to above 25 g/g. Based on the results, in optimum conditions, the volatile fatty acids concentration which increased the production of polyhydroxyalkanoates up to 49% was the most effective variable. Carbon to nitrogen ratio, sludge retention time and aeration time were ranked as the next affecting parameters. Although the polyhydroxyalkanoates content achieved in present study is muchlower than that by pure culture, but the proposed method may still serve well as an environmental friendly means to convert waste into valuable product.

  16. The importance of chain length for the polyphosphate enhancement of acidic potassium permanganate chemiluminescence.

    Science.gov (United States)

    Holland, Brendan J; Adcock, Jacqui L; Nesterenko, Pavel N; Peristyy, Anton; Stevenson, Paul G; Barnett, Neil W; Conlan, Xavier A; Francis, Paul S

    2014-09-09

    Sodium polyphosphate is commonly used to enhance chemiluminescence reactions with acidic potassium permanganate through a dual enhancement mechanism, but commercially available polyphosphates vary greatly in composition. We have examined the influence of polyphosphate composition and concentration on both the dual enhancement mechanism of chemiluminescence intensity and the stability of the reagent under analytically useful conditions. The average chain length (n) provides a convenient characterisation, but materials with similar values can exhibit markedly different distributions of phosphate oligomers. There is a minimum polyphosphate chain length (∼6) required for a large enhancement of the emission intensity, but no further advantage was obtained using polyphosphate materials with much longer average chain lengths. Providing there is a sufficient average chain length, the optimum concentration of polyphosphate is dependent on the analyte and in some cases, may be lower than the quantities previously used in routine detection. However, the concentration of polyphosphate should not be lowered in permanganate reagents that have been partially reduced to form high concentrations of the key manganese(III) co-reactant, as this intermediate needs to be stabilised to prevent formation of insoluble manganese(IV). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The combination of reduced MCL-1 and standard chemotherapeutics is tolerable in mice.

    Science.gov (United States)

    Brinkmann, Kerstin; Grabow, Stephanie; Hyland, Craig D; Teh, Charis E; Alexander, Warren S; Herold, Marco J; Strasser, Andreas

    2017-12-01

    A common therapeutic strategy to combat human cancer is the use of combinations of drugs, each targeting different cellular processes or vulnerabilities. Recent studies suggest that addition of an MCL-1 inhibitor to such anticancer drug treatments could be an attractive therapeutic strategy. Thus, it is of great interest to understand whether combinations of conventional anticancer drugs with an MCL-1 inhibitor will be tolerable and efficacious. In order to mimic the combination of MCL-1 inhibition with other cancer therapeutics, we treated Mcl-1 +/- heterozygous mice, which have a ~50% reduction in MCL-1 protein in their cells, with a broad range of chemotherapeutic drugs. Careful monitoring of treated mice revealed that a wide range of chemotherapeutic drugs had no significant effect on the general well-being of Mcl-1 +/- mice with no overt damage to a broad range of tissues, including the haematopoietic compartment, heart, liver and kidney. These results indicate that MCL-1 inhibition may represent a tolerable strategy in cancer therapy, even when combined with select cytotoxic drugs.

  18. Minor amounts of plasma medium-chain fatty acids and no improved time trial performance after consuming lipids

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Nybo, L.; Xu, Xuebing

    2003-01-01

    after consumption of specific structured triacylglycerol, consisting of a mixture of medium-chain fatty acids and long-chain fatty acids, to prevent the adverse effects observed by MCT (pure medium-chain fatty acids) regarding gastrointestinal distress. Seven well-trained subjects cycled 3 h at 55......% of maximum 02 uptake during which they ingested CHO or CHO plus specific structured triacylglycerols. Immediately after the constant-load cycling, the subjects performed a time trial of similar to50-min duration. Breath and blood samples were obtained regularly during the experiment. Fatty acid composition...... of plasma triacylglycerols, fatty acids, and phospholipids was determined. Performance was similar after administration of CHO plus specific structured triacylglycerol [medium-, long-, and medium-chain fatty acid (MLM)] compared with CHO (50.0 +/- 1.8 and 50.8 +/- 3.6 min, respectively). No plasma 8...

  19. Is intra-articular pathology associated with MCL edema on MR imaging of the non-traumatic knee?

    International Nuclear Information System (INIS)

    Blankenbaker, Donna G.; De Smet, Arthur A.; Fine, Jason P.

    2005-01-01

    Edema surrounding the medial collateral ligament (MCL) is seen on MR imaging in patients with MCL injuries and in patients with radiographic osteoarthritis in the non-traumatic knee. Because we noted MCL edema in patients without prior trauma or osteoarthritis, we studied the association between intra-articular pathology and MCL edema in patients without knee trauma. We evaluated the MR examinations of 247 consecutive patients (121 male, 126 female with a mean age of 44 years) without recent trauma for the presence of edema surrounding the MCL, meniscal and ACL tears, medial meniscal extrusion, medial compartment chondromalacia, and osteoarthritis. The percentages of patients illustrating MCL edema with and without each type of pathology were compared using Fisher's exact test to determine if there was a statistically significant association. We found MCL edema in 60% of 247 patients. MCL edema was present in 67% of patients with medial meniscal tears, 35% with lateral meniscal tears, 100% with meniscal extrusion of 3 mm or more, 78% with femoral chondromalacia, 82% with tibial chondromalacia, and 50% with osteoarthritis. The percentage of patients with edema increased with the severity of the chondromalacia. These associations were all statistically significant (p <0.02). The mean age of those with MCL edema was 49.7 years compared with 34.9 years without MCL edema (p <0.001). Patient gender and ACL tear did not correlate with MCL edema. Nine (4%) of the 247 patients had MCL edema without intra-articular pathology. None of these 9 patients had MCL tenderness or joint laxity on physical examination. We confirmed that MCL edema is associated with osteoarthritis, but is also associated with meniscal tears, meniscal extrusion, and chondromalacia. In addition, MCL edema can be seen in patients without intra-articular pathology, recent trauma or MCL abnormality on physical examination. (orig.)

  20. Is intra-articular pathology associated with MCL edema on MR imaging of the non-traumatic knee?

    Energy Technology Data Exchange (ETDEWEB)

    Blankenbaker, Donna G.; De Smet, Arthur A. [University of Wisconsin Medical School, Division of Musculoskeletal Imaging, Department of Radiology, Madison (United States); Fine, Jason P. [University of Wisconsin, Department of Statistics, Madison (United States); University of Wisconsin, Department of Biostatistics and Informatics, Madison (United States)

    2005-08-01

    Edema surrounding the medial collateral ligament (MCL) is seen on MR imaging in patients with MCL injuries and in patients with radiographic osteoarthritis in the non-traumatic knee. Because we noted MCL edema in patients without prior trauma or osteoarthritis, we studied the association between intra-articular pathology and MCL edema in patients without knee trauma. We evaluated the MR examinations of 247 consecutive patients (121 male, 126 female with a mean age of 44 years) without recent trauma for the presence of edema surrounding the MCL, meniscal and ACL tears, medial meniscal extrusion, medial compartment chondromalacia, and osteoarthritis. The percentages of patients illustrating MCL edema with and without each type of pathology were compared using Fisher's exact test to determine if there was a statistically significant association. We found MCL edema in 60% of 247 patients. MCL edema was present in 67% of patients with medial meniscal tears, 35% with lateral meniscal tears, 100% with meniscal extrusion of 3 mm or more, 78% with femoral chondromalacia, 82% with tibial chondromalacia, and 50% with osteoarthritis. The percentage of patients with edema increased with the severity of the chondromalacia. These associations were all statistically significant (p <0.02). The mean age of those with MCL edema was 49.7 years compared with 34.9 years without MCL edema (p <0.001). Patient gender and ACL tear did not correlate with MCL edema. Nine (4%) of the 247 patients had MCL edema without intra-articular pathology. None of these 9 patients had MCL tenderness or joint laxity on physical examination. We confirmed that MCL edema is associated with osteoarthritis, but is also associated with meniscal tears, meniscal extrusion, and chondromalacia. In addition, MCL edema can be seen in patients without intra-articular pathology, recent trauma or MCL abnormality on physical examination. (orig.)

  1. Quantum discord length is enhanced while entanglement length is not by introducing disorder in a spin chain.

    Science.gov (United States)

    Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal

    2016-01-01

    Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.

  2. Risk assessment of Short and Medium Chain Chlorinated Paraffin’s (SCCP and MCCP)

    DEFF Research Database (Denmark)

    Christensen, Frans Møller; Olsen, Stig Irving

    2002-01-01

    findings of the Short Chain Chlorinated Paraffin (SCCP) and the draft Medium Chain Chlorinated Paraffin (MCCP) risk assessments. The political actions taken as a consequence of the assessments are also described. The risk assessments have been prepared according to the EU Technical Guidance Document (TGD...

  3. Photoluminescence decay lifetime measurements of hemicyanine derivatives of different alkyl chain lengths

    International Nuclear Information System (INIS)

    Shim, Taekyu; Lee, Myounghee; Kim, Sungho; Sung, Jaeho; Rhee, Bum Ku; Kim, Doseok; Kim, Hyunsung; Yoon, Kyung Byung

    2004-01-01

    The fluorescence upconversion setup for the detection of photoluminescence (PL) decay lifetime with subpicosecond time resolution was constructed, and the photoluminescence phenomena of several hemicyanine dyes with alkyl chains of different chain lengths tethered to the N atom of the pyridine moiety (HC-n, n=6, 15, 22) in methanol were investigated. The average decay lifetimes of the solutions determined from the measured data by multi-order exponential decay curve fitting were ∼27 ps at the PL peak wavelength. It was found that the PL decay properties did not depend on the alkyl chain length in the molecule, implying that the twist of the alkylpyridinium ring of the molecule is not possible as a nonfluorescing relaxation pathway. The time-dependent PL spectra constructed from the PL lifetime data showed the dynamic Stokes shift of ∼1000 cm -1

  4. Medial Collateral Ligament (MCL) Injuries

    Science.gov (United States)

    ... impact activities like swimming, bike riding, or protected running. Talk to your doctor about what you can do. Some of these activities might even work as rehab therapy. Coping With an MCL Injury Being told that you can't do the ...

  5. Cafestol overcomes ABT-737 resistance in Mcl-1-overexpressed renal carcinoma Caki cells through downregulation of Mcl-1 expression and upregulation of Bim expression.

    Science.gov (United States)

    Woo, S M; Min, K-J; Seo, B R; Nam, J-O; Choi, K S; Yoo, Y H; Kwon, T K

    2014-11-06

    Although ABT-737, a small-molecule Bcl-2/Bcl-xL inhibitor, has recently emerged as a novel cancer therapeutic agent, ABT-737-induced apoptosis is often blocked in several types of cancer cells with elevated expression of Mcl-1. Cafestol, one of the major compounds in coffee beans, has been reported to have anti-carcinogenic activity and tumor cell growth-inhibitory activity, and we examined whether cafestol could overcome resistance against ABT-737 in Mcl-1-overexpressed human renal carcinoma Caki cells. ABT-737 alone had no effect on apoptosis, but cafestol markedly enhanced ABT-737-mediated apoptosis in Mcl-1-overexpressed Caki cells, human glioma U251MG cells, and human breast carcinoma MDA-MB231 cells. By contrast, co-treatment with ABT-737 and cafestol did not induce apoptosis in normal human skin fibroblast. Furthermore, combined treatment with cafestol and ABT-737 markedly reduced tumor growth compared with either drug alone in xenograft models. We found that cafestol inhibited Mcl-1 protein expression, which is important for ABT-737 resistance, through promotion of protein degradation. Moreover, cafestol increased Bim expression, and siRNA-mediated suppression of Bim expression reduced the apoptosis induced by cafestol plus ABT-737. Taken together, cafestol may be effectively used to enhance ABT-737 sensitivity in cancer therapy via downregulation of Mcl-1 expression and upregulation of Bim expression.

  6. Mechanical Properties of Polyhydroxyalkanoate Bioceramic Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    江涛; 胡平; 柳林; 李亚栋

    2002-01-01

    New composites prepared containing nanoscale hydroxyapatite or monetite uniformly distributed in a polyhydroxyalkanoate (polyhydroxybutyrate or polyhydroxybutyrate-hydroxyvalerate) matrix with mass fractions of 1%5% were then injected into dumb-like specimens. The results show that the tensile strength and the tensile modulus of the composites are improved. The microstructures of the composites were observed using transmission electron microscopy (TEM).

  7. Effects of solubilization of short and medium-chain molecules in the self-assembly of two amphiphilic drugs in solution

    International Nuclear Information System (INIS)

    Barbosa, Silvia; Cheema, Mohammad Arif; Siddiq, Mohammad; Taboada, Pablo; Mosquera, Victor

    2009-01-01

    The effect of short and medium chain length alcohols ethanol, propanol, and butanol on the thermodynamic properties of aqueous solutions of the ionic amphiphilic antidepressants imipramine and clomipramine hydrochlorides has been investigated at T = 293 K. Critical concentrations of the drugs were obtained from ultrasound velocity measurements. Experimental results have shown a strong dependence of the ultrasound velocity with the alcohol concentration and chain length. Differences in the aggregate properties of both amphiphiles arise from the presence of the extra Cl - substituent on the ring system of clomipramine. Density and ultrasound measurements have been used to obtain the apparent molar volumes, V φ , and isentropic apparent molar compressibilities, K φ(S) , for the aqueous drug/water-alcohol solutions. The distribution coefficient of the amount solubilized between water and the aggregates, K, has been determined using an indirect method based on the pseudo-phase model by using apparent molar volume values. This method allows the calculation of the distribution coefficients at concentrations below saturation. The standard molar Gibbs free energy change on transfer from the aqueous to the micellar, ΔG 0 , phase was calculated from the partition coefficient. The results have highlighted the structural differences between both amphiphiles

  8. Selective deuteration for molecular insights into the digestion of medium chain triglycerides.

    Science.gov (United States)

    Salentinig, Stefan; Yepuri, Nageshwar Rao; Hawley, Adrian; Boyd, Ben J; Gilbert, Elliot; Darwish, Tamim A

    2015-09-01

    Medium chain triglycerides (MCTs) are a unique form of dietary fat that have a wide range of health benefits. They are molecules with a glycerol backbone esterified with medium chain (6-12 carbon atoms) fatty acids on the two outer (sn-1 and sn-3) and the middle (sn-2) positions. During lipid digestion in the gastrointestinal tract, pancreatic lipase stereoselectively hydrolyses the ester bonds of these triglycerides on the sn-1 and sn-3 positions resulting in sn-2 monoglyceride and fatty acids as major products. However, the sn-2 monoglycerides are thermodynamically less stable than their sn-1/3 counterparts. Isomerization or fatty acid migration from the sn-2 monoglyceride to sn-1/3 monoglyceride may occur spontaneously and would lead to glycerol and fatty acid as final products. Here, tricaprin (C10) with selectively deuterated fatty acid chains was used for the first time to monitor chain migration and the stereoselectivity of the pancreatic lipase-catalyzed hydrolysis of ester bonds. The intermediate and final digestion products were studied using NMR and mass spectrometry under biologically relevant conditions. The hydrolysis of the sn-2 monocaprin to glycerol and capric acid did not occur within biologically relevant timescales and fatty acid migration occurs only in limited amounts as a result of the presence of undigested diglyceride species over long periods of time in the digestion medium. The slow kinetics for the exchange of the sn-2 fatty acid chain and the stereoselectivity of pancreatic lipase on MCTs is relevant for industrial processes that involve enzymatic interesterification and the production of high-value products such as specific structured triacylglycerols, confectionery fats and nutritional products. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. A Maltose-Binding Protein Fusion Construct Yields a Robust Crystallography Platform for MCL1.

    Directory of Open Access Journals (Sweden)

    Matthew C Clifton

    Full Text Available Crystallization of a maltose-binding protein MCL1 fusion has yielded a robust crystallography platform that generated the first apo MCL1 crystal structure, as well as five ligand-bound structures. The ability to obtain fragment-bound structures advances structure-based drug design efforts that, despite considerable effort, had previously been intractable by crystallography. In the ligand-independent crystal form we identify inhibitor binding modes not observed in earlier crystallographic systems. This MBP-MCL1 construct dramatically improves the structural understanding of well-validated MCL1 ligands, and will likely catalyze the structure-based optimization of high affinity MCL1 inhibitors.

  10. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.

    Science.gov (United States)

    Nair, Nitish; Wentzel, Nathaniel; Jayaraman, Arthi

    2011-05-21

    with an equal number of short and long grafts at low to medium grafting density, the short grafts are in a more coiled up conformation (lower radius of gyration) than their monodisperse counterparts to provide a larger free volume to the longer grafts so they can gain conformational entropy. The longer grafts do not show much difference in conformation from their monodisperse counterparts at low grafting density, but at medium grafting density the longer grafts exhibit less stretched conformations (lower radius of gyration) as compared to their monodisperse counterparts. In the presence of an explicit homopolymer matrix, the longer grafts are more compressed by the matrix homopolymer chains than the short grafts. We observe that the potential of mean force between bidisperse grafted particles has features of the PMF of monodisperse grafted particles with short grafts and monodisperse grafted particles with long grafts. The value of the PMF at contact is governed by the short grafts and values at large inter-particle distances are governed by the longer grafts. Further comparison of the PMF for bidisperse and monodisperse polymer grafted particles in a homopolymer matrix at varying parameters shows that the effects of matrix chain length, matrix packing fraction, grafting density, and particle curvature on the PMF between bidisperse polymer grafted particles are similar to those seen between monodisperse polymer grafted particles. © 2011 American Institute of Physics.

  11. Critical determinant of intestinal permeability and oral bioavailability of pegylated all trans-retinoic acid prodrug-based nanomicelles: Chain length of poly (ethylene glycol) corona.

    Science.gov (United States)

    Li, Zhenbao; Han, Xiaopeng; Zhai, Yinglei; Lian, He; Zhang, Dong; Zhang, Wenjuan; Wang, Yongjun; He, Zhonggui; Liu, Zheng; Sun, Jin

    2015-06-01

    Pegylation method is widely used to prolong the blood circulation time of proteins and nanoparticles after intravenous administration, but the effect of surface poly (ethylene glycol) (PEG) chain length on oral absorption of the pegylated nanoparticles is poorly reported. The aim of our study was to investigate the influence of PEG corona chain length on membrane permeability and oral bioavailability of the amphiphilic pegylated prodrug-based nanomicelles, taking all trans-retinoic acid (ATRA) as a model drug. The amphiphilic ATRA-PEG conjugates were synthesized by esterification reaction between all trans-retinoic acid and mPEGs (mPEG500, mPEG1000, mPEG2000, and mPEG5000). The conjugates could self-assemble in aqueous medium to form nanomicelles by emulsion-solvent evaporation method. The resultant nanomicelles were in spherical shape with an average diameter of 13-20 nm. The drug loading efficiency of ATRA-PEG500, ATRA-PEG1000, ATRA-PEG2000, and ATRA-PEG5000 was about 38.4, 26.6, 13.1, and 5.68 wt%, respectively. With PEG chain length ranging from 500 to 5000, ATRA-PEG nanomicelles exhibited a bell shape of chemical stability in different pH buffers, intestinal homogenate and plasma. More importantly, they were all rapidly hydrolyzed into the parent drug in hepatic homogenate, with the half-time values being 0.3-0.4h. In comparison to ATRA solution and ATRA prodrug-based nanomicelles, ATRA-PEG1000 showed the highest intestinal permeability. After oral administration, ATRA-PEG2000 and ATRA-PEG5000 nanomicelles were not nearly absorbed, while the oral bioavailability of ATRA-PEG500 and ATRA-PEG1000 demonstrated about 1.2- and 2.0-fold higher than ATRA solution. Our results indicated that PEG1000 chain length of ATRA-PEG prodrug nanomicelles has the optimal oral bioavailability probably due to improved stability and balanced mucus penetration capability and cell binding, and that the PEG chain length on a surface of nanoparticles cannot exceed a key threshold with

  12. Abnormal glycogen chain length pattern, not hyperphosphorylation, is critical in Lafora disease.

    Science.gov (United States)

    Nitschke, Felix; Sullivan, Mitchell A; Wang, Peixiang; Zhao, Xiaochu; Chown, Erin E; Perri, Ami M; Israelian, Lori; Juana-López, Lucia; Bovolenta, Paola; Rodríguez de Córdoba, Santiago; Steup, Martin; Minassian, Berge A

    2017-07-01

    Lafora disease (LD) is a fatal progressive epilepsy essentially caused by loss-of-function mutations in the glycogen phosphatase laforin or the ubiquitin E3 ligase malin. Glycogen in LD is hyperphosphorylated and poorly hydrosoluble. It precipitates and accumulates into neurotoxic Lafora bodies (LBs). The leading LD hypothesis that hyperphosphorylation causes the insolubility was recently challenged by the observation that phosphatase-inactive laforin rescues the laforin-deficient LD mouse model, apparently through correction of a general autophagy impairment. We were for the first time able to quantify brain glycogen phosphate. We also measured glycogen content and chain lengths, LBs, and autophagy markers in several laforin- or malin-deficient mouse lines expressing phosphatase-inactive laforin. We find that: (i) in laforin-deficient mice, phosphatase-inactive laforin corrects glycogen chain lengths, and not hyperphosphorylation, which leads to correction of glycogen amounts and prevention of LBs; (ii) in malin-deficient mice, phosphatase-inactive laforin confers no correction; (iii) general impairment of autophagy is not necessary in LD We conclude that laforin's principle function is to control glycogen chain lengths, in a malin-dependent fashion, and that loss of this control underlies LD. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  13. Accumulation of a Polyhydroxyalkanoate Containing Primarily 3-Hydroxydecanoate from Simple Carbohydrate Substrates by Pseudomonas sp. Strain NCIMB 40135

    OpenAIRE

    Haywood, Geoffrey W.; Anderson, Alistair J.; Ewing, David F.; Dawes, Edwin A.

    1990-01-01

    A number of Pseudomonas species have been identified which accumulate a polyhydroxyalkanoate containing mainly 3-hydroxydecanoate monomers from sodium gluconate as the sole carbon source. One of these, Pseudomonas sp. strain NCIMB 40135, was further investigated and shown to accumulate such a polyhydroxyalkanoate from a wide range of carbon sources (C2 to C6); however, when supplied with octanoic acid it produced a polyhydroxyalkanoate containing mainly 3-hydroxyoctanoate monomers. Polymer sy...

  14. Characterization of a polyhydroxyalkanoate obtained from pineapple peel waste using Ralsthonia eutropha.

    Science.gov (United States)

    Vega-Castro, Oscar; Contreras-Calderon, Jose; León, Emilson; Segura, Almir; Arias, Mario; Pérez, León; Sobral, Paulo J A

    2016-08-10

    Agro-industrial waste can be the production source of biopolymers such as polyhydroxyalkanoates. The aim of this study was to produce and characterize Polyhydroxyalkanoates produced from pineapple peel waste fermentation processes. The methodology includes different pineapple peel waste fermentation conditions. The produced biopolymer was characterized using FTIR, GC-MS and NMR. The best fermentation condition for biopolymer production was obtained using pH 9, Carbon/Nitrogen 11, carbon/phosphorus 6 and fermentation time of 60h. FTIR analyzes showed PHB group characteristics, such as OH, CH and CO. In addition, GC-MS showed two monomers with 4 and 8 carbons, referred to PHB and PHBHV. H(1) NMR analysis showed 0.88-0.97 and 5.27ppm signals, corresponding to CH3 and CH, respectively. In conclusion, polyhydroxyalkanoate production from pineapple peels waste is an alternative for the treatment of waste generated in Colombia's fruit industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol

    NARCIS (Netherlands)

    Grootscholten, T.I.M.; Strik, D.P.B.T.B.; Steinbusch, K.J.J.; Buisman, C.J.N.; Hamelers, B.

    2014-01-01

    Chain elongation is an anaerobic fermentation that produces medium chain fatty acids (MCFAs) from volatile fatty acids and ethanol. These MCFAs can be used as biochemical building blocks for fuel production and other chemical processes. Producing MCFAs from the organic fraction of municipal solid

  16. Vaporization enthalpies of imidazolium based ionic liquids. A thermogravimetric study of the alkyl chain length dependence

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Zaitsau, Dzmitry H.; Emel’yanenko, Vladimir N.; Ralys, Ricardas V.; Yermalayeu, Andrei V.; Schick, Christoph

    2012-01-01

    Highlights: ► Enthalpies of vaporization of ionic liquids were measured with thermogravimetry. ► We studied 1-alkyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide. ► The linear alkyl chain length was 4, 6, 8, 10, 12, 14, 16, and 18 C-atoms. ► A linear dependence on the chain length of the alkyl-imidazolium cation was found. - Abstract: Vaporization enthalpies for a series of ten ionic liquids (ILs) 1-alkyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide [C n mim][NTf 2 ], with the alkyl chain length n = 4, 6, 8, 10, 12, 14, 16, and 18 were determined using the thermogravimetric method. An internally consistent set of experimental data and vaporization enthalpies at 540 K was obtained. Vaporization enthalpies at 540 K have shown a linear dependence on the chain length of the alkyl-imidazolium cation in agreement with the experimental results measured previously with a quartz crystal microbalance. Ambiguity of Δ l g C pm o -values required for the extrapolation of experimental vaporization enthalpies to the reference temperature 298 K has been discussed.

  17. Sustainable Supply Chain Management in Small and Medium Enterprises

    Directory of Open Access Journals (Sweden)

    Sebastian Kot

    2018-04-01

    Full Text Available The sector of small and medium-sized enterprises (SMEs plays a key role in the economies of all of the countries in the world. These entities constitute the basis for the development of the national and global economies. In a contemporary complex and competitive business environment, the adaptation of appropriate strategies is a particularly important effort to furthering the development of companies from the SMEs sector. In this context, the application of the concept of sustainable supply chain management (SCM in the operation strategy of SMEs seems to be a very important function. This supply chain also covers all three aspects of sustainable development: business, environmental, and social. The purpose of this article is to present the current state of the research in sustainable development in relation to managing the supply chain of SMEs, as well as the empirical findings in this area. The results found that all of the sustainability areas were very important in the supply chain management practices of the studied SMEs, despite the imbalance described in the literature. The study also presents the most important elements in the particular sustainability areas of SCM and SMEs.

  18. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders.

    Science.gov (United States)

    Augustin, Katrin; Khabbush, Aziza; Williams, Sophie; Eaton, Simon; Orford, Michael; Cross, J Helen; Heales, Simon J R; Walker, Matthew C; Williams, Robin S B

    2018-01-01

    High-fat, low-carbohydrate diets, known as ketogenic diets, have been used as a non-pharmacological treatment for refractory epilepsy. A key mechanism of this treatment is thought to be the generation of ketones, which provide brain cells (neurons and astrocytes) with an energy source that is more efficient than glucose, resulting in beneficial downstream metabolic changes, such as increasing adenosine levels, which might have effects on seizure control. However, some studies have challenged the central role of ketones because medium-chain fatty acids, which are part of a commonly used variation of the diet (the medium-chain triglyceride ketogenic diet), have been shown to directly inhibit AMPA receptors (glutamate receptors), and to change cell energetics through mitochondrial biogenesis. Through these mechanisms, medium-chain fatty acids rather than ketones are likely to block seizure onset and raise seizure threshold. The mechanisms underlying the ketogenic diet might also have roles in other disorders, such as preventing neurodegeneration in Alzheimer's disease, the proliferation and spread of cancer, and insulin resistance in type 2 diabetes. Analysing medium-chain fatty acids in future ketogenic diet studies will provide further insights into their importance in modified forms of the diet. Moreover, the results of these studies could facilitate the development of new pharmacological and dietary therapies for epilepsy and other disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Association of anti-apoptotic Mcl-1L isoform expression with radioresistance of oral squamous carcinoma cells

    International Nuclear Information System (INIS)

    Palve, Vinayak C; Teni, Tanuja R

    2012-01-01

    Oral cancer is a common cancer and a major health problem in the Indian subcontinent. At our laboratory Mcl-1, an anti-apoptotic member of the Bcl-2 family has been demonstrated to be overexpressed in oral cancers and to predict outcome in oral cancer patients treated with definitive radiotherapy. To study the role of Mcl-1 isoforms in radiation response of oral squamous carcinoma cells (OSCC), we investigated in the present study, the association of Mcl-1 isoform expression with radiosensitivity of OSCC, using siRNA strategy. The time course expression of Mcl-1 splice variants (Mcl-1L, Mcl-1S & Mcl-1ES) was studied by RT-PCR, western blotting & immunofluorescence, post-irradiation in oral cell lines [immortalized FBM (radiosensitive) and tongue cancer AW8507 & AW13516 (radioresistant)]of relatively differing radiosensitivities. The effect of Mcl-1L knockdown alone or in combination with ionizing radiation (IR) on cell proliferation, apoptosis & clonogenic survival, was investigated in AW8507 & AW13516 cells. Further the expression of Mcl-1L protein was assessed in radioresistant sublines generated by fractionated ionizing radiation (FIR). Three to six fold higher expression of anti-apoptotic Mcl-1L versus pro-apoptotic Mcl-1S was observed at mRNA & protein levels in all cell lines, post-irradiation. Sustained high levels of Mcl-1L, downregulation of pro-apoptotic Bax & Bak and a significant (P < 0.05) reduction in apoptosis was observed in the more radioresistant AW8507, AW13516 versus FBM cells, post-IR. The ratios of anti to pro-apoptotic proteins were high in AW8507 as compared to FBM. Treatment with Mcl-1L siRNA alone or in combination with IR significantly (P < 0.01) increased apoptosis viz. 17.3% (IR), 25.3% (siRNA) and 46.3% (IR plus siRNA) and upregulated pro-apoptotic Bax levels in AW8507 cells. Combination of siRNA & IR treatment significantly (P < 0.05) reduced cell proliferation and clonogenic survival of radioresistant AW8507 & AW13516 cells

  20. Well-defined block copolymers for gene delivery to dendritic cells: probing the effect of polycation chain-length.

    Science.gov (United States)

    Tang, Rupei; Palumbo, R Noelle; Nagarajan, Lakshmi; Krogstad, Emily; Wang, Chun

    2010-03-03

    The development of safe and efficient polymer carriers for DNA vaccine delivery requires mechanistic understanding of structure-function relationship of the polymer carriers and their interaction with antigen-presenting cells. Here we have synthesized a series of diblock copolymers with well-defined chain-length using atom transfer radical polymerization and characterized the influence of polycation chain-length on the physico-chemical properties of the polymer/DNA complexes as well as the interaction with dendritic cells. The copolymers consist of a hydrophilic poly(ethylene glycol) block and a cationic poly(aminoethyl methacrylate) (PAEM) block. The average degree of polymerization (DP) of the PAEM block was varied among 19, 39, and 75, with nearly uniform distribution. With increasing PAEM chain-length, polyplexes formed by the diblock copolymers and plasmid DNA had smaller average particle size and showed higher stability against electrostatic destabilization by salt and heparin. The polymers were not toxic to mouse dendritic cells (DCs) and only displayed chain-length-dependent toxicity at a high concentration (1mg/mL). In vitro gene transfection efficiency and polyplex uptake in DCs were also found to correlate with chain-length of the PAEM block with the longer polymer chain favoring transfection and cellular uptake. The polyplexes induced a modest up-regulation of surface markers for DC maturation that was not significantly dependent on PAEM chain-length. Finally, the polyplex prepared from the longest PAEM block (DP of 75) achieved an average of 20% enhancement over non-condensed anionic dextran in terms of uptake by DCs in the draining lymph nodes 24h after subcutaneous injection into mice. Insights gained from studying such structurally well-defined polymer carriers and their interaction with dendritic cells may contribute to improved design of practically useful DNA vaccine delivery systems. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Noxa/Mcl-1 Balance Regulates Susceptibility of Cells to Camptothecin-Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Yide Mei

    2007-10-01

    Full Text Available Although camptothecin (CPT has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that 131-113-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay, cAMP response element binding protein (CREB knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa, Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa, Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis.

  2. Downregulation of miR-29a/b/c in placenta accreta inhibits apoptosis of implantation site intermediate trophoblast cells by targeting MCL1.

    Science.gov (United States)

    Gu, Yongzhong; Bian, Yuehong; Xu, Xiaofei; Wang, Xietong; Zuo, Changting; Meng, Jinlai; Li, Hongyan; Zhao, Shigang; Ning, Yunnan; Cao, Yongzhi; Huang, Tao; Yan, Junhao; Chen, Zi-Jiang

    2016-12-01

    Placenta accreta is defined as abnormal adhesion of placental villi to the uterine myometrium. Although this condition has become more common as a result of the increasing rate of cesarean sections, the underlying causative mechanism(s) remain elusive. Because microRNA-29a/b/c (miR-29a/b/c) have been shown to play important roles in placental development, this study evaluated the roles of these microRNAs in placenta accreta. Expression of miR-29a/b/c and myeloid cell leukemia-1 (MCL1) were quantified in patient tissues and HTR8/SVneo trophoblast cells using the real-time quantitative polymerase chain reaction. Western blotting was used to analyze expression of the MCL1 protein in HTR8/SVneo trophoblast cells with altered expression of miR-29a/b/c. To determine their role in apoptosis, miR-29a/b/c were overexpressed in HTR-8/SVneo cells, and levels of apoptosis were analyzed by flow cytometry. Luciferase activity assays were used to determine whether MCL1 is a target gene of miR-29a/b/c. Expression of miR-29a/b/c was significantly lower in creta sites compared to noncreta sites (p = 0.018, 0.041, and 0.022, respectively), but expression of MCL1 was upregulated in creta sites (p = 0.039). MCL1 expression was significantly downregulated in HTR-8/SVneo cells overexpressing miR-29a/b/c (p = 0.002, 0.008, and 0.013, respectively). Luciferase activity assays revealed that miR-29a/b/c directly target the 3' untranslated region of MCL1 in 293T cells. Over-expression of miR-29a/b/c induced apoptosis in the HTR-8/SVneo trophoblast cell line. Moreover, histopathological evaluation revealed that the number of implantation site intermediate trophoblast (ISIT) cells was increased in creta sites and that these cells were positive for MCL1. Our results demonstrate that in placenta accreta, miR-29a/b/c inhibits apoptosis of ISIT cells by targeting MCL1. These findings provide new insights into the pathogenesis of placenta accreta. Copyright © 2016 Elsevier Ltd. All rights

  3. Chain length distribution and kinetic characteristics of an enzymatically produced polymer

    NARCIS (Netherlands)

    Mulders, K.J.M.; Beeftink, H.H.

    2013-01-01

    Non-processive enzymatic polymerization leads to a distribution of polymer chain lengths. A polymerization model was developed to investigate the relation between the extent of this distribution on one hand, and the polymerization start conditions and reaction kinetics on the other hand. The model

  4. Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge production of bioplastics using dairy residues.

    Science.gov (United States)

    Bosco, Francesca; Chiampo, Fulvia

    2010-04-01

    The production of polyhydroxyalcanoates (PHAs), which are biodegradable plastics, was studied using milk whey and dairy wastewater activated sludge to define a suitable C/N ratio, the pre-treatments required to reduce the protein content, and the effect of pH correction. The results show good production of PHAs at a C/N=50 and without pH correction. The use of dairy wastewater activated sludge has the advantage of not requiring aseptic conditions. Copyright 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Resonance chains in open systems, generalized zeta functions and clustering of the length spectrum

    International Nuclear Information System (INIS)

    Barkhofen, S; Faure, F; Weich, T

    2014-01-01

    In many non-integrable open systems in physics and mathematics, resonances have been found to be surprisingly ordered along curved lines in the complex plane. In this article we provide a unifying approach to these resonance chains by generalizing dynamical zeta functions. By means of a detailed numerical study we show that these generalized zeta functions explain the mechanism that creates the chains of quantum resonance and classical Ruelle resonances for three-disk systems as well as geometric resonances on Schottky surfaces. We also present a direct system-intrinsic definition of the continuous lines on which the resonances are strung together as a projection of an analytic variety. Additionally, this approach shows that the existence of resonance chains is directly related to a clustering of the classical length spectrum on multiples of a base length. Finally, this link is used to construct new examples where several different structures of resonance chains coexist. (paper)

  6. Biodegradable plastics from Sinorhizobium meliloti as plastics compatible with the environment and human health

    Directory of Open Access Journals (Sweden)

    Mehrdad Hashemi Beidokhti

    2016-03-01

    Full Text Available Introduction: Polyhydroxyalkanoates (PHAs are natural polyesters and biodegradable plastics that are stored as intracellular inclusion bodies by a great variety of bacteria. The aim of this study was to extract polyhydroxyalkanoate from native Sinorhizobium meliloti in Iran. Materials and methods: Sinorhizobium meliloti isolates were collected from roots of alfalfa plants and were identified by Gram staining, biochemical experiments and amplification of 1500 bp fragment of 16Sr DNA gene. PHA granules were detected by microscopic examination. PHA production was evaluated in nutrient deficient medium and its amount was determined by conversion of PHA into crotonic acid by sulphuric acid treatment. The effect of various temperatures, agitation rate and carbon source (sucrose, mannitol, and maltose were evaluated on dry cell weight and polyhydroxybutyrate (PHB production. Results: The maximum amount of polymer production (43.10% was seen in basal mineral medium at 29°C, pH~7 and 215 revolutions per minute (rpm. The results of this research showed that the S5 isolate was capable to produce maximum poly3- hydroxybutyrate. The produced polymer was analyzed for its purity by GC- mass (gas chromatography- mass spectroscopy and confirmed to be PHB compared with the standard polymer. Discussion and conclusion: Native strains of Sinorhizobium can be used in the production of biodegradable plastics and the results of present study showed that S. meliloti S5 was capable to produce maximum PHB at 29°C, agitation rate of 215 rpm, and pH~7. 

  7. Notch signaling regulates expression of Mcl-1 and apoptosis in PPD-treated macrophages.

    Science.gov (United States)

    Palaga, Tanapat; Ratanabunyong, Siriluk; Pattarakankul, Thitiporn; Sangphech, Naunpun; Wongchana, Wipawee; Hadae, Yukihiro; Kueanjinda, Patipark

    2013-09-01

    Macrophages are cellular targets for infection by bacteria and viruses. The fate of infected macrophages plays a key role in determining the outcome of the host immune response. Apoptotic cell death of macrophages is considered to be a protective host defense that eliminates pathogens and infected cells. In this study, we investigated the involvement of Notch signaling in regulating apoptosis in macrophages treated with tuberculin purified protein derivative (PPD). Murine bone marrow-derived macrophages (BMMs) treated with PPD or infected with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) induced upregulation of Notch1. This upregulation correlated well with the upregulation of the anti-apoptotic gene mcl-1 both at the transcriptional and translational levels. Decreased levels of Notch1 and Mcl-1 were observed in BMM treated with PPD when a gamma secretase inhibitor (GSI), which inhibits the processing of Notch receptors, was used. Moreover, silencing Notch1 in the macrophage-like cell line RAW264.7 decreased Mcl-1 protein expression, suggesting that Notch1 is critical for Mcl-1 expression in macrophages. A significant increase in apoptotic cells was observed upon treatment of BMM with PPD in the presence of GSI compared to the vehicle-control treated cells. Finally, analysis of the mcl-1 promoter in humans and mice revealed a conserved potential CSL/RBP-Jκ binding site. The association of Notch1 with the mcl-1 promoter was confirmed by chromatin immunoprecipitation. Taken together, these results indicate that Notch1 inhibits apoptosis of macrophages stimulated with PPD by directly controlling the mcl-1 promoter.

  8. Knotting dynamics of DNA chains of different length confined in nanochannels

    International Nuclear Information System (INIS)

    Suma, Antonio; Micheletti, Cristian; Orlandini, Enzo

    2015-01-01

    Langevin dynamics simulations are used to characterize the typical mechanisms governing the spontaneous tying, untying and the dynamical evolution of knots in coarse-grained models of DNA chains confined in nanochannels. In particular we focus on how these mechanisms depend on the chain contour length, L c , at a fixed channel width D = 56 nm corresponding to the onset of the Odijk scaling regime where chain backfoldings and hence knots are disfavoured but not suppressed altogether. We find that the lifetime of knots grows significantly with L c , while that of unknots varies to a lesser extent. The underlying kinetic mechanisms are clarified by analysing the evolution of the knot position along the chain. At the considered confinement, in fact, knots are typically tied by local backfoldings of the chain termini where they are eventually untied after a stochastic motion along the chain. Consequently, the lifetime of unknots is mostly controlled by backfoldings events at the chain ends, which is largely independent of L c . The lifetime of knots, instead, increases significantly with L c because knots can, on average, travel farther along the chain before being untied. The observed interplay of knots and unknots lifetimes underpins the growth of the equilibrium knotting probability of longer and longer chains at fixed channel confinement. (paper)

  9. Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production

    DEFF Research Database (Denmark)

    Kourmentza, Constantina; Plácido, Jersson; Venetsaneas, Nikolaos

    2017-01-01

    Sustainable biofuels, biomaterials, and fine chemicals production is a critical matter that research teams around the globe are focusing on nowadays. Polyhydroxyalkanoates represent one of the biomaterials of the future due to their physicochemical properties, biodegradability, and biocompatibility...

  10. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids

    Science.gov (United States)

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-01-01

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167

  11. Expected value of finite fission chain lengths of pulse reactors

    International Nuclear Information System (INIS)

    Liu Jianjun; Zhou Zhigao; Zhang Ben'ai

    2007-01-01

    The average neutron population necessary for sponsoring a persistent fission chain in a multiplying system, is discussed. In the point reactor model, the probability function θ(n, t 0 , t) of a source neutron at time t 0 leading to n neutrons at time t is dealt with. The non-linear partial differential equation for the probability generating function G(z; t 0 , t) is derived. By solving the equation, we have obtained an approximate analytic solution for a slightly prompt supercritical system. For the pulse reactor Godiva-II, the mean value of finite fission chain lengths is estimated in this work and shows that the estimated value is reasonable for the experimental analysis. (authors)

  12. Increasing the Thermal Conductivity of Graphene-Polyamide-6,6 Nanocomposites by Surface-Grafted Polymer Chains: Calculation with Molecular Dynamics and Effective-Medium Approximation.

    Science.gov (United States)

    Gao, Yangyang; Müller-Plathe, Florian

    2016-02-25

    By employing reverse nonequilibrium molecular dynamics simulations in a full atomistic resolution, the effect of surface-grafted chains on the thermal conductivity of graphene-polyamide-6.6 (PA) nanocomposites has been investigated. The interfacial thermal conductivity perpendicular to the graphene plane is proportional to the grafting density, while it first increases and then saturates with the grafting length. Meanwhile, the intrinsic in-plane thermal conductivity of graphene drops sharply as the grafting density increases. The maximum overall thermal conductivity of nanocomposites appears at an intermediate grafting density because of these two competing effects. The thermal conductivity of the composite parallel to the graphene plane increases with the grafting density and grafting length which is attributed to better interfacial coupling between graphene and PA. There exists an optimal balance between grafting density and grafting length to obtain the highest interfacial and parallel thermal conductivity. Two empirical formulas are suggested, which quantitatively account for the effects of grafting length and density on the interfacial and parallel thermal conductivity. Combined with effective medium approximation, for ungrafted graphene in random orientation, the model overestimates the thermal conductivity at low graphene volume fraction (f 10%). For unoriented grafted graphene, the model matches the experimental results well. In short, this work provides some valuable guides to obtain the nanocomposites with high thermal conductivity by grafting chain on the surface of graphene.

  13. Comparison of Chain-Length Preferences and Glucan Specificities of Isoamylase-Type α-Glucan Debranching Enzymes from Rice, Cyanobacteria, and Bacteria.

    Directory of Open Access Journals (Sweden)

    Taiki Kobayashi

    Full Text Available It has been believed that isoamylase (ISA-type α-glucan debranching enzymes (DBEs play crucial roles not only in α-glucan degradation but also in the biosynthesis by affecting the structure of glucans, although molecular basis on distinct roles of the individual DBEs has not fully understood. In an attempt to relate the roles of DBEs to their chain-length specificities, we analyzed the chain-length distribution of DBE enzymatic reaction products by using purified DBEs from various sources including rice, cyanobacteria, and bacteria. When DBEs were incubated with phytoglycogen, their chain-length specificities were divided into three groups. First, rice endosperm ISA3 (OsISA3 and Eschericia coli GlgX (EcoGlgX almost exclusively debranched chains having degree of polymerization (DP of 3 and 4. Second, OsISA1, Pseudomonas amyloderamosa ISA (PsaISA, and rice pullulanase (OsPUL could debranch a wide range of chains of DP≧3. Third, both cyanobacteria ISAs, Cyanothece ATCC 51142 ISA (CytISA and Synechococcus elongatus PCC7942 ISA (ScoISA, showed the intermediate chain-length preference, because they removed chains of mainly DP3-4 and DP3-6, respectively, while they could also react to chains of DP5-10 and 7-13 to some extent, respectively. In contrast, all these ISAs were reactive to various chains when incubated with amylopectin. In addition to a great variation in chain-length preferences among various ISAs, their activities greatly differed depending on a variety of glucans. Most strikingly, cyannobacteria ISAs could attack branch points of pullulan to a lesser extent although no such activity was found in OsISA1, OsISA3, EcoGlgX, and PsaISA. Thus, the present study shows the high possibility that varied chain-length specificities of ISA-type DBEs among sources and isozymes are responsible for their distinct functions in glucan metabolism.

  14. Spectral sensitization of TiO2 by new hemicyanine dyes in dye solar cell yielding enhanced photovoltage: Probing chain length effect on performance

    International Nuclear Information System (INIS)

    Fadadu, Kishan B.; Soni, Saurabh S.

    2013-01-01

    Graphical abstract: New hemicyanine dyes based on indolenine moiety were utilized as light harvesting materials in dye sensitized solar cell. Chain lengths of the molecules were varied in order to study its effect of chain length on the performance of DSSC. Electron transfer kinetic of the solar cell was studied and it was found that the chain length changes the electron transfer kinetic. We have achieved remarkable photovoltage and overall performance of DSSC. Highlights: ► New hemicyanine dyes based on indolenine moiety were utilized as light harvesting materials in dye sensitized solar cell. ► Chain lengths of the molecules were varied in order to study its effect of chain length on the performance of DSSC. ► Electron transfer kinetic of the solar cell was studied and it was found that the chain length changes the electron transfer kinetic. -- Abstract: New hemicyanine dyes having indole nucleus with different alkyl chain length were synthesized and characterized using 1 H NMR and mass spectroscopy. These dyes were used to sensitize the TiO 2 film in dye sensitized solar cell. Nanocrystalline dye solar cells were fabricated and characterized using various electrochemical techniques. It has been found that the alkyl chain length present in the dye molecules greatly affects the overall performance of dye solar cell. Molecules having longer alkyl chain are having better sensitizers which enhance V oc to significant extent. Chain length dependent performance was further investigated using Tafel polarization and impedance method. Hemicyanine dye having hexyl chain has outperformed by attaining 2.9% solar to electricity conversion efficiency

  15. Noxa/Mcl-1 Balance Regulates Susceptibility of Cells to Camptothecin-Induced Apoptosis1

    Science.gov (United States)

    Mei, Yide; Xie, Chongwei; Xie, Wei; Tian, Xu; Li, Mei; Wu, Mian

    2007-01-01

    Although camptothecin (CPT) has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that BH3-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay and cAMP response element binding protein (CREB) knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA) significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA) was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa and Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa and Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis. PMID:17971907

  16. Optimization of the alkyl side chain length of fluorine-18-labeled 7α-alkyl-fluoroestradiol

    International Nuclear Information System (INIS)

    Okamoto, Mayumi; Shibayama, Hiromitsu; Naka, Kyosuke; Kitagawa, Yuya; Ishiwata, Kiichi; Shimizu, Isao; Toyohara, Jun

    2016-01-01

    Introduction: Several lines of evidence suggest that 7α-substituted estradiol derivatives bind to the estrogen receptor (ER). In line with this hypothesis, we designed and synthesized 18 F-labeled 7α-fluoroalkylestradiol (Cn-7α-[ 18 F]FES) derivatives as molecular probes for visualizing ERs. Previously, we successfully synthesized 7α-(3-[ 18 F]fluoropropyl)estradiol (C3-7α-[ 18 F]FES) and showed promising results for quantification of ER density in vivo, although extensive metabolism was observed in rodents. Therefore, optimization of the alkyl side chain length is needed to obtain suitable radioligands based on Cn-7α-substituted estradiol pharmacophores. Methods: We synthesized fluoromethyl (23; C1-7α-[ 18 F]FES) to fluorohexyl (26; C6-7α-[ 18 F]FES) derivatives, except fluoropropyl (C3-7α-[ 18 F]FES) and fluoropentyl derivatives (C5-7α-[ 18 F]FES), which have been previously synthesized. In vitro binding to the α-subtype (ERα) isoform of ERs and in vivo biodistribution studies in mature female mice were carried out. Results: The in vitro IC 50 value of Cn-7α-FES tended to gradually decrease depending on the alkyl side chain length. C1-7α-[ 18 F]FES (23) showed the highest uptake in ER-rich tissues such as the uterus. Uterus uptake also gradually decreased depending on the alkyl side chain length. As a result, in vivo uterus uptake reflected the in vitro ERα affinity of each compound. Bone uptake, which indicates de-fluorination, was marked in 7α-(2-[ 18 F]fluoroethyl)estradiol (C2-7α-[ 18 F]FES) (24) and 7α-(4-[ 18 F]fluorobutyl)estradiol (C4-7α-[ 18 F]FES) (25) derivatives. However, C1-7α-[ 18 F]FES (23) and C6-7α-[ 18 F]FES (26) showed limited uptake in bone. As a result, in vivo bone uptake (de-fluorination) showed a bell-shaped pattern, depending on the alkyl side chain length. C1-7α-[ 18 F]FES (23) showed the same levels of uptake in uterus and bone compared with those of 16α-[ 18 F]fluoro-17β-estradiol. Conclusions: The optimal alkyl

  17. The effect of carbon chain length of starting materials on the formation of carbon dots and their optical properties

    Science.gov (United States)

    Pan, Xiaohua; Zhang, Yan; Sun, Xiaobo; Pan, Wei; Yu, Guifeng; Si, Shuxin; Wang, Jinping

    2018-04-01

    Carbon dots (CDs) have attracted increasing attention due to their high performances and potential applications in wide range of areas. However, their emission mechanism is not clear so far. In order to reveal more factors contributing to the emission of CDs, the effect of carbon chain length of starting materials on the formation of CDs and their optical properties was experimentally investigated in this work. In order to focus on the effect of carbon chain length, the starting materials with C, O, N in fully identical forms and only carbon chain lengths being different were selected for synthesizing CDs, including citric acid (CA) and adipic acid (AA) as carbon sources, and diamines with different carbon chain lengths (H2N(CH2)nNH2, n = 2, 4, 6) as nitrogen sources, as well as ethylenediamine (EDA) as nitrogen source and diacids with different carbon chain lengths (HOOC(CH2)nCOOH, n = 0, 2, 4, 6) as carbon sources. Therefore, the effect of carbon chain length of starting materials on the formation and optical properties of CDs can be systematically investigated by characterizing and comparing the structures and optical properties of as-prepared nine types of CDs. Moreover, the density of –NH2 on the surface of the CDs was quantitatively detected by a spectrophotometry so as to elucidate the relationship between the –NH2 related surface state and the optical properties.

  18. 75 FR 1632 - Public Housing Assessment System (PHAS): Asset Management Transition Year 2 Information

    Science.gov (United States)

    2010-01-12

    ... accounting under asset management, also known as ``Transition Year 2.'' FOR FURTHER INFORMATION CONTACT: The... System (PHAS): Asset Management Transition Year 2 Information AGENCY: Office of the Assistant Secretary... by HUD under the Public Housing Management Assessment Program (PHMAP), the regulations for which are...

  19. Polyhydroxyalkanoate-based natural-synthetic hybrid copolymer films: A small-angle neutron scattering study

    International Nuclear Information System (INIS)

    Foster, L. John R.; Knott, Robert; Sanguanchaipaiwong, Vorapat; Holden, Peter J.

    2006-01-01

    Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate-block-diethylene glycol (PHO-b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q∼0.12 A -1 . This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 A. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films

  20. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    International Nuclear Information System (INIS)

    Huo, Lixia; Du, Pengcheng; Zhou, Hui; Zhang, Kaifeng; Liu, Peng

    2017-01-01

    Highlights: • n-Alkyltrimethoxysilanes with various chain lengths were self-assembled on silicon. • Effect of alkyl chain lengths (C6, C12, or C18) on the SAMs was investigated. • Surface roughness of the SAMs decreased with increasing the alkyl chain lengths. • The C 12 -SAM possessed superior friction reduction and wear resistance. - Abstract: It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C 6 , C 12 , or C 18 ) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (R a ) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al 2 O 3 ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C 12 alkyl chain (C 12 -SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C 12 -SAM with desirable alkyl chain length.

  1. Characterization of Binary Organogels Based on Some Azobenzene Compounds and Alkyloxybenzoic Acids with Different Chain Lengths

    Directory of Open Access Journals (Sweden)

    Yongmei Hu

    2014-01-01

    Full Text Available In this work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and alkyloxybenzoic acids with different lengths of alkyl chains in various organic solvents were investigated and characterized. The corresponding gelation behaviors in 20 solvents were characterized and shown as new binary organic systems. It showed that the lengths of substituent alkyl chains in compounds have played an important role in the gelation formation of gelator mixtures in present tested organic solvents. Longer methylene chains in molecular skeletons in these gelators seem more suitable for the gelation of present solvents. Morphological characterization showed that these gelator molecules have the tendency to self-assemble into various aggregates from lamella, wrinkle, and belt to dot with change of solvents and gelator mixtures. Spectral characterization demonstrated different H-bond formation and hydrophobic force existing in gels, depending on different substituent chains in molecular skeletons. Meanwhile, these organogels can self-assemble to form monomolecular or multilayer nanostructures owing to the different lengths of due to alkyl substituent chains. Possible assembly modes for present xerogels were proposed. The present investigation is perspective to provide new clues for the design of new nanomaterials and functional textile materials with special microstructures.

  2. Parenteral medium-chain triglyceride-induced neutrophil activation is not mediated by a Pertussis Toxin sensitive receptor.

    NARCIS (Netherlands)

    Versleijen, M.W.J.; Esterik, J.C. van; Schaap-Roelofs, H.M.J.; Emst-de Vries, S.E. van; Willems, P.H.G.M.; Wanten, G.J.A.

    2009-01-01

    BACKGROUND & AIMS: Lipid-induced immune modulation might contribute to the increased infection rate that is observed in patients using parenteral nutrition. We previously showed that emulsions containing medium-chain triglycerides (LCT/MCTs or pure MCTs), but not pure long-chain triglycerides

  3. Structured medium and long chain triglycerides show short-term increases in fat oxidation, but no changes in adiposity in men.

    Science.gov (United States)

    Roynette, Catherine E; Rudkowska, Iwona; Nakhasi, Dilip K; Jones, Peter J H

    2008-05-01

    Medium chain triglycerides (MCT) have been suggested as modulators of human energy expenditure (EE) and thus may influence total and regional body fat distribution. To investigate in overweight men the effects of structured medium and long chain triglycerides on EE, substrate oxidation and body adiposity, compared to extra virgin olive oil (OO). In a 6 week single-blind crossover study, 23 overweight men were randomly assigned to consume a standard high-fat diet of which 75% total fat was provided as either structured medium and long chain triglycerides referred to as structured oil (StO), or OO. EE and body composition were measured using indirect calorimetry and magnetic resonance imaging, respectively, at weeks 1 and 6 of each phase. Body weight decreased (pstructured medium and long chain triglyceride oil increases short-term fat oxidation but fails to modulate body weight or adiposity through a change in EE.

  4. Differential properties of human ACL and MCL stem cells may be responsible for their differential healing capacity

    Directory of Open Access Journals (Sweden)

    Fu Freddie H

    2011-06-01

    Full Text Available Abstract Background The human anterior cruciate ligament (hACL and medial collateral ligament (hMCL of the knee joint are frequently injured, especially in athletic settings. It has been known that, while injuries to the MCL typically heal with conservative treatment, ACL injuries usually do not heal. As adult stem cells repair injured tissues through proliferation and differentiation, we hypothesized that the hACL and hMCL contain stem cells exhibiting unique properties that could be responsible for the differential healing capacity of the two ligaments. Methods To test the above hypothesis, we derived ligament stem cells from normal hACL and hMCL samples from the same adult donors using tissue culture techniques and characterized their properties using immunocytochemistry, RT-PCR, and flow cytometry. Results We found that both hACL stem cells (hACL-SCs and hMCL stem cells (hMCL-SCs formed colonies in culture and expressed stem cell markers nucleostemin and stage-specific embryonic antigen-4 (SSEA-4. Moreover, both hACL-SCs and hMCL-SCs expressed CD surface markers for mesenchymal stem cells, including CD44 and CD90, but not those markers for vascular cells, CD31, CD34, CD45, and CD146. However, hACL-SCs differed from hMCL-SCs in that the size and number of hACL-SC colonies in culture were much smaller and grew more slowly than hMCL-SC colonies. Moreover, fewer hACL-SCs in cell colonies expressed stem cell markers STRO-1 and octamer-binding transcription factor-4 (Oct-4 than hMCL-SCs. Finally, hACL-SCs had less multi-differentiation potential than hMCL-SCs, evidenced by differing extents of adipogenesis, chondrogenesis, and osteogenesis in the respective induction media. Conclusions This study shows for the first time that hACL-SCs are intrinsically different from hMCL-SCs. We suggest that the differences in their properties contribute to the known disparity in healing capabilities between the two ligaments.

  5. Accumulation of a Polyhydroxyalkanoate Containing Primarily 3-Hydroxydecanoate from Simple Carbohydrate Substrates by Pseudomonas sp. Strain NCIMB 40135.

    Science.gov (United States)

    Haywood, G W; Anderson, A J; Ewing, D F; Dawes, E A

    1990-11-01

    A number of Pseudomonas species have been identified which accumulate a polyhydroxyalkanoate containing mainly 3-hydroxydecanoate monomers from sodium gluconate as the sole carbon source. One of these, Pseudomonas sp. strain NCIMB 40135, was further investigated and shown to accumulate such a polyhydroxyalkanoate from a wide range of carbon sources (C(2) to C(6)); however, when supplied with octanoic acid it produced a polyhydroxyalkanoate containing mainly 3-hydroxyoctanoate monomers. Polymer synthesis occurred in batch culture after cessation of growth due to exhaustion of nitrogen. In continuous culture under nitrogen limitation up to 16.9% (wt/wt) polyhydroxyalkanoate was synthesized from glucose as the carbon source. The monomer units are mainly of the R-(-) configuration. Nuclear magnetic resonance studies confirmed the composition of the polymer. Differential scanning calorimetry suggested that the solvent-extracted polymer contained a significant proportion of crystalline material. The weight-average molecular weight of the polymer from glucose-grown cells was 143,000.

  6. The Role of GPR84 in Medium-chain Saturated Fatty Acid Taste Transduction

    OpenAIRE

    Liu, Yan

    2016-01-01

    Previous research has shown the gustatory recognition of the long-chain unsaturated fatty acids. In this study, I showed for the first time that medium-chain saturated fatty acids (MCFAs) are effective taste stimuli at both the cellular and behavioral levels. The mechanisms of gustatory recognition of MCFAs in mice were also partially elucidated using pharmaceutical approaches. The inward currents induced by capric acid in mouse taste cells were significantly inhibited by the antagonists of G...

  7. Value addition - a marketing strategy for MCL

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, C.K.; Mishra, P.K.; Baranwal, P.K. [Central Mine Planning and Design Institute, Ranchi (India)

    2002-07-01

    The energy sector will remain dependent on coal because of depletion of oil reserves. With deterioration of power grade coal, the emission of greenhouse gas is going to increase thereby stressing the need of using prepared low ash coal for protection of global environment. Further, recent stipulation of MOEF imposing restriction on use of high ash coal at distant power houses and those at sensitive localities and critically polluted areas have made the aspect of marketing of coal more challenging. This has necessitated a long-term strategy for improving the quality of coal in light of national environment policy. This is more relevant in the present scenario of open market, where we need to market our coal rather simply supplying r.o.m. coal to the linked users. Mahanadi Coalfields, Limited (MCL), the youngest subsidiary of Coal India Limited bestowed with a huge reserve of inferior grade and mainly linked to power sector, is taken as a sample case study. To fulfil the demand of coal with due regard to the national environmental policy, there is need of value addition as strategy of marketing for power coal of MCL. Value addition of coal can be achieved by two distinct different ways i.e. beneficiating high ash coal at pit head or blending high ash coal with low ash coal which is a less preferred option due to non-availability of low ash coal in MCL. 7 refs., 7 tabs.

  8. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Lixia [National Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou, Gansu 730010 (China); Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China); Du, Pengcheng [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China); Zhou, Hui; Zhang, Kaifeng [National Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou, Gansu 730010 (China); Liu, Peng, E-mail: pliu@lzu.edu.cn [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China)

    2017-02-28

    Highlights: • n-Alkyltrimethoxysilanes with various chain lengths were self-assembled on silicon. • Effect of alkyl chain lengths (C6, C12, or C18) on the SAMs was investigated. • Surface roughness of the SAMs decreased with increasing the alkyl chain lengths. • The C{sub 12}-SAM possessed superior friction reduction and wear resistance. - Abstract: It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C{sub 6}, C{sub 12}, or C{sub 18}) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (R{sub a}) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al{sub 2}O{sub 3} ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C{sub 12} alkyl chain (C{sub 12}-SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C{sub 12}-SAM with desirable alkyl chain length.

  9. 76 FR 20366 - Changes to the Public Housing Assessment System (PHAS): Management Operations Scoring Notice

    Science.gov (United States)

    2011-04-12

    ... Housing Assessment System (PHAS): Management Operations Scoring Notice AGENCY: Office of the Assistant... Management Operations interim scoring notice. The document inadvertently omitted a word with respect to the... INFORMATION: I. Background The proposed management operations scoring information was published on August 21...

  10. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR γ activators and pan-PPAR partial agonists.

    Directory of Open Access Journals (Sweden)

    Marcelo Vizoná Liberato

    Full Text Available Thiazolidinediones (TZDs act through peroxisome proliferator activated receptor (PPAR γ to increase insulin sensitivity in type 2 diabetes (T2DM, but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD and found that the ligand binding pocket (LBP is occupied by bacterial medium chain fatty acids (MCFAs. We verified that MCFAs (C8-C10 bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5, linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products.

  11. The downregulation of Mcl-1 via USP9X inhibition sensitizes solid tumors to Bcl-xl inhibition

    International Nuclear Information System (INIS)

    Peddaboina, Chander; Smythe, W Roy; Cao, Xiaobo; Jupiter, Daniel; Fletcher, Steven; Yap, Jeremy L; Rai, Arun; Tobin, Richard P; Jiang, Weihua; Rascoe, Philip; Rogers, M Karen Newell

    2012-01-01

    It has been shown in many solid tumors that the overexpression of the pro-survival Bcl-2 family members Bcl-xL and Mcl-1 confers resistance to a variety of chemotherapeutic agents. Mcl-1 is a critical survival protein in a variety of cell lineages and is critically regulated via ubiquitination. The Mcl-1, Bcl-xL and USP9X expression patterns in human lung and colon adenocarcinomas were evaluated via immunohistochemistry. Interaction between USP9X and Mcl-1 was demonstrated by immunoprecipitation-western blotting. The protein expression profiles of Mcl-1, Bcl-xL and USP9X in multiple cancer cell lines were determined by western blotting. Annexin-V staining and cleaved PARP western blotting were used to assay for apoptosis. The cellular toxicities after various treatments were measured via the XTT assay. In our current analysis of colon and lung cancer samples, we demonstrate that Mcl-1 and Bcl-xL are overexpressed and also co-exist in many tumors and that the expression levels of both genes correlate with the clinical staging. The downregulation of Mcl-1 or Bcl-xL via RNAi was found to increase the sensitivity of the tumor cells to chemotherapy. Furthermore, our analyses revealed that USP9X expression correlates with that of Mcl-1 in human cancer tissue samples. We additionally found that the USP9X inhibitor WP1130 promotes Mcl-1 degradation and increases tumor cell sensitivity to chemotherapies. Moreover, the combination of WP1130 and ABT-737, a well-documented Bcl-xL inhibitor, demonstrated a chemotherapeutic synergy and promoted apoptosis in different tumor cells. Mcl-1, Bcl-xL and USP9X overexpression are tumor survival mechanisms protective against chemotherapy. USP9X inhibition increases tumor cell sensitivity to various chemotherapeutic agents including Bcl-2/Bcl-xL inhibitors

  12. Simultaneous targeting of ATM and Mcl-1 increases cisplatin sensitivity of cisplatin-resistant non-small cell lung cancer.

    Science.gov (United States)

    Zhang, Fuquan; Shen, Mingjing; Yang, Li; Yang, Xiaodong; Tsai, Ying; Keng, Peter C; Chen, Yongbing; Lee, Soo Ok; Chen, Yuhchyau

    2017-08-03

    Development of cisplatin-resistance is an obstacle in non-small cell lung cancer (NSCLC) therapeutics. To investigate which molecules are associated with cisplatin-resistance, we analyzed expression profiles of several DNA repair and anti-apoptosis associated molecules in parental (A549P and H157P) and cisplatin-resistant (A549CisR and H157CisR) NSCLC cells. We detected constitutively upregulated nuclear ATM and cytosolic Mcl-1 molcules in cisplatin-resistant cells compared with parental cells. Increased levels of phosphorylated ATM (p-ATM) and its downstream molecules, CHK2, p-CHK2, p-53, and p-p53 were also detected in cisplatin-resistant cells, suggesting an activation of ATM signaling in these cells. Upon inhibition of ATM and Mcl-1 expression/activity using specific inhibitors of ATM and/or Mcl-1, we found significantly enhanced cisplatin-cytotoxicity and increased apoptosis of A549CisR cells after cisplatin treatment. Several A549CisR-derived cell lines, including ATM knocked down (A549CisR-siATM), Mcl-1 knocked down (A549CisR-shMcl1), ATM/Mcl-1 double knocked down (A549CisR-siATM/shMcl1) as well as scramble control (A549CisR-sc), were then developed. Higher cisplatin-cytotoxicity and increased apoptosis were observed in A549CisR-siATM, A549CisR-shMcl1, and A549CisR-siATM/shMcl1 cells compared with A549CisR-sc cells, and the most significant effect was shown in A549CisR-siATM/shMcl1 cells. In in vivo mice studies using subcutaneous xenograft mouse models developed with A549CisR-sc and A549CisR-siATM/shMcl1 cells, significant tumor regression in A549CisR-siATM/shMcl1 cells-derived xenografts was observed after cisplatin injection, but not in A549CisR-sc cells-derived xenografts. Finally, inhibitor studies revealed activation of Erk signaling pathway was most important in upregulation of ATM and Mcl-1 molcules in cisplatin-resistant cells. These studies suggest that simultaneous blocking of ATM/Mcl-1 molcules or downstream Erk signaling may recover the

  13. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica.

    Directory of Open Access Journals (Sweden)

    Laure Aymé

    Full Text Available Diacylglycerol acyltransferases (DGAT are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0. A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1 is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.

  14. Metabolic modeling of mixed substrate uptake for polyhydroxyalkanoate (PHA) production

    NARCIS (Netherlands)

    Jiang, Y.; Hebly, M.; Kleerebezem, R.; Muyzer, G.; van Loosdrecht, M.C.M.

    2011-01-01

    Polyhydroxyalkanoate (PHA) production by mixed microbial communities can be established in a two-stage process, consisting of a microbial enrichment step and a PHA accumulation step. In this study, a mathematical model was constructed for evaluating the influence of the carbon substrate composition

  15. Self-Assembly of Alkylammonium Chains on Montmorillonite: Effect of Interlayer Cations, CEC, and Chain Length

    Science.gov (United States)

    Chen, Hua; Li, Yingjun; Zhou, Yuanlin; Wang, Shanqiang; Zheng, Jian; He, Jiacai

    2017-12-01

    Recently, polymeric materials have been filled with synthetic or natural inorganic compounds in order to improve their properties. Especially, polymer clay nanocomposites have attracted both academic and industrial attention. Currently, the structure and physical phenomena of organoclays at molecular level are difficultly explained by existing experimental techniques. In this work, molecular dynamics (MD) simulation was executed using the CLAYFF and CHARMM force fields to evaluate the structural properties of organoclay such as basal spacing, interlayer density, energy and the arrangement of alkyl chains in the interlayer spacing. Our results are in good agreement with available experimental or other simulation data. The effects of interlayer cations (Na+, K+, Ca2+), the cation exchange capacity, and the alkyl chain length on the basal spacing and the structural properties are estimated. These simulations are expected to presage the microstructure of organo-montmorillonite and lead relevant engineering applications.

  16. effect of side chain length on the stability and structural properties of 3

    African Journals Online (AJOL)

    Preferred Customer

    We report on the effect of the alkoxy chain length on the thermodynamic ... studied by Hartree-Fock (HF) and Density Functional Theory (DFT) methods. ..... with longer alkoxy substituents on the phenyl ring have lesser value of change in Gibbs ...

  17. MicroRNA-451 sensitizes lung cancer cells to cisplatin through regulation of Mcl-1.

    Science.gov (United States)

    Cheng, Dezhi; Xu, Yi; Sun, Changzheng; He, Zhifeng

    2016-12-01

    As one of the most widely used chemotherapy drugs for lung cancer, chemoresistance of cisplatin (DPP) is one of the major hindrances in treatment of this malignancy. The microRNAs (miRNAs) have been identified to mediate chemotherapy drug resistance. MiR-451 as a tumor suppressor has been evaluated its potential effect on the sensitivity of cancer cells to DDP. However, the role of miR-451 in regulatory mechanism of chemosensitivity in lung cancer cells is still largely unknown. In this study, we first constructed a cisplatin-resistant A549 cell line (A549/DPP) accompanied with a decreased expression of miR-451 and an increased expression of Mcl-1in the drug resistant cells compared with the parental cells. Exogenous expression of miR-451 level in A549/DPP was found to sensitize their reaction to the treatment of cisplatin, which coincides with reduced expression of Mcl-1. Interestingly, Mcl-1 knockdown in A549/DPP cells increased the chemosensitivity to DPP, suggesting the dependence of Mcl-1 regulation in miR-451 activity. Moreover, miR-451 can restore cisplatin treatment response in cisplatin-resistant xenografts in vivo, while Mcl-1 protein levels were decreased. Thus, these findings provided that in lung cancer cells, tumor suppressor miR-451 enhanced DPP sensitivity via regulation of Mcl-1 expression, which could be served as a novel therapeutic target for the treatment of chemotherapy resistant in lung cancer.

  18. Circumvention of Mcl-1-dependent drug resistance by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells.

    Science.gov (United States)

    Pei, Xin-Yan; Dai, Yun; Felthousen, Jessica; Chen, Shuang; Takabatake, Yukie; Zhou, Liang; Youssefian, Leena E; Sanderson, Michael W; Bodie, Wesley W; Kramer, Lora B; Orlowski, Robert Z; Grant, Steven

    2014-01-01

    The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.

  19. Circumvention of Mcl-1-dependent drug resistance by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Xin-Yan Pei

    Full Text Available The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.

  20. Novel approach for productivity enhancement of polyhydroxyalkanoates (PHA) production by Cupriavidus necator DSM 545.

    Science.gov (United States)

    Berezina, Nathalie

    2013-01-25

    In the global context of increased concerns for our environment, the use of bioplastics as a replacement for existing petroleum-based polymers is an important challenge. Indeed, bioplastics hardly meet economical and technical constraints. One, of the most promising among currently studied bioplastics, is the polyhydroxyalkanoate (PHA). To circumvent the economical issue for this particular biopolymer one solution can be the enhancement of the overall productivity by the improvement of the nutritional medium of the microorganism producing the biopolymer. Thus, several nutrition media, supplemented or not with sodium glutamate, were tested for the growth and the PHA production by Cupriavidus necator DSM 545 strain. The most efficient for the biomass and the PHA production improvement were found to be the Luria broth (LB) and the Bonnarme's media, both supplemented with 10 g/L sodium glutamate. Hence the overall productivity was 33 times enhanced comparing to traditional cultivation methods. These results open a new route for the PHA production by C. necator which appears to be more suitable on a rich, or enriched, medium with no limiting factors. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Renewable alkenes from the hydrothermal treatment of polyhydroxyalkanoates-containing sludge

    NARCIS (Netherlands)

    Torri, Cristian; Detert Oude Weme, Tom; Samorì, Chiara; Kiwan, Alisar; Brilman, Derk W.F.

    2017-01-01

    Polyhydroxyalkanoates (PHA) are a key constituent of excess sludge produced by Aerobic Sewage Sludge Treatment plants. The accumulation of significant amount of PHA inside aerobic microbial cells occurs when a surplus of an easily degradable carbon source (e.g., volatile fatty acids, VFA) is found

  2. Effect of side chain length on charge transport, morphology, and photovoltaic performance of conjugated polymers in bulk heterojunction solar cells

    NARCIS (Netherlands)

    Duan, C.; Willems, R.E.M.; van Franeker, J.J.; Bruijnaers, B.J.; Wienk, M.M.; Janssen, R.A.J.

    2016-01-01

    The effect of side chain length on the photovoltaic properties of conjugated polymers is systematically investigated with two sets of polymers that bear different alkyl side chain lengths based on benzodithiophene and benzo[2,1,3]thiadiazole or 5,6-difluorobenzo[2,1,3]thiadiazole. Characterization

  3. 78 FR 76160 - Public Housing Assessment System (PHAS) Capital Fund Interim Scoring Notice: Reinstitution of...

    Science.gov (United States)

    2013-12-16

    ... System (PHAS) Capital Fund Interim Scoring Notice: Reinstitution of Five Points for Occupancy Sub... intended to help lessen the impact of decreases in funding in recent appropriations acts. Adding automatic... to adjust their systems and procedures to the new scoring regime. As a result of automatic across-the...

  4. Communication disruption of guava moth (Coscinoptycha improbana) using a pheromone analog based on chain length.

    Science.gov (United States)

    Suckling, D M; Dymock, J J; Park, K C; Wakelin, R H; Jamieson, L E

    2013-09-01

    The guava moth, Coscinoptycha improbana, an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, (Z)-11-octadecen-8-one and (Z)-12-nonadecen-9-one, and to a chain length analog, (Z)-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii. We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86% disruption of control catches) and in a plots of nine trees (99% disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended.

  5. Regulation of antiapoptotic MCL-1 function by gossypol: mechanistic insights from in vitro reconstituted systems.

    Science.gov (United States)

    Etxebarria, Aitor; Landeta, Olatz; Antonsson, Bruno; Basañez, Gorka

    2008-12-01

    Small-molecule drugs that induce apoptosis in tumor cells by activation of the BCL-2-regulated mitochondrial outer membrane permeabilization (MOMP) pathway hold promise for rational anticancer therapies. Accumulating evidence indicates that the natural product gossypol and its derivatives can kill tumor cells by targeting antiapoptotic BCL-2 family members in such a manner as to trigger MOMP. However, due to the inherent complexity of the cellular apoptotic network, the precise mechanisms by which interactions between gossypol and individual BCL-2 family members lead to MOMP remain poorly understood. Here, we used simplified systems bearing physiological relevance to examine the impact of gossypol on the function of MCL-1, a key determinant for survival of various human malignancies that has become a highly attractive target for anticancer drug design. First, using a reconstituted liposomal system that recapitulates basic aspects of the BCL-2-regulated MOMP pathway, we demonstrate that MCL-1 inhibits BAX permeabilizing function via a "dual-interaction" mechanism, while submicromolar concentrations of gossypol reverse MCL-1-mediated inhibition of functional BAX activation. Solution-based studies showed that gossypol competes with BAX/BID BH3 ligands for binding to MCL-1 hydrophobic groove, thereby providing with a mechanistic explanation for how gossypol restores BAX permeabilizing function in the presence of MCL-1. By contrast, no evidence was found indicating that gossypol transforms MCL-1 into a BAX-like pore-forming molecule. Altogether, our findings validate MCL-1 as a direct target of gossypol, and highlight that making this antiapoptotic protein unable to inhibit BAX-driven MOMP may represent one important mechanism by which gossypol exerts its cytotoxic effect in selected cancer cells.

  6. Influence of the chain length on the biological behaviour of 131I fatty acids

    International Nuclear Information System (INIS)

    Riche, F.; Mathieu, J.P.; Comet, M.; Vidal, M.; Pernin, C.; Marti-Batlle, D.; Busquet, G.; Bardy, A.

    1983-01-01

    Saturated and acetylenic fatty acids labeled with 131 I in ω position, differing by their chain length (C8 to C20) and the number odd or even of their carbon atoms are injected in mice. The evolution of the activity in myocardium, blood, liver and kidney is measured until 10 minutes after injection. The myocardial activity increases with chain length from C8 to C16 then decreases for C18 and C20. The odd or even number of carbon atoms does not influence myocardial activity but in the liver, activity is inferior with the odd fatty acids. The presence of a triple bond accelerates the output of activity from the myocardium and these fatty acids are not well suited for the study of myocardial metabolism [fr

  7. Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility

    Directory of Open Access Journals (Sweden)

    Zixuan Wang

    2016-08-01

    Full Text Available By employing coarse-grained molecular dynamics simulation, we simulate the spatial organization of the polymer-grafted nanoparticles (NPs in homopolymer matrix and the resulting mechanical performance, by particularly regulating the grafted chain length and flexibility. The morphologies ranging from the agglomerate, cylinder, sheet, and string to full dispersion are observed, by gradually increasing the grafted chain length. The radial distribution function and the total interaction energy between NPs are calculated. Meanwhile, the stress–strain behavior of each morphology and the morphological evolution during the uniaxial tension are simulated. In particular, the sheet structure exhibits the best mechanical reinforcement compared to other morphologies. In addition, the change of the grafted chain flexibility to semi-flexibility leads to the variation of the morphology. We also find that at long grafted chain length, the stress–strain behavior of the system with the semi-flexible grafted chain begins to exceed that of the system with the flexible grafted chain, attributed to the physical inter-locking interaction between the matrix and grafted polymer chains. A similar transition trend is as well found in the presence of the interfacial chemical couplings between grafted and matrix polymer chains. In general, this work is expected to help to design and fabricate high performance polymer nanocomposites filled with grafted NPs with excellent and controllable mechanical properties.

  8. Evaluation of even- and odd-chain medium-chain triglycerides as energy sources for neonatal piglets

    International Nuclear Information System (INIS)

    Odle, J.

    1989-01-01

    Medium-chain triglycerides (MCT) were evaluated as a supplemental energy source for the newborn piglet. In three experiments, piglets were force-fed 12 mi of MCT, varying in fatty acid (FA) composition. Blood fatty acid and ketone body concentrations peaked 1-2 h after force feeding then returned to baseline by 4 h, illustrating rapid digestion, absorption and oxidation. Peak 3-OH-butyrate concentrations never exceeded 80 μM which is dramatically lower than observed in rats (>2 mM). Improved clinical energy status was also documented by elevated blood glucose concentration and lower nitrogen excretion than observed in fasted controls. Piglets showed an improvement in ability to utilize MCT between 6 and 18 h of age based on a two fold increase in blood concentration of FA and 3-OH-butyrate but no further change between 18 and 48 h. Peak plasma FA concentration decreased progressively as triglyceride-FA chain length increased from C7 (2.1 mM) to C10 (0.4 mM). In two subsequent experiments, hepatocyte metabolism of FA was studied. Hepatocytes oxidized [1- 14 C]- C7 or C9 (1 mM) greater than 40% faster and consumed oxygen 7% faster than cells given C8 or C10. L-carnitine (1 mM) was without effect. Theoretical calculations from FA flux accounted for 95-140% of observed O 2 consumption, indicating the FA were the major fuel source for the cells. Hepatocytes from 2 d pigs oxidized FA 48% faster than cells from 6 h pigs, but this was likely due to an increased metabolic rate observed in the older animals. No differences were detected in ability of small (700-950 g) pigs to oxidize FA relative to large (1,050-1,800 g) littermates. In a final in vivo experiment, pigs were continuously infused with 10 μCi of [1- 14 C]-C7,C8, C9 or C10 via a catheter passed through the umbilical artery to the heart at a rate of 20, 50 or 100 mole FA/min for 5 h

  9. Effect of hydrocarbon chain length of aliphatic diluents on hydrodynamic properties of irradiated solutions of extractant

    International Nuclear Information System (INIS)

    Gumenyuk, V.E.; Pribush, A.G.; Egorov, G.F.

    1990-01-01

    To optimize the composition of n-paraffin mixtures with different molecular weight, used as a diluent (D) of extractant during extraction reprocessing of spent fuel, interrelation between D hydrocarbon chain length and change in hydrodynamic properties of extraction mixture on D basis depending on the dose has been considered. It is shown that the value of threshold dose loading (D crit ), at which a sharp change in hydrodynamic properties of tri-n-butyl phosphate solutions in D is observed, decreases with hydrocarbon chain length growth. Empiric ratio relating D crit value and the number of carbon atoms of D is obtained

  10. p32, a novel binding partner of Mcl-1, positively regulates mitochondrial Ca{sup 2+} uptake and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Kang [Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Wang, Yinyin; Chang, Zhijie [School of Medicine, Tsinghua University, Beijing (China); Lao, Yuanzhi, E-mail: laurence_ylao@163.com [School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai (China); Chang, Donald C., E-mail: bochang@ust.hk [Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

    2014-08-22

    Highlights: • p32 binds to Mcl-1. • p32 affects apoptosis. • p32 and Mcl-1 regulate mitochondrial Ca{sup 2+}. - Abstract: Mcl-1 is a major anti-apoptotic Bcl-2 family protein. It is well known that Mcl-1 can interact with certain pro-apoptotic Bcl-2 family proteins in normal cells to neutralize their pro-apoptotic functions, thus prevent apoptosis. In addition, it was recently found that Mcl-1 can also inhibit mitochondrial calcium uptake. The detailed mechanism, however, is still not clear. Based on Yeast Two-Hybrid screening and co-immunoprecipitation, we identified a mitochondrial protein p32 (C1qbp) as a novel binding partner of Mcl-1. We found that p32 had a number of interesting properties: (1) p32 can positively regulate UV-induced apoptosis in HeLa cells. (2) Over-expressing p32 could significantly promote mitochondrial calcium uptake, while silencing p32 by siRNA suppressed it. (3) In p32 knockdown cells, Ruthenium Red treatment (an inhibitor of mitochondrial calcium uniporter) showed no further suppressive effect on mitochondrial calcium uptake. In addition, in Ruthenium Red treated cells, Mcl-1 also failed to suppress mitochondrial calcium uptake. Taken together, our findings suggest that p32 is part of the putative mitochondrial uniporter that facilitates mitochondrial calcium uptake. By binding to p32, Mcl-1 can interfere with the uniporter function, thus inhibit the mitochondrial Ca{sup 2+} uploading. This may provide a novel mechanism to explain the anti-apoptotic function of Mcl-1.

  11. Enhanced Polyhydroxybutyrate Production for Long-Term Spaceflight Applications

    Science.gov (United States)

    Putman, Ryan J.; Rahman, Asif; Miller, Charles D.; Hadi, Masood Z.

    2015-01-01

    Synthetic biology holds the promise of advancing long term space fight by the production of medicine, food, materials, and energy. One such application of synthetic biology is the production of biomaterials, specifically polyhydroxyalkanoates (PHAs), using purposed organisms such as Escherichia coli. PHAs are a group of biodegradable bioplastics that are produced by a wide variety of naturally occurring microorganisms, mainly as an energy storage intermediate. PHAs have similar melting point to polypropylene and a Youngs modulus close to polystyrene. Due to limited resources and cost of transportation, large-scale extraction of biologically produced products in situ is extremely cumbersome during space flight. To that end, we are developing a secretion systems for exporting PHA from the cell in order to reduce unit operations. PHAs granules deposited inside bacteria are typically associated with proteins bound to the granule surface. Phasin, a granule bound protein, was targeted for type I secretion by fusion with HlyA signal peptide for indirect secretion of PHAs. In order to validate our secretion strategy, a green fluorescent protein (GFP) was tagged to the PHA polymerase enzyme (phaC), this three part gene cassette consists of phaA and phaB and are required for PHA production. Producing PHAs in situ during space flight or planet colonization will enable mission success by providing a valuable source of biomaterials that can have many potential applications thereby reducing resupply requirements. Biologically produced PHAs can be used in additive manufacturing such as three dimensional (3D) printing to create products that can be made on demand during space flight. After exceeding their lifetime, the PHAs could be melted and recycled back to 3D print other products. We will discuss some of our long term goals of this approach.

  12. Effect of Acylglycerol Composition and Fatty Acyl Chain Length on Lipid Digestion in pH-Stat Digestion Model and Simulated In Vitro Digestion Model.

    Science.gov (United States)

    Qi, Jin F; Jia, Cai H; Shin, Jung A; Woo, Jeong M; Wang, Xiang Y; Park, Jong T; Hong, Soon T; Lee, K-T

    2016-02-01

    In this study, a pH-stat digestion model and a simulated in vitro digestion model were employed to evaluate the digestion degree of lipids depending on different acylglycerols and acyl chain length (that is, diacylglycerol [DAG] compared with soybean oil representing long-chain triacylglycerol compared with medium-chain triacylglycerol [MCT]). In the pH-stat digestion model, differences were observed among the digestion degrees of 3 oils using digestion rate (k), digestion half-time (t1/2 ), and digestion extent (Φmax). The results showed the digestion rate order was MCT > soybean oil > DAG. Accordingly, the order of digestion half-times was MCT digestion model, digestion rates (k') and digestion half-times (t'1/2 ) were also obtained and the results showed a digestion rate order of MCT (k' = 0.068 min(-1) ) > soybean oil (k' = 0.037 min(-1) ) > DAG (k' = 0.024 min(-1) ). Consequently, the order of digestion half-times was MCT (t'1/2 = 10.20 min) digested faster than soybean oil, and that soybean oil was digested faster than DAG. © 2015 Institute of Food Technologists®

  13. Effect of the alkyl chain length of the ionic liquid anion on polymer electrolytes properties

    International Nuclear Information System (INIS)

    Leones, Rita; Sentanin, Franciani; Nunes, Sílvia Cristina; Esperança, José M.S.S.; Gonçalves, Maria Cristina

    2015-01-01

    New polymer electrolytes (PEs) based on chitosan and three ionic liquid (IL) families ([C 2 mim][C n SO 3 ], [C 2 mim][C n SO 4 ] and [C 2 mim][diC n PO 4 ]) were synthesized by the solvent casting method. The effect of the length of the alkyl chain of the IL anion on the thermal, morphological and electrochemical properties of the PEs was studied. The solid polymer electrolytes SPE membranes were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), polarized optical microscopy (POM), atomic force microscopy (AFM), complex impedance spectroscopy (ionic conductivity) and cyclic voltammetry (CV). The obtained results evidenced an influence of the alkyl chain length of the IL anion on the temperature of degradation, birefringence, surface roughness and ionic conductivity of the membranes. The DSC, XRD and CV results showed independency from the length of the IL-anion-alkyl chain. The PEs displayed an predominantly amorphous morphology, a minimum temperature of degradation of 135 °C, a room temperature (T = 25 °C) ionic conductivity of 7.78 × 10 −4 S cm −1 and a wide electrochemical window of ∼ 4.0 V.

  14. Community proteomics provides functional insight into polyhydroxyalkanoate production by a mixed microbial culture cultivated on fermented dairy manure.

    Science.gov (United States)

    Hanson, Andrea J; Guho, Nicholas M; Paszczynski, Andrzej J; Coats, Erik R

    2016-09-01

    Polyhydroxyalkanoates (PHAs) are bio-based, biodegradable polyesters that can be produced from organic-rich waste streams using mixed microbial cultures (MMCs). To maximize PHA production, MMCs are enriched for bacteria with a high polymer storage capacity through the application of aerobic dynamic feeding (ADF) in a sequencing batch reactor (SBR), which consequently induces a feast-famine metabolic response. Though the feast-famine response is generally understood empirically at a macro-level, the molecular level is less refined. The objective of this study was to investigate the microbial community composition and proteome profile of an enriched MMC cultivated on fermented dairy manure. The enriched MMC exhibited a feast-famine response and was capable of producing up to 40 % (wt. basis) PHA in a fed-batch reactor. High-throughput 16S rRNA gene sequencing revealed a microbial community dominated by Meganema, a known PHA-producing genus not often observed in high abundance in enrichment SBRs. The application of the proteomic methods two-dimensional electrophoresis and LC-MS/MS revealed PHA synthesis, energy generation, and protein synthesis prominently occurring during the feast phase, corroborating bulk solution variable observations and theoretical expectations. During the famine phase, nutrient transport, acyl-CoA metabolism, additional energy generation, and housekeeping functions were more pronounced, informing previously under-determined MMC functionality under famine conditions. During fed-batch PHA production, acetyl-CoA acetyltransferase and PHA granule-bound phasin proteins were in increased abundance relative to the SBR, supporting the higher PHA content observed. Collectively, the results provide unique microbial community structural and functional insight into feast-famine PHA production from waste feedstocks using MMCs.

  15. Critical temperatures and a critical chain length in saturated diacylphosphatidylcholines: calorimetric, ultrasonic and Monte Carlo simulation study of chain-melting/ordering in aqueous lipid dispersions.

    Science.gov (United States)

    Kharakoz, Dmitry P; Panchelyuga, Maria S; Tiktopulo, Elizaveta I; Shlyapnikova, Elena A

    2007-12-01

    Chain-ordering/melting transition in a series of saturated diacylphosphatidylcholines (PCs) in aqueous dispersions have been studied experimentally (calorimetric and ultrasonic techniques) and theoretically (an Ising-like lattice model). The shape of the calorimetric curves was compared with the theoretical data and interpreted in terms of the lateral interactions and critical temperatures determined for each lipid studied. A critical chain length has been found (between 16 and 17 C-atoms per chain) which subdivides PCs into two classes with different phase behavior. In shorter lipids, the transition takes place above their critical temperatures meaning that this is an intrinsically continuous transition. In longer lipids, the transition occurs below the critical temperatures of the lipids, meaning that the transition is intrinsically discontinuous (first-order). This conclusion was supported independently by the ultrasonic relaxation sensitive to density fluctuations. Interestingly, it is this length that is the most abundant among the saturated chains in biological membranes.

  16. Effect of side chain length and degree of polymerization on the decomposition and crystallization behaviour of chlorinated poly(vinyl ester) oligomers

    International Nuclear Information System (INIS)

    Heinze, D.; Mang, Th.; Popescu, C.; Weichold, O.

    2016-01-01

    Highlights: • Thermal behaviour of telomerized polyvinyl esters is investigated. • Thermal stability relies mainly on the contribution of side chains. • At equal molecular weights thermal stability is dictated by length of side chain. • Increasing the length of side chains improves also the packing degree of polymer. - Abstract: Four members of a homologous series of chlorinated poly(vinyl ester) oligomers CCl_3–(CH_2CH (OCO(CH_2)_mCH_3))_n–Cl with degrees of polymerization of 10 and 20 were prepared by telomerisation using carbon tetrachloride. The number of side chain carbon atoms ranges from 2 (poly(vinyl acetate) to 18 (poly(vinyl stearate)). The effect of the n-alkyl side chain length and of the degree of polymerization on the thermal stability and crystallization behaviour of the synthesized compounds was investigated. All oligomers degrade in two major steps by first losing HCl and side chains with subsequent breakdown of the backbone. The members with short side chains, up to poly(vinyl octanoate), are amorphous and show internal plasticization, whereas those with high number of side chain carbon atoms are semi-crystalline due to side-chain crystallization. A better packing for poly(vinyl stearate) is also noticeable. The glass transition and melting temperatures as well as the onset temperature of decomposition are influenced to a larger extent by the side chain length than by the degree of polymerization. Thermal stability is improved if both the size and number of side chains increase, but only a long side chain causes a significant increase of the resistance to degradation. This results in a stabilization of PVAc so that oligomers from poly(vinyl octanoate) on are stable under atmospheric conditions. Thus, the way to design stable, chlorinated PVEs oligomers is to use a long n-alkyl side chain.

  17. Effect of side chain length and degree of polymerization on the decomposition and crystallization behaviour of chlorinated poly(vinyl ester) oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, D.; Mang, Th. [Aachen University of Applied Sciences, Heinrich-Mussmann-Str. 1, 52428 Jülich (Germany); Popescu, C., E-mail: crisan.popescu@kao.com [KAO Germany GmbH, Pfungstädterstr. 98-100, 64297 Darmstadt (Germany); Weichold, O., E-mail: weichold@ibac.rwth-aachen.de [Institute of Building Materials Research, Schinkelstr. 3, 52062 Aachen (Germany)

    2016-08-10

    Highlights: • Thermal behaviour of telomerized polyvinyl esters is investigated. • Thermal stability relies mainly on the contribution of side chains. • At equal molecular weights thermal stability is dictated by length of side chain. • Increasing the length of side chains improves also the packing degree of polymer. - Abstract: Four members of a homologous series of chlorinated poly(vinyl ester) oligomers CCl{sub 3}–(CH{sub 2}CH (OCO(CH{sub 2}){sub m}CH{sub 3})){sub n}–Cl with degrees of polymerization of 10 and 20 were prepared by telomerisation using carbon tetrachloride. The number of side chain carbon atoms ranges from 2 (poly(vinyl acetate) to 18 (poly(vinyl stearate)). The effect of the n-alkyl side chain length and of the degree of polymerization on the thermal stability and crystallization behaviour of the synthesized compounds was investigated. All oligomers degrade in two major steps by first losing HCl and side chains with subsequent breakdown of the backbone. The members with short side chains, up to poly(vinyl octanoate), are amorphous and show internal plasticization, whereas those with high number of side chain carbon atoms are semi-crystalline due to side-chain crystallization. A better packing for poly(vinyl stearate) is also noticeable. The glass transition and melting temperatures as well as the onset temperature of decomposition are influenced to a larger extent by the side chain length than by the degree of polymerization. Thermal stability is improved if both the size and number of side chains increase, but only a long side chain causes a significant increase of the resistance to degradation. This results in a stabilization of PVAc so that oligomers from poly(vinyl octanoate) on are stable under atmospheric conditions. Thus, the way to design stable, chlorinated PVEs oligomers is to use a long n-alkyl side chain.

  18. The Bistable Behaviour of Pseudomonas putida KT2440 during PHA Depolymerization under Carbon Limitation

    Directory of Open Access Journals (Sweden)

    Stephanie Karmann

    2017-06-01

    Full Text Available Poly(hydroxyalkanoates (PHAs are bacterial polyesters offering a biodegradable alternative to petrochemical plastics. The intracellular formation and degradation of PHAs is a dynamic process that strongly depends on the availability of carbon and other nutrients. Carbon excess and nitrogen limitation are considered to favor PHA accumulation, whereas carbon limitation triggers PHA depolymerization when all other essential nutrients are present in excess. We studied the population dynamics of Pseudomonas putida KT2440 at the single cell level during different physiological conditions, favoring first PHA polymerization during growth on octanoic acid, and then PHA depolymerization during carbon limitation. PHAs accumulate intracellularly in granules, and were proposed to separate preferentially together with nucleic acids, leading to two daughter cells containing approximately equal amounts of PHA. However, we could show that such P. putida KT2440 cells show bistable behavior when exposed to carbon limitation, and separate into two subpopulations: one with high and one with low PHA. This suggests an asymmetric PHA distribution during cell division under carbon limitation, which has a significant influence on our understanding of PHA mobilization.

  19. Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance

    OpenAIRE

    Campbell, Kirsteen J.; Bath, Mary L.; Turner, Marian L.; Vandenberg, Cassandra J.; Bouillet, Philippe; Metcalf, Donald; Scott, Clare L.; Cory, Suzanne

    2010-01-01

    Diverse human cancers with poor prognosis, including many lymphoid and myeloid malignancies, exhibit high levels of Mcl-1. To explore the impact of Mcl-1 overexpression on the hematopoietic compartment, we have generated vavP-Mcl-1 transgenic mice. Their lymphoid and myeloid cells displayed increased resistance to a variety of cytotoxic agents. Myelopoiesis was relatively normal, but lymphopoiesis was clearly perturbed, with excess mature B and T cells accumulating. Rather than the follicular...

  20. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

    International Nuclear Information System (INIS)

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis; Biswas, Ranjit

    2014-01-01

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH 2 + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH 2 ) considered are acetamide (CH 3 CONH 2 ), propionamide (CH 3 CH 2 CONH 2 ), and butyramide (CH 3 CH 2 CH 2 CONH 2 ); the electrolytes (LiX) are lithium perchlorate (LiClO 4 ), lithium bromide (LiBr), and lithium nitrate (LiNO 3 ). Differential scanning calorimetric measurements reveal glass transition temperatures (T g ) of these DEs are ∼195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ∼100–150 K above their individual T g s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH 3 CONH 2 + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in terms of temporal heterogeneity and amide clustering in these multi

  1. Effect of Hydrophobic Chain Length on the Stability and Guest Exchange Behavior of Shell-Sheddable Micelles Formed by Disulfide-Linked Diblock Copolymers.

    Science.gov (United States)

    Fan, Haiyan; Li, Yixia; Yang, Jinxian; Ye, Xiaodong

    2017-10-19

    Reduction-responsive micelles hold enormous promise for application as drug carriers due to the fast drug release triggered by reducing conditions and high anticancer activity. However, the effect of hydrophobic chain length on the stability and guest exchange of reduction-responsive micelles, especially for the micelles formed by diblock copolymers containing single disulfide group, is not fully understood. Here, shell-sheddable micelles formed by a series of disulfide-linked copolymer poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-SS-PCL) containing the same chain length of PEG but different chain lengths of hydrophobic block PCL were prepared and well characterized. The influence of the chain length of hydrophobic PCL block on the stability and guest exchange of PEG-SS-PCL micelles was studied by the use of both dynamic laser light scattering (DLS) and fluorescence resonance energy transfer (FRET). The results show that longer PCL chains lead to a slower aggregation rate and guest exchange of micelles in the aqueous solutions containing 10 mM dithiothreitol (DTT). The cell uptake of the shell-sheddable PEG-SS-PCL micelles in vitro shows that the amount of internalization of dyes loaded in PEG-SS-PCL micelles increases with the chain length of hydrophobic PCL block investigated by flow cytometric analysis and confocal fluorescence microscopy.

  2. Does alkyl chain length really matter? Structure–property relationships in thermochemistry of ionic liquids

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Zaitsau, Dzmitry H.; Emel’yanenko, Vladimir N.; Ralys, Ricardas V.; Yermalayeu, Andrei V.; Schick, Christoph

    2013-01-01

    Graphical abstract: We have shown that enthalpies of formation, enthalpies of vaporization, and lattice potential energies of alkylsubstituted imidazolium, pyridinium, and pyrrolidinium based ionic liquids with Cl and Br anions are linearly dependant on the alkyl chain length. The thermochemical properties of ILs are generally obey the group additivity rules and the values of the additivity parameters for enthalpies of formation and vaporization are very close to those for molecular compounds. - Highlights: • Alkyl substituted imidazolium, pyridinium, and pyrrolidinium based ionic liquids with anions [Cl] and [Br] were studied using DSC and ab initio methods. • The thermochemical properties of ILs generally obey the group additivity rules. • A linear dependence on the chain length of the alkyl chain of cation was found. - Abstract: DSC was used for determination of reaction enthalpies of synthesis of ionic liquids [C n mim][Cl]. A combination of DSC with quantum chemical calculations presents an indirect way to study thermodynamics of ionic liquids. The indirect procedure for vaporization enthalpy was validated with the direct experimental measurements by using thermogravimetry. First-principles calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the CBS-QB3 and G3 (MP2) theory. Experimental DSC data for homologous series of alkyl substituted imidazolium, pyridinium, and pyrrolidinium based ionic liquids with anions [Cl] and [Br] were collected from the literature. We have shown that enthalpies of formation, enthalpies of vaporization, and lattice potential energies are linearly dependant on the alkyl chain length. The thermochemical properties of ILs generally obey the group additivity rules and the values of the additivity parameters for enthalpies of formation and vaporization seem to be very close to those for molecular compounds

  3. Self-consistent field theoretic simulations of amphiphilic triblock copolymer solutions: Polymer concentration and chain length effects

    Directory of Open Access Journals (Sweden)

    X.-G. Han

    2014-06-01

    Full Text Available Using the self-consistent field lattice model, polymer concentration φP and chain length N (keeping the length ratio of hydrophobic to hydrophilic blocks constant the effects on temperature-dependent behavior of micelles are studied, in amphiphilic symmetric ABA triblock copolymer solutions. When chain length is increased, at fixed φP, micelles occur at higher temperature. The variations of average volume fraction of stickers φcos and the lattice site numbers Ncols at the micellar cores with temperature are dependent on N and φP, which demonstrates that the aggregation of micelles depends on N and φP. Moreover, when φP is increased, firstly a peak appears on the curve of specific heat CV for unimer-micelle transition, and then in addition a primary peak, the secondary peak, which results from the remicellization, is observed on the curve of CV. For a long chain, in intermediate and high concentration regimes, the shape of specific heat peak markedly changes, and the peak tends to be a more broad peak. Finally, the aggregation behavior of micelles is explained by the aggregation way of amphiphilic triblock copolymer. The obtained results are helpful in understanding the micellar aggregation process.

  4. Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks.

    Science.gov (United States)

    Hwang, Seungtaik; Gopalan, Arun; Hovestadt, Maximilian; Piepenbreier, Frank; Chmelik, Christian; Hartmann, Martin; Snurr, Randall Q; Kärger, Jörg

    2018-03-15

    Molecular diffusion is commonly found to slow down with increasing molecular size. Deviations from this pattern occur in some host materials with pore sizes approaching the diameters of the guest molecules. A variety of theoretical models have been suggested to explain deviations from this pattern, but robust experimental data are scarcely available. Here, we present such data, obtained by monitoring the chain length dependence of the uptake of n- alkanes in the zeolitic imidazolate framework ZIF-4. A monotonic decrease in diffusivity from ethane to n- butane was observed, followed by an increase for n- pentane, and another decrease for n- hexane. This observation was confirmed by uptake measurements with n- butane/ n -pentane mixtures, which yield faster uptake of n- pentane. Further evidence is provided by the observation of overshooting effects, i.e., by transient n- pentane concentrations exceeding the (eventually attained) equilibrium value. Accompanying grand canonical Monte Carlo simulations reveal, for the larger n- alkanes, significant differences between the adsorbed and gas phase molecular configurations, indicating strong confinement effects within ZIF-4, which, with increasing chain length, may be expected to give rise to configurational shifts facilitating molecular propagation at particular chain lengths.

  5. Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Seungtaik Hwang

    2018-03-01

    Full Text Available Molecular diffusion is commonly found to slow down with increasing molecular size. Deviations from this pattern occur in some host materials with pore sizes approaching the diameters of the guest molecules. A variety of theoretical models have been suggested to explain deviations from this pattern, but robust experimental data are scarcely available. Here, we present such data, obtained by monitoring the chain length dependence of the uptake of n-alkanes in the zeolitic imidazolate framework ZIF-4. A monotonic decrease in diffusivity from ethane to n-butane was observed, followed by an increase for n-pentane, and another decrease for n-hexane. This observation was confirmed by uptake measurements with n-butane/n-pentane mixtures, which yield faster uptake of n-pentane. Further evidence is provided by the observation of overshooting effects, i.e., by transient n-pentane concentrations exceeding the (eventually attained equilibrium value. Accompanying grand canonical Monte Carlo simulations reveal, for the larger n-alkanes, significant differences between the adsorbed and gas phase molecular configurations, indicating strong confinement effects within ZIF-4, which, with increasing chain length, may be expected to give rise to configurational shifts facilitating molecular propagation at particular chain lengths.

  6. Control of in vivo disposition and immunogenicity of polymeric micelles by adjusting poly(sarcosine) chain lengths on surface

    Science.gov (United States)

    Kurihara, Kensuke; Ueda, Motoki; Hara, Isao; Ozeki, Eiichi; Togashi, Kaori; Kimura, Shunsaku

    2017-07-01

    Four kinds of A3B-type amphiphilic polydepsipeptides, (poly(sarcosine))3- b-poly( l-lactic acid) (the degree of polymerization of poly(sarcosine) are 10, 33, 55, and 85; S10 3 , S33 3 , S55 3 , and S85 3 ) were synthesized to prepare core-shell type polymeric micelles. Their in vivo dispositions and stimulations to trigger immune system to produce IgM upon multiple administrations to mice were examined. With increasing poly(sarcosine) chain lengths, the hydrophilic shell became thicker and the surface density at the most outer surface decreased on the basis of dynamic and static light scattering measurements. These two physical elements of polymeric micelles elicited opposite effects on the immune response in light of the chain length therefore to show an optimized poly(sarcosine) chain length existing between 33mer and 55mer to suppress the accelerated blood clearance phenomenon associated with polymeric micelles.

  7. Exploration of Global Trend on Biomedical Application of Polyhydroxyalkanoate (PHA): A Patent Survey.

    Science.gov (United States)

    Ponnaiah, Paulraj; Vnoothenei, Nagiah; Chandramohan, Muruganandham; Thevarkattil, Mohamed Javad Pazhayakath

    2018-01-30

    Polyhydroxyalkanoates are bio-based, biodegradable naturally occurring polymers produced by a wide range of organisms, from bacteria to higher mammals. The properties and biocompatibility of PHA make it possible for a wide spectrum of applications. In this context, we analyze the potential applications of PHA in biomedical science by exploring the global trend through the patent survey. The survey suggests that PHA is an attractive candidate in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products. In our present study, we explored patents associated with various biomedical applications of polyhydroxyalkanoates. Patent databases of European Patent Office, United States Patent and Trademark Office and World Intellectual Property Organization were mined. We developed an intensive exploration approach to eliminate overlapping patents and sort out significant patents. We demarcated the keywords and search criterions and established search patterns for the database request. We retrieved documents within the recent 6 years, 2010 to 2016 and sort out the collected data stepwise to gather the most appropriate documents in patent families for further scrutiny. By this approach, we retrieved 23,368 patent documents from all the three databases and the patent titles were further analyzed for the relevance of polyhydroxyalkanoates in biomedical applications. This ensued in the documentation of approximately 226 significant patents associated with biomedical applications of polyhydroxyalkanoates and the information was classified into six major groups. Polyhydroxyalkanoates has been patented in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products. There are many avenues through which PHA & PHB could be

  8. An IEEE 802.3 Compatible Real Time Medium Access Control with Length-based Priority

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new medium access control method is proposed over the predominant Ethernet broadcast channel. Taking advantages of intrinsic variable length characteristic of standard Ethernet frame, message-oriented dynamic priority mechanism is established. Prioritized medium access control operates under a so-called block mode in event of collisions.High priority messages have a chance to preempt block status incurred by low priority ones. By this means, the new MAC provides a conditional deterministic real time performance beyond a statistical one. Experiments demonstrate effectiveness and attractiveness of the proposed scheme. Moreover, this new MAC is completely compatible with IEEE802.3.

  9. Biodegradability of Poly(hydroxyalkanoate Materials

    Directory of Open Access Journals (Sweden)

    Keiji Numata

    2009-08-01

    Full Text Available Poly(hydroxyalkanoate (PHA, which is produced from renewable carbon resources by many microorganisms, is an environmentally compatible polymeric material and can be processed into films and fibers. Biodegradation of PHA material occurs due to the action of extracellular PHA depolymerase secreted from microorganisms in various natural environments. A key step in determining the overall enzymatic or environmental degradation rate of PHA material is the degradation of PHA lamellar crystals in materials; hence, the degradation mechanism of PHA lamellar crystals has been studied in detail over the last two decades. In this review, the relationship between crystal structure and enzymatic degradation behavior, in particular degradation rates, of films and fibers for PHA is described.

  10. Effect of oxaliplatin on the survival rate of human Y79 cells after down-regulation of Mcl-1

    Directory of Open Access Journals (Sweden)

    Lu Zhou

    2017-12-01

    Full Text Available AIM: To study the effect of oxaliplatin on the survival rate of Y79 after down-regulation of Mcl-1 by SiRNA. METHODS: Y79 cells were cultured in RPMI1640. The cultured cells were stimulated with 0.25μmol/L of oxaliplatin. The expression of Mcl-1 protein was detected by Western blot after 6, 16 and 24h respectively. Cells in logarithmic phase were collected and used for single-cell suspension. Then they were transfected with empty plasmid, Mcl-1-homo-991, Mcl-1-homo-1114 and Mcl-1-homo-1235. After 6h, fluorescence microscope was used to observe the transfection efficiency and the optimal one was selected. The cells were divided into Group A and transfected with empty plasmids. The cells transfected with Mcl-1 were divided into Group B and Group C. Group A and Group C were treated with 0.25μmol/L oxaliplatin for stimulating induction, and the apoptotic rate was compared after 24h.RESULTS: The expression of Mcl-1 in Y79 stimulated by oxaliplatin was the most after 24h of culture. Mcl-1-homo-991 significantly inhibited the expression of Mcl-1 in Y79 after transfection. There was no significant difference in the apoptosis rate in Group A(11.1%±1.2%and in the control group(6.1%±0.6%(P>0.05. The apoptotic rate of Group C(49.2%±2.7%was significantly higher than that of Group B(20.8%±1.9%. At the same time, the apoptotic rates of these two groups were significantly higher than those of Group A and control group, the difference was statistically significant(PCONCLUSION:Downregulation of Mcl-1 by siRNA can reduce the drug resistance of Y79, thereby enhancing the apoptosis of Y79, and reducing the survival rate of Y79.

  11. Degradation of Mcl-1 through GSK-3β Activation Regulates Apoptosis Induced by Bufalin in Non-Small Cell Lung Cancer H1975 Cells

    Directory of Open Access Journals (Sweden)

    Xiao-hong Kang

    2017-04-01

    Full Text Available Background/Aims: Mcl-1, an anti-apoptotic Bcl-2 family member, is often overexpressed in non-small cell lung cancer (NSCLC. Bufalin has been reported to induce apoptosis in various tumor cells. However, there is no report showing that bufalin could downregulate Mcl-1 expression in NSCLC. Methods: Cell proliferation was analyzed by cell counting kit-8 (CCK-8 assay in H1975 cells. Cell apoptosis was detected by flow cytometry. Mcl-1 mRNA was detected by RT-PCR. The expression of apoptosis-associated proteins in H1975 cells was detected by western blotting. The levels of Mcl-1 ubiquitination and NOXA were analyzed by Immunoprecipitation assay. Results: Cell growth was inhibited by bufalin in a time and dose-dependent manner. Bufalin induced apoptosis in NSCLC cells by activating caspase cascades and downregulating Mcl-1 expression. However, overexpression of Mcl-1 diminished bufalin-induced apoptosis. Furthermore, bufalin did not reduce Mcl-1 mRNA expression in H1975 cells, but strongly promoted Mcl-1 protein degradation. Proteasome inhibitor MG132 markedly prevented the degradation of Mcl-1 and blocked bufalin-induced Mcl-1 reduction. Bufalin did not significantly affect NOXA protein levels, but downregulated the expression of p-GSK-3β. GSK-3 inhibitor and GSK-3β siRNA resulted in increased levels of Mcl-1 and reversed the bufalin-induced Mcl-1 degradation. Conclusion: Bufalin induced cell apoptosis in H1975 cells may be through downregulation of Mcl-1. Proteasomal degradation of Mcl-1 via GSK-3β activation was involved in bufalin-induced apoptosis.

  12. The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737.

    Science.gov (United States)

    Boiani, Mariana; Daniel, Cristina; Liu, Xueyuan; Hogarty, Michael D; Marnett, Lawrence J

    2013-03-08

    Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery.

  13. The Stress Protein BAG3 Stabilizes Mcl-1 Protein and Promotes Survival of Cancer Cells and Resistance to Antagonist ABT-737*

    Science.gov (United States)

    Boiani, Mariana; Daniel, Cristina; Liu, Xueyuan; Hogarty, Michael D.; Marnett, Lawrence J.

    2013-01-01

    Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery. PMID:23341456

  14. The Effect of the Chain Length on MMA Free Radicl Polymerization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the polymerization process of methyl methacrylate (MMA), the Arrhenius parameters (activation energy and frequency factor) of propagating reaction monotonically decrease with increasing monomer conversion. At the beginning and middle stage of the propagating reaction, the increase of radical chain length is the main reason of above mentioned change. And at the end stage, the sharp decrease of kp indicates that the activation energy is approximately incline to zero and the propagating reaction is controlled by molecular diffusion motion.

  15. Medium chain glycerides of coconut oil for microwave-enhanced conversion of polycarbonate into polyols

    Czech Academy of Sciences Publication Activity Database

    Beneš, Hynek; Paruzel, Aleksandra; Trhlíková, Olga; Paruzel, Bartosz

    2017-01-01

    Roč. 86, January (2017), s. 173-187 ISSN 0014-3057 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : medium chain triglycerides * coconut oil * polycarbonate Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.531, year: 2016

  16. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature

    International Nuclear Information System (INIS)

    Yuan, Yi; Liu, Zheming; Liu, Zhenyang; Peng, Lan; Li, Yongjie; Tang, Aiwei

    2017-01-01

    Highlights: • CsPbBr_3 perovskite nanocrystals have been synthesized in the presence of organic amines with different hydrocarbon length. • The photoluminescence of the CsPbBr_3 nanocrystals is affected by the varying the carbon length of the organic amines. • The lower reaction temperature and hydrocarbon chain length of the organic ligands play a significant role in the self-assembly of CsPbBr_3 nanocrystals. - Abstract: All-inorganic halide perovskites have become one of the most prospective materials for lightening and display technology due to their color-tunable and narrow-band emission. Herein, we have systematically studied the effects of organic amines with different hydrocarbon chain length on the optical properties and morphology as well as the crystal structure of colloidal CsPbBr_3 nanocrystals (NCs), which were synthesized in the presence of oleic acid (OA) and organic amines by using a simple hot-injection approach. The hydrocarbon chain length has shown an independent correlation to the morphology and crystal structure of the as-obtained CsPbBr_3 NCs at 160 °C, but their optical properties can be affected to some extent. The photoluminescence quantum yields (PLQYs) of the CsPbBr_3 NCs synthesized in the presence of organic amines with long carbon chain length are generally in the range of 55–80% for different reaction time, but the PLQYs of less than 20% are obtained for the products synthesized in the presence of octylamine (OTAm) with short carbon chain length. The effects of the reaction temperature on the optical properties, size and crystal structure of the CsPbBr_3 NCs synthesized in the presence of cetylamine (CTAm) are studied. Interestingly, some nanoplates also appear in these CsPbBr_3 NCs obtained at relatively low temperatures (120 and 140 °C), which have a strong tendency to self-assemble into face-to-face nanostructures. Such a similar self-assembly behavior is also observed in the product synthesized in the presence of

  17. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yi; Liu, Zheming; Liu, Zhenyang; Peng, Lan; Li, Yongjie; Tang, Aiwei, E-mail: awtang@bjtu.edu.cn

    2017-05-31

    Highlights: • CsPbBr{sub 3} perovskite nanocrystals have been synthesized in the presence of organic amines with different hydrocarbon length. • The photoluminescence of the CsPbBr{sub 3} nanocrystals is affected by the varying the carbon length of the organic amines. • The lower reaction temperature and hydrocarbon chain length of the organic ligands play a significant role in the self-assembly of CsPbBr{sub 3} nanocrystals. - Abstract: All-inorganic halide perovskites have become one of the most prospective materials for lightening and display technology due to their color-tunable and narrow-band emission. Herein, we have systematically studied the effects of organic amines with different hydrocarbon chain length on the optical properties and morphology as well as the crystal structure of colloidal CsPbBr{sub 3} nanocrystals (NCs), which were synthesized in the presence of oleic acid (OA) and organic amines by using a simple hot-injection approach. The hydrocarbon chain length has shown an independent correlation to the morphology and crystal structure of the as-obtained CsPbBr{sub 3} NCs at 160 °C, but their optical properties can be affected to some extent. The photoluminescence quantum yields (PLQYs) of the CsPbBr{sub 3} NCs synthesized in the presence of organic amines with long carbon chain length are generally in the range of 55–80% for different reaction time, but the PLQYs of less than 20% are obtained for the products synthesized in the presence of octylamine (OTAm) with short carbon chain length. The effects of the reaction temperature on the optical properties, size and crystal structure of the CsPbBr{sub 3} NCs synthesized in the presence of cetylamine (CTAm) are studied. Interestingly, some nanoplates also appear in these CsPbBr{sub 3} NCs obtained at relatively low temperatures (120 and 140 °C), which have a strong tendency to self-assemble into face-to-face nanostructures. Such a similar self-assembly behavior is also observed in the

  18. Glycogen with short average chain length enhances bacterial durability

    Science.gov (United States)

    Wang, Liang; Wise, Michael J.

    2011-09-01

    Glycogen is conventionally viewed as an energy reserve that can be rapidly mobilized for ATP production in higher organisms. However, several studies have noted that glycogen with short average chain length in some bacteria is degraded very slowly. In addition, slow utilization of glycogen is correlated with bacterial viability, that is, the slower the glycogen breakdown rate, the longer the bacterial survival time in the external environment under starvation conditions. We call that a durable energy storage mechanism (DESM). In this review, evidence from microbiology, biochemistry, and molecular biology will be assembled to support the hypothesis of glycogen as a durable energy storage compound. One method for testing the DESM hypothesis is proposed.

  19. Screening of short- and medium-chain chlorinated paraffins in selected riverine sediments and sludge from the Czech Republic.

    Science.gov (United States)

    Pribylová, Petra; Klánová, Jana; Holoubek, Ivan

    2006-11-01

    Wide distribution of chlorinated paraffins in the environment has already been demonstrated in several studies; however, information about their levels in the Central Europe is still very limited. First study focused on the SCCP contamination of the Czech aquatic environment have been performed recently, and its results motivated the authors to analyze sediments from a wide set of the Czech rivers in order to obtain more detailed information. Thirty-six sediment samples from eleven rivers and five drainage vents neighboring the chemical factories were analyzed; special attention was paid to the industrial areas. For the first time in the Czech Republic, medium-chain in addition to short-chain chlorinated paraffins were analyzed using GC-ECNI-MS. Chlorinated paraffins were detected in sediment samples on the concentration levels up to 347 ngg(-1) for short-chain chlorinated paraffins, and 5575 ngg(-1) for medium-chain chlorinated paraffins. Average chlorination degree of SCCPs was 65%.

  20. Influence of the chain length on the biological behaviour of /sup 131/I fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Riche, F.; Mathieu, J.P.; Comet, M.; Vidal, M.; Pernin, C.; Marti-Batlle, D.; Busquet, G. (Universite de Grenoble, 38 (France)); Bardy, A. (C.E.A.-ORIS, 91 - Gif-sur-Yvette (France))

    1983-01-01

    Saturated and acetylenic fatty acids labeled with /sup 131/I in ..omega.. position, differing by their chain length (C8 to C20) and the number odd or even of their carbon atoms are injected in mice. The evolution of the activity in myocardium, blood, liver and kidney is measured until 10 minutes after injection. The myocardial activity increases with chain length from C8 to C16 then decreases for C18 and C20. The odd or even number of carbon atoms does not influence myocardial activity but in the liver, activity is inferior with the odd fatty acids. The presence of a triple bond accelerates the output of activity from the myocardium and these fatty acids are not well suited for the study of myocardial metabolism.

  1. Process optimization for polyhydroxyalkanoate (PHA) production from waste via microbial enrichment cultures

    NARCIS (Netherlands)

    Korkakaki, E.

    2017-01-01

    Polyhydroxyalkanoates (PHA) are compounds naturally produced by microorganisms, with many industrial applications, either as bioplastics or as precursors for production of chemicals. Until now, industrial PHA production was conducted with pure strains of bacteria fed with well-defined feedstocks,

  2. Spectroscopic study of divalent copper complexes forming in the systems CuCl2-MCl (M= Na, K, Rb, Cs)

    International Nuclear Information System (INIS)

    Utorov, N.P.; Bakshi, Yu.M.; Bazov, V.P.; Gel'bshtejn, A.I.

    1982-01-01

    The structure of complex ions formed in salt systems CuCl 2 -MCl depending on the nature of cation of alkali metal chloride at different mole ratios (n=MCl/CuCl 2 ) is studied. The data obtained using the methods of oscillation and electron spectroscopy enable to consider that during the melting of CuCl 2 and CsCl at n 4 2- ions, have the symmetry Csub(2v) at n=1. π-bonding, which is realized with participation of of Cl - p-orbitals and Cu 2+ d-orbitals plays a very important role in the formation of dimers and polymer chains. π-conjugated systems are characterized by the spectrum of charge transfer in the visible region. Charge transfer promotes metal reduction in the excited state which is adequate to the change of electron configuration of copper from d 9 for d 10 . It results in the decrease of acceptor and increase of dative ability of copper cation in the composition of salt complex. Big (n >= 2) additions of CsCl lead to the formation of separate stable ions of CuCl 4 2- type with the symmetry Dsub(2d)

  3. Use of the MCL dialog language for autonomous multi-channel analyzer automation

    International Nuclear Information System (INIS)

    Gyunter, Z.; Lebner, M.; Mikhaehlis, B.; Shvenkner, V.; Shul'tts, K.-Kh.

    1985-01-01

    The structure and software of a time-of-flight multichannel analyzer are considered. The analyzer is a subsystem of the measuring module of the SPN-1 polarized neutron spectrometer used in experiments at the IBR-2 reactor. The analyzer operates having several structures differing from one another by a timing coder. The MCL (MULTI-CONTROL-LANGUAGE) system is developed for control of the spectrometer. The system ensures the computer-user conversation and interfacing the computer and the experimental equipment. The MCL language is similar to that of the BASIC or the BAMBI. It has modular structure. The language interpreter and operating system have about 2 kbyte memory. The considered analyser is successfully used already during 6 months. The number of detector inputs of the analyser increased. Expenditures for alternations of programs are negligible due to modular structure of the system. Realization of new commads does not require comprehensive knowledge of the MCL language

  4. Oxidative stabilization of mixed mayonnaises made with linseed oil and saturated medium-chain triglyceride oil

    NARCIS (Netherlands)

    Raudsepp, P.; Brüggemann, D.A.; Lenferink, Aufrid T.M.; Otto, Cornelis; Andersen, M.L.

    2014-01-01

    Mayonnaises, made with either saturated medium chain triglyceride (MCT) oil or unsaturated purified linseed oil (LSO), were mixed. Raman confocal microspectrometry demonstrated that lipid droplets in mixed mayonnaise remained intact containing either MCT oil or LSO. Peroxide formation during storage

  5. Municipal wastewater biological nutrient removal driven by the fermentation liquid of dairy wastewater.

    Science.gov (United States)

    Liu, Hui; Chen, Yinguang; Wu, Jiang

    2017-11-01

    Carbon substrate is required by biological nutrient removal (BNR) microorganism, but it is usually insufficient in the influent of many municipal wastewater treatment plants. In this study the use of ethanol-enriched fermentation liquid, which was derived from dairy wastewater, as the preferred carbon substrate of BNR was reported. First, the application of dairy wastewater and food processing wastewater and their fermentation liquid as the carbon substrate of BNR was compared in the short-term tests. The fermented wastewater showed higher BNR performance than the unfermented one, and the fermentation liquid of dairy wastewater (FL-DW), which was obtained under pH 8 and fermentation time of 6 day, exhibited the highest phosphorus (95.5%) and total nitrogen (97.6%) removal efficiencies due to its high ethanol content (57.9%). Then, the long-term performance of FL-DW acting as the carbon substrate of BNR was compared with that of acetate and ethanol, and the FL-DW showed the greatest phosphorus and total nitrogen removal. Further investigation showed that the use of FL-DW caused the highest polyhydroxyalkanoates (PHAs) synthesis in BNR microbial cells, and more PHAs were used for phosphorus uptake and denitrification rather than glycogen synthesis and microbial growth. The FL-DW can be used as a preferred carbon substrate for BNR microbes. AB: aerobic end sludge active biomass; BNR: biological nutrient removal; DW: dairy wastewater; FL-DW: fermentation liquid of dairy wastewater; FPW: food processing wastewater; FL-FPW: fermentation liquid of food processing wastewater; PHAs: polyhydroxyalkanoates; PHB: poly-3-hydroxybutyrate; PHV: poly-3-hydroxyvalerate; PH2MV: poly-3-hydroxy-2- methylvalerate; PAOs: phosphorus accumulating organisms; SBR: sequencing batch reactor; SOP: soluble ortho-phosphorus; TN: total nitrogen; TSS: total suspended solids; VSS: volatile suspended solids; VFAs: volatile fatty acids; WWTPs: wastewater treatment plants.

  6. 77 FR 70181 - Request for Information on Adopting Smoke-Free Policies in Public Housing Agencies (PHAs) and...

    Science.gov (United States)

    2012-11-23

    ... Adopting Smoke-Free Policies in Public Housing Agencies (PHAs) and Multifamily Housing: Reopening of Public... smoke-free policies for both public housing and multifamily housing. HUD was seeking information from... implementing smoke-free policies for both public housing and multifamily housing. In the October 4, 2012 notice...

  7. Molecular characterization of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P

    1991-01-01

    . All clones sequenced from the patient exhibited a single base substitution from adenine (A) to guanine (G) at position 985 in the MCAD cDNA as the only consistent base-variation compared with control cDNA. In contrast, the parents contained cDNA with the normal and the mutated sequence, revealing......A series of experiments has established the molecular defect in the medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) gene in a family with MCAD deficiency. Demonstration of intra-mitochondrial mature MCAD indistinguishable in size (42.5-kDa) from control MCAD, and of mRNA with the correct...... size of 2.4 kb, indicated a point-mutation in the coding region of the MCAD gene to be disease-causing. Consequently, cloning and DNA sequencing of polymerase chain reaction (PCR) amplified complementary DNA (cDNA) from messenger RNA of fibroblasts from the patient and family members were performed...

  8. Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava

    OpenAIRE

    Dietrich, Diane; Illman, Barbara; Crooks, Casey

    2013-01-01

    Background The aim of this study is determine the relative sensitivity of a panel of seven polyhydroxyalkanoate producing bacteria to a panel of seven lignocellulosic-derived fermentation inhibitors representing aliphatic acids, furans and phenolics. A further aim was to measure the polyhydroxybutyrate production of select organisms on lignocellulosic-derived monosaccharides arabinose, xylose, glucose and mannose. Findings We examined the sensitivity of seven polyhydroxyalkanoate producing ba...

  9. Alignment of Supply Chain Strategy with Marketing and Sales activities in Bosnian Small and Medium Enterprises

    OpenAIRE

    Muhammed Kürşad Özlen; Azra Muratovic; Nedzma Begic

    2013-01-01

    The objective of this research is to identify the alignment of supply chain strategies with marketing and financial activities in Bosnian small and medium enterprises. Regarding the methodology used, we have conducted a survey and collected the data in an excel spreadsheet and then analyzed descriptively. The research achieved poor marketing strategies and no customer centric view in these marketing strategies, furthermore, not efficient and effective supply chain management strategy and comp...

  10. Cloud-point extraction of green-polymers from Cupriavidus necator lysate using thermoseparating-based aqueous two-phase extraction.

    Science.gov (United States)

    Leong, Yoong Kit; Lan, John Chi-Wei; Loh, Hwei-San; Ling, Tau Chuan; Ooi, Chien Wei; Show, Pau Loke

    2017-03-01

    Polyhydroxyalkanoates (PHAs), a class of renewable and biodegradable green polymers, have gained attraction as a potential substitute for the conventional plastics due to the increasing concern towards environmental pollution as well as the rapidly depleting petroleum reserve. Nevertheless, the high cost of downstream processing of PHA has been a bottleneck for the wide adoption of PHAs. Among the options of PHAs recovery techniques, aqueous two-phase extraction (ATPE) outshines the others by having the advantages of providing a mild environment for bioseparation, being green and non-toxic, the capability to handle a large operating volume and easily scaled-up. Utilizing unique properties of thermo-responsive polymer which has decreasing solubility in its aqueous solution as the temperature rises, cloud point extraction (CPE) is an ATPE technique that allows its phase-forming component to be recycled and reused. A thorough literature review has shown that this is the first time isolation and recovery of PHAs from Cupriavidus necator H16 via CPE was reported. The optimum condition for PHAs extraction (recovery yield of 94.8% and purification factor of 1.42 fold) was achieved under the conditions of 20 wt/wt % ethylene oxide-propylene oxide (EOPO) with molecular weight of 3900 g/mol and 10 mM of sodium chloride addition at thermoseparating temperature of 60°C with crude feedstock limit of 37.5 wt/wt %. Recycling and reutilization of EOPO 3900 can be done at least twice with satisfying yield and PF. CPE has been demonstrated as an effective technique for the extraction of PHAs from microbial crude culture. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Production and characterization of a biodegradable poly (hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) copolymer by moderately haloalkalitolerant Halomonas campisalis MCM B-1027 isolated from Lonar Lake, India.

    Science.gov (United States)

    Kulkarni, S O; Kanekar, P P; Nilegaonkar, S S; Sarnaik, S S; Jog, J P

    2010-12-01

    Several microorganisms produce polyhydroxyalkanoates (PHA). They are accumulated intracellularly as energy storage compounds. The PHAs are of interest because of their potential in biomedical applications. Halophilic bacteria and archaea are known to produce polyhydroxybutyrate (PHB). This paper describes production of a biodegradable copolymer, PHB-co-PHV by a moderately haloalkalitolerant Halomonas campisalis, isolated from Lonar Lake, India. The production of PHA was in the range of 45-81% on dry cell weight basis when the organism was grown in a production medium containing 1% (w/v) maltose and 0.1% (w/v) yeast extract, at pH ranging from 6 to 9 with an inoculum density of 10(5)-10(7) cells/ml of medium, for incubation period of 15-30 h and at 37 degrees C. The polymer produced by the organism is a hydroxyester with molecular weight of 1.3014 x 10(6). Its melting temperature was 171 degrees C. The (1)H NMR analysis revealed that the polymer was a copolymer of PHB-co-PHV. This could be achieved by providing simple carbon source viz. maltose. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Screening of short- and medium-chain chlorinated paraffins in selected riverine sediments and sludge from the Czech Republic

    International Nuclear Information System (INIS)

    Pribylova, Petra; Klanova, Jana; Holoubek, Ivan

    2006-01-01

    Wide distribution of chlorinated paraffins in the environment has already been demonstrated in several studies; however, information about their levels in the Central Europe is still very limited. First study focused on the SCCP contamination of the Czech aquatic environment have been performed recently, and its results motivated the authors to analyze sediments from a wide set of the Czech rivers in order to obtain more detailed information. Thirty-six sediment samples from eleven rivers and five drainage vents neighboring the chemical factories were analyzed; special attention was paid to the industrial areas. For the first time in the Czech Republic, medium-chain in addition to short-chain chlorinated paraffins were analyzed using GC-ECNI-MS. Chlorinated paraffins were detected in sediment samples on the concentration levels up to 347 ng g -1 for short-chain chlorinated paraffins, and 5575 ng g -1 for medium-chain chlorinated paraffins. Average chlorination degree of SCCPs was 65%. - Data on contamination of sediments from industrial areas fill the informational gap in the field of contamination of the Central Europe by chlorinated paraffins

  13. Application of clustering methods: Regularized Markov clustering (R-MCL) for analyzing dengue virus similarity

    Science.gov (United States)

    Lestari, D.; Raharjo, D.; Bustamam, A.; Abdillah, B.; Widhianto, W.

    2017-07-01

    Dengue virus consists of 10 different constituent proteins and are classified into 4 major serotypes (DEN 1 - DEN 4). This study was designed to perform clustering against 30 protein sequences of dengue virus taken from Virus Pathogen Database and Analysis Resource (VIPR) using Regularized Markov Clustering (R-MCL) algorithm and then we analyze the result. By using Python program 3.4, R-MCL algorithm produces 8 clusters with more than one centroid in several clusters. The number of centroid shows the density level of interaction. Protein interactions that are connected in a tissue, form a complex protein that serves as a specific biological process unit. The analysis of result shows the R-MCL clustering produces clusters of dengue virus family based on the similarity role of their constituent protein, regardless of serotypes.

  14. Polyhydroxyalkanoate production by a novel bacterium Massilia sp UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene

    OpenAIRE

    Han, Xuerong; Satoh, Yasuharu; Kuriki, Yumi; Seino, Teruyuki; Fujita, Shinji; Suda, Takanori; Kobayashi, Takanori; Tajima, Kenji

    2014-01-01

    We successfully isolated one microorganism (UMI-21) from Ulva, a green algae that contains starch. The strain UMI-21 can produce polyhydroxyalkanoate (PHA) from starch, maltotriose, or maltose as a sole carbon source. Taxonomic studies and 16S rDNA sequence analysis revealed that strain UMI-21 was phylogenetically related to species of the genus Massilia. The PHA content under the cultivation condition using a 10-L jar fermentor was 45.5% (w/w). This value was higher than that obtained after ...

  15. Manipulating the morphology and textural property of γ-AlOOH by modulating the alkyl chain length of cation in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhe, E-mail: tangzhe1983@163.com; Hu, Xiaofu, E-mail: hjj19850922@126.cn; Liang, Jilei, E-mail: liang.jilei_ttplan@126.com; Zhao, Jinchong, E-mail: Dr.zhaojc@gmail.com; Liu, Yunqi, E-mail: liuyq@upc.edu.cn; Liu, Chenguang, E-mail: cgliu@upc.edu.cn

    2013-06-01

    Graphical abstract: - Highlights: • γ-AlOOH was the only product in all experiments. • Different morphology of γ-AlOOH was obtained according to the alkyl chain length. • The textural property of γ-AlOOH was changed according to the alkyl chain length. • The possible formation mechanisms for hollow sphere and microflower were proposed. - Abstract: We demonstrated that the morphology and textural property of γ-AlOOH can be tuned by modulating the alkyl chain length of cation in [C{sub n}mim]{sup +}Cl{sup −} (n = 4, 8, 16). Using the short alkyl chain length-based [C{sub 4}mim]{sup +}Cl{sup −} as the structure-directed reagent, the morphology of γ-AlOOH was not changed and preserved as the hollow sphere structure in all experiments. The specific area and the number of small meso-pores of γ-AlOOH increased with the increase of [C{sub 4}mim]{sup +}Cl{sup −} dosage. While, using the larger alkyl chain length-based ionic liquids as the soft-template, such as [C{sub 8}mim]{sup +}Cl{sup −} and [C{sub 16}mim]{sup +}Cl{sup −}, the morphologies of γ-AlOOH were changed from initiative hollow spheres into the final microflowers. The specific areas of γ-AlOOH firstly increased then decreased with the increase of their dosage. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). Furthermore, the possible formation mechanisms of γ-AlOOH have been proposed.

  16. A Review of Supply Chain Collaboration Practices for Small and Medium-sized Manufacturers

    Science.gov (United States)

    Wee, SY; Thoo, AC; Z, Sulaiman; FM, Muharam

    2016-05-01

    For the decades, organizations have endeavored to look for external sources for opportunities to achieve efficient and responsive supply chain with their partners especially for small and medium manufacturers (SMM). In this scenario, supply chain collaboration (SCC) is an interaction between supply chain members with the purpose of utilizes the knowledge and resources of customers and suppliers, and integrates the flows of products and information in order to achieve a common goal and obtain mutual benefit. The essential SCC dimensions for SMMs comprised of information sharing, joint knowledge creation, joint decision making, goal congruence and incentive sharing. The successful implementation of SCC can give SMMs an edge over their competitors. This paper aims to introduce a review of SCC practices for SMM. Overall, the findings provide managerial insights for the SMM in SCC implementation owing to resource scarcity and the need to draw SCC in order to ensure a sustainable competitive advantage.

  17. Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Chen

    2016-12-01

    Full Text Available Microbial polyhydroxyalkanoates (PHA have been produced as bioplastics for various purposes. Under the support of China National Basic Research 973 Project, we developed synthetic biology methods to diversify the PHA structures into homo-, random, block polymers with improved properties to better meet various application requirements. At the same time, various pathways were assembled to produce various PHA from glucose as a simple carbon source. At the end, Halomonas bacteria were reconstructed to produce PHA in changing morphology for low cost production under unsterile and continuous conditions. The synthetic biology will advance the PHA into a bio- and material industry.

  18. The lanthanoid(III) chloride oxoselenates(IV) MCl[SeO3] (M = Sm - Lu) with HoCl[TeO3]- or B-type structure

    International Nuclear Information System (INIS)

    Lipp, C.; Schleid, T.

    2008-01-01

    The B-type lanthanoid(III) chloride oxoselenates(IV) MCl[SeO 3 ] (M = Sm - Lu) crystallize in the orthorhombic space group Pnma (no. 62) with Z = 4 in the structure type of HoCl[TeO 3 ]. Their lattice constants are decreasing following the lanthanoid contraction from a = 730.01(7), b = 707.90(7), c 895.64(9) pm for SmCl[SeO 3 ] to a = 714.63(7), b = 681.76(7), c = 864.05(9) pm for LuCl[SeO 3 ]. In contrast to NdCl[SeO 3 ], the only representative of the A-type structure, where the coordination numbers of the Nd 3+ cations are 7+2 and 8, the B-type structure is dominated by pentagonal bipyramids [MO 5 Cl 2 ] 9- (CN(M 3+ ) = 7), which are connected via trans-oriented O..O edges to ∞ 1 {[MO 4/2 e O 1/1 t Cl 2/1 t ] 5- } chains (e = edge-sharing, t = terminal) running parallel to the [010] direction. Their inclination relative to each other allows for an alternating interconnection of these chains via Cl - and ψ 1 -tetrahedral [SeO 3 ] 2- anions to form a three-dimensional structure. The distances within the [SeO 3 ] 2- groups are in the normal range (d(Se-O) = 165 - 172 pm), while those of the O 2- and Cl - anions to the central M 3+ cation diminish in dependence of the increasing atomic number (d(M-O) = 226 - 244 pm / 216 - 232 pm, d(M-Cl) 277 - 278 pm / 266 - 270 pm, M = Sm / Lu). For the synthesis of the chloride oxoselenates(IV) MCl[SeO 3 ] the respective lanthanoid sesquioxide (M 2 O 3 ) and selenium dioxide (SeO 2 ) were reacted with either an eutectic mixture of RbCl and LiCl or with the corresponding lanthanoid trichloride (MCl 3 ) in evacuated silica ampoules for either five weeks at 500 C or one week at 850 C. (orig.)

  19. Application of nitrogen and carbon stable isotopes (δ(15N and δ(13C to quantify food chain length and trophic structure.

    Directory of Open Access Journals (Sweden)

    Matthew J Perkins

    Full Text Available Increasingly, stable isotope ratios of nitrogen (δ(15N and carbon (δ(13C are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR using δ(15N, and carbon range (CR using δ(13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15N or δ(13C from source to consumer between trophic levels and among food chains. δ(15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰, and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority

  20. Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    Science.gov (United States)

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

  1. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    Science.gov (United States)

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  2. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature

    Science.gov (United States)

    Yuan, Yi; Liu, Zheming; Liu, Zhenyang; Peng, Lan; Li, Yongjie; Tang, Aiwei

    2017-05-01

    All-inorganic halide perovskites have become one of the most prospective materials for lightening and display technology due to their color-tunable and narrow-band emission. Herein, we have systematically studied the effects of organic amines with different hydrocarbon chain length on the optical properties and morphology as well as the crystal structure of colloidal CsPbBr3 nanocrystals (NCs), which were synthesized in the presence of oleic acid (OA) and organic amines by using a simple hot-injection approach. The hydrocarbon chain length has shown an independent correlation to the morphology and crystal structure of the as-obtained CsPbBr3 NCs at 160 °C, but their optical properties can be affected to some extent. The photoluminescence quantum yields (PLQYs) of the CsPbBr3 NCs synthesized in the presence of organic amines with long carbon chain length are generally in the range of 55-80% for different reaction time, but the PLQYs of less than 20% are obtained for the products synthesized in the presence of octylamine (OTAm) with short carbon chain length. The effects of the reaction temperature on the optical properties, size and crystal structure of the CsPbBr3 NCs synthesized in the presence of cetylamine (CTAm) are studied. Interestingly, some nanoplates also appear in these CsPbBr3 NCs obtained at relatively low temperatures (120 and 140 °C), which have a strong tendency to self-assemble into face-to-face nanostructures. Such a similar self-assembly behavior is also observed in the product synthesized in the presence of oleylamine (OLAm), but only flat nanoplates are observed in the products in the presence of OTAm at 120 °C. The results indicate that the lower reaction temperature and hydrocarbon chain length of the organic ligands play a significant role in the self-assembly of CsPbBr3 NCs. This work opens up an alternative approach to controllable-synthesis of perovskite NCs through varying the carbon chain length of organic surfactants, and enlightens

  3. Micellar dipolar rearrangement is sensitive to hydrophobic chain length: Implication for structural switchover of piroxicam.

    Science.gov (United States)

    Sethy, Dasaratha; Chakraborty, Hirak

    2016-10-01

    The interfacial properties of the membrane are exceptionally vital in drug-membrane interaction. They not only select out a particular prototropic form of the drug molecule for incorporation, but are also potent enough to induce structural switchover of these drugs in several cases. In this work, we quantitatively monitored the change in dipolar rearrangement of the micellar interface (as a simplified membrane mimic) by measuring the dielectric constant and dipole potential with the micellization of SDS at pH 3.6. The dielectric constant and dipole potential were measured utilizing the fluorescence of polarity sensitive probe, pyrene and potential-sensitive probe, di-8-ANEPPS, respectively. Our study demonstrates that the change in dipolar rearrangement directly influences the switchover equilibrium between the anionic and neutral from of piroxicam. We have further extended our work to evaluate the effect of hydrophobic chain length of the surfactants on the dipolar rearrangement and its effect on the structural switchover of piroxicam. It is interesting that the extent of switchover of piroxicam is directly correlated with the dipolar rearrangement induced bythe varying hydrophobic chain length of the surfactants. To the best of our knowledge, our results constitute the first report to show the dependence of dipole potential on the hydrophobic chain length of the surfactant and demonstrate that the dipolar rearrangement directly tunes the extent of structural switchover of piroxicam, which was so far only intuitive. We consider that this new finding would have promising implication in drug distribution and drug efficacy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Impact of the alkyl chain length on binding of imidazolium-based ionic liquids to bovine serum albumin

    Science.gov (United States)

    Zhang, Mengyue; Wang, Ying; Zhang, Hongmei; Cao, Jian; Fei, Zhenghao; Wang, Yanqing

    2018-05-01

    The effects of six imidazolium-based ionic liquids (ILs) with different alkyl chain length ([CnMim]Cl, n = 2, 4, 6, 8, 10, 12) on the structure and functions of bovine serum albumin (BSA) were studied by multi-spectral methods and molecular docking. ILs with the longer alkyl chain length have the stronger binding interaction with BSA and the greater conformational damage to protein. The effects of ILs on the functional properties of BSA were further studied by the determination of non-enzyme esterase activity, β-fibrosis and other properties of BSA. The thermal stability of BSA was reduced, the rate of the formation of beta sheet structures of BSA was lowered, and the esterase-like activity of BSA were decreased with the increase of ILs concentration. Simultaneous molecular modeling technique revealed the favorable binding sites of ILs on protein. The hydrophobic force and polar interactions were the mainly binding forces of them. The calculated results are in a good agreement with the spectroscopic experiments. These studies on the impact of the alkyl chain length on binding of imidazolium-based ionic liquids to BSA are of great significance for understanding and developing the application of ionic liquid in life and physiological system.

  5. Liposomes coated with hydrophobically modified hydroxyethyl cellulose: Influence of hydrophobic chain length and degree of modification.

    Science.gov (United States)

    Smistad, Gro; Nyström, Bo; Zhu, Kaizheng; Grønvold, Marthe Karoline; Røv-Johnsen, Anne; Hiorth, Marianne

    2017-08-01

    Nanoparticulate systems with an uncharged hydrophilic surface may have a great potential in mucosal drug delivery. In the present study liposomes were coated with hydrophobically modified hydroxyethyl cellulose (HM-HEC) to create a sterically stabilized liposomal system with an uncharged surface. The aim was to clarify the influence of the amount of hydrophobic modification of HEC and the length of the hydrophobic moiety, on the stability of the system and on the release properties. HM-HEC with different degrees of hydrophobic modification (1 and 2mol%) and hydrophobic groups with different chain lengths (C8, C12, C16) were included in the study, as well as fluid phase and gel phase liposomes. Both types of liposomes were successfully coated with HM-HEC containing 1mol% of hydrophobic groups, while 2mol% did not work for the intended pharmaceutical applications. The polymer coated gel phase liposomes were stable (size, zeta potential, leakage) for 24 weeks at 4°C, with no differences between the C8 and C16 HM-HEC coating. For the fluid phase liposomes a size increase was observed after 24 weeks at 4°C for all formulations; the C8 HM-HEC coated liposomes increased the most. No differences in the leakage during storage at 4°C or in the release at 35°C were observed between the fluid phase formulations. To conclude; HM-HEC with a shorter hydrophobic chain length resulted in a less stable product for the fluid phase liposomes, while no influence of the chain length was observed for the gel phase liposomes (1mol% HM). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein.

    Science.gov (United States)

    Petros, Andrew M; Swann, Steven L; Song, Danying; Swinger, Kerren; Park, Chang; Zhang, Haichao; Wendt, Michael D; Kunzer, Aaron R; Souers, Andrew J; Sun, Chaohong

    2014-03-15

    Apoptosis is regulated by the BCL-2 family of proteins, which is comprised of both pro-death and pro-survival members. Evasion of apoptosis is a hallmark of malignant cells. One way in which cancer cells achieve this evasion is thru overexpression of the pro-survival members of the BCL-2 family. Overexpression of MCL-1, a pro-survival protein, has been shown to be a resistance factor for Navitoclax, a potent inhibitor of BCL-2 and BCL-XL. Here we describe the use of fragment screening methods and structural biology to drive the discovery of novel MCL-1 inhibitors from two distinct structural classes. Specifically, cores derived from a biphenyl sulfonamide and salicylic acid were uncovered in an NMR-based fragment screen and elaborated using high throughput analog synthesis. This culminated in the discovery of selective and potent inhibitors of MCL-1 that may serve as promising leads for medicinal chemistry optimization efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

    Energy Technology Data Exchange (ETDEWEB)

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis; Biswas, Ranjit, E-mail: ranjit@bose.res.in [Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India)

    2014-03-14

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH{sub 2} + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH{sub 2}) considered are acetamide (CH{sub 3}CONH{sub 2}), propionamide (CH{sub 3}CH{sub 2}CONH{sub 2}), and butyramide (CH{sub 3}CH{sub 2}CH{sub 2}CONH{sub 2}); the electrolytes (LiX) are lithium perchlorate (LiClO{sub 4}), lithium bromide (LiBr), and lithium nitrate (LiNO{sub 3}). Differential scanning calorimetric measurements reveal glass transition temperatures (T{sub g}) of these DEs are ∼195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ∼100–150 K above their individual T{sub g}s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH{sub 3}CONH{sub 2} + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in

  8. Loss of a Single Mcl-1 Allele Inhibits MYC-Driven Lymphomagenesis by Sensitizing Pro-B Cells to Apoptosis

    Directory of Open Access Journals (Sweden)

    Stephanie Grabow

    2016-03-01

    Full Text Available MCL-1 is critical for progenitor cell survival during emergency hematopoiesis, but its role in sustaining cells undergoing transformation and in lymphomagenesis is only poorly understood. We investigated the importance of MCL-1 in the survival of B lymphoid progenitors undergoing MYC-driven transformation and its functional interactions with pro-apoptotic BIM and PUMA and the tumor suppressor p53 in lymphoma development. Loss of one Mcl-1 allele almost abrogated MYC-driven-lymphoma development owing to a reduction in lymphoma initiating pre-B cells. Although loss of the p53 target PUMA had minor impact, loss of one p53 allele substantially accelerated lymphoma development when MCL-1 was limiting, most likely because p53 loss also causes defects in non-apoptotic tumor suppressive processes. Remarkably, loss of BIM restored the survival of lymphoma initiating cells and rate of tumor development. Thus, MCL-1 has a major role in lymphoma initiating pro-B cells to oppose BIM, which is upregulated in response to oncogenic stress.

  9. Molecular dynamics simulation of radiation grafted FEP films as proton exchange membranes: Effects of the side chain length

    DEFF Research Database (Denmark)

    Li, Xue; Zhao, Yang; Li, Weiwei

    2017-01-01

    In order to study the microstructure of the prepared potential proton exchange membrane (PEM), molecular dynamics (MD) simulations were used to lucubrate the transport behavior of water molecules and hydronium ions inside the hydrated sulfonated styrene grafted fluorinated ethylene propylene (FEP...... whereas larger water clusters formed. The results of the mean square displacements (MSDs) show that the proton conductivities of the membranes with the proposed side chain lengths were about three fifths of the experimental data, of which the membrane with side chain length of 7 sulfonic styrene units...... was supposed to exhibit the highest proton conductivity, that is 115.69 mS cm-1. All of the supposed membrane models presented good proton conductivity that could definitely meet the application requirements of the proton exchange membranes. The MD simulations can provide an insight to the chain structure...

  10. Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins

    DEFF Research Database (Denmark)

    Kingshott, P.; Thissen, H.; Griesser, H.J.

    2002-01-01

    The effects of pinning density, chain length, and 'cloud point' (CP) versus non-CP grafting conditions have been studied on the ability of polyethylene glycol (PEG) layers to minimize adsorption from a multicomponent (lysozyme, human serum albumin (HSA), IgG and lactoferrin) protein solution...... density) r.f.g.d. polymer layers. The PEG graft density was varied also by increasing the temperature and salt (K2SO4) content of the grafting solution; it reached a maximum at the CP of the PEGs. The CP reaction conditions were critical for producing PEG layers capable of minimizing protein adsorption. X...... density and chain length are interrelated, but the key factor is optimization of PEG chain density by use of the CP conditions, provided that a sufficient density of pinning sites exists. (C) 2002 Elsevier Science Ltd. Al l rights reserved....

  11. The addition of medium-chain triglycerides to a purified fish oil-based diet alters inflammatory profiles in mice.

    Science.gov (United States)

    Carlson, Sarah J; Nandivada, Prathima; Chang, Melissa I; Mitchell, Paul D; O'Loughlin, Alison; Cowan, Eileen; Gura, Kathleen M; Nose, Vania; Bistrian, Bruce R; Puder, Mark

    2015-02-01

    Parenteral nutrition associated liver disease (PNALD) is a deadly complication of long term parenteral nutrition (PN) use in infants. Fish oil-based lipid emulsion has been shown in recent years to effectively treat PNALD. Alternative fat sources free of essential fatty acids have recently been investigated for health benefits related to decreased inflammatory response. We hypothesized that the addition of medium-chain triglycerides (MCT) to a purified fish oil-based diet would decrease the response to inflammatory challenge in mice, while allowing for sufficient growth and development. Six groups of ten adult male C57/Bl6 mice were pair-fed different dietary treatments for a period of twelve weeks, varying only in fat source (percent calories by weight): 10.84% soybean oil (SOY), 10% coconut oil (HCO), 10% medium-chain triglycerides (MCT), 3% purified fish oil (PFO), 3% purified fish oil with 3% medium-chain triglycerides (50:50 MCT:PFO) and 3% purified fish oil with 7.59% medium-chain triglycerides (70:30 MCT:PFO). An endotoxin challenge was administered to half of the animals in each group at the completion of dietary treatment. All groups demonstrated normal growth throughout the study period. Groups fed MCT and HCO diets demonstrated biochemical essential fatty acid deficiency and decreased IL-6 and TNF-α response to endotoxin challenge. Groups containing PFO had increased inflammatory response to endotoxin challenge, and the addition of MCT to PFO mitigated this inflammatory response. These results suggest that the addition of MCT to PFO formulations may decrease the host response to inflammatory challenge, which may pose potential for optimized PN formulations. Inclusion of MCT in lipid emulsions given with PN formulations may be of use in therapeutic interventions for disease states resulting from chronic inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Phase behaviour of an ionic microemulsion system as a function of the cosurfactant chain length

    NARCIS (Netherlands)

    Kegel, W.K.; Lekkerkerker, H.N.W.

    1993-01-01

    The phase behaviour of a microemulsion system consisting of equal volumes of brine and oil, sodium dodecyl sulphate (SDS) as surfactant and alcohols of different chain lengths (pentanol, hexanol and heptanol) as cosurfactant was studied. In the case of pentanol, at low surfactant concentrations and

  13. Biosynthesis of Colabomycin E, a New Manumycin-Family Metabolite, Involves an Unusual Chain-Length Factor

    Czech Academy of Sciences Publication Activity Database

    Petříčková, Kateřina; Pospíšil, Stanislav; Kuzma, Marek; Tylová, Tereza; Jágr, Michal; Tomek, P.; Chroňáková, Alica; Brabcová, E.; Anděra, Ladislav; Krištůfek, Václav; Petříček, Miroslav

    2014-01-01

    Roč. 15, č. 9 (2014), s. 1334-1345 ISSN 1439-4227 R&D Projects: GA MZd(CZ) NT13012 Institutional support: RVO:61388971 ; RVO:60077344 ; RVO:68378050 Keywords : biosynthesis * chain-length factors * manumycins Subject RIV: CE - Biochemistry Impact factor: 3.088, year: 2014

  14. Primary intestinal lymphangiectasia diagnosed by double-balloon enteroscopy and treated by medium-chain triglycerides: a case report.

    Science.gov (United States)

    Lai, Yu; Yu, Tao; Qiao, Xiao-Yu; Zhao, Li-Na; Chen, Qi-Kui

    2013-01-14

    Primary intestinal lymphangiectasia is a disorder characterized by exudative enteropathy resulting from morphologic abnormalities of the intestinal lymphatics. Intestinal lymphangiectasia can be primary or secondary, so the diagnosis of primary intestinal lymphangiectasia must first exclude the possibility of secondary intestinal lymphangiectasia. A double-balloon enteroscopy and biopsy, as well as the pathology can be used to confirm the diagnosis of intestinal lymphangiectasia. A polymeric diet containing medium-chain triglycerides and total parenteral nutrition may be a useful therapy. A 17-year-old girl of Mongoloid ethnicity was admitted to our hospital with a history of diarrhea and edema. She was diagnosed with protein-losing enteropathy caused by intestinal lymphangiectasia. This was confirmed by a double-balloon enteroscopy and multi-dot biopsy. After treatment with total parenteral nutrition in hospital, which was followed by a low-fat and medium-chain triglyceride diet at home, she was totally relieved of her symptoms. Intestinal lymphangiectasia can be diagnosed with a double-balloon enteroscopy and multi-dot biopsy, as well as the pathology of small intestinal tissue showing edema of the submucosa and lymphangiectasia. Because intestinal lymphangiectasia can be primary or secondary, the diagnosis of primary intestinal lymphangiectasia must first exclude the possibility of secondary intestinal lymphangiectasia. A positive clinical response to the special diet therapy, namely a low-fat and medium-chain triglyceride diet, can further confirm the diagnosis of primary intestinal lymphangiectasia.

  15. Valorization of waste glycerol for the production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable manner.

    Science.gov (United States)

    Gahlawat, Geeta; Soni, Sanjeev Kumar

    2017-11-01

    Glycerol is a by-product of many industrial processes and huge amounts of it are generated in the form of waste, thereby necessitating a search for the method of its disposal. An interesting solution is the valorization of crude glycerol into value added product such as polyhydroxyalkanoates (PHAs). The feasibility of producing PHAs by Cupriavidus necator was evaluated using crude glycerol (WG). Various cultivation strategies were designed for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by adding different organic acids as precursors at different concentrations levels. Batch cultivation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production showed accumulation of 6.76g/L biomass containing 4.84g/L copolymer on WG with a maximum 3-hydroxyvalerate content of 24.6mol%. PHAs extraction using a non-toxic and recyclable solvent, 1,2 propylene carbonate, showed the highest recovery yield (90%) and purity (93%) at 120°C temperature and 30min incubation. This is the first report on jatropha based glycerol valorization for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production coupled with extraction using non-toxic solvent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Eco-Efficiency Assessment of Bioplastics Production Systems and End-of-Life Options

    Directory of Open Access Journals (Sweden)

    Kunnika Changwichan

    2018-03-01

    Full Text Available Bioplastics demand has been increased globally due to concerns regarding environmentally friendly consumption and production. Polylactic acid (PLA, polyhydroxyalkanoates (PHAs, and polybutylene succinate (PBS are promising bioplastics with bio-based feedstocks and property of biodegradability. They are produced by bacterial fermentation of sugars from carbohydrate sources. With flexibility in their properties, PLA, PHAs, and PBS can potentially substitute conventional plastics such as polypropylene (PP, polyethylene terephthalate (PET, and polystyrene (PS. This study aims at evaluating the environmental and economic sustainability of bioplastics production together with end-of-life (EOL options. The combination of environmental and economic indicators, eco-efficiency (E/E, was selected to investigate the performance of PLA, PHAs, and PBS from sugarcane and cassava in comparison with PP. The environmental impacts were determined using life cycle assessment. The product cost was used to represent the economic value. The E/E results showed that the environmental and economic sustainability could be enhanced with 100% mechanical recycling of all kinds of studied plastics. It is also important to highlight that mechanical recycling showed a better performance in terms of E/E than composting of bioplastics.

  17. MCL Plays an Anti-Inflammatory Role in Mycobacterium tuberculosis-Induced Immune Response by Inhibiting NF-κB and NLRP3 Inflammasome Activation

    Directory of Open Access Journals (Sweden)

    Qingwen Zhang

    2017-01-01

    Full Text Available Mycobacterium tuberculosis (Mtb remains a significant menace to global health as it induces granulomatous lung lesions and systemic inflammatory responses during active tuberculosis (TB. Micheliolide (MCL, a sesquiterpene lactone, was recently reported to have a function of relieving LPS-induced inflammatory response, but the regulative role of MCL on the immunopathology of TB still remains unknown. In this experiment, we examined the inhibitory effect of MCL on Mtb-induced inflammatory response in mouse macrophage-like cell line Raw264.7 by downregulating the activation of nuclear factor kappa B (NF-κB and NLRP3 inflammasome. Evidences showed that MCL decreased the secretion of Mtb-induced inflammatory cytokines (IL-1β and TNF-α in a dose-dependent manner. Meanwhile, MCL dramatically suppressed Mtb-induced activation of iNOS and COX2 as well as subsequent production of NO. Furthermore, MCL inhibited Mtb-induced phosphorylation of Akt (Ser 473 in Raw264.7. According to our results, MCL plays an important role in modulating Mtb-induced inflammatory response through PI3K/Akt/NF-κB pathway and subsequently downregulating the activation of NLRP3 inflammasome. Therefore, MCL may represent as a potential drug candidate in the adjuvant treatment of TB by regulating host immune response.

  18. AMPK-mediated up-regulation of mTORC2 and MCL-1 compromises the anti-cancer effects of aspirin

    Science.gov (United States)

    Hua, Hui; Yin, Yancun; Wang, Jiao; Luo, Ting; Jiang, Yangfu

    2016-01-01

    AMP-activated protein kinase (AMPK) is an important energy sensor that may inhibit cell proliferation or promote cell survival during stresses. Besides cyclooxygenase, AMPK is another target of the nonsteroid anti-inflammatory agent aspirin. Preclinical and clinical investigations demonstrate that aspirin can inhibit several types of cancer such as colorectal adenomas and hepatocellular carcinoma (HCC). However, little is known about the cellular response to aspirin that may lead to aspirin resistance. Here, we show that aspirin induces the expression of MCL-1 in HepG2 and SW480 cells through AMPK-mTOR-Akt/ERK axis. Treatment of HepG2 and SW480 cells with aspirin leads to increased MCL-1 expression, Akt and ERK1/2 phosphorylation. Inhibition of Akt/MEK abrogates the induction of MCL-1 by aspirin. Aspirin activates AMPK, which in turn up-regulates mTORC2 activity, Akt, ERK1/2 phosphorylation and MCL-1 expression. MCL-1 knockdown sensitizes cancer cells to aspirin-induced apoptosis. Combination of aspirin and AMPK, Akt or MEK inhibitor results in more significant inhibition of cell proliferation and induction of apoptosis than single agent. Moreover, sorafenib blocks aspirin-induced MCL-1 up-regulation. Combination of aspirin and sorafenib leads to much more cell death and less cell proliferation than each drug alone. Treatment of HCC and colon cancer xenografts with both aspirin and sorafenib results in more significant tumor suppression than single agent. These data demonstrate that AMPK-mediated up-regulation of mTORC2 and MCL-1 may compromise the anticancer effects of aspirin. Combination of aspirin and sorafenib may be an effective regimen to treat HCC and colon cancer. PMID:26918349

  19. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    Science.gov (United States)

    Huo, Lixia; Du, Pengcheng; Zhou, Hui; Zhang, Kaifeng; Liu, Peng

    2017-02-01

    It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C6, C12, or C18) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (Ra) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al2O3 ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C12 alkyl chain (C12-SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C12-SAM with desirable alkyl chain length.

  20. Dependence of micelle size and shape on detergent alkyl chain length and head group.

    Directory of Open Access Journals (Sweden)

    Ryan C Oliver

    Full Text Available Micelle-forming detergents provide an amphipathic environment that can mimic lipid bilayers and are important tools for solubilizing membrane proteins for functional and structural investigations in vitro. However, the formation of a soluble protein-detergent complex (PDC currently relies on empirical screening of detergents, and a stable and functional PDC is often not obtained. To provide a foundation for systematic comparisons between the properties of the detergent micelle and the resulting PDC, a comprehensive set of detergents commonly used for membrane protein studies are systematically investigated. Using small-angle X-ray scattering (SAXS, micelle shapes and sizes are determined for phosphocholines with 10, 12, and 14 alkyl carbons, glucosides with 8, 9, and 10 alkyl carbons, maltosides with 8, 10, and 12 alkyl carbons, and lysophosphatidyl glycerols with 14 and 16 alkyl carbons. The SAXS profiles are well described by two-component ellipsoid models, with an electron rich outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core composed of the alkyl chains. The minor axis of the elliptical micelle core from these models is constrained by the length of the alkyl chain, and increases by 1.2-1.5 Å per carbon addition to the alkyl chain. The major elliptical axis also increases with chain length; however, the ellipticity remains approximately constant for each detergent series. In addition, the aggregation number of these detergents increases by ∼16 monomers per micelle for each alkyl carbon added. The data provide a comprehensive view of the determinants of micelle shape and size and provide a baseline for correlating micelle properties with protein-detergent interactions.

  1. Analytical solution to the diffusion, sorption and decay chain equation in a saturated porous medium between two reservoirs

    International Nuclear Information System (INIS)

    Guzman, Juan; Maximov, Serguei; Escarela-Perez, Rafael; López-García, Irvin; Moranchel, Mario

    2015-01-01

    The diffusion and distribution coefficients are important parameters in the design of barrier systems used in radioactive repositories. These coefficients can be determined using a two-reservoir configuration, where a saturated porous medium is allocated between two reservoirs filled by stagnant water. One of the reservoirs contains a high concentration of radioisotopes. The goal of this work is to obtain an analytical solution for the concentration of all radioisotopes in the decay chain of a two-reservoir configuration. The analytical solution must be obtained by taking into account the diffusion and sorption processes. Concepts such as overvalued concentration, diffusion and decay factors are employed to this end. It is analytically proven that a factor of the solution is identical for all chains (considering a time scaling factor), if certain parameters do not change. In addition, it is proven that the concentration sensitivity, due to the distribution coefficient variation, depends of the porous medium thickness, which is practically insensitive for small porous medium thicknesses. The analytical solution for the radioisotope concentration is compared with experimental and numerical results available in literature. - Highlights: • Saturated porous media allocated between two reservoirs. • Analytical solution of the isotope transport equation. • Transport considers diffusion, sorption and decay chain

  2. The Effects of Long-or Medium-Chain Fat Diets on Glucose Toleance and Myocellular Content of Lipid Intermediates in Rats

    NARCIS (Netherlands)

    Vogel-van den Bosch, de H.M.; Hoeks, J.; Timmers, S.; Houten, S.M.; Dijk, P.J.; Boon, W.P.C.; Beurden, van D.; Schaart, G.; Kersten, A.H.; Voshol, P.J.; Wanders, R.J.A.; Hesselink, M.K.; Schrauwen, P.

    2011-01-01

    Accumulation of triacylglycerols (TAGs) and acylcarnitines in skeletal muscle upon high-fat (HF) feeding is the resultant of fatty acid uptake and oxidation and is associated with insulin resistance. As medium-chain fatty acids (MCFAs) are preferentially ß-oxidized over long-chain fatty acids, we

  3. Productivity, disturbance and ecosystem size have no influence on food chain length in seasonally connected rivers.

    Science.gov (United States)

    Warfe, Danielle M; Jardine, Timothy D; Pettit, Neil E; Hamilton, Stephen K; Pusey, Bradley J; Bunn, Stuart E; Davies, Peter M; Douglas, Michael M

    2013-01-01

    The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations), disturbance (indicated by hydrological isolation) and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions.

  4. Productivity, disturbance and ecosystem size have no influence on food chain length in seasonally connected rivers.

    Directory of Open Access Journals (Sweden)

    Danielle M Warfe

    Full Text Available The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations, disturbance (indicated by hydrological isolation and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions.

  5. Phase Behavior and Evaporation Profile of Tween 20 - Eugenol System. Effect of Different Alkane Chain Length and Solvent System

    International Nuclear Information System (INIS)

    Kassim, A.; Lim, W.H.; Kuangl, D.; Rusmawati, W.W.M.; Abdullah, A.H.; Teoh, S.P.

    2003-01-01

    The isotropic region of Tween 20/eugenol/n-alkane in aqueous systems was determined. The solubilisation trend of isotropic solution formed in the presence of eugenol was studied as a function of different alkyl chain length of n-alkane. The solubility of solvent in surfactant solution is dependent on their molecular polarity. An increase in n-alkane chain length (lower polarity) lead to smaller isotropic region which will affect the surfactant partitioning between the interface, the oil phase and the aqueous phase of the microemulsion as the oil chain length is varied. The changes of evaporation behaviour were affected strongly by the types of phases existed in the systems. The increment of n-alkane and water content led to higher evaporation rate. But the formation of w/o microemulsion would lower the evaporation rate because water molecules were trapped in the core of aggregates. In solubilisation system, evaporation rate is dependent on the solvent content and the interaction between Tween 20 and solvent molecules in the mixed composition. (author)

  6. Pseudomonas aeruginosa cytochrome c551 denaturation by five systematic urea derivatives that differ in the alkyl chain length.

    Science.gov (United States)

    Kobayashi, Shinya; Fujii, Sotaro; Koga, Aya; Wakai, Satoshi; Matubayasi, Nobuyuki; Sambongi, Yoshihiro

    2017-07-01

    Reversible denaturation of Pseudomonas aeruginosa cytochrome c 551 (PAc 551 ) could be followed using five systematic urea derivatives that differ in the alkyl chain length, i.e. urea, N-methylurea (MU), N-ethylurea (EU), N-propylurea (PU), and N-butylurea (BU). The BU concentration was the lowest required for the PAc 551 denaturation, those of PU, EU, MU, and urea being gradually higher. Furthermore, the accessible surface area difference upon PAc 551 denaturation caused by BU was found to be the highest, those by PU, EU, MU, and urea being gradually lower. These findings indicate that urea derivatives with longer alkyl chains are stronger denaturants. In this study, as many as five systematic urea derivatives could be applied for the reversible denaturation of a single protein, PAc 551 , for the first time, and the effects of the alkyl chain length on protein denaturation were systematically verified by means of thermodynamic parameters.

  7. Soliton scatterings by impurities in a short-length sine-Gordon chain

    International Nuclear Information System (INIS)

    Dikande, A.M.; Kofane, T.C.

    1995-07-01

    The scattering of soliton by impurities at the frontiers of a finite-length region of an infinite sine-Gordon chain is analyzed. The impurities consist of two isotopic inhomogeneities installed at the boundaries of the finite-length region. The soliton solution in the region is found in term of snoidal sine-Gordon soliton which properly takes into account the effects of the boundaries. By contrast, the soliton solutions in the neighboring sides of the region are obtained in terms of the so-called large-amplitude, localized kinks with limiting spatial extensions at x → ± ∞, which is equal ±π. Using the continuity of these soliton solutions at the frontiers as well as appropriate boundary conditions, it is shown that the soliton may be either i) reflected by the incident impurity; ii) trapped (with oscillating motions) between the two impurities (i.e. inside the infinite region); or iii) transmitted by the second impurity into the third, infinitely extended region. The threshold velocities for the reflection and transmission into different regions are found and shown to vary exponentially as a function of the length of the bounded region. The frequency of soliton oscillations between the impurities has also been calculated in some acceptable limit. (author). 28 refs, 1 fig

  8. Adsorption of 1,2,3-Trichloropropane (TCP) to meet a MCL of 5 ppt.

    Science.gov (United States)

    Babcock, Roger W; Harada, Bryce K; Lamichhane, Krishna M; Tsubota, Korey T

    2018-02-01

    1,2,3-Trichloropropane (TCP) is a groundwater contaminant in the drinking water aquifers in Hawaii and some other states. Granular activated carbon (GAC) has been used for 30 years to treat approximately 60 million gallons per day of TCP-contaminated groundwater in Hawaii. The State of Hawaii's current maximum contaminant level (MCL) for TCP is 600 ng/L (ppt), and consideration is being given to lower the MCL to 5 ppt. There is no EPA MCL for TCP. A study was conducted to determine if any GAC could meet a 5 ppt MCL for TCP, and if so, how many bedvolumes (BVs) could be treated prior to breakthrough. Constant Diffusivity-Rapid Small-Scale Column Tests (CD-RSSCTs) were performed to evaluate GAC adsorption of TCP. Three different groundwaters and six different GACs were utilized. The RSSCTs with the currently-utilized GAC were predictive of the performance of the GAC contactors (50,000 BVs to breakthrough). Any of the six GACs could meet a MCL of 5 ppt and some could do so for 150,000 or more BVs. No single GAC was optimal for all three well sites, indicating effects of subtle undefined differences in the water matrix and/or GAC physiochemical properties. The coal-based direct-activated carbon currently being used is the least optimal for all three well sites with respect to meeting a potential new TCP MCL of 5 ppt. The most effective GACs for Kunia were the Calgon coal-based GAC and the Siemens enhanced coconut shell GAC, while the most effective for Waipahu were the Siemens regular and enhanced coconut shell GACs, and the most effective for Mililani was the Calgon coal-based GAC. Choosing just one GAC for use at all three well sites (rather than the optimal for each site) would result in a reduction of treatment run time of 1 year at one well site (63% reduction). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. PDGF upregulates Mcl-1 through activation of β-catenin and HIF-1α-dependent signaling in human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Shareen Iqbal

    Full Text Available BACKGROUND: Aberrant platelet derived growth factor (PDGF signaling has been associated with prostate cancer (PCa progression. However, its role in the regulation of PCa cell growth and survival has not been well characterized. METHODOLOGY/PRINCIPAL FINDINGS: Using experimental models that closely mimic clinical pathophysiology of PCa progression, we demonstrated that PDGF is a survival factor in PCa cells through upregulation of myeloid cell leukemia-1 (Mcl-1. PDGF treatment induced rapid nuclear translocation of β-catenin, presumably mediated by c-Abl and p68 signaling. Intriguingly, PDGF promoted formation of a nuclear transcriptional complex consisting of β-catenin and hypoxia-inducible factor (HIF-1α, and its binding to Mcl-1 promoter. Deletion of a putative hypoxia response element (HRE within the Mcl-1 promoter attenuated PDGF effects on Mcl-1 expression. Blockade of PDGF receptor (PDGFR signaling with a pharmacological inhibitor AG-17 abrogated PDGF induction of Mcl-1, and induced apoptosis in metastatic PCa cells. CONCLUSIONS/SIGNIFICANCE: Our study elucidated a crucial survival mechanism in PCa cells, indicating that interruption of the PDGF-Mcl-1 survival signal may provide a novel strategy for treating PCa metastasis.

  10. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

    Science.gov (United States)

    Thevenet, Jonathan; De Marchi, Umberto; Domingo, Jaime Santo; Christinat, Nicolas; Bultot, Laurent; Lefebvre, Gregory; Sakamoto, Kei; Descombes, Patrick; Masoodi, Mojgan; Wiederkehr, Andreas

    2016-05-01

    Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 μM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 μM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. © FASEB.

  11. Chain length dependence of the helix orientation in Langmuir-Blodgett monolayers of alpha-helical diblock copolypeptides

    NARCIS (Netherlands)

    Nguyen, Le-Thu T.; Ardana, Aditya; Vorenkamp, Eltjo J.; ten Brinke, Gerrit; Schouten, Arend J.

    2010-01-01

    The effect of chain length on the helix orientation of alpha-helical diblock copolypeptides in Langmuir and Langmuir-Blodgett monolayers is reported for the first time. Amphiphilic diblock copolypeptides (PLGA-b-PMLGSLGs) of poly(alpha-L-glutamic acid) (PLGA) and

  12. The effect of chain length and lipid phase transitions on the selective permeability properties of liposomes

    NARCIS (Netherlands)

    Blok, M.C.; Neut-Kok, E.C.M. van der; Deenen, L.L.M. van; Gier, J. de

    1975-01-01

    This paper describes experiments showing the importance of the fatty acid chain length on the barrier properties of liposomal bilayers, prepared from saturated lecithins, under conditions of lateral phase separation. 1. 1.|Above the gel to liquid crystalline phase transition temperature,

  13. Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length

    Science.gov (United States)

    The objective of this work was to evaluate the effect of three silane coupling agents with different aliphatic chain lengths on the hydrophobicity of eucalyptus pulp fiber. The three silanes coupling agents used (isobutyltrimethoxysilane, methyltrimethoxysilane, and n-octyltriethoxysilane [OTES]) we...

  14. Effect of Chain Length Compatibility of Alcohols on Muscovite Flotation by Dodecyl Amine

    Directory of Open Access Journals (Sweden)

    Li Wang

    2018-04-01

    Full Text Available A portion of dodecyl amine (DDA in a muscovite flotation system was replaced with alcohols with different carbon-chain lengths. These alcohols included octanol (OCT; decanol (DEC; dodecanol (DOD; and tetradecanol (TER. The muscovite adsorption behavior of the mixed DDA and alcohol systems were investigated through zeta potential; contact angle; and adsorption quantity tests. Single-mineral flotation tests showed that the muscovite-collecting power of the mixed DDA/alcohol (OCT, DEC, or DOD system was stronger than that of the pure DDA system. The muscovite-collecting power of the collector systems decreased in the following order: DDA/DEC > DDA/OCT > DDA/DEC > DDA > DDA/TER. Zeta potential and contact angle analysis indicated that when combined with DDA; alcohols physically adsorbed on the surfaces of muscovite. This behavior improved the hydrophobicity of muscovite. Furthermore, adsorption analysis revealed that synergy between DDA and alcohol enhanced the adsorption of alcohol on muscovite. DDA has a dominant role in synergistic adsorption; whereas alcohol has a supporting role. Among all tested alcohols; DDA and DOD exhibit the highest synergetic adsorption effect because of their similar carbon-chain lengths. This similarity promotes the formation of a compact adsorption layer on the muscovite surface.

  15. Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities

    DEFF Research Database (Denmark)

    Tholstrup, T.; Ehnholm, C.; Jauhiainen, M.

    2004-01-01

    Background: Dietary medium-chain fatty acids (MCFAs) are of nutritional interest because they are more easily absorbed from dietary medium-chain triacylglycerols (MCTs) than are long-chain fatty acids from, for example, vegetable oils. It has generally been claimed that MCFAs do not increase plasma...... cholesterol, although this claim is poorly documented. Objective: We compared the effects of a diet rich in either MCFAs or oleic acid on fasting blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities in healthy men. Design: In a study with a double-blind, randomized, crossover...... plasma total triacylglycerol (P = 0.0361), and higher plasma glucose (P = 0.033). Plasma HDL-cholesterol and insulin concentrations and activities of cholesterol ester transfer protein and phospholipid transfer protein did not differ significantly between the diets. Conclusions: Compared with fat high...

  16. Studium biodegradace polyhydroxyalkanoátů.

    OpenAIRE

    Wurstová, Agáta

    2014-01-01

    Diplomová práce je zaměřena na studium biodegradace polyhydroxyalkanoátů, konkrétně polymeru polyhydroxybutyrátu. První část práce se zabývá studiem biodegradace polyhydroxybutyrátu ve formě PHB prášku a PHB fólie pomocí vybraných druhů mikroorganismů z řad bakterií, kvasinek a plísní. Jako zástupce bakterií byl vybrán mikroorganismus Delftia acidovorans, z řad kvasinek Aureobasidium pullulans a ze zástupců plísní Aspergillus fumigatus. Aktivita extracelulární PHB depolymerázy byla analyzován...

  17. The effect of the chain length distribution of free fatty acids on the mixing properties of stratum corneum model membranes.

    Science.gov (United States)

    Oguri, Masashi; Gooris, Gert S; Bito, Kotatsu; Bouwstra, Joke A

    2014-07-01

    The stratum corneum (SC) plays a fundamental role in the barrier function of the skin. The SC consists of corneocytes embedded in a lipid matrix. The main lipid classes in the lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to examine the effect of the chain length of FFAs on the thermotropic phase behavior and mixing properties of SC lipids. Fourier transform infrared spectroscopy and Raman imaging spectroscopy were used to study the mixing properties using either protonated or deuterated FFAs. We selected SC model lipid mixtures containing only a single CER, CHOL and either a single FFA or a mixture of FFAs mimicking the FFA SC composition. The single CER consists of a sphingoid base with 18 carbon atoms and an acyl chain with a chain length of 24 carbon atoms. When using lignoceric acid (24 carbon atoms) or a mixture of FFAs, the CER and FFAs participated in mixed crystals, but hydration of the mixtures induced a slight phase separation between CER and FFA. The mixed crystalline structures did not phase separate during storage even up to a time period of 3months. When using palmitic acid (16 carbon atoms), a slight phase separation was observed between FFA and CER. This phase separation was clearly enhanced during hydration and storage. In conclusion, the thermotropic phase behavior and the mixing properties of the SC lipid mixtures were shown to strongly depend on the chain length and chain length distribution of FFAs, while hydration enhanced the phase separation. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Lipid polymorphism of mixtures of dioleoylphosphatidylethanolamine and saturated and monounsaturated phosphatidylcholines of various chain lengths

    International Nuclear Information System (INIS)

    Tate, M.W.; Gruner, S.M.

    1987-01-01

    The L/sub α/-H/sub II/ phase transition behavior of many lipid-water liquid crystals is dominated by the competition between the tendency to curl the lipid layers to an intrinsic radius of curvature and opposing hydrocarbon packing constraints. In particular, packing constraints can increase the free energy of the inverted hexagonal (H/sub II/) phase as compared to that of the lamellar (L/sub α/) phase. This is especially true where the lipid molecule is not long enough to reach into the corners of the lattice in large hexagonal structures necessitated by a large radius of curvature.In this paper it is shown that the addition of a minor fraction long-chain lipid to a system of otherwise uniform chain composition can also relax packing constraints, thereby lowering the lamellar to hexagonal transition temperature. For the specific systems used, dioleoylphosphatidylethanolamine (di-18:1/sub c/-PE) with minor fractions of 1,2-diacyl-sn-glycero-3-phosphocholines [di-n:1/sub c/-PC (n = 14, 18, 22, and 24)], the observed H/sub II/lattices systematically increased in size with increasing chain length suggesting that the chain length also may affect the intrinsic curvature of the mixture. These experiments demonstrate that the lipid shape concept, which is a qualitative expression of the concept quantitatively described by the intrinsic radius of curvature, is insufficient to understand the L/sub α/-H/sub II/ transition. It is necessary to, at least, consider the competition between curvature and packing

  19. Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas

    NARCIS (Netherlands)

    Diender, M.; Stams, A.J.M.; Machado de Sousa, D.Z.

    2016-01-01

    Background
    Synthesis gas, a mixture of CO, H2, and CO2, is a promising renewable feedstock for bio-based production of organic chemicals. Production of medium-chain fatty acids can be performed via chain elongation, utilizing acetate and ethanol as main substrates. Acetate and ethanol are main

  20. Primary intestinal lymphangiectasia diagnosed by double-balloon enteroscopy and treated by medium-chain triglycerides: a case report

    Directory of Open Access Journals (Sweden)

    Lai Yu

    2013-01-01

    Full Text Available Abstract Introduction Primary intestinal lymphangiectasia is a disorder characterized by exudative enteropathy resulting from morphologic abnormalities of the intestinal lymphatics. Intestinal lymphangiectasia can be primary or secondary, so the diagnosis of primary intestinal lymphangiectasia must first exclude the possibility of secondary intestinal lymphangiectasia. A double-balloon enteroscopy and biopsy, as well as the pathology can be used to confirm the diagnosis of intestinal lymphangiectasia. A polymeric diet containing medium-chain triglycerides and total parenteral nutrition may be a useful therapy. Case presentation A 17-year-old girl of Mongoloid ethnicity was admitted to our hospital with a history of diarrhea and edema. She was diagnosed with protein-losing enteropathy caused by intestinal lymphangiectasia. This was confirmed by a double-balloon enteroscopy and multi-dot biopsy. After treatment with total parenteral nutrition in hospital, which was followed by a low-fat and medium-chain triglyceride diet at home, she was totally relieved of her symptoms. Conclusion Intestinal lymphangiectasia can be diagnosed with a double-balloon enteroscopy and multi-dot biopsy, as well as the pathology of small intestinal tissue showing edema of the submucosa and lymphangiectasia. Because intestinal lymphangiectasia can be primary or secondary, the diagnosis of primary intestinal lymphangiectasia must first exclude the possibility of secondary intestinal lymphangiectasia. A positive clinical response to the special diet therapy, namely a low-fat and medium-chain triglyceride diet, can further confirm the diagnosis of primary intestinal lymphangiectasia.

  1. Biomass Biorefinery for the production of Polymers and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  2. Virtual screening for potential inhibitors of Mcl-1 conformations sampled by normal modes, molecular dynamics, and nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    Glantz-Gashai Y

    2017-06-01

    Full Text Available Yitav Glantz-Gashai,* Tomer Meirson,* Eli Reuveni, Abraham O Samson Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel *These authors contributed equally to this work Abstract: Myeloid cell leukemia-1 (Mcl-1 is often overexpressed in human cancer and is an important target for developing antineoplastic drugs. In this study, a data set containing 2.3 million lead-like molecules and a data set of all the US Food and Drug Administration (FDA-approved drugs are virtually screened for potential Mcl-1 ligands using Protein Data Bank (PDB ID 2MHS. The potential Mcl-1 ligands are evaluated and computationally docked on to three conformation ensembles generated by normal mode analysis (NMA, molecular dynamics (MD, and nuclear magnetic resonance (NMR, respectively. The evaluated potential Mcl-1 ligands are then compared with their clinical use. Remarkably, half of the top 30 potential drugs are used clinically to treat cancer, thus partially validating our virtual screen. The partial validation also favors the idea that the other half of the top 30 potential drugs could be used in the treatment of cancer. The normal mode-, MD-, and NMR-based conformation greatly expand the conformational sampling used herein for in silico identification of potential Mcl-1 inhibitors. Keywords: virtual screening, Mcl-1, molecular dynamics, NMR, normal modes

  3. Incorporation of medium chain fatty acids into fish oil triglycerides by chemical and enzymatic inter esterification

    Energy Technology Data Exchange (ETDEWEB)

    Feltes, M. M. C.; Oliveira de Pilot, L.; Gomes Correira, F.; Grimaldi, R.; Mara Block, J.; Ninow, J. L.

    2009-07-01

    Structured triglycerides (STs) containing both medium chain fatty acids (MCFA) and polyunsaturated fatty acids (PUFA) in the same molecule offer nutritional and therapeutic benefits. The aim of this work was to establish the incorporation of MCFA into fish oil triglycerides (TAGs), while maintaining substantial levels of docosahexaenoic and eicosapentaenoic acids. The effects of different acyl donors (capric acid methyl ester/MeC10 or medium chain triglyceride/TCM) and of the catalyst (chemical or enzymatic) on the fatty acid composition of the reaction product were studied. The fatty acid composition of the fish oil TAG was modified after inter esterification to contain MCFA, and it depended on the catalyst and on the substrates. Thermo grams obtained by Differential Scanning Calorimetry (DSC) showed that inter esterification promoted noteworthy changes in the melting profile of the samples. STs of clinical nutrition interest containing both EPA and DHA obtained from fish oil along with MCFA were successfully produced. (Author) 70 refs.

  4. Molecular cloning and sequence analysis of complementary DNA encoding rat mammary gland medium-chain S-acyl fatty acid synthetase thio ester hydrolase

    International Nuclear Information System (INIS)

    Safford, R.; de Silva, J.; Lucas, C.

    1987-01-01

    Poly(A) + RNA from pregnant rat mammary glands was size-fractionated by sucrose gradient centrifugation, and fractions enriched in medium-chain S-acyl fatty acid synthetase thio ester hydrolase (MCH) were identified by in vitro translation and immunoprecipitation. A cDNA library was constructed, in pBR322, from enriched poly(A) + RNA and screened with two oligonucleotide probes deduced from rat MCH amino acid sequence data. Cross-hybridizing clones were isolated and found to contain cDNA inserts ranging from ∼ 1100 to 1550 base pairs (bp). A 1550-bp cDNA insert, from clone 43H09, was confirmed to encode MCH by hybrid-select translation/immunoprecipitation studies and by comparison of the amino acid sequence deduced from the DNA sequence of the clone to the amino acid sequence of the MCH peptides. Northern blot analysis revealed the size of the MCH mRNA to be 1500 nucleotides, and it is therefore concluded that the 1550-bp insert (including G x C tails) of clone 43H09 represents a full- or near-full-length copy of the MCH gene. The rat MCH sequence is the first reported sequence of a thioesterase from a mammalian source, but comparison of the deduced amino acid sequences of MCH and the recently published mallard duck medium-chain S-acyl fatty acid synthetase thioesterase reveals significant homology. In particular, a seven amino acid sequence containing the proposed active serine of the duck thioesterase is found to be perfectly conserved in rat MCH

  5. The effect of the alkyl chain length on physicochemical features of (ionic liquids + γ-butyrolactone) binary mixtures

    International Nuclear Information System (INIS)

    Papović, Snežana; Bešter-Rogač, Marija; Vraneš, Milan; Gadžurić, Slobodan

    2016-01-01

    Highlights: • Influence of alkyl substituent length on IL properties was studied. • Nature of interactions between studied [C_nC_1im][NTf_2] and GBL were discussed. • Angell strength parameter indicates [C_nC_1im][NTf_2] are fragile liquids. • ILs properties regularly change with increase of the alkyl chain length. • Absence of GBL self-association upon addition of IL is observed. - Abstract: Densities and viscosities were determined and analysed for γ-butyrolactone (GBL) binary mixtures with 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids (where alkyl = ethyl, hexyl, octyl) as a function of temperature at atmospheric pressure (p = 0.1 MPa) and over the whole composition range. Excess molar volumes have been calculated from the experimental densities and were fitted using Redlich–Kister’s polynomial equation. Other volumetric parameters have been also calculated in order to obtain information about interactions between GBL and imidazolium based ionic liquids with different alkyl chain length. From the viscosity measurements, the Angell strength parameter was calculated for pure ionic liquids indicating that all investigated electrolytes are “fragile” liquids.

  6. 3-Bromopyruvate induces apoptosis in breast cancer cells by downregulating Mcl-1 through the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Liu, Zhe; Zhang, Yuan-Yuan; Zhang, Qian-Wen; Zhao, Su-Rong; Wu, Cheng-Zhu; Cheng, Xiu; Jiang, Chen-Chen; Jiang, Zhi-Wen; Liu, Hao

    2014-04-01

    The hexokinase inhibitor 3-bromopyruvate (3-BrPA) can inhibit glycolysis in tumor cells to reduce ATP production, resulting in apoptosis. However, as 3-BrPA is an alkylating agent, its cytotoxic action may be induced by other molecular mechanisms. The results presented here reveal that 3-BrPA-induced apoptosis is caspase independent. Further, 3-BrPA induces the generation of reactive oxygen species in MDA-MB-231 cells, leading to mitochondria-mediated apoptosis. These results suggest that caspase-independent apoptosis may be induced by the generation of reactive oxygen species. In this study, we also demonstrated that 3-BrPA induces apoptosis through the downregulation of myeloid cell leukemia-1 (Mcl-1) in MDA-MB-231 breast cancer cells. The results of Mcl-1 knockdown indicate that Mcl-1 plays an important role in 3-BrPA-induced apoptosis. Further, the upregulation of Mcl-1 expression in 3-BrPA-treated MDA-MB-231 cells significantly increases cell viability. In addition, 3-BrPA treatment resulted in the downregulation of p-Akt, suggesting that 3-BrPA may downregulate Mcl-1 through the phosphoinositide-3-kinase/Akt pathway. These findings indicate that 3-BrPA induces apoptosis in breast cancer cells by downregulating Mcl-1 through the phosphoinositide-3-kinase/Akt signaling pathway.

  7. Menstrual cycle length: a surrogate measure of reproductive health capable of improving the accuracy of biochemical/sonographical ovarian reserve test in estimating the reproductive chances of women referred to ART.

    Science.gov (United States)

    Gizzo, Salvatore; Andrisani, Alessandra; Noventa, Marco; Quaranta, Michela; Esposito, Federica; Armanini, Decio; Gangemi, Michele; Nardelli, Giovanni B; Litta, Pietro; D'Antona, Donato; Ambrosini, Guido

    2015-04-10

    Aim of the study was to investigate whether menstrual cycle length may be considered as a surrogate measure of reproductive health, improving the accuracy of biochemical/sonographical ovarian reserve test in estimating the reproductive chances of women referred to ART. A retrospective-observational-study in Padua' public tertiary level Centre was conducted. A total of 455 normo-ovulatory infertile women scheduled for their first fresh non-donor IVF/ICSI treatment. The mean menstrual cycle length (MCL) during the preceding 6 months was calculated by physicians on the basis of information contained in our electronic database (first day of menstrual cycle collected every month by telephonic communication by single patients). We evaluated the relations between MCL, ovarian response to stimulation protocol, oocytes fertilization ratio, ovarian sensitivity index (OSI) and pregnancy rate in different cohorts of patients according to the class of age and the estimated ovarian reserve. In women younger than 35 years, MCL over 31 days may be associated with an increased risk of OHSS and with a good OSI. In women older than 35 years, and particularly than 40 years, MCL shortening may be considered as a marker of ovarian aging and may be associated with poor ovarian response, low OSI and reduced fertilization rate. When AMH serum value is lower than 1.1 ng/ml in patients older than 40 years, MCL may help Clinicians discriminate real from expected poor responders. Considering the pool of normoresponders, MCL was not correlated with pregnancy rate while a positive association was found with patients' age. MCL diary is more predictive than chronological age in estimating ovarian biological age and response to COH and it is more predictive than AMH in discriminating expected from real poor responders. In women older than 35 years MCL shortening may be considered as a marker of ovarian aging while chronological age remains most accurate parameter in predicting pregnancy.

  8. Polyhydroxyalkanoate (PHA) production from waste.

    Science.gov (United States)

    Rhu, D H; Lee, W H; Kim, J Y; Choi, E

    2003-01-01

    PHA (polyhydroxyalkanoate) production was attempted with SBRs from food waste. Seed microbes were collected from a sewage treatment plant with a biological nutrient removal process, and acclimated with synthetic substrate prior to the application of the fermented food waste. Laboratory SBRs were used to produce PHA with limited oxygen and nutrients. The maximum content of 51% PHA was obtained with an anaerobic/aerobic cycle with P limitation, and the yield was estimated to be about 0.05 gPHA(produced)/gCOD(applied) or 25 kg PHA/dry ton of food waste, assuming more than 40% of the PHA contents were recoverable. PHB/PHA ratios were 0.74 to 0.77 due to the higher acetate concentrations. Economical analysis seemed to suggest the PHA produced from the food waste could be an alternative material to produce the biodegradable plastic to be used for the collection bags for solid waste.

  9. Scaling behaviour of the correlation length for the two-point correlation function in the random field Ising chain

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Adrian; Stinchcombe, Robin [Theoretical Physics, University of Oxford, Oxford (United Kingdom)

    1996-07-07

    We study the general behaviour of the correlation length {zeta}(kT:h) for two-point correlation function of the local fields in an Ising chain with binary distributed fields. At zero field it is shown that {zeta} is the same as the zero-field correlation length for the spin-spin correlation function. For the field-dominated behaviour of {zeta} we find an exponent for the power-law divergence which is smaller than the exponent for the spin-spin correlation length. The entire behaviour of the correlation length can be described by a single crossover scaling function involving the new critical exponent. (author)

  10. MicroRNA hsa-miR-29b potentiates etoposide toxicity in HeLa cells via down-regulation of Mcl-1.

    Science.gov (United States)

    Kollinerová, S; Dostál, Z; Modrianský, M

    2017-04-01

    Etoposide is commonly used as a monotherapy or in combination with other drugs for cancer treatments. In order to increase the drug efficacy, ceaseless search for novel combinations of drugs and supporting molecules is under way. MiRNAs are natural candidates for facilitating drug effect in various cell types. We used several systems to evaluate the effect of miR-29 family on etoposide toxicity in HeLa cells. We show that miR-29b significantly increases etoposide toxicity in HeLa cells. Because Mcl-1 protein has been recognized as a miR-29 family target, we evaluated downregulation of Mcl-1 protein splicing variant expression induced by miR-29 precursors and confirmed a key role of Mcl-1 protein in enhancing etoposide toxicity. Despite downregulation of Mcl-1 by all three miR-29 family members, only miR-29b significantly enhanced etoposide toxicity. We hypothesized that this difference may be linked to the change in Mcl-1L/Mcl-1S ratio induced by miR-29b. We hypothesized that the change could be due to miR-29b nuclear shuttling. Using specifically modified miR-29b sequences with enhanced cytosolic and nuclear localization we show that there is a difference, albeit statistically non-significant. In conclusion, we show that miR-29b has the synergistic effect with etoposide treatment in the HeLa cells and that this effect is linked to Mcl-1 protein expression and nuclear shuttling of miR-29b. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Analytic study of the chain dark decomposition reaction of iodides - atomic iodine donors - in the active medium of a pulsed chemical oxygen-iodine laser: 1. Criteria for the development of the branching chain dark decomposition reaction of iodides

    International Nuclear Information System (INIS)

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, Aleksandr I; Sorokin, Vadim N

    2009-01-01

    The scheme of chemical processes proceeding in the active medium of a pulsed chemical oxygen-iodine laser (COIL) is analysed. Based on the analysis performed, the complete system of differential equations corresponding to this scheme is replaced by a simplified system of equations describing in dimensionless variables the chain dark decomposition of iodides - atomic iodine donors, in the COIL active medium. The procedure solving this system is described, the basic parameters determining the development of the chain reaction are found and its specific time intervals are determined. The initial stage of the reaction is analysed and criteria for the development of the branching chain decomposition reaction of iodide in the COIL active medium are determined. (active media)

  12. BAG3-mediated Mcl-1 stabilization contributes to drug resistance via interaction with USP9X in ovarian cancer.

    Science.gov (United States)

    Habata, Shutaro; Iwasaki, Masahiro; Sugio, Asuka; Suzuki, Miwa; Tamate, Masato; Satohisa, Seiro; Tanaka, Ryoichi; Saito, Tsuyoshi

    2016-07-01

    Paclitaxel in combination with carboplatin improves survival among patients with susceptible ovarian cancers, but no strategy has been established against resistant ovarian cancers. BAG3 (Bcl-2-associated athanogene 3) is one of six BAG family proteins, which are involved in such cellular processes as proliferation, migration and apoptosis. In addition, expression of BAG3 with Mcl-1, a Bcl-2 family protein, reportedly associates with resistance to chemotherapy. Our aim in this study was to evaluate the functional role of BAG3 and Mcl-1 in ovarian cancer chemoresistance and explore possible new targets for treatment. We found that combined expression of BAG3 and Mcl-1 was significantly associated with a poor prognosis in ovarian cancer patients. In vitro, BAG3 knockdown in ES2 clear ovarian cancer cells significantly increased the efficacy of paclitaxel in combination with the Mcl-1 antagonist MIM1, with or without the Bcl-2 family antagonist ABT737. Moreover, BAG3 was found to positively regulate Mcl-1 levels by binding to and inhibiting USP9X. Our data show that BAG3 and Mcl-1 are key mediators of resistance to chemotherapy in ovarian cancer. In BAG3 knockdown ES2 clear ovarian cancer cells, combination with ABT737 and MIM1 enhanced the efficacy of paclitaxel. These results suggest that inhibiting BAG3 in addition to anti-apoptotic Bcl-2 family proteins may be a useful therapeutic strategy for the treatment of chemoresistant ovarian cancers.

  13. Immune activation by medium-chain triglyceride-containing lipid emulsions is not modulated by n-3 lipids or toll-like receptor 4

    NARCIS (Netherlands)

    Olthof, E.D.; Gulich, A.F.; Renne, M.F.; Landman, S.; Joosten, L.A.B.; Roelofs, H.M.; Wanten, G.J.A.

    2015-01-01

    BACKGROUND: Saturated medium-chain triglycerides (MCT) as part of the parenteral lipid regimen (50% MCT and 50% long chain triglycerides (LCT)) activate the immune system in vitro. Fish oil (FO)-derived n-3 fatty acids (FA) inhibit saturated FA-induced immune activation via a toll-like receptor

  14. MicroRNA 17-5p regulates autophagy in Mycobacterium tuberculosis-infected macrophages by targeting Mcl-1 and STAT3.

    Science.gov (United States)

    Kumar, Ranjeet; Sahu, Sanjaya Kumar; Kumar, Manish; Jana, Kuladip; Gupta, Pushpa; Gupta, Umesh D; Kundu, Manikuntala; Basu, Joyoti

    2016-05-01

    Autophagy plays a crucial role in the control of bacterial burden during Mycobacterium tuberculosis infection. MicroRNAs (miRNAs) are small non-coding RNAs that regulate immune signalling and inflammation in response to challenge by pathogens. Appreciating the potential of host-directed therapies designed to control autophagy during mycobacterial infection, we focused on the role of miRNAs in regulating M. tuberculosis-induced autophagy in macrophages. Here, we demonstrate that M. tuberculosis infection leads to downregulation of miR-17 and concomitant upregulation of its targets Mcl-1 and STAT3, a transcriptional activator of Mcl-1. Forced expression of miR-17 reduces expression of Mcl-1 and STAT3 and also the interaction between Mcl-1 and Beclin-1. This is directly linked to enhanced autophagy, because Mcl-1 overexpression attenuates the effects of miR-17. At the same time, transfection with a kinase-inactive mutant of protein kinase C δ (PKCδ) (an activator of STAT3) augments M. tuberculosis-induced autophagy, and miR-17 overexpression diminishes phosphorylation of PKCδ, suggesting that an miR-17/PKC δ/STAT3 axis regulates autophagy during M. tuberculosis infection. © 2015 John Wiley & Sons Ltd.

  15. Evidence for medium chain triglycerides in the treatment of primary intestinal lymphangiectasia.

    Science.gov (United States)

    Desai, A P; Guvenc, B H; Carachi, R

    2009-08-01

    Primary intestinal lymphangiectasia is an uncommon congenital anomaly. It is an intrinsic abnormality of the intestinal lymphatics system. Over the years, various treatment options such as diuretics, albumin transfusions and a medium chain triglycerides (MCT) diet as well as surgical options such as resection of isolated segments and peritoneal-venous shunts have been used. An MCT diet, which is a low fat, high protein diet, is increasingly used in the management of this anomaly. The aim was to review the evidence for medium chain triglycerides as a therapeutic option in patients with primary intestinal lymphangiectasia. A literature search was performed and individual case details were extracted. We found 55 cases, of which 3 were from our own institute. The cases were divided in 2 groups: Group A (n=27) consisted of patients treated with MCT, and Group B (n=28) consisted patients not treated with MCT. Cases were analysed for symptomatic response to MCT as well as mortality. 17 of 27 cases (63%) treated with MCT had complete resolution of symptoms while only 10 of 28 (35.7%) patients in group B showed complete resolution. Mortality for Group A was 1 out of 27 (3.7%), while mortality in group B was 5 of 28 (17.85%) patients. We conclude that, although an MCT diet is not completely curative in all cases, it does improve the symptoms of primary intestinal lymphangiectasia and reduces mortality. Hence it is a valid option in the paediatric age group. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  16. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides.

    Directory of Open Access Journals (Sweden)

    Dongmei Wang

    Full Text Available Brain glucose hypometabolism is a common feature of Alzheimer's disease (AD. Previous studies have shown that cognition is improved by providing AD patients with an alternate energy source: ketones derived from either ketogenic diet or supplementation with medium chain triglycerides (MCT. Recently, data on the neuroprotective capacity of MCT-derived medium chain fatty acids (MCFA suggest 8-carbon and 10-carbon MCFA may have cognition-enhancing properties which are not related to ketone production. We investigated the effect of 8 week treatment with MCT8, MCT10 or sunflower oil supplementation (5% by weight of chow diet in 21 month old Wistar rats. Both MCT diets increased ketones plasma similarly compared to control diet, but MCT diets did not increase ketones in the brain. Treatment with MCT10, but not MCT8, significantly improved novel object recognition memory compared to control diet, while social recognition increased in both MCT groups. MCT8 and MCT10 diets decreased weight compared to control diet, where MCFA plasma levels were higher in MCT10 groups than in MCT8 groups. Both MCT diets increased IRS-1 (612 phosphorylation and decreased S6K phosphorylation (240/244 but only MCT10 increased Akt phosphorylation (473. MCT8 supplementation increased synaptophysin, but not PSD-95, in contrast MCT10 had no effect on either synaptic marker. Expression of Ube3a, which controls synaptic stability, was increased by both MCT diets. Cortex transcription via qPCR showed that immediate early genes related to synaptic plasticity (arc, plk3, junb, egr2, nr4a1 were downregulated by both MCT diets while MCT8 additionally down-regulated fosb and egr1 but upregulated grin1 and gba2. These results demonstrate that treatment of 8- and 10-carbon length MCTs in aged rats have slight differential effects on synaptic stability, protein synthesis and behavior that may be independent of brain ketone levels.

  17. Molecular diagnosis and characterization of medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Jensen, T G

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common defect in mitochondrial beta-oxidation in humans. It is an autosomal recessive disorder which usually presents in infancy. The disease manifests itself in periods of metabolic stress to the beta-oxidation system and may...... of correct enzyme structure, and does not directly affect the catalytically active regions of the enzyme. We find that our diagnostic set up, consisting of an initial testing by the G985 assay, followed by semi-automated sequencing of DNA from those patients who were indicated to be compound heterozygous...

  18. The domain-specific and temperature-dependent protein misfolding phenotype of variant medium-chain acyl-CoA dehydrogenase

    NARCIS (Netherlands)

    Jank, Johanna M.; Maier, Esther M.; Reiβ, Dunja D.; Haslbeck, Martin; Kemter, Kristina F.; Truger, Marietta S.; Sommerhoff, Christian P.; Ferdinandusse, Sacha; Wanders, Ronald J.; Gersting, Søren W.; Muntau, Ania C.

    2014-01-01

    The implementation of expanded newborn screening programs reduced mortality and morbidity in medium-chain acyl-CoA dehydrogenase deficiency (MCADD) caused by mutations in the ACADM gene. However, the disease is still potentially fatal. Missense induced MCADD is a protein misfolding disease with a

  19. Application of Poly(hydroxyalkanoate) In Food Packaging: Improvements by Nanotechnology

    OpenAIRE

    Khosravi-Darani, K.; Bucci, D. Z.

    2015-01-01

    The environmental impact of plastic usage is of critical concern and too great to repair. A shift toward biodegradable food packaging is one option. The aim of this review paper is the study of the potential of biodegradable materials for food packaging. The main characteristics in relation to food usage can be narrowed down to mass transfer (gas and water vapor), thermal and mechanical properties. Among several kinds of biodegradable polymers, poly(hydroxyalkanoate) is one of the favorable c...

  20. Proton conducting graft copolymers with tunable length and density of phosphonated side chains for fuel cell membranes

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Takamuku, Shogo; Jankova Atanasova, Katja

    2014-01-01

    Polysulfones functionalized with highly phosphonated poly(pentafluorostyrene) side chains of different lengths were synthesized applying controlled polymerization and modification methods. The graft copolymers' thermal properties were evaluated by differential scanning calorimetry and thermal...... gravimetrical analyses. The proton conductivity of membrane prepared from the graft copolymer with the shortest phosphonated side chains was 134 mS cm(-1) at 100 degrees C under fully immersed conditions. The graft copolymer TEM image shows a nanophase separation of ion-rich segments within the polysulfone...

  1. Relationship between Length and Surface-Enhanced Raman Spectroscopy Signal Strength in Metal Nanoparticle Chains: Ideal Models versus Nanofabrication

    Directory of Open Access Journals (Sweden)

    Kristen D. Alexander

    2012-01-01

    Full Text Available We have employed capillary force deposition on ion beam patterned substrates to fabricate chains of 60 nm gold nanospheres ranging in length from 1 to 9 nanoparticles. Measurements of the surface-averaged SERS enhancement factor strength for these chains were then compared to the numerical predictions. The SERS enhancement conformed to theoretical predictions in the case of only a few chains, with the vast majority of chains tested not matching such behavior. Although all of the nanoparticle chains appear identical under electron microscope observation, the extreme sensitivity of the SERS enhancement to nanoscale morphology renders current nanofabrication methods insufficient for consistent production of coupled nanoparticle chains. Notwithstanding this fact, the aggregate data also confirmed that nanoparticle dimers offer a large improvement over the monomer enhancement while conclusively showing that, within the limitations imposed by current state-of-the-art nanofabrication techniques, chains comprising more than two nanoparticles provide only a marginal signal boost over the already considerable dimer enhancement.

  2. Simulated glass-forming polymer melts: dynamic scattering functions, chain length effects, and mode-coupling theory analysis.

    Science.gov (United States)

    Frey, S; Weysser, F; Meyer, H; Farago, J; Fuchs, M; Baschnagel, J

    2015-02-01

    We present molecular-dynamics simulations for a fully flexible model of polymer melts with different chain length N ranging from short oligomers (N = 4) to values near the entanglement length (N = 64). For these systems we explore the structural relaxation of the supercooled melt near the critical temperature T c of mode-coupling theory (MCT). Coherent and incoherent scattering functions are analyzed in terms of the idealized MCT. For temperatures T > T c we provide evidence for the space-time factorization property of the β relaxation and for the time-temperature superposition principle (TTSP) of the α relaxation, and we also discuss deviations from these predictions for T ≈ T c. For T larger than the smallest temperature where the TTSP holds we perform a quantitative analysis of the dynamics with the asymptotic MCT predictions for the late β regime. Within MCT a key quantity, in addition to T c, is the exponent parameter λ. For the fully flexible polymer models studied we find that λ is independent of N and has a value (λ = 0.735 ) typical of simple glass-forming liquids. On the other hand, the critical temperature increases with chain length toward an asymptotic value T c (∞) . This increase can be described by T c (∞) - T c(N) ∼ 1/N and may be interpreted in terms of the N dependence of the monomer density ρ, if we assume that the MCT glass transition is ruled by a soft-sphere-like constant coupling parameter Γ c = ρ c T c (-1/4), where ρ c is the monomer density at T c. In addition, we also estimate T c from a Hansen-Verlet-like criterion and MCT calculations based on structural input from the simulation. For our polymer model both the Hansen-Verlet criterion and the MCT calculations suggest T c to decrease with increasing chain length, in contrast to the direct analysis of the simulation data.

  3. 40 CFR 141.209 - Special notice for nitrate exceedances above MCL by non-community water systems (NCWS), where...

    Science.gov (United States)

    2010-07-01

    ... Water Violations § 141.209 Special notice for nitrate exceedances above MCL by non-community water... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Special notice for nitrate exceedances above MCL by non-community water systems (NCWS), where granted permission by the primacy agency under Â...

  4. Effects of chain length, chlorination degree, and structure on the octanol-water partition coefficients of polychlorinated n-alkanes.

    Science.gov (United States)

    Hilger, Bettina; Fromme, Hermann; Völkel, Wolfgang; Coelhan, Mehmet

    2011-04-01

    Log octanol-water partition coefficients (log Kow) of 40 synthesized polychlorinated n-alkanes (PCAs) with different chlorination degrees were determined using reversed-phase high performance liquid chromatography (RP-HPLC). In addition, log Kow values of a technical mixture namely Cereclor 63L as well as 15 individual in house synthesized C10, C11, and C12 chloroalkanes with known chlorine positions were estimated. Based on these results, the effects of chain length, chlorination degree, and structure were explored. The estimated log Kow values ranged from 4.10 (polychlorinated n-decanes with 50.2% chlorine content) to 11.34 (polychlorinated n-octacosanes with 54.8% chlorine content) for PCAs and from 3.82 (1,2,5,6,9,10-hexachlorodecane) to 7.75 (1,1,1,3,9,11,11,11-octachlorododecane) for the individual chloroalkanes studied. The results showed that log Kow value was influenced linearly at a given chlorine content by chain length, while a polynominal effect was observed in dependence on the chlorination degree of an alkane chain. Chlorine substitution pattern influenced markedly the log Kow value of chloroalkanes.

  5. Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16

    Czech Academy of Sciences Publication Activity Database

    Samek, Ota; Obruča, S.; Šiler, Martin; Sedláček, P.; Benešová, P.; Kučera, D.; Márová, I.; Ježek, Jan; Bernatová, Silvie; Zemánek, Pavel

    2016-01-01

    Roč. 16, č. 11 (2016), 1808:1-7 ISSN 1424-8220 R&D Projects: GA ČR(CZ) GA15-20645S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Raman spectroscopy * Cupriavidus necator H16 * polyhydroxyalkanoates Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.677, year: 2016

  6. The Peroxisomal Enzyme L-PBE Is Required to Prevent the Dietary Toxicity of Medium-Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2013-10-01

    Full Text Available Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe−/− mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.

  7. Effects of medium-chain triglycerides, long-chain triglycerides, or 2-monododecanoin on fatty acid composition in the portal vein, intestinal lymph, and systemic circulation in rats.

    Science.gov (United States)

    You, Yi-Qian Nancy; Ling, Pei-Ra; Qu, Jason Zhensheng; Bistrian, Bruce R

    2008-01-01

    Fatty acid absorption patterns can have a major impact on the fatty acid composition in the portal, intestinal lymph, and systemic circulation. This study sought to determine the effects of long-chain triglycerides (LCT), medium-chain triglycerides (MCT), and 2-monododecanoin (2mono) on intestinal fatty acid composition during continuous feeding over a brief period. The lipid sources were 100% LCT, 100% MCT, a 50:50 mixture of LCT and MCT (LCT/MCT), and a 50:50 mixture of LCT and 2mono (LCT/2mono). A total of 27 rats were randomly given 1 of the 4 diets at 200 kcal/kg/d, with 30% of total calories from lipids over 3 hours. MCT significantly increased each of the medium-chain fatty acids (C6:0, C8:0, and C10:0) as free fatty acids in the portal vein and about 10%/mol of C10:0 as triglycerides in the lymph compared with the other groups. There was significantly less C10:0 in lymphatic triglycerides with LCT/MCT than with MCT, but more than in the LCT and LCT/2mono diets. MCT also significantly increased the contents of C16:0, C18:0, C18:1, and C20:4 in the lymphatic triglycerides compared with all other groups including LCT/MCT. The amount of linoleic acid (C18:2) in lymphatic triglycerides followed the relative amounts of this fatty acid in the diet, with the greatest in LCT followed by LCT/MCT and LCT/2mono and least in MCT. A so-called structured lipid composed of the medium-chain fatty acid dodecanoic acid on the 2 position and long-chain fatty acids on the 1 and 3 positions appeared to be endogenously synthesized in response to the LCT/2mono diet. The original differences in MCT and LCT content in the diets were preserved in the fatty acid composition in the intestinal free fatty acids and triglycerides during feeding. In addition, the duration of lipid administration can play a role in altering fatty acid composition in the intestine.

  8. Effects of Medium-Chain Triglycerides, Long-Chain Triglycerides, or 2-Monododecanoin on Fatty Acid Composition in the Portal Vein, Intestinal Lymph, and Systemic Circulation in Rats

    Science.gov (United States)

    Nancy You, Yi-Qian; Ling, Pei-Ra; Qu, Jason Zhensheng; Bistrian, Bruce R.

    2011-01-01

    Background Fatty acid absorption patterns can have a major impact on the fatty acid composition in the portal, intestinal lymph, and systemic circulation. This study sought to determine the effects of long-chain triglycerides (LCT), medium-chain triglycerides (MCT), and 2-monododecanoin (2mono) on intestinal fatty acid composition during continuous feeding over a brief period. Methods The lipid sources were 100% LCT, 100% MCT, a 50:50 mixture of LCT and MCT (LCT/MCT), and a 50:50 mixture of LCT and 2mono (LCT/2mono). A total of 27 rats were randomly given 1 of the 4 diets at 200 kcal/kg/d, with 30% of total calories from lipids over 3 hours. Results MCT significantly increased each of the medium-chain fatty acids (C6:0, C8:0, and C10:0) as free fatty acids in the portal vein and about 10%/mol of C10:0 as triglycerides in the lymph compared with the other groups. There was significantly less C10:0 in lymphatic triglycerides with LCT/MCT than with MCT, but more than in the LCT and LCT/2mono diets. MCT also significantly increased the contents of C16:0, C18:0, C18:1, and C20:4 in the lymphatic triglycerides compared with all other groups including LCT/MCT. The amount of linoleic acid (C18:2) in lymphatic triglycerides followed the relative amounts of this fatty acid in the diet, with the greatest in LCT followed by LCT/MCT and LCT/2mono and least in MCT. A so-called structured lipid composed of the medium-chain fatty acid dodecanoic acid on the 2 position and long-chain fatty acids on the 1 and 3 positions appeared to be endogenously synthesized in response to the LCT/2mono diet. Conclusions The original differences in MCT and LCT content in the diets were preserved in the fatty acid composition in the intestinal free fatty acids and triglycerides during feeding. In addition, the duration of lipid administration can play a role in altering fatty acid composition in the intestine. PMID:18407910

  9. Synthesis of microbial elastomers based on soybean oily acids. Biocompatibility studies

    International Nuclear Information System (INIS)

    Hazer, Derya Burcu; Hazer, Baki; Kaymaz, Figen

    2009-01-01

    Biocompatibility studies of the autoxidized and unoxidized unsaturated medium-long chain length (m-lcl) co-poly-3-hydroxyalkanoates (m-lclPHAs) derived from soya oily acids have been reported. Pseudomonas oleovorans was grown on a series of mixtures of octanoic acid (OA) and soya oily acids (Sy) with weight ratios of 20:80, 28:72 and 50:50 in order to obtain unsaturated m-lcl copolyesters coded PHO-Sy-2080, PHO-Sy-2872 and PHO-Sy-5050, respectively. The PHA films were obtained by solvent cast from CHCl 3 . They were all originally sticky and waxy except PHO-Sy-5050. Autoxidation of the unsaturated copolyester films was carried out on exposure to air at room temperature in order to obtain crosslinked polymers. They became a highly flexible elastomer after being autoxidized (about 40 days of autoxidation). The in vivo tissue reactions of the autoxidized PHAs were evaluated by subcutaneous implantation in rats. The rats appeared to be healthy throughout the implantation period. No symptom such as necrosis, abscess or tumorigenesis was observed in the vicinity of the implants. Retrieved materials varied in their physical appearance after 6 weeks of implantation. In vivo biocompatibility studies of the medical applications indicated that the microbial copolyesters obtained were all biocompatible and especially the PHOSy series of copolyesters had the highest biocompatibility among them.

  10. The E3 ubiquitin ligases β-TrCP and FBXW7 cooperatively mediates GSK3-dependent Mcl-1 degradation induced by the Akt inhibitor API-1, resulting in apoptosis.

    Science.gov (United States)

    Ren, Hui; Koo, Junghui; Guan, Baoxiang; Yue, Ping; Deng, Xingming; Chen, Mingwei; Khuri, Fadlo R; Sun, Shi-Yong

    2013-11-22

    The novel Akt inhibitor, API-1, induces apoptosis through undefined mechanisms. The current study focuses on revealing the mechanisms by which API-1 induces apoptosis. API-1 rapidly and potently reduced the levels of Mcl-1 primarily in API-1-senstive lung cancer cell lines. Ectopic expression of Mcl-1 protected cells from induction of apoptosis by API-1. API-1 treatment decreased the half-life of Mcl-1, whereas inhibition of the proteasome with MG132 rescued Mcl-1 reduction induced by API-1. API-1 decreased Mcl-1 levels accompanied with a rapid increase in Mcl-1 phosphorylation (S159/T163). Moreover, inhibition of GSK3 inhibited Mcl-1 phosphorylation and reduction induced by API-1 and antagonized the effect of API-1 on induction of apoptosis. Knockdown of either FBXW7 or β-TrCP alone, both of which are E3 ubiquitin ligases involved in Mcl-1 degradation, only partially rescued Mcl-1 reduction induced by API-1. However, double knockdown of both E3 ubiquitin ligases enhanced the rescue of API-1-induced Mcl-1 reduction. API-1 induces GSK3-dependent, β-TrCP- and FBXW7-mediated Mcl-1 degradation, resulting in induction of apoptosis.

  11. σ-Bond Electron Delocalization in Oligosilanes as Function of Substitution Pattern, Chain Length, and Spatial Orientation

    Directory of Open Access Journals (Sweden)

    Johann Hlina

    2016-08-01

    Full Text Available Polysilanes are known to exhibit the interesting property of σ-bond electron delocalization. By employing optical spectroscopy (UV-vis, it is possible to judge the degree of delocalization and also differentiate parts of the molecules which are conjugated or not. The current study compares oligosilanes of similar chain length but different substitution pattern. The size of the substituents determines the spatial orientation of the main chain and also controls the conformational flexibility. The chemical nature of the substituents affects the orbital energies of the molecules and thus the positions of the absorption bands.

  12. Effects of alkyl chain length and substituent pattern of fullerene bis-adducts on film structures and photovoltaic properties of bulk heterojunction solar cells.

    Science.gov (United States)

    Tao, Ran; Umeyama, Tomokazu; Kurotobi, Kei; Imahori, Hiroshi

    2014-10-08

    A series of alkoxycarbonyl-substituted dihydronaphthyl-based [60]fullerene bis-adduct derivatives (denoted as C2BA, C4BA, and C6BA with the alkyl chain of ethyl, n-butyl, and n-hexyl, respectively) have been synthesized to investigate the effects of alkyl chain length and substituent pattern of fullerene bis-adducts on the film structures and photovoltaic properties of bulk heterojunction polymer solar cells. The shorter alkyl chain length caused lower solubility of the fullerene bis-adducts (C6BA > C4BA > C2BA), thereby resulting in the increased separation difficulty of respective bis-adduct isomers. The device performance based on poly(3-hexylthiophene) (P3HT) and the fullerene bis-adduct regioisomer mixtures was enhanced by shortening the alkyl chain length. When using the regioisomerically separated fullerene bis-adducts, the devices based on trans-2 and a mixture of trans-4 and e of C4BA exhibited the highest power conversion efficiencies of ca. 2.4%, which are considerably higher than those of the C6BA counterparts (ca. 1.4%) and the C4BA regioisomer mixture (1.10%). The film morphologies as well as electron mobilities of the P3HT:bis-adduct blend films were found to affect the photovoltaic properties considerably. These results reveal that the alkyl chain length and substituent pattern of fullerene bis-adducts significantly influence the photovoltaic properties as well as the film structures of bulk heterojunction solar cells.

  13. Fermentative Extraction of Coconut Oil to Maintain a Quality of Medium Chain Fatty Acid

    OpenAIRE

    Salahudin, Farid; Supriyatna, Nana

    2014-01-01

    Coconut oil is healthy vegetable oil because it contains Medium Chain Fatty Acid (MCFA). The used of bleaching agent and excessive heating in coconut oil process will produce low quality oil (rancid). Therefore, it is necessary to processing that does not use chemicals and excessive heating such as fermentation using microbe and enzyme. The aim of this study was to find out the effect of bromelin enzyme concentration and Saccharomyces cereviceae fermentation to MCFA content in coconut oil. Th...

  14. Loss of FBXW7 and accumulation of MCL1 and PLK1 promote paclitaxel resistance in breast cancer.

    Science.gov (United States)

    Gasca, Jessica; Flores, Maria Luz; Giráldez, Servando; Ruiz-Borrego, Manuel; Tortolero, María; Romero, Francisco; Japón, Miguel A; Sáez, Carmen

    2016-08-16

    FBXW7 is a component of SCF (complex of SKP1, CUL1 and F-box-protein)-type ubiquitin ligases that targets several oncoproteins for ubiquitination and degradation by the proteasome. FBXW7 regulates cellular apoptosis by targeting MCL1 for ubiquitination. Recently, we identified PLK1 as a new substrate of FBXW7 modulating the intra-S-phase DNA-damage checkpoint. Taxanes are frequently used in breast cancer treatments, but the acquisition of resistance makes these treatments ineffective. We investigated the role of FBXW7 and their substrates MCL1 and PLK1 in regulating the apoptotic response to paclitaxel treatment in breast cancer cells and their expression in breast cancer tissues. Paclitaxel-sensitive MDA-MB-468 and a paclitaxel-resistant MDA-MB-468R subclone were used to study the role of FBXW7 and substrates in paclitaxel-induced apoptosis. Forced expression of FBXW7 or downregulation of MCL1 or PLK1 restored sensitivity to paclitaxel in MDA-MB-468R cells. By contrary, FBXW7-silenced MDA-MB-468 cells became resistant to paclitaxel. The expression of FBXW7 and substrates were studied in 296 invasive carcinomas by immunohistochemistry and disease-free survival was analyzed in a subset of patients treated with paclitaxel. In breast cancer tissues, loss of FBXW7 correlated with adverse prognosis markers and loss of FBXW7 and MCL1 or PLK1 accumulation were associated with diminished disease-free survival in paclitaxel-treated patients. We conclude that FBXW7 regulates the response to paclitaxel by targeting MCL1 and PLK1 in breast cancer cells and thus targeting these substrates may be a valuable adjunct for paclitaxel treatment. Also, FBXW7, MCL1 and PLK1 may be relevant predictive markers of tumor progression and response to paclitaxel treatment.

  15. Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length.

    Science.gov (United States)

    Sydor, Tobias; von Bargen, Kristine; Hsu, Fong-Fu; Huth, Gitta; Holst, Otto; Wohlmann, Jens; Becken, Ulrike; Dykstra, Tobias; Söhl, Kristina; Lindner, Buko; Prescott, John F; Schaible, Ulrich E; Utermöhlen, Olaf; Haas, Albert

    2013-03-01

    Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild-type bacteria. Coating of non-pathogenic E. coli with purified wild-type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi. © 2012 Blackwell Publishing Ltd.

  16. Effect of GPR84 deletion on obesity and diabetes development in mice fed long chain or medium chain fatty acid rich diets.

    Science.gov (United States)

    Du Toit, Eugene; Browne, Liam; Irving-Rodgers, Helen; Massa, Helen M; Fozzard, Nicolette; Jennings, Michael P; Peak, Ian R

    2017-04-20

    Although there is good evidence showing that diets rich in medium chain fatty acids (MCFAs) have less marked obesogenic and diabetogenic effects than diets rich in long chain fatty acids (LCFAs), the role of the pro-inflammatory, medium chain fatty acid receptor (GPR84) in the aetiology of obesity and glucose intolerance is not well characterised. We set out to determine whether GPR84 expression influences obesity and glucose intolerance susceptibility in MCFA and LCFA rich diet fed mice. Wild type (WT) and GPR84 knockout (KO) mice were fed a control, MCFA or LCFA diet, and body mass, heart, liver and epididymal fat mass was assessed, as well as glucose tolerance and adipocyte size. LCFA diets increased body mass and decreased glucose tolerance in both WT and GPR84 KO animals while MCFA diets had no effect on these parameters. There were no differences in body weight when comparing WT and GPR84 KO mice on the respective diets. Glucose tolerance was also similar in WT and GPR84 KO mice irrespective of diet. Liver mass was increased following LCFA feeding in WT but not GPR84 KO mice. Hepatic triglyceride content was increased in GPR84 KO animals fed MCFA, and myocardial triglyceride content was increased in GPR84 KO animals fed LCFA. GPR84 deletion had no effects on body weight or glucose tolerance in mice fed either a high MCFA or LCFA diet. GPR84 may influence lipid metabolism, as GPR84 KO mice had smaller livers and increased myocardial triglyceride accumulation when fed LCFA diets, and increased liver triglyceride accumulation in responses to increased dietary MCFAs.

  17. A Combination of Targeted Therapy with Chemotherapy Backbone Induces Response in a Treatment-Resistant Triple-Negative MCL1-Amplified Metastatic Breast Cancer Patient

    Directory of Open Access Journals (Sweden)

    Siraj M. Ali

    2016-02-01

    Full Text Available After failure of anthracycline- and platinum-based therapy, no effective therapies exist for management of metastatic triple-negative breast cancer (TNBC. We report a case of metastatic TNBC harboring MCL1 amplification, as identified by comprehensive genomic profiling in the course of clinical care. MCL1 is an antiapoptotic gene in the BCL2 family, and MCL1 amplification is common in TNBC (at least 20%. A personalized dose-reduced regimen centered on a combination of sorafenib and vorinostat was implemented, based on preclinical evidence demonstrating treatment synergy in the setting of MCL1 amplification. Although hospice care was being considered before treatment initiation, the personalized regimen yielded 6 additional months of life for this patient. Further rigorous studies are needed to confirm that this regimen or derivatives thereof can benefit the MCL1-amplified subset of TNBC patients.

  18. Statistical media design for efficient polyhydroxyalkanoate production in Pseudomonas sp. MNNG-S.

    Science.gov (United States)

    Saranya, V; Rajeswari, V; Abirami, P; Poornimakkani, K; Suguna, P; Shenbagarathai, R

    2016-07-03

    Polyhydroxyalkanoate (PHA) is a promising polymer for various biomedical applications. There is a high need to improve the production rate to achieve end use. When a cost-effective production was carried out with cheaper agricultural residues like molasses, traces of toxins were incorporated into the polymer, which makes it unfit for biomedical applications. On the other hand, there is an increase in the popularity of using chemically defined media for the production of compounds with biomedical applications. However, these media do not exhibit favorable characteristics such as efficient utilization at large scale compared to complex media. This article aims to determine the specific nutritional requirement of Pseudomonas sp. MNNG-S for efficient production of polyhydroxyalkanoate. Response surface methodology (RSM) was used in this study to statistically design for PHA production based on the interactive effect of five significant variables (sucrose; potassium dihydrogen phosphate; ammonium sulfate; magnesium sulfate; trace elements). The interactive effects of sucrose with ammonium sulfate, ammonium sulfate with combined potassium phosphate, and trace element with magnesium sulfate were found to be significant (p production more than fourfold (from 0.85 g L(-1) to 4.56 g L(-1)).

  19. Patients with medium-chain acyl-coenzyme a dehydrogenase deficiency have impaired oxidation of fat during exercise but no effect of L-carnitine supplementation

    DEFF Research Database (Denmark)

    Madsen, K L; Preisler, N; Orngreen, M C

    2013-01-01

    It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified.......It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified....

  20. Studies on the solvation dynamics of coumarin 153 in 1-ethyl-3-methylimidazolium alkylsulfate ionic liquids: dependence on alkyl chain length.

    Science.gov (United States)

    Das, Sudhir Kumar; Sarkar, Moloy

    2012-08-06

    Steady-state and time-resolved fluorescence behavior of coumarin 153 (C153) is investigated in a series of 1-ethyl-3-methylimidazolium alkylsulfate ([C(2)mim][C(n)OSO(3)]) ionic liquids differing only in the length of the linear alkyl chain (n = 4, 6, and 8) in the anion. The aim of the present study is to understand the role of alkyl chain length in solute rotation and solvation dynamics of C153 in these ionic liquids. The blueshift observed in the steady-state absorption and emission maxima of C153 on going from the C(4)OSO(3) to the C(8)OSO(3) system indicates increasing nonpolar character of the microenvironment of the solute with increasing length of the alkyl side chain of the anion of the ionic liquids. The average solvation time is also found to increase on changing the substituent from butyl to octyl, and this is attributed to the increase in the bulk viscosity of the ILs. A steady blueshift of the time-zero maximum of the fluorescence spectrum with increasing alkyl chain length also indicates that the probe molecule experiences a less polar environment in the early part of the dynamics. Rotational dynamics of C153 are also analyzed by using the Stokes-Einstein-Debye (SED), Gierer-Wirtz (GW), and Dote-Kivelson-Schwartz (DKS) theories. Analyses of the results seem to suggest decoupling of the rotational motion of the probe from solvent viscosity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Understanding Supply Chain Management Practices for Small and Medium-Sized Enterprises

    Science.gov (United States)

    Thoo, AC; Sulaiman, Z.; Choi, SL; Kohar, UHA

    2017-06-01

    Small and medium enterprises (SMEs) are a major source of dynamism, innovation and flexibility for emerging and developing countries, as well as for the economies of the most industrialised nations. However, the survival and growth of SMEs can be difficult in the current competitive business environment and global marketplace. It can be a real challenge to deliver the right product and service at the most opportune time and at the lowest possible cost to the right customer. The challenge stresses the importance of managing cross-boundary relationships between business partners. For gaining a competitive advantage, supply chain management (SCM) is an effective tool to SMEs. Therefore, this paper aims to review the tenet of SCM, its benefits and practices to SMEs.

  2. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of non-alcoholic fatty liver disease

    Science.gov (United States)

    Metabolic syndrome is often accompanied by development of hepatic steatosis and less frequently by nonalcoholic fatty liver disease (NAFLD) leading to nonalcoholic steatohepatitis (NASH). Replacement of corn oil with medium chain triacylglycerols (MCT) in the diets of alcohol-fed rats has been show...

  3. Enhanced Bioavailability of Curcumin Nanoemulsions Stabilized with Phosphatidylcholine Modified with Medium Chain Fatty Acids.

    Science.gov (United States)

    Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Soto-Rodríguez, Ida; Sanchez-Otero, Maria Guadalupe; Vernon-Carter, Eduardo J; García, Hugo S

    2017-01-01

    Curcumin is a natural, oil-soluble polyphenolic compound with potent anticancer, anti-inflammatory, and antioxidant activities. In its free form, it is very poorly absorbed in the gut due to its very low solubility. The use of nanoemulsions as carrier is a feasible way for improving curcumin bioavailability. To this end, the choice of emulsifying agent for stabilizing the nanoemulsions is of the upmost importance for achieving a desired functionality. Phosphatidylcholine (PC) and phosphatidycholine enriched (PCE) with medium chain fatty acids (42.5 mol %) in combination with glycerol as co-surfactant, were used for preparing oil-in water nanoemulsions coded as NEPC and NEPCE, respectively. NEPCE displayed significantly smaller mean droplet size (30 nm), equal entrapment efficiency (100%), better droplet stability and suffered lower encapsulation efficiency loss (3%) during storage time (120 days, 4ºC) than NEPC. Bioavailability, measured in terms of area under the curve of curcumin concentration versus time, and maximum curcumin plasma concentration, was in general terms significantly higher for NEPCE than for NEPC, and for curcumin coarse aqueous suspension (CCS). Also, NEPCE produced significantly higher curcumin concentrations in liver and lung than NEPC and CCS. These data support the role of phosphatidylcholine enriched with medium chain fatty acids to increase the bioavailability of nanoemulsions for therapeutic applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Dependence of adenine isolation efficiency on the chain length evidenced using paramagnetic particles and voltammetry measurements

    International Nuclear Information System (INIS)

    Huska, Dalibor; Adam, Vojtech; Trnkova, Libuse; Kizek, Rene

    2009-01-01

    The main aim of this work was to study the dependence of oligoadenine isolation efficiency on the chain length by using paramagnetic particles covered by homo-deoxythymidines ((dT)25) with subsequent detection by adsorptive transfer technique coupled with square wave voltammetry. For this purpose, the oligonucleotides of the length A5, A10, A15, A20, A25, A30, A35, A40 and poly(A) in various concentrations were chosen. We determined that the isolation efficiency defined as 'isolated oligonucleotide concentration'/'given oligonucleotide concentration' was about 55% on average. Sequence A25 demonstrated the best binding onto microparticles surface.

  5. Meta-Analysis of Structured Triglyceride versus Physical Mixture Medium- and Long-Chain Triglycerides for PN in Liver Resection Patients

    OpenAIRE

    Zhao, Yajie; Wang, Chengfeng

    2017-01-01

    Background. The use of total parenteral nutrition can affect liver function, causing a series of problems such as cholestasis. The aim of this meta-analysis was to compare structured triglyceride- (STG-) based lipid emulsions with physical medium-chain triglyceride (MCT)/long-chain triglyceride (LCT) mixtures in patients who had undergone liver surgery to identify any differences between these two types of parenteral nutrition. Methods. We searched the databases of PubMed, the Cochrane Librar...

  6. Is DNA a worm-like chain in Couette flow? In search of persistence length, a critical review.

    Science.gov (United States)

    Rittman, Martyn; Gilroy, Emma; Koohya, Hashem; Rodger, Alison; Richards, Adair

    2009-01-01

    Persistence length is the foremost measure of DNA flexibility. Its origins lie in polymer theory which was adapted for DNA following the determination of BDNA structure in 1953. There is no single definition of persistence length used, and the links between published definitions are based on assumptions which may, or may not be, clearly stated. DNA flexibility is affected by local ionic strength, solvent environment, bound ligands and intrinsic sequence-dependent flexibility. This article is a review of persistence length providing a mathematical treatment of the relationships between four definitions of persistence length, including: correlation, Kuhn length, bending, and curvature. Persistence length has been measured using various microscopy, force extension and solution methods such as linear dichroism and transient electric birefringence. For each experimental method a model of DNA is required to interpret the data. The importance of understanding the underlying models, along with the assumptions required by each definition to determine a value of persistence length, is highlighted for linear dichroism data, where it transpires that no model is currently available for long DNA or medium to high shear rate experiments.

  7. Unit and internal chain profiles of maca amylopectin.

    Science.gov (United States)

    Zhang, Ling; Li, Guantian; Yao, Weirong; Zhu, Fan

    2018-03-01

    Unit chain length distributions of amylopectin and its φ, β-limit dextrins, which reflect amylopectin internal structure from three maca starches, were determined by high-performance anion-exchange chromatography with pulsed amperometric detection after debranching, and the samples were compared with maize starch. The amylopectins exhibited average chain lengths ranging from 16.72 to 17.16, with ranges of total internal chain length, external chain length, and internal chain length of the maca amylopectins at 12.49 to 13.68, 11.24 to 11.89, and 4.27 to 4.48. The average chain length, external chain length, internal chain length, and total internal chain length were comparable in three maca amylopectins. Amylopectins of the three maca genotypes studied here presented no significant differences in their unit chain length profiles, but did show significant differences in their internal chain profiles. Additional genetic variations between different maca genotypes need to be studied to provide unit- and internal chain profiles of maca amylopectin. Copyright © 2017. Published by Elsevier Ltd.

  8. Water and vapor permeability at different temperatures of poly (3-Hydroxybutyrate dense membranes

    Directory of Open Access Journals (Sweden)

    Luiz H. Poley

    2005-03-01

    Full Text Available Polyhydroxyalkanoates (PHAs are polymers produced from renewable resources with biodegradability and biocompatibility, being therefore attractive for medical and pharmaceutical purposes. Poly (3-hydroxybutyrate (PHB is the most important polymer of this family by considering the biotechnology process of its synthesis. In the present study, dense films of PHB were prepared by casting from chloroform solutions (1% m/m. Permeability studies with water, methanol, ethanol and n-propanol were performed using the gravimetric method at different temperatures (from 50 ºC to 65 ºC. Results provide new data on permeability coefficients of PHB membranes.

  9. Effect of the Alkyl Chain Length on the Adsorption Properties of Malonamide Chelating Resins

    International Nuclear Information System (INIS)

    Ismail, I.M.; Nogami, M.; Suzuki, K.

    2004-01-01

    In order to investigate the effect of the alkyl chain length of malonamide chelating resins on the rate of uptake of U(VI) ions and Ce(III) Ions, lV,N,N',N'-tetraethyl malonamide (TEMA), N,N,N',N'-tetra-n-propyl malonamide (TPrMA), lV,lV,N',N'-tetra-n-butyl malonamide (TBMA) and N,l V,N',N'-tetra-n-pentyl malonamide (Tamp) chelating resins were synthesized by chemically bonding these function groups to CMS-DVB co-polymer beads. N,lV,N',N'-tetraphenyl malonamide (TPhMA) chelating resin was also investigated and the results of these resins were compared with those of N,lY,N',N-tetra methylmalonamide (TMMA) previously reported. The batch technique was used to study the thermodynamic equilibrium, in terms of distribution coefficient, and the kinetics of the adsorption U(VI) and Ce(III) ions from 3 M HNO 3 , Acid, and 3 M NaNO 3 + 0.05 M HNO 3 , Salt, media. The introduction ratio of the function group into the polymer base and the uptake of U(VI) ions and C(III) ions were found to decrease with the increase in the alkyl chain length. The uptake was found to diminish in case of TPhMA resin due to the decrease of the function group ratio and the steric-hinder effect

  10. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Directory of Open Access Journals (Sweden)

    Jiqian Wang

    Full Text Available BACKGROUND: Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. METHODOLOGY/PRINCIPAL FINDINGS: Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18 modified Fe(3O(4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. CONCLUSIONS/SIGNIFICANCE: The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for

  11. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Science.gov (United States)

    Wang, Jiqian; Meng, Gang; Tao, Kai; Feng, Min; Zhao, Xiubo; Li, Zhen; Xu, Hai; Xia, Daohong; Lu, Jian R

    2012-01-01

    Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe(3)O(4) were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization enabling efficient enzyme recovery and recycling.

  12. Bacterial membrane activity of a-peptide/b-peptoid chimeras: Influence of amino acid composition and chain length on the activity against different bacterial strains

    DEFF Research Database (Denmark)

    Hein-Kristensen, Line; Knapp, Kolja M; Franzyk, Henrik

    2011-01-01

    and subsequent killing is usually not tested. In this report, six α-peptide/β-peptoid chimeras were examined for the effect of amino acid/peptoid substitutions and chain length on the membrane perturbation and subsequent killing of food-borne and clinical bacterial isolates. RESULTS: All six AMP analogues...... acid only had a minor effect on MIC values, whereas chain length had a profound influence on activity. All chimeras were less active against Serratia marcescens (MICs above 46 μM). The chimeras were bactericidal and induced leakage of ATP from Staphylococcus aureus and S. marcescens with similar time...... of onset and reduction in the number of viable cells. EDTA pre-treatment of S. marcescens and E. coli followed by treatment with chimeras resulted in pronounced killing indicating that disintegration of the Gram-negative outer membrane eliminated innate differences in susceptibility. Chimera chain length...

  13. Hidrocarbonetos policíclicos aromáticos (HPAs em aguardentes PHAs in spirits

    Directory of Open Access Journals (Sweden)

    S. M. Bettin

    2005-06-01

    Full Text Available A presença de hidrocarbonetos aromáticos polinucleares (HPAs em aguardentes foi investigada por cromatografia líquida (CLAE após sua prévia extração em fase sólida (SPE. A separação foi realizada em uma coluna Supelco, LCPAH-octadecil silano (25cm x 4,6mm x 5mm com gradiente acetonitrila/água e a quantificação utilizando detector de fluorescência. Os HPAs (naftaleno; acenaftaleno; fluoreno; fenantreno; antraceno; fluoranteno; pireno; 1,2- benzo(epireno; criseno; benzo(epireno; 2,3-benzo(aantraceno; 1,2-benzo(bfluoranteno; benzo(kfluoranteno; dibenzo(a,hantraceno; benzo(apireno; benzo(ghipirileno foram identificados e quantificados em vinte e oito amostras de aguardentes de cana. Os resultados experimentais para as amostras de aguardentes (cachaças são analisados em termos de análises de componentes principais (PCA objetivando a diferenciação entre o perfil das aguardentes produzidas a partir de cana-de-açúcar queimada e não-queimada.The presence of PHAs (polycyclic aromatic hydrocabons in spirits has been investigated using high performance liquid chromatography (HPLC after solid phase extraction (SPE. The separation was achieved with a Supelco LCPAH-octadecil silane column [25cm x 4,6mm x 5mm] and acetonitrile/water elution gradient and the quantification using a fluorescence detector. The PHAs (naphthalene; acenaphthene; fluorene; phenantrene; anthracene; phuorantene; pyrene; 1,2-benzo(epyrene; chrysene; benzo(epyrene; 2,3-benzo(aanthracene; 1,2-benzo(bphluoranthene; benzo(kfluoranthene; dibenzo(a,hanthracene; benzo(apyreno; benzo(ghipyrilene were quantifed in twenty eight samples of sugar cane spirits. All the experimental data for sugar cane spirit have been analyzed through principal components analysis (PCA aiming to compare the chemical profile of beverages produced from burned and not burned sugar cane.

  14. Bioaccumulation and biomagnification of short and medium chain polychlorinated paraffins in different species of fish from Liaodong Bay, North China

    OpenAIRE

    Huang, Huiting; Gao, Lirong; Xia, Dan; Qiao, Lin

    2017-01-01

    Chlorinated paraffins (CPs) are highly complex technical mixtures, and the short chain chlorinated paraffins (SCCPs) are classed as persistent and have been included in the Stockholm Convention. However, there have been few studies of SCCPs and medium chain chlorinated paraffins (MCCPs) and their bioaccumulation and biomagnification in different species of fish. The present study investigated the levels, congener group profiles, bioaccumulation, and biomagnification of SCCPs and MCCPs in diff...

  15. Explorative data analysis of MCL reveals gene expression networks implicated in survival and prognosis supported by explorative CGH analysis

    International Nuclear Information System (INIS)

    Blenk, Steffen; Engelmann, Julia C; Pinkert, Stefan; Weniger, Markus; Schultz, Jörg; Rosenwald, Andreas; Müller-Hermelink, Hans K; Müller, Tobias; Dandekar, Thomas

    2008-01-01

    Mantle cell lymphoma (MCL) is an incurable B cell lymphoma and accounts for 6% of all non-Hodgkin's lymphomas. On the genetic level, MCL is characterized by the hallmark translocation t(11;14) that is present in most cases with few exceptions. Both gene expression and comparative genomic hybridization (CGH) data vary considerably between patients with implications for their prognosis. We compare patients over and below the median of survival. Exploratory principal component analysis of gene expression data showed that the second principal component correlates well with patient survival. Explorative analysis of CGH data shows the same correlation. On chromosome 7 and 9 specific genes and bands are delineated which improve prognosis prediction independent of the previously described proliferation signature. We identify a compact survival predictor of seven genes for MCL patients. After extensive re-annotation using GEPAT, we established protein networks correlating with prognosis. Well known genes (CDC2, CCND1) and further proliferation markers (WEE1, CDC25, aurora kinases, BUB1, PCNA, E2F1) form a tight interaction network, but also non-proliferative genes (SOCS1, TUBA1B CEBPB) are shown to be associated with prognosis. Furthermore we show that aggressive MCL implicates a gene network shift to higher expressed genes in late cell cycle states and refine the set of non-proliferative genes implicated with bad prognosis in MCL. The results from explorative data analysis of gene expression and CGH data are complementary to each other. Including further tests such as Wilcoxon rank test we point both to proliferative and non-proliferative gene networks implicated in inferior prognosis of MCL and identify suitable markers both in gene expression and CGH data

  16. Simulation of Supply-Chain Networks: A Source of Innovation and Competitive Advantage for Small and Medium-Sized Enterprises

    Directory of Open Access Journals (Sweden)

    Giacomo Liotta

    2012-11-01

    Full Text Available On a daily basis, enterprises of all sizes cope with the turbulence and volatility of market demands, cost variability, and severe pressure from globally distributed competitors. Managing uncertainty about future demand requirements and volumes in supply-chain networks has become a priority. One of the ways to deal with uncertainty is the utilization of simulation techniques and tools, which provide greater predictability of decision-making outcomes. For example, simulation has been widely applied in decision-making processes related to global logistics and production networks at the strategic, tactical, and operational levels, where it is used to predict the impact of decisions before their implementation in complex and uncertain environments. Large enterprises are inclined to use simulation tools whereas small and medium-sized enterprises seem to underestimate its advantages. The objective of this article is to emphasize the relevance of simulation for the design and management of supply-chain networks from the perspective of small and medium-sized firms.

  17. Overexpression of O-polysaccharide chain length regulators in Gram-negative bacteria using the Wzx-/Wzy-dependent pathway enhances production of defined modal length O-polysaccharide polymers for use as haptens in glycoconjugate vaccines.

    Science.gov (United States)

    Hegerle, N; Bose, J; Ramachandran, G; Galen, J E; Levine, M M; Simon, R; Tennant, S M

    2018-03-30

    O-polysaccharide (OPS) molecules are protective antigens for several bacterial pathogens, and have broad utility as components of glycoconjugate vaccines. Variability in the OPS chain length is one obstacle towards further development of these vaccines. Introduction of sizing steps during purification of OPS molecules of suboptimal or of mixed lengths introduces additional costs and complexity while decreasing the final yield. The overall goal of this study was to demonstrate the utility of engineering Gram-negative bacteria to produce homogenous O-polysaccharide populations that can be used as the basis of carbohydrate vaccines by overexpressing O-polysaccharide chain length regulators of the Wzx-/Wzy-dependent pathway. The O-polysaccharide chain length regulators wzzB and fepE from Salmonella Typhimurium I77 and wzz2 from Pseudomonas aeruginosa PAO1 were cloned and expressed in the homologous organism or in other Gram-negative bacteria. Overexpression of these Wzz proteins in the homologous organism significantly increased the proportion of long or very long chain O-polysaccharides. The same observation was made when wzzB was overexpressed in Salmonella Paratyphi A and Shigella flexneri, and wzz2 was overexpressed in two other strains of P. aeruginosa. Overexpression of Wzz proteins in Gram-negative bacteria using the Wzx/Wzy-dependant pathway for lipopolysaccharide synthesis provides a genetic method to increase the production of an O-polysaccharide population of a defined size. The methods presented herein represent a cost-effective and improved strategy for isolating preferred OPS vaccine haptens, and could facilitate the further use of O-polysaccharides in glycoconjugate vaccine development. © 2018 The Society for Applied Microbiology.

  18. Dependence of adenine isolation efficiency on the chain length evidenced using paramagnetic particles and voltammetry measurements

    Energy Technology Data Exchange (ETDEWEB)

    Huska, Dalibor [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Adam, Vojtech [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Trnkova, Libuse [Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno (Czech Republic); Kizek, Rene [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno (Czech Republic)], E-mail: kizek@sci.muni.cz

    2009-05-15

    The main aim of this work was to study the dependence of oligoadenine isolation efficiency on the chain length by using paramagnetic particles covered by homo-deoxythymidines ((dT)25) with subsequent detection by adsorptive transfer technique coupled with square wave voltammetry. For this purpose, the oligonucleotides of the length A5, A10, A15, A20, A25, A30, A35, A40 and poly(A) in various concentrations were chosen. We determined that the isolation efficiency defined as 'isolated oligonucleotide concentration'/'given oligonucleotide concentration' was about 55% on average. Sequence A25 demonstrated the best binding onto microparticles surface.

  19. The effect of the cation alkyl chain length on density and diffusion in dialkylpyrrolidinium bis(mandelato)borate ionic liquids.

    Science.gov (United States)

    Filippov, Andrei; Taher, Mamoun; Shah, Faiz Ullah; Glavatskih, Sergei; Antzutkin, Oleg N

    2014-12-28

    The physicochemical properties of ionic liquids are strongly affected by the selective combination of the cations and anions comprising the ionic liquid. In particular, the length of the alkyl chains of ions has a clear influence on the ionic liquid's performance. In this paper, we study the self-diffusion of ions in a series of halogen-free boron-based ionic liquids (hf-BILs) containing bis(mandelato)borate anions and dialkylpyrrolidinium cations with long alkyl chains CnH2n+1 with n from 4 to 14 within a temperature range of 293-373 K. It was found that the hf-BILs with n = 4-7 have very similar diffusion coefficients, while hf-BILs with n = 10-14 exhibit two liquid sub-phases in almost the entire temperature range studied (293-353 K). Both liquid sub-phases differ in their diffusion coefficients, while values of the slower diffusion coefficients are close to those of hf-BILs with shorter alkyl chains. To explain the particular dependence of diffusion on the alkyl chain length, we examined the densities of the hf-BILs studied here. It was shown that the dependence of the density on the number of CH2 groups in long alkyl chains of cations can be accurately described using a "mosaic type" model, where regions of long alkyl chains of cations (named 'aliphatic' regions) and the residual chemical moieties in both cations and anions (named 'ionic' regions) give additive contributions. Changes in density due to an increase in temperature and the number of CH2 groups in the long alkyl chains of cations are determined predominantly by changes in the free volume of the 'ionic' regions, while 'aliphatic' regions are already highly compressed by van der Waals forces, which results in only infinitesimal changes in their free volumes with temperature.

  20. miR-146a down-regulation alleviates H2O2-induced cytotoxicity of PC12 cells by regulating MCL1/JAK/STAT pathway : miR-146a down-regulation relieves H2O2-induced PC12 cells cytotoxicity by MCL1/JAK/STAT.

    Science.gov (United States)

    Yang, Xuecheng; Mao, Xin; Ding, Xuemei; Guan, Fengju; Jia, Yuefeng; Luo, Lei; Li, Bin; Tan, Hailin; Cao, Caixia

    2018-02-26

    Oxidative stress and miRNAs have been confirmed to play an important role in neurological diseases. The study aimed to explore the underlying effect and mechanisms of miR-146a in H 2 O 2 -induced injury of PC12 cells. Here, PC12 cells were stimulated with 200 μM of H 2 O 2 to construct oxidative injury model. Cell injury was evaluated on the basis of the changes in cell viability, migration, invasion, apoptosis, and DNA damage. Results revealed that miR-146a expression was up-regulated in H 2 O 2 -induced PC12 cells. Functional analysis showed that down-regulation of miR-146a alleviated H 2 O 2 -induced cytotoxicity in PC12 cells. Dual-luciferase reporter and western blot assay verified that MCL1 was a direct target gene of miR-146a. Moreover, anti-miR-146a-mediated suppression on cell cytotoxicity was abated following MCL1 knockdown in H 2 O 2 -induced PC12 cells. Furthermore, MCL1 activated JAK/STAT signaling pathway and MCL1 overexpression attenuated H 2 O 2 -induced cytotoxicity in PC12 cells by JAK/STAT signaling pathway. In conclusion, this study suggested that suppression of miR-146a abated H 2 O 2 -induced cytotoxicity in PC12 cells via regulating MCL1/JAK/STAT pathway.

  1. Association mapping of starch chain length distribution and amylose content in pea (Pisum sativum L.) using carbohydrate metabolism candidate genes.

    Science.gov (United States)

    Carpenter, Margaret A; Shaw, Martin; Cooper, Rebecca D; Frew, Tonya J; Butler, Ruth C; Murray, Sarah R; Moya, Leire; Coyne, Clarice J; Timmerman-Vaughan, Gail M

    2017-08-01

    Although starch consists of large macromolecules composed of glucose units linked by α-1,4-glycosidic linkages with α-1,6-glycosidic branchpoints, variation in starch structural and functional properties is found both within and between species. Interest in starch genetics is based on the importance of starch in food and industrial processes, with the potential of genetics to provide novel starches. The starch metabolic pathway is complex but has been characterized in diverse plant species, including pea. To understand how allelic variation in the pea starch metabolic pathway affects starch structure and percent amylose, partial sequences of 25 candidate genes were characterized for polymorphisms using a panel of 92 diverse pea lines. Variation in the percent amylose composition of extracted seed starch and (amylopectin) chain length distribution, one measure of starch structure, were characterized for these lines. Association mapping was undertaken to identify polymorphisms associated with the variation in starch chain length distribution and percent amylose, using a mixed linear model that incorporated population structure and kinship. Associations were found for polymorphisms in seven candidate genes plus Mendel's r locus (which conditions the round versus wrinkled seed phenotype). The genes with associated polymorphisms are involved in the substrate supply, chain elongation and branching stages of the pea carbohydrate and starch metabolic pathways. The association of polymorphisms in carbohydrate and starch metabolic genes with variation in amylopectin chain length distribution and percent amylose may help to guide manipulation of pea seed starch structural and functional properties through plant breeding.

  2. Impact of spherical inclusion mean chord length and radius distribution on three-dimensional binary stochastic medium particle transport

    International Nuclear Information System (INIS)

    Brantley, Patrick S.; Martos, Jenny N.

    2011-01-01

    We describe a parallel benchmark procedure and numerical results for a three-dimensional binary stochastic medium particle transport benchmark problem. The binary stochastic medium is composed of optically thick spherical inclusions distributed in an optically thin background matrix material. We investigate three sphere mean chord lengths, three distributions for the sphere radii (constant, uniform, and exponential), and six sphere volume fractions ranging from 0.05 to 0.3. For each sampled independent material realization, we solve the associated transport problem using the Mercury Monte Carlo particle transport code. We compare the ensemble-averaged benchmark fiducial tallies of reflection from and transmission through the spatial domain as well as absorption in the spherical inclusion and background matrix materials. For the parameter values investigated, we find a significant dependence of the ensemble-averaged fiducial tallies on both sphere mean chord length and sphere volume fraction, with the most dramatic variation occurring for the transmission through the spatial domain. We find a weaker dependence of most benchmark tally quantities on the distribution describing the sphere radii, provided the sphere mean chord length used is the same in the different distributions. The exponential distribution produces larger differences from the constant distribution than the uniform distribution produces. The transmission through the spatial domain does exhibit a significant variation when an exponential radius distribution is used. (author)

  3. 4-N, 4-S & 4-O Chloroquine Analogues: Influence of Side Chain Length and Quinolyl Nitrogen pKa on Activity vs. Chloroquine Resistant Malaria+, #

    OpenAIRE

    Natarajan, Jayakumar K.; Alumasa, John; Yearick, Kimberly; Ekoue-Kovi, Kekeli A.; Casabianca, Leah B.; de Dios, Angel C.; Wolf, Christian; Roepe, Paul D.

    2008-01-01

    Using predictions from heme – quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure – function principles. We vary side chain length for both monoethyl and diethyl 4N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position, and vary side chain length for these analogues. We introduce an additio...

  4. PEGylation of Phytantriol-Based Lyotropic Liquid Crystalline Particles-The Effect of Lipid Composition, PEG Chain Length, and Temperature on the Internal Nanostructure

    DEFF Research Database (Denmark)

    Nilsson, Christa; Ostergaard, Jesper; Larsen, Susan Weng

    2014-01-01

    of these lipidic nonlamellar liquid crystalline particles by using DSPE-mPEGs with three different block lengths of the hydrophilic PEG segment. The effects of lipid composition, PEG chain length, and temperature on the morphology and internal nanostructure of these self-assembled lipidic aqueous dispersions based...

  5. Influence of trehalose 6,6'-diester (TDX) chain length on the physicochemical and immunopotentiating properties of DDA/TDX liposomes

    DEFF Research Database (Denmark)

    Kallerup, Rie Selchau; Madsen, Cecilie Maria; Schiøth, Mikkel Lohmann

    2015-01-01

    Linking physicochemical characterization to functional properties is crucial for defining critical quality attributes during development of subunit vaccines toward optimal safety and efficacy profiles. We investigated how the trehalose 6,6'-diester (TDX) chain length influenced the physicochemical...... and immunopotentiating properties of the clinically tested liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and analogues of trehalose-6,6'-dibehenate (TDB). TDB analogues with symmetrically shortened acyl chains [denoted X: arachidate (A), stearate (S), palmitate (P), myristate (Myr) and laurate...

  6. The role of discharge variation in scaling of drainage area and food chain length in rivers

    Science.gov (United States)

    Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.

    2010-01-01

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  7. Nonclinical safety and pharmacokinetics of Miglyol 812: A medium chain triglyceride in exenatide once weekly suspension.

    Science.gov (United States)

    Buss, Nicholas; Ryan, Patricia; Baughman, Todd; Roy, Denis; Patterson, Claire; Gordon, Carolyn; Dixit, Rakesh

    2018-05-28

    Exenatide, a glucagon-like peptide-1 receptor agonist was originally developed as either a twice daily or once weekly injectable therapeutic for patients with type 2 diabetes. Exenatide QW suspension was developed for use with an autoinjector device, in which the microspheres are suspended in Miglyol 812, a mixture of medium chain triglycerides (MCTs). MCTs are a class of lipids whose fatty acid chains contain from six to 12 carbon atoms (medium chain fatty acids or MCFAs). While MCTs are edible oils present in many foods, including foodstuffs containing coconut and palm kernel oils, limited information is available regarding the oral and subcutaneous bioavailability of MCTs as well as safety following subcutaneous injection. These studies were designed to investigate the non-clinical pharmacokinetics and safety of MCTs. In a single dose pharmacokinetic study, MCFAs were rapidly detected in the plasma of rats following oral administration of either Miglyol 812 or tricaprylin at doses of 10 or 9.48 g kg -1 , respectively. Following subcutaneous dosing with Miglyol 812, MCFAs were rapidly absorbed with a similar profile to that following oral dosing. Furthermore, the toxicity of Miglyol 812 alone was evaluated in a 3 month repeat dose toxicology studies in cynomolgus monkeys. In this study, weekly subcutaneous doses of 0.15 g kg -1 did not elicit any treatment-related effects in cynomolgus monkeys. In conclusion, these studies alongside the available literature data show that Miglyol 812 is a safe excipient for use in subcutaneously administered therapeutics. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Parenteral medium-chain triglyceride-induced neutrophil activation is not mediated by a Pertussis Toxin sensitive receptor.

    Science.gov (United States)

    Versleijen, Michelle W J; van Esterik, Joantine C J; Roelofs, Hennie M J; van Emst-de Vries, Sjenet E; Willems, Peter H G M; Wanten, Geert J A

    2009-02-01

    Lipid-induced immune modulation might contribute to the increased infection rate that is observed in patients using parenteral nutrition. We previously showed that emulsions containing medium-chain triglycerides (LCT/MCTs or pure MCTs), but not pure long-chain triglycerides (LCTs), impair neutrophil functions, modulate cell-signaling and induce neutrophil activation in vitro. It has recently been shown that medium-chain fatty acids are ligands for GPR84, a pertussis toxin (PT)-sensitive G-protein-coupled receptor (GPCR). This finding urged us to investigate whether MCT-induced neutrophil activation is mediated by PT-sensitive GPCRs. Neutrophils isolated from blood of healthy volunteers were pre-incubated with PT (0.5-1 microg/mL, 1.5 h) and analyzed for the effect of this pre-incubation on LCT/MCT (2.5 mmol/L)-dependent modulation of serum-treated zymosan (STZ)-induced intracellular Ca(2+) mobilization and on LCT/MCT (5 mmol/L)-induced expression of cell surface adhesion (CD11b) and degranulation (CD66b) markers and oxygen radical (ROS) production. PT did not inhibit the effects of LCT/MCT on the STZ-induced increase in cytosolic free Ca(2+) concentration. LCT/MCT increased ROS production to 146% of unstimulated cells. However, pre-incubation with PT did not inhibit the LCT/MCT-induced ROS production. Furthermore, the LCT/MCT-induced increase in CD11b and CD66b expression (196% and 235% of unstimulated cells, respectively) was not inhibited by pre-incubation with PT. LCT/MCT-induced neutrophil activation does not involve the action of a PT-sensitive G-protein-coupled receptor.

  9. Catabolismo de los polihidroxialcanoatos en la bacteria depredadora "Bdellovibrio bacteriovorus": apliaciones biotecnológicas y diseño de nuevos sistemas para la extracción de bioplástico en cultivos bacterianos

    OpenAIRE

    Martínez López, Virginia

    2013-01-01

    Bdellovibrio bacteriovorus HD100 is an obligate predator that invades and grows within the periplasm of Gram-negative bacteria, including mcl-polyhydroxyalkanoate (PHA) producers such as Pseudomonas putida. We investigated the impact of prey PHA content on the predator fitness and the potential advantages for preying on a PHA producer. Using a new procedure to control P. putida KT2442 cell size we demonstrated that the number of Bdellovibrio progeny depends on the prey biomass and not on the ...

  10. IDENTIFICACIÓN DE CEPAS NATIVAS CON POTENCIAL PARA OBTENCIÓN DE POLIHIDROXIALCANOATOS -(PHAsEN LODOS ACTIVADOS

    Directory of Open Access Journals (Sweden)

    ANA LORENA ARROYAVE R.

    Full Text Available Los Polihidroxialcanoatos son poliésteres naturales que se han convertido en una excelente alternativa para remplazar los plásticos convencionales. Son biocompatibles y biodegradables y en corto tiempo pueden ser reducidos a dióxido de carbono y agua. Son sintetizados intracelularmente por diferentes bacteriasy pueden ser obtenidos a partir de una gran variedad de sustratos, en los que se incluyen algunos desechos agroindustriales. Con el objetivo de identificar cepas nativas con potencial para la producción de Polihidroxialcanoatos se llevó a cabo una bioprospección en los lodos de la Planta deTratamiento de Aguas Residuales de San Fernando (Itagüí-Antioquia. Se aislaron en agar selectivo 19 colonias, de las cuales se seleccionaron las colonias con oxidasa positiva. Se realizó la activación y siembra de las bacteriasen medio mínimo de sales (MSM líquido, para establecer el porcentaje de acumulación de los Polihidroxialcanoatos.Las cepas LM-3D, LAR-4D, LAR-5B,LAR-5E, presentaron un porcentaje de acumulación de PHAs de 2, 10, 4, 3 %, respectivamente y la cepaLM-3F presentó un porcentaje de acumulación del 25%, con respecto a los otros aislados. Tras el análisis bioquímico se determinó que las cepas productoras de PHAs fueron Shingomonas paucemobilis, Aeromonas hydrophila y Aeromonas sobria.

  11. Health risks posed to infants in rural China by exposure to short- and medium-chain chlorinated paraffins in breast milk.

    Science.gov (United States)

    Xia, Dan; Gao, Li-Rong; Zheng, Ming-Hui; Li, Jing-Guang; Zhang, Lei; Wu, Yong-Ning; Qiao, Lin; Tian, Qi-Chang; Huang, Hui-Ting; Liu, Wen-Bin; Su, Gui-Jin; Liu, Guo-Rui

    2017-06-01

    Chlorinated paraffins (CPs) are complex mixtures of synthetic chemicals found widely in environmental matrices. Short-chain CPs (SCCPs) are candidate persistent organic pollutants under the Stockholm Convention. There should be great concern about human exposure to SCCPs. Data on CP concentrations in human breast milk is scarce. This is the first study in which background SCCP and medium-chain CP (MCCP) body burdens in the general rural population of China have been estimated and health risks posed to nursing infants by CPs in breast milk assessed. The concentrations of 48 SCCP and MCCP formula congeners were determined in 24 pooled human milk samples produced from 1412 individual samples from eight provinces in 2007 and 16 provinces in 2011. The samples were analyzed by comprehensive two-dimensional gas chromatography electron capture negative ionization high-resolution time-of-flight mass spectrometry. The median SCCP and MCCP concentrations were 303 and 35.7ngg -1 lipid weight, respectively, for the 2007 samples and 360 and 45.4ngg -1 lipid weight, respectively, for the 2011 samples. The C 10 and C 14 homologs were the dominant CP carbon-chain-length groups, contributing 51% and 82% of the total SCCP and MCCP concentrations, respectively. There are probably multiple CP sources to the general Chinese population and numerous exposure pathways. The median estimated daily SCCP and MCCP intakes for nursing infants were 1310 and 152ngkg -1 d -1 , respectively, in 2007 and 1520 and 212ngkg -1 d -1 , respectively, in 2011. SCCPs do not currently pose significant risks to infants in China. However, it is necessary to continuously monitor CP concentrations and health risks because CP concentrations in Chinese human breast milk are increasing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Formation of Anionic C, N-bearing Chains in the Interstellar Medium via Reactions of H- with HC x N for Odd-valued x from 1 to 7

    Science.gov (United States)

    Gianturco, F. A.; Satta, M.; Yurtsever, E.; Wester, R.

    2017-11-01

    We investigate the relative efficiencies of low-temperature chemical reactions in the interstellar medium with H- anion reacting in the gas phase with cyanopolyyne neutral molecules, leading to the formation of anionic {{{C}}}x{{{N}}}- linear chains of different lengths and of H2. All the reactions turn out to be without barriers, highly exothermic reactions that provide a chemical route to the formation of anionic chains of the same length. Some of the anions have been observed in the dark molecular clouds and in the diffuse interstellar envelopes. Quantum calculations are carried out for the corresponding reactive potential energy surfaces for all the odd-numbered members of the series (x = 1, 3, 5, 7). We employ the minimum energy paths to obtain the relevant transition state configurations and use the latter within the variational transition state model to obtain the chemical rates. The present results indicate that at typical temperatures around 100 K, a set of significantly larger rate values exists for x = 3 and x = 5, while the rate values are smaller for CN- and {{{C}}}7{{{N}}}-. At those temperatures, however, all the rates turn out to be larger than the estimates in the current literature for the radiative electron attachment (REA) rates, thus indicating the greater importance of the present chemical path with respect to REA processes at those temperatures. The physical reasons for our findings are discussed in detail and linked with the existing observational findings.

  13. Mcl-1 is essential for germinal center formation and B cell memory

    NARCIS (Netherlands)

    Vikstrom, Ingela; Carotta, Sebastian; Lüthje, Katja; Peperzak, Victor; Jost, Philipp J.; Glaser, Stefan; Busslinger, Meinrad; Bouillet, Philippe; Strasser, Andreas; Nutt, Stephen L.; Tarlinton, David M.

    2010-01-01

    Lymphocyte survival during immune responses is controlled by the relative expression of pro- and anti-apoptotic molecules, regulating the magnitude, quality, and duration of the response. We investigated the consequences of deleting genes encoding the anti-apoptotic molecules Mcl1 and Bcl2l1

  14. The effect of N-nitrosodimethylamine (NDMA) on Bax and Mcl-1 expression in human neutrophils.

    Science.gov (United States)

    Jablonski, Jakub; Jablonska, Ewa; Leonik, Agnieszka

    2011-12-01

    In the present study we examined a role of pro-apoptotic Bax and anti-apoptotic Mcl-1 proteins, participating in the regulation of intrinsic apoptosis pathway in human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA), the environmental xenobiotic. For the purpose comparison, the same studies were conducted in autologous peripheral blood mononuclear cells (PBMCs). The production of cytochrome c by PMNs was also determined. A deficit of anti-apoptotic Mcl-1 and overexpression of the pro-apoptotic protein Bax suggest that the apoptosis process in human neutrophils exposed to NDMA is dependent on changes in the expression of these proteins. PMNs were more sensitive to NDMA than PBMCs.

  15. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    International Nuclear Information System (INIS)

    Ngoi, Kuan Hoon; Chia, Chin-Hua; Zakaria, Sarani; Chiu, Wee Siong

    2015-01-01

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature

  16. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ngoi, Kuan Hoon; Chia, Chin-Hua, E-mail: chia@ukm.edu.my; Zakaria, Sarani [School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia 43600 UKM Bangi, Selangor (Malaysia); Chiu, Wee Siong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur (Malaysia)

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  17. Effects of a meal rich in medium-chain saturated fat on postprandial lipemia in relatives of type 2 diabetics

    DEFF Research Database (Denmark)

    Pietraszek, Anna; Hermansen, Kjeld; Pedersen, Steen B.

    2013-01-01

    tissue in REL and CON. METHODS: Seventeen REL and 17 CON received a fat-rich meal (79 energy percent from fat) based on medium-chain SFA (coconut oil). Plasma concentrations of triglycerides (TG), free-fatty acids, insulin, glucose, glucagon-like peptide-1, glucose-dependent insulintropic peptide...

  18. Effect of alkyl chain length of imidazolium cations on the electron transport and recombination kinetics in ionic gel electrolytes based quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Huo, Zhipeng; Tao, Li; Wang, Lu; Zhu, Jun; Chen, Shuanghong; Zhang, Changneng; Dai, Songyuan; Zhang, Bing

    2015-01-01

    Highlights: •A series of novel IGEs based on 12-hydroxystearicacid as LMOG were prepared. •The QS-DSSCs exhibit excellent stability during the accelerated aging tests. •The influence of Im + alkyl chain length on the electron kinetic process is investigated. -- Abstract: A series of stable quasi-solid-state dye-sensitized solar cells (QS-DSSCs) are prepared by the 12-hydroxystearicacid as low molecular mass organogelator (LMOG) to gelate the ionic liquid with different alkyl chain lengths (3, 4, and 7). The influence of alkyl chain length of imidazolium cations (Im + ) on the kinetic processes of electron transport and recombination are investigated by Electrochemical impedance spectroscopy (EIS) and intensity-modulated photocurrent spectroscopy/intensity-modulated photovoltage spectroscopy (IMPS/IMVS). It is found that the ionic gel electrolytes (IGEs) with different alkyl chain lengths of Im + can influence the competitive adsorption effects of imidazolium cations (Im + ) and Li + , and further affect the charge diffusion, the electron recombination/transport processes, the shift of TiO 2 conduction band edge and surface states distribution. The IGE with longer alkyl chain length of Im + can prolong the electron recombination lifetime, promote the incidental photon-to-electron conversion efficiency (IPCE) and the short circuit photocurrent density (J sc ). An excellent QS-DSSC based on the IGE with the longer alkyl chain of Im + gives the highest photoelectric conversion efficiency. Moreover, all the QS-DSSCs based on IGEs exhibit excellent durability without losing their photovoltaic performances during the accelerated thermal and light–soaking test. These results are very important to the researches on the electrochemical mechanism and application of QS-DSSCs based on IGEs

  19. Influence of chain length of pyrene fatty acids on their uptake and metabolism by Epstein-Barr-virus-transformed lymphoid cell lines from a patient with multisystemic lipid storage myopathy and from control subjects.

    Science.gov (United States)

    Radom, J; Salvayre, R; Levade, T; Douste-Blazy, L

    1990-01-01

    The uptake and intracellular metabolism of 4-(1-pyrene)butanoic acid (P4), 10-(1-pyrene)decanoic acid (P10) and 12-(1-pyrene)dodecanoic acid (P12) were investigated in cultured lymphoid cell lines from normal individuals and from a patient with multisystemic lipid storage myopathy (MLSM). The cellular uptake was shown to be dependent on the fatty-acid chain length, but no significant difference in the uptake of pyrene fatty acids was observed between MLSM and control lymphoid cells. After incubation for 1 h the distribution of fluorescent fatty acids taken up by the lymphoid cell lines also differed with the chain length, most of the fluorescence being associated with phospholipid and triacylglycerols. In contrast with P10 and P12, P4 was not incorporated into neutral lipids. When the cells were incubated for 24 h with the pyrene fatty acids, the amount of fluorescent lipids synthesized by the cells was proportional to the fatty acid concentration in the culture medium. After a 24 h incubation in the presence of P10 or P12, at any concentration, the fluorescent triacylglycerol content of MLSM cells was 2-5-fold higher than that of control cells. Concentrations of pyrene fatty acids higher than 40 microM seemed to be more toxic for mutant cells than for control cells. This cytotoxicity was dependent on the fluorescent-fatty-acid chain length (P12 greater than P10 greater than P4). Pulse-chase experiments permitted one to demonstrate the defect in the degradation of endogenously biosynthesized triacylglycerols in MLSM cells (residual activity was around 10-25% of controls on the basis of half-lives and initial rates of P10- or P12-labelled-triacylglycerol catabolism); MLSM lymphoid cells exhibited a mild phenotypic expression of the lipid storage (less severe than that observed in fibroblasts). P4 was not utilized in the synthesis of triacylglycerols, and thus did not accumulate in MLSM cells: this suggests that natural short-chain fatty acids might induce a lesser

  20. Processes for producing polyhydroxybutyrate and related polyhydroxyalkanoates in the plastids of higher plants

    Science.gov (United States)

    Somerville, C.R.; Nawrath, C.; Poirier, Y.

    1997-03-11

    The present invention relates to a process for producing poly-D-(-)-3-hydroxybutyric acid (PHB) and related polyhydroxyalkanoates (PHA) in the plastids of plants. The production of PHB is accomplished by genetically transforming plants with modified genes from microorganisms. The genes encode the enzymes required to synthesize PHB from acetyl-CoA or related metabolites and are fused with additional plant sequences for targeting the enzymes to the plastid. 37 figs.

  1. Semi-scale production of PHAs from waste frying oil by Pseudomonas fluorescens S48

    Directory of Open Access Journals (Sweden)

    Rawia F. Gamal

    2013-01-01

    Full Text Available The present study aimed at developing a strategy to improve the volumetric production of PHAs by Pseudomonas fluorescens S48 using waste frying oil (WFO as the sole carbon source. For this purpose, several cultivations were set up to steadily improve nutrients supply to attain high cell density and high biopolymer productivity. The production of PHAs was examined in a 14 L bioreactor as one-stage batch, two-stage batch, and high-cell-density fed-batch cultures. The highest value of polymer content in one-stage bioreactor was obtained after 60 h (33.7%. Whereas, the two-stage batch culture increased the polymer content to 50.1% after 54 h. High-cell-density (0.64 g/L at continuous feeding rate 0.55 mL/l/h of WFO recorded the highest polymer content after 54 h (55.34%. Semi-scale application (10 L working volume increased the polymer content in one-stage batch, two-stage batch and high cell density fed-batch cultures by about 12.3%, 5.8% and 11.3%, respectively, as compared with that obtained in 2 L fermentation culture. Six different methods for biopolymer extraction were done to investigate their efficiency for optimum polymer recovery. The maximum efficiency of solvent recovery of PHA was attained by chloroform-hypochlorite dispersion extraction. Gas chromatography (GC analysis of biopolymer produced by Pseudomonas fluorescens S48 indicated that it solely composed of 3-hydrobutyric acid (98.7%. A bioplastic film was prepared from the obtained PHB. The isolate studied shares the same identical sequence, which is nearly the complete 16S rRNA gene. The identity of this sequence to the closest pseudomonads strains is about 98-99%. It was probably closely related to support another meaningful parsiomony analysis and construction of a phylogenetic tree. The isolate is so close to Egyptian strain named EG 639838.

  2. In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF.

    Science.gov (United States)

    Moldes, Cristina; García, Pedro; García, José L; Prieto, María A

    2004-06-01

    A new protein immobilization and purification system has been developed based on the use of polyhydroxyalkanoates (PHAs, or bioplastics), which are biodegradable polymers accumulated as reserve granules in the cytoplasm of certain bacteria. The N-terminal domain of the PhaF phasin (a PHA-granule-associated protein) from Pseudomonas putida GPo1 was used as a polypeptide tag (BioF) to anchor fusion proteins to PHAs. This tag provides a novel way to immobilize proteins in vivo by using bioplastics as supports. The granules carrying the BioF fusion proteins can be isolated by a simple centrifugation step and used directly for some applications. Moreover, when required, a practically pure preparation of the soluble BioF fusion protein can be obtained by a mild detergent treatment of the granule. The efficiency of this system has been demonstrated by constructing two BioF fusion products, including a functional BioF-beta-galactosidase. This is the first example of an active bioplastic consisting of a biodegradable matrix carrying an active enzyme.

  3. Link between lipid metabolism and voluntary food intake in rainbow trout fed coconut oil rich in medium-chain TAG

    NARCIS (Netherlands)

    Figueiredo-Silva, A.C.; Kaushik, S.; Terrier, F.; Schrama, J.W.; Médale, F.; Geurden, I.

    2012-01-01

    We examined the long-term effect of feeding coconut oil (CO; rich in lauric acid, C12) on voluntary food intake and nutrient utilisation in rainbow trout (Oncorhynchus mykiss), with particular attention to the metabolic use (storage or oxidation) of ingested medium-chain TAG. Trout were fed for 15

  4. Comparative validity of brief to medium-length Big Five and Big Six Personality Questionnaires.

    Science.gov (United States)

    Thalmayer, Amber Gayle; Saucier, Gerard; Eigenhuis, Annemarie

    2011-12-01

    A general consensus on the Big Five model of personality attributes has been highly generative for the field of personality psychology. Many important psychological and life outcome correlates with Big Five trait dimensions have been established. But researchers must choose between multiple Big Five inventories when conducting a study and are faced with a variety of options as to inventory length. Furthermore, a 6-factor model has been proposed to extend and update the Big Five model, in part by adding a dimension of Honesty/Humility or Honesty/Propriety. In this study, 3 popular brief to medium-length Big Five measures (NEO Five Factor Inventory, Big Five Inventory [BFI], and International Personality Item Pool), and 3 six-factor measures (HEXACO Personality Inventory, Questionnaire Big Six Scales, and a 6-factor version of the BFI) were placed in competition to best predict important student life outcomes. The effect of test length was investigated by comparing brief versions of most measures (subsets of items) with original versions. Personality questionnaires were administered to undergraduate students (N = 227). Participants' college transcripts and student conduct records were obtained 6-9 months after data was collected. Six-factor inventories demonstrated better predictive ability for life outcomes than did some Big Five inventories. Additional behavioral observations made on participants, including their Facebook profiles and cell-phone text usage, were predicted similarly by Big Five and 6-factor measures. A brief version of the BFI performed surprisingly well; across inventory platforms, increasing test length had little effect on predictive validity. Comparative validity of the models and measures in terms of outcome prediction and parsimony is discussed.

  5. Probing the Differential Tissue Distribution and Bioaccumulation Behavior of Per- and Polyfluoroalkyl Substances of Varying Chain-Lengths, Isomeric Structures and Functional Groups in Crucian Carp.

    Science.gov (United States)

    Shi, Yali; Vestergren, Robin; Nost, Therese Haugdahl; Zhou, Zhen; Cai, Yaqi

    2018-04-17

    Understanding the bioaccumulation mechanisms of per- and polyfluoroalkyl substances (PFASs) across different chain-lengths, isomers and functional groups represents a monumental scientific challenge with implications for chemical regulation. Here, we investigate how the differential tissue distribution and bioaccumulation behavior of 25 PFASs in crucian carp from two field sites impacted by point sources can provide information about the processes governing uptake, distribution and elimination of PFASs. Median tissue/blood ratios (TBRs) were consistently 90% of the amount of PFASs in the organism. Principal component analyses of TBRs and RBBs showed that the functional group was a relatively more important predictor of internal distribution than chain-length for PFASs. Whole body bioaccumulation factors (BAFs) for short-chain PFASs deviated from the positive relationship with hydrophobicity observed for longer-chain homologues. Overall, our results suggest that TBR, RBB, and BAF patterns were most consistent with protein binding mechanisms although partitioning to phospholipids may contribute to the accumulation of long-chain PFASs in specific tissues.

  6. An Assessment of Weight-Length Relationships for Muskellunge,Northern Pike, and Chain Pickerel In Carlander's Handbook of Freshwater Fishery Biology

    OpenAIRE

    Daviscourt, Joshua; Huertas, Joshua; Courtney, Michael

    2011-01-01

    Carlander's Handbook of Freshwater Fishery Biology (1969) contains life history data from many species of freshwater fish found in North America. It has been cited over 1200 times and used to produce standard-weight curves for some species. Recent work (Cole-Fletcher et al. 2011) suggests Carlander (1969) contains numerous errors in listed weight-length equations. This paper assesses the weight-length relationships listed in Carlander for muskellunge, northern pike, and chain pickerel by comp...

  7. Biodegradable and Biocompatible Biomaterial, Polyhydroxybutyrate, Produced by an Indigenous Vibrio sp. BM-1 Isolated from Marine Environment

    Directory of Open Access Journals (Sweden)

    Ho-Shing Wu

    2011-04-01

    Full Text Available Polyhydroxybutyrate (PHB is one of the polyhydroxyalkanoates (PHAs which has biodegradable and biocompatible properties. They are adopted in the biomedical field, in, for example, medical implants and drug delivery carriers. This study seeks to promote the production of PHB by Vibrio sp. BM-1, isolated from a marine environment by improving constituents of medium and implementing an appropriate fermentation strategy. This study successfully developed a glycerol-yeast extract-tryptone (GYT medium that can facilitate the growth of Vibrio sp. BM-1 and lead to the production of 1.4 g/L PHB at 20 h cultivation. This study also shows that 1.57 g/L PHB concentration and 16% PHB content were achieved, respectively, when Vibrio sp. BM-1 was cultivated with MS-GYT medium (mineral salts-supplemented GYT medium for 12 h. Both cell dry weight (CDW and residual CDW remained constant at around 8.2 g/L and 8.0 g/L after the 12 h of cultivation, until the end of the experiment. However, both 16% of PHB content and 1.57 g/L of PHB production decreased rapidly to 3% and 0.25 g/L, respectively from 12 h of cultivation to 40 h of cultivation. The results suggest that the secretion of PHB depolymerase that might be caused by the addition of mineral salts reduced PHB after 12 h of cultivation. However, work will be done to explain the effect of adding mineral salts on the production of PHB by Vibrio sp. BM-1 in the near future.

  8. Biodegradable and biocompatible biomaterial, polyhydroxybutyrate, produced by an indigenous Vibrio sp. BM-1 isolated from marine environment.

    Science.gov (United States)

    Wei, Yu-Hong; Chen, Wei-Chuan; Wu, Ho-Shing; Janarthanan, Om-Murugan

    2011-01-01

    Polyhydroxybutyrate (PHB) is one of the polyhydroxyalkanoates (PHAs) which has biodegradable and biocompatible properties. They are adopted in the biomedical field, in, for example, medical implants and drug delivery carriers. This study seeks to promote the production of PHB by Vibrio sp. BM-1, isolated from a marine environment by improving constituents of medium and implementing an appropriate fermentation strategy. This study successfully developed a glycerol-yeast extract-tryptone (GYT) medium that can facilitate the growth of Vibrio sp. BM-1 and lead to the production of 1.4 g/L PHB at 20 h cultivation. This study also shows that 1.57 g/L PHB concentration and 16% PHB content were achieved, respectively, when Vibrio sp. BM-1 was cultivated with MS-GYT medium (mineral salts-supplemented GYT medium) for 12 h. Both cell dry weight (CDW) and residual CDW remained constant at around 8.2 g/L and 8.0 g/L after the 12 h of cultivation, until the end of the experiment. However, both 16% of PHB content and 1.57 g/L of PHB production decreased rapidly to 3% and 0.25 g/L, respectively from 12 h of cultivation to 40 h of cultivation. The results suggest that the secretion of PHB depolymerase that might be caused by the addition of mineral salts reduced PHB after 12 h of cultivation. However, work will be done to explain the effect of adding mineral salts on the production of PHB by Vibrio sp. BM-1 in the near future.

  9. Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: effects of p38MAPK and ERK1/2 signaling.

    Science.gov (United States)

    Dyugovskaya, Larissa; Polyakov, Andrey; Cohen-Kaplan, Victoria; Lavie, Peretz; Lavie, Lena

    2012-10-22

    Prolonged neutrophil survival is evident in various cardiovascular and respiratory morbidities, in hypoxic conditions in-vitro and in patients with obstructive sleep apnea (OSA) characterized by nightly intermittent hypoxia (IH). This may lead to persistent inflammation, tissue injury and dysfunction. We therefore investigated by a translational approach the potential contribution of the intrinsic stress-induced mitochondrial pathway in extending neutrophil survival under IH conditions. Thus, neutrophils of healthy individuals treated with IH in-vitro and neutrophils of OSA patients undergoing nightly IH episodes in-vivo were investigated. Specifically, the balance between pro-apoptotic Bax and anti-apoptotic Mcl-1 protein expression, and the potential involvement of p38MAPK and ERK1/2 signaling pathways in the control of Mcl-1 expression were investigated. Purified neutrophils were exposed to IH and compared to normoxia and to sustained hypoxia (SH) using a BioSpherix-OxyCycler C42 system. Bax and Mcl-1 levels, and p38MAPK and ERK1/2 phosphorylation were determined by western blotting. Also, Bax/Mcl-1 expression and Bax translocation to the mitochondria were assessed by confocal microscopy in pre-apoptotic neutrophils, before the appearance of apoptotic morphology. Co-localization of Bax and mitochondria was quantified by LSM 510 CarlZeiss MicroImaging using Manders Overlap Coefficient. A paired two-tailed t test, with Bonferroni correction for multiple comparisons, was used for statistical analysis. Compared to normoxia, IH and SH up-regulated the anti-apoptotic Mcl-1 by about 2-fold, down-regulated the pro-apoptotic Bax by 41% and 27%, respectively, and inhibited Bax co-localization with mitochondria before visible morphological signs of apoptosis were noted. IH induced ERK1/2 and p38MAPKs phosphorylation, whereas SH induced only p38MAPK phosphorylation. Accordingly, both ERK and p38MAPK inhibitors attenuated the IH-induced Mcl-1 increase. In SH, only p38MAPK

  10. Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: effects of p38MAPK and ERK1/2 signaling

    Directory of Open Access Journals (Sweden)

    Dyugovskaya Larissa

    2012-10-01

    Full Text Available Abstract Background Prolonged neutrophil survival is evident in various cardiovascular and respiratory morbidities, in hypoxic conditions in-vitro and in patients with obstructive sleep apnea (OSA characterized by nightly intermittent hypoxia (IH. This may lead to persistent inflammation, tissue injury and dysfunction. We therefore investigated by a translational approach the potential contribution of the intrinsic stress-induced mitochondrial pathway in extending neutrophil survival under IH conditions. Thus, neutrophils of healthy individuals treated with IH in-vitro and neutrophils of OSA patients undergoing nightly IH episodes in-vivo were investigated. Specifically, the balance between pro-apoptotic Bax and anti-apoptotic Mcl-1 protein expression, and the potential involvement of p38MAPK and ERK1/2 signaling pathways in the control of Mcl-1 expression were investigated. Methods Purified neutrophils were exposed to IH and compared to normoxia and to sustained hypoxia (SH using a BioSpherix-OxyCycler C42 system. Bax and Mcl-1 levels, and p38MAPK and ERK1/2 phosphorylation were determined by western blotting. Also, Bax/Mcl-1 expression and Bax translocation to the mitochondria were assessed by confocal microscopy in pre-apoptotic neutrophils, before the appearance of apoptotic morphology. Co-localization of Bax and mitochondria was quantified by LSM 510 CarlZeiss MicroImaging using Manders Overlap Coefficient. A paired two-tailed t test, with Bonferroni correction for multiple comparisons, was used for statistical analysis. Results Compared to normoxia, IH and SH up-regulated the anti-apoptotic Mcl-1 by about 2-fold, down-regulated the pro-apoptotic Bax by 41% and 27%, respectively, and inhibited Bax co-localization with mitochondria before visible morphological signs of apoptosis were noted. IH induced ERK1/2 and p38MAPKs phosphorylation, whereas SH induced only p38MAPK phosphorylation. Accordingly, both ERK and p38MAPK inhibitors attenuated

  11. Bim and Mcl-1 exert key roles in regulating JAK2V617F cell survival

    International Nuclear Information System (INIS)

    Rubert, Joëlle; Qian, Zhiyan; Andraos, Rita; Guthy, Daniel A; Radimerski, Thomas

    2011-01-01

    The JAK2 V617F mutation plays a major role in the pathogenesis of myeloproliferative neoplasms and is found in the vast majority of patients suffering from polycythemia vera and in roughly every second patient suffering from essential thrombocythemia or from primary myelofibrosis. The V617F mutation is thought to provide hematopoietic stem cells and myeloid progenitors with a survival and proliferation advantage. It has previously been shown that activated JAK2 promotes cell survival by upregulating the anti-apoptotic STAT5 target gene Bcl-xL. In this study, we have investigated the role of additional apoptotic players, the pro-apoptotic protein Bim as well as the anti-apoptotic protein Mcl-1. Pharmacological inhibition of JAK2/STAT5 signaling in JAK2 V617F mutant SET-2 and MB-02 cells was used to study effects on signaling, cell proliferation and apoptosis by Western blot analysis, WST-1 proliferation assays and flow cytometry. Cells were transfected with siRNA oligos to deplete candidate pro- and anti-apoptotic proteins. Co-immunoprecipitation assays were performed to assess the impact of JAK2 inhibition on complexes of pro- and anti-apoptotic proteins. Treatment of JAK2 V617F mutant cell lines with a JAK2 inhibitor was found to trigger Bim activation. Furthermore, Bim depletion by RNAi suppressed JAK2 inhibitor-induced cell death. Bim activation following JAK2 inhibition led to enhanced sequestration of Mcl-1, besides Bcl-xL. Importantly, Mcl-1 depletion by RNAi was sufficient to compromise JAK2 V617F mutant cell viability and sensitized the cells to JAK2 inhibition. We conclude that Bim and Mcl-1 have key opposing roles in regulating JAK2 V617F cell survival and propose that inactivation of aberrant JAK2 signaling leads to changes in Bim complexes that trigger cell death. Thus, further preclinical evaluation of combinations of JAK2 inhibitors with Bcl-2 family antagonists that also tackle Mcl-1, besides Bcl-xL, is warranted to assess the therapeutic potential

  12. Oxidative stabilization of mixed mayonnaises made with linseed oil and saturated medium-chain triglyceride oil

    DEFF Research Database (Denmark)

    Raudsepp, Piret; Brüggemann, Dagmar A.; Lenferink, Aufried

    2014-01-01

    Mayonnaises, made with either saturated medium chain triglyceride (MCT) oil or unsaturated purified linseed oil (LSO), were mixed. Raman confocal microspectrometry demonstrated that lipid droplets in mixed mayonnaise remained intact containing either MCT oil or LSO. Peroxide formation during...... showed radicals are formed in the aqueous phase with the same rate independent of the lipids. This was also reflected in decay of α-tocopherol during storage being similar in MCT and LSO mayonnaises, but being stable in mixed oil mayonnaise and mixed mayonnaise. Results suggest that other effects than...

  13. Dynamic photoinduced realignment processes in photoresponsive block copolymer films: effects of the chain length and block copolymer architecture.

    Science.gov (United States)

    Sano, Masami; Shan, Feng; Hara, Mitsuo; Nagano, Shusaku; Shinohara, Yuya; Amemiya, Yoshiyuki; Seki, Takahiro

    2015-08-07

    A series of block copolymers composed of an amorphous poly(butyl methacrylate) (PBMA) block connected with an azobenzene (Az)-containing liquid crystalline (PAz) block were synthesized by changing the chain length and polymer architecture. With these block copolymer films, the dynamic realignment process of microphase separated (MPS) cylinder arrays of PBMA in the PAz matrix induced by irradiation with linearly polarized light was studied by UV-visible absorption spectroscopy, and time-resolved grazing incidence small angle X-ray scattering (GI-SAXS) measurements using a synchrotron beam. Unexpectedly, the change in the chain length hardly affected the realignment rate. In contrast, the architecture of the AB-type diblock or the ABA-type triblock essentially altered the realignment feature. The strongly cooperative motion with an induction period before realignment was characteristic only for the diblock copolymer series, and the LPL-induced alignment change immediately started for triblock copolymers and the PAz homopolymer. Additionally, a marked acceleration in the photoinduced dynamic motions was unveiled in comparison with a thermal randomization process.

  14. Ion solvation in polymer blends and block copolymer melts: effects of chain length and connectivity on the reorganization of dipoles.

    Science.gov (United States)

    Nakamura, Issei

    2014-05-29

    We studied the thermodynamic properties of ion solvation in polymer blends and block copolymer melts and developed a dipolar self-consistent field theory for polymer mixtures. Our theory accounts for the chain connectivity of polymerized monomers, the compressibility of the liquid mixtures under electrostriction, the permanent and induced dipole moments of monomers, and the resultant dielectric contrast among species. In our coarse-grained model, dipoles are attached to the monomers and allowed to rotate freely in response to electrostatic fields. We demonstrate that a strong electrostatic field near an ion reorganizes dipolar monomers, resulting in nonmonotonic changes in the volume fraction profile and the dielectric function of the polymers with respect to those of simple liquid mixtures. For the parameter sets used, the spatial variations near an ion can be in the range of 1 nm or larger, producing significant differences in the solvation energy among simple liquid mixtures, polymer blends, and block copolymers. The solvation energy of an ion depends substantially on the chain length in block copolymers; thus, our theory predicts the preferential solvation of ions arising from differences in chain length.

  15. Alignment-free Transcriptomic and Metatranscriptomic Comparison Using Sequencing Signatures with Variable Length Markov Chains.

    Science.gov (United States)

    Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu

    2016-11-23

    The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.

  16. Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1000000

    International Nuclear Information System (INIS)

    Grassberger, P.

    1997-01-01

    We present an algorithm for simulating flexible chain polymers. It combines the Rosenbluth-Rosenbluth method with recursive enrichment. Although it can be applied also in more general situations, it is most efficient for three-dimensional θ polymers on the simple-cubic lattice. There it allows high statistics simulations of chains of length up to N=10 6 . For storage reasons, this is feasable only for polymers in a finite volume. For free θ polymers in infinite volume, we present very high statistics runs with N=10000. These simulations fully agree with previous simulations made by Hegger and Grassberger [J. Chem. Phys. 102, 6681 (1995)] with a similar but less efficient algorithm, showing that logarithmic corrections to mean field behavior are much stronger than predicted by field theory. But the finite volume simulations show that the density inside a collapsed globule scales with the distance from the θ point as predicted by mean field theory, in contrast to claims in the work mentioned above. In addition to the simple-cubic lattice, we also studied two versions of the bond fluctuation model, but with much shorter chains. Finally, we show that our method can be applied also to off-lattice models, and illustrate this with simulations of a model studied in detail by Freire et al. [Macromolecules 19, 452 (1986) and later work]. copyright 1997 The American Physical Society

  17. Genetic variants of NOXA and MCL1 modify the risk of HPV16-associated squamous cell carcinoma of the head and neck

    International Nuclear Information System (INIS)

    Zhou, Ziyuan; Sturgis, Erich M; Liu, Zhensheng; Wang, Li-E; Wei, Qingyi; Li, Guojun

    2012-01-01

    The cooperation between phorbol 12-myristate 13-acetate induced protein 1 (NOXA) and myeloid cell leukemia 1 (MCL1) is critical in the intrinsic apoptotic pathway. Human papillomavirus 16 (HPV16), by inducing p53 and pRb-E2F degradation, may play an essential role in development of squamous cell carcinoma of the head and neck (SCCHN) through NOXA-MCL1 axis-mediated apoptosis. Therefore, genetic variants of NOXA and MCL1 may modify the SCCHN risk associated with HPV16 seropositivity. HPV16 serology was obtained by immunoadsorption assay. Four functional SNPs in the promoter of NOXA (rs9957673, rs4558496) and MCL1 (rs9803935, rs3738485) were genotyped for 380 cases and 335 frequency-matched cancer-free controls of non-Hispanic whites. Associations between the four polymorphisms and SCCHN risk were not significant, while we observed a significantly joint effect on SCCHN risk between the polymorphisms and HPV16 seropositivity. Notably, this effect modification was particularly pronounced for oropharyngeal cancer in subgroups including never smokers, never drinkers and younger subjects. Our results suggested that polymorphisms of NOXA and MCL1 may modify the risk of HPV16-associated oropharyngeal cancer. The further identification of population subgroups at higher risk provides evidence that HPV-targeting treatment may help benefit SCCHN. However, larger studies are needed to validate our findings

  18. BAG3-dependent expression of Mcl-1 confers resistance of mutant KRAS colon cancer cells to the HSP90 inhibitor AUY922.

    Science.gov (United States)

    Wang, Chun Yan; Guo, Su Tang; Croft, Amanda; Yan, Xu Guang; Jin, Lei; Zhang, Xu Dong; Jiang, Chen Chen

    2018-02-01

    Past studies have shown that mutant KRAS colon cancer cells are susceptible to apoptosis induced by the HSP90 inhibitor AUY922. Nevertheless, intrinsic and acquired resistance remains an obstacle for the potential application of the inhibitor in the treatment of the disease. Here we report that Mcl-1 is important for survival of colon cancer cells in the presence of AUY922. Mcl-1 was upregulated in mutant KRAS colon cancer cells selected for resistance to AUY922-induced apoptosis. This was due to its increased stability mediated by Bcl-2-associated athanogene domain 3 (BAG3), which was also increased in resistant colon cancer cells by heat shock factor 1 (HSF1) as a result of chronic endoplasmic reticulum (ER) stress. Functional investigations demonstrated that inhibition of Mcl-1, BAG3, or HSF1 triggered apoptosis in resistant colon cancer cells, and rendered AUY922-naïve colon cancer cells more sensitive to the inhibitor. Together, these results identify that the HSF1-BAG3-Mcl-1 signal axis is critical for protection of mutant KRAS colon cancer cells from AUY922-induced apoptosis, with potential implications for targeting HSF1/BAG3/Mcl-1 to improve the efficacy of AUY922 in the treatment of colon cancer. © 2017 Wiley Periodicals, Inc.

  19. An examination on the influence of small and medium enterprise (SME) stakeholder on green supply chain management practices

    Science.gov (United States)

    Shahlan, M. Z.; Sidek, A. A.; Suffian, S. A.; Hazza, M. H. F. A.; Daud, M. R. C.

    2018-01-01

    In this paper, climate change and global warming are the biggest current issues in the industrial sectors. The green supply chain managements (GSCM) is one of the crucial input to these issues. Effective GSCM can potentially secure the organization’s competitive advantage and improve the environmental performance of the network activities. In this study, the aim is to investigate and examine how a small and medium enterprises (SMEs) stakeholder pressure and top management influence green supply chain management practices. The study is further advance green supply chain management research in Malaysia focusing on SMEs manufacturing sector using structural equation modelling. Structural equation modelling is a multivariate statistical analysis technique used to examine structural relationship. It is the combination of factor analysis and multi regression analysis and used to analyse structural relationship between measure variable and latent factor. This research found that top management support and stakeholder pressure is the major influence for SMEs to adopt green supply chain management. The research also found that top management is fully mediate with the relationship between stakeholder pressure and monitoring supplier environmental performance.

  20. Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava.

    Science.gov (United States)

    Dietrich, Diane; Illman, Barbara; Crooks, Casey

    2013-06-04

    The aim of this study is determine the relative sensitivity of a panel of seven polyhydroxyalkanoate producing bacteria to a panel of seven lignocellulosic-derived fermentation inhibitors representing aliphatic acids, furans and phenolics. A further aim was to measure the polyhydroxybutyrate production of select organisms on lignocellulosic-derived monosaccharides arabinose, xylose, glucose and mannose. We examined the sensitivity of seven polyhydroxyalkanoate producing bacteria: Azohydromonas lata, Bacillus megaterium, Bacillus cereus, Burkholderia cepacia, Pseudomonas olevorans, Pseudomonas pseudoflava and Ralstonia eutropha, against seven fermentation inhibitors produced by the saccharification of lignocellulose: acetic acid, levulinic acid, coumaric acid, ferulic acid, syringaldehyde, furfural, and hyroxymethyfurfural. There was significant variation in the sensitivity of these microbes to representative phenolics ranging from 0.25-1.5 g/L coumaric and ferulic acid and between 0.5-6.0 g/L syringaldehyde. Inhibition ranged from 0.37-4 g/L and 0.75-6 g/L with acetic acid and levulinic acid, respectively. B. cepacia and P. pseudoflava were selected for further analysis of polyhydroxyalkanoate production. We find significant differences in sensitivity to the fermentation inhibitors tested and find these variations to be over a relevant concentration range given the concentrations of inhibitors typically found in lignocellulosic hydrolysates. Of the seven bacteria tested, B. cepacia demonstrated the greatest inhibitor tolerance. Similarly, of two organisms examined for polyhydroxybutyrate production, B. cepacia was notably more efficient when fermenting pentose substrates.

  1. Effects of molecular and lattice structure on the thermal behaviours of some long chain length potassium(I) n-alkanoates

    Science.gov (United States)

    Nelson, Peter N.; Ellis, Henry A.; Taylor, Richard A.

    2014-01-01

    Lattice structures and thermal behaviours for some long chain potassium carboxylates (nc = 8-18, inclusive) are investigated using Fourier Transform Infrared spectroscopy, X-ray Powder Diffraction, Solid State spin decoupled 13C NMR spectroscopy, Differential Scanning Calorimetry and Thermogravimetry. The measurements show that the carboxyl groups are coordinated to potassium atoms via asymmetric chelating bidentate bonding, with extensive carboxyl intermolecular interactions to yield tetrahedral metal centers, irrespective of chain length. Furthermore, the hydrocarbon chains are crystallized in the fully extended all-trans configuration and are arranged as non-overlapping lamellar bilayer structures with closely packed methyl groups from opposite layers. Additionally, odd-even alternation, observed in density and methyl group chemical shift, is ascribed to the relative vertical distances between layers in the bilayer, that are not in the same plane. Therefore, for even chain homologues, where this distances is less than for odd chain adducts, more intimate packing is indicated. The phase sequences for all compounds show several reversible crystal-crystal transition associated with kinetically controlled gauche-trans isomerism of the polymethylene chains which undergo incomplete fusion when heated to the melt. The compounds degrade above 785 K to yield carbon dioxide, water, potassium oxide and an alkene.

  2. Nitrogen sparing effect of structured triglycerides containing both medium-and long-chain fatty acids in critically ill patients; a double blind randomized controlled trial.

    Science.gov (United States)

    Lindgren, B F; Ruokonen, E; Magnusson-Borg, K; Takala, J

    2001-02-01

    Patients with sepsis and trauma are characterised by hypermetabolism, insulin resistance and protein catabolism. Fat emulsions containing medium chain triglycerides have been suggested to be beneficial for these patients since medium chain fatty acids are a more readily available source of energy when compared to long chain fatty acids. The aim of this study was to compare a medium and long chain triglyceride emulsion consisting of structured triglycerides (ST) with a long chain triglyceride (LCT) emulsion in terms of effects on nitrogen balance, energy metabolism and safety. 30 ICU patients with sepsis or multiple injury received a fat emulsion with ST or 20% LCT (1.5 g triglycerides/kg body weight/day) as a component of total parenteral nutrition (TPN), for 5 days in a double blind randomised parallel group design. The main analysis was made on the 3 day per protocol population due to lack of patients at day 5. There were no differences in baseline characteristics of the two groups receiving either the LCT or the ST emulsion. The efficacy analysis was performed on the per protocol population (n=9 ST, n=11 LCT). There was a significant difference between the two treatments regarding daily nitrogen balances when the first 3 days were analysed P=0.0038). This resulted in an amelioration of the nitrogen balance on day 3 in the group on ST as compared to those on LCT (0.1+/-2.4 g vs -9.9+/-2.1 g P=0.01). The 3 day cumulative nitrogen balance was significantly better in the group receiving ST compared to those on LCT (-0.7+/-6.0 vs -16.7+/-3.9 P=0.03). This better cumulative nitrogen balance on day 3 was also preserved as a tendency (P=0.061) in the analysis of the intention to treat population, but on day 5 there was no significant difference (P=0.08). The ST emulsion was well tolerated and no difference was found compared to the LCT emulsion regarding respiratory quotient, energy expenditure, glucose or triglyceride levels during infusion. Administration of a

  3. The frequency of a disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase in sudden infant death syndrome

    DEFF Research Database (Denmark)

    Banner, Jytte; Gregersen, N; Kølvraa, S

    1993-01-01

    A number of rare inherited metabolic disorders are known to lead to death in infancy. Deficiency of medium-chain acyl CoA dehydrogenase has, on clinical grounds, been related particularly to sudden infant death syndrome. The contribution of this disorder to the etiology of sudden infant death...... syndrome is still a matter of controversy. The present study investigated 120 well-defined cases of sudden infant death syndrome in order to detect the frequency of the most common disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase (G985) compared with the frequency...... in the general population. A highly specific polymerase chain reaction assay was applied on dried blood spots. No over-representation of homo- or heterozygosity for G985 appears to exist in such a strictly defined population, for which reason it may be more relevant to look at a broader spectrum of clinical...

  4. Recycling of Waste Streams of the Biotechnological Poly(hydroxyalkanoate Production by Haloferax mediterranei on Whey

    Directory of Open Access Journals (Sweden)

    Martin Koller

    2015-01-01

    Full Text Available For manufacturing “bioplastics” such as poly(hydroxyalkanoates (PHA, the combination of utilization of inexpensive carbon sources with the application of robust microbial production strains is considered a decisive step to make this process more cost-efficient and sustainable. PHA production based on surplus whey from dairy industry was accomplished by the extremely halophile archaeon Haloferax mediterranei. After fermentative production of PHA-rich biomass and the subsequent cell harvest and downstream processing for PHA recovery, environmentally hazardous, highly saline residues, namely spent fermentation broth and cell debris, remain as residues. These waste streams were used for recycling experiments to assess their recyclability in subsequent production processes. It was demonstrated that spent fermentation broth can be used to replace a considerable part of fresh saline fermentation medium in subsequent production processes. In addition, 29% of the expensive yeast extract, needed as nitrogen and phosphate source for efficient cultivation of the microorganism, can be replaced by cell debris from prior cultivations. The presented study provides strategies to combine the reduction of costs for biomediated PHA production with minimizing ecological risks by recycling precarious waste streams. Overall, the presented work shall contribute to the quick economic success of these promising biomaterials.

  5. Esterification of fatty acids using nylon-immobilized lipase in n-hexane: kinetic parameters and chain-length effects.

    Science.gov (United States)

    Zaidi, A; Gainer, J L; Carta, G; Mrani, A; Kadiri, T; Belarbi, Y; Mir, A

    2002-02-28

    The esterification of long-chain fatty acids in n-hexane catalyzed by nylon-immobilized lipase from Candida rugosa has been investigated. Butyl oleate (22 carbon atoms), oleyl butyrate (22 carbon atoms) and oleyl oleate (36 carbon atoms) were produced at maximum reaction rates of approximately equal to 60 mmol h(-1) g(-1) immobilized enzyme when the substrates were present in equimolar proportions at an initial concentration of 0.6 mol l(-1). The observed kinetic behavior of all the esterification reactions is found to follow a ping-pong bi-bi mechanism with competitive inhibition by both substrates. The effect of the chain-length of the fatty acids and the alcohols could be correlated to some mechanistic models, in accordance with the calculated kinetic parameters.

  6. Cost-effectiveness analysis of universal newborn screening for medium chain acyl-CoA dehydrogenase deficiency in France

    OpenAIRE

    Hamers, Françoise F; Rumeau-Pichon, Catherine

    2012-01-01

    Abstract Background Five diseases are currently screened on dried blood spots in France through the national newborn screening programme. Tandem mass spectrometry (MS/MS) is a technology that is increasingly used to screen newborns for an increasing number of hereditary metabolic diseases. Medium chain acyl-CoA dehydrogenase deficiency (MCADD) is among these diseases. We sought to evaluate the cost-effectiveness of introducing MCADD screening in France. Methods We developed a decision model t...

  7. The Role of Chain Length in Nonergodicity Factor and Fragility of Polymers

    DEFF Research Database (Denmark)

    Dalle-Ferrie, Cecile; Niss, Kristine; Sokolov, Alexei

    2010-01-01

    The mechanism that leads to different fragility values upon approaching the glass transition remains a topic of active discussion. Many researchers are trying to find an answer in the properties of the frozen glassy state. Following this approach, we focus here on a previously proposed relationship...... between the fragility of glass-formers and their nonergodicity factor, determined by inelastic X-ray scattering (IXS) in the glass. We extend this molecular liquid study to two model polymers— polystyrene (PS) and polyisobutylene (PIB)—for which we change the molecular weight. Polymers offer...... the opportunity to change the fragility without altering the chemical structure, just by changing the chain length. Thus, we specifically chose PS and PIB because they exhibit opposite dependences of fragility with molecular weight. Our analysis for these two polymers reveals no unique correlation between...

  8. Productivity, Disturbance and Ecosystem Size Have No Influence on Food Chain Length in Seasonally Connected Rivers

    OpenAIRE

    Warfe, Danielle M.; Jardine, Timothy D.; Pettit, Neil E.; Hamilton, Stephen K.; Pusey, Bradley J.; Bunn, Stuart E.; Davies, Peter M.; Douglas, Michael M.

    2013-01-01

    The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of produ...

  9. Evaluation of clay hybrid nanocomposites of different chain length as reinforcing agent for natural and synthetic rubbers

    International Nuclear Information System (INIS)

    Yehia, A.A.; Akelah, A.M.; Rehab, A.; El-Sabbagh, S.H.; El Nashar, D.E.; Koriem, A.A.

    2012-01-01

    Highlights: → The modified organo-clay (MMT-ATBN) markedly reinforce natural and synthetic rubbers. → The reinforcing efficiency of the organo-clay is much higher than HAF carbon black. → The reinforcing efficiency of MMT modified with different alkylamines greatly depend on the chain length. → The good compatibility of modified organo-clay with NBR can be attributed to the chemical nature. -- Abstract: Polymer nanocomposites are one of the highly discussed research topics in recent time. It has been reported in the present paper the preparation and the properties of different nanoclays based on sodium montmorillonite (bentonite) and some organic amines of varying chain lengths (dodecylamine, hexadecylamine and octadecylamine) beside amine-terminated butadiene-acrylonitrile copolymer (ATBN). The hybrid clays have been characterized with the help of Fourier Transform Infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Wide angle X-ray diffractions (WXRD), and Thermogravimetric analysis (TGA). X-ray results showed that the intergallery distance of the clay is increased as a result of the intercalation of the amines and ATBN. The nanocomposite clays were incorporated in natural and synthetic rubbers (NR, SBR and NBR). The physico-mechanical properties are greatly improved with loading low concentrations of the nanocomposite clays compared with carbon black.

  10. Medium-Chain Acyl-CoA Deficiency: Outlines from Newborn Screening, In Silico Predictions, and Molecular Studies

    Directory of Open Access Journals (Sweden)

    Serena Catarzi

    2013-01-01

    Full Text Available Medium-chain acyl-CoA dehydrogenase deficiency (MCADD is a disorder of fatty acid oxidation characterized by hypoglycemic crisis under fasting or during stress conditions, leading to lethargy, seizures, brain damage, or even death. Biochemical acylcarnitines data obtained through newborn screening by liquid chromatography-tandem mass spectrometry (LC-MS/MS were confirmed by molecular analysis of the medium-chain acyl-CoA dehydrogenase (ACADM gene. Out of 324.000 newborns screened, we identified 14 MCADD patients, in whom, by molecular analysis, we found a new nonsense c.823G>T (p.Gly275* and two new missense mutations: c.253G>C (p.Gly85Arg and c.356T>A (p.Val119Asp. Bioinformatics predictions based on both phylogenetic conservation and functional/structural software were used to characterize the new identified variants. Our findings confirm the rising incidence of MCADD whose existence is increasingly recognized due to the efficacy of an expanded newborn screening panel by LC-MS/MS making possible early specific therapies that can prevent possible crises in at-risk infants. We noticed that the “common” p.Lys329Glu mutation only accounted for 32% of the defective alleles, while, in clinically diagnosed patients, this mutation accounted for 90% of defective alleles. Unclassified variants (UVs or VUSs are especially critical when considering screening programs. The functional and pathogenic characterization of genetic variants presented here is required to predict their medical consequences in newborns.

  11. Medium-Chain Acyl-CoA Deficiency: Outlines from Newborn Screening, In Silico Predictions, and Molecular Studies

    Science.gov (United States)

    Catarzi, Serena; Caciotti, Anna; Thusberg, Janita; Tonin, Rodolfo; Malvagia, Sabrina; la Marca, Giancarlo; Pasquini, Elisabetta; Cavicchi, Catia; Ferri, Lorenzo; Donati, Maria A.; Baronio, Federico; Guerrini, Renzo; Mooney, Sean D.; Morrone, Amelia

    2013-01-01

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is a disorder of fatty acid oxidation characterized by hypoglycemic crisis under fasting or during stress conditions, leading to lethargy, seizures, brain damage, or even death. Biochemical acylcarnitines data obtained through newborn screening by liquid chromatography-tandem mass spectrometry (LC-MS/MS) were confirmed by molecular analysis of the medium-chain acyl-CoA dehydrogenase (ACADM) gene. Out of 324.000 newborns screened, we identified 14 MCADD patients, in whom, by molecular analysis, we found a new nonsense c.823G>T (p.Gly275∗) and two new missense mutations: c.253G>C (p.Gly85Arg) and c.356T>A (p.Val119Asp). Bioinformatics predictions based on both phylogenetic conservation and functional/structural software were used to characterize the new identified variants. Our findings confirm the rising incidence of MCADD whose existence is increasingly recognized due to the efficacy of an expanded newborn screening panel by LC-MS/MS making possible early specific therapies that can prevent possible crises in at-risk infants. We noticed that the “common” p.Lys329Glu mutation only accounted for 32% of the defective alleles, while, in clinically diagnosed patients, this mutation accounted for 90% of defective alleles. Unclassified variants (UVs or VUSs) are especially critical when considering screening programs. The functional and pathogenic characterization of genetic variants presented here is required to predict their medical consequences in newborns. PMID:24294134

  12. Dietary medium-chain saturated fatty acids induce gene expression of energy metabolism-related pathways in adipose tissue of abdominally obese subjects

    NARCIS (Netherlands)

    Matualatupauw, J.C.; Bohl, Mette; Gregersen, Søren; Hermansen, K.; Afman, L.A.

    2017-01-01

    Background:Dietary medium-chain saturated fatty acids (MC-SFAs) have been shown to reduce total body fat. Previously, we showed that MC-SFAs prevent body fat accumulation, despite weight gain. Here, we aim to explore potential molecular mechanisms underlying the protective effect of MC-SFAs on body

  13. Inhibition of nuclear T3 binding by fatty acids: dependence on chain length, unsaturated bonds, cis-trans configuration and esterification

    NARCIS (Netherlands)

    Wiersinga, W. M.; Platvoet-ter Schiphorst, M.

    1990-01-01

    1. Fatty acids have the capacity for inhibition of nuclear T3 binding (INB). The present studies were undertaken to describe the INB-activity of fatty acids as a function of chain length, unsaturated bonds, cis-trans configuration, and esterification. 2. Isolated rat liver nuclei were incubated with

  14. COMPARISON OF PHYSICAL STABILITY PROPERTIES OF POMEGRANATE SEED OIL NANOEMULSION DOSAGE FORMS WITH LONG-CHAIN TRIGLYCERIDE AND MEDIUM-CHAIN TRIGLYCERIDE AS THE OIL PHASE

    Directory of Open Access Journals (Sweden)

    Sri Hartanti Yuliani

    2016-08-01

    Full Text Available Pomegranate seed oil has antioxidant, anti-inflammatory, and chemo preventive activities. Pomegranate seed oil is lipophilic substance suitable to be prepared in emulsion dosage forms. Long-chain triglyceride (LCT and medium-chain triglyceride (MCT are commonly used as oil phase in emulsion dosage forms. This research aimed to compare the use of LCT and MCT in the Nano emulsion formula of pomegranate seed oil dosage forms. Formulation of pomegranate seed oil Nano emulsion was conducted using high energy emulsification. Parameters observed were pH, Nano emulsion type, percent transmittance, viscosity, turbidity, and droplet size before and after 3 cycles of freeze-thaw. The result showed that there was no significant difference between physical properties of pomegranate oil Nano emulsion with LCT as oil phase and pomegranate oil Nano emulsion with MCT as oil phase. Moreover, physical stability of pomegranate oil Nano emulsion with LCT as oil phase was better than pomegranate oil Nano emulsion with MCT as oil phase.

  15. Alkyl chain length impacts the antioxidative effect of lipophilized ferulic acid in fish oil enriched milk

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Lyneborg, Karina Sieron; Villeneuve, Pierre

    2015-01-01

    Lipophilization of phenolics by esterification with fatty alcohols may alter their localization in an emulsion and thereby their antioxidant efficacy. In this study, synthesized unbranched alkyl ferulates were evaluated as antioxidants in fish oil enriched milk. Lipid oxidation was determined...... by peroxide values and concentration of volatile oxidation products. A cut-off effect in the antioxidant efficacy in relation to the alkyl chain length was observed. The most efficient alkyl ferulate was methyl ferulate followed by ferulic acid and butyl ferulate, whereas octyl ferulate was prooxidative...

  16. Pre-apoptotic response to therapeutic DNA damage involves protein modulation of Mcl-1, Hdm2 and Flt3 in acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Hovland Randi

    2007-05-01

    Full Text Available Abstract Background Acute myeloid leukemia (AML cells are characterized by non-mutated TP53, high levels of Hdm2, and frequent mutation of the Flt3 receptor tyrosine kinase. The juxtamembrane mutation of FLT3 is the strongest independent marker for disease relapse and is associated with elevated Bcl-2 protein and p53 hyper-phosphorylation in AML. DNA damage forms the basic mechanism of cancer cell eradication in current therapy of AML. Hdm2 and pro-apoptotic Bcl-2 members are among the most intensely induced genes immediately after chemotherapy and Hdm2 is proposed a role in receptor tyrosine kinase regulation. Thus we examined the DNA damage related modulation of these proteins in relation to FLT3 mutational status and induction of apoptosis. Results Within one hour after exposure to ionizing radiation (IR, the AML cells (NB4, MV4-11, HL-60, primary AML cells showed an increase in Flt3 protein independent of mRNA levels, while the Hdm2 protein decreased. The FLT3 mutant MV4-11 cells were resistant to IR accompanied by presence of both Mcl-1 and Hdm2 protein three hours after IR. In contrast, the FLT3 wild type NB4 cells responded to IR with apoptosis and pre-apoptotic Mcl-1 down regulation. Daunorubicin (DNR induced continuing down regulation of Hdm2 and Mcl-1 in both cell lines followed by apoptosis. Conclusion Both IR and DNR treatment resulted in concerted protein modulations of Mcl-1, Hdm2 and Flt3. Cell death induction was associated with persistent attenuation of Mcl-1 and Hdm2. These observations suggest that defining the pathway(s modulating Flt3, Hdm2 and Mcl-1 may propose new strategies to optimize therapy for the relapse prone FLT3 mutated AML patients.

  17. Effect of surfactant chain length on drug release kinetics from microemulsion-laden contact lenses.

    Science.gov (United States)

    Maulvi, Furqan A; Desai, Ankita R; Choksi, Harsh H; Patil, Rahul J; Ranch, Ketan M; Vyas, Bhavin A; Shah, Dinesh O

    2017-05-30

    The effect of surfactant chain lengths [sodium caprylate (C 8 ), Tween 20 (C 12 ), Tween 80 (C 18 )] and the molecular weight of block copolymers [Pluronic F68 and Pluronic F 127] were studied to determine the stability of the microemulsion and its effect on release kinetics from cyclosporine-loaded microemulsion-laden hydrogel contact lenses in this work. Globule size and dilution tests (transmittance) suggested that the stability of the microemulsion increases with increase in the carbon chain lengths of surfactants and the molecular weight of pluronics. The optical transmittance of direct drug-laden contact lenses [DL-100] was low due to the precipitation of hydrophobic drugs in the lenses, while in microemulsion-laden lenses, the transmittance was improved when stability of the microemulsion was achieved. The results of in vitro release kinetics revealed that drug release was sustained to a greater extent as the stability of microemulsion was improved as well. This was evident in batch PF127-T80, which showed sustained release for 15days in comparison to batch DL-100, which showed release up to 7days. An in vivo drug release study in rabbit tear fluid showed significant increase in mean residence time (MRT) and area under curve (AUC) with PF-127-T80 lenses (stable microemulsion) in comparison to PF-68-SC lenses (unstable microemulsion) and DL-100 lenses. This study revealed the correlation between the stability of microemulsion and the release kinetics of drugs from contact lenses. Thus, it was inferred that the stable microemulsion batches sustained the release of hydrophobic drugs, such as cyclosporine from contact lenses for an extended period of time without altering critical lens properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Branched-chain fatty acid biosynthesis in a branched-chain amino acid aminotransferase mutant of Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian

    2005-01-01

    Fatty acid biosynthesis by a mutant strain of Staphylococcus carnosus deficient in branched-chain amino acid aminotransferase (IlvE) activity was analysed. This mutant was unable to produce the appropriate branched-chain alpha-ketoacid precursors for branched-chain fatty acid biosynthesis from...... in rich medium and growth in defined medium supplemented with 2-methylpropanoic acid lead to extensive alteration of the fatty acid composition in the cell membrane. In rich medium, a change from 51.7% to 17.1% anteiso-C15:0, and from 3.6% to 33.9% iso-C14:0 fatty acids as compared to the wild-type strain...... for 2-methylpropanoic acid production, revealing that the IlvE protein plays an important, but not essential role in the biosynthesis of branched-chain fatty acids and secondary metabolites in S. carnosus....

  19. Cybernetic structured modeling of the production of polyhydroxyalkanoates by Alcaligenes Eutrophus

    Directory of Open Access Journals (Sweden)

    L. FERRAZ

    1999-06-01

    Full Text Available This paper presents a cybernetic structured mathematical model developed for the fermentation step of the process of production of the copolymer of polyhydroxyalkanoates by the bacteria Alcaligenes eutrophus. This process is performed in two different fermentation stages. The first emphasizes the growth of the microorganism in a batch operation without substrates limitations, while in the second, the focus is on copolymer production by a fed-batch operation in the absence of the nitrogen source. This paper presents the results of the treatment of experimental data and of preliminary parameter estimation. The fitting of the proposed model to the experimental data of a standard experiment showed a good agreement.

  20. FLAG-induced remission in a patient with acute mast cell leukemia (MCL exhibiting t(7;10(q22;q26 and KIT D816H

    Directory of Open Access Journals (Sweden)

    Peter Valent

    2014-01-01

    Full Text Available Mast cell leukemia (MCL is a life-threatening disease associated with high mortality and drug-resistance. Only few patients survive more than 12 months. We report on a 55-year-old female patient with acute MCL diagnosed in May 2012. The disease was characterized by a rapid increase in white blood cells and mast cells (MC in the peripheral blood, and a rapid increase of serum tryptase levels. The KIT D816H mutation was detected in the blood and bone marrow (BM. Induction chemotherapy with high-dose ARA-C and fludarabine (FLAG was administered. Unexpectedly, the patient entered a hematologic remission with almost complete disappearance of neoplastic MC and a decrease of serum tryptase levels to normal range after 2 cycles of FLAG. Consecutively, the patient was prepared for allogeneic stem cell transplantation. However, shortly after the third cycle of FLAG, tryptase levels increased again, immature MC appeared in the blood, and the patient died from cerebral bleeding. Together, this case shows that intensive chemotherapy regimens, like FLAG, may induce remission in acute MCL. However, treatment responses are short-lived and the overall outcome remains dismal in these patients. We propose to separate this acute type of MCL from more subacute or chronic variants of MCL.

  1. Influence of gamma radiation on thermal properties and water vapor transmission of poly(3-hydroxybutyrate) (PHB) in blends

    Energy Technology Data Exchange (ETDEWEB)

    Forster, Pedro L.; Martins, Natalia A.; Parra, Duclerc F.; Egute, Nayara S.; Lugao, Ademar B., E-mail: dfparra@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Biodegradable polymers are a newly emerging field. A vast number of biodegradable polymers have been synthesized recently and some microorganisms and enzymes capable of degrading them have been identified. Polyesters such as poly(3-hydroxybutyrate) (PHB) or other polyhydroxyalkanoates (PHAs) have attracted commercial and academic interest as new biodegradable materials. In this work, we investigated the effect of gamma radiation on the thermal properties and biodegradation behavior of PHB in blend with poly(ethyleneglycol)(PEG). The samples were irradiated at gamma radiation of 5 and 10 kGy. The thermal behaviour was investigated by utilization of differential scanning calorimetry (DSC) changes in thermal stability, glass transition and melting point were reported. (author)

  2. Influence of gamma radiation on thermal properties and water vapor transmission of poly(3-hydroxybutyrate) (PHB) in blends

    International Nuclear Information System (INIS)

    Forster, Pedro L.; Martins, Natalia A.; Parra, Duclerc F.; Egute, Nayara S.; Lugao, Ademar B.

    2009-01-01

    Biodegradable polymers are a newly emerging field. A vast number of biodegradable polymers have been synthesized recently and some microorganisms and enzymes capable of degrading them have been identified. Polyesters such as poly(3-hydroxybutyrate) (PHB) or other polyhydroxyalkanoates (PHAs) have attracted commercial and academic interest as new biodegradable materials. In this work, we investigated the effect of gamma radiation on the thermal properties and biodegradation behavior of PHB in blend with poly(ethyleneglycol)(PEG). The samples were irradiated at gamma radiation of 5 and 10 kGy. The thermal behaviour was investigated by utilization of differential scanning calorimetry (DSC) changes in thermal stability, glass transition and melting point were reported. (author)

  3. 4-N, 4-S & 4-O Chloroquine Analogues: Influence of Side Chain Length and Quinolyl Nitrogen pKa on Activity vs. Chloroquine Resistant Malaria+, #

    Science.gov (United States)

    Natarajan, Jayakumar K.; Alumasa, John; Yearick, Kimberly; Ekoue-Kovi, Kekeli A.; Casabianca, Leah B.; de Dios, Angel C.; Wolf, Christian; Roepe, Paul D.

    2009-01-01

    Using predictions from heme – quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure – function principles. We vary side chain length for both monoethyl and diethyl 4N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position, and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4N, 4S and 4O derivatives vs. μ-oxo dimeric heme, measure binding constants for monomeric vs. dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs. CQR malaria. PMID:18512900

  4. Ultrasonic Relaxation Study of 1-Alkyl-3-methylimidazolium-Based Room-Temperature Ionic Liquids: Probing the Role of Alkyl Chain Length in the Cation.

    Science.gov (United States)

    Zorębski, Michał; Zorębski, Edward; Dzida, Marzena; Skowronek, Justyna; Jężak, Sylwia; Goodrich, Peter; Jacquemin, Johan

    2016-04-14

    Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides were determined as a function of the alkyl chain length on the cation from 1-propyl to 1-hexyl from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally, the speed of sound, density, and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e., relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single-Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.

  5. Tunnel current across linear homocatenated germanium chains

    International Nuclear Information System (INIS)

    Matsuura, Yukihito

    2014-01-01

    The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e −βL , of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge–Ge bond length is longer than the Si–Si bond length

  6. Mesoscale simulation of semiflexible chains. I. Endpoint distribution and chain dynamics

    Science.gov (United States)

    Groot, Robert D.

    2013-06-01

    The endpoint distribution and dynamics of semiflexible fibers are studied by numerical simulation. A brief overview is given over the analytical theory of flexible and semiflexible polymers. In particular, a closed expression is given for the relaxation spectrum of wormlike chains, which determines polymer diffusion and rheology. Next a simulation model for wormlike chains with full hydrodynamic interaction is described, and relations for the bending and torsion modulus are given. Two methods are introduced to include torsion stiffness into the model. The model is validated by simulating single chains in a heat bath, and comparing the endpoint distribution of the chains with established Monte Carlo results. It is concluded that torsion stiffness leads to a slightly shorter effective persistence length for a given bending stiffness. To further validate the simulation model, polymer diffusion is studied for fixed persistence length and varying polymer length N. The diffusion constant shows crossover from Rouse (D ∝ N-1) to reptation behaviour (D ∝ N-2). The terminal relaxation time obtained from the monomer displacement is consistent with the theory of wormlike chains. The probability for chain crossing has also been studied. This probability is so low that it does not influence the present results.

  7. miR-193b Modulates Resistance to Doxorubicin in Human Breast Cancer Cells by Downregulating MCL-1

    Directory of Open Access Journals (Sweden)

    Jingpei Long

    2015-01-01

    Full Text Available MicroRNAs (miRNAs family, which is involved in cancer development, proliferation, apoptosis, and drug resistance, is a group of noncoding RNAs that modulate the expression of oncogenes and antioncogenes. Doxorubicin is an active cytotoxic agent for breast cancer treatment, but the acquisition of doxorubicin resistance is a common and critical limitation to cancer therapy. The aim of this study was to investigate whether miR-193b mediated the resistance of breast cancer cells to doxorubicin by targeting myeloid cell leukemia-1 (MCL-1. In this study, we found that miR-193b levels were significantly lower in doxorubicin-resistant MCF-7 (MCF-7/DOXR cells than in the parental MCF-7 cells. We observed that exogenous miR-193b significantly suppressed the ability of MCF-7/DOXR cells to resist doxorubicin. It demonstrated that miR-193b directly targeted MCL-1 3′-UTR (3′-Untranslated Regions. Further studies indicated that miR-193b sensitized MCF-7/DOXR cells to doxorubicin through a mechanism involving the downregulation of MCL-1. Together, our findings provide evidence that the modulation of miR-193b may represent a novel therapeutic target for the treatment of breast cancer.

  8. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    Science.gov (United States)

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After

  9. Comparison of diet-induced thermogenesis of foods containing medium- versus long-chain triacylglycerols.

    Science.gov (United States)

    Kasai, Michio; Nosaka, Naohisa; Maki, Hideaki; Suzuki, Yoshie; Takeuchi, Hiroyuki; Aoyama, Toshiaki; Ohra, Atsushi; Harada, Youji; Okazaki, Mitsuko; Kondo, Kazuo

    2002-12-01

    The purpose of this study was to investigate the effect of 5-10 g of medium-chain triacylglycerols (MCT) on diet-induced thermogenesis in healthy humans. The study compared diet-induced thermogenesis after ingestion of test foods containing MCT and long-chain triacylglycerols (LCT), using a double-blind, crossover design. Eight male and eight female subjects participated in study 1 and study 2, respectively. In both studies, the LCT was a blend of rapeseed oil and soybean oil. In study 1, the liquid meals contained 10 g MCT (10M), a mixture of 5 g MCT and 5 g LCT (5M5L), and 10 g LCT (10L). In study 2, the subjects were given a meal (sandwich and clear soup) with the mayonnaise or margarine containing 5 g of MCT or LCT. Postprandial energy expenditure was measured by indirect calorimetry before and during the 6 h after ingestion of the test meals. Diet-induced thermogenesis was significantly greater after 5M5L and 10M Ingestion as compared to 10L ingestion. Ingestion of the mayonnaise or margarine containing 5 g MCT caused significantly larger diet-induced thermogenesis as compared to that of LCT. These results suggest that, in healthy humans, the intake of 5-10 g of MCT causes larger diet-induced thermogenesis than that of LCT, irrespective of the form of meal containing the MCT.

  10. Engineering bacteria for enhanced polyhydroxyalkanoates (PHA biosynthesis

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Chen

    2017-09-01

    Full Text Available Polyhydroxyalkanoates (PHA have been produced by some bacteria as bioplastics for many years. Yet their commercialization is still on the way. A few issues are related to the difficulty of PHA commercialization: namely, high cost and instabilities on molecular weights (Mw and structures, thus instability on thermo-mechanical properties. The high cost is the result of complicated bioprocessing associated with sterilization, low conversion of carbon substrates to PHA products, and slow growth of microorganisms as well as difficulty of downstream separation. Future engineering on PHA producing microorganisms should be focused on contamination resistant bacteria especially extremophiles, developments of engineering approaches for the extremophiles, increase on carbon substrates to PHA conversion and controlling Mw of PHA. The concept proof studies could still be conducted on E. coli or Pseudomonas spp. that are easily used for molecular manipulations. In this review, we will use E. coli and halophiles as examples to show how to engineer bacteria for enhanced PHA biosynthesis and for increasing PHA competitiveness.

  11. Chain Assembly and Disassembly Processes Differently Affect the Conformational Space of Ubiquitin Chains.

    Science.gov (United States)

    Kniss, Andreas; Schuetz, Denise; Kazemi, Sina; Pluska, Lukas; Spindler, Philipp E; Rogov, Vladimir V; Husnjak, Koraljka; Dikic, Ivan; Güntert, Peter; Sommer, Thomas; Prisner, Thomas F; Dötsch, Volker

    2018-02-06

    Ubiquitination is the most versatile posttranslational modification. The information is encoded by linkage type as well as chain length, which are translated by ubiquitin binding domains into specific signaling events. Chain topology determines the conformational space of a ubiquitin chain and adds an additional regulatory layer to this ubiquitin code. In particular, processes that modify chain length will be affected by chain conformations as they require access to the elongation or cleavage sites. We investigated conformational distributions in the context of chain elongation and disassembly using pulsed electron-electron double resonance spectroscopy in combination with molecular modeling. Analysis of the conformational space of diubiquitin revealed conformational selection or remodeling as mechanisms for chain recognition during elongation or hydrolysis, respectively. Chain elongation to tetraubiquitin increases the sampled conformational space, suggesting that a high intrinsic flexibility of K48-linked chains may contribute to efficient proteasomal degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Specific character of bacterial biodegradation of polyhydroxyalkanoates with different chemical structure in soil.

    Science.gov (United States)

    Prudnikova, S V; Vinogradova, O N; Trusova, M Y

    2017-03-01

    The study addresses the influence of the physicochemical properties of the reserve cellular macromolecules (polyhydroxyalkanoates, PHA) with different chemical composition on their biodegradation in the agro-transformed field soil of the Siberian region (Krasnoyarsk Territory, Russia). It was shown that the degradation of the PHA samples depends on the degree of polymer crystallinity (C x ). For the first time, it was shown that the range of PHA-degrading microorganisms differs for each of PHA types. The study defines the primary degraders specific to each PHA type and common to all types of examined polymers.

  13. Quantifying Short-Chain Chlorinated Paraffin Congener Groups

    NARCIS (Netherlands)

    Yuan, Bo; Bogdal, Christian; Berger, Urs; MacLeod, Matthew; Gebbink, Wouter A.; Alsberg, Tomas; Wit, de Cynthia A.

    2017-01-01

    Accurate quantification of short-chain chlorinated paraffins (SCCPs) poses an exceptional challenge to analytical chemists. SCCPs are complex mixtures of chlorinated alkanes with variable chain length and chlorination level; congeners with a fixed chain length (n) and number of chlorines (m) are

  14. Effect of surfactant alkyl chain length on the dispersion, and thermal and dynamic mechanical properties of LDPE/organo-LDH composites

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available Low density polyethylene/layered double hydroxide (LDH composites were prepared via melt compounding using different kinds of organo-LDHs and polyethylene-grafted maleic anhydride as the compatibilizer. The organo-LDHs were successfully prepared by converting a commercial MgAl-carbonate LDH into a MgAl-nitrate LDH, which was later modified by anion exchange with linear and branched sodium alkyl sulfates having different alkyl chain lengths (nc = 6, 12 and 20. It was observed that, depending on the size of the surfactant alkyl chain, different degrees of polymer chain intercalation were achieved, which is a function of the interlayer distance of the organo-LDHs, of the packing level of the alkyl chains, and of the different interaction levels between the surfactant and the polymer chains. In particular, when the number of carbon atoms of the surfactant alkyl chain is larger than 12, the intercalation of polymer chains in the interlayer space and depression of the formation of large aggregates of organo-LDH platelets are favored. A remarkable improvement of the thermal-oxidative degradation was evidenced for all of the composites; whereas only a slight increase of the crystallization temperature and no significant changes of both melting temperature and degree of crystallinity were achieved. By thermodynamic mechanical analysis, it was evidenced that a softening of the matrix is may be due to the plasticizing effect of the surfactant.

  15. Exposure to the viral by-product dsRNA or Coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim / Mcl-1 imbalance.

    Directory of Open Access Journals (Sweden)

    Maikel L Colli

    2011-09-01

    Full Text Available The rise in type 1 diabetes (T1D incidence in recent decades is probably related to modifications in environmental factors. Viruses are among the putative environmental triggers of T1D. The mechanisms regulating beta cell responses to viruses, however, remain to be defined. We have presently clarified the signaling pathways leading to beta cell apoptosis following exposure to the viral mimetic double-stranded RNA (dsRNA and a diabetogenic enterovirus (Coxsackievirus B5. Internal dsRNA induces cell death via the intrinsic mitochondrial pathway. In this process, activation of the dsRNA-dependent protein kinase (PKR promotes eIF2α phosphorylation and protein synthesis inhibition, leading to downregulation of the antiapoptotic Bcl-2 protein myeloid cell leukemia sequence 1 (Mcl-1. Mcl-1 decrease results in the release of the BH3-only protein Bim, which activates the mitochondrial pathway of apoptosis. Indeed, Bim knockdown prevented both dsRNA- and Coxsackievirus B5-induced beta cell death, and counteracted the proapoptotic effects of Mcl-1 silencing. These observations indicate that the balance between Mcl-1 and Bim is a key factor regulating beta cell survival during diabetogenic viral infections.

  16. Determination of the photolysis rate coefficient of monochlorodimethyl sulfide (MClDMS) in the atmosphere and its implications for the enhancement of SO2 production from the DMS + Cl2 reaction.

    Science.gov (United States)

    Copeland, G; Lee, E P F; Williams, R G; Archibald, A T; Shallcross, D E; Dyke, J M

    2014-01-01

    In this work, the photolysis rate coefficient of CH3SCH2Cl (MClDMS) in the lower atmosphere has been determined and has been used in a marine boundary layer (MBL) box model to determine the enhancement of SO2 production arising from the reaction DMS + Cl2. Absorption cross sections measured in the 28000-34000 cm(-1) region have been used to determine photolysis rate coefficients of MClDMS in the troposphere at 10 solar zenith angles (SZAs). These have been used to determine the lifetimes of MClDMS in the troposphere. At 0° SZA, a photolysis lifetime of 3-4 h has been obtained. The results show that the photolysis lifetime of MClDMS is significantly smaller than the lifetimes with respect to reaction with OH (≈ 4.6 days) and with Cl atoms (≈ 1.2 days). It has also been shown, using experimentally derived dissociation energies with supporting quantum-chemical calculations, that the dominant photodissocation route of MClDMS is dissociation of the C-S bond to give CH3S and CH2Cl. MBL box modeling calculations show that buildup of MClDMS at night from the Cl2 + DMS reaction leads to enhanced SO2 production during the day. The extra SO2 arises from photolysis of MClDMS to give CH3S and CH2Cl, followed by subsequent oxidation of CH3S.

  17. Path-integral approach to the dynamics of a random chain with rigid constraints

    International Nuclear Information System (INIS)

    Ferrari, Franco; Paturej, Jaroslaw; Vilgis, Thomas A.

    2008-01-01

    In this work the dynamics of a chain consisting of a set of beads attached to the ends of segments of fixed lengths is investigated. The chain fluctuates at constant temperature in a viscous medium. For simplicity, all interactions among the beads have been switched off and the number of spatial dimensions has been limited to two. In the limit in which the chain becomes a continuous system, its behavior may be described by a path integral, in which the rigid constraints coming from the infinitesimally small segments are imposed by means of a functional δ function. In this way a model of the dynamics of the chain is obtained, which closely resembles a two-dimensional nonlinear σ model. The partition function of this generalized nonlinear σ model is computed explicitly for a ring-shaped chain in the semiclassical approximation. The behavior of the chain at both long and short scales of time and distances is investigated. The connection between the generalized nonlinear σ model presented here and the Rouse model is discussed

  18. Room temperature ionic liquids: A simple model. Effect of chain length and size of intermolecular potential on critical temperature.

    Science.gov (United States)

    Chapela, Gustavo A; Guzmán, Orlando; Díaz-Herrera, Enrique; del Río, Fernando

    2015-04-21

    A model of a room temperature ionic liquid can be represented as an ion attached to an aliphatic chain mixed with a counter ion. The simple model used in this work is based on a short rigid tangent square well chain with an ion, represented by a hard sphere interacting with a Yukawa potential at the head of the chain, mixed with a counter ion represented as well by a hard sphere interacting with a Yukawa potential of the opposite sign. The length of the chain and the depth of the intermolecular forces are investigated in order to understand which of these factors are responsible for the lowering of the critical temperature. It is the large difference between the ionic and the dispersion potentials which explains this lowering of the critical temperature. Calculation of liquid-vapor equilibrium orthobaric curves is used to estimate the critical points of the model. Vapor pressures are used to obtain an estimate of the triple point of the different models in order to calculate the span of temperatures where they remain a liquid. Surface tensions and interfacial thicknesses are also reported.

  19. 4-N-, 4-S-, and 4-O-chloroquine analogues: influence of side chain length and quinolyl nitrogen pKa on activity vs chloroquine resistant malaria.

    Science.gov (United States)

    Natarajan, Jayakumar K; Alumasa, John N; Yearick, Kimberly; Ekoue-Kovi, Kekeli A; Casabianca, Leah B; de Dios, Angel C; Wolf, Christian; Roepe, Paul D

    2008-06-26

    Using predictions from heme-quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure-function principles. We vary side chain length for both monoethyl and diethyl 4-N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4-O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4-N, 4-S, and 4-O derivatives vs mu-oxo dimeric heme, measure binding constants for monomeric vs dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs CQR malaria.

  20. The Role of Short-Chain Conjugated Poly-(R-3-Hydroxybutyrate (cPHB in Protein Folding

    Directory of Open Access Journals (Sweden)

    Rosetta N. Reusch

    2013-05-01

    Full Text Available Poly-(R-3-hydroxybutyrate (PHB, a linear polymer of R-3-hydroxybutyrate (R-3HB, is a fundamental constituent of biological cells. Certain prokaryotes accumulate PHB of very high molecular weight (10,000 to >1,000,000 residues, which is segregated within granular deposits in the cytoplasm; however, all prokaryotes and all eukaryotes synthesize PHB of medium-chain length (~100–200 residues which resides within lipid bilayers or lipid vesicles, and PHB of short-chain length (<12 residues which is conjugated to proteins (cPHB, primarily proteins in membranes and organelles. The physical properties of cPHB indicate it plays important roles in the targeting and folding of cPHB-proteins. Here we review the occurrence, physical properties and molecular characteristics of cPHB, and discuss its influence on the folding and structure of outer membrane protein A (OmpA of Escherichia coli.