WorldWideScience

Sample records for medium-chain acyl-coa dehydrogenase

  1. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We......, plasma octanoylcarnitine when asymptomatic, and urinary acylglycines. Compound heterozygotes of c.985A > G and other mutations had intermediate levels, and those without c.985A > G, or heterozygous for that and c.199T > C had the lowest levels of these analytes. There was overlap in all values. The c.985...

  2. Medium chain acyl-CoA dehydrogenase deficiency and fatal valproate toxicity

    NARCIS (Netherlands)

    Njolstad, PR; Skjeldal, OH; Agsteribbe, E; Huckriede, A; Wannag, E; Sovik, O; Waaler, PE

    A boy with delayed psychomotor development, attention deficit disorder, and therapy-resistant epilepsy was treated with valproate. The patient died of liver failure after 4 months of valproate treatment. Postmortem investigation of cultured fibroblasts suggested medium chain acyl-CoA dehydrogenase

  3. Genetics Home Reference: medium-chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... Child Neuropsychol. 2009 Jan;15(1):8-20. doi: 10.1080/09297040701864570. Citation on PubMed Lang TF. Adult presentations of medium-chain acyl-CoA dehydrogenase deficiency (MCADD). J Inherit Metab Dis. 2009 Dec;32(6):675-83. doi: 10.1007/s10545-009-1202-0. Epub 2009 ...

  4. Relevance of expanded neonatal screening of medium-chain acyl co-a dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Couce, M L; Castiñeiras, D E; Moure, J D

    2011-01-01

    Neonatal screening of medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is of major importance due to the significant morbidity and mortality in undiagnosed patients. MCADD screening has been performed routinely in Galicia since July 2000, and until now 199,943 newborns have been screened. We...

  5. Recurrent Ventricular Tachycardia in Medium-Chain Acyl-Coenzyme A Dehydrogenase Deficiency

    NARCIS (Netherlands)

    Bala, P.; Ferdinandusse, S.; Olpin, S. E.; Chetcuti, P.; Morris, A. A. M.

    2016-01-01

    We report a baby with medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency who presented on day 2 with poor feeding and lethargy. She was floppy with hypoglycaemia (1.8 mmol/l) and hyperammonaemia (182 μmol/l). Despite correction of these and a continuous intravenous infusion of glucose at

  6. Determination of medium chain acyl-CoA dehydrogenase activity in cultured skin fibroblasts using mass spectrometry

    NARCIS (Netherlands)

    Niezen-Koning, K E; Chapman, T E; Mulder, I E; Smit, G P; Reijngoud, D J; Berger, R

    1991-01-01

    Medium chain acyl-CoA dehydrogenase deficiency, a defect of mitochondrial beta-oxidation, is one of the most frequently occurring among inborn errors of metabolism. We describe a rapid and sensitive gas chromatographic/mass spectrometric method allowing reliable assessment of medium chain acyl-CoA

  7. Mutations in the medium chain acyl-CoA dehydrogenase (MCAD) gene

    DEFF Research Database (Denmark)

    Tanaka, K; Yokota, I; Coates, P M

    1992-01-01

    Medium chain acyl-CoA dehydrogenase (MCAD) catalyzes the first reaction of the beta-oxidation cycle for 4-10-carbon fatty acids. MCAD deficiency is one of the most frequent inborn metabolic disorders in populations of northwestern European origin. In the compilation of data from a worldwide study...... of 172 unrelated patients each representing an independent pedigree, a total of 8 different mutations have been identified. Among them, a single prevalent mutation, 985A-->G, was found in 90% of 344 variant alleles. 985A-->G causes glutamate substitution for lysine-304 in the mature MCAD subunit, which...... causes impairment of tetramer assembly and instability of the protein. Three of 7 rarer mutations have been identified in a few unrelated patients, while the remaining 4 have each been found in only a single pedigree. In addition to tabulating the mutations, the acyl-CoA dehydrogenase gene family...

  8. Prolonged QTc interval in association with medium-chain acyl-coenzyme A dehydrogenase deficiency.

    Science.gov (United States)

    Wiles, Jason R; Leslie, Nancy; Knilans, Timothy K; Akinbi, Henry

    2014-06-01

    Medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency is the most common disorder of mitochondrial fatty acid oxidation. We report a term male infant who presented at 3 days of age with hypoglycemia, compensated metabolic acidosis, hypocalcemia, and prolonged QTc interval. Pregnancy was complicated by maternal premature atrial contractions and premature ventricular contractions. Prolongation of the QTc interval resolved after correction of metabolic derangements. The newborn screen was suggestive for MCAD deficiency, a diagnosis that was confirmed on genetic analysis that showed homozygosity for the disease-associated missense A985G mutation in the ACADM gene. This is the first report of acquired prolonged QTc in a neonate with MCAD deficiency, and it suggests that MCAD deficiency should be considered in the differential diagnoses of acute neonatal illnesses associated with electrocardiographic abnormality. We review the clinical presentation and diagnosis of MCAD deficiency in neonates. Copyright © 2014 by the American Academy of Pediatrics.

  9. Molecular diagnosis and characterization of medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Jensen, T G

    1995-01-01

    PCR/solid-phase based semi-automated sequencing of all 12 exons of the MCAD gene. We have so far identified the mutation in 33 of 45 non-G985 homozygous families with verified MCAD deficiency, thereby bringing the number of known mutations in the MCAD gene up to 26. In order to investigate in detail...... of correct enzyme structure, and does not directly affect the catalytically active regions of the enzyme. We find that our diagnostic set up, consisting of an initial testing by the G985 assay, followed by semi-automated sequencing of DNA from those patients who were indicated to be compound heterozygous......Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common defect in mitochondrial beta-oxidation in humans. It is an autosomal recessive disorder which usually presents in infancy. The disease manifests itself in periods of metabolic stress to the beta-oxidation system and may...

  10. In vitro and in vivo consequences of variant medium-chain acyl-CoA dehydrogenase genotypes

    NARCIS (Netherlands)

    Touw, Catharina M. L.; Smit, G. Peter A.; Niezen-Koning, Klary E.; Bosgraaf-de Boer, Conny; Gerding, Albert; Reijngoud, Dirk-Jan; Derks, Terry

    2013-01-01

    Background: Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common inherited disorder of the mitochondrial fatty acid oxidation, caused by mutations in the ACADM gene. Since the introduction of neonatal screening for MCAD deficiency, a subgroup of newborns have been identified with

  11. Disease-causing mutations in exon 11 of the medium-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Andresen, B S; Jensen, T G; Bross, P

    1994-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most commonly recognized defect of the mitochondrial beta-oxidation in humans. It is a potentially fatal, autosomal recessive inherited defect. Most patients with MCAD deficiency are homozygous for a single disease-causing mutation (G985......), causing a change from lysine to glutamate at position 304 (K304E) in the mature MCAD. Only seven non-G985 mutations, all of which are rare, have been reported. Because the G985 mutation and three of the non-G985 mutations are located in exon 11, it has been suggested that this exon may be a mutational hot...

  12. Protonic equilibria in the reductive half-reaction of the medium-chain acyl-CoA dehydrogenase

    OpenAIRE

    Rudik, Irina; Ghisla, Sandro; Thorpe, Colin

    1998-01-01

    Oxidation of thioester substrates in the medium-chain acyl-CoA dehydrogenase involves α-proton abstraction by the catalytic base, Glu376, with transfer of a β-hydride equivalent to the flavin prosthetic group. Polarization of bound acyl-CoA derivatives by the recombinant human liver enzyme has been studied with 4-thia-trans-2-enoyl-CoA analogues. Polarization is maximal at low pH, with an apparent pK of 9.2 for complexes with the C8 analogue, and progressively lower pK values as the length of...

  13. Patients with medium-chain acyl-coenzyme a dehydrogenase deficiency have impaired oxidation of fat during exercise but no effect of L-carnitine supplementation

    DEFF Research Database (Denmark)

    Madsen, K L; Preisler, N; Orngreen, M C

    2013-01-01

    It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified.......It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified....

  14. Effects of two mutations detected in medium chain acyl-CoA dehydrogenase (MCAD)-deficient patients on folding, oligomer assembly, and stability of MCAD enzyme

    DEFF Research Database (Denmark)

    Bross, P; Jespersen, C; Jensen, T G

    1995-01-01

    We have used expression of human medium chain acyl-CoA dehydrogenase (MCAD) in Escherichia coli as a model system for dissecting the molecular effects of two mutations detected in patients with MCAD deficiency. We demonstrate that the R28C mutation predominantly affects polypeptide folding...

  15. Prevalence of carriers of the most common medium-chain acyl-CoA dehydrogenase (MCAD) deficiency mutation (G985A) in the Netherlands

    NARCIS (Netherlands)

    de Vries, H G; Niezen-Koning, K; Kliphuis, J W; Smit, G P; Scheffer, H; ten Kate, L P

    The G985A mutation represents about 90% of all medium-chain acyl-CoA dehydrogenase (MCAD) allele mutations that cause the clinical symptoms of MCAD deficiency. The prevalence of carriers varies between different European populations, with high frequencies in the northwestern part of Europe. To

  16. Experimental evidence for protein oxidative damage and altered antioxidant defense in patients with medium-chain acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Derks, Terry G J; Touw, Catharina M L; Ribas, Graziela S; Biancini, Giovana B; Vanzin, Camila S; Negretto, Giovanna; Mescka, Caroline P; Reijngoud, Dirk Jan; Smit, G Peter A; Wajner, Moacir; Vargas, Carmen R

    The objective of this study was to test whether macromolecule oxidative damage and altered enzymatic antioxidative defenses occur in patients with medium-chain acyl coenzyme A dehydrogenase (MCAD) deficiency. We performed a cross-sectional observational study of in vivo parameters of lipid and

  17. Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice

    NARCIS (Netherlands)

    Herrema, H.J.; Derks, T.G.; Dijk, van T.H.; Bloks, V.W.; Gerding, A.; Havinga, R.; Tietge, U.J.; Müller, M.R.; Smit, G.P.; Kuipers, F.; Reijngoud, D.J.

    2008-01-01

    Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency

  18. Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice

    NARCIS (Netherlands)

    Herrema, Hillechien; Derks, Terry; van Dijk, Theo H.; Bloks, Vincent W.; Gerding, Albert; Havinga, Rick; Tietge, Uwe J. F.; Müller, Michael; Smit, G. Peter A.; Kuipers, Folkert; Reijngoud, Dirk-Jan

    Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency

  19. The first three years of screening for medium chain acyl-CoA dehydrogenase deficiency (MCADD by newborn screening ontario

    Directory of Open Access Journals (Sweden)

    Fisher Lawrence

    2010-11-01

    Full Text Available Abstract Background Medium chain acyl-CoA dehydrogenase deficiency (MCADD is a disorder of mitochondrial fatty acid oxidation and is one of the most common inborn errors of metabolism. Identification of MCADD via newborn screening permits the introduction of interventions that can significantly reduce associated morbidity and mortality. This study reports on the first three years of newborn screening for MCADD in Ontario, Canada. Methods Newborn Screening Ontario began screening for MCADD in April 2006, by quantification of acylcarnitines (primarily octanoylcarnitine, C8 in dried blood spots using tandem mass spectrometry. Babies with positive screening results were referred to physicians at one of five regional Newborn Screening Treatment Centres, who were responsible for diagnostic evaluation and follow-up care. Results From April 2006 through March 2009, approximately 439 000 infants were screened for MCADD in Ontario. Seventy-four infants screened positive, with a median C8 level of 0.68 uM (range 0.33-30.41 uM. Thirty-one of the screen positive infants have been confirmed to have MCADD, while 36 have been confirmed to be unaffected. Screening C8 levels were higher among infants with MCADD (median 8.93 uM compared to those with false positive results (median 0.47 uM. Molecular testing was available for 29 confirmed cases of MCADD, 15 of whom were homozygous for the common c.985A > G mutation. Infants homozygous for the common mutation tended to have higher C8 levels (median 12.13 uM relative to compound heterozygotes for c.985A > G and a second detectable mutation (median 2.01 uM. Eight confirmed mutation carriers were identified among infants in the false positive group. The positive predictive value of a screen positive for MCADD was 46%. The estimated birth prevalence of MCADD in Ontario is approximately 1 in 14 000. Conclusions The birth prevalence of MCADD and positive predictive value of the screening test were similar to those

  20. The Y42H mutation in medium-chain acyl-CoA dehydrogenase, which is prevalent in babies identified by MS/MS-based newborn screening, is temperature sensitive

    DEFF Research Database (Denmark)

    O'Reilly, Linda; Bross, Peter; Corydon, Thomas J

    2004-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) is a homotetrameric flavoprotein which catalyses the initial step of the beta-oxidation of medium-chain fatty acids. Mutations in MCAD may cause disease in humans. A Y42H mutation is frequently found in babies identified by newborn screening with MS...

  1. Redox Properties of Human Medium-Chain Acyl-CoA Dehydrogenase, Modulation by Charged Active-Site Amino Acid Residues

    OpenAIRE

    Mancini-Samuelson, Gina J.; Kieweg, Volker; Sabaj, Kim Marie; Ghisla, Sandro; Stankovich, Marian T.

    1998-01-01

    The modulation of the electron-transfer properties of human medium-chain acyl-CoA dehydrogenase (hwtMCADH) has been studied using wild-type and site-directed mutants by determining their midpoint potentials at various pH values and estimating the involved pKs. The mutants used were E376D, in which the negative charge is retained; E376Q, in which one negative charge (pKa ≈ 6.0) is removed from the active center; E99G, in which a different negative charge (pKa ≈ 7.3) also is affected; and E376H...

  2. Prenatal diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in a family with a previous fatal case of sudden unexpected death in childhood

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V; Jensen, P K

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially fatal inherited disease with a carrier frequency of approximately 1:100 in most Caucasian populations. The disease is implicated in sudden unexpected death in childhood. A prevalent disease-causing point mutation (A985G) in th...... polymerase chain reaction (PCR) assay for the G985 mutation. The analysis was positive and resulted in abortion. We verified the diagnosis by direct analysis on blood spots and other tissue material from the aborted fetus and from family members....

  3. A rare disease-associated mutation in the medium-chain acyl-CoA dehydrogenase (MCAD) gene changes a conserved arginine, previously shown to be functionally essential in short-chain acyl-CoA dehydrogenase (SCAD)

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Jensen, T G

    1993-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a serious and potentially fatal inherited defect in the beta-oxidation of fatty acids. Approximately 80% of patients with MCAD deficiency are homozygous for a single disease-causing mutation (G985). The remaining patients (except for a few ......-chain acyl-CoA dehydrogenase (SCAD) gene of a patient with SCAD deficiency, suggesting that the conserved arginine is crucial for formation of active enzyme in the straight-chain acyl-CoA dehydrogenases....

  4. Medium-chain acyl-CoA dehydrogenase deficiency. Diagnosis by stable-isotope dilution measurement of urinary n-hexanoylglycine and 3-phenylpropionylglycine

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldo, P.; O' Shea, J.J.; Coates, P.M.; Hale, D.E.; Stanley, C.A.; Tanaka, K.

    1988-11-17

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, one of the most common inherited metabolic disorders, is often mistaken for the sudden infant death syndrome or Reye's syndrome. Diagnosing it has been difficult because of a lack of fast and reliable diagnostic methods. We developed a stable-isotope dilution method to measure urinary n-hexanoylglycine, 3-phenylpropionylglycine, and suberylglycine, and we retrospectively tested its accuracy in diagnosing MCAD deficiency. We measured the concentrations of these three acylglycines in 54 urine samples from 21 patients with confirmed MCAD deficiency during the acute and asymptomatic phases of the illness and compared the results with the concentrations in 98 samples from healthy controls and patient controls with various diseases. The levels of urinary hexanoylglycine and phenylpropionylglycine were significantly increased in all samples from the patients with MCAD deficiency, clearly distinguishing them from both groups of controls. Although urinary suberylglycine was increased in the patients, the range of values in the normal controls who were receiving formula containing medium-chain triglycerides was very wide, overlapping somewhat with the values in the patients with asymptomatic MCAD deficiency. These results indicate that the measurement of urinary hexanoylglycine and phenylpropionylglycine by our method is highly specific for the diagnosis of MCAD deficiency. The method is fast and can be applied to random urine specimens, without any pretreatment of patients.

  5. Medium-Chain Acyl-CoA Dehydrogenase Deficiency in Adulthood: A Potential Diagnosis in a Patient with Mental Status Changes Suspected of Drug Toxicity.

    Science.gov (United States)

    Randall, Morgan; Rolf, Cristin; Gibson, Stephanie Mayfield; Hall, Patricia L; Rinaldo, Piero; Davis, Gregory J

    2015-07-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a rare but important component of the differential diagnosis for adults with a history of premortem mental status changes and the postmortem finding of hepatic steatosis. This case report describes a 30-year-old white man who, following a period of nausea and vomiting, was admitted to the hospital with sudden mental status deterioration followed rapidly by clinical deterioration and death. Treating physicians in this case suspected acute illicit drug toxicity with synthetic cathinones based on social history. Clinicians and medical examiners should be aware that the presentation, signs, and symptoms described may indicate an underlying inborn error of metabolism such as MCAD deficiency and take action accordingly. © 2015 American Academy of Forensic Sciences.

  6. The frequency of a disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase in sudden infant death syndrome

    DEFF Research Database (Denmark)

    Banner, Jytte; Gregersen, N; Kølvraa, S

    1993-01-01

    syndrome is still a matter of controversy. The present study investigated 120 well-defined cases of sudden infant death syndrome in order to detect the frequency of the most common disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase (G985) compared with the frequency...... in the general population. A highly specific polymerase chain reaction assay was applied on dried blood spots. No over-representation of homo- or heterozygosity for G985 appears to exist in such a strictly defined population, for which reason it may be more relevant to look at a broader spectrum of clinical...... presentations of inherited metabolic disorders and examine a wider range of sudden death in infancy....

  7. The most common mutation causing medium-chain acyl-CoA dehydrogenase deficiency is strongly associated with a particular haplotype in the region of the gene

    DEFF Research Database (Denmark)

    Kølvraa, S; Gregersen, N; Blakemore, A I

    1991-01-01

    RFLP haplotypes in the region containing the medium-chain acyl-CoA dehydrogenase (MCAD) gene on chromosome 1 have been determined in patients with MCAD deficiency. The RFLPs were detected after digestion of patient DNA with the enzymes BanII. PstI and TaqI and with an MCAD cDNA-clone as a probe....... Of 32 disease-causing alleles studied, 31 possessed the previously published A----G point-mutation at position 985 of the cDNA. This mutation has been shown to result in inactivity of the MCAD enzyme. In at least 30 of the 31 alleles carrying this G985 mutation a specific RFLP haplotype was present...

  8. High fat fed heart failure animals have enhanced mitochondrial function and acyl-coa dehydrogenase activities

    Science.gov (United States)

    We have previously shown that administration of high fat in heart failure (HF) increased mitochondrial respiration and did not alter left ventricular (LV) function. PPARalpha is a nuclear transcription factor that activates expression of genes involved in fatty acid uptake and utilization. We hypoth...

  9. Characterization of wild-type human medium-chain acyl-CoA dehydrogenase (MCAD) and mutant enzymes present in MCAD-deficient patients by two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Bross, P; Jensen, T G; Andresen, B S

    1994-01-01

    Two-dimensional gel electrophoresis was used to study and compare wild-type medium-chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3) and mis-sense mutant enzyme found in patients with MCAD deficiency. By comparing the patterns for wild-type and mutant MCAD expressed in Escherichia coli...

  10. Sudden unexpected infant death (SUDI in a newborn due to medium chain acyl CoA dehydrogenase (MCAD deficiency with an unusual severe genotype

    Directory of Open Access Journals (Sweden)

    Lovera Cristina

    2012-10-01

    Full Text Available Abstract Medium chain acyl CoA dehydrogenase deficiency (MCAD is the most common inborn error of fatty acid oxidation. This condition may lead to cellular energy shortage and cause severe clinical events such as hypoketotic hypoglycemia, Reye syndrome and sudden death. MCAD deficiency usually presents around three to six months of life, following catabolic stress as intercurrent infections or prolonged fasting, whilst neonatal-onset of the disease is quite rare. We report the case of an apparently healthy newborn who suddenly died at the third day of life, in which the diagnosis of MCAD deficiency was possible through peri-mortem blood-spot acylcarnitine analysis that showed very high concentrations of octanoylcarnitine. Genetic analysis at the ACADM locus confirmed the biochemical findings by demonstrating the presence in homozygosity of the frame-shift c.244dup1 (p.Trp82LeufsX23 mutation, a severe genotype that may explain the unusual and very early fatal outcome in this newborn. This report confirms that inborn errors of fatty acid oxidation represent one of the genetic causes of sudden unexpected deaths in infancy (SUDI and underlines the importance to include systematically specific metabolic screening in any neonatal unexpected death.

  11. Nucleotide sequence of medium-chain acyl-CoA dehydrogenase mRNA and its expression in enzyme-deficient human tissue

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.P.; Kim, J.J.; Billadello, J.J.; Hainline, B.E.; Chu, T.W.; Strauss, A.W.

    1987-06-01

    Medium-chain acyl-CoA dehydrogenase is one of three similar enzymes that catalyze the initial step of fatty acid ..beta..-oxidation. Definition of the primary structure of MCAD and the tissue distribution of its mRNA is of biochemical and clinical importance because of the recent recognition of inherited MCAD deficiency in humans. The MCAD mRNA nucleotide sequence was determined from two overlapping cDNA clones isolated from human liver and placental cDNA libraries, respectively. The MCAD mRNA includes a 1263-base-pair coding region and a 738-base-pair 3'-nontranslated region. A partial amino acid sequence (137 residues) determined on peptides derived from MCAD purified from porcine liver confirmed the identity of the cDNA clone. Comparison of the amino acid sequence predicted from the human MCAD cDNA with the partial protein sequence of the porcine MCAD revealed a high degree (88%) of interspecies sequence identity. RNA blot analysis shows that MCAD mRNA is expressed in a variety of rat (2.2 kilobases) and human (2.4 kilobases) tissues. Blot hybridization of RNA prepared from cultured skin fibroblasts from a patient with MCAD deficiency disclosed that mRNA was present and of similar size of MCAD mRNA derived from control fibroblasts. The isolation and characterization of MCAD cDNA is an important step in the definition of the defect underlying its metabolic consequences.

  12. Newborn screening for medium chain acyl-CoA dehydrogenase deficiency in England: prevalence, predictive value and test validity based on 1.5 million screened babies.

    Science.gov (United States)

    Oerton, Juliet; Khalid, Javaria M; Besley, Guy; Dalton, R Neil; Downing, Melanie; Green, Anne; Henderson, Mick; Krywawych, Steve; Leonard, James; Andresen, Brage S; Dezateux, Carol

    2011-01-01

    Medium chain acyl-CoA dehydrogenase deficiency (MCADD) is a rare, life-threatening condition. Early diagnosis by screening asymptomatic newborns may improve outcome, but the benefit to newborns identified with variants not encountered clinically is uncertain. To estimate, overall and by ethnic group: screen-positive prevalence and predictive value (PPV); MCADD prevalence; proportion MCADD variants detected of predicted definite or uncertain clinical importance. All births in areas of high ethnic minority prevalence in England. Prospective multicentre pilot screening service; testing at age five to eight days; standardized screening, diagnostic and management protocols; independent expert review of screen-positive cases to assign MCADD diagnosis and predicted clinical importance (definite or uncertain). Approximately 1.5 million babies (79% white; 10% Asian) were screened. MCADD was confirmed in 147 of 190 babies with a positive screening result (screen-positive prevalence: 1.20 per 10,000; MCADD prevalence: 0.94 per 10,000; PPV 77% [95% CI 71-83]), comprising 103 (70%) with MCADD variants of definite clinical importance (95 white [95%]; 2 Asian [2%]) and 44 (30%) with variants of uncertain clinical importance (29 white [67%]; 12 Asian [28%]). One baby in every 10,000 born in England is diagnosed with MCADD by newborn screening; around 60 babies each year. While the majority of MCADD variants detected are predicted to be of definite clinical importance, this varies according to ethnic group, with variants of uncertain importance most commonly found in Asian babies. These findings provide support for MCADD screening but highlight the need to take account of the ethnic diversity of the population tested at implementation.

  13. Redox properties of human medium-chain acyl-CoA dehydrogenase, modulation by charged active-site amino acid residues.

    Science.gov (United States)

    Mancini-Samuelson, G J; Kieweg, V; Sabaj, K M; Ghisla, S; Stankovich, M T

    1998-10-13

    The modulation of the electron-transfer properties of human medium-chain acyl-CoA dehydrogenase (hwtMCADH) has been studied using wild-type and site-directed mutants by determining their midpoint potentials at various pH values and estimating the involved pKs. The mutants used were E376D, in which the negative charge is retained; E376Q, in which one negative charge (pKa approximately 6. 0) is removed from the active center; E99G, in which a different negative charge (pKa approximately 7.3) also is affected; and E376H (pKa approximately 9.3) in which a positive charge is present. Em for hwtMCADH at pH 7.6 is -0.114 V. Results for the site-directed mutants indicate that loss of a negative charge in the active site causes a +0.033 V potential shift. This is consistent with the assumption that electrostatic interactions (as in the case of flavodoxins) and specific charges are important in the modulation of the electron-transfer properties of this class of dehydrogenases. Specifically, these charge interactions appear to correlate with the positive Em shift observed upon binding of substrate/product couple to MCADH [Lenn, N. D., Stankovich, M. T., and Liu, H. (1990) Biochemistry 29, 3709-3715], which coincides with a pK increase of Glu376-COOH from approximately 6 to 8-9 [Rudik, I., Ghisla, S., and Thorpe, C. (1998) Biochemistry 37, 8437-8445]. From the pH dependence of the midpoint potentials of hwtMCADH two mechanistically important ionizations are estimated. The pKa value of approximately 6.0 is assigned to the catalytic base, Glu376-COOH, in the oxidized enzyme based on comparison with the pH behavior of the E376H mutant, it thus coincides with the pK value recently estimated [Vock, P., Engst, S., Eder, M., and Ghisla, S. (1998) Biochemistry 37, 1848-1860]. The pKa of approximately 7.1 is assigned to Glu376-COOH in reduced hwtMCADH. Comparable values for these pKas for Glu376-COOH in pig kidney MCADH are pKox = 6.5 and pKred = 7.9. The Em measured for K304E-MCADH (a

  14. Establishing core outcome sets for phenylketonuria (PKU) and medium-chain Acyl-CoA dehydrogenase (MCAD) deficiency in children: study protocol for systematic reviews and Delphi surveys.

    Science.gov (United States)

    Potter, Beth K; Hutton, Brian; Clifford, Tammy J; Pallone, Nicole; Smith, Maureen; Stockler, Sylvia; Chakraborty, Pranesh; Barbeau, Pauline; Garritty, Chantelle M; Pugliese, Michael; Rahman, Alvi; Skidmore, Becky; Tessier, Laure; Tingley, Kylie; Coyle, Doug; Greenberg, Cheryl R; Korngut, Lawrence; MacKenzie, Alex; Mitchell, John J; Nicholls, Stuart; Offringa, Martin; Schulze, Andreas; Taljaard, Monica

    2017-12-19

    Inherited metabolic diseases (IMD) are a large group of rare single-gene disorders that are typically diagnosed early in life. There are important evidence gaps related to the comparative effectiveness of therapies for IMD, which are in part due to challenges in conducting randomized controlled trials (RCTs) for rare diseases. Registry-based RCTs present a unique opportunity to address these challenges provided the registries implement standardized collection of outcomes that are important to patients and their caregivers and to clinical providers and healthcare systems. Currently there is no core outcome set (COS) for studies evaluating interventions for paediatric IMD. This protocol outlines a study that will establish COS for each of two relatively common IMD in children, phenylketonuria (PKU) and medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. This two-part study is registered with the Core Outcome Measures in Effectiveness Trials (COMET) initiative. Part 1 includes a rapid review and development of an evidence map to identify a comprehensive listing of outcomes reported in past studies of PKU and MCAD deficiency. The review follows established methods for knowledge synthesis, including a comprehensive search strategy, two stages of screening citations against inclusion/exclusion criteria by two reviewers working independently, and extraction of important data elements from eligible studies, including details of the outcomes collected and outcome measurement instruments. The review findings will inform part 2 of our study, a set of Delphi surveys to establish consensus on the highest priority outcomes for each condition. Healthcare providers, families of children with PKU or MCAD deficiency, and health system decision-makers will be invited to participate in two to three rounds of Delphi surveys. The design of the surveys will involve parents of children with IMD who are part of a family advisory forum. This protocol is a crucial step in developing the

  15. Medium-chain acyl-CoA dehydrogenase (MCAD) mutations identified by MS/MS-based prospective screening of newborns differ from those observed in patients with clinical symptoms

    DEFF Research Database (Denmark)

    Andresen, B S; Dobrowolski, S F; O'Reilly, L

    2001-01-01

    that the MS/MS-based method is excellent for detection of MCAD deficiency but that the frequency of the 985A-->G mutant allele in newborns with a positive acylcarnitine profile is much lower than that observed in clinically affected patients. Our identification of a new mutation, 199T-->C, which has never......Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most frequently diagnosed mitochondrial beta-oxidation defect, and it is potentially fatal. Eighty percent of patients are homozygous for a common mutation, 985A-->G, and a further 18% have this mutation in only one disease allele....... In addition, a large number of rare disease-causing mutations have been identified and characterized. There is no clear genotype-phenotype correlation. High 985A-->G carrier frequencies in populations of European descent and the usual avoidance of recurrent disease episodes by patients diagnosed with MCAD...

  16. Two novel variants of human medium chain acyl-CoA dehydrogenase (MCAD). K364R, a folding mutation, and R256T, a catalytic-site mutation resulting in a well-folded but totally inactive protein

    DEFF Research Database (Denmark)

    O'Reilly, Linda P; Andresen, Brage S; Engel, Paul C

    2005-01-01

    was again totally inactive. Neither mutant showed marked depletion of FAD. The pure K364R protein was considerably less thermostable than wild-type MCAD. Western blots indicated that, although the R256T mutant protein is less thermostable than normal MCAD, it is much more stable than K364R. Though......Two novel rare mutations, MCAD approximately 842G-->C (R256T) and MCAD approximately 1166A-->G (K364R), have been investigated to assess how far the biochemical properties of the mutant proteins correlate with the clinical phenotype of medium chain acyl-CoA dehydrogenase (MCAD) deficiency. When...... the gene for K364R was overexpressed in Escherichia coli, the synthesized mutant protein only exhibited activity when the gene for chaperonin GroELS was co-overexpressed. Levels of activity correlated with the amounts of native MCAD protein visible in western blots. The R256T mutant, by contrast, displayed...

  17. Homozygosity for a severe novel medium-chain acyl-CoA dehydrogenase (MCAD) mutation IVS3-1G > C that leads to introduction of a premature termination codon by complete missplicing of the MCAD mRNA and is associated with phenotypic diversity ranging from sudden neonatal death to asymptomatic

    DEFF Research Database (Denmark)

    Korman, Stanley H; Gutman, Alisa; Brooks, Rivka

    2004-01-01

    Virtually all patients with medium-chain acyl-CoA dehydrogenase deficiency (MCADD) are homozygous or compound heterozygous for the 985A > G mutation, which limits the study of a possible genotype/phenotype correlation. A newborn Palestinian infant died suddenly on the second day of life. A previous...

  18. Unveiling the Pathogenic Molecular Mechanisms of the Most Common Variant (p.K329E) in Medium-Chain Acyl-CoA Dehydrogenase Deficiency by in Vitro and in Silico Approaches.

    Science.gov (United States)

    Bonito, Cátia A; Nunes, Joana; Leandro, João; Louro, Filipa; Leandro, Paula; Ventura, Fátima V; Guedes, Rita C

    2016-12-27

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common genetic disorder affecting the mitochondrial fatty acid β-oxidation pathway. The mature and functional form of human MCAD (hMCAD) is a homotetramer assembled as a dimer of dimers (monomers A/B and C/D). Each monomer binds a FAD cofactor, necessary for the enzyme's activity. The most frequent mutation in MCADD results from the substitution of a lysine with a glutamate in position 304 of mature hMCAD (p.K329E in the precursor protein). Here, we combined in vitro and in silico approaches to assess the impact of the p.K329E mutation on the protein's structure and function. Our in silico results demonstrated for the first time that the p.K329E mutation, despite lying at the dimer-dimer interface and being deeply buried inside the tetrameric core, seems to affect the tetramer surface, especially the β-domain that forms part of the catalytic pocket wall. Additionally, the molecular dynamics data indicate a stronger impact of the mutation on the protein's motions in dimer A/B, while dimer C/D remains similar to the wild type. For dimer A/B, severe disruptions in the architecture of the pockets and in the FAD and octanoyl-CoA binding affinities were also observed. The presence of unaffected pockets (C/D) in the in silico studies may explain the decreased enzymatic activity determined for the variant protein (46% residual activity). Moreover, the in silico structural changes observed for the p.K329E variant protein provide an explanation for the structural instability observed experimentally, namely, the disturbed oligomeric profile, thermal stability, and conformational flexibility, with respect to the wild-type.

  19. Measurement of short-chain acyl-CoA dehydrogenase (SCAD) in cultured skin fibroblasts with hexanoyl-CoA as a competitive inhibitor to eliminate the contribution of medium-chain acyl-CoA dehydrogenase

    NARCIS (Netherlands)

    Niezen-Koning, K. E.; Wanders, R. J.; Nagel, G. T.; Sewell, A. C.; Heymans, H. S.

    1994-01-01

    Short-chain acyl-CoA dehydrogenase (SCAD) deficiency has so far been reported in only very few patients. This is due, in part, to the problems involved in measuring the activity of SCAD unequivocally. The main reason for this difficulty is that butyryl-CoA, the substrate preferably used for SCAD

  20. Measurement of short-chain acyl-CoA dehydrogenase (SCAD) in cultured skin fibroblasts with hexanoyl-CoA as a competitive inhibitor to eliminate the contribution of medium-chain acyl-CoA dehydrogenase

    NARCIS (Netherlands)

    Niezen-Koning, K E; Wanders, R J; Nagel, G T; Sewell, A C; Heijmans, Hugo

    Short-chain acyl-CoA dehydrogenase (SCAD) deficiency has so far been reported in only very few patients. This is due, in part, to the problems involved in measuring the activity of SCAD unequivocally. The main reason for this difficulty is that butyryl-CoA, the substrate preferably used for SCAD

  1. Correcting false positive medium-chain acyl-CoA dehydrogenase deficiency results from newborn screening; synthesis, purification, and standardization of branched-chain C8 acylcarnitines for use in their selective and accurate absolute quantitation by UHPLC-MS/MS.

    Science.gov (United States)

    Minkler, Paul E; Stoll, Maria S K; Ingalls, Stephen T; Hoppel, Charles L

    2017-04-01

    While selectively quantifying acylcarnitines in thousands of patient samples using UHPLC-MS/MS, we have occasionally observed unidentified branched-chain C8 acylcarnitines. Such observations are not possible using tandem MS methods, which generate pseudo-quantitative acylcarnitine "profiles". Since these "profiles" select for mass alone, they cannot distinguish authentic signal from isobaric and isomeric interferences. For example, some of the samples containing branched-chain C8 acylcarnitines were, in fact, expanded newborn screening false positive "profiles" for medium-chain acyl-CoA dehydrogenase deficiency (MCADD). Using our fast, highly selective, and quantitatively accurate UHPLC-MS/MS acylcarnitine determination method, we corrected the false positive tandem MS results and reported the sample results as normal for octanoylcarnitine (the marker for MCADD). From instances such as these, we decided to further investigate the presence of branched-chain C8 acylcarnitines in patient samples. To accomplish this, we synthesized and chromatographically characterized several branched-chain C8 acylcarnitines (in addition to valproylcarnitine): 2-methylheptanoylcarnitine, 6-methylheptanoylcarnitine, 2,2-dimethylhexanoylcarnitine, 3,3-dimethylhexanoylcarnitine, 3,5-dimethylhexanoylcarnitine, 2-ethylhexanoylcarnitine, and 2,4,4-trimethylpentanoylcarnitine. We then compared their behavior with branched-chain C8 acylcarnitines observed in patient samples and demonstrated our ability to chromographically resolve, and thus distinguish, octanoylcarnitine from branched-chain C8 acylcarnitines, correcting false positive MCADD results from expanded newborn screening. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Microbial synthesis of medium-chain chemicals from renewables.

    Science.gov (United States)

    Sarria, Stephen; Kruyer, Nicholas S; Peralta-Yahya, Pamela

    2017-12-01

    Linear, medium-chain (C8-C12) hydrocarbons are important components of fuels as well as commodity and specialty chemicals. As industrial microbes do not contain pathways to produce medium-chain chemicals, approaches such as overexpression of endogenous enzymes or deletion of competing pathways are not available to the metabolic engineer; instead, fatty acid synthesis and reversed β-oxidation are manipulated to synthesize medium-chain chemical precursors. Even so, chain lengths remain difficult to control, which means that purification must be used to obtain the desired products, titers of which are typically low and rarely exceed milligrams per liter. By engineering the substrate specificity and activity of the pathway enzymes that generate the fatty acyl intermediates and chain-tailoring enzymes, researchers can boost the type and yield of medium-chain chemicals. Development of technologies to both manipulate chain-tailoring enzymes and to assay for products promises to enable the generation of g/L yields of medium-chain chemicals.

  3. Neonatal Screening for Medium-Chain Acyl-CoA Deficiency—Insights and Unexpected Challenges

    Directory of Open Access Journals (Sweden)

    Esther M. Maier

    2015-11-01

    Full Text Available With the implementation of tandem mass spectrometry (MS/MS, neonatal screening for medium-chain acyl-CoA dehydrogenase (MCADD has been introduced in many screening programs worldwide. Together with phenylketonuria, MCADD is the disorder most frequently diagnosed. Despite undeniable beneficial effects on morbidity and mortality, neonatal screening for MCADD effectively exemplifies the unexpected challenges of increased diagnosis by screening programs. MS/MS-based screening revealed an at least 2-fold higher incidence than expected with a considerable share of individuals showing mild biochemical alterations and/or novel mutations with unknown clinical significance. Whether these individuals are at lower risk to experience metabolic decompensations is a matter of ongoing debate. Defining patients, stratifying them according to their clinical risk, and adopting treatment protocols is an as yet unmet challenge in neonatal screening for MCADD.

  4. A medium-chain fatty acid as an alternative energy source in mouse preimplantation development.

    Science.gov (United States)

    Yamada, Mitsutoshi; Takanashi, Kazumi; Hamatani, Toshio; Hirayama, Akiyoshi; Akutsu, Hidenori; Fukunaga, Tomoko; Ogawa, Seiji; Sugawara, Kana; Shinoda, Kosaku; Soga, Tomoyoshi; Umezawa, Akihiro; Kuji, Naoaki; Yoshimura, Yasunori; Tomita, Masaru

    2012-01-01

    To further optimize the culturing of preimplantation embryos, we undertook metabolomic analysis of relevant culture media using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). We detected 28 metabolites: 23 embryo-excreted metabolites including 16 amino acids and 5 media-derived metabolites (e.g., octanoate, a medium-chain fatty acid (MCFA)). Due to the lack of information on MCFAs in mammalian preimplantation development, this study examined octanoate as a potential alternative energy source for preimplantation embryo cultures. No embryos survived in culture media lacking FAs, pyruvate, and glucose, but supplementation of octanoate rescued the embryonic development. Immunoblotting showed significant expression of acyl-CoA dehydrogenase and hydroxyacyl-CoA dehydrogenase, important enzymes for ß-oxidation of MCFAs, in preimplantation embryo. Furthermore, CE-TOFMS traced [1-(13)C(8)] octanoate added to the culture media into intermediate metabolites of the TCA cycle via ß-oxidation in mitochondria. These results are the first demonstration that octanoate could provide an efficient alternative energy source throughout preimplantation development.

  5. Importance of medium chain fatty acids in animal nutrition

    Science.gov (United States)

    Baltić, B.; Starčević, M.; Đorđević, J.; Mrdović, B.; Marković, R.

    2017-09-01

    Fats in animal and human nutrition are a common subject of research. These studies most often pay attention to particular fat groups (saturated, unsaturated, polyunsaturated fats or fats grouped by the length of their fatty acid chains into short, medium or long chain fatty acids). Medium chain fatty acids (MCFAs) have two main sources: milk and coconut oil. To date, research has shown these acids have positive effects on health, production, feed digestibility and lower body and muscle fats in broilers and swine. MCFAs possess antibacterial, anticoccidial and antiviral effects. Also, it has been proven that these acids act synergistically if they are used together with organic acids, essential oils, or probiotics. Nowadays, commercial MCFA products are available for use in animal nutrition as feed additives.

  6. Increasing the Carbon Flux toward Synthesis of Short-Chain-Length-Medium-Chain-Length Polyhydroxyalkanoate in the Peroxisome of Saccharomyces cerevisiae through Modification of the β-Oxidation Cycle

    OpenAIRE

    de Oliveira, Valeria Cora; Maeda, Isamu; Delessert, Syndie; Poirier, Yves

    2004-01-01

    Short-chain-length-medium-chain-length polyhydroxyalkanoates were synthesized in Saccharomyces cerevisiae from intermediates of the β-oxidation cycle by expressing the polyhydroxyalkanoate synthases from Aeromonas caviae and Ralstonia eutropha in the peroxisomes. The quantity of polymer produced was increased by using a mutant of the β-oxidation-associated multifunctional enzyme with low dehydrogenase activity toward R-3-hydroxybutyryl coenzyme A.

  7. Molecular characterization of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P

    1991-01-01

    . All clones sequenced from the patient exhibited a single base substitution from adenine (A) to guanine (G) at position 985 in the MCAD cDNA as the only consistent base-variation compared with control cDNA. In contrast, the parents contained cDNA with the normal and the mutated sequence, revealing...... their obligate carrier status. Allelic homozygosity in the patient and heterozygosity for the mutation in the parents were established by a modified PCR reaction, introducing a cleavage site for the restriction endonuclease NcoI into amplified genomic DNA containing G985. The same assay consistently revealed A......985 in genomic DNA from 26 control individuals. The A to G mutation was introduced into an E. coli expression vector producing mutant MCAD, which was demonstrated to be inactive, probably because of the inability to form active tetrameric MCAD. All the experiments are consistent with the contention...

  8. Medium-Chain Acyl-CoA Deficiency: Outlines from Newborn Screening, In Silico Predictions, and Molecular Studies

    Directory of Open Access Journals (Sweden)

    Serena Catarzi

    2013-01-01

    Full Text Available Medium-chain acyl-CoA dehydrogenase deficiency (MCADD is a disorder of fatty acid oxidation characterized by hypoglycemic crisis under fasting or during stress conditions, leading to lethargy, seizures, brain damage, or even death. Biochemical acylcarnitines data obtained through newborn screening by liquid chromatography-tandem mass spectrometry (LC-MS/MS were confirmed by molecular analysis of the medium-chain acyl-CoA dehydrogenase (ACADM gene. Out of 324.000 newborns screened, we identified 14 MCADD patients, in whom, by molecular analysis, we found a new nonsense c.823G>T (p.Gly275* and two new missense mutations: c.253G>C (p.Gly85Arg and c.356T>A (p.Val119Asp. Bioinformatics predictions based on both phylogenetic conservation and functional/structural software were used to characterize the new identified variants. Our findings confirm the rising incidence of MCADD whose existence is increasingly recognized due to the efficacy of an expanded newborn screening panel by LC-MS/MS making possible early specific therapies that can prevent possible crises in at-risk infants. We noticed that the “common” p.Lys329Glu mutation only accounted for 32% of the defective alleles, while, in clinically diagnosed patients, this mutation accounted for 90% of defective alleles. Unclassified variants (UVs or VUSs are especially critical when considering screening programs. The functional and pathogenic characterization of genetic variants presented here is required to predict their medical consequences in newborns.

  9. Oxidative stabilization of mixed mayonnaises made with linseed oil and saturated medium-chain triglyceride oil

    NARCIS (Netherlands)

    Raudsepp, P.; Brüggemann, D.A.; Lenferink, Aufrid T.M.; Otto, Cornelis; Andersen, M.L.

    2014-01-01

    Mayonnaises, made with either saturated medium chain triglyceride (MCT) oil or unsaturated purified linseed oil (LSO), were mixed. Raman confocal microspectrometry demonstrated that lipid droplets in mixed mayonnaise remained intact containing either MCT oil or LSO. Peroxide formation during storage

  10. Optimization of the Synthesis of Structured Phosphatidylcholine with Medium Chain Fatty Acid.

    Science.gov (United States)

    Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Vernon-Carter, Eduardo J; García, Hugo S

    2017-11-01

    Structured phosphatidylcholine was successfully produced by acidolysis between phosphatidylcholine and free medium chain fatty acid, using phospholipase A 1 immobilized on Duolite A568. Response surface methodology was applied to optimize the reaction system using three process parameters: molar ratio of substrates (phosphatidylcholine to free medium chain fatty acid), enzyme loading, and reaction temperature. All parameters evaluated showed linear and quadratic significant effects on the production of modified phosphatidylcholine; molar ratio of substrates contributed positively, but temperature influenced negatively. Increased enzyme loading also led to increased production of modified phosphatidylcholine but only during the first 9 hours of the acidolysis reaction. Optimal conditions obtained from the model were a ratio of phosphatidylcholine to free medium chain fatty acid of 1:15, an enzyme loading of 12%, and a temperature of 45°C. Under these conditions a production of modified phosphatidylcholine of 52.98 % were obtained after 24 h of reaction. The prediction was confirmed from the verification experiments; the production of modified phosphatidylcholine was 53.02%, the total yield of phosphatidylcholine 64.28% and the molar incorporation of medium chain fatty acid was 42.31%. The acidolysis reaction was scaled-up in a batch reactor with a similar production of modified phosphatidylcholine, total yield of phosphatidylcholine and molar incorporation of medium chain fatty acid. Purification by column chromatography of the structured phosphatidylcholine yielded 62.53% of phosphatidylcholine enriched with 42.52% of medium chain fatty acid.

  11. Medium chain glycerides of coconut oil for microwave-enhanced conversion of polycarbonate into polyols

    Czech Academy of Sciences Publication Activity Database

    Beneš, Hynek; Paruzel, Aleksandra; Trhlíková, Olga; Paruzel, Bartosz

    2017-01-01

    Roč. 86, January (2017), s. 173-187 ISSN 0014-3057 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : medium chain triglycerides * coconut oil * polycarbonate Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.531, year: 2016

  12. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol

    NARCIS (Netherlands)

    Grootscholten, T.I.M.; Strik, D.P.B.T.B.; Steinbusch, K.J.J.; Buisman, C.J.N.; Hamelers, B.

    2014-01-01

    Chain elongation is an anaerobic fermentation that produces medium chain fatty acids (MCFAs) from volatile fatty acids and ethanol. These MCFAs can be used as biochemical building blocks for fuel production and other chemical processes. Producing MCFAs from the organic fraction of municipal solid

  13. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders.

    Science.gov (United States)

    Augustin, Katrin; Khabbush, Aziza; Williams, Sophie; Eaton, Simon; Orford, Michael; Cross, J Helen; Heales, Simon J R; Walker, Matthew C; Williams, Robin S B

    2018-01-01

    High-fat, low-carbohydrate diets, known as ketogenic diets, have been used as a non-pharmacological treatment for refractory epilepsy. A key mechanism of this treatment is thought to be the generation of ketones, which provide brain cells (neurons and astrocytes) with an energy source that is more efficient than glucose, resulting in beneficial downstream metabolic changes, such as increasing adenosine levels, which might have effects on seizure control. However, some studies have challenged the central role of ketones because medium-chain fatty acids, which are part of a commonly used variation of the diet (the medium-chain triglyceride ketogenic diet), have been shown to directly inhibit AMPA receptors (glutamate receptors), and to change cell energetics through mitochondrial biogenesis. Through these mechanisms, medium-chain fatty acids rather than ketones are likely to block seizure onset and raise seizure threshold. The mechanisms underlying the ketogenic diet might also have roles in other disorders, such as preventing neurodegeneration in Alzheimer's disease, the proliferation and spread of cancer, and insulin resistance in type 2 diabetes. Analysing medium-chain fatty acids in future ketogenic diet studies will provide further insights into their importance in modified forms of the diet. Moreover, the results of these studies could facilitate the development of new pharmacological and dietary therapies for epilepsy and other disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Risk assessment of Short and Medium Chain Chlorinated Paraffin’s (SCCP and MCCP)

    DEFF Research Database (Denmark)

    Christensen, Frans Møller; Olsen, Stig Irving

    2002-01-01

    findings of the Short Chain Chlorinated Paraffin (SCCP) and the draft Medium Chain Chlorinated Paraffin (MCCP) risk assessments. The political actions taken as a consequence of the assessments are also described. The risk assessments have been prepared according to the EU Technical Guidance Document (TGD...

  15. Lipidemic effects of an interesterified mixture of butter, medium-chain triacylglycerol and safflower oils

    DEFF Research Database (Denmark)

    Mascioli, E.A.; McLennan, C.E.; Schaefer, E.J.

    1999-01-01

    either butter (B) or an interesterified mixture (IM) of butter, medium-chain triacylglycerol (MCT),and safflower oils. Blood drawn during weeks 5 and 10 of feeding was analyzed for total cholesterol (TC), high density lipoproteincholesterol (HDL-C),LDL-C, and triacylglycerols (TAG). Mean plasma levels...

  16. Incorporation of medium chain fatty acids into fish oil triglycerides by chemical and enzymatic inter esterification

    Energy Technology Data Exchange (ETDEWEB)

    Feltes, M. M. C.; Oliveira de Pilot, L.; Gomes Correira, F.; Grimaldi, R.; Mara Block, J.; Ninow, J. L.

    2009-07-01

    Structured triglycerides (STs) containing both medium chain fatty acids (MCFA) and polyunsaturated fatty acids (PUFA) in the same molecule offer nutritional and therapeutic benefits. The aim of this work was to establish the incorporation of MCFA into fish oil triglycerides (TAGs), while maintaining substantial levels of docosahexaenoic and eicosapentaenoic acids. The effects of different acyl donors (capric acid methyl ester/MeC10 or medium chain triglyceride/TCM) and of the catalyst (chemical or enzymatic) on the fatty acid composition of the reaction product were studied. The fatty acid composition of the fish oil TAG was modified after inter esterification to contain MCFA, and it depended on the catalyst and on the substrates. Thermo grams obtained by Differential Scanning Calorimetry (DSC) showed that inter esterification promoted noteworthy changes in the melting profile of the samples. STs of clinical nutrition interest containing both EPA and DHA obtained from fish oil along with MCFA were successfully produced. (Author) 70 refs.

  17. Physico-chemical characteristics of burfi prepared by using medium chain triglyceride rich margarines.

    Science.gov (United States)

    Tiwari, Shipra; Chetana, Ramakrishna; Puttaraju, Shashikala; Khatoon, Sakina

    2014-01-01

    Medium chain triglyceride rich margarines were prepared using palm, coconut oil blends in the ratio of 80:20 (Margarine 1) and 60:40 (Margarine 2). The margarines were used to prepare burfi and compared with products prepared using commercial margarine, ghee and butter. The physicochemical characteristics such as texture, color, free fatty acid, peroxide value, saponification value, unsaponifiable matter and fatty acid composition of oils, fats and margarines were carried out. Results showed that 11.0 and 21.9% of medium chain triglycerides were present in margarine 1 and 2 respectively. The texture, colour, moisture content, peroxide value and sensory evaluation were carried out for the burfi samples. Laboratory prepared margarines improved the textural quality of burfi compared to commercial margarine, ghee and butter. The sensory analyses of the burfi samples revealed that burfi prepared from margarine 1 was more acceptable compared to commercial margarine.

  18. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast

    DEFF Research Database (Denmark)

    Zhu, Zhiwei; Zhou, Yongjin J.; Kang, Min Kyoung

    2017-01-01

    Microbial synthesis of medium chain aliphatic hydrocarbons, attractive drop-in molecules to gasoline and jet fuels, is a promising way to reduce our reliance on petroleum-based fuels. In this study, we enabled the synthesis of straight chain hydrocarbons (C7–C13) by yeast Saccharomyces cerevisiae...... of fatty acids to 1-alkenes, which could be synthesized at a level of 3 mg/L, 25-fold higher than that of alkanes produced via aldehydes....

  19. Fermentative Extraction of Coconut Oil to Maintain a Quality of Medium Chain Fatty Acid

    OpenAIRE

    Salahudin, Farid; Supriyatna, Nana

    2014-01-01

    Coconut oil is healthy vegetable oil because it contains Medium Chain Fatty Acid (MCFA). The used of bleaching agent and excessive heating in coconut oil process will produce low quality oil (rancid). Therefore, it is necessary to processing that does not use chemicals and excessive heating such as fermentation using microbe and enzyme. The aim of this study was to find out the effect of bromelin enzyme concentration and Saccharomyces cereviceae fermentation to MCFA content in coconut oil. Th...

  20. Physico-chemical characteristics of burfi prepared by using medium chain triglyceride rich margarines

    OpenAIRE

    Tiwari, Shipra; Chetana, Ramakrishna; Puttaraju, Shashikala; Khatoon, Sakina

    2011-01-01

    Medium chain triglyceride rich margarines were prepared using palm, coconut oil blends in the ratio of 80:20 (Margarine 1) and 60:40 (Margarine 2). The margarines were used to prepare burfi and compared with products prepared using commercial margarine, ghee and butter. The physicochemical characteristics such as texture, color, free fatty acid, peroxide value, saponification value, unsaponifiable matter and fatty acid composition of oils, fats and margarines were carried out. Results showed ...

  1. Pathway Compartmentalization in Peroxisome of Saccharomyces cerevisiae to Produce Versatile Medium Chain Fatty Alcohols.

    Science.gov (United States)

    Sheng, Jiayuan; Stevens, Joseph; Feng, Xueyang

    2016-05-27

    Fatty alcohols are value-added chemicals and important components of a variety of industries, which have a >3 billion-dollar global market annually. Long chain fatty alcohols (>C12) are mainly used in surfactants, lubricants, detergents, pharmaceuticals and cosmetics while medium chain fatty alcohols (C6-C12) could be used as diesel-like biofuels. Microbial production of fatty alcohols from renewable feedstock stands as a promising strategy to enable sustainable supply of fatty alcohols. In this study, we report, for the first time, that medium chain fatty alcohols could be produced in yeast via targeted expression of a fatty acyl-CoA reductase (TaFAR) in the peroxisome of Saccharomyces cerevisiae. By tagging TaFAR enzyme with peroxisomal targeting signal peptides, the TaFAR could be compartmentalized into the matrix of the peroxisome to hijack the medium chain fatty acyl-CoA generated from the beta-oxidation pathway and convert them to versatile medium chain fatty alcohols (C10 &C12). The overexpression of genes encoding PEX7 and acetyl-CoA carboxylase further improved fatty alcohol production by 1.4-fold. After medium optimization in fed-batch fermentation using glucose as the sole carbon source, fatty alcohols were produced at 1.3 g/L, including 6.9% 1-decanol, 27.5% 1-dodecanol, 2.9% 1-tetradecanol and 62.7% 1-hexadecanol. This work revealed that peroxisome could be engineered as a compartmentalized organelle for producing fatty acid-derived chemicals in S. cerevisiae.

  2. Medium-chain fatty acids undergo elongation before β-oxidation in fibroblasts

    International Nuclear Information System (INIS)

    Jones, Patricia M.; Butt, Yasmeen; Messmer, Bette; Boriak, Richard; Bennett, Michael J.

    2006-01-01

    Although mitochondrial fatty acid β-oxidation (FAO) is considered to be well understood, further elucidation of the pathway continues through evaluation of patients with FAO defects. The FAO pathway can be examined by measuring the 3-hydroxy-fatty acid (3-OHFA) intermediates. We present a unique finding in the study of this pathway: the addition of medium-chain fatty acids to the culture media of fibroblasts results in generation of 3-OHFAs which are two carbons longer than the precursor substrate. Cultured skin fibroblasts from normal and LCHAD-deficient individuals were grown in media supplemented with various chain-length fatty acids. The cell-free medium was analyzed for 3-OHFAs by stable-isotope dilution gas-chromatography/mass-spectrometry. Our finding suggests that a novel carbon chain-length elongation process precedes the oxidation of medium-chain fatty acids. This previously undescribed metabolic step may have important implications for the metabolism of medium-chain triglycerides, components in the dietary treatment of a number of disorders

  3. Disrupted fat distribution and composition due to medium-chain triglycerides in mice with a β-oxidation defect.

    Science.gov (United States)

    Tucci, Sara; Flögel, Ulrich; Sturm, Marga; Borsch, Elena; Spiekerkoetter, Ute

    2011-08-01

    Because of the enhanced recognition of inherited long-chain fatty acid oxidation disorders by worldwide newborn screening programs, an increasing number of asymptomatic patients receive medium-chain triglyceride (MCT) supplements to prevent the development of cardiomyopathy and myopathy. MCT supplementation has been recognized as a safe dietary intervention, but long-term observations into later adulthood are still not available. We investigated the consequences of a prolonged MCT diet on abdominal fat distribution and composition and on liver fat. Mice with very-long-chain acyl-coenzyme A dehydrogenase deficiency (VLCAD(-/-)) were supplemented for 1 y with a diet in which MCTs replaced long-chain triglycerides without increasing the total fat content. The dietary effects on abdominal fat accumulation and composition were analyzed by in vivo (1)H- and (13)C-magnetic resonance spectroscopy (9.4 Tesla). After 1 y of MCT supplementation, VLCAD(-/-) mice accumulated massive visceral fat and had a dramatic increase in the concentration of serum free fatty acids. Furthermore, we observed a profound shift in body triglyceride composition, ie, concentrations of physiologically important polyunsaturated fatty acids dramatically decreased. (1)H-Magnetic resonance spectroscopy analysis and histologic evaluation of the liver also showed pronounced fat accumulation and marked oxidative stress. Although the MCT-supplemented diet has been reported to prevent the development of cardiomyopathy and skeletal myopathy in fatty acid oxidation disorders, our data show that long-term MCT supplementation results in a severe clinical phenotype similar to that of nonalcoholic steatohepatitis and the metabolic syndrome.

  4. Medium-Chain Fatty Acids Affect Citrinin Production in the Filamentous Fungus Monascus ruber

    Science.gov (United States)

    Hajjaj, Hassan; Klaébé, Alain; Goma, Gérard; Blanc, Philippe J.; Barbier, Estelle; François, Jean

    2000-01-01

    During submerged culture in the presence of glucose and glutamate, the filamentous fungus Monascus ruber produces water-soluble red pigments together with citrinin, a mycotoxin with nephrotoxic and hepatoxic effects on animals. Analysis of the 13C-pigment molecules from mycelia cultivated with [1-13C]-, [2-13C]-, or [1,2-13C]acetate by 13C nuclear magnetic resonance indicated that the biosynthesis of the red pigments used both the polyketide pathway, to generate the chromophore structure, and the fatty acid synthesis pathway, to produce a medium-chain fatty acid (octanoic acid) which was then bound to the chromophore by a trans-esterification reaction. Hence, to enhance pigment production, we tried to short-circuit the de novo synthesis of medium-chain fatty acids by adding them to the culture broth. Of fatty acids with carbon chains ranging from 6 to 18 carbon atoms, only octanoic acid showed a 30 to 50% stimulation of red pigment production, by a mechanism which, in contrast to expectation, did not involve its direct trans-esterification on the chromophore backbone. However, the medium- and long-chain fatty acids tested were readily assimilated by the fungus, and in the case of fatty acids ranging from 8 to 12 carbon atoms, 30 to 40% of their initial amount transiently accumulated in the growth medium in the form of the corresponding methylketone 1 carbon unit shorter. Very interestingly, these fatty acids or their corresponding methylketones caused a strong reduction in, or even a complete inhibition of, citrinin production by M. ruber when they were added to the medium. Several data indicated that this effect could be due to the degradation of the newly synthesized citrinin (or an intermediate in the citrinin pathway) by hydrogen peroxide resulting from peroxisome proliferation induced by medium-chain fatty acids or methylketones. PMID:10698780

  5. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by INEOS Chlor Americas

    Science.gov (United States)

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  6. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by Dover Chemical

    Science.gov (United States)

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  7. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by Qualice, LLC

    Science.gov (United States)

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  8. The molecular basis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in compound heterozygous patients

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Udvari, S

    1997-01-01

    -causing mutations in 14 families in whom both mutations had not previously been reported. We then evaluated the severity of the mutations identified in these 14 families. Using expression of mutant MCAD in Escherichia coli with or without co-overexpression of the molecular chaperonins GroESL we showed that five...... of the missense mutations affect the folding and/or stability of the protein, and that the residual enzyme activity of some of them could be modulated to a different extent depending on the amounts of available chaperonins. Thus, some of the missense mutations may result in relatively high levels of residual...

  9. Disease-causing mutations in exon 11 of the medium-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Andresen, B S; Jensen, T G; Bross, P

    1994-01-01

    spot. Here we describe the results from sequence analysis of exon 11 and part of the flanking introns from 36 compound heterozygous patients with MCAD deficiency. We have identified four previously unknown disease-causing mutations (M301T, S311R, R324X, and E359X) and two silent mutations in exon 11...

  10. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S

    1995-01-01

    ." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  11. Ethnicity of children with homozygous c.985A>G medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Khalid, J M; Oerton, J; Cortina-Borja, M

    2008-01-01

    newborn screening study. METHODS: Homozygous c.985A>G MCADD cases were ascertained in six English newborn screening centres between 1 March 2004 and 28 February 2007 by screening approximately 1.1 million newborns using tandem mass spectrometry analysis of underivatised blood spot samples to quantitate...

  12. Fermentative Extraction of Coconut Oil to Maintain A Quality of Medium Chain Fatty Acid

    Directory of Open Access Journals (Sweden)

    Farid Salahudin

    2014-06-01

    Full Text Available Coconut oil is healthy vegetable oil because it contains Medium Chain Fatty Acid (MCFA. The used of bleaching agent and excessive heating in coconut oil process will produce low quality oil (rancid. Therefore, it is necessary to processing that does not use chemicals and excessive heating such as fermentation using microbe and enzyme. The aim of this study was to find out the effect of bromelin enzyme concentration and Saccharomyces cereviceae fermentation to MCFA content in coconut oil. This research was done by adding the enzyme bromelain at 0, 50, 100, 200 and 400 ppm and S. cereviceae inoculated in coconut milk. The resulting oil is then tested the water content, acid number and fatty acid content. The result showed that fermentation with 200 ppm bromeline enzyme and S. cereviceae inoculation can produce the best quality coconut oil containing MCFA that meet the APCC standard.

  13. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum.

    Science.gov (United States)

    Heinrich, Daniel; Raberg, Matthias; Fricke, Philipp; Kenny, Shane T; Morales-Gamez, Laura; Babu, Ramesh P; O'Connor, Kevin E; Steinbüchel, Alexander

    2016-10-15

    The purple nonsulfur alphaproteobacterium Rhodospirillum rubrum S1 was genetically engineered to synthesize a heteropolymer of mainly 3-hydroxydecanoic acid and 3-hydroxyoctanoic acid [P(3HD-co-3HO)] from CO- and CO 2 -containing artificial synthesis gas (syngas). For this, genes from Pseudomonas putida KT2440 coding for a 3-hydroxyacyl acyl carrier protein (ACP) thioesterase (phaG), a medium-chain-length (MCL) fatty acid coenzyme A (CoA) ligase (PP_0763), and an MCL polyhydroxyalkanoate (PHA) synthase (phaC1) were cloned and expressed under the control of the CO-inducible promoter P cooF from R. rubrum S1 in a PHA-negative mutant of R. rubrum P(3HD-co-3HO) was accumulated to up to 7.1% (wt/wt) of the cell dry weight by a recombinant mutant strain utilizing exclusively the provided gaseous feedstock syngas. In addition to an increased synthesis of these medium-chain-length PHAs (PHA MCL ), enhanced gene expression through the P cooF promoter also led to an increased molar fraction of 3HO in the synthesized copolymer compared with the P lac promoter, which regulated expression on the original vector. The recombinant strains were able to partially degrade the polymer, and the deletion of phaZ2, which codes for a PHA depolymerase most likely involved in intracellular PHA degradation, did not reduce mobilization of the accumulated polymer significantly. However, an amino acid exchange in the active site of PhaZ2 led to a slight increase in PHA MCL accumulation. The accumulated polymer was isolated; it exhibited a molecular mass of 124.3 kDa and a melting point of 49.6°C. With the metabolically engineered strains presented in this proof-of-principle study, we demonstrated the synthesis of elastomeric second-generation biopolymers from renewable feedstocks not competing with human nutrition. Polyhydroxyalkanoates (PHAs) are natural biodegradable polymers (biopolymers) showing properties similar to those of commonly produced petroleum-based nondegradable polymers. The

  14. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms

    Science.gov (United States)

    Huang, Chifu B.; Altimova, Yelena; Myers, Taylor M.; Ebersole, Jeffrey L.

    2011-01-01

    Objectives This study assessed the antibacterial activity of short-, medium-, and long-chain fatty acids against various oral microorganisms. Methods The short-chain fatty acids [formic acid (C1), acetic acid (C2), propionic acid (C3), butyric acid (C4), isobutyric acid (C4), isovaleric acid (C5), hexanoic acid (C6)], medium-chain fatty acids [octanoic acid (C8), capric acid (C10), lauric acid (12)], and long-chain fatty acids [myristic acid (C14), palmitic acid (C16)], were investigated for antimicrobial activity against Streptococcus mutans, S. gordonii, S. sanguis, Candida albicans, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis. Results The data demonstrated that the fatty acids exhibited patterns of inhibition against oral bacteria with some specificity that appeared related more to the bacterial species that the general structural characteristics of the microorganism. As a group the fatty acids were much less effective against C. albicans than the oral bacteria, with effectiveness limited to hexanoic, octanoic, and lauric acids. Formic acid, capric, and lauric acids were broadly inhibitory for the bacteria. Interestingly, fatty acids that are produced at metabolic end-products by a number of these bacteria, were specifically inactive against the producing species, while substantially inhibiting the growth of other oral microorganisms. Conclusions The results indicate that the antimicrobial activity of short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs), long-chain fatty acids (LCFAs) could influence the microbial ecology in the oral cavity via at least 2 potential pathways. First, the agents delivered exogenously as therapeutic adjuncts could be packaged to enhance a microbial-regulatory environment in the subgingival sulcus. Second, it would be the intrinsic nature of these fatty acid inhibitors in contributing to the characteristics of the microbial biofilms, their evolution, and emergence of

  15. Effects of medium-chain triglycerides on intestinal morphology and energy metabolism of intrauterine growth retarded weanling piglets.

    Science.gov (United States)

    Zhang, Li-Li; Zhang, Hao; Li, Yue; Wang, Tian

    2017-06-01

    It has been shown that there is a relationship between intrauterine growth retardation (IUGR) and postnatal intestinal damage involved in energy deficits. Therefore, the present study was conducted to investigate the effect of medium-chain triglycerides (MCT) on the intestinal morphology, intestinal function and energy metabolism of piglets with IUGR. At weaning (21 ± 1.1 d of age), 24 IUGR piglets and 24 normal birth weight (NBW) piglets were selected according to their birth weights (BW) (IUGR: 0.95 ± 0.04 kg BW; NBW: 1.58 ± 0.04 kg BW) and their weights at the time of weaning (IUGR: 5.26 ± 0.15 kg BW; NBW: 6.98 ± 0.19 kg BW). The piglets were fed a diet of either long-chain triglycerides (LCT) (containing 5% LCT) or MCT (containing 1% LCT and 4% MCT) for 28 d. Then, the piglets' intestinal morphology, biochemical parameters and mRNA abundance related to intestinal damage and energy metabolism were determined. IUGR was found to impair intestinal morphology, with evidence of decreased villus height and increased crypt depth; however, these negative effects of IUGR were ameliorated by MCT treatment. IUGR piglets showed compromised intestinal digestion and absorption functions when compared with NBW piglets. However, feeding MCT increased the maltase activity in the jejunum and alleviated IUGR-induced reductions in plasma d-xylose concentrations and jejunal sucrase activity. IUGR decreased the efficiency of the piglets' intestinal energy metabolism; however, piglets fed an MCT diet exhibited increased adenosine triphosphate (ATP) concentrations and ATP synthase F1 complex beta polypeptide expression, as well as decreased adenosine monophosphate-activated kinase alpha 1 expression in the jejunum of piglets. In addition, up-regulation of the piglets' citrate synthase and succinate dehydrogenase levels was found to occur following MCT treatment at both the activity and the transcriptional levels of the jejunum. Therefore, it can be postulated that

  16. Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder

    NARCIS (Netherlands)

    Walle, van der G.A.M.; Buisman, F.J.H.; Weusthuis, R.A.; Eggink, G.

    1999-01-01

    Unsaturated medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) produced by Pseudomonas putida from linseed oil fatty acids (LOFA) and tall oil fatty acids (TOFA), were used as the polymer binder in the formulation of high solid alkyd-like paints. The relatively high concentration of

  17. Link between lipid metabolism and voluntary food intake in rainbow trout fed coconut oil rich in medium-chain TAG

    NARCIS (Netherlands)

    Figueiredo-Silva, A.C.; Kaushik, S.; Terrier, F.; Schrama, J.W.; Médale, F.; Geurden, I.

    2012-01-01

    We examined the long-term effect of feeding coconut oil (CO; rich in lauric acid, C12) on voluntary food intake and nutrient utilisation in rainbow trout (Oncorhynchus mykiss), with particular attention to the metabolic use (storage or oxidation) of ingested medium-chain TAG. Trout were fed for 15

  18. Effects of a meal rich in medium-chain saturated fat on postprandial lipemia in relatives of type 2 diabetics

    DEFF Research Database (Denmark)

    Pietraszek, Anna; Hermansen, Kjeld; Pedersen, Steen B.

    2013-01-01

    tissue in REL and CON. METHODS: Seventeen REL and 17 CON received a fat-rich meal (79 energy percent from fat) based on medium-chain SFA (coconut oil). Plasma concentrations of triglycerides (TG), free-fatty acids, insulin, glucose, glucagon-like peptide-1, glucose-dependent insulintropic peptide...

  19. Effects of calcitriol, seocalcitol, and medium-chain triglyceride on a canine transitional cell carcinoma cell line

    DEFF Research Database (Denmark)

    Kaewsakhorn, T.; Kisseberth, W.C.; Capen, C.C.

    2005-01-01

    Background: Transitional cell carcinoma (TCC) in dogs is associated with high morbidity and mortality. Calcitriol and its analog seocalcitol, combined with medium-chain triglyceride (MCT), have potential for the treatment of this disease. Materials and Methods: TCC cells were treated with calcitr...

  20. Biosynthesis of medium chain length alkanes for bio-aviation fuel by metabolic engineered Escherichia coli.

    Science.gov (United States)

    Wang, Meng; Nie, Kaili; Cao, Hao; Xu, Haijun; Fang, Yunming; Tan, Tianwei; Baeyens, Jan; Liu, Luo

    2017-09-01

    The aim of this work was to study the synthesis of medium-chain length alkanes (MCLA), as bio-aviation product. To control the chain length of alkanes and increase the production of MCLA, Escherichia coli cells were engineered by incorporating (i) a chain length specific thioesterase from Umbellularia californica (UC), (ii) a plant origin acyl carrier protein (ACP) gene and (iii) the whole fatty acid synthesis system (FASs) from Jatropha curcas (JC). The genetic combination was designed to control the product spectrum towards optimum MCLA. Decanoic, lauric and myristic acid were produced at concentrations of 0.011, 0.093 and 1.657mg/g, respectively. The concentration of final products nonane, undecane and tridecane were 0.00062mg/g, 0.0052mg/g, and 0.249mg/g respectively. Thioesterase from UC controlled the fatty acid chain length in a range of 10-14 carbons and the ACP gene with whole FASs from JC significantly increased the production of MCLA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effectiveness of Medium Chain Triglyceride Ketogenic Diet in Thai Children with Intractable Epilepsy.

    Science.gov (United States)

    Chomtho, Krisnachai; Suteerojntrakool, Orapa; Chomtho, Sirinuch

    2016-02-01

    To determine the efficacy, side effects and feasibility of Medium chain triglyceride (MCT) ketogenic diet (KD) in Thai children with intractable epilepsy. Children with intractable epilepsy were recruited. Baseline seizure frequency was recorded over 4 weeks before starting MCT KD. Average seizure frequency was assessed at 1 month and 3 months, compared to the baseline using Wilcoxon Signed Rank Test. Side effects and feasibility were also assessed by blood tests and an interview. Sixteen subjects were recruited with mean seizure frequency of 0.35-52.5 per day. After treatment, there was a significant reduction in seizure frequency, ranging from 12% to 100% (p = 0.002 at 1 month, and 0.001 at 3 months). 64.3% of the subjects achieved more than 50% seizure reduction at 3 months and 28.6% of the patients were seizure-free. Common adverse effects were initial weight loss (37.5%) and nausea (25%). 87.5% of subjects and parents were satisfied with the MCT KD with 2 cases dropping-out due to diarrhea and non-compliance. MCT ketogenic diet is effective and feasible in Thai children with intractable epilepsy. Despite modification against Asian culinary culture, the tolerability and maintenance rate was still satisfactory. A larger study is required.

  2. Ketosis resistance in fibrocalculous pancreatic diabetes: II. Hepatic ketogenesis after oral medium-chain triglycerides.

    Science.gov (United States)

    Yajnik, C S; Sardesai, B S; Bhat, D S; Naik, S S; Raut, K N; Shelgikar, K M; Orskov, H; Alberti, K G; Hockaday, T D

    1997-01-01

    A majority of patients with fibrocalculous pancreatic diabetes (FCPD) do not become ketotic even in adverse conditions. It is not clear whether this ketosis resistance is due to reduced fatty acid release from adipose tissue or to impaired hepatic ketogenesis. We tested hepatic ketogenesis in FCPD patients using a ketogenic challenge of oral medium-chain triglycerides (MCTs) and compared it with that in matched insulin-dependent diabetes mellitus (IDDM) patients and healthy controls. After oral MCTs, FCPD patients showed only a mild increase in blood 3-hydroxybutyrate (3-HB) concentrations (median: fasting, 0.13 mmol/L; peak, 0.52) compared with IDDM patients (fasting, 0.44; peak, 3.39) and controls (fasting, 0.04; peak, 0.75). Plasma nonesterified fatty acid (NEFA) concentrations were comparable in the two diabetic groups (FCPD: fasting, 0.50 mmol/L; peak, 0.79; IDDM: fasting, 0.91; peak, 1.04). Plasma C-peptide concentrations were low and comparable in the two diabetic groups. Plasma glucagon concentrations were higher in IDDM patients in the fasting state, but declined to levels comparable to those in FCPD patients after oral MCTs. Plasma carnitine concentrations were comparable in the two groups of patients. It is concluded that the failure to stimulate ketogenesis under these conditions could be partly due to inhibition of a step beyond fatty acid entry into the mitochondria.

  3. Production of medium chain fatty acid rich mustard oil using packed bed bioreactor.

    Science.gov (United States)

    Sengupta, Avery; Roy, Susmita; Mukherjee, Sohini; Ghosh, Mahua

    2015-01-01

    A comparative study was done on the production of different medium chain fatty acid (MCFA) rich mustard oil using a stirred tank batchreactor (STBR) and packed bed bio reactor (PBBR) using three commercially available immobilised lipases viz. Thermomyces lanuginosus, Candida antarctica and Rhizomucor meihe. Three different MCFAs capric, caprylic and lauric acids were incorporated in the mustard oil. Reaction parameters, such as substrate molar ratio, reaction temperature and enzyme concentration were standardized in the STBR and maintained in the PBBR. To provide equal time of residence between the substrate and enzyme in both the reactors for the same amount of substrates, the substrate flow rate in the PBBR was maintainedat 0.27 ml/min. Gas liquid chromatography was used to monitor the incorporation of MCFA in mustard oil. The study showed that the PBBR was more efficient than the STBR in the synthesis of structured lipids with less migration of acyl groups. The physico-chemical parameters of the product along with fatty acid composition in all positions and sn-2 positions were also determined.

  4. Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids

    Science.gov (United States)

    Reynolds, Kyle B.; Taylor, Matthew C.; Zhou, Xue-Rong; Vanhercke, Thomas; Wood, Craig C.; Blanchard, Christopher L.; Singh, Surinder P.; Petrie, James R.

    2015-01-01

    Various research groups are investigating the production of oil in non-seed biomass such as leaves. Recently, high levels of oil accumulation have been achieved in plant biomass using a combination of biotechnological approaches which also resulted in significant changes to the fatty acid composition of the leaf oil. In this study, we were interested to determine whether medium-chain fatty acids (MCFA) could be accumulated in leaf oil. MCFA are an ideal feedstock for biodiesel and a range of oleochemical products including lubricants, coatings, and detergents. In this study, we explore the synthesis, accumulation, and glycerolipid head-group distribution of MCFA in leaves of Nicotiana benthamiana after transient transgenic expression of C12:0-, C14:0-, and C16:0-ACP thioesterase genes. We demonstrate that the production of these MCFA in leaf is increased by the co-expression of the WRINKLED1 (WRI1) transcription factor, with the lysophosphatidic acid acyltransferase (LPAAT) from Cocos nucifera being required for the assembly of tri-MCFA TAG species. We also demonstrate that the newly-produced MCFA are incorporated into the triacylglycerol of leaves in which WRI1 + diacylglycerol acyltransferase1 (DGAT1) genes are co-expressed for increased oil accumulation. PMID:25852716

  5. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Wu, Hui; San, Ka-Yiu

    2014-11-01

    Free fatty acids (FFAs) can be used as precursors for the production of biofuels or chemicals. Different composition of FFAs will be useful for further modification of the biofuel/biochemical quality. Microbial biosynthesis of even chain FFAs can be achieved by introducing an acyl-acyl carrier protein thioesterase gene into E. coli. In this study, odd straight medium chain FFAs production was investigated by using metabolic engineered E. coli carrying acyl-ACP thioesterase (TE, Ricinus communis), propionyl-CoA synthase (Salmonella enterica), and β-ketoacyl-acyl carrier protein synthase III (four different sources) with supplement of extracellular propionate. By using these metabolically engineered E. coli, significant quantity of C13 and C15 odd straight-chain FFAs could be produced from glucose and propionate. The highest concentration of total odd straight chain FFAs attained was 1205 mg/L by the strain HWK201 (pXZ18, pBHE2), and 85% of the odd straight chain FFAs was C15. However, the highest percentage of odd straight chain FFAs was achieved by the strain HWK201 (pXZ18, pBHE3) of 83.2% at 48 h. This strategy was also applied successfully in strains carrying different TE, such as the medium length acyl-ACP thioesterase gene from Umbellularia californica. C11 and C13 became the major odd straight-chain FFAs. © 2014 Wiley Periodicals, Inc.

  6. The effect of massage with medium-chain triglyceride oil on weight gain in premature neonates.

    Directory of Open Access Journals (Sweden)

    Reza Saeadi

    2015-02-01

    Full Text Available Prematurity and poor weight gaining are important causes for neonatal hospitalization. The present study aimed to investigate the role of medium-chain triglyceride (MCT oil via massage therapy as a supplementary nutritional method on the weight gain of Neonatal Intensive Care Units (NICU-hospitalized neonates. This randomized clinical trial performed among 121 stable premature neonates hospitalized in the NICU of Qaem Educational Hospital, Mashhad, Iran. They were randomly divided into three groups: oil-massage, massage alone and control groups. These groups were compared on the basis of weight gain during a one-week interval. The three groups were matched for sex, mean gestational age, birth weight, head circumference, delivery, and feeding type (P>0.05. The mean weight gain on the 7th day in the oil massage group was 105±1.3gr and 52±0.1gr in the massage group; whereas 54±1.3gr weight loss was observed in the control group. Significant differences were observed between the oil-massage group and the other two groups, respectively (P=0.002 and P=0.000. The findings of this study suggest that transcutaneous feeding with MCT oil massage therapy in premature neonates can result in accelerated weight gain in this age group with no risk of NEC.

  7. Effects of medium-chain triacylglycerols on Maillard reaction in bread baking.

    Science.gov (United States)

    Toyosaki, Toshiyuki

    2017-12-11

    To investigate the relationship between the fatty acid composition of medium-chain triacylglycerols (MCTs) and the Maillard reaction induced during bread baking, a comparison with various fatty acids was conducted. Saturated fatty acids had a remarkable inhibitory effect on the amount of advanced glycation end products (AGEs) generated from the Maillard reaction in bread baking compared to unsaturated fatty acids. The amount of AGEs produced by each fatty acid (mg kg -1 ) was as follows: C18:0, 18.7; C12:0, 35.2; C16:0, 21.4; C18:0, 38.2; C18:1, 68.7; C18:2, 80.1; C20:4, 80.8; C22:4, 89.8. Saturated fatty acids were possibly involved in the Maillard reaction and, as a result, acted to inhibit it. In the case of unsaturated fatty acids, amounts of AGEs during the Maillard reaction in baking tended to increase as the degree of unsaturation increased. In other words, there was a positive correlation between the degree of unsaturation and the amount of AGEs. It was also confirmed that the air pore distribution in baked bread was closely related to AGEs. These results led us to conclude that the fatty acid composition of the added lipids also influences properties that determine the tastiness of bread. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Long- and medium-chain triglycerides during parenteral nutrition in critically ill patients.

    Science.gov (United States)

    Delafosse, B; Viale, J P; Pachiaudi, C; Normand, S; Goudable, J; Bouffard, Y; Annat, G; Bertrand, O

    1997-04-01

    Due to their special metabolic pathway, medium-chain triglycerides (MCT) have been claimed to be oxidized more extensively, compared with long-chain triglycerides (LCT), when administered as a parenteral nutritional support. This enhanced lipid oxidation rate of MCT emulsions could be particularly disclosed in hyperglycemic and hyperinsulinemic conditions. In an attempt to further elucidate this question, we measured substrate oxidation rates in critically ill patients liable to experience such metabolic conditions, that is to say postoperative patients after esophageal resection receiving 1.5 times their measured energy expenditure (n = 12) or after liver transplantation (n = 8). These patients received either LCT or MCT-LCT emulsions. The metabolic measurements were performed simultaneously by two methods, namely indirect calorimetry and isotopic methods based on natural abundance of nutrients. Although both groups of patients were hyperglycemic and hyperinsulinemic, the measured carbohydrate and lipid oxidation rates were not different with whatever type of lipid was administered. The MCT-LCT emulsions did not offer clear-cut advantages over LCT emulsions in critically ill patients when lipid energetic fate was considered.

  9. The safety of Lipistart, a medium-chain triglyceride based formula, in the dietary treatment of long-chain fatty acid disorders: a phase I study.

    Science.gov (United States)

    MacDonald, Anita; Webster, Rachel; Whitlock, Matthew; Gerrard, Adam; Daly, Anne; Preece, Mary Anne; Evans, Sharon; Ashmore, Catherine; Chakrapani, Anupam; Vijay, Suresh; Santra, Saikat

    2018-02-09

    Children with long-chain fatty acid β-oxidation disorders (LCFAOD) presenting with clinical symptoms are treated with a specialist infant formula, with medium chain triglyceride (MCT) mainly replacing long chain triglyceride (LCT). It is essential that the safety and efficacy of any new specialist formula designed for LCFAOD be tested in infants and children. In an open-label, 21-day, phase I trial, we studied the safety of a new MCT-based formula (feed 1) in six well-controlled children (three male), aged 7-13 years (median 9 years) with LCFAOD (very long chain acyl CoA dehydrogenase deficiency [VLCADD], n=2; long chain 3-hydroxyacyl CoA dehydrogenase deficiency [LCHADD], n=2; carnitine acyl carnitine translocase deficiency [CACTD], n=2). Feed 1 (Lipistart; Vitaflo) contained 30% energy from MCT, 7.5% LCT and 3% linoleic acid and it was compared with a conventional MCT feed (Monogen; Nutricia) (feed 2) containing 17% energy from MCT, 3% LCT and 1.1% linoleic acid. Subjects consumed feed 2 for 7 days then feed 1 for 7 days and finally resumed feed 2 for 7 days. Vital signs, blood biochemistry, ECG, weight, height, food/feed intake and symptoms were monitored. Five subjects completed the study. Their median daily volume of both feeds was 720 mL (range 500-1900 mL/day). Feed 1 was associated with minimal changes in tolerance, free fatty acids (FFA), acylcarnitines, 3-hydroxybutyrate (3-HB), creatine kinase (CK), blood glucose, liver enzymes and no change in an electrocardiogram (ECG). No child complained of muscle pain or symptoms associated with LCFAOD on either feed. This is the first safety trial reported of an MCT formula specifically designed for infants and children with LCFAOD. In this short-term study, it appeared safe and well tolerated in this challenging group.

  10. Treatment with medium chain fatty acids milk of CD36-deficient preschool children.

    Science.gov (United States)

    Nagasaka, Hironori; Hirano, Ken-Ichi; Yorifuji, Tohru; Komatsu, Haruki; Takatani, Tomonozumi; Morioka, Ichiro; Hirayama, Satoshi; Miida, Takashi

    2018-06-01

    CD36 deficiency is characterized by limited cellular long chain fatty acid uptake in the skeletal and cardiac muscles and often causes energy crisis in these muscles. However, suitable treatment for CD36 deficiency remains to be established. The aim of this study was to evaluate the clinical and metabolic effects of medium chain triacylglycerols (MCTs) in two CD36-deficient preschool children who often developed fasting hypoglycemia and exercise-induced myalgia. Fasting blood glucose, total ketone bodies, and free fatty acids were examined and compared for usual supper diets and for diets with replacement of one component with 2 g/kg of 9% MCT-containing milk (MCT milk). Changes in serum creatine kinase and alanine aminotransferase levels, resulting from replacement of glucose water intake with 1 g/kg of MCT milk and determined by using bicycle pedaling tasks, were examined and compared. Hypoglycemic and/or myalgia episodes in daily life were also investigated. Biochemically, participants' blood glucose and total ketone bodies levels after overnight fasting substantially increased after dietary suppers containing MCT milk. Increases in serum creatine kinase and alanine aminotransferase levels resulting from the bicycle pedaling task were suppressed by MCT milk. Hypoglycemia leading to unconsciousness and tachycardia before breakfast decreased after introduction of dietary suppers containing MCT milk. Occurrence of myalgia in the lower limbs also decreased after intakes of MCT milk before long and/or strenuous exercising. Our results suggest that MCTs can prevent fasting hypoglycemia and exercise-induced myalgia in CD36-deficient young children. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.

    Directory of Open Access Journals (Sweden)

    Zhaohui Hu

    Full Text Available With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt. was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0 and myristate (C14:0 were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0, from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production.

  12. Coconut oil has less satiating properties than medium chain triglyceride oil.

    Science.gov (United States)

    Kinsella, R; Maher, T; Clegg, M E

    2017-10-01

    It is well established that the consumption of medium-chain triglycerides (MCT) can increase satiety and reduce food intake. Many media articles promote the use of coconut oil for weight loss advocating similar health benefits to that of MCT. The aim of this study was to examine the effect of MCT oil compared to coconut oil and control oil on food intake and satiety. Following an overnight fast, participants consumed a test breakfast smoothie containing 205kcal of either (i) MCT oil (ii) coconut oil or (iii) vegetable oil (control) on three separate test days. Participants recorded appetite ratings on visual analogue scales and were presented with an ad libitum lunch meal of preselected sandwiches 180min after consumption of the breakfast. The results showed a significant difference in energy and macronutrient intakes at the ad libitum meal between the three oils with the MCT oil reducing food intake compared to the coconut and control oil. Differences in food intake throughout the day were found for energy and fat, with the control having increased food intake compared to the MCT and coconut. The MCT also increased fullness over the three hours after breakfast compared to the control and coconut oils. The coconut oil was also reported as being less palatable than the MCT oil. The results of this study confirm the differences that exist between MCT and coconut oil such that coconut oil cannot be promoted as having similar effects to MCT oil on food intake and satiety. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  13. Inhibition of gastrin-stimulated gastric acid secretion by medium-chain triglycerides and long-chain triglycerides in healthy young men.

    NARCIS (Netherlands)

    Maas, M.I.M.; Hopman, W.P.M.; Katan, M.B.; Jansen, J.B.M.J.

    1996-01-01

    Long-chain triglycerides inhibit gastric acid secretion, but the effect of medium-chain triglycerides in humans is unknown. We compared the effects of intraduodenally perfused saline, medium-chain and long-chain triglycerides on gastrin-stimulated gastric acid secretion and cholecystokinin release.

  14. Metabolic Modulation by Medium-Chain Triglycerides Reduces Oxidative Stress and Ameliorates CD36-Mediated Cardiac Remodeling in Spontaneously Hypertensive Rat in the Initial and Established Stages of Hypertrophy.

    Science.gov (United States)

    Saifudeen, Ismael; Subhadra, Lakshmi; Konnottil, Remani; Nair, R Renuka

    2017-03-01

    Left ventricular hypertrophy (LVH) is characterized by a decrease in oxidation of long-chain fatty acids, possibly mediated by reduced expression of the cell-surface protein cluster of differentiation 36 (CD36). Spontaneously hypertensive rats (SHRs) were therefore supplemented with medium-chain triglycerides (MCT), a substrate that bypasses CD36, based on the assumption that the metabolic modulation will ameliorate ventricular remodeling. The diet of 2-month-old and 6-month-old SHRs was supplemented with 5% MCT (Tricaprylin), for 4 months. Metabolic modulation was assessed by mRNA expression of peroxisome proliferator-activated receptor α and medium-chain acyl-CoA dehydrogenase. Blood pressure was measured noninvasively. LVH was assessed with the use of hypertrophy index, cardiomyocyte cross-sectional area, mRNA expression of B-type natriuretic peptide, cardiac fibrosis, and calcineurin-A levels. Oxidative stress indicators (cardiac malondialdehyde, protein carbonyl, and 3-nitrotyrosine levels), myocardial energy level (ATP, phosphocreatine), and lipid profile were determined. Supplementation of MCT stimulated fatty acid oxidation in animals of both age groups, reduced hypertrophy and oxidative stress along with the maintenance of energy level. Blood pressure, body weight, and lipid profile were unaffected by the treatment. The results indicate that modulation of myocardial fatty acid metabolism by MCT prevents progressive cardiac remodeling in SHRs, possibly by maintenance of energy level and decrease in oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Minor amounts of plasma medium-chain fatty acids and no improved time trial performance after consuming lipids

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Nybo, L.; Xu, Xuebing

    2003-01-01

    :0 was detected in the plasma lipid classes, but the amount of phospholipid fatty acids was significantly higher after CHO+MLM compared with CHO intake. The lacking time trial improvement after intake of medium-chain fatty acids might be due to no available 8:0 in the systemic circulation. A higher level......Medium-chain triacylglycerols (MCT) have a potential glycogen-saving effect during exercise due to rapid hydrolysis and oxidation. However, studies comparing intake of carbohydrates (CHO) plus 80-90 g MCT with intake of CHO alone have revealed different results. The present study tested performance......% of maximum 02 uptake during which they ingested CHO or CHO plus specific structured triacylglycerols. Immediately after the constant-load cycling, the subjects performed a time trial of similar to50-min duration. Breath and blood samples were obtained regularly during the experiment. Fatty acid composition...

  16. Enhancement of medium-chain-length polyhydroxyalkanoates biosynthesis from glucose by metabolic engineering in Pseudomonas mendocina.

    Science.gov (United States)

    Wang, Yuanyuan; Zhao, Fengjie; Fan, Xu; Wang, Shufang; Song, Cunjiang

    2016-02-01

    To enhance the biosynthesis of medium-chain-length polyhydroxyalkanoates (PHAMCL) from glucose in Pseudomonas mendocina NK-01, metabolic engineering strategies were used to block or enhance related pathways. Pseudomonas mendocina NK-01 produces PHAMCL from glucose. Besides the alginate oligosaccharide biosynthetic pathway proved by our previous study, UDP-D-glucose and dTDP-L-rhamnose biosynthetic pathways were identified. These might compete for glucose with the PHAMCL biosynthesis. First, the alg operon, galU and rmlC gene were deleted one by one, resulting in NK-U-1(∆alg), NK-U-2 (∆alg∆galU), NK-U-3(alg∆galU∆rmlC). After fermentation for 36 h, the cell dry weight (CDW) and PHAMCL production of these strains were determined. Compared with NK-U: 1) NK-U-1 produced elevated CDW (from 3.19 ± 0.16 to 3.5 ± 0.11 g/l) and equal PHAMCL (from 0.78 ± 0.06 to 0.79 ± 0.07 g/l); 2) NK-U-2 produced more CDW (from 3.19 ± 0.16 to 3.55 ± 0.23 g/l) and PHAMCL (from 0.78 ± 0.06 to 1.05 ± 0.07 g/l); 3) CDW and PHAMCL dramatically decreased in NK-U-3 (1.53 ± 0.21 and 0.41 ± 0.09 g/l, respectively). Additionally, the phaG gene was overexpressed in strain NK-U-2. Although CDW of NK-U-2/phaG decreased to 1.29 ± 0.2 g/l, PHA titer (%CDW) significantly increased from 24.5 % up to 51.2 %. The PHAMCL biosynthetic pathway was enhanced by blocking branched metabolic pathways in combination with overexpressing phaG gene.

  17. Medium-chain chlorinated paraffins (MCCPs): a review of bioaccumulation potential in the aquatic environment.

    Science.gov (United States)

    Thompson, Roy; Vaughan, Martin

    2014-01-01

    Chlorinated paraffins (CPs) are high molecular weight organochlorine compounds that have been used in a variety of industrial applications for many years. Medium-chain chlorinated paraffins (MCCPs) (CAS 85535-85-9; Alkanes, C14-17 , chloro) are currently under investigation as potential persistent bioaccumulative toxic (PBT) compounds. In this article, the bioaccumulation potential of MCCPs is assessed using a tiered framework proposed after a recent Society of Environmental Toxicology and Chemistry (SETAC) Pellston Workshop in 2008. The framework proposes the use of physicochemical properties and modeling assessment, bioconcentration/bioaccumulation (BCF/BAF) assessment, biomagnification (BMF) assessment, and trophic magnification factor (TMF) assessment. It is hoped that use of this framework could harmonize and improve the efficiency and effectiveness of the chemical substance evaluation screening process for PBT properties. When applied to MCCPs, the following conclusions were made: empirical physiochemical data is available negating the use of models; laboratory BCFs range from 1000 to 15 000 (growth-corrected lipid normalized values) for 2 MCCP structures; field BAFs were an order of magnitude higher than the trigger criterion for "B status possible"; although results may not meet acceptance criteria for field studies, laboratory-derived BMFs for a number of C14-17 chlorinated alkanes were less than the trigger value of 1 (based on whole-body concentrations) whereas field-derived BMFs were less than 1 (based on lipid corrected values [generally used for field data] excluding one measure for sculpin, [Cottus cognatus]-Diporeia that was based on only one detectable sample); and finally, TMFs were less than the trigger criterion value of 1, which are considered the most convincing evidence for bioaccumulative properties of a compound and the "Gold Standard" measure of bioaccumulation. This article also discusses the uncertainties surrounding the published data

  18. Lipolysis of natural long chain and synthetic medium chain galactolipids by pancreatic lipase-related protein 2.

    Science.gov (United States)

    Amara, Sawsan; Barouh, Nathalie; Lecomte, Jérôme; Lafont, Dominique; Robert, Sylvie; Villeneuve, Pierre; De Caro, Alain; Carrière, Frédéric

    2010-04-01

    Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the most abundant lipids in nature, mainly as important components of plant leaves and chloroplast membranes. Pancreatic lipase-related protein 2 (PLRP2) was previously found to express galactolipase activity, and it is assumed to be the main enzyme involved in the digestion of these common vegetable lipids in the gastrointestinal tract. Most of the previous in vitro studies were however performed with medium chain synthetic galactolipids as substrates. It was shown here that recombinant guinea pig (Cavia porcellus) as well as human PLRP2 hydrolyzed at high rates natural DGDG and MGDG extracted from spinach leaves. Their specific activities were estimated by combining the pH-stat technique, thin layer chromatography coupled to scanning densitometry and gas chromatography. The optimum assay conditions for hydrolysis of these natural long chain galactolipids were investigated and the optimum bile salt to substrate ratio was found to be different from that established with synthetic medium chains MGDG and DGDG. Nevertheless the length of acyl chains and the nature of the galactosyl polar head of the galactolipid did not have major effects on the specific activities of PLRP2, which were found to be very high on both medium chain [1786+/-100 to 5420+/-85U/mg] and long chain [1756+/-208 to 4167+/-167U/mg] galactolipids. Fatty acid composition analysis of natural MGDG, DGDG and their lipolysis products revealed that PLRP2 only hydrolyzed one ester bond at the sn-1 position of galactolipids. PLRP2 might be used to produce lipid and free fatty acid fractions enriched in either 16:3 n-3 or 18:3 n-3 fatty acids, both found at high levels in galactolipids. 2010 Elsevier B.V. All rights reserved.

  19. Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder.

    Science.gov (United States)

    van der Walle, G A; Buisman, G J; Weusthuis, R A; Eggink, G

    1999-01-01

    Unsaturated medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) produced by Pseudomonas putida from linseed oil fatty acids (LOFA) and tall oil fatty acids (TOFA), were used as the polymer binder in the formulation of high solid alkyd-like paints. The relatively high concentration of unsaturated alkyl side chains incorporated into the PHA resins resulted in oxidative drying PHA paints having excellent coating properties. The homogeneously pigmented PHA coatings yielded high-gloss, smooth and strong films upon curing and showed an excellent flexibility, a good adhesion to different substrates, cohesive film properties and resistance to chipping.

  20. Efficacious Intestinal Permeation Enhancement Induced by the Sodium Salt of 10-undecylenic Acid, A Medium Chain Fatty Acid Derivative

    OpenAIRE

    Brayden, David J.; Walsh, Edwin

    2014-01-01

    10-undecylenic acid (UA) is an OTC antifungal therapy and a nutritional supplement. It is an unsaturated medium chain fatty acid (MCFA) derivative, so our hypothesis was that its 11-mer sodium salt, uC11, would improve intestinal permeation similar to the established enhancer, sodium caprate (C10), but without the toxicity of the parent saturated MCFA, decylenic acid (C11). MTT assay and high-content screening (HCS) confirmed a cytotoxicity ranking in Caco-2 cells: C11 > C10 = uC11. Five to t...

  1. Depletion of Arabidopsis ACYL-COA-BINDING PROTEIN3 Affects Fatty Acid Composition in the Phloem

    Directory of Open Access Journals (Sweden)

    Tai-Hua Hu

    2018-01-01

    Full Text Available Oxylipins are crucial components in plant wound responses that are mobilised via the plant vasculature. Previous studies have shown that the overexpression of an Arabidopsis acyl-CoA-binding protein, AtACBP3, led to an accumulation of oxylipin-containing galactolipids, and AtACBP3pro::BETA-GLUCURONIDASE (GUS was expressed in the phloem of transgenic Arabidopsis. To investigate the role of AtACBP3 in the phloem, reverse transcription-polymerase chain reaction and western blot analysis of phloem exudates from the acbp3 mutant and wild type revealed that the AtACBP3 protein, but not its mRNA, was detected in the phloem sap. Furthermore, micrografting demonstrated that AtACBP3 expressed from the 35S promoter was translocated from shoot to root. Subsequently, AtACBP3 was localised to the companion cells, sieve elements and the apoplastic space of phloem tissue by immunogold electron microscopy using anti-AtACBP3 antibodies. AtACBP3pro::GUS was induced locally in Arabidopsis leaves upon wounding, and the expression of wound-responsive jasmonic acid marker genes (JASMONATE ZIM-DOMAIN10, VEGETATIVE STORAGE PROTEIN2, and LIPOXYGENASE2 increased more significantly in both locally wounded and systemic leaves of the wild type in comparison to acbp3 and AtACBP3-RNAi. Oxylipin-related fatty acid (FA (C18:2-FA, C18:3-FA and methyl jasmonate content was observed to be lower in acbp3 and AtACBP3-RNAi than wild-type phloem exudates using gas chromatography-mass spectrometry. Experiments using recombinant AtACBP3 in isothermal titration calorimetry analysis showed that medium- and long-chain acyl-CoA esters bind (His6-AtACBP3 with KD values in the micromolar range. Taken together, these results suggest that AtACBP3 is likely to be a phloem-mobile protein that affects the FA pool and jasmonate content in the phloem, possibly by its binding to acyl-CoA esters.

  2. The Peroxisomal Enzyme L-PBE Is Required to Prevent the Dietary Toxicity of Medium-Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2013-10-01

    Full Text Available Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe−/− mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.

  3. Absorption enhancement, mechanistic and toxicity studies of medium chain fatty acids, cyclodextrins and bile salts as peroral absorption enhancers.

    Science.gov (United States)

    Sharma, Pradeep; Varma, Manthena V S; Chawla, Harmander P S; Panchagnula, Ramesh

    2005-01-01

    The objective of the present investigation was to evaluate an oral 'drug delivery' approach, which involves co-administration of absorption enhancers (AEs). The representative low permeable hydrophilic (biopharmaceutic classification system (BCS) Class III) drugs used in the study comprised of cefotaxime sodium and ceftazidime pentahydrate, whereas low permeable lipophilic (BCS Class IV) drugs include cyclosporin A and lovastatin. AEs from three different chemical classes, namely, medium chain fatty acids (sodium caprylate and caprate), cyclodextrins (beta-cyclodextrin, hydroxypropyl beta-cyclodextrin) and bile salts (sodium cholate and deoxycholate) were evaluated for absorption enhancement efficacy, mechanism of action and toxicity using in vitro everted intestinal sac model. These AEs were found to enhance intestinal permeability of drugs from 2- to 27-fold. Light microscopy studies of intestinal sac incubated with AEs for 120 min revealed morphological changes in absorptive mucosa and rank order of toxicity were cyclodextrins>bile salts congruent with medium chain fatty acids. Fluorescence polarization studies indicated that brush bordered membrane vesicles labeled with lipophilic (DPH, 12AS) and hydrophilic dyes (ANS), when treated with AEs exhibited concentration and time dependent decrease in fluorescence polarization. Total protein released in presence of AEs was more than control but considerably less than EDTA (0.58% w/v), which is known to cause toxic release of proteins from cell. Overall, AEs were found to significantly enhance drug permeability by decreasing lipid membrane fluidity and/or interacting with hydrophilic domains of membrane, and has the potential to improve oral delivery.

  4. Production of Medium Chain Length Polyhydroxyalkanoates From Oleic Acid Using Pseudomonas putida PGA1 by Fed Batch Culture

    Directory of Open Access Journals (Sweden)

    Sidik Marsudi

    2010-10-01

    Full Text Available Bacterial polyhydroxyalkanoates (PHAs are a class of p0lymers currently receiving much attention because of their potential as renewable and biodegradable plastics. A wide variety of bacteria has been reported to produce PHAs including Pseudomonas strains. These strains are known as versatile medium chain length PHAs (PHAs-mcl producers using fatty acids as carbon source. Oleic acid was used to produce PHAs-mcl using Pseudomonas putida PGA 1 by continuous feeding of both nitrogen and carbon source, in a fed batch culture. During cell growth, PHAs also accumulated, indicating that PHA production in this organism is growth associated. Residual cell increased until the nitrogen source was depleted. At the end of fermentation, final cell concentration, PHA content, and roductivity were 30.2 g/L, 44.8 % of cell dry weight, and 0.188 g/l/h, respectively.

  5. PRODUCTION OF MEDIUM-CHAIN ACYLGLYCEROLS BY LIPASE ESTERIFICATION IN PACKED BED REACTOR: PROCESS OPTIMIZATION BY RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    ZANARIAH MOHD DOM

    2014-06-01

    Full Text Available Medium-chain acylglycerols (or glycerides are formed of mono-, di- and triacylglycerol classes. In this study, an alternative method to produce MCA from esterifying palm oil fatty acid distillate (PFAD with the presence of oil palm mesocarp lipase (OPML which is a plant-sourced lipase and PFAD is also cheap by-product is developed in a packed bed reactor. The production of medium-chain acylglycerols (MCA by lipase-catalysed esterification of palm oil fatty acid distillate with glycerol are optimize in order to determine the factors that have significant effects on the reaction condition and high yield of MCA. Response surface methodology (RSM was applied to optimize the reaction conditions. The reaction conditions, namely, the reaction time (30-240 min, enzyme load (0.5-1.5 kg, silica gel load (0.2-1.0 kg, and solvent amount (200-600 vol/wt. Reaction time, enzyme loading and solvent amount strongly effect MCA synthesis (p0.05 influence on MCA yield. Best-fitting models were successfully established for MCA yield (R 2 =0.9133. The optimum MCA yield were 75% from the predicted value and 75.4% from the experimental data for 6 kg enzyme loading, a reaction time of 135min and a solvent amount of 350 vol/wt at 65ºC reaction temperature. Verification of experimental results under optimized reaction conditions were conducted, and the results agreed well with the predicted range. Esterification products (mono-, di- and triacylglycerol from the PBR were identified using Thin Layer Chromatography method. The chromatograms showed the successful fractionation of esterified products in this alternative method of process esterification.

  6. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides.

    Directory of Open Access Journals (Sweden)

    Dongmei Wang

    Full Text Available Brain glucose hypometabolism is a common feature of Alzheimer's disease (AD. Previous studies have shown that cognition is improved by providing AD patients with an alternate energy source: ketones derived from either ketogenic diet or supplementation with medium chain triglycerides (MCT. Recently, data on the neuroprotective capacity of MCT-derived medium chain fatty acids (MCFA suggest 8-carbon and 10-carbon MCFA may have cognition-enhancing properties which are not related to ketone production. We investigated the effect of 8 week treatment with MCT8, MCT10 or sunflower oil supplementation (5% by weight of chow diet in 21 month old Wistar rats. Both MCT diets increased ketones plasma similarly compared to control diet, but MCT diets did not increase ketones in the brain. Treatment with MCT10, but not MCT8, significantly improved novel object recognition memory compared to control diet, while social recognition increased in both MCT groups. MCT8 and MCT10 diets decreased weight compared to control diet, where MCFA plasma levels were higher in MCT10 groups than in MCT8 groups. Both MCT diets increased IRS-1 (612 phosphorylation and decreased S6K phosphorylation (240/244 but only MCT10 increased Akt phosphorylation (473. MCT8 supplementation increased synaptophysin, but not PSD-95, in contrast MCT10 had no effect on either synaptic marker. Expression of Ube3a, which controls synaptic stability, was increased by both MCT diets. Cortex transcription via qPCR showed that immediate early genes related to synaptic plasticity (arc, plk3, junb, egr2, nr4a1 were downregulated by both MCT diets while MCT8 additionally down-regulated fosb and egr1 but upregulated grin1 and gba2. These results demonstrate that treatment of 8- and 10-carbon length MCTs in aged rats have slight differential effects on synaptic stability, protein synthesis and behavior that may be independent of brain ketone levels.

  7. The promiscuous enzyme medium-chain 3-keto-acyl-CoA thiolase triggers a vicious cycle in fatty-acid beta-oxidation.

    Directory of Open Access Journals (Sweden)

    Anne-Claire M F Martines

    2017-04-01

    Full Text Available Mitochondrial fatty-acid beta-oxidation (mFAO plays a central role in mammalian energy metabolism. Multiple severe diseases are associated with defects in this pathway. Its kinetic structure is characterized by a complex wiring of which the functional implications have hardly been explored. Repetitive cycles of reversible reactions, each cycle shortening the fatty acid by two carbon atoms, evoke competition between intermediates of different chain lengths for a common set of 'promiscuous' enzymes (enzymes with activity towards multiple substrates. In our validated kinetic model of the pathway, substrate overload causes a steep and detrimental flux decline. Here, we unravel the underlying mechanism and the role of enzyme promiscuity in it. Comparison of alternative model versions elucidated the role of promiscuity of individual enzymes. Promiscuity of the last enzyme of the pathway, medium-chain ketoacyl-CoA thiolase (MCKAT, was both necessary and sufficient to elicit the flux decline. Subsequently, Metabolic Control Analysis revealed that MCKAT had insufficient capacity to cope with high substrate influx. Next, we quantified the internal metabolic regulation, revealing a vicious cycle around MCKAT. Upon substrate overload, MCKAT's ketoacyl-CoA substrates started to accumulate. The unfavourable equilibrium constant of the preceding enzyme, medium/short-chain hydroxyacyl-CoA dehydrogenase, worked as an amplifier, leading to accumulation of upstream CoA esters, including acyl-CoA esters. These acyl-CoA esters are at the same time products of MCKAT and inhibited its already low activity further. Finally, the accumulation of CoA esters led to a sequestration of free CoA. CoA being a cofactor for MCKAT, its sequestration limited the MCKAT activity even further, thus completing the vicious cycle. Since CoA is also a substrate for distant enzymes, it efficiently communicated the 'traffic jam' at MCKAT to the entire pathway. This novel mechanism provides

  8. Fatty acid beta-oxidation in leukocytes from control subjects and medium-chain acyl-CoA dehydrogenase deficient patients

    NARCIS (Netherlands)

    Wanders, R. J.; IJlst, L.

    1992-01-01

    In recent years an increasing number of inherited diseases in man have been identified in which there is an impairment in mitochondrial fatty acid oxidation. Diagnosis is usually done by gas-chromatographic analysis of urine, which may give difficulties, since urinary abnormalities may only be

  9. Expression of wild-type and mutant medium-chain acyl-CoA dehydrogenase (MCAD) cDNA in eucaryotic cells

    DEFF Research Database (Denmark)

    Jensen, T G; Andresen, B S; Bross, P

    1992-01-01

    carrying this mutation has an impaired ability to form correct tetramers, leading to instability and subsequent degradation of the enzyme. This finding is discussed in relation to the results from expression of human MCAD in Escherichia coli, where preliminary results show that production of mutant MCAD...

  10. Engineering the Saccharomyces cerevisiae β-oxidation pathway to increase medium chain fatty acid production as potential biofuel.

    Science.gov (United States)

    Chen, Liwei; Zhang, Jianhua; Chen, Wei Ning

    2014-01-01

    Fatty acid-derived biofuels and biochemicals can be produced in microbes using β-oxidation pathway engineering. In this study, the β-oxidation pathway of Saccharomyces cerevisiae was engineered to accumulate a higher ratio of medium chain fatty acids (MCFAs) when cells were grown on fatty acid-rich feedstock. For this purpose, the haploid deletion strain Δpox1 was obtained, in which the sole acyl-CoA oxidase encoded by POX1 was deleted. Next, the POX2 gene from Yarrowia lipolytica, which encodes an acyl-CoA oxidase with a preference for long chain acyl-CoAs, was expressed in the Δpox1 strain. The resulting Δpox1 [pox2+] strain exhibited a growth defect because the β-oxidation pathway was blocked in peroxisomes. To unblock the β-oxidation pathway, the gene CROT, which encodes carnitine O-octanoyltransferase, was expressed in the Δpox1 [pox2+] strain to transport the accumulated medium chain acyl-coAs out of the peroxisomes. The obtained Δpox1 [pox2+, crot+] strain grew at a normal rate. The effect of these genetic modifications on fatty acid accumulation and profile was investigated when the strains were grown on oleic acids-containing medium. It was determined that the engineered strains Δpox1 [pox2+] and Δpox1 [pox2+, crot+] had increased fatty acid accumulation and an increased ratio of MCFAs. Compared to the wild-type (WT) strain, the total fatty acid production of the strains Δpox1 [pox2+] and Δpox1 [pox2+, crot+] were increased 29.5% and 15.6%, respectively. The intracellular level of MCFAs in Δpox1 [pox2+] and Δpox1 [pox2+, crot+] increased 2.26- and 1.87-fold compared to the WT strain, respectively. In addition, MCFAs in the culture medium increased 3.29-fold and 3.34-fold compared to the WT strain. These results suggested that fatty acids with an increased MCFAs ratio accumulate in the engineered strains with a modified β-oxidation pathway. Our approach exhibits great potential for transforming low value fatty acid-rich feedstock into high

  11. The Effects of Long-or Medium-Chain Fat Diets on Glucose Toleance and Myocellular Content of Lipid Intermediates in Rats

    NARCIS (Netherlands)

    Vogel-van den Bosch, de H.M.; Hoeks, J.; Timmers, S.; Houten, S.M.; Dijk, P.J.; Boon, W.P.C.; Beurden, van D.; Schaart, G.; Kersten, A.H.; Voshol, P.J.; Wanders, R.J.A.; Hesselink, M.K.; Schrauwen, P.

    2011-01-01

    Accumulation of triacylglycerols (TAGs) and acylcarnitines in skeletal muscle upon high-fat (HF) feeding is the resultant of fatty acid uptake and oxidation and is associated with insulin resistance. As medium-chain fatty acids (MCFAs) are preferentially ß-oxidized over long-chain fatty acids, we

  12. Effect of supplementing coconut or krabok oil, rich in medium-chain fatty acids on ruminal fermentation, protozoa and archaeal population of bulls

    NARCIS (Netherlands)

    Panyakaew, P.; Boon, N.; Goel, G.; Yuangklang, C.; Schonewille, J.T.; Hendriks, W.H.; Fievez, V.

    2013-01-01

    Medium-chain fatty acids (MCFA), for example, capric acid (C10:0), myristic (C14:0) and lauric (C12:0) acid, have been suggested to decrease rumen archaeal abundance and protozoal numbers. This study aimed to compare the effect of MCFA, either supplied through krabok (KO) or coconut (CO) oil, on

  13. Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas

    NARCIS (Netherlands)

    Diender, M.; Stams, A.J.M.; Machado de Sousa, D.Z.

    2016-01-01

    Background
    Synthesis gas, a mixture of CO, H2, and CO2, is a promising renewable feedstock for bio-based production of organic chemicals. Production of medium-chain fatty acids can be performed via chain elongation, utilizing acetate and ethanol as main substrates. Acetate and ethanol are main

  14. Designing and Creating a Synthetic Omega Oxidation Pathway inSaccharomyces cerevisiaeEnables Production of Medium-Chain α, ω-Dicarboxylic Acids.

    Science.gov (United States)

    Han, Li; Peng, Yanfeng; Zhang, Yuangyuan; Chen, Wujiu; Lin, Yuping; Wang, Qinhong

    2017-01-01

    Medium-chain (C8-C14) α, ω-dicarboxylic acids (α, ω-DCAs), which have numerous applications as raw materials for producing various commodities and polymers in chemical industry, are mainly produced from chemical or microbial conversion of petroleum-derived alkanes or plant-derived fatty acids at present. Recently, significant attention has been gained to microbial production of medium-chain α, ω-DCAs from simple renewable sugars. Here, we designed and created a synthetic omega oxidation pathway in Saccharomyces cerevisiae to produce C10 and C12 α, ω-DCAs from renewable sugars and fatty acids by introducing a heterogeneous cytochrome P450 CYP94C1 and cytochrome reductase ATR1. Furthermore, the deletion of fatty acyl-CoA synthetase genes FAA1 and FAA4 increased the production of medium-chain α, ω-DCAs from 4.690 ± 0.088 mg/L to 12.177 ± 0.420 mg/L and enabled the production of C14 and C16 α, ω-DCAs at low percentage. But blocking β-oxidation pathway by deleting fatty-acyl coenzyme A oxidase gene POX1 and overexpressing different thioesterase genes had no significant impact on the production and the composition of α, ω-dicarboxylic acids. Overall, our study indicated the potential of microbial production of medium-chain α, ω-DCAs from renewable feedstocks using engineered yeast.

  15. Second-generation functionalized medium-chain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications.

    Science.gov (United States)

    Tortajada, Marta; da Silva, Luiziana Ferreira; Prieto, María Auxiliadora

    2013-03-01

    Polyhydroxyalkanoates (PHAs) are biodegradable biocompatible polyesters, which accumulate as granules in the cytoplasm of many bacteria under unbalanced growth conditions. Medium-chain-length PHAs (mcl-PHAs), characterized by C6-C14 branched monomer chains and typically produced by Pseudomonas species, are promising thermoelastomers, as they can be further modified by introducing functional groups in the side chains. Functionalized PHAs are obtained either by feeding structurally related substrates processed through the beta-oxidation pathway, or using specific strains able to transform sugars or glycerol into unsaturated PHA by de novo fatty-acid biosynthesis. Functionalized mcl-PHAs provide modified mechanical and thermal properties, and consequently have new processing requirements and highly diverse potential applications in emergent fields such as biomedicine. However, process development and sample availability are limited due to the toxicity of some precursors and still low productivity, which hinder investigation. Conversely, improved mutant strains designed through systems biology approaches and cofeeding with low-cost substrates may contribute to the widespread application of these biopolymers. This review focuses on recent developments in the production of functionalized mcl-PHAs, placing particular emphasis on strain and bioprocess design for cost-effective production.

  16. Gut Microbiota and Metabolic Health: The Potential Beneficial Effects of a Medium Chain Triglyceride Diet in Obese Individuals

    Directory of Open Access Journals (Sweden)

    Sabri Ahmed Rial

    2016-05-01

    Full Text Available Obesity and associated metabolic complications, such as non-alcoholic fatty liver disease (NAFLD and type 2 diabetes (T2D, are in constant increase around the world. While most obese patients show several metabolic and biometric abnormalities and comorbidities, a subgroup of patients representing 3% to 57% of obese adults, depending on the diagnosis criteria, remains metabolically healthy. Among many other factors, the gut microbiota is now identified as a determining factor in the pathogenesis of metabolically unhealthy obese (MUHO individuals and in obesity-related diseases such as endotoxemia, intestinal and systemic inflammation, as well as insulin resistance. Interestingly, recent studies suggest that an optimal healthy-like gut microbiota structure may contribute to the metabolically healthy obese (MHO phenotype. Here, we describe how dietary medium chain triglycerides (MCT, previously found to promote lipid catabolism, energy expenditure and weight loss, can ameliorate metabolic health via their capacity to improve both intestinal ecosystem and permeability. MCT-enriched diets could therefore be used to manage metabolic diseases through modification of gut microbiota.

  17. Effects of medium-chain triglycerides on weight loss and body composition: a meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Mumme, Karen; Stonehouse, Welma

    2015-02-01

    Medium-chain triglycerides (MCTs) may result in negative energy balance and weight loss through increased energy expenditure and lipid oxidation. However, results from human intervention studies investigating the weight reducing potential of MCTs, have been mixed. To conduct a systematic review and meta-analysis of randomized controlled trials comparing the effects of MCTs, specifically C8:0 and C10:0, to long-chain triglycerides (LCTs) on weight loss and body composition in adults. Changes in blood lipid levels were secondary outcomes. Randomized controlled trials >3 weeks' duration conducted in healthy adults were identified searching Web of Knowledge, Discover, PubMed, Scopus, New Zealand Science, and Cochrane CENTRAL until March 2014 with no language restriction. Identified trials were assessed for bias. Mean differences were pooled and analyzed using inverse variance models with fixed effects. Heterogeneity between studies was calculated using I(2) statistic. An I(2)>50% or Pweight (-0.51 kg [95% CI-0.80 to -0.23 kg]; Preductions in body weight and composition without adversely affecting lipid profiles. However, further research is required by independent research groups using large, well-designed studies to confirm the efficacy of MCT and to determine the dosage needed for the management of a healthy body weight and composition. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  18. Medium-chain triglyceride supplementation exacerbates peritonitis-induced septic shock in rats: role on cell membrane remodeling.

    Science.gov (United States)

    Boisramé-Helms, Julie; Said, Amissi; Burban, Mélanie; Delabranche, Xavier; Stiel, Laure; Zobairi, Fatiha; Hasselmann, Michel; Schini-Kerth, Valérie; Toti, Florence; Meziani, Ferhat

    2014-12-01

    Lipid emulsions for parenteral nutrition interfere with immunity and may alter the cell plasma membrane and microparticle release, thus modulating their biological effects. Our aim was to evaluate the effect of two lipid emulsions for parenteral nutrition containing either a mixture of long- and medium-chain triglycerides (LCTs and MCTs) or LCTs only, to assess their role on microparticle release and acute inflammation during septic shock in rats. Septic rats (cecal ligation and puncture) and sham rats were infused with 5% dextrose or a lipid emulsion during 22 h. After 18 h, rats were resuscitated during 4 h and hemodynamic parameters monitored. Circulating microparticles and their phenotype were measured by prothrombinase assay; heart and aorta were collected for Western blotting and electron paramagnetic resonance measurements. No significant effect of lipid emulsions was observed in sham rats. In septic rats, norepinephrine requirements were increased in MCT/LCT-infused rats compared with 5% dextrose- or LCT-infused rats (2.7 ± 0.2 vs. 1.9 ± 0.8 and 1.2 ± 0.3 μg/kg per minute, respectively; P septic shock in rats induced deleterious effects with increased inflammation and cell activation, associated to vascular hyporeactivity. During septic shock, LCT supplementation seemed to be neutral compared with 5% dextrose infusion.

  19. Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships.

    Science.gov (United States)

    Batovska, Daniela I; Todorova, Iva T; Tsvetkova, Iva V; Najdenski, Hristo M

    2009-01-01

    The antibacterial activity of the medium chain fatty acids and their 1-monoglycerides was evaluated towards several Gram-positive strains belonging to the genera Staphylococcus, Corynebacterium, Bacillus, Listeria and Streptococcus. The 1-monoglycerides were more active than the fatty acids with monolaurin being the most active compound. Interesting effects were observed when the streptococcal strain Streptococcus pyogenes was used as a test microorganism. First, blocking of the hydroxyl groups of the glycerol moiety of monolaurin led to a compound with remarkable antibacterial activity (MIC, 3.9 microg/ml). Secondly, synergistic relationships were observed between monolaurin and monocaprin as well as between monolaurin and the poorly active lauric acid when their two component mixtures were examined. The mixtures in which one of the components was 2-fold more predominant than the other one were much more active than the pure components taken individually. Moreover, the presence of the components in ratio 1:1 was disadvantageous. Synergistic relationships were also found between monolaurin and monomyristin towards Staphylococcus aureus 209 when monomyristin was in the same quantity as monolaurin or in shortage.

  20. Insulin, glucose and beta-hydroxybutyrate responses to a medium-chain triglyceride-based sports supplement: A pilot study

    Directory of Open Access Journals (Sweden)

    Thomas R. Wood

    2017-03-01

    Full Text Available There is a current trend in endurance sports to move athletes towards a low-carbohydrate diet or use periods of low carbohydrate consumption to increase both health and performance. As a result, a market is developing for sports supplements to provide nutritional support during training and racing for athletes who follow a low-carbohydrate lifestyle. PHAT FIBRE (PF is a powdered sports supplement that includes medium-chain triglycerides suspended in a digestion-resistant carbohydrate and is tailored to the needs of low-carb athletes. Eleven healthy participants were administered 25 g of PF after an overnight fast. After 30 minutes, median blood glucose increased by 6 mg/dl from 94 mg/dl to 100 mg/dl (p = 0.002. At the same time points, median blood beta-hydroxybutyrate (BHB increased from 0.3 mmol/L to 0.5 mmol/L. The increase in BHB was significant (p = 0.02 after excluding one outlier who had elevated levels of fasting BHB. Insulin levels did not change significantly at any point during the study. In a single participant, a revised formulation of PF (PFv2 produced a 0.6 mmol/L increase in BHB with no effect on blood glucose. These data suggest that PF can provide a source of energy for the low-carb athlete by supporting ketone production without negatively impacting insulin or blood glucose levels.

  1. Effects of medium-chain fatty acids on performance, carcass characteristics, blood biochemical parameters and immune response in Japanese quail.

    Science.gov (United States)

    Saeidi, E; Shokrollahi, B; Karimi, K; Amiri-Andi, M

    2016-06-01

    This study had the aim of evaluating the effects of medium-chain fatty acids (MCFA) on performance, carcass characteristics, some blood parameters and antibody titre against sheep red blood cells (SRBC) in quail. A total of 240 quail chicks were allotted to 4 treatments consisting of respectively 0, 1, 2 and 4 g/kg dietary MCFA. There were no significant differences in body weight, feed intake and feed conversion ratio among treatments at different stages of the experiment. MCFAs had no significant effect on breast, thigh, liver, spleen and bursa of Fabricius weight ratios. However, the relative weight of abdominal fat significantly decreased in quail receiving 0.2 and 0.4 MCFA as compared to other treatments. Concentrations of low-density lipoprotein-cholesterol (LDL), triglycerides and total cholesterol were decreased and high-density lipoprotein (HDL)-cholesterol was increased in quail chicks receiving MCFA compared with control quail chicks. The concentrations of SRBC antibody were not statistically different among treatments. It is concluded that MCFA significantly decreased LDL, triglycerides, cholesterol and abdominal fat and increased HDL in quail chicks.

  2. Medium-chain triglycerides and conjugated linoleic acids in beverage form increase satiety and reduce food intake in humans.

    Science.gov (United States)

    Coleman, Hannah; Quinn, Paul; Clegg, Miriam E

    2016-06-01

    Both developed and developing countries are seeing increasing trends of obesity in people young and old. It is thought that satiety may play a role in the prevention of obesity by increasing satiety and reducing energy intake. We hypothesized that medium-chain triglycerides (MCT) would increase satiety and decrease food intake compared with conjugated linoleic acid (CLA) and a control oil. Nineteen healthy participants were tested on 3 separate occasions, where they consumed a beverage test breakfast containing (1) vegetable oil (control), (2) CLA, or (3) MCT. Participants self-requested an ad libitum sandwich buffet lunch. Time between meals, satiety from visual analog scales, energy intake at lunch, and intake for the rest of the day using weighed food diaries were measured. The results indicated that the time until a meal request was significantly different between the 3 meals (P=.016); however, there were no differences in intakes at the ad libitum lunch (P>.05). The CLA breakfast generated the greatest delay in meal time request. There was a difference between the control lipid compared with both the CLA and MCT for energy intake over the remainder of the test day and for total energy intake on the test day (P.05). Both CLA and MCT increased satiety and reduced energy intake, indicating a potential role in aiding the maintenance of energy balance. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effects of medium-chain triglycerides on gluconeogenesis and ureagenesis in weaned rats fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Chitose Sugiyama

    2015-12-01

    Full Text Available We explored the effects of Medium-chain triglycerides (MCT on gluconeogenesis and ureagenesis in the liver of weaned male rats fed high fat, carbohydrate-free diets. The rats of three experimental groups and control were fed for 10 days. The diets were high fat, carbohydrate-free diets consisting either of a corn oil or MCT, and high protein carbohydrate-free diet and a control (high carbohydrate diet. The hepatic glucose-6-phosphatase (G6Pase activity increased in the experimental groups. Despite the elevated G6Pase activity in these groups, hepatic activities of glutamic alanine transaminase (GAT, pyruvate carboxylase (PC and arginase differed among the experimental groups. The HF-corn oil rats showed elevation of PC activity, but no elevation of GAT activity, and the lowest arginase activity among the three groups. The HF-MCT diet-fed rats showed higher GAT and arginase activities than the HF-corn oil group. In the HP diet-fed rats, GAT and arginase activities enhanced, PC did not.

  4. Long-term effect of medium-chain triglyceride on hepatic enzymes catalyzing lipogenesis and cholesterogenesis in rats

    International Nuclear Information System (INIS)

    Takase, Sachiko; Morimoto, Ayami; Nakanishi, Mayumi; Muto, Yasutoshi.

    1977-01-01

    This study was conducted to investigate the long-term effect of dietary medium-chain triglyceride (MCT) as compared with that of corn oil feeding on lipid metabolism in rats. Both serum cholesterol and triglyceride levels in MCT-fed rats showed significant decrease during the experimental period of eight weeks, although liver cholesterol and triglyceride contents were not distinguishable between the two groups. Significant elevation of the activity of lipogenic enzymes, such as fatty acid synthetase (FAS) and malic enzyme (ME) of the liver, was observed in MCT-fed rats without any fat accumulation of the liver (fatty liver). The increase of lipogenic enzyme activity was accompanied by a significant reduction of essential fatty acids (EFA) such as 18:2 (ωsigma) and 20:4 (ωsigma) in total liver lipid. In contrast, hepatic β-hydroxy-β-methylglutaryl CoA(HMG-CoA) reductase activity was significantly decreased in MCT-fed rats, that would play an important role in achieving hypocholesterolemia. From these results obtained in a long-term experiment, it is concluded that exogenous MCT depresses the key enzyme catalyzing cholesterol synthesis with a concomitant elevation of lipogenic enzyme activity in the rat liver. (auth.)

  5. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica.

    Directory of Open Access Journals (Sweden)

    Laure Aymé

    Full Text Available Diacylglycerol acyltransferases (DGAT are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0. A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1 is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.

  6. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica

    Science.gov (United States)

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics. PMID:26581109

  7. Mellemkaedet acyl-CoA dehydrogenase (MCAD)-mangel

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V; Andresen, B S

    1992-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially fatal metabolic disease, which is characterized by non-ketotic hypoglycemia and lethargy. The disease manifests itself by periodic attacks in connection with infections and periods of fasting, or suddenly as unexpected child......-card constitute today a certain and specific diagnosis for the disease in 75% of all cases. In the remaining 25% the mutation analysis is supplemented with urine metabolite studies by gas chromatography/mass spectrometry, and with measurements of enzyme activities in cultured skin fibroblasts. The disease...

  8. Efficacious intestinal permeation enhancement induced by the sodium salt of 10-undecylenic acid, a medium chain fatty acid derivative.

    Science.gov (United States)

    Brayden, David J; Walsh, Edwin

    2014-09-01

    10-undecylenic acid (UA) is an OTC antifungal therapy and a nutritional supplement. It is an unsaturated medium chain fatty acid (MCFA) derivative, so our hypothesis was that its 11-mer sodium salt, uC11, would improve intestinal permeation similar to the established enhancer, sodium caprate (C10), but without the toxicity of the parent saturated MCFA, decylenic acid (C11). MTT assay and high-content screening (HCS) confirmed a cytotoxicity ranking in Caco-2 cells: C11 > C10 = uC11. Five to ten millimolars of the three agents reduced TEER and increased the Papp of [(14)C]-mannitol across Caco-2 monolayers and rat intestinal mucosae, a concentration that matched increases in plasma membrane permeability seen in HCS. Although C11 was the most efficacious enhancer in vitro, it damaged monolayers and tissue mucosae more than the other two agents at similar concentrations and exposure times and was therefore not pursued further. Rat jejunal and colonic in situ intestinal instillations of 100 mM C10 or uC11 with FITC-dextran 4000 (FD4) solutions yielded comparable regional enhancement ratios of ~10 and 30%, respectively, for each agent with acceptable tissue histology. Mini-tablets of uC11 and FD4 however delivered more FD4 compared to C10-FD-4 mini-tablets in both regions, as reflected by a statistically higher AUC, and with no evidence of membrane perturbation. The unsaturated bond in uC11 therefore confers a reduction in lipophilicity and cytotoxicity compared to C11, and the resulting permeation enhancement is on a par with or superior to that of C10, a key component of formulations in current phase II oral peptide clinical trials.

  9. Importance of nutritional status in recovery from acute cholecystitis: benefit from enteral nutrition supplementation including medium chain triglycerides.

    Science.gov (United States)

    Nomura, Yukinobu; Inui, Kazuo; Yoshino, Junji; Wakabayashi, Takao; Okushima, Kazumu; Kobayashi, Takashi; Miyoshi, Hironao; Nakamura, Yuta

    2007-09-01

    This study was undertaken to clarify the importance of nutritional status in patients with acute cholecystitis, and also evaluate whether they benefited from enteral nutrition supplementation, including medium-chain triglycerides (MCT), during the convalescent stage. Patients with acute cholecystitis admitted to our hospital between April 1994 and March 2002 were classified into a poor nutrition group (n=40; total serum proteinnutrition group (n=71; >5.0 g/dl). Patients with poor nutrition were significantly more elderly than those with fair nutrition, and had significantly higher serum C-reactive protein (CRP) concentrations. The two groups did not differ significantly with respect to other laboratory data, gender distribution, or medical treatment. We supplemented ordinary meals with enteral nutrition including MCT in 16 patients during the convalescent stage (MCT group). We compared their length of hospital stay and days required to recovery to pre-admission functional status for activities of daily living (ADL) with the same intervals in 16 patients without supplementation (non-MCT group) selected to match for age, gender, and fair or poor nutritional status from among 111 patients. Hospitalizations were significantly longer in the poor nutrition group (43.0+/-2.2 days) than in the fair nutrition group (27.0+/-8.2 days). Significantly more days were required to recover ADL status in the poor nutrition group (12.0+/-7.2 days) than in the fair group (9.4+/-5.2 days). Hospitalizations were significantly shorter in the MCT group (20.1+/-15 days) than in the non-MCT group (35.4+/-12.8 days). Significantly fewer days were required to recover ADL status in the MCT group (10.9+/-7 days) than in the non-MCT group (13.1+/-6.8 days). Administration of enteral nutrition including MCT during convalescence from acute cholecystitis thus appears to promote functional recovery shorten hospital stay.

  10. Medium chain acylcarnitines dominate the metabolite pattern in humans under moderate intensity exercise and support lipid oxidation.

    Directory of Open Access Journals (Sweden)

    Rainer Lehmann

    Full Text Available BACKGROUND: Exercise is an extreme physiological challenge for skeletal muscle energy metabolism and has notable health benefits. We aimed to identify and characterize metabolites, which are components of the regulatory network mediating the beneficial metabolic adaptation to exercise. METHODOLOGY AND PRINCIPAL FINDINGS: First, we investigated plasma from healthy human subjects who completed two independent running studies under moderate, predominantly aerobic conditions. Samples obtained prior to and immediately after running and then 3 and 24 h into the recovery phase were analyzed by a non-targeted (NT- metabolomics approach applying liquid chromatography-qTOF-mass spectrometry. Under these conditions medium and long chain acylcarnitines were found to be the most discriminant plasma biomarkers of moderately intense exercise. Immediately after a 60 min (at 93% V(IAT or a 120 min run (at 70% V(IAT a pronounced, transient increase dominated by octanoyl-, decanoyl-, and dodecanoyl-carnitine was observed. The release of acylcarnitines as intermediates of partial beta-oxidation was verified in skeletal muscle cell culture experiments by probing (13C-palmitate metabolism. Further investigations in primary human myotubes and mouse muscle tissue revealed that octanoyl-, decanoyl-, and dodecanoyl-carnitine were able to support the oxidation of palmitate, proving more effective than L-carnitine. CONCLUSIONS: Medium chain acylcarnitines were identified and characterized by a functional metabolomics approach as the dominating biomarkers during a moderately intense exercise bout possessing the power to support fat oxidation. This physiological production and efflux of acylcarnitines might exert beneficial biological functions in muscle tissue.

  11. Synthesis of Medium-Chain-Length Polyhydroxyalkanoate Homopolymers, Random Copolymers, and Block Copolymers by an Engineered Strain of Pseudomonas entomophila.

    Science.gov (United States)

    Wang, Ying; Chung, Ahleum; Chen, Guo-Qiang

    2017-04-01

    Medium-chain-length polyhydroxyalkanoates (mcl-PHAs), widely used in medical area, are commonly synthesized by Pseudomonas spp. This study tries to use β-oxidation pathways engineered P. entomophila to achieve single source of a series of mcl-monomers for microbial production of PHA homopolymers. The effort is proven successful for the first time to obtain a wide range of mcl-PHA homopolymers from engineered P. entomophila LAC23 grown on various fatty acids, respectively, ranging from poly(3-hydroxyheptanoate) to poly(3-hydroxytetradecanoate). Effects of a PHA monomer chain length on thermal and crystallization properties including the changes of T m , T g , and T d5% are investigated. Additionally, strain LAC23 is used to synthesize random copolymers of 3-hydroxyoctanoate (3HO) and 3-hydroxydodecanoate (3HDD) or 3-hydroxytetradecanoates, their compositions could be controlled by adjusting the ratios of two related fatty acids. Meanwhile, block copolymer P(3HO)-b-P(3HDD) is synthesized by the same strain. It is found for the first time that even- and odd number mcl-PHA homopolymers have different physical properties. When the gene of the PHA synthase in the engineered P. entomophila is replaced by phaC from Aeromonas hydrophila 4AK4, poly(3-hydroxybutyrate-co-30 mol%-3-hydroxyhexanoate) is synthesized. Therefore, P. entomophila can be used to synthesize the whole range of PHA (C7-C14) homopolymers, random- and block copolymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A randomised trial of a medium-chain TAG diet as treatment for dogs with idiopathic epilepsy.

    Science.gov (United States)

    Law, Tsz Hong; Davies, Emma S S; Pan, Yuanlong; Zanghi, Brian; Want, Elizabeth; Volk, Holger A

    2015-11-14

    Despite appropriate antiepileptic drug treatment, approximately one-third of humans and dogs with epilepsy continue experiencing seizures, emphasising the importance for new treatment strategies to improve the quality of life of people or dogs with epilepsy. A 6-month prospective, randomised, double-blinded, placebo-controlled cross-over dietary trial was designed to compare a ketogenic medium-chain TAG diet (MCTD) with a standardised placebo diet in chronically antiepileptic drug-treated dogs with idiopathic epilepsy. Dogs were fed either MCTD or placebo diet for 3 months followed by a subsequent respective switch of diet for a further 3 months. Seizure frequency, clinical and laboratory data were collected and evaluated for twenty-one dogs completing the study. Seizure frequency was significantly lower when dogs were fed the MCTD (2·31/month, 0-9·89/month) in comparison with the placebo diet (2·67/month, 0·33-22·92/month, P=0·020); three dogs achieved seizure freedom, seven additional dogs had ≥50 % reduction in seizure frequency, five had an overall dogs were fed the MCTD (1·63/month, 0-7·58/month) in comparison with the placebo diet (1·69/month, 0·33-13·82/month, P=0·022). Consumption of the MCTD also resulted in significant elevation of blood β-hydroxybutyrate concentrations in comparison with placebo diet (0·071 (sd 0·035) v. 0·053 (sd 0·028) mmol/l, P=0·028). There were no significant changes in serum concentrations of glucose (P=0·903), phenobarbital (P=0·422), potassium bromide (P=0·404) and weight (P=0·300) between diet groups. In conclusion, the data show antiepileptic properties associated with ketogenic diets and provide evidence for the efficacy of the MCTD used in this study as a therapeutic option for epilepsy treatment.

  13. New insights into the effect of medium-chain-length lactones on yeast membranes. Importance of the culture medium.

    Science.gov (United States)

    Ta, Thi Minh Ngoc; Cao-Hoang, Lan; Phan-Thi, Hanh; Tran, Hai Dang; Souffou, Nadhuirata; Gresti, Joseph; Marechal, Pierre-André; Cavin, Jean-François; Waché, Yves

    2010-07-01

    In hydrophobic compounds biotechnology, medium-chain-length metabolites often perturb cell activity. Their effect is usually studied in model conditions of growth in glucose media. Here, we study whether culture on lipids has an impact on the resistance of Yarrowia lipolytica to such compounds: Cells were cultured on glucose or oleate and submitted to gamma-dodecalactone. After a 60-min exposure to 3 g L(-1), about 80% of the glucose-grown cells (yeast extract peptone dextrose (YPD) cells) had lost their cultivability, 38% their membrane integrity, and 31% their reducing capacity as shown with propidium iodide and methylene blue, respectively. For oleate-grown cells, treatment at 6 g L(-1) did not alter cultivability despite some transient loss of membrane integrity from 3 g L(-1). It was shown with diphenylhexatriene and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene that oleate-grown cells had membranes more fluid and less sensitive to the lactone-induced fluidization. Analyses revealed also higher contents of ergosterol but, for YPD- and minimum-oleate-grown cells (YNBO cells), the addition of lactone provoked a decrease in the concentration of ergosterol in a way similar to the depletion by methyl-beta-cyclodextrin and an important membrane fluidization. Ergosterol depletion or incorporation increased or decreased, respectively, cell sensitivity to lactone. This study shows that the embedment of oleate moieties into membranes as well as higher concentrations of sterol play a role in the higher resistance to lactone of oleate-grown cells (YPO cells). Similar oleate-induced increase in resistance was also observed for Rhodotorula and Candida strains able to grow on oleate as the sole carbon source whereas Saccharomyces and Sporidiobolus cells were more sensitive after induction.

  14. Effect of Difference in Fatty Acid Chain Lengths of Medium- Chain Lipids on Lipid/Surfactant/Water Phase Diagrams and Drug Solubility

    OpenAIRE

    Hetal N. Prajapati; Darshil P. Patel; Nrupa G. Patel; Damon M. Dalrymple; Abu T.M. Serajuddin

    2011-01-01

    Lipids consisting of medium chain fatty acids are commonly used in the development of lipid-based self-emulsifying and self-microemulsifying drug delivery systems. However, no systematic approach to selecting one lipid over another has been reported in the literature. In this study, propylene glycol (PG) monoester (PG monocaprylate, Capmul PG-8®) and PG diester (PG dicaprylocaprate, Captex 200P®) of C8-fatty acids were compared with PG monoester (PG monolaurate, Capmul PG-12®) and PG diester ...

  15. Short- and medium-chain fatty acids enhance the cell surface expression and transport capacity of the bile salt export pump (BSEP/ABCB11).

    Science.gov (United States)

    Kato, Takuya; Hayashi, Hisamitsu; Sugiyama, Yuichi

    2010-09-01

    The reduced expression of the bile salt export pump (BSEP/ABCB11) at the canalicular membrane is associated with cholestasis-induced hepatotoxicity due to the accumulation of bile acids in hepatocytes. We previously reported that 4-phenylbutyrate (4PBA), an approved drug for urea cycle disorders, is a promising agent for intrahepatic cholestasis because it increases both the cell surface expression and the transport capacity of BSEP. In the present study, we searched for effective compounds other than 4PBA by focusing on short- and medium-chain fatty acids, which have similar characteristics to 4PBA such as their low-molecular-weight and a carboxyl group. In transcellular transport studies using Madin-Darby canine kidney (MDCK) II cells, all short- and medium-chain fatty acids tested except for formate, acetate, and hexanoic acid showed more potent effects on wild type (WT) BSEP-mediated [3H]taurocholate transport than did 4PBA. The increase in WT BSEP transport with butyrate and octanoic acid treatment correlated with an increase in its expression at the cell surface. Two PFIC2-type variants, E297G and D482G BSEP, were similarly affected with both compounds treatment. The prolonged half-life of cell surface-resident WT BSEP was responsible for this increased octanoic acid-stimulated transport, but not for that of butyrate. In conclusion, short- and medium-chain fatty acids have potent effects on the increase in WT and PFIC2-type BSEP-mediated transport in MDCK II cells. Although both short- and medium-chain fatty acids enhance the transport capacity of WT and PFIC2-type BSEP by inducing those expressions at the cell surface, the underlying mechanism seems to differ between fatty acids. 2010 Elsevier B.V. All rights reserved.

  16. Dietary exposure to short- and medium-chain chlorinated paraffins in meat and meat products from 20 provinces of China.

    Science.gov (United States)

    Huang, Huiting; Gao, Lirong; Zheng, Minghui; Li, Jingguang; Zhang, Lei; Wu, Yongning; Wang, Runhua; Xia, Dan; Qiao, Lin; Cui, Lili; Su, Guijin; Liu, Wenbin; Liu, Guorui

    2018-02-01

    Food intake is one of the main pathways of human exposure to chlorinated paraffins (CPs). This study assessed the dietary exposure for the general Chinese population to short-chain chlorinated paraffin (SCCPs) and medium-chain chlorinated paraffins (MCCPs) through meat and meat products. Twenty samples of meat and meat products from 20 Chinese provinces were collected in 2011. As the sampling sites covered about two-thirds of the Chinese population, the meat samples were considered to be representative of the true characteristics of CPs contamination in Chinese meat products. The concentrations of SCCPs and MCCPs in the meat samples were measured using the comprehensive two-dimensional gas chromatography electron capture negative ionization high-resolution time-of-flight mass spectrometry method. Forty-eight SCCP and MCCP homolog groups were detected in the meat samples. The mean SCCP and MCCP concentrations in all meat samples were 129 ± 4.1 ng g -1 wet weight and 5.7 ± 0.59 ng g -1 wet weight, respectively. The concentrations of SCCPs and MCCPs varied in samples from different provinces. The geographical distribution of CP concentrations was similar to the distribution of CPs manufacturing plants in China. The most abundant groups of SCCPs in all samples were C 10-11 Cl 6-7 , and the most abundant groups of MCCPs in most samples were C 14 Cl 7-8 . The possible sources of SCCPs and MCCPs in meat and meat products might be CP-42 and CP-52. The 50th percentile estimated daily intakes of SCCPs and MCCPs through meat consumption for a "standard" Chinese adult male were 0.13 and 0.0047 μg kg -1 bw d -1 , respectively, both much lower than the tolerable daily intakes (TDIs) for SCCPs and MCCPs. This preliminary risk assessment has indicated that the indirect exposure of SCCPs and MCCPs through meat consumption does not pose significant risk to human health in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of Medium-chain Triglyceride (MCT on Growth Performance, Nutrient Digestibility, Blood Characteristics in Weanling Pigs

    Directory of Open Access Journals (Sweden)

    S. M. Hong

    2012-07-01

    Full Text Available One hundred and twenty weanling pigs in experiment 1 (Exp. 1 (6.91±0.99 kg; 21 d of age and Exp. 2 (10.20±1.09 kg; 28 d of age were used in two 42-d and 35-d experiments to evaluate the effect of medium-chain-triglyceride (MCT on growth performance, apparent total tract digestibility (ATTD of nutrients and blood profile. In both of Exp. 1 and Exp. 2, the same dietary treatments were utilized as follows : i negative control (NC, ii positive control (PC, NC+antibiotics (40 mg/kg Tiamulin, 110 mg/kg Tylosin, and 10 mg/kg Enramycin, iii MCT3, NC+0.32% (phase 1, 2 and 3 MCT, and iv MCT5, NC+0.55% (phase 1, 0.32% (phase 2 and 3 MCT. In Exp. 1, the pigs fed MCT5 diets had higher (p<0.05 ADG compared to NC treatment during the first 2 wk. From d 15 to 28, the ATTD of energy was improved (p<0.05 by MCT3 compared to the PC treatment. No effect has been observed on the blood profiles [red blood cell (RBC, white blood cell (WBC, immunoglobulin-G (IgG, lymphocyte concentration] measured in this study. In Exp. 2, the ADG were increased (p<0.05 by the MCT5 treatment than the PC treatment from d 0 to 14. Pigs fed PC treatment diet had lower ADFI (p<0.05 and better FCR (p<0.05 than NC treatment, whereas no differences were shown between MCT treatments and NC or PC treatment from d 15 to 35 and overall phase. The ATTD of DM and nitrogen were improved (p<0.05 by the effect of MCT5 related to the NC and PC treatment at the end of 2nd and 5th wk. The pigs fed MCT3 had higher (p<0.05 energy digestibility than PC treatment. No effects were seen in the blood profiles we measured (WBC, RBC, lymphocyte and immunoglobulin-G. In conclusion, the addition of MCT in the weanling pigs diet can improve the ADG and digestibility during the earlier period (first 2 wks, but had little effect on the blood characteristics.

  18. Evaluation of even- and odd-chain medium-chain triglycerides as energy sources for neonatal piglets

    International Nuclear Information System (INIS)

    Odle, J.

    1989-01-01

    Medium-chain triglycerides (MCT) were evaluated as a supplemental energy source for the newborn piglet. In three experiments, piglets were force-fed 12 mi of MCT, varying in fatty acid (FA) composition. Blood fatty acid and ketone body concentrations peaked 1-2 h after force feeding then returned to baseline by 4 h, illustrating rapid digestion, absorption and oxidation. Peak 3-OH-butyrate concentrations never exceeded 80 μM which is dramatically lower than observed in rats (>2 mM). Improved clinical energy status was also documented by elevated blood glucose concentration and lower nitrogen excretion than observed in fasted controls. Piglets showed an improvement in ability to utilize MCT between 6 and 18 h of age based on a two fold increase in blood concentration of FA and 3-OH-butyrate but no further change between 18 and 48 h. Peak plasma FA concentration decreased progressively as triglyceride-FA chain length increased from C7 (2.1 mM) to C10 (0.4 mM). In two subsequent experiments, hepatocyte metabolism of FA was studied. Hepatocytes oxidized [1- 14 C]- C7 or C9 (1 mM) greater than 40% faster and consumed oxygen 7% faster than cells given C8 or C10. L-carnitine (1 mM) was without effect. Theoretical calculations from FA flux accounted for 95-140% of observed O 2 consumption, indicating the FA were the major fuel source for the cells. Hepatocytes from 2 d pigs oxidized FA 48% faster than cells from 6 h pigs, but this was likely due to an increased metabolic rate observed in the older animals. No differences were detected in ability of small (700-950 g) pigs to oxidize FA relative to large (1,050-1,800 g) littermates. In a final in vivo experiment, pigs were continuously infused with 10 μCi of [1- 14 C]-C7,C8, C9 or C10 via a catheter passed through the umbilical artery to the heart at a rate of 20, 50 or 100 mole FA/min for 5 h

  19. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    Science.gov (United States)

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After

  20. A Dietary Medium-Chain Fatty Acid, Decanoic Acid, Inhibits Recruitment of Nur77 to the HSD3B2 Promoter In Vitro and Reverses Endocrine and Metabolic Abnormalities in a Rat Model of Polycystic Ovary Syndrome.

    Science.gov (United States)

    Lee, Bao Hui; Indran, Inthrani Raja; Tan, Huey Min; Li, Yu; Zhang, Zhiwei; Li, Jun; Yong, Eu-Leong

    2016-01-01

    Hyperandrogenism is the central feature of polycystic ovary syndrome (PCOS). Due to the intricate relationship between hyperandrogenism and insulin resistance in PCOS, 50%-70% of these patients also present with hyperinsulinemia. Metformin, an insulin sensitizer, has been used to reduce insulin resistance and improve fertility in women with PCOS. In previous work, we have noted that a dietary medium-chain fatty acid, decanoic acid (DA), improves glucose tolerance and lipid profile in a mouse model of diabetes. Here, we report for the first time that DA, like metformin, inhibits androgen biosynthesis in NCI-H295R steroidogenic cells by regulating the enzyme 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase type 2 (HSD3B2). The inhibitory effect on HSD3B2 and androgen production required cAMP stimulation, suggesting a mechanistic action via the cAMP-stimulated pathway. Specifically, both DA and metformin reduced cAMP-enhanced recruitment of the orphan nuclear receptor Nur77 to the HSD3B2 promoter, coupled with decreased transcription and protein expression of HSD3B2. In a letrozole-induced PCOS rat model, treatment with DA or metformin reduced serum-free testosterone, lowered fasting insulin, and restored estrous cyclicity. In addition, DA treatment lowered serum total testosterone and decreased HSD3B2 protein expression in the adrenals and ovaries. We conclude that DA inhibits androgen biosynthesis via mechanisms resulting in the suppression of HSD3B2 expression, an effect consistently observed both in vitro and in vivo. The efficacy of DA in reversing the endocrine and metabolic abnormalities of the letrozole-induced PCOS rat model are promising, raising the possibility that diets including DA could be beneficial for the management of both hyperandrogenism and insulin resistance in PCOS.

  1. Lauric acid-rich medium-chain triglycerides can substitute for other oils in cooking applications and may have limited pathogenicity.

    Science.gov (United States)

    McCarty, Mark F; DiNicolantonio, James J

    2016-01-01

    Recently, medium-chain triglycerides (MCTs) containing a large fraction of lauric acid (LA) (C12)-about 30%-have been introduced commercially for use in salad oils and in cooking applications. As compared to the long-chain fatty acids found in other cooking oils, the medium-chain fats in MCTs are far less likely to be stored in adipose tissue, do not give rise to 'ectopic fat' metabolites that promote insulin resistance and inflammation, and may be less likely to activate macrophages. When ingested, medium-chain fatty acids are rapidly oxidised in hepatic mitochondria; the resulting glut of acetyl-coenzyme A drives ketone body production and also provokes a thermogenic response. Hence, studies in animals and humans indicate that MCT ingestion is less obesogenic than comparable intakes of longer chain oils. Although LA tends to raise serum cholesterol, it has a more substantial impact on high density lipoprotein (HDL) than low density lipoprotein (LDL) in this regard, such that the ratio of total cholesterol to HDL cholesterol decreases. LA constitutes about 50% of the fatty acid content of coconut oil; south Asian and Oceanic societies which use coconut oil as their primary source of dietary fat tend to be at low cardiovascular risk. Since ketone bodies can exert neuroprotective effects, the moderate ketosis induced by regular MCT ingestion may have neuroprotective potential. As compared to traditional MCTs featuring C6-C10, laurate-rich MCTs are more feasible for use in moderate-temperature frying and tend to produce a lower but more sustained pattern of blood ketone elevation owing to the more gradual hepatic oxidation of ingested laurate.

  2. Production of medium-chain volatile flavour esters in Pichia pastoris whole-cell biocatalysts with extracellular expression of Saccharomyces cerevisiae acyl-CoA: ethanol O-acyltransferase Eht1 or Eeb1

    DEFF Research Database (Denmark)

    Zhuang, Shiwen; Fu, Junshu; Powell, Chris

    2015-01-01

    Medium-chain volatile flavour esters are important molecules since they have extensive applications in food, fragrance, cosmetic, paint and coating industries, which determine different characteristics of aroma or taste in commercial products. Biosynthesis of these compounds by alcoholysis...

  3. Effects of Dietary Coconut Oil as a Medium-chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers

    OpenAIRE

    Jianhong Wang; Xiaoxiao Wang; Juntao Li; Yiqiang Chen; Wenjun Yang; Liying Zhang

    2015-01-01

    This study was conducted to investigate the effects of dietary coconut oil as a medium-chain fatty acid (MCFA) source on performance, carcass composition and serum lipids in male broilers. A total of 540, one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The basal diet (i.e., R0) was based on corn and soybean meal and was supplemented with 1.5% soybean oil during the starter phase (d 0 to 21) and ...

  4. Lipase-catalyzed acidolysis of canola oil with caprylic acid to produce medium-, long- and medium-chain-type structured lipids

    DEFF Research Database (Denmark)

    Wang, Yingyao; Xia, Luan; Xu, Xuebing

    2012-01-01

    Lipase-catalyzed acidolysis of canola oil with caprylic acid was performed to produce structured lipids (SLs) containing medium-chain fatty acid (M) at position sn-1,3 and long-chain fatty acid (L) at the sn-2 position in a solvent-free system. Six commercial lipases from different sources were...... screened for their ability to incorporate caprylic acid into the canola oil. The sn-1,3 regiospecificity toward the glycerol backbone of canola oil of the lipases with relatively higher acidolysis activity was compared by investigating the fatty acid profiles of the products. The results showed...

  5. Medium-chain triglyceride as an alternative of in-feed colistin sulfate to improve growth performance and intestinal microbial environment in newly weaned pigs.

    Science.gov (United States)

    Yen, Hung-Che; Lai, Wei-Kang; Lin, Chuan-Shun; Chiang, Shu-Hsing

    2015-01-01

    Five hundred and twenty-eight newly weaned pigs were given four treatments, with eight replicates per treatment. Sixteen to 18 pigs were assigned per replicate and were fed diets supplemented with 0 or 3% medium-chain triglyceride (MCT) and 0 or 40 ppm colistin sulfate (CS) in a 2 × 2 factorial arrangement for 2 weeks. The results showed that dietary supplementation with MCT improved the gain-to-feed ratio during days 3-7 and in the overall period (P environment and the feed utilization efficiency of newly weaned pigs. © 2014 Japanese Society of Animal Science.

  6. Improvement of medium chain fatty acid content and antimicrobial activity of coconut oil via solid-state fermentation using a Malaysian Geotrichum candidum.

    Science.gov (United States)

    Khoramnia, Anahita; Ebrahimpour, Afshin; Ghanbari, Raheleh; Ajdari, Zahra; Lai, Oi-Ming

    2013-01-01

    Coconut oil is a rich source of beneficial medium chain fatty acids (MCFAs) particularly lauric acid. In this study, the oil was modified into a value-added product using direct modification of substrate through fermentation (DIMOSFER) method. A coconut-based and coconut-oil-added solid-state cultivation using a Malaysian lipolytic Geotrichum candidum was used to convert the coconut oil into MCFAs-rich oil. Chemical characteristics of the modified coconut oils (MCOs) considering total medium chain glyceride esters were compared to those of the normal coconut oil using ELSD-RP-HPLC. Optimum amount of coconut oil hydrolysis was achieved at 29% moisture content and 10.14% oil content after 9 days of incubation, where the quantitative amounts of the modified coconut oil and MCFA were 0.330 mL/g of solid media (76.5% bioconversion) and 0.175 mL/g of solid media (53% of the MCO), respectively. MCOs demonstrated improved antibacterial activity mostly due to the presence of free lauric acid. The highest MCFAs-rich coconut oil revealed as much as 90% and 80% antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The results of the study showed that DIMOSFER by a local lipolytic G. candidum can be used to produce MCFAs as natural, effective, and safe antimicrobial agent. The produced MCOs and MCFAs could be further applied in food and pharmaceutical industries.

  7. Improvement of Medium Chain Fatty Acid Content and Antimicrobial Activity of Coconut Oil via Solid-State Fermentation Using a Malaysian Geotrichum candidum

    Directory of Open Access Journals (Sweden)

    Anahita Khoramnia

    2013-01-01

    Full Text Available Coconut oil is a rich source of beneficial medium chain fatty acids (MCFAs particularly lauric acid. In this study, the oil was modified into a value-added product using direct modification of substrate through fermentation (DIMOSFER method. A coconut-based and coconut-oil-added solid-state cultivation using a Malaysian lipolytic Geotrichum candidum was used to convert the coconut oil into MCFAs-rich oil. Chemical characteristics of the modified coconut oils (MCOs considering total medium chain glyceride esters were compared to those of the normal coconut oil using ELSD-RP-HPLC. Optimum amount of coconut oil hydrolysis was achieved at 29% moisture content and 10.14% oil content after 9 days of incubation, where the quantitative amounts of the modified coconut oil and MCFA were 0.330 mL/g of solid media (76.5% bioconversion and 0.175 mL/g of solid media (53% of the MCO, respectively. MCOs demonstrated improved antibacterial activity mostly due to the presence of free lauric acid. The highest MCFAs-rich coconut oil revealed as much as 90% and 80% antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The results of the study showed that DIMOSFER by a local lipolytic G. candidum can be used to produce MCFAs as natural, effective, and safe antimicrobial agent. The produced MCOs and MCFAs could be further applied in food and pharmaceutical industries.

  8. Untargeted mass spectrometric approach in metabolic healthy offspring of patients with type 2 diabetes reveals medium-chain acylcarnitine as potential biomarker for lipid induced glucose intolerance (LGIT).

    Science.gov (United States)

    Knebel, Birgit; Mack, Susanne; Lehr, Stefan; Barsch, Aiko; Schiller, Martina; Haas, Jutta; Lange, Simone; Fuchser, Jens; Zurek, Gabriela; Müller-Wieland, Dirk; Kotzka, Jorg

    2016-12-01

    Offspring of type 2 diabetes (T2D) patients have increased risk to develop diabetes, due to inherited genetic susceptibility that directly interferes with the individual adaption to environmental conditions. We characterise T2D offspring (OSP) to identify metabolic risk markers for early disease prediction. Plasma of metabolically healthy OSP individuals (n = 43) was investigated after an oral lipid tolerance test (oLTT) by an untargeted mass spectrometric approach for holistic metabolome analyses. Two subgroups of OSP probands can be separated by oLTT, although not differing in general clinical parameters. Analyses of the plasma metabolome revealed mainly medium-chain acylcarnitines and very long-chain fatty acids with differential abundance in the subgroups. The study presented indicates that metabolically healthy OSP of T2D patients differ upon metabolic challenging in serum metabolite composition, especially medium-chain acylcarnitines. The difference suggest that postprandial lipid induced glucose intolerance (LGIT) may serve as a further valuable marker for early diabetes prediction.

  9. Disruption of the acyl-coa binding protein gene delays hepatic adaptation to metabolic changes at weaning

    DEFF Research Database (Denmark)

    Neess, Ditte; Bloksgaard, Maria; Sørensen, Signe Bek

    2011-01-01

    The acyl-CoA binding protein/diazepam binding inhibitor (ACBP/DBI) is an intracellular protein that binds C14-C22 acyl-CoA esters and is thought to act as an acyl-CoA transporter. In vitro analyses have indicated that ACBP can transport acyl-CoA esters between different enzymatic systems; however...

  10. Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids.

    Science.gov (United States)

    Kim, Seohyoung; Cheong, Seokjung; Gonzalez, Ramon

    2016-07-01

    Concerns over sustained availability of fossil resources along with environmental impact of their use have stimulated the development of alternative methods for fuel and chemical production from renewable resources. In this work, we present a new approach to produce α,β-unsaturated carboxylic acids (α,β-UCAs) using an engineered reversal of the β-oxidation (r-BOX) cycle. To increase the availability of both acyl-CoAs and enoyl-CoAs for α,β-UCA production, we use an engineered Escherichia coli strain devoid of mixed-acid fermentation pathways and known thioesterases. Core genes for r-BOX such as thiolase, hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and enoyl-CoA reductase were chromosomally overexpressed under the control of a cumate inducible phage promoter. Native E. coli thioesterase YdiI was used as the cycle-terminating enzyme, as it was found to have not only the ability to convert trans-enoyl-CoAs to the corresponding α,β-UCAs, but also a very low catalytic efficiency on acetyl-CoA, the primer and extender unit for the r-BOX pathway. Coupling of r-BOX with YdiI led to crotonic acid production at titers reaching 1.5g/L in flask cultures and 3.2g/L in a controlled bioreactor. The engineered r-BOX pathway was also used to achieve for the first time the production of 2-hexenoic acid, 2-octenoic acid, and 2-decenoic acid at a final titer of 0.2g/L. The superior nature of the engineered pathway was further validated through the use of in silico metabolic flux analysis, which showed the ability of r-BOX to support growth-coupled production of α,β-UCAs with a higher ATP efficiency than the widely used fatty acid biosynthesis pathway. Taken together, our findings suggest that r-BOX could be an ideal platform to implement the biological production of α,β-UCAs. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that ...

  12. Production of medium chain saturated fatty acids with enhanced antimicrobial activity from crude coconut fat by solid state cultivation of Yarrowia lipolytica.

    Science.gov (United States)

    Parfene, Georgiana; Horincar, Vicentiu; Tyagi, Amit Kumar; Malik, Anushree; Bahrim, Gabriela

    2013-02-15

    Fatty acids profiles and antimicrobial activity of crude coconut fat hydrolysates obtained in solid-state cultivation system with a selected yeast strain Yarrowia lipolytica RO13 were performed. A preliminary step regarding extracellular lipase production and solid state enzymatic hydrolysis of crude fat at different water activity and time intervals up to 7 days was also applied. Gas chromatography-mass spectrometry analysis was used for quantification of medium chain saturated fatty acids (MCSFAs) and the results revealed a higher concentration of about 70% lauric acid from total fatty acids. Further, antimicrobial activity of fatty acids against some food-borne pathogens (Salmonella enteritidis, Escherichia coli, Listeria monocytogenes and Bacillus cereus) was evaluated. The minimum inhibitory concentration of the obtained hydrolysates varied from 12.5 to 1.56 ppm, significantly lower than values reported in literature. The results provide substantial evidence for obtaining biopreservative effects by coconut fat enzymatic hydrolysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Enzymatic interesterification of palm stearin with Cinnamomum camphora seed oil to produce zero-trans medium-chain triacylglycerols-enriched plastic fat.

    Science.gov (United States)

    Tang, Liang; Hu, Jiang-ning; Zhu, Xue-mei; Luo, Li-ping; Lei, Lin; Deng, Ze-yuan; Lee, Ki-Teak

    2012-04-01

    It is known that Cinnamomum camphora seed oil (CCSO) is rich in medium-chain fatty acids (MCFAs) or medium-chain triacylglycerols (MCTs). The purpose of the present study was to produce zero-trans MCTs-enriched plastic fat from a lipid mixture (500 g) of palm stearin (PS) and CCSO at 3 weight ratios (PS:CCSO 60:40, 70:30, 80:20, wt/wt) by using lipase (Lipozyme TL IM, 10% of total substrate) as a catalyst at 65 °C for 8 h. The major fatty acids of the products were palmitic acid (C16:0, 42.68% to 53.42%), oleic acid (C18:1, 22.41% to 23.46%), and MCFAs (8.67% to 18.73%). Alpha-tocopherol (0.48 to 2.51 mg/100 g), γ-tocopherol (1.70 to 3.88 mg/100 g), and δ-tocopherol (2.08 to 3.95 mg/100 g) were detected in the interesterified products. The physical properties including solid fat content (SFC), slip melting point (SMP), and crystal polymorphism of the products were evaluated for possible application in shortening or margarine. Results showed that the SFCs of interesterified products at 25 °C were 9% (60:40, PS:CCSO), 18.50% (70:30, PS:CCSO), and 29.2% (80:20, PS:CCSO), respectively. The β' crystal form was found in most of the interesterified products. Furthermore, no trans fatty acids were detected in the products. Such zero-trans MCT-enriched fats may have a potential functionality for shortenings and margarines which may become a new type of nutritional plastic fat for daily diet. © 2012 Institute of Food Technologists®

  14. Effect of Difference in Fatty Acid Chain Lengths of Medium- Chain Lipids on Lipid/Surfactant/Water Phase Diagrams and Drug Solubility

    Directory of Open Access Journals (Sweden)

    Hetal N. Prajapati

    2011-09-01

    Full Text Available Lipids consisting of medium chain fatty acids are commonly used in the development of lipid-based selfemulsifying and self-microemulsifying drug delivery systems. However, no systematic approach to selecting one lipid over another has been reported in the literature. In this study, propylene glycol (PG monoester (PG monocaprylate, Capmul PG-8® and PG diester (PG dicaprylocaprate, Captex 200P® of C8-fatty acids were compared with PG monoester (PG monolaurate, Capmul PG-12® and PG diester (PG dilaurate, Capmul PG-2L® of C12-fatty acids with respect to their phase diagrams, and especially for their ability to form microemulsions in the presence of a common surfactant, Cremophor EL®, and water. The solubility of two model drugs, danazol and probucol, in the lipids and lipid/surfactant mixtures were also compared. The effect of the chain length of medium-chain fatty acids (C8 versus C12 on the phase diagrams of the lipids was minimal. Both shorter and longer chain lipids formed essentially similar microemulsion and emulsion regions in the presence of Cremophor EL® and water, although the C12-fatty acid esters formed larger gel regions in the phase diagrams than the C8-fatty acid esters. When monoesters were mixed with their respective diesters at 1:1 ratios, larger microemulsion regions with lower lipid particle sizes were observed compared to those obtained with individual lipids alone. While the solubility of both danazol and probucol increased greatly in all lipids studied, compared to their aqueous solubility, the solubility in C12-fatty acid esters was found to be lower than in C8-fatty acid esters when the lipids were used alone. This difference in solubility due to the difference in fatty acid chain length, practically disappeared when the lipids were combined with the surfactant.

  15. Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas.

    Science.gov (United States)

    Diender, Martijn; Stams, Alfons J M; Sousa, Diana Z

    2016-01-01

    Synthesis gas, a mixture of CO, H2, and CO2, is a promising renewable feedstock for bio-based production of organic chemicals. Production of medium-chain fatty acids can be performed via chain elongation, utilizing acetate and ethanol as main substrates. Acetate and ethanol are main products of syngas fermentation by acetogens. Therefore, syngas can be indirectly used as a substrate for the chain elongation process. Here, we report the establishment of a synthetic co-culture consisting of Clostridium autoethanogenum and Clostridium kluyveri. Together, these bacteria are capable of converting CO and syngas to a mixture of C4 and C6 fatty acids and their respective alcohols. The co-culture is able to grow using solely CO or syngas as a substrate, and presence of acetate significantly stimulated production rates. The co-culture produced butyrate and caproate at a rate of 8.5 ± 1.1 and 2.5 ± 0.63 mmol/l/day, respectively. Butanol and hexanol were produced at a rate of 3.5 ± 0.69 and 2.0 ± 0.46 mmol/l/day, respectively. The pH was found to be a major factor during cultivation, influencing the growth performance of the separate strains and caproate toxicity. This co-culture poses an alternative way to produce medium-chain fatty acids and higher alcohols from carbon monoxide or syngas and the process can be regarded as an integration of syngas fermentation and chain elongation in one growth vessel.

  16. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Touma, E H; Rashed, M S; Vianey-Saban, C

    2001-01-01

    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased lo...... chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence....

  17. Lipozyme RM IM-catalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids.

    Science.gov (United States)

    Zou, Xian-Guo; Hu, Jiang-Ning; Zhao, Man-Li; Zhu, Xue-Mei; Li, Hong-Yan; Liu, Xiao-Ru; Liu, Rong; Deng, Ze-Yuan

    2014-10-29

    In the present study, a human milk fat substitute (HMFS) enriched in medium-chain fatty acids (MCFAs) was synthesized through acidolysis reaction from Cinnamomum camphora seed oil (CCSO) with oleic acid in a solvent-free system. A commercial immobilized lipase, Lipozyme RM IM, from Rhizomucor miehei, was facilitated as a biocatalyst. Effects of different reaction conditions, including substrate molar ratio, enzyme concentration, reaction temperature, and reaction time were investigated using response surface methodology (RSM) to obtain the optimal oleic acid incorporation. After optimization, results showed that the maximal incorporation of oleic acid into HMFS was 59.68%. Compared with CCSO, medium-chain fatty acids at the sn-2 position of HMFS accounted for >70%, whereas oleic acid was occupied predominantly at the sn-1,3 position (78.69%). Meanwhile, triacylglycerol (TAG) components of OCO (23.93%), CCO (14.94%), LaCO (13.58%), OLaO (12.66%), and OOO (11.13%) were determined as the major TAG species in HMFS. The final optimal reaction conditions were carried out as follows: substrate molar ratio (oleic acid/CCSO), 5:1; enzyme concentration, 12.5% (w/w total reactants); reaction temperature, 60 °C; and reaction time, 28 h. The reusability of Lipozyme RM IM in the acidolysis reaction was also evaluated, and it was found that it could be reused up to 9 times without significant loss of activities. Urea inclusion method was used to separate and purify the synthetic product. As the ratio of HMFS/urea increased to 1:2, the acid value lowered to the minimum. In a scale-up experiment, the contents of TAG and total tocopherols in HMFS (modified CCSO) were 77.28% and 12.27 mg/100 g, respectively. All of the physicochemical indices of purified product were within food standards. Therefore, such a MCFA-enriched HMFS produced by using the acidolysis method might have potential application in the infant formula industry.

  18. Activation and Repression of Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycles by Short- and Medium-Chain Fatty Acids

    Science.gov (United States)

    Gorres, Kelly L.; Daigle, Derek; Mohanram, Sudharshan

    2014-01-01

    ABSTRACT The lytic cycles of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are induced in cell culture by sodium butyrate (NaB), a short-chain fatty acid (SCFA) histone deacetylase (HDAC) inhibitor. Valproic acid (VPA), another SCFA and an HDAC inhibitor, induces the lytic cycle of KSHV but blocks EBV lytic reactivation. To explore the hypothesis that structural differences between NaB and VPA account for their functional effects on the two related viruses, we investigated the capacity of 16 structurally related short- and medium-chain fatty acids to promote or prevent lytic cycle reactivation. SCFAs differentially affected EBV and KSHV reactivation. KSHV was reactivated by all SCFAs that are HDAC inhibitors, including phenylbutyrate. However, several fatty acid HDAC inhibitors, such as isobutyrate and phenylbutyrate, did not reactivate EBV. Reactivation of KSHV lytic transcripts could not be blocked completely by any fatty acid tested. In contrast, several medium-chain fatty acids inhibited lytic activation of EBV. Fatty acids that blocked EBV reactivation were more lipophilic than those that activated EBV. VPA blocked activation of the BZLF1 promoter by NaB but did not block the transcriptional function of ZEBRA. VPA also blocked activation of the DNA damage response that accompanies EBV lytic cycle activation. Properties of SCFAs in addition to their effects on chromatin are likely to explain activation or repression of EBV. We concluded that fatty acids stimulate the two related human gammaherpesviruses to enter the lytic cycle through different pathways. IMPORTANCE Lytic reactivation of EBV and KSHV is needed for persistence of these viruses and plays a role in carcinogenesis. Our direct comparison highlights the mechanistic differences in lytic reactivation between related human oncogenic gammaherpesviruses. Our findings have therapeutic implications, as fatty acids are found in the diet and produced by the human microbiota

  19. Dispersion of Short- and Medium-Chain Chlorinated Paraffins (CPs) from a CP Production Plant to the Surrounding Surface Soils and Coniferous Leaves.

    Science.gov (United States)

    Xu, Jiazhi; Gao, Yuan; Zhang, Haijun; Zhan, Faqiang; Chen, Jiping

    2016-12-06

    Chlorinated paraffin (CP) production is one important emission source for short- and medium-chain CPs (SCCPs and MCCPs) in the environment. In this study, 48 CP congener groups were measured in the surface soils and coniferous leaves collected from the inner and surrounding environment of a CP production plant that has been in operation for more than 30 years to investigate the dispersion and deposition behavior of SCCPs and MCCPs. The average concentrations of the sum of SCCPs and MCCPs in the in-plant coniferous leaves and surface soils were 4548.7 ng g -1 dry weight (dw) and 3481.8 ng g -1 dw, which were 2-fold and 10-fold higher than those in the surrounding environment, respectively. The Gaussian air pollution model explained the spatial distribution of CPs in the coniferous leaves, whereas the dispersion of CPs to the surrounding surface soils fits the Boltzmann equation well. Significant fractionation effect was observed for the atmospheric dispersion of CPs from the production plant. CP congener groups with higher octanol-air partitioning coefficients (K OA ) were more predominant in the in-plant environment, whereas the ones with lower K OA values had the elevated proportion in the surrounding environment. A radius of approximately 4 km from the CP production plant was influenced by the atmospheric dispersion and deposition of CPs.

  20. Medium-chain-length polyhydroxyalkanoates synthesis by Pseudomonas putida KT2440 relA/spoT mutant: bioprocess characterization and transcriptome analysis.

    Science.gov (United States)

    Mozejko-Ciesielska, Justyna; Dabrowska, Dorota; Szalewska-Palasz, Agnieszka; Ciesielski, Slawomir

    2017-12-01

    Pseudomonas putida KT2440 is a model bacteria used commonly for medium-chain-length polyhydroxyalkanoates (mcl-PHAs) production using various substrates. However, despite many studies conducted on P. putida KT2440 strain, the molecular mechanisms of leading to mcl-PHAs synthesis in reaction to environmental stimuli are still not clear. The rearrangement of the metabolism in response to environmental stress could be controlled by stringent response that modulates the transcription of many genes in order to promote survival under nutritional deprivation conditions. Therefore, in this work we investigated the relation between mcl-PHAs synthesis and stringent response. For this study, a relA/spoT mutant of P. putida KT2440, unable to induce the stringent response, was used. Additionally, the transcriptome of this mutant was analyzed using RNA-seq in order to examine rearrangements of the metabolism during cultivation. The results show that the relA/spoT mutant of P. putida KT2440 is able to accumulate mcl-PHAs in both optimal and nitrogen limiting conditions. Nitrogen starvation did not change the efficiency of mcl-PHAs synthesis in this mutant. The transition from exponential growth to stationary phase caused significant upregulation of genes involved in transport system and nitrogen metabolism. Transcriptional regulators, including rpoS, rpoN and rpoD, did not show changes in transcript abundance when entering the stationary phase, suggesting their limited role in mcl-PHAs accumulation during stationary phase.

  1. Production of Medium-Chain-Length Poly(3-Hydroxyalkanoates from Saponified Palm Kernel Oil by Pseudomonas putida: Kinetics of Batch and Fed-Batch Fermentations

    Directory of Open Access Journals (Sweden)

    Annuar, M. S. M.

    2006-01-01

    Full Text Available The kinetics of medium-chain-length poly(3-hydroxyalkanoates, PHAMCL production by Pseudomonas putida PGA1 in batch and fed-batch fermentations were studied. With saponified palm kernel oil (SPKO supplying the free fatty acids mixture as the sole carbon and energy source, PHAMCL accumulation is encouraged under ammonium-limited condition, which is a nitrogen stress environment. The amount of PHAMCL accumulated and its specific production rate, qPHA were influenced by the residual ammonium concentration level in the culture medium. It was observed that in both fermentation modes, when the residual ammonium was exhausted (< 0.05 gL-1, the PHAMCL accumulation (11.9% and qPHA (0.0062 h-1 were significantly reduced. However, this effect can be reversed by feeding low amount of ammonium to the culture, resulting in significantly improved PHAMCL yield (71.4% and specific productivity (0.6 h-1. It is concluded that the feeding of low ammonium concentration to the culture medium during the PHAMCL accumulation has a positive effect on sustaining the PHAMCL biosynthetic capability of the organism. It was also found that increasing SPKO concentration in the medium significantly reduced (up to 50% the volumetric oxygen transfer coefficient (KLa of the fermentation system.

  2. In vivo and in vitro depolymerizations of intracellular medium-chain-length poly-3-hydroxyalkanoates produced by Pseudomonas putida Bet001.

    Science.gov (United States)

    Anis, Siti Nor Syairah; Mohamad Annuar, Mohamad Suffian; Simarani, Khanom

    2017-09-14

    In vivo and in vitro depolymerizations of intracellular medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 grown on lauric acid was studied. Both processes were studied under optimum conditions for mcl-PHA depolymerization viz. 0.2 M Tris-HCl buffer, pH 9, ionic strength (I) = 0.2 M at 30°C. For in vitro depolymerization studies, cell-free system was obtained from lysing bacterial cells suspension by ultrasonication at optimum conditions (frequency 37 kHz, 30% of power output, <25°C for 120 min). The comparison between in vivo and in vitro depolymerizations of intracellular mcl-PHA was made. In vitro depolymerization showed lower depolymerization rate but higher yield compared to in vivo depolymerization. The monomer liberation rate reflected the mol% distribution of the initial polymer subunit composition, and the resulting direct individual products of depolymerization were identical for both in vivo and in vitro processes. It points to exo-type reaction for both processes, and potential biological route to chiral molecules.

  3. Medium-chain triglyceride ketogenic diet, an effective treatment for drug-resistant epilepsy and a comparison with other ketogenic diets.

    Science.gov (United States)

    Liu, Yeou-mei Christiana; Wang, Huei-Shyong

    2013-01-01

    The ketogenic diet (KD) is one of the most effective therapies for drug-resistant epilepsy. The efficacy of the medium-chain triglyceride KD (MCTKD) is as excellent as the classic KD (CKD), which has been documented in several subsequent retrospective, prospective, and randomized studies. MCT oil is more ketogenic than long-chain triglycerides. Therefore, the MCTKD allows more carbohydrate and protein food, which makes the diet more palatable than the CKD. The MCTKD is not based on diet ratios as is the CKD, but uses a percentage of calories from MCT oil to create ketones. There has also been literature which documents the associated gastrointestinal side effects from the MCTKD, such as diarrhea, vomiting, bloating, and cramps. Therefore, the MCTKD has been an underutilized diet therapy for intractable epilepsy among children.The author has used up to >70% MCTKD diet to maximize seizure control with gastrointestinal side effects optimally controlled. As long as health care professionals carefully manage MCTKD, many more patients with epilepsy who are not appropriate for CKD or modified Atkins diet or low glycemic index treatment will benefit from this treatment. A comparison between the MCTKD and other KDs is also discussed.

  4. Dietary Intake of Structured Lipids with Different Contents of Medium-Chain Fatty Acids on Obesity Prevention in C57BL/6J Mice.

    Science.gov (United States)

    Zhou, Shengmin; Wang, Yueqiang; Jiang, Yuanrong; Zhang, Zhongfei; Sun, Xiangjun; Yu, Liangli Lucy

    2017-08-01

    Three medium- and long-chain triacylglycerols (MLCT) with different contents of medium-chain fatty acids (MCFA) (10% to 30%, w/w) were prepared and evaluated for their anti-obesity potential in C57BL/6J mice. The group fed with a high fat diet of MLCT containing 30% (w/w) MCFA showed significantly decreased body weight and fat mass (P obesity-inducing high fat rapeseed oil diet. In addition, serum parameters including triacylglycerols, total cholesterol, glucose, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein A1 and apolipoprotein B in the treatment group fed with 30% (w/w) MCFA were close to those of mice fed with a low fat rapeseed oil diet, but significantly different (P obesity control group. Moreover, the intake of MLCT with high content of MCFA reduced the size of adipocytes. In addition, the visceral fat and liver weights, as well as the liver triacylglycerol for 3 treatment groups were lower than those of the obesity control group. These results demonstrate the great potential of MLCT with high content of MCFA in weight loss. © 2017 Institute of Food Technologists®.

  5. Induction of apoptosis by the medium-chain length fatty acid lauric acid in colon cancer cells due to induction of oxidative stress.

    Science.gov (United States)

    Fauser, J K; Matthews, G M; Cummins, A G; Howarth, G S

    2013-01-01

    Fatty acids are classified as short-chain (SCFA), medium-chain (MCFA) or long-chain and hold promise as adjunctive chemotherapeutic agents for the treatment of colorectal cancer. The antineoplastic potential of MCFA remains underexplored; accordingly, we compared the MCFA lauric acid (C12:0) to the SCFA butyrate (C4:0) in terms of their capacity to induce apoptosis, modify glutathione (GSH) levels, generate reactive oxygen species (ROS), and modify phases of the cell cycle in Caco-2 and IEC-6 intestinal cell lines. Caco-2 and IEC-6 cells were treated with lauric acid, butyrate, or vehicle controls. Apoptosis, ROS, and cell cycle analysis were determined by flow cytometry. GSH availability was assessed by enzymology. Lauric acid induced apoptosis in Caco-2 (p lauric acid reduced GSH availability and generated ROS compared to butyrate (p Lauric acid reduced Caco-2 and IEC-6 cells in G0/G1and arrested cells in the S and G2/M phases. Lauric acid induced apoptosis in IEC-6 cells compared to butyrate (p lauric acid induced high levels of ROS compared to butyrate. Compared to butyrate, lauric acid displayed preferential antineoplastic properties, including induction of apoptosis in a CRC cell line.

  6. Modulation of Medium-Chain Fatty Acid Synthesis in Synechococcus sp. PCC 7002 by Replacing FabH with a Chaetoceros ketoacyl-ACP synthase

    Directory of Open Access Journals (Sweden)

    Huiya eGu

    2016-05-01

    Full Text Available The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis is photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%, with the majority of C14 fatty acids (~2/3 allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novo assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes lacking bacteria evolutionary control mechanisms could be used to improve MCFA production in this promising production strains. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase III increased MCFA synthesis up to five fold. The level of increase is dependent on promoter strength and culturing conditions.

  7. Co-synthesis of medium-chain-length polyhydroxyalkanoates and CdS quantum dots nanoparticles in Pseudomonas putida KT2440.

    Science.gov (United States)

    Oliva-Arancibia, Barbara; Órdenes-Aenishanslins, Nicolás; Bruna, Nicolas; Ibarra, Paula S; Zacconi, Flavia C; Pérez-Donoso, José M; Poblete-Castro, Ignacio

    2017-12-20

    Microbial polymers and nanomaterials production is a promising alternative for sustainable bioeconomics. To this end, we used Pseudomonas putida KT2440 as a cell factory in batch cultures to coproduce two important nanotechnology materials- medium-chain-length (MCL)-polyhydroxyalkanoates (PHAs) and CdS fluorescent nanoparticles (i.e. quantum dots [QDots]). Due to high cadmium resistance, biomass and PHA yields were almost unaffected by coproduction conditions. Fluorescent nanocrystal biosynthesis was possible only in presence of cysteine. Furthermore, this process took place exclusively in the cell, displaying the classical emission spectra of CdS QDots under UV-light exposure. Cell fluorescence, zeta potential values, and particles size of QDots depended on cadmium concentration and exposure time. Using standard PHA-extraction procedures, the biosynthesized QDots remained associated with the biomass, and the resulting PHAs presented no traces of CdS QDots. Transmission electron microscopy located the synthesized PHAs in the cell cytoplasm, whereas CdS nanocrystals were most likely located within the periplasmic space, exhibiting no apparent interaction. This is the first report presenting the microbial coproduction of MCL-PHAs and CdS QDots in P. putida KT2440, thus constituting a foundation for further bioprocess developments and strain engineering towards the efficient synthesis of these highly relevant bioproducts for nanotechnology. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Screening of atmospheric short- and medium-chain chlorinated paraffins in India and Pakistan using polyurethane foam based passive air sampler.

    Science.gov (United States)

    Chaemfa, Chakra; Xu, Yue; Li, Jun; Chakraborty, Paromita; Hussain Syed, Jabir; Naseem Malik, Riffat; Wang, Yan; Tian, Chongguo; Zhang, Gan; Jones, Kevin C

    2014-05-06

    Production and use of chlorinated paraffins (CPs) have been increasing in India. Distribution of CPs in the area and vicinity have become a great concern due to their persistency and toxicity. Polyurethane foam based passive air samplers (PUF-PAS) was deployed in order to screen the presence of short- and medium- chain chlorinated paraffins (SCCPs and MCCPs) in the outdoor atmosphere at many sites in India (in winter 2006) and Pakistan (in winter 2011). Concentrations of SCCPs and MCCPs ranged from not detected (ND) to 47.4 and 0 to 38.2 ng m(-3) with means of 8.11 and 4.83 ng m(-3), respectively. Indian concentrations showed higher average levels of both SCCPs and MCCPs India (10.2 ng m(-3) and 3.62 ng m(-3)than the samples from Pakistan (5.13 ng m(-3) and 4.21 ng m(-3)). Relative abundance patterns of carbon number are C10 > C11 > C12 ∼ C13 for SCCPs and C14 > C15 > C16 C17 for MCCP with similarity to the profiles of samples from China, the biggest CPs producer in the world. Principal Component Analysis suggested that detected SCCPs and MCCPs in this study originated from the same emission source.

  9. In Silico and Wet Lab Studies Reveal the Cholesterol Lowering Efficacy of Lauric Acid, a Medium Chain Fat of Coconut Oil.

    Science.gov (United States)

    Lekshmi Sheela, Devi; Nazeem, Puthiyaveetil Abdulla; Narayanankutty, Arunaksharan; Manalil, Jeksy Jos; Raghavamenon, Achuthan C

    2016-12-01

    The coconut oil (CO) contains 91 % of saturated fatty acids in which 72 % are medium chain fatty acids (MCFAs) like lauric, capric and caprylic acids. In contrast to animal fat, coconut oil has no cholesterol. Despite this fact, CO is sidelined among other vegetable oils due to the health hazards attributed to the saturated fatty acids. Though various medicinal effects of CO have been reported including the hypolipidemic activity, people are still confused in the consumption of this natural oil. In silico analyses and wet lab experiments have been carried out to identify the hypolipidemic properties of MCFAs and phenolic acids in CO by using different protein targets involved in cholesterol synthesis. The molecular docking studies were carried out using CDOCKER protocol in Accelery's Discovery Studio, by taking different proteins like HMG- CoA reductase and cholesterol esterase as targets and the different phytocompounds in coconut as ligands. Molecular docking highlighted the potential of lauric acid in inhibiting the protein targets involved in hyperlipidemics. Further, validation of in silico results was carried out through in vivo studies. The activity of key enzymes HMG- CoA reductase and lipoprotein lipase were found reduced in animals fed with lauric acid and CO.

  10. Effects of Dietary Coconut Oil as a Medium-chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers.

    Science.gov (United States)

    Wang, Jianhong; Wang, Xiaoxiao; Li, Juntao; Chen, Yiqiang; Yang, Wenjun; Zhang, Liying

    2015-02-01

    This study was conducted to investigate the effects of dietary coconut oil as a medium-chain fatty acid (MCFA) source on performance, carcass composition and serum lipids in male broilers. A total of 540, one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The basal diet (i.e., R0) was based on corn and soybean meal and was supplemented with 1.5% soybean oil during the starter phase (d 0 to 21) and 3.0% soybean oil during the grower phase (d 22 to 42). Four experimental diets were formulated by replacing 25%, 50%, 75%, or 100% of the soybean oil with coconut oil (i.e., R25, R50, R75, and R100). Soybean oil and coconut oil were used as sources of long-chain fatty acid and MCFA, respectively. The feeding trial showed that dietary coconut oil had no effect on weight gain, feed intake or feed conversion. On d 42, serum levels of total cholesterol, low-density lipoprotein cholesterol, and low-density lipoprotein/high-density lipoprotein cholesterol were linearly decreased as the coconut oil level increased (pcoconut oil level increased (poil in diets with coconut oil is the optimum level to reduce fat deposition and favorably affect lipid profiles without impairing performance in broilers.

  11. A Diet Rich in Medium-Chain Fatty Acids Improves Systolic Function and Alters the Lipidomic Profile in Patients With Type 2 Diabetes: A Pilot Study.

    Science.gov (United States)

    Airhart, Sophia; Cade, W Todd; Jiang, Hui; Coggan, Andrew R; Racette, Susan B; Korenblat, Kevin; Spearie, Catherine Anderson; Waller, Suzanne; O'Connor, Robert; Bashir, Adil; Ory, Daniel S; Schaffer, Jean E; Novak, Eric; Farmer, Marsha; Waggoner, Alan D; Dávila-Román, Víctor G; Javidan-Nejad, Cylen; Peterson, Linda R

    2016-02-01

    Excessive cardiac long-chain fatty acid (LCFA) metabolism/storage causes cardiomyopathy in animal models of type 2 diabetes. Medium-chain fatty acids (MCFAs) are absorbed and oxidized efficiently. Data in animal models of diabetes suggest MCFAs may benefit the heart. Our objective was to test the effects of an MCFA-rich diet vs an LCFA-rich diet on plasma lipids, cardiac steatosis, and function in patients with type 2 diabetes. This was a double-blind, randomized, 2-week matched-feeding study. The study included ambulatory patients in the general community. Sixteen patients, ages 37-65 years, with type 2 diabetes, an ejection fraction greater than 45%, and no other systemic disease were included. Fourteen days of a diet rich in MCFAs or LCFAs, containing 38% as fat in total, was undertaken. Cardiac steatosis and function were the main outcome measures, with lipidomic changes considered a secondary outcome. The relatively load-independent measure of cardiac contractility, S', improved in the MCFA group (P diet decreased several plasma sphingolipids, ceramide, and acylcarnitines implicated in diabetic cardiomyopathy, and changes in several sphingolipids correlated with improved fasting insulins. Although a diet high in MCFAs does not change cardiac steatosis, our findings suggest that the MCFA-rich diet alters the plasma lipidome and may benefit or at least not harm cardiac function and fasting insulin levels in humans with type 2 diabetes. Larger, long-term studies are needed to further evaluate these effects in less-controlled settings.

  12. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid

    Science.gov (United States)

    Grabska, Justyna; Beć, Krzysztof B.; Ishigaki, Mika; Wójcik, Marek J.; Ozaki, Yukihiro

    2017-10-01

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5 · 10- 4 M in CCl4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000 cm- 1, is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications.

  13. Effects of solubilization of short and medium-chain molecules in the self-assembly of two amphiphilic drugs in solution

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Silvia [Grupo de Fisica de Coloides y Polimeros, Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Santiago de Compostela (Spain)], E-mail: silvia.barbosa@usc.es; Cheema, Mohammad Arif; Siddiq, Mohammad [Department of Chemistry, Quaid-i-Azam University of Islamabad, 45320 (Pakistan); Taboada, Pablo [Grupo de Fisica de Coloides y Polimeros, Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Santiago de Compostela (Spain); Mosquera, Victor [Grupo de Fisica de Coloides y Polimeros, Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Santiago de Compostela (Spain)], E-mail: victor.mosquera@usc.es

    2009-02-15

    The effect of short and medium chain length alcohols ethanol, propanol, and butanol on the thermodynamic properties of aqueous solutions of the ionic amphiphilic antidepressants imipramine and clomipramine hydrochlorides has been investigated at T = 293 K. Critical concentrations of the drugs were obtained from ultrasound velocity measurements. Experimental results have shown a strong dependence of the ultrasound velocity with the alcohol concentration and chain length. Differences in the aggregate properties of both amphiphiles arise from the presence of the extra Cl{sup -} substituent on the ring system of clomipramine. Density and ultrasound measurements have been used to obtain the apparent molar volumes, V{sub {phi}}, and isentropic apparent molar compressibilities, K{sub {phi}}{sub (S)}, for the aqueous drug/water-alcohol solutions. The distribution coefficient of the amount solubilized between water and the aggregates, K, has been determined using an indirect method based on the pseudo-phase model by using apparent molar volume values. This method allows the calculation of the distribution coefficients at concentrations below saturation. The standard molar Gibbs free energy change on transfer from the aqueous to the micellar, {delta}G{sup 0}, phase was calculated from the partition coefficient. The results have highlighted the structural differences between both amphiphiles.

  14. Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: Implications for the mechanisms of lipase action

    International Nuclear Information System (INIS)

    Deckelbaum, R.J.; Hamilton, J.A.; Butbul, E.; Gutman, A.; Moser, A.; Bengtsson-Olivecrona, G.; Olivecrona, T.; Carpentier, Y.A.

    1990-01-01

    To explore how enzyme affinities and enzyme activities regulate hydrolysis of water-insoluble substrates, the authors compared hydrolysis of phospholipid-stabilized emulsions of medium-chain (MCT) versus long-chain triacylglycerols (LCT). Because substrate solubility at the emulsion surface might modulate rates of hydrolysis, the ability of egg yolk phosphatidylcholine to solubilize MCT was examined by NMR spectroscopy. Chemical shift measurements showed that 11 mol % of [ 13 C]carbonyl enriched trioctanoin was incorporated into phospholipid vesicles as a surface component. Line widths of trioctanoin surface peaks were half that of LCT, and relaxation times, T 1 , were also shorter for trioctanoin, showing greater mobility for MCT in phospholipid. In assessing the effects of these differences in solubility on lipolysis, they found that both purified bovine milk lipoprotein lipase and human hepatic lipase hydrolyzed MCT at rates at least 2-fold higher than for LCT. Differences in affinity were also demonstrated in mixed incubations where increasing amounts of LCT emulsion resulted in decreased hydrolysis of MCT emulsions. These results suggest that despite lower enzyme affinity for MCT emulsions, shorter chain triacylglycerols are more readily hydrolyzed by lipoprotein and hepatic lipases than long-chain triacylglycerols because of greater MCT solubility and mobility at the emulsion-water interface

  15. Effects of solubilization of short and medium-chain molecules in the self-assembly of two amphiphilic drugs in solution

    International Nuclear Information System (INIS)

    Barbosa, Silvia; Cheema, Mohammad Arif; Siddiq, Mohammad; Taboada, Pablo; Mosquera, Victor

    2009-01-01

    The effect of short and medium chain length alcohols ethanol, propanol, and butanol on the thermodynamic properties of aqueous solutions of the ionic amphiphilic antidepressants imipramine and clomipramine hydrochlorides has been investigated at T = 293 K. Critical concentrations of the drugs were obtained from ultrasound velocity measurements. Experimental results have shown a strong dependence of the ultrasound velocity with the alcohol concentration and chain length. Differences in the aggregate properties of both amphiphiles arise from the presence of the extra Cl - substituent on the ring system of clomipramine. Density and ultrasound measurements have been used to obtain the apparent molar volumes, V φ , and isentropic apparent molar compressibilities, K φ(S) , for the aqueous drug/water-alcohol solutions. The distribution coefficient of the amount solubilized between water and the aggregates, K, has been determined using an indirect method based on the pseudo-phase model by using apparent molar volume values. This method allows the calculation of the distribution coefficients at concentrations below saturation. The standard molar Gibbs free energy change on transfer from the aqueous to the micellar, ΔG 0 , phase was calculated from the partition coefficient. The results have highlighted the structural differences between both amphiphiles

  16. Medium chain length polyhydroxyalkanoates biosynthesis in Pseudomonas putida mt-2 is enhanced by co-metabolism of glycerol/octanoate or fatty acids mixtures.

    Science.gov (United States)

    Fontaine, Paul; Mosrati, Ridha; Corroler, David

    2017-05-01

    The synthesis of medium chain length polyhydroxyalkanoates (mcl-PHAs) by Pseudomonas putida mt-2 was investigated under nitrogen-rich then deficient conditions with glycerol/octanoate or long-chain fatty acids (LCFAs) as carbon sources. When mixed, glycerol and octanoate were co-assimilated regardless of nitrogen availability but provided that glycerol uptake has been already triggered under non-limiting nutrient conditions. This concomitant consumption allowed to enhance mcl-PHAs accumulation (up to 57% of cell dry weight (CDW)) under both non-limiting and nitrogen deficient conditions. Octanoate then mostly drove anabolism of the polyester with 3-hydroxyoctanoate (3HO) synthesized as the main monomer (83%). If the preferred PHA precursor octanoate was supplied, glycerol was mainly involved in cell growth and/or maintenance but very little in PHA production even under nitrogen starvation. P. putida cells accumulated higher amounts of mcl-PHAs when grown on mixtures of LCFAs compared to LCFAs supplied as single substrate (25% and 9% of CDW, respectively). However, only a weak enrichment of the polyester was observed after transfer of cells in a fresh nitrogen-free medium containing the same combination of LCFAs. Some typical units within the polyester were related to the LCFAs ratio supplied in the medium indicating that tailor-made monomers could be synthesized. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Medium-chain Triglyceride Ketogenic Diet, An Effective Treatment for Drug-resistant Epilepsy and A Comparison with Other Ketogenic Diets

    Directory of Open Access Journals (Sweden)

    Yeou-mei Christiana Liu

    2013-02-01

    Full Text Available The ketogenic diet (KD is one of the most effective therapies for drug-resistant epilepsy. The efficacy of the medium-chain triglyceride KD (MCTKD is as excellent as the classic KD (CKD, which has been documented in several subsequent retrospective, prospective, and randomized studies. MCT oil is more ketogenic than long-chain triglycerides. Therefore, the MCTKD allows more carbohydrate and protein food, which makes the diet more palatable than the CKD. The MCTKD is not based on diet ratios as is the CKD, but uses a percentage of calories from MCT oil to create ketones. There has also been literature which documents the associated gastrointestinal side effects from the MCTKD, such as diarrhea, vomiting, bloating, and cramps. Therefore, the MCTKD has been an underutilized diet therapy for intractable epilepsy among children.The author has used up to >70% MCTKD diet to maximize seizure control with gastrointestinal side effects optimally controlled. As long as health care professionals carefully manage MCTKD, many more patients with epilepsy who are not appropriate for CKD or modified Atkins diet or low glycemic index treatment will benefit from this treatment. A comparison between the MCTKD and other KDs is also discussed.

  18. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade......Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9...... be due to residual enzyme activity as a consequence of the two missense mutations. Treatment with L-carnitine and medium chain triglycerides in the diet did not reduce the attacks of rhabdomyolysis....

  19. Effects of Dietary Coconut Oil as a Medium-chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers

    Directory of Open Access Journals (Sweden)

    Jianhong Wang

    2015-02-01

    Full Text Available This study was conducted to investigate the effects of dietary coconut oil as a medium-chain fatty acid (MCFA source on performance, carcass composition and serum lipids in male broilers. A total of 540, one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The basal diet (i.e., R0 was based on corn and soybean meal and was supplemented with 1.5% soybean oil during the starter phase (d 0 to 21 and 3.0% soybean oil during the grower phase (d 22 to 42. Four experimental diets were formulated by replacing 25%, 50%, 75%, or 100% of the soybean oil with coconut oil (i.e., R25, R50, R75, and R100. Soybean oil and coconut oil were used as sources of long-chain fatty acid and MCFA, respectively. The feeding trial showed that dietary coconut oil had no effect on weight gain, feed intake or feed conversion. On d 42, serum levels of total cholesterol, low-density lipoprotein cholesterol, and low-density lipoprotein/high-density lipoprotein cholesterol were linearly decreased as the coconut oil level increased (p<0.01. Lipoprotein lipase, hepatic lipase, and total lipase activities were linearly increased as the coconut oil level increased (p<0.01. Abdominal fat weight/eviscerated weight (p = 0.05, intermuscular fat width (p<0.01 and subcutaneous fat thickness (p<0.01 showed a significant quadratic relationship, with the lowest value at R75. These results indicated that replacement of 75% of the soybean oil in diets with coconut oil is the optimum level to reduce fat deposition and favorably affect lipid profiles without impairing performance in broilers.

  20. Occurrence, homologue patterns and source apportionment of short- and medium-chain chlorinated paraffins in suburban soils of Shanghai, China.

    Science.gov (United States)

    Wang, Xue-Tong; Xu, Si-Yue; Wang, Xi-Kui; Hu, Bao-Ping; Jia, Hao-Hao

    2017-08-01

    In order to systematically investigate the spatial distribution, homologue profiles, and sources of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in suburban soils in Shanghai, SCCPs and MCCPs in soils were analyzed using gas chromatography coupled with low resolution mass spectrometry in electron capture negative ion (ECNI) mode (GC-ECNI-MS). The CP concentrations in soils were between not detected (ND) - 697 ng g -1 with a median value of 3.52 ng g -1 for SCCPs, and ND - 666 ng g -1 with a median value of 15.3 ng g -1 for MCCPs, respectively. The concentrations of MCCPs in most soils were higher than that of SCCPs. The total CP concentrations (sum of SCCPs and MCCPs) in soils varied from ND to 964 ng g -1 with a median value of 20.5 ng g -1 . The concentration of MCCPs was higher than that of SCCPs in most soils. The levels of SCCPs and MCCPs in suburban soils in Shanghai were at the medium level when compared to other areas around the world. No significant correlation was observed between soil CP concentrations and total organic carbon contents (p > 0.05). For different use type of soils, the median concentrations of CPs in soils were found higher in greenland than that in other areas probably due to busy traffic, sewage sludge application and/or wastewater irrigation. All soils were divided into two groups by hierarchical cluster analysis (HCA) both for SCCPs and MCCPs. Three discharge sources of CPs in suburban soil of Shanghai were identified by PMF model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Marked Synergistic Bactericidal Effects and Mode of Action of Medium-Chain Fatty Acids in Combination with Organic Acids against Escherichia coli O157:H7

    Science.gov (United States)

    Kim, S. A.

    2013-01-01

    The aim of this study was to examine the synergistic bactericidal effects of medium-chain fatty acids (MCFAs; caprylic, capric, and lauric acid) and organic acids (OAs; acetic, lactic, malic, and citric acid) against Escherichia coli O157:H7 and to identify their underlying mechanism(s) of action. E. coli O157:H7 was treated with MCFAs, OAs, or different combinations of MCFAs and OAs. Membrane damage and cell morphology were examined by flow cytometry and transmission electron microscopy, respectively. Combined treatment resulted in an additional log-unit reduction compared with the sum of the reductions obtained after individual treatment. For example, caprylic acid (1.0 mM, or 0.016%) and citric acid (1.0 mM, or 0.012%) alone showed negligible bactericidal effects (0.30- and 0.06-log-unit reductions, respectively); however, a marked synergistic effect (>7.15-log-unit reduction) was observed when the two were combined. Although flow cytometry and microscopic analyses of bacteria treated with individual MCFAs and OAs showed evidence of membrane disruption, the bacteria were still able to form colonies; thus, the cell damage was recoverable. In contrast, cells exposed to combined treatments showed clear membrane disintegration and/or cell death (irreversible damage). The mechanism underlying the antimicrobial effects of combined treatment with MCFAs or OAs may involve disruption of the bacterial membrane, which then facilitates the entry of other antimicrobial compounds into the cytoplasm. The main advantage of combined treatment with very low concentrations of natural antimicrobial compounds is that it is very cost-effective. Thus, this approach may be an alternative to more conventional antimicrobial treatments, such as those currently used in public health, medical centers, and the food industry. PMID:23956396

  2. A salting out system for improving the efficiency of the headspace solid-phase microextraction of short and medium chain free fatty acids.

    Science.gov (United States)

    Fiorini, Dennis; Pacetti, Deborah; Gabbianelli, Rosita; Gabrielli, Serena; Ballini, Roberto

    2015-08-28

    Given the importance of short and medium chain free fatty acids (FFAs) in several fields, this study sought to improve the extraction efficiency of the solid-phase microextraction (SPME) of FFAs by evaluating salting out agents that appear promising for this application. The salts ammonium sulfate ((NH4)2SO4) and sodium dihydrogen phosphate (NaH2PO4) were tried on their own and in combination (3.7/1), in four different total amounts, as salting out agents in the headspace-SPME-gas chromatographic (HS-SPME-GC) analysis of the FFAs from acetic acid (C2) to decanoic acid (C10). Their performance in a model system of an aqueous standard mixture of FFAs at a pH of 3.5 was compared to that of the more commonly used sodium chloride (NaCl) and sodium sulfate (Na2SO4). All of the salts and salt systems evaluated, in proper amount, gave improved results compared to NaCl (saturated), which instead gave interesting results only for the least volatile FFAs C8 and C10. For C2-C6, the salt system that gave the best results compared to NaCl was (NH4)2SO4/NaH2PO4, in the highest of the four amounts evaluated, with factor increases between 1.2 and 4.1-fold, and NaH2PO4, between 1.0 and 4.3-fold. The SPME extraction efficiency given by the mixture (NH4)2SO4/NaH2PO4 was also assessed on biological and food samples, confirming that overall it performed better than NaCl. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Transcriptome analysis of Pseudomonas mediterranea and P. corrugata plant pathogens during accumulation of medium-chain-length PHAs by glycerol bioconversion.

    Science.gov (United States)

    Licciardello, Grazia; Ferraro, Rosario; Russo, Marcella; Strozzi, Francesco; Catara, Antonino F; Bella, Patrizia; Catara, Vittoria

    2017-07-25

    Pseudomonas corrugata and P. mediterranea are soil inhabitant bacteria, generally living as endophytes on symptomless plants and bare soil, but also capable of causing plant diseases. They share a similar genome size and a high proteome similarity. P. corrugata produces many biomolecules which play an important role in bacterial cell survival and fitness. Both species produce different medium-chain-length PHAs (mcl-PHAs) from the bioconversion of glycerol to a transparent film in P. mediterranea and a sticky elastomer in P. corrugata. In this work, using RNA-seq we investigated the transcriptional profiles of both bacteria at the early stationary growth phase with glycerol as the carbon source. Quantitative analysis of P. mediterranea transcripts versus P. corrugata revealed that 1756 genes were differentially expressed. A total of 175 genes were significantly upregulated in P. mediterranea, while 217 were downregulated. The largest group of upregulated genes was related to transport systems and stress response, energy and central metabolism, and carbon metabolism. Expression levels of most genes coding for enzymes related to PHA biosynthesis and central metabolic pathways showed no differences or only slight variations in pyruvate metabolism. The most relevant result was the significantly increased expression in P. mediterranea of genes involved in alginate production, an important exopolysaccharide, which in other Pseudomonas spp. plays a key role as a virulence factor or in stress tolerance and shows many industrial applications. In conclusion, the results provide useful information on the co-production of mcl-PHAs and alginate from glycerol as carbon source by P. mediterranea in the design of new strategies of genetic regulation to improve the yield of bioproducts or bacterial fitness. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440

    Directory of Open Access Journals (Sweden)

    Le Meur Sylvaine

    2012-08-01

    Full Text Available Abstract Background Pseudomonas putida KT2440 is able to synthesize large amounts of medium-chain-length polyhydroxyalkanoates (mcl-PHAs. To reduce the substrate cost, which represents nearly 50% of the total PHA production cost, xylose, a hemicellulose derivate, was tested as the growth carbon source in an engineered P. putida KT2440 strain. Results The genes encoding xylose isomerase (XylA and xylulokinase (XylB from Escherichia coli W3110 were introduced into P. putida KT2440. The recombinant KT2440 exhibited a XylA activity of 1.47 U and a XylB activity of 0.97 U when grown on a defined medium supplemented with xylose. The cells reached a maximum specific growth rate of 0.24 h-1 and a final cell dry weight (CDW of 2.5 g L-1 with a maximal yield of 0.5 g CDW g-1 xylose. Since no mcl-PHA was accumulated from xylose, mcl-PHA production can be controlled by the addition of fatty acids leading to tailor-made PHA compositions. Sequential feeding strategy was applied using xylose as the growth substrate and octanoic acid as the precursor for mcl-PHA production. In this way, up to 20% w w-1 of mcl-PHA was obtained. A yield of 0.37 g mcl-PHA per g octanoic acid was achieved under the employed conditions. Conclusions Sequential feeding of relatively cheap carbohydrates and expensive fatty acids is a practical way to achieve more cost-effective mcl-PHA production. This study is the first reported attempt to produce mcl-PHA by using xylose as the growth substrate. Further process optimizations to achieve higher cell density and higher productivity of mcl-PHA should be investigated. These scientific exercises will undoubtedly contribute to the economic feasibility of mcl-PHA production from renewable feedstock.

  5. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid.

    Science.gov (United States)

    Grabska, Justyna; Beć, Krzysztof B; Ishigaki, Mika; Wójcik, Marek J; Ozaki, Yukihiro

    2017-10-05

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5·10 -4 M in CCl 4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000cm -1 , is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of a fat spread enriched with medium-chain triacylglycerols and a special fatty acid-micronutrient combination on cardiometabolic risk factors in overweight patients with diabetes

    Directory of Open Access Journals (Sweden)

    Bitterlich Norman

    2011-04-01

    Full Text Available Abstract Background Medium-chain triacylglycerols (MCT, omega-3 polyunsaturated fatty acids (n-3-PUFA and micronutrients may be useful for weight and cardiometabolic risk management. However, studies analyzing the effect of a combination of both in individuals at increased cardiometabolic risk are lacking. Therefore, this randomized, controlled, double-blind study investigated the effect of a fat spread enriched with two different doses of MCT and a special long-chain fatty acid-micronutrient combination on cardiometabolic risk factors in overweight diabetic patients. Methods Fifty-four patients received either a fat spread with 6 g/d MCT (MCT30% or 1.2 g/d (MCT6%. Forty-three completed the study. Analysis was performed according to the median of MCT intake (supplemented and food-derived MCT. Clinical, anthropometric, blood, 24 h-urine parameters and dietary intake were assessed at baseline and after 12 weeks. Results Total MCT intake > 7 g/d (MCT > 7 group significantly reduced waist circumference (WC by 1.81 ± 2.69 cm, whereas ≤ 7 g/d MCT (MCT ≤ 7 group increased WC by 0.32 ± 3.03 cm (p = 0.027, which was supported by a change in waist-to-height ratio (WHtR (p = 0.018. Fasting serum triglycerides (TG increased in both groups over time due to dietary habits. In contrast, diabetic metabolic situation and urinary albumin excretion did not alter. Urinary pH differed significantly between groups after 12 weeks. Conclusion An intake of >7 g/d MCT reduced WC in overweight diabetics, whereas the increase in the intake of fatty acids may have worsened fasting TG. Therefore, the suitability of a fat for nutrient enrichment remains to be challenged, and further studies in low-fat matrices are desirable.

  7. Interstitial deletion of 1p22.2p31.1 and medium-chain acyl-CoA dehydrogenase deficiency in a patient with global developmental delay

    DEFF Research Database (Denmark)

    Maegawa, Gustavo H B; Poplawski, Nicola K; Andresen, Brage Storstein

    2008-01-01

    We report on a 6-year-old girl who presented at 6 months of age with seizures, delayed psychomotor development and mild facial dysmorphism. A small muscular ventricular septal defect was documented on echocardiogram and brain MRI showed a frontal brain anomaly. Urine organic acid analysis revealed......) missense mutation in exon 3; however, only the mother was found to be a carrier of this novel missense mutation. This finding along with non-regressive developmental delay prompted further karyotype and genomic investigations. An interstitial deletion of chromosome 1 was detected by repeat G-banding: 46,XX...... of interstitial deletions with breakpoints of 1p22 and 1p31/32, including the patient in this report, indicate a variable phenotype. Thus, although G-band breakpoints are similar, common breakpoints for these alterations are unlikely. This is the first report of a patient with fatty acid oxidation defect caused...

  8. A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate

    Directory of Open Access Journals (Sweden)

    Zinn Manfred

    2011-04-01

    Full Text Available Abstract Background The substitution of plastics based on fossil raw material by biodegradable plastics produced from renewable resources is of crucial importance in a context of oil scarcity and overflowing plastic landfills. One of the most promising organisms for the manufacturing of medium-chain-length polyhydroxyalkanoates (mcl-PHA is Pseudomonas putida KT2440 which can accumulate large amounts of polymer from cheap substrates such as glucose. Current research focuses on enhancing the strain production capacity and synthesizing polymers with novel material properties. Many of the corresponding protocols for strain engineering rely on the rifampicin-resistant variant, P. putida KT2442. However, it remains unclear whether these two strains can be treated as equivalent in terms of mcl-PHA production, as the underlying antibiotic resistance mechanism involves a modification in the RNA polymerase and thus has ample potential for interfering with global transcription. Results To assess PHA production in P. putida KT2440 and KT2442, we characterized the growth and PHA accumulation on three categories of substrate: PHA-related (octanoate, PHA-unrelated (gluconate and poor PHA substrate (citrate. The strains showed clear differences of growth rate on gluconate and citrate (reduction for KT2442 > 3-fold and > 1.5-fold, respectively but not on octanoate. In addition, P. putida KT2442 PHA-free biomass significantly decreased after nitrogen depletion on gluconate. In an attempt to narrow down the range of possible reasons for this different behavior, the uptake of gluconate and extracellular release of the oxidized product 2-ketogluconate were measured. The results suggested that the reason has to be an inefficient transport or metabolization of 2-ketogluconate while an alteration of gluconate uptake and conversion to 2-ketogluconate could be excluded. Conclusions The study illustrates that the recruitment of a pleiotropic mutation, whose effects might

  9. Characterization of short- and medium-chain chlorinated paraffins in outdoor/indoor PM10/PM2.5/PM1.0 in Beijing, China.

    Science.gov (United States)

    Huang, Huiting; Gao, Lirong; Xia, Dan; Qiao, Lin; Wang, Runhua; Su, Guijin; Liu, Wenbin; Liu, Guorui; Zheng, Minghui

    2017-06-01

    Persistent organic pollutants (POPs) were listed in the Stockholm Convention, because of their adverse health effects, persistence, bioaccumulation and ubiquitous presence in the environment. Short chain chlorinated paraffins (SCCPs), chlorinated derivatives of n-alkanes, have been listed as candidate POPs under Stockholm Convention. Inhalation uptake was an important exposure pathway for non-occupational adult human and the pollution of particle matter has caused great concern. There are some studies focused on POPs such as polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans and polybrominated diphenyl ethers in different size particles. However, there were no studies that discussed CP concentrations in particulate matter (PM) with different sizes. In this study, a total of 30 PM samples were collected both outdoors and indoors at a sampling site in Beijing. These samples were used to investigate the concentrations and distributions of SCCPs and medium chain chlorinated paraffins (MCCPs) in PM fractions of different sizes, and to evaluate inhalation exposure risks. The results showed that the average SCCPs and MCCPs in the outdoor PM 10 were 23.9 and 3.6 ng m -3 , while the mean values in indoor were 61.1 and 6.9 ng m -3 , respectively. The levels of SCCPs and MCCPs in indoor and outdoor were relatively high. SCCP and MCCP concentrations in the indoor PM 10 /PM 2.5 /PM 1.0 samples were higher than the corresponding values in the outdoor, because of the using of some products containing CPs in the indoors, like paints and coatings, leather and rubber products. In both outdoor and indoor air, CPs are mainly associated with particles ≤2.5 μm in diameter. The main homolog groups for both SCCPs and MCCPs were C 10-11 Cl 7-8 . It is assumed that SCCPs in the outdoor and indoor PM samples may mainly derive from the production and use of CP-42 and CP-52. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Evaluation of the use of esterified fatty acid oils enriched in medium-chain fatty acids in weight loss diets for dogs.

    Science.gov (United States)

    Fragua, V; Barroeta, A C; Manzanilla, E G; Codony, R; Villaverde, C

    2015-04-01

    Esterified fatty acid oils (EAOs) are obtained from esterification of vegetable acid oils with glycerol. These fat sources have the same fatty acid (FA) composition as their respective native oils but new chemical properties. Several studies have confirmed the potential of medium-chain fatty acids (MCFA) to reduce fat mass (FM) in humans and rodents. This study investigates the use of EAOs with different MCFA proportions on food preferences, digestibility and weight loss management in dogs. A basal diet was supplemented with 8% of three different fat sources: C0: soya bean-canola EAO, C20: soya bean-canola (80%) coconut (20%) EAO and C40: soya bean-canola (60%) coconut (40%) EAO. Food preference of these EAOs was tested using a two-pan preference test. Dogs presented a higher daily food intake of C20 and C40 compared to C0 (C20: 155 ± 18.6 g vs. C0: 17 ± 7.0 g, p < 0.001; C40: 117 ± 13.9 g vs. C0: 28 ± 10.5 g, p < 0.05 respectively). Also, the digestibility of the three experimental diets was tested. C20 and C40 showed higher ether extract, total FA and saturated FA digestibilities (p < 0.05) than C0 diet. Lastly, the three diets were investigated in a 14-week weight loss study, following 16 weeks of ad libitum feeding to induce overweight condition. Body weight (BW) reduction was lower (C0: 20.1 ± 2.32%, C20: 14.6 ± 1.43% and C40: 15.7 ± 1.23%, p < 0.05) and FM was higher (FM, 18.7 ± 3.42%, 27.9 ± 3.90% and 28.2 ± 2.88% for C0, C20 and C40, respectively, p < 0.05) for diets C20 and C40 than for C0. Feeding diets with MCFA at these inclusion levels to experimentally overweight dogs during 14 weeks do not result in faster weight loss compared to unsaturated long-chain FA. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  11. Sodium salt medium-chain fatty acids and Bacillus-based probiotic strategies to improve growth and intestinal health of gilthead sea bream (Sparus aurata

    Directory of Open Access Journals (Sweden)

    Paula Simó-Mirabet

    2017-12-01

    Full Text Available Background The increased demand for fish protein has led to the intensification of aquaculture practices which are hampered by nutritional and health factors affecting growth performance. To solve these problems, antibiotics have been used for many years in the prevention, control and treatment against disease as well as growth promoters to improve animal performance. Nowadays, the use of antibiotics in the European Union and other countries has been completely or partially banned as a result of the existence of antibiotic cross-resistance. Therefore, a number of alternatives, including enzymes, prebiotics, probiotics, phytonutrients and organic acids used alone or in combination have been proposed for the improvement of immunological state, growth performance and production in livestock animals. The aim of the present study was to evaluate two commercially available feed additives, one based on medium-chain fatty acids (MCFAs from coconut oil and another with a Bacillus-based probiotic, in gilthead sea bream (GSB, Sparus aurata, a marine farmed fish of high value in the Mediterranean aquaculture. Methods The potential benefits of adding two commercial feed additives on fish growth performance and intestinal health were assessed in a 100-days feeding trial. The experimental diets (D2 and D3 were prepared by supplementing a basal diet (D1 with MCFAs in the form of a sodium salt of coconut fatty acid distillate (DICOSAN®; Norel, Madrid, Spain, rich on C-12, added at 0.3% (D2 or with the probiotic Bacillus amyloliquefaciens CECT 5940, added at 0.1% (D3. The study integrated data on growth performance, blood biochemistry, histology and intestinal gene expression patterns of selected markers of intestinal function and architecture. Results MCFAs in the form of a coconut oil increased feed intake, growth rates and the surface of nutrient absorption, promoting the anabolic action of the somatotropic axis. The probiotic (D3 induced anti

  12. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides

    Directory of Open Access Journals (Sweden)

    Voelker Hans

    2008-04-01

    Full Text Available Abstract Background Among the most prominent metabolic alterations in cancer cells are the increase in glucose consumption and the conversion of glucose to lactic acid via the reduction of pyruvate even in the presence of oxygen. This phenomenon, known as aerobic glycolysis or the Warburg effect, may provide a rationale for therapeutic strategies that inhibit tumour growth by administration of a ketogenic diet with average protein but low in carbohydrates and high in fat enriched with omega-3 fatty acids and medium-chain triglycerides (MCT. Methods Twenty-four female NMRI nude mice were injected subcutaneously with tumour cells of the gastric adenocarcinoma cell line 23132/87. The animals were then randomly split into two feeding groups and fed either a ketogenic diet (KD group; n = 12 or a standard diet (SD group; n = 12 ad libitum. Experiments were ended upon attainment of the target tumor volume of 600 mm3 to 700 mm3. The two diets were compared based on tumour growth and survival time (interval between tumour cell injection and attainment of target tumour volume. Results The ketogenic diet was well accepted by the KD mice. The tumour growth in the KD group was significantly delayed compared to that in the SD group. Tumours in the KD group reached the target tumour volume at 34.2 ± 8.5 days versus only 23.3 ± 3.9 days in the SD group. After day 20, tumours in the KD group grew faster although the differences in mean tumour growth continued significantly. Importantly, they revealed significantly larger necrotic areas than tumours of the SD group and the areas with vital tumour cells appear to have had fewer vessels than tumours of the SD group. Viable tumour cells in the border zone surrounding the necrotic areas of tumours of both groups exhibited a glycolytic phenotype with expression of glucose transporter-1 and transketolase-like 1 enzyme. Conclusion Application of an unrestricted ketogenic diet enriched with omega-3 fatty acids and MCT

  13. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides.

    Science.gov (United States)

    Otto, Christoph; Kaemmerer, Ulrike; Illert, Bertram; Muehling, Bettina; Pfetzer, Nadja; Wittig, Rainer; Voelker, Hans Ullrich; Thiede, Arnulf; Coy, Johannes F

    2008-04-30

    Among the most prominent metabolic alterations in cancer cells are the increase in glucose consumption and the conversion of glucose to lactic acid via the reduction of pyruvate even in the presence of oxygen. This phenomenon, known as aerobic glycolysis or the Warburg effect, may provide a rationale for therapeutic strategies that inhibit tumour growth by administration of a ketogenic diet with average protein but low in carbohydrates and high in fat enriched with omega-3 fatty acids and medium-chain triglycerides (MCT). Twenty-four female NMRI nude mice were injected subcutaneously with tumour cells of the gastric adenocarcinoma cell line 23132/87. The animals were then randomly split into two feeding groups and fed either a ketogenic diet (KD group; n = 12) or a standard diet (SD group; n = 12) ad libitum. Experiments were ended upon attainment of the target tumor volume of 600 mm3 to 700 mm3. The two diets were compared based on tumour growth and survival time (interval between tumour cell injection and attainment of target tumour volume). The ketogenic diet was well accepted by the KD mice. The tumour growth in the KD group was significantly delayed compared to that in the SD group. Tumours in the KD group reached the target tumour volume at 34.2 +/- 8.5 days versus only 23.3 +/- 3.9 days in the SD group. After day 20, tumours in the KD group grew faster although the differences in mean tumour growth continued significantly. Importantly, they revealed significantly larger necrotic areas than tumours of the SD group and the areas with vital tumour cells appear to have had fewer vessels than tumours of the SD group. Viable tumour cells in the border zone surrounding the necrotic areas of tumours of both groups exhibited a glycolytic phenotype with expression of glucose transporter-1 and transketolase-like 1 enzyme. Application of an unrestricted ketogenic diet enriched with omega-3 fatty acids and MCT delayed tumour growth in a mouse xenograft model. Further

  14. Quantitative 'Omics Analyses of Medium Chain Length Polyhydroxyalkanaote Metabolism in Pseudomonas putida LS46 Cultured with Waste Glycerol and Waste Fatty Acids.

    Science.gov (United States)

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V; Zhang, Xiangli; Fristensky, Brian; Cicek, Nazim; Sparling, Richard; Levin, David B

    2015-01-01

    Transcriptomes and proteomes of Pseudomonas putida LS46 cultured with biodiesel-derived waste glycerol or waste free fatty acids, as sole carbon sources, were compared under conditions that were either permissive or non-permissive for synthesis of medium chain length polyhydroxyalkanoates (mcl-PHA). The objectives of this study were to elucidate mechanisms that influence activation of biopolymer synthesis, intra-cellular accumulation, and monomer composition, and determine if these were physiologically specific to the carbon sources used for growth of P. putida LS46. Active mcl-PHA synthesis by P. putida LS46 was associated with high expression levels of key mcl-PHA biosynthesis genes and/or gene products including monomer-supplying proteins, PHA synthases, and granule-associated proteins. 'Omics data suggested that expression of these genes were regulated by different genetic mechanisms in P. putida LS46 cells in different physiological states, when cultured on the two waste carbon sources. Optimal polymer production by P. putida LS46 was primarily limited by less efficient glycerol metabolism during mcl-PHA synthesis on waste glycerol. Mapping the 'Omics data to the mcl-PHA biosynthetic pathway revealed significant variations in gene expression, primarily involved in: 1) glycerol transportation; 2) enzymatic reactions that recycle reducing equivalents and produce key mcl-PHA biosynthesis pathway intermediates (e.g. NADH/NADPH, acetyl-CoA). Active synthesis of mcl-PHAs was observed during exponential phase in cultures with waste free fatty acids, and was associated with the fatty acid beta-oxidation pathway. A putative Thioesterase in the beta-oxidation pathway that may regulate the level of fatty acid beta-oxidation intermediates, and thus carbon flux to mcl-PHA biosynthesis, was highly up-regulated. Finally, the data suggested that differences in expression of selected fatty acid metabolism and mcl-PHA monomer-supplying enzymes may play a role in determining the

  15. Quantitative ‘Omics Analyses of Medium Chain Length Polyhydroxyalkanaote Metabolism in Pseudomonas putida LS46 Cultured with Waste Glycerol and Waste Fatty Acids

    Science.gov (United States)

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V.; Zhang, Xiangli; Fristensky, Brian; Cicek, Nazim; Sparling, Richard; Levin, David. B.

    2015-01-01

    Transcriptomes and proteomes of Pseudomonas putida LS46 cultured with biodiesel-derived waste glycerol or waste free fatty acids, as sole carbon sources, were compared under conditions that were either permissive or non-permissive for synthesis of medium chain length polyhydroxyalkanoates (mcl-PHA). The objectives of this study were to elucidate mechanisms that influence activation of biopolymer synthesis, intra-cellular accumulation, and monomer composition, and determine if these were physiologically specific to the carbon sources used for growth of P. putida LS46. Active mcl-PHA synthesis by P. putida LS46 was associated with high expression levels of key mcl-PHA biosynthesis genes and/or gene products including monomer-supplying proteins, PHA synthases, and granule-associated proteins. ‘Omics data suggested that expression of these genes were regulated by different genetic mechanisms in P. putida LS46 cells in different physiological states, when cultured on the two waste carbon sources. Optimal polymer production by P. putida LS46 was primarily limited by less efficient glycerol metabolism during mcl-PHA synthesis on waste glycerol. Mapping the ‘Omics data to the mcl-PHA biosynthetic pathway revealed significant variations in gene expression, primarily involved in: 1) glycerol transportation; 2) enzymatic reactions that recycle reducing equivalents and produce key mcl-PHA biosynthesis pathway intermediates (e.g. NADH/NADPH, acetyl-CoA). Active synthesis of mcl-PHAs was observed during exponential phase in cultures with waste free fatty acids, and was associated with the fatty acid beta-oxidation pathway. A putative Thioesterase in the beta-oxidation pathway that may regulate the level of fatty acid beta-oxidation intermediates, and thus carbon flux to mcl-PHA biosynthesis, was highly up-regulated. Finally, the data suggested that differences in expression of selected fatty acid metabolism and mcl-PHA monomer-supplying enzymes may play a role in determining

  16. Quantitative 'Omics Analyses of Medium Chain Length Polyhydroxyalkanaote Metabolism in Pseudomonas putida LS46 Cultured with Waste Glycerol and Waste Fatty Acids.

    Directory of Open Access Journals (Sweden)

    Jilagamazhi Fu

    Full Text Available Transcriptomes and proteomes of Pseudomonas putida LS46 cultured with biodiesel-derived waste glycerol or waste free fatty acids, as sole carbon sources, were compared under conditions that were either permissive or non-permissive for synthesis of medium chain length polyhydroxyalkanoates (mcl-PHA. The objectives of this study were to elucidate mechanisms that influence activation of biopolymer synthesis, intra-cellular accumulation, and monomer composition, and determine if these were physiologically specific to the carbon sources used for growth of P. putida LS46. Active mcl-PHA synthesis by P. putida LS46 was associated with high expression levels of key mcl-PHA biosynthesis genes and/or gene products including monomer-supplying proteins, PHA synthases, and granule-associated proteins. 'Omics data suggested that expression of these genes were regulated by different genetic mechanisms in P. putida LS46 cells in different physiological states, when cultured on the two waste carbon sources. Optimal polymer production by P. putida LS46 was primarily limited by less efficient glycerol metabolism during mcl-PHA synthesis on waste glycerol. Mapping the 'Omics data to the mcl-PHA biosynthetic pathway revealed significant variations in gene expression, primarily involved in: 1 glycerol transportation; 2 enzymatic reactions that recycle reducing equivalents and produce key mcl-PHA biosynthesis pathway intermediates (e.g. NADH/NADPH, acetyl-CoA. Active synthesis of mcl-PHAs was observed during exponential phase in cultures with waste free fatty acids, and was associated with the fatty acid beta-oxidation pathway. A putative Thioesterase in the beta-oxidation pathway that may regulate the level of fatty acid beta-oxidation intermediates, and thus carbon flux to mcl-PHA biosynthesis, was highly up-regulated. Finally, the data suggested that differences in expression of selected fatty acid metabolism and mcl-PHA monomer-supplying enzymes may play a role in

  17. A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate

    Science.gov (United States)

    2011-01-01

    Background The substitution of plastics based on fossil raw material by biodegradable plastics produced from renewable resources is of crucial importance in a context of oil scarcity and overflowing plastic landfills. One of the most promising organisms for the manufacturing of medium-chain-length polyhydroxyalkanoates (mcl-PHA) is Pseudomonas putida KT2440 which can accumulate large amounts of polymer from cheap substrates such as glucose. Current research focuses on enhancing the strain production capacity and synthesizing polymers with novel material properties. Many of the corresponding protocols for strain engineering rely on the rifampicin-resistant variant, P. putida KT2442. However, it remains unclear whether these two strains can be treated as equivalent in terms of mcl-PHA production, as the underlying antibiotic resistance mechanism involves a modification in the RNA polymerase and thus has ample potential for interfering with global transcription. Results To assess PHA production in P. putida KT2440 and KT2442, we characterized the growth and PHA accumulation on three categories of substrate: PHA-related (octanoate), PHA-unrelated (gluconate) and poor PHA substrate (citrate). The strains showed clear differences of growth rate on gluconate and citrate (reduction for KT2442 > 3-fold and > 1.5-fold, respectively) but not on octanoate. In addition, P. putida KT2442 PHA-free biomass significantly decreased after nitrogen depletion on gluconate. In an attempt to narrow down the range of possible reasons for this different behavior, the uptake of gluconate and extracellular release of the oxidized product 2-ketogluconate were measured. The results suggested that the reason has to be an inefficient transport or metabolization of 2-ketogluconate while an alteration of gluconate uptake and conversion to 2-ketogluconate could be excluded. Conclusions The study illustrates that the recruitment of a pleiotropic mutation, whose effects might reach deep into

  18. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides

    International Nuclear Information System (INIS)

    Otto, Christoph; Kaemmerer, Ulrike; Illert, Bertram; Muehling, Bettina; Pfetzer, Nadja; Wittig, Rainer; Voelker, Hans Ullrich; Thiede, Arnulf; Coy, Johannes F

    2008-01-01

    Among the most prominent metabolic alterations in cancer cells are the increase in glucose consumption and the conversion of glucose to lactic acid via the reduction of pyruvate even in the presence of oxygen. This phenomenon, known as aerobic glycolysis or the Warburg effect, may provide a rationale for therapeutic strategies that inhibit tumour growth by administration of a ketogenic diet with average protein but low in carbohydrates and high in fat enriched with omega-3 fatty acids and medium-chain triglycerides (MCT). Twenty-four female NMRI nude mice were injected subcutaneously with tumour cells of the gastric adenocarcinoma cell line 23132/87. The animals were then randomly split into two feeding groups and fed either a ketogenic diet (KD group; n = 12) or a standard diet (SD group; n = 12) ad libitum. Experiments were ended upon attainment of the target tumor volume of 600 mm 3 to 700 mm 3 . The two diets were compared based on tumour growth and survival time (interval between tumour cell injection and attainment of target tumour volume). The ketogenic diet was well accepted by the KD mice. The tumour growth in the KD group was significantly delayed compared to that in the SD group. Tumours in the KD group reached the target tumour volume at 34.2 ± 8.5 days versus only 23.3 ± 3.9 days in the SD group. After day 20, tumours in the KD group grew faster although the differences in mean tumour growth continued significantly. Importantly, they revealed significantly larger necrotic areas than tumours of the SD group and the areas with vital tumour cells appear to have had fewer vessels than tumours of the SD group. Viable tumour cells in the border zone surrounding the necrotic areas of tumours of both groups exhibited a glycolytic phenotype with expression of glucose transporter-1 and transketolase-like 1 enzyme. Application of an unrestricted ketogenic diet enriched with omega-3 fatty acids and MCT delayed tumour growth in a mouse xenograft model. Further

  19. Aldehyde dehydrogenases and cell proliferation.

    Science.gov (United States)

    Muzio, G; Maggiora, M; Paiuzzi, E; Oraldi, M; Canuto, R A

    2012-02-15

    Aldehyde dehydrogenases (ALDHs) oxidize aldehydes to the corresponding carboxylic acids using either NAD or NADP as a coenzyme. Aldehydes are highly reactive aliphatic or aromatic molecules that play an important role in numerous physiological, pathological, and pharmacological processes. ALDHs have been discovered in practically all organisms and there are multiple isoforms, with multiple subcellular localizations. More than 160 ALDH cDNAs or genes have been isolated and sequenced to date from various sources, including bacteria, yeast, fungi, plants, and animals. The eukaryote ALDH genes can be subdivided into several families; the human genome contains 19 known ALDH genes, as well as many pseudogenes. Noteworthy is the fact that elevated activity of various ALDHs, namely ALDH1A2, ALDH1A3, ALDH1A7, ALDH2*2, ALDH3A1, ALDH4A1, ALDH5A1, ALDH6, and ALDH9A1, has been observed in normal and cancer stem cells. Consequently, ALDHs not only may be considered markers of these cells, but also may well play a functional role in terms of self-protection, differentiation, and/or expansion of stem cell populations. The ALDH3 family includes enzymes able to oxidize medium-chain aliphatic and aromatic aldehydes, such as peroxidic and fatty aldehydes. Moreover, these enzymes also have noncatalytic functions, including antioxidant functions and some structural roles. The gene of the cytosolic form, ALDH3A1, is localized on chromosome 17 in human beings and on the 11th and 10th chromosome in the mouse and rat, respectively. ALDH3A1 belongs to the phase II group of drug-metabolizing enzymes and is highly expressed in the stomach, lung, keratinocytes, and cornea, but poorly, if at all, in normal liver. Cytosolic ALDH3 is induced by polycyclic aromatic hydrocarbons or chlorinated compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, in rat liver cells and increases during carcinogenesis. It has been observed that this increased activity is directly correlated with the degree of

  20. Acquired multiple Acyl-CoA dehydrogenase deficiency in 10 horses with atypical myopathy.

    Science.gov (United States)

    Westermann, C M; Dorland, L; Votion, D M; de Sain-van der Velden, M G M; Wijnberg, I D; Wanders, R J A; Spliet, W G M; Testerink, N; Berger, R; Ruiter, J P N; van der Kolk, J H

    2008-05-01

    The aim of the current study was to assess lipid metabolism in horses with atypical myopathy. Urine samples from 10 cases were subjected to analysis of organic acids, glycine conjugates, and acylcarnitines revealing increased mean excretion of lactic acid, ethylmalonic acid, 2-methylsuccinic acid, butyrylglycine, (iso)valerylglycine, hexanoylglycine, free carnitine, C2-, C3-, C4-, C5-, C6-, C8-, C8:1-, C10:1-, and C10:2-carnitine as compared with 15 control horses (12 healthy and three with acute myopathy due to other causes). Analysis of plasma revealed similar results for these predominantly short-chain acylcarnitines. Furthermore, measurement of dehydrogenase activities in lateral vastus muscle from one horse with atypical myopathy indeed showed deficiencies of short-chain acyl-CoA dehydrogenase (0.66 as compared with 2.27 and 2.48 in two controls), medium-chain acyl-CoA dehydrogenase (0.36 as compared with 4.31 and 4.82 in two controls) and isovaleryl-CoA dehydrogenase (0.74 as compared with 1.43 and 1.61 nmol min(-1) mg(-1) in two controls). A deficiency of several mitochondrial dehydrogenases that utilize flavin adenine dinucleotide as cofactor including the acyl-CoA dehydrogenases of fatty acid beta-oxidation, and enzymes that degrade the CoA-esters of glutaric acid, isovaleric acid, 2-methylbutyric acid, isobutyric acid, and sarcosine was suspected in 10 out of 10 cases as the possible etiology for a highly fatal and prevalent toxic equine muscle disease similar to the combined metabolic derangements seen in human multiple acyl-CoA dehydrogenase deficiency also known as glutaric acidemia type II.

  1. Alcohol dehydrogenase, SDR and MDR structural stages, present update and altered era.

    Science.gov (United States)

    Jörnvall, Hans; Landreh, Michael; Östberg, Linus J

    2015-06-05

    It is now about half a century since molecular research on alcohol dehydrogenase (ADH), short-chain dehydrogenase/reductase (SDR) and medium-chain dehydrogenase/reductase (MDR) started. During this time, at least four stages of research can be distinguished, which led to many ADH, SDR and MDR structures from which their origins could be traced. An introductory summary of these stages is given, followed by a current update on the now known structures, including the present pattern of mammalian MDR-ADH enzymes into six classes and their evolutionary relationships. In spite of the wide spread in evolutionary changes from the "constant" class III to the more "variable" other classes, the change in class V (only confirmed as a transcript in humans) and class VI (absent in humans) are also restricted. Such spread in variability is visible also in other dehydrogenases, but not always so restricted in other co-evolving proteins we have studied. Finally, the shift in era of present ADH research is highlighted, as well as levels of likely future continuation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanse and hexadecanol metabolism

    International Nuclear Information System (INIS)

    Singer, M.E.; Finnerty, W.R.

    1985-01-01

    Multiple alcohol dehydrogenases (ADH) were demonstrated in Acinetobacter sp. strain HO1-N. ADH-A and ADH-B were distinguished on the basis of electrophoretic mobility, pyridine nucleotide cofactor requirement, and substrate specificity. ADH-A is a soluble, NAD-linked, inducible ethanol dehydrogenase (EDH). An ethanol-negative mutant (Eth1) was isolated which contained 6.5% of wild-type EDH activity and was deficient in ADH-A. Eth1 exhibited normal growth on hexadecane and hexadecanol. A second ethanol-negative mutant (Eth3) was acetaldehyde dehydrogenase (ALDH) deficient, having 12.5% of wild-type ALDH activity. Eth3 had threefold-higher EDH activity than the wild-type strain. ALDH is a soluble, NAD-linked, ethanol-inducible enzyme. Eth3 exhibited normal growth on hexadecane, hexadecanol, and fatty aldehyde. ADH-B is soluble, constitutive, NADP-linked ADH which was active with medium-chain-length alcohols. Hexadecanol dehydrogenase (HDH), a soluble and membrane-bound, NAD-linked ADH, was induced 5- to 11-fold by growth on hexadecane or hexadecanol. HDH was distinct from ADH-A and ADH-B. NAD-linked HDH appears to possess a functional role in hexadecane and hexadecanol dissimilation

  3. Synthesis of structured triacylglycerols containing medium-chain and long-chain fatty acids by interesterification with a stereoespecific lipase from Mucor miehei.

    Directory of Open Access Journals (Sweden)

    Nieto, Susana

    1999-06-01

    Full Text Available The preparation of structured triacylglycerols sn-1, sn-3 dilauryl, sn-2 eicosapentaenoyl glycerol and sn-1, sn-3 dilauryl, sn-2 docosahexaenoyl glycerol by enzymatic interesterification under restricted water availability is described. Laurie acid, one of the substrates for interesterification, was obtained by the controlled hydrolysis of coconut oil by a non-specific lipase obtained from Candida cylindracea. The fatty acid was separated from the hydrolysis products by silverresin column chromatography and converted to methyl ester, sn-2 Eicosapentaenoyl glycerol and sn-2 docosahexaenoyl glycerol were prepared by the hydrolysis of fish oil by the sn-1, sn-3 stereospecific immobilized lipase Lipozyme IM-20 obtained from Mucor miehei as described in the accompanying paper. The interesterification was carried out in a water jacketed glass reactor and the triacylglycerol products were separated and recovered through aluminum oxide column chromatography The interesterification procedure described allows to obtain In laboratory scale structured triacylglycerols containing medium-chain fatty acids at the sn-1 and sn-3 positions and long-chain polyunsaturated fatty acid from marine origin at the sn-2 glycerol position.

    Se describe la preparación de triacilgliceroles estructurados sn-1, sn-3 dilauril, sn-2 ecosapentaenoil glicerol y sn-1, sn-3 diiauril, sn-2 docosahexaenoil glicerol por interesterificación enzimática bajo disponibilidad de agua reducida. Acido láurico, uno de los sustratos para la interesterificación, se obtuvo mediante hidrólisis controlada del aceite de coco por una lipasa no-específica obtenida de Candida cylindracea. Los ácidos grasos se separaron de los productos de hidrólisis mediante cromatografía en columna de resina de plata y convertidos en sus esteres metílicos, sn-2 Eicosapentaenoil glicerol y sn-2 docosahexaenoil glicerol se prepararon mediante hidrólisis de aceite de pescado por la sn-1, sn

  4. Studies on lipoamide dehydrogenase

    NARCIS (Netherlands)

    Benen, J.A.E.

    1992-01-01

    At the onset of the investigations described in this thesis progress was being made on the elucidation of the crystal structure of the Azotobactervinelandii lipoamide dehydrogenase. Also the gene encoding this enzyme was cloned in our laboratory. By this, a

  5. Studies on lipoamide dehydrogenase

    NARCIS (Netherlands)

    Visser, J.

    1969-01-01

    Gel-filtration, ultracentrifugation and sucrose density gradient centrifugation demonstrated differences in physico-chemical properties of holoenzyme and apoenzyme of lipoamide dehydrogenase. The native apoenzyme has a mol.wt. of approx. 52,000 which is half that of the native holoenzyme. The

  6. Determination of hydrophobic coenzyme a esters and other lipids using a biosensor comprising a modified coenzyme a- and acyl-coa binding protein (acbp)

    DEFF Research Database (Denmark)

    2002-01-01

    , food and feed preparations, tissue extracts, acyl-CoA synthetase reaction media and various laboratory conditions using a modified Coenzyme A- and acyl-CoA binding protein (ACBP) is provided. Furthermore the invention relates to a construct comprising a peptide and a signal moiety for performing...

  7. [Malate dehydrogenase and lactate dehydrogenase in trematodes and turbellarians].

    Science.gov (United States)

    Vykhrestiuk, N P; Burenina, E A; Iarygina, G V

    1986-01-01

    Studies have been made on the activity and properties of malate and lactate dehydrogenases from the cattle rumen trematodes Eurytrema pancreaticum, Calicophoron ijimai and the turbellarian Phagocata sibirica which has a common free-living ancestor with the trematodes. All the species studied have a highly active malate dehydrogenase, its activity in the reaction of reducing oxaloacetate being 6-14 times higher than in the reaction of malate oxidation. The affinity of malate dehydrogenase to oxaloacetate was found to be higher than that to malate. The activity of lactate dehydrogenase (reducing the pyruvate) was lower than the activity of malate dehydrogenase, the difference being 50 times for C. ijimai, 4 times for E. pancreaticum and 10 times for P. sibirica.

  8. Crystallization and preliminary X-ray study of a (2R,3R)-2,3-butanediol dehydrogenase from Bacillus coagulans 2-6.

    Science.gov (United States)

    Miao, Xiangzhi; Huang, Xianhui; Zhang, Guofang; Zhao, Xiufang; Zhu, Xianming; Dong, Hui

    2013-10-01

    (2R,3R)-2,3-Butanediol dehydrogenase (R,R-BDH) from Bacillus coagulans 2-6 is a zinc-dependent medium-chain alcohol dehydrogenase. Recombinant R,R-BDH with a His6 tag at the C-terminus was expressed in Escherichia coli BL21 (DE3) cells and purified by Ni2+-chelating affinity and size-exclusion chromatography. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K. The crystallization condition consisted of 8%(v/v) Tacsimate pH 4.6, 18%(w/v) polyethylene glycol 3350. The crystal diffracted to 2.8 Å resolution in the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a=88.35, b=128.73, c=131.03 Å.

  9. Successful Treatment of Cardiomyopathy due to Very Long-Chain Acyl-CoA Dehydrogenase Deficiency: First Case Report from Oman with Literature Review

    Directory of Open Access Journals (Sweden)

    Sharef Waadallah Sharef

    2013-09-01

    Full Text Available Very long-chain acyl-CoA dehydrogenase deficiency (MIM 201475 is a severe defect of mitochondrial energy production from oxidation of very long-chain fatty acids. This inherited metabolic disorder often presents in early neonatal period with episodes of symptomatic hypoglycemia usually responding well to intravenous glucose infusion. These babies are often discharged without establishment of diagnosis but return by 2-5 months of age with severe and progressive cardiac failure due to hypertrophic cardiomyopathy with or without hepatic failure and steatosis. An early diagnosis and treatment with high concentration medium chain triglycerides based feeding formula can be life saving in such patients. Here, we report the first diagnosed and treated case of Very long-chain acyl-CoA dehydrogenase deficiency in Oman. This infant developed heart failure with left ventricular dilation, hypertrophy and pericardial effusion at the age of 7 weeks. Prompt diagnosis and subsequent intervention with medium chain triglycerides-based formula resulted in a reversal of severe clinical symptoms with significant improvement of cardiac status. This treatment also ensured normal growth and neurodevelopment. It is stressed that the disease must be recognized by the pediatricians and cardiologists since the disease can be identified by Tandem Mass Spectrometry; therefore, it should be considered to be included in expanded newborn screening program, allowing early diagnosis and intervention in order to ensure better outcome and prevent complications.

  10. Genetics Home Reference: lactate dehydrogenase deficiency

    Science.gov (United States)

    ... this condition: lactate dehydrogenase-A deficiency (sometimes called glycogen storage disease XI) and lactate dehydrogenase-B deficiency. People with ... Resources Genetic Testing (2 links) Genetic Testing Registry: Glycogen storage disease XI Genetic Testing Registry: Lactate dehydrogenase B deficiency ...

  11. The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.: Bioinformatic Analysis and Expression Patterns

    Directory of Open Access Journals (Sweden)

    Yazhong eJin

    2016-05-01

    Full Text Available Alcohol dehydrogenases (ADH, encoded by multigene family in plants, play a critical role in plant growth, development, adaptation, fruit ripening and aroma production. Thirteen ADH genes were identified in melon genome, including 12 ADHs and one formaldehyde dehydrogenease (FDH, designated CmADH1-12 and CmFDH1, in which CmADH1 and CmADH2 have been isolated in Cantaloupe. ADH genes shared a lower identity with each other at the protein level and had different intron-exon structure at nucleotide level. No typical signal peptides were found in all CmADHs, and CmADH proteins might locate in the cytoplasm. The phylogenetic tree revealed that 13 ADH genes were divided into 3 groups respectively, namely long-, medium- and short-chain ADH subfamily, and CmADH1,3-11, which belongs to the medium-chain ADH subfamily, fell into 6 medium-chain ADH subgroups. CmADH12 may belong to the long-chain ADH subfamily, while CmFDH1 may be a Class III ADH and serve as an ancestral ADH in melon. Expression profiling revealed that CmADH1, CmADH2, CmADH10 and CmFDH1 were moderately or strongly expressed in different vegetative tissues and fruit at medium and late developmental stages, while CmADH8 and CmADH12 were highly expressed in fruit after 20 days. CmADH3 showed preferential expression in young tissues. CmADH4 only had slight expression in root. Promoter analysis revealed several motifs of CmADH genes involved in the gene expression modulated by various hormones, and the response pattern of CmADH genes to ABA, IAA and ethylene were different. These CmADHs were divided into ethylene-sensitive and –insensitive groups, and the functions of CmADHs were discussed.

  12. The effects of starter microbiota and the early life feeding of medium chain triglycerides on the gastric transcriptome profile of 2- or 3-week-old cesarean delivered piglets

    Directory of Open Access Journals (Sweden)

    Paolo Trevisi

    2017-11-01

    Full Text Available Abstract Background The stomach is an underestimated key interface between the ingesta and the digestive system, affecting the digestion and playing an important role in several endocrine functions. The quality of starter microbiota and the early life feeding of medium chain triglycerides may affect porcine gastric maturation. Two trials (T1, T2 were carried out on 12 and 24 cesarean-delivered piglets (birth, d0, divided over two microbiota treatments, but slaughtered and sampled at two or three weeks of age, respectively. All piglets were fed orally: sow serum (T1 or pasteurized sow colostrum (T2 on d0; simple starter microbiota (Lactobacillus amylovorus, Clostridium glycolicum and Parabacteroides spp. (d1-d3; complex microbiota inoculum (sow diluted feces, CA or a placebo (simple association, SA (d3-d4 and milk replacer ad libitum (d0-d4. The The T1 piglets and half of the T2 piglets were then fed a moist diet (CTRL; the remaining half of the T2 piglets were fed the CTRL diet fortified with medium chain triglycerides and 7% coconut oil (MCT. Total mRNA from the oxyntic mucosa was analyzed using Affymetrix©Porcine Gene array strips. Exploratory functional analysis of the resulting values was carried out using Gene Set Enrichment Analysis. Results Complex microbiota upregulated 11 gene sets in piglets of each age group vs. SA. Of these sets, 6 were upregulated at both ages, including the set of gene markers of oxyntic mucosa. In comparison with the piglets receiving SA, the CA enriched the genes in the sets related to interferon response when the CTRL diet was given while the same sets were impoverished by CA with the MCT diet. Conclusions Early colonization with a complex starter microbiota promoted the functional maturation of the oxyntic mucosa in an age-dependent manner. The dietary fatty acid source may have affected the recruitment and the maturation of the immune cells, particularly when the piglets were early associated with a

  13. Benefits of use, and tolerance of, medium-chain triglyceride medical food in the management of Japanese patients with Alzheimer’s disease: a prospective, open-label pilot study

    Directory of Open Access Journals (Sweden)

    Ohnuma T

    2016-01-01

    Full Text Available Tohru Ohnuma, Aiko Toda, Ayako Kimoto, Yuto Takebayashi, Ryoko Higashiyama, Yuko Tagata, Masanobu Ito, Tsuneyoshi Ota, Nobuto Shibata, Heii Arai Department of Psychiatry, Juntendo University Alzheimer’s Disease Project, Faculty of Medicine, Juntendo University, Tokyo, Japan Objectives: This is the first clinical trial of this type in Japan, designed to analyze two important aspects of Alzheimer’s disease (AD management using medium-chain triglycerides. Axona was administered for 3 months (40 g of powder containing 20 g of caprylic triglycerides. We used an indurating, four-step dose-titration method (from 10 to 40 g per day for 7 days before the trial, and examined the tolerance and adverse effects of this intervention. We also investigated its effect on cognitive function in mild-to-moderate AD patients.Patients and methods: This was a clinical intervention in 22 Japanese patients with sporadic AD at a mild-to-moderate stage (ten females, 12 males, mean age (± standard deviation 63.9 (±8.5 years, Mini-Mental State Examination (MMSE score, 10–25, seven patients were ApoE4-positive. During Axona administration, we examined changes in cognitive function by obtaining MMSE and AD assessment-scale scores. Intolerance and serum ketone concentrations were also examined.Results: The tolerance of Axona was good, without severe gastrointestinal adverse effects. Axona did not improve cognitive function in our sample of AD patients, even in those patients without the ApoE4 allele. However, some ApoE4-negative patients with baseline MMSE score ≥14 showed improvement in their cognitive functions.Conclusion: The modified dose-titration method, starting with a low dose of Axona, decreased gastrointestinal adverse effects in Japanese patients. Axona might be effective for some relatively mildly affected patients with AD (with cognitive function MMSE score of ≥14 and lacking the ApoE4 allele. Keywords: Alzheimer’s disease, medium-chain triglycerides

  14. A ketogenic diet supplemented with medium-chain triglycerides enhances the anti-tumor and anti-angiogenic efficacy of chemotherapy on neuroblastoma xenografts in a CD1-nu mouse model.

    Science.gov (United States)

    Aminzadeh-Gohari, Sepideh; Feichtinger, René Günther; Vidali, Silvia; Locker, Felix; Rutherford, Tricia; O'Donnel, Maura; Stöger-Kleiber, Andrea; Mayr, Johannes Adalbert; Sperl, Wolfgang; Kofler, Barbara

    2017-09-12

    Neuroblastoma (NB) is a pediatric malignancy characterized by a marked reduction in aerobic energy metabolism. Recent preclinical data indicate that targeting this metabolic phenotype by a ketogenic diet (KD), especially in combination with calorie restriction, slows tumor growth and enhances metronomic cyclophosphamide (CP) therapy of NB xenografts. Because calorie restriction would be contraindicated in most cancer patients, the aim of the present study was to optimize the KD such that the tumors are sensitized to CP without the need of calorie restriction. In a NB xenograft model, metronomic CP was combined with KDs of different triglyceride compositions and fed to CD1-nu mice ad libitum . Metronomic CP in combination with a KD containing 8-carbon medium-chain triglycerides exerted a robust anti-tumor effect, suppressing growth and causing a significant reduction of tumor blood-vessel density and intratumoral hemorrhage, accompanied by activation of AMP-activated protein kinase in NB cells. Furthermore, the KDs caused a significant reduction in the serum levels of essential amino acids, but increased those of serine, glutamine and glycine. Our data suggest that targeting energy metabolism by a modified KD may be considered as part of a multimodal treatment regimen to improve the efficacy of classic anti-NB therapy.

  15. Simple method for the simultaneous quantification of medium-chain fatty acids and ethyl hexanoate in alcoholic beverages by gas chromatography-flame ionization detector: development of a direct injection method.

    Science.gov (United States)

    Takahashi, Kei; Goto-Yamamoto, Nami

    2011-10-28

    Free medium-chain fatty acids (MCFAs) can negatively influence the fermentation process and taste quality in alcoholic beverages. Ethyl hexanoate is important in providing a fruit-like flavour to drinks, particularly in Japanese sake. In this study, we developed a direct injection method for a gas chromatography-flame ionization detector following the semi-purification of chemical components, such as esters, alcohols and MCFAs in alcoholic beverages. Evaluation of MCFAs by this method gave a limit of detection on the order of sub-ppm and relative standard deviations less than 10% in standard solution. Good repeatability and recovery rates against MCFAs and ethyl hexanoate were also obtained in non-distilled real alcoholic beverages. Because this method enabled us to simultaneously quantify the concentrations of MCFAs and ethyl hexanoate, the proportion of ester against MCFAs was proposed as a quality control index. This method could be suitable for routine analysis in the alcohol beverage industry. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Low expression of long-chain acyl-CoA dehydrogenase in human skeletal muscle

    Science.gov (United States)

    Maher, Amy C.; Mohsen, Al-Walid; Vockley, Jerry; Tarnopolsky, Mark A.

    2014-01-01

    Purpose Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial flavoenzyme thought to be one of the major enzymes responsible for the first step of long-chain fatty acid (LCFA) β-oxidation. Surprisingly, recent studies have shown LCAD is hardly detectable in human tissues such as liver and heart. Skeletal muscle is the largest organ in the body in terms of mass, and accounts for the majority of LCFA oxidation, especially during exercise. The purpose of this study was to investigate the expression levels of LCAD in human skeletal muscle. Methods Muscle biopsies were obtained from the vastus lateralis of healthy athletic men and women, and examined for mRNA abundance, protein content, and enzyme activity of LCAD. We compared LCAD content with that of very-long chain acyl-CoA dehydrogenase (VLCAD) and medium chain acyl-CoA dehydrogenase (MCAD); two mitochondrial β-oxidation enzymes that have overlapping chain-length specificity to that of LCAD. LCAD protein content and enzyme activity were also examined in enriched mitochondrial protein fractions. As controls, LCAD presence in skeletal muscle was compared to human heart, liver, and mouse skeletal muscle. Results The mRNA presence of LCAD in human skeletal muscle is significantly less than VLCAD and MCAD (0.08±0.01 vs 7.3±0.5 vs 2.4±0.2 respectively, P≤0.0001). LCAD protein was undetectable in human muscle homogenates, and coordinately LCAD enzyme activity was undetectable in enriched mitochondrial samples. Conclusion LCAD is minimally expressed in human skeletal muscle and likely does not play a significant role in LCFA oxidation. PMID:20363655

  17. Enantioselective Synthesis of Vicinal (R,R)-Diols by Saccharomyces cerevisiae Butanediol Dehydrogenase.

    Science.gov (United States)

    Calam, Eduard; González-Roca, Eva; Fernández, M Rosario; Dequin, Sylvie; Parés, Xavier; Virgili, Albert; Biosca, Josep A

    2016-01-04

    Butanediol dehydrogenase (Bdh1p) from Saccharomyces cerevisiae belongs to the superfamily of the medium-chain dehydrogenases and reductases and converts reversibly R-acetoin and S-acetoin to (2R,3R)-2,3-butanediol and meso-2,3-butanediol, respectively. It is specific for NAD(H) as a coenzyme, and it is the main enzyme involved in the last metabolic step leading to (2R,3R)-2,3-butanediol in yeast. In this study, we have used the activity of Bdh1p in different forms-purified enzyme, yeast extracts, permeabilized yeast cells, and as a fusion protein (with yeast formate dehydrogenase, Fdh1p)-to transform several vicinal diketones to the corresponding diols. We have also developed a new variant of the delitto perfetto methodology to place BDH1 under the control of the GAL1 promoter, resulting in a yeast strain that overexpresses butanediol dehydrogenase and formate dehydrogenase activities in the presence of galactose and regenerates NADH in the presence of formate. While the use of purified Bdh1p allows the synthesis of enantiopure (2R,3R)-2,3-butanediol, (2R,3R)-2,3-pentanediol, (2R,3R)-2,3-hexanediol, and (3R,4R)-3,4-hexanediol, the use of the engineered strain (as an extract or as permeabilized cells) yields mixtures of the diols. The production of pure diol stereoisomers has also been achieved by means of a chimeric fusion protein combining Fdh1p and Bdh1p. Finally, we have determined the selectivity of Bdh1p toward the oxidation/reduction of the hydroxyl/ketone groups from (2R,3R)-2,3-pentanediol/2,3-pentanedione and (2R,3R)-2,3-hexanediol/2,3-hexanedione. In conclusion, Bdh1p is an enzyme with biotechnological interest that can be used to synthesize chiral building blocks. A scheme of the favored pathway with the corresponding intermediates is proposed for the Bdh1p reaction. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Enzymatic production of zero-trans plastic fat rich in α-linolenic acid and medium-chain fatty acids from highly hydrogenated soybean oil, Cinnamomum camphora seed oil, and perilla oil by lipozyme TL IM.

    Science.gov (United States)

    Zhao, Man-Li; Tang, Liang; Zhu, Xue-Mei; Hu, Jiang-Ning; Li, Hong-Yan; Luo, Li-Ping; Lei, Lin; Deng, Ze-Yuan

    2013-02-13

    In the present study, zero-trans α-linolenic acid (ALA) and medium-chain fatty acids (MCFA)-enriched plastic fats were synthesized through enzymatic interesterification reactions from highly hydrogenated soybean oil (HSO), Cinnamomum camphora seed oil (CCSO), and perilla oil (PO). The reactions were performed by incubating the blending mixtures of HSO, CCSO, and PO at different weight ratios (60:40:100, 70:30:100, 80:20:100) using 10% (total weight of substrate) of Lipozyme TL IM at 65 °C for 8 h. After reaction, the physical properties (fatty acids profile, TAG composition, solid fat content, slip melting point, contents of tocopherol, polymorphic forms, and microstructures) of the interesterified products and their physical blends were determined, respectively. Results showed that the fatty acid compositions of the interesterified products and physical blends had no significant changes, while the content of MCFA in both interesterified products and physical blends increased to 8.58-18.72%. Several new types of TAG species were observed in interesterified products (SSL/SLS, PLO/LLS, and OLLn/LnLO/LOLn). It should be mentioned that no trans fatty acids (TFA) were detected in all products. As the temperature increased, the solid fat content (SFC) of interesterified products was obviously lower than that of physical blends. The SFCs of interesterified products (60:40:100, 70:30:100, and 80:20:100, HSO:CCSO:PO) at 25 °C were 6.5%, 14.6%, and 16.5%, respectively, whereas the counterparts of physical blends were 32.5%, 38.5%, and 43.5%, respectively. Meanwhile, interesterified products showed more β' polymorphs than physical blends, in which β' polymorph is a favorite form for production of margarine and shortening. Such zero-trans ALA and MCFA-enriched fats may have desirable physical and nutritional properties for shortenings and margarines.

  19. Production of medium-chain volatile flavour esters in Pichia pastoris whole-cell biocatalysts with extracellular expression of Saccharomyces cerevisiae acyl-CoA:ethanol O-acyltransferase Eht1 or Eeb1.

    Science.gov (United States)

    Zhuang, Shiwen; Fu, Junshu; Powell, Chris; Huang, Jinhai; Xia, Yihe; Yan, Ruixiang

    2015-01-01

    Medium-chain volatile flavour esters are important molecules since they have extensive applications in food, fragrance, cosmetic, paint and coating industries, which determine different characteristics of aroma or taste in commercial products. Biosynthesis of these compounds by alcoholysis is catalyzed by acyl-CoA:ethanol O-acyltransferases Eht1 or Eeb1 in Saccharomyces cerevisiae. In this study, these two yeast enzymes were selected to explore their preparations as the form of whole cell biocatalysts for the production of volatile flavour esters. Here, the novel whole cell biocatalysts Pichia pastoris yeasts with functional extracellular expression of Eht1 or Eeb1 were constructed. Flavour production was established through an integrated process with coupled enzyme formation and ester biosynthesis in the recombinant yeasts in one pot, leading to the formation of volatile C6-C14 methyl and ethyl esters from wort medium. Interestingly, there is no significant difference between P. pastoris-EHT1 and P. pastoris-EEB1 in substrate preference during flavour biosynthesis, indicating a similar role of Eht1 and Eeb1 in P. pastoris cells, in contradiction with previous findings in S. cerevisiae to some extent. Consequently the study not only provides a greater understanding of these two enzymes in a heterogeneous host, but also demonstrated the positive effect of the recombinant Eht1 and Eeb1 in ester formation by P. pastoris live cells, potentially paving the way towards achieving efficient production of volatile flavour by an integrated biocatalytic system composed of recombinant enzyme production and flavour biosynthesis.

  20. Short- and medium-chain chlorinated paraffins in air and soil of subtropical terrestrial environment in the pearl river delta, South China: distribution, composition, atmospheric deposition fluxes, and environmental fate.

    Science.gov (United States)

    Wang, Yan; Li, Jun; Cheng, Zhineng; Li, Qilu; Pan, Xiaohui; Zhang, Ruijie; Liu, Di; Luo, Chunling; Liu, Xiang; Katsoyiannis, Athanasios; Zhang, Gan

    2013-03-19

    Research on the environmental fate of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in highly industrialized subtropical areas is still scarce. Air, soil, and atmospheric deposition process in the Pearl River Delta of South China were investigated, and the average SCCP and MCCP concentrations were 5.2 μg/sampler (17.69 ng/m(3)) and 4.1 μg/sampler for passive air samples, 18.3 and 59.3 ng/g for soil samples, and 5.0 and 5.3 μg/(m(2)d) for deposition samples, respectively. Influenced by primary sources and the properties of chlorinated paraffins (CPs), a gradient trend of concentrations and a fractionation of composition from more to less industrialized areas were discovered. Intense seasonal variations with high levels in summer air and winter deposition samples indicated that the air and deposition CP levels were controlled mainly by the vapor and particle phase, respectively. Complex environmental processes like volatilization and fractionation resulted in different CP profiles in different environment matrixes and sampling locations, with C(10-11) C(l6-7) and C(14) C(l6-7), C(10-12) C(l6-7) and C(14) C(l6-8), and C(11-12) C(l6-8) and C(14) C(l7-8) dominating in air, soil, and atmospheric deposition, respectively. Shorter-chain and less chlorinated congeners were enriched in air in the less industrialized areas, while longer-chain and higher chlorinated congeners were concentrated in soil in the more industrialized areas. This is suggesting that the gaseous transport of CPs is the dominant mechanism responsible for the higher concentrations of lighter and likely more mobile CPs in the rural areas.

  1. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... 5-fluorouracil and capecitabine. These drugs are not broken down efficiently by people with dihydropyrimidine dehydrogenase deficiency ... of this enzyme. Because fluoropyrimidine drugs are also broken down by the dihydropyrimidine dehydrogenase enzyme, deficiency of ...

  2. Effects of feed access after hatch and inclusion of fish oil and medium chain fatty acids in a pre-starter diet on broiler chicken growth performance and humoral immunity.

    Science.gov (United States)

    Lamot, D M; van der Klein, S A S; van de Linde, I B; Wijtten, P J A; Kemp, B; van den Brand, H; Lammers, A

    2016-09-01

    Delayed feed and water access is known to impair growth performance of day old broiler chickens. Although effects of feed access on growth performance and immune function of broilers have been examined before, effects of dietary composition and its potential interaction with feed access are hardly investigated. This experiment aimed to determine whether moment of first feed and water access after hatch and pre-starter composition (0 to 7 days) affect growth rate and humoral immune function in broiler chickens. Direct fed chickens received feed and water directly after placement in the grow-out facility, whilst delayed fed chickens only after 48 h. Direct and delayed fed chickens received a control pre-starter diet, or a diet containing medium chain fatty acids (MCFA) or fish oil. At 21 days, chickens were immunized by injection of sheep red blood cells. The mortality rate depended on an interaction between feed access and pre-starter composition (P=0.014). Chickens with direct feed access fed the control pre-starter diet had a higher risk for mortality than chickens with delayed feed access fed the control pre-starter diet (16.4% v. 4.2%) whereas the other treatment groups were in-between. BW gain and feed intake till 25 days in direct fed chickens were higher compared with delayed fed chickens, whilst gain to feed ratio was lower. Within the direct fed chickens, the control pre-starter diet resulted in the highest BW at 28 days and the MCFA pre-starter diet the lowest (Δ=2.4%), whereas this was opposite for delayed fed chickens (Δ=3.0%; P=0.033). Provision of MCFA resulted in a 4.6% higher BW gain and a higher gain to feed ratio compared with other pre-starter diets, but only during the period it was provided (2 to 7 days). Minor treatment effects were found for humoral immune response by measuring immunoglobulins, agglutination titers, interferon gamma (IFN- γ ), and complement activity. Concluding, current inclusion levels of fish oil (5 g/kg) and MCFA (30 g

  3. Supplementing goat kids with coconut medium chain fatty acids in early life influences growth and rumen papillae development until 4 months after supplementation but effects on in vitro methane emissions and the rumen microbiota are transient.

    Science.gov (United States)

    Debruyne, S; Ruiz-González, A; Artiles-Ortega, E; Ampe, B; Van Den Broeck, W; De Keyser, E; Vandaele, L; Goossens, K; Fievez, V

    2018-02-24

    The aim of this study was to investigate the methane (CH4) reducing potential of a combination of pre- and/or postnatal treatment with coconut oil medium chain fatty acids (CO MCFA) in goat kids. The hypothesis is that influencing rumen function during early life has more chances for success than in the adult life, related to the resilience of the mature rumen microbiota. Forty-eight pregnant does were split into 2 experimental groups: treated does (D+) received 40 g/d of CO MCFA in a test compound feed, while control does (D-) received a control compound feed, during the last 3 wk of gestation. Twin kids from 10 does of each group were split up into a treated (K+) and non-treated (K-) group, resulting in 4 experimental groups: D+K+, D+K-, D-K+ and D-K-. The K+ kids received 1.8 mL/d of CO MCFA from birth until 2 wk postweaning (11 wk). Irrespective of treatment, the experimental rearing conditions resulted in absence of rumen protozoa at all sampling times, assessed by quantitative PCR. In vitro incubations with rumen fluid at 4 wk old showed 82% lower CH4 production of inoculum from D+K+ kids compared to D-K- kids (P = 0.01). However, this was accompanied by lower total volatile fatty acids (tVFA) production (P = 0.006) and higher hydrogen accumulation (P = 0.008). Quantitative PCR targeting the mcrA and rrs genes confirmed a lower abundance of total methanogens (P kids at 4 wk old. Methanogenic activity, as assessed by mcrA expression by RT-qPCR, was also lower in these kids. However, activity did not always reflect methanogen abundance. At 11 and 28 wk old, prenatal and postnatal effects on in vitro fermentation and rumen microbiota disappeared. Nevertheless, lower milk replacer intake in the first 4 wk resulted in reduced BW in K+ kids, persisting until 28 wk of age. Additionally, differences assigned to postnatal treatment were found in papillae density, width and length in different areas of the rumen, recorded at 28 wk old. pre- and postnatal

  4. Competitive inhibition of glutamate dehydrogenase reaction.

    Science.gov (United States)

    Choudhury, Rajarshi; Punekar, Narayan S

    2007-06-12

    Irrespective of their pyridine nucleotide specificity, all glutamate dehydrogenases share a common chemical mechanism that involves an enzyme bound 'iminoglutarate' intermediate. Three compounds, structurally related to this intermediate, were tested for the inhibition of purified NADP-glutamate dehydrogenases from two Aspergilli, as also the bovine liver NAD(P)-glutamate dehydrogenase. 2-Methyleneglutarate, closely resembling iminoglutarate, was a potent competitive inhibitor of the glutamate dehydrogenase reaction. This is the first report of a non-aromatic structure with a better glutamate dehydrogenase inhibitory potency than aryl carboxylic acids such as isophthalate. A suitably located 2-methylene group to mimic the iminium ion could be exploited to design inhibitors of other amino acid dehydrogenases.

  5. Cloning, functional expression and characterization of a bifunctional 3-hydroxybutanal dehydrogenase /reductase involved in acetone metabolism by Desulfococcus biacutus.

    Science.gov (United States)

    Frey, Jasmin; Rusche, Hendrik; Schink, Bernhard; Schleheck, David

    2016-11-25

    The strictly anaerobic, sulfate-reducing bacterium Desulfococcus biacutus can utilize acetone as sole carbon and energy source for growth. Whereas in aerobic and nitrate-reducing bacteria acetone is activated by carboxylation with CO 2 to acetoacetate, D. biacutus involves CO as a cosubstrate for acetone activation through a different, so far unknown pathway. Proteomic studies indicated that, among others, a predicted medium-chain dehydrogenase/reductase (MDR) superfamily, zinc-dependent alcohol dehydrogenase (locus tag DebiaDRAFT_04514) is specifically and highly produced during growth with acetone. The MDR gene DebiaDRAFT_04514 was cloned and overexpressed in E. coli. The purified recombinant protein required zinc as cofactor, and accepted NADH/NAD + but not NADPH/NADP + as electron donor/acceptor. The pH optimum was at pH 8, and the temperature optimum at 45 °C. Highest specific activities were observed for reduction of C 3 - C 5 -aldehydes with NADH, such as propanal to propanol (380 ± 15 mU mg -1 protein), butanal to butanol (300 ± 24 mU mg -1 ), and 3-hydroxybutanal to 1,3-butanediol (248 ± 60 mU mg -1 ), however, the enzyme also oxidized 3-hydroxybutanal with NAD + to acetoacetaldehyde (83 ± 18 mU mg -1 ). The enzyme might play a key role in acetone degradation by D. biacutus, for example as a bifunctional 3-hydroxybutanal dehydrogenase/reductase. Its recombinant production may represent an important step in the elucidation of the complete degradation pathway.

  6. Characterization of retinaldehyde dehydrogenase 3

    OpenAIRE

    Graham, Caroline E.; Brocklehurst, Keith; Pickersgill, Richard W.; Warren, Martin J.

    2006-01-01

    RALDH3 (retinal dehydrogenase 3) was characterized by kinetic and binding studies, protein engineering, homology modelling, ligand docking and electrostatic-potential calculations. The major recognition determinant of an RALDH3 substrate was shown to be an eight-carbon chain bonded to the aldehyde group whose kinetic influence (kcat/Km at pH 8.5) decreases when shortened or lengthened. Surprisingly, the β-ionone ring of all-trans-retinal is not a major recognition site. The dissociation const...

  7. Lipídios estruturados obtidos a partir da mistura de gordura de frango, sua estearina e triacilgliceróis de cadeia média: II- pontos de amolecimento e fusão Structured lipids from chicken fat, its stearin, and medium chain triacyglycerol blends: II- softening and melting points

    Directory of Open Access Journals (Sweden)

    Ming Chih Chiu

    2008-01-01

    Full Text Available The aim of the present work is to investigate the effects of blending and chemical interesterification reactions on the softening and melting behavior of chicken fat, its stearin and medium chain triacylglycerols, and blends thereof in various ratios. Chemical interesterification is a promising alternative to the current processes of modifying the physical properties of fats. In the experimental design 7 samples corresponding to 7 different blend proportions were used. The results were represented in triangular diagrams. The addition of stearin influenced the softening and melting points. The mixture response surface methodology proved to be an extremely useful tool for the optimization of the fat mixtures.

  8. Co-overexpression of bacterial GroESL chaperonins partly overcomes non-productive folding and tetramer assembly of E. coli-expressed human medium-chain acyl-CoA dehydrogenase (MCAD) carrying the prevalent disease-causing K304E mutation

    DEFF Research Database (Denmark)

    Bross, P; Andresen, B S; Winter, V

    1993-01-01

    underlying MCAD deficiency caused by the prevalent K304E mutation. Depending on which of the three amino acids--lysine (wild-type), glutamic acid (K304E) or glutamine (K304Q) are present at position 304 of the mature polypeptide, three different patterns were observed in our assay system: (i) solubility...... and the enzyme activity measured as observed for the wild-type protein. (iii) Solubility of the K304E mutant is in a similar fashion GroESL responsive as the K304Q mutant, but the amount of tetramer observed and the enzyme activity measured do not correlate with the amount of soluble K304E MCAD protein detected...... in Western blotting. In a first attempt to estimate the specific activity, we show that tetrameric K304E and K304Q mutant MCAD display a specific activity in the range of the wild-type enzyme. Taken together, our results strongly suggest, that the K304E mutation primarily impairs the rate of folding...

  9. Co-overexpression of bacterial GroESL chaperonins partly overcomes non-productive folding and tetramer assembly of E. coli-expressed human medium-chain acyl-CoA dehydrogenase (MCAD) carrying the prevalent disease-causing K304E mutation

    DEFF Research Database (Denmark)

    Bross, P; Andresen, B S; Winter, V

    1993-01-01

    underlying MCAD deficiency caused by the prevalent K304E mutation. Depending on which of the three amino acids--lysine (wild-type), glutamic acid (K304E) or glutamine (K304Q) are present at position 304 of the mature polypeptide, three different patterns were observed in our assay system: (i) solubility...... and subunit assembly. Based on the data presented, we propose that lysine-304 is important for the folding pathway and that an exchange of this amino acid both to glutamine or glutamic acid leads to an increased tendency to misfold/aggregate. Furthermore, exchange of lysine-304 with an amino acid...... with negative charge at position 304 (glutamic acid) but not with a neutral charge (glutamine) negatively affects conversion to active tetramers. A possible explanation for this latter effect--charge repulsion upon subunit docking--is discussed....

  10. Co-overexpression of bacterial GroESL chaperonins partly overcomes non-productive folding and tetramer assembly of E. coli-expressed human medium-chain acyl-CoA dehydrogenase (MCAD) carrying the prevalent disease-causing K304E mutation

    DEFF Research Database (Denmark)

    Bross, P; Andresen, B S; Winter, V

    1993-01-01

    and the enzyme activity measured as observed for the wild-type protein. (iii) Solubility of the K304E mutant is in a similar fashion GroESL responsive as the K304Q mutant, but the amount of tetramer observed and the enzyme activity measured do not correlate with the amount of soluble K304E MCAD protein detected...

  11. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... Systems § 862.1500 Malic dehydrogenase test system. (a) Identification. A malic dehydrogenase test system is a device that is intended to measure the activity of the enzyme malic dehydrogenase in serum and... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Malic dehydrogenase test system. 862.1500 Section...

  12. A role for glucose-6-phosphate dehydrogenase

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    -phosphate dehydrogenase activity in male rats. Twelve (12) male rats were divided into two groups of six (6) rats each. Group 1 rats were control rats which received normal saline while group 2 rats were treated with.

  13. Genetics Home Reference: dihydrolipoamide dehydrogenase deficiency

    Science.gov (United States)

    ... Lacaille F, de Keyzer Y, Di Martino V, de Lonlay P. Dihydrolipoamide dehydrogenase deficiency: a still overlooked cause of recurrent acute liver failure and Reye-like syndrome. Mol Genet Metab. 2013 May;109(1):28- ...

  14. Histochemical localization of cytokinin oxidase/dehydrogenase ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    dehydrogenase, Withania somnifera, CKX localization. INTRODUCTION. Cytokinin (Ck) is a plant hormone that plays a crucial role in many fundamental processes of plant development throughout the life cycle. These include ...

  15. Identification of lactaldehyde dehydrogenase and glycolaldehyde dehydrogenase as functions of the same protein in Escherichia coli.

    Science.gov (United States)

    Caballero, E; Baldomá, L; Ros, J; Boronat, A; Aguilar, J

    1983-06-25

    Lactaldehyde dehydrogenase is an enzyme involved in the aerobic metabolism of fucose in wild type Escherichia coli, and glycolaldehyde dehydrogenase is an enzyme involved in the metabolism of ethylene glycol in mutant cells able to utilize this glycol. Both enzyme sources display oxidative activity on either substrate with a constant ratio between these activities. We have found that both enzymatic activities present the same electrophoretic mobility when crude extracts were electrophoresed in polyacrylamide gels and the gels stained for enzyme activities. Furthermore, both enzymatic activities co-chromatograph in a DEAE-Sephadex column. If lactaldehyde dehydrogenase of wild type cells is purified near homogeneity and the purification procedure is screened for both aldehydes as substrates, only one enzyme is apparent, giving again a constant ratio between lactaldehyde and glycolaldehyde dehydrogenase activities. Genetic evidence of the fact that both activities are functions of the same protein is provided by the observation that mutation to thermosensitivity for the production of lactaldehyde dehydrogenase affected in the same way the production of glycolaldehyde dehydrogenase. Glycolaldehyde dehydrogenase from mutant cells is purified in a procedure coincident with the lactaldehyde dehydrogenase purification, yielding a single enzyme electrophoretically indistinguishable from the purified lactaldehyde dehydrogenase. Peptide mapping of the purified preparation after digestion with chymotrypsin or Staphylococcus aureus protease V8 gives an indistinguishable band pattern between both enzymes.

  16. Isocitrate dehydrogenase mutations in gliomas

    Science.gov (United States)

    Waitkus, Matthew S.; Diplas, Bill H.; Yan, Hai

    2016-01-01

    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg132 of IDH1 and Arg172 of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy. PMID:26188014

  17. Regulation of glutamate dehydrogenase in Bacillus subtilis.

    OpenAIRE

    Kane, J F; Wakim, J; Fischer, R S

    1981-01-01

    The activity of the nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Bacillus subtilis was influenced by the carbon source, but not the nitrogen source, in the growth medium. The highest specific activity for this enzyme was found when B. subtilis was grown in a minimal or rich medium that contained glutamate as the carbon source. It is proposed that glutamate dehydrogenase serves a catabolic function in the metabolism of glutamate, is induced by glutamate, and is subjec...

  18. Regulation of glutamate dehydrogenase in Bacillus subtilis.

    Science.gov (United States)

    Kane, J F; Wakim, J; Fischer, R S

    1981-01-01

    The activity of the nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Bacillus subtilis was influenced by the carbon source, but not the nitrogen source, in the growth medium. The highest specific activity for this enzyme was found when B. subtilis was grown in a minimal or rich medium that contained glutamate as the carbon source. It is proposed that glutamate dehydrogenase serves a catabolic function in the metabolism of glutamate, is induced by glutamate, and is subject to catabolite repression. PMID:6118356

  19. Glusoce-6-phosphate dehydrogenase- History and diagnosis

    Directory of Open Access Journals (Sweden)

    K Gautam

    2016-09-01

    Full Text Available Glucose-6-phosphate dehydrogenase deficiency is the most common enzymatic defect of red blood cells, which increases the vulnerability of erythrocytes to oxidative stress leading to hemolytic anemia. Since its identification more than 60 years ago, much has been done with respect to its clinical diagnosis, laboratory diagnosis and treatment. Association of G6PD is not just limited to anti malarial drugs, but a vast number of other diseases. In this article, we aimed to review the history of Glucose-6-phosphate dehydrogenase, the diagnostic methods available along with its association with other noncommunicable diseases. 

  20. Inducible xylitol dehydrogenases in enteric bacteria.

    OpenAIRE

    Doten, R C; Mortlock, R P

    1985-01-01

    Morganella morganii ATCC 25829, Providencia stuartii ATCC 25827, Serratia marcescens ATCC 13880, and Erwinia sp. strain 4D2P were found to induce a xylitol dehydrogenase when grown on a xylitol-containing medium. The xylitol dehydrogenases were partially purified from the four strains, and those from M. morganii ATCC 25829, P. stuartii ATCC 25827, and S. marcescens ATCC 13880 were all found to oxidize xylitol to D-xylulose. These three enzymes had KmS for xylitol of 7.1 to 16.4 mM and molecul...

  1. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... deficiency Encyclopedia: Glucose-6-phosphate dehydrogenase test Encyclopedia: Hemolytic anemia Encyclopedia: Newborn jaundice Health Topic: Anemia Health Topic: G6PD Deficiency Health Topic: Newborn Screening Genetic and Rare Diseases Information Center (1 link) Glucose-6-phosphate dehydrogenase ...

  2. Malaria Protection In Glucose-6-Phosphate Dehydrogenase ...

    African Journals Online (AJOL)

    The high frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency gene in malaria endemic regions is believed to be due to the enzyme deficiency advantage against fatal malaria. However, the mechanism of this protection is not well understood and therefore was investigated by comparing differences in ...

  3. Coenzyme and effector binding to glutamate dehydrogenase

    NARCIS (Netherlands)

    Zantema, Alt

    1979-01-01

    Glutamaat-dehydrogenase is een enzym dat de reactie katalyseert van 2-oxoglutaraat (substraat), NAD(P)H (co-enzym) en ammonia naar L-glutaminezuur en NAD(P)+. Het enzym is opgebouwd uit 6 identieke subeenheden. Dit proefschrift beschrijft de bestudering van twee aspecten van dit enzym, nl. 1. de

  4. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    NARCIS (Netherlands)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen

    2005-01-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently

  5. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity.

    Science.gov (United States)

    Li, Sha; Gan, Li-Qin; Li, Shu-Ke; Zheng, Jie-Cong; Xu, Dong-Ping; Li, Hua-Bin

    2014-01-01

    Various alcoholic beverages containing different concentrations of ethanol are widely consumed, and excessive alcohol consumption may result in serious health problems. The consumption of alcoholic beverages is often accompanied by non-alcoholic beverages, such as herbal infusions, tea and carbonated beverages to relieve drunk symptoms. The aim of this study was to supply new information on the effects of these beverages on alcohol metabolism for nutritionists and the general public, in order to reduce problems associated with excessive alcohol consumption. The effects of 57 kinds of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity were evaluated. Generally, the effects of these beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity are very different. The results suggested that some beverages should not be drank after excessive alcohol consumption, and several beverages may be potential dietary supplements for the prevention and treatment of problems related to excessive alcohol consumption.

  6. Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids.

    Science.gov (United States)

    Guzik, Maciej W; Narancic, Tanja; Ilic-Tomic, Tatjana; Vojnovic, Sandra; Kenny, Shane T; Casey, William T; Duane, Gearoid F; Casey, Eoin; Woods, Trevor; Babu, Ramesh Padamati; Nikodinovic-Runic, Jasmina; O'Connor, Kevin E

    2014-08-01

    Diverse and elaborate pathways for nutrient utilization, as well as mechanisms to combat unfavourable nutrient conditions make Pseudomonas putida KT2440 a versatile micro-organism able to occupy a range of ecological niches. The fatty acid degradation pathway of P. putida is complex and correlated with biopolymer medium chain length polyhydroxyalkanoate (mcl-PHA) biosynthesis. Little is known about the second step of fatty acid degradation (β-oxidation) in this strain. In silico analysis of its genome sequence revealed 21 putative acyl-CoA dehydrogenases (ACADs), four of which were functionally characterized through mutagenesis studies. Four mutants with insertionally inactivated ACADs (PP_1893, PP_2039, PP_2048 and PP_2437) grew and accumulated mcl-PHA on a range of fatty acids as the sole source of carbon and energy. Their ability to grow and accumulate biopolymer was differentially negatively affected on various fatty acids, in comparison to the wild-type strain. Inactive PP_2437 exhibited a pattern of reduced growth and PHA accumulation when fatty acids with lengths of 10 to 14 carbon chains were used as substrates. Recombinant expression and biochemical characterization of the purified protein allowed functional annotation in P. putida KT2440 as an ACAD showing clear preference for dodecanoyl-CoA ester as a substrate and optimum activity at 30 °C and pH 6.5-7. © 2014 The Authors.

  7. Equine multiple acyl-CoA dehydrogenase deficiency (MADD) associated with seasonal pasture myopathy in the midwestern United States.

    Science.gov (United States)

    Sponseller, B T; Valberg, S J; Schultz, N E; Bedford, H; Wong, D M; Kersh, K; Shelton, G D

    2012-01-01

    Seasonal pasture myopathy (SPM) is a highly fatal form of nonexertional rhabdomyolysis that occurs in pastured horses in the United States during autumn or spring. In Europe, a similar condition, atypical myopathy (AM), is common. Recently, a defect of lipid metabolism, multiple acyl-CoA dehydrogenase deficiency (MADD), has been identified in horses with AM. To determine if SPM in the United States is caused by MADD. Six horses diagnosed with SPM based on history, clinical signs, and serum creatine kinase activity, or postmortem findings. Retrospective descriptive study. Submissions to the Neuromuscular Diagnostic Laboratory at the University of Minnesota were reviewed between April 2009 and January 2010 to identify cases of SPM. Inclusion criteria were pastured, presenting with acute nonexertional rhabdomyolysis, and serum, urine, or muscle samples available for analysis. Horses were evaluated for MADD by urine organic acids, serum acylcarnitines, muscle carnitine, or histopathology. Six horses had clinical signs and, where performed (4/6 horses), postmortem findings consistent with SPM. Affected muscle (4/4) showed degeneration with intramyofiber lipid accumulation, decreased free carnitine concentration, and increased carnitine esters. Serum acylcarnitine profiles (3/3) showed increases in short- and medium-chain acylcarnitines and urinary organic acid profiles (3/3) revealed increased ethylmalonic and methylsuccinic acid levels, and glycine conjugates, consistent with equine MADD. Similar to AM, the biochemical defect causing SPM is MADD, which causes defective muscular lipid metabolism and excessive myofiber lipid content. Diagnosis can be made by assessing serum acylcarnitine and urine organic acid profiles. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  8. Vulnerability to oxidative stress in vitro in pathophysiology of mitochondrial short-chain acyl-CoA dehydrogenase deficiency: response to antioxidants.

    Directory of Open Access Journals (Sweden)

    Zarazuela Zolkipli

    Full Text Available OBJECTIVE: To elucidate the pathophysiology of SCAD deficient patients who have a unique neurological phenotype, among fatty acid oxidation disorders, with early developmental delay, CNS malformations, intractable seizures, myopathy and clinical signs suggesting oxidative stress. METHODS: We studied skin fibroblast cultures from patients homozygous for ACADS common variant c.625G>A (n = 10, compound heterozygous for c.625G>A/c.319C>T (n = 3 or homozygous for pathogenic c.319C>T (n = 2 and c.1138C>T (n = 2 mutations compared to fibroblasts from patients with carnitine palmitoyltransferase 2 (CPT2 (n = 5, mitochondrial trifunctional protein (MTP/long-chain L-3-hydroxyacyl-CoA dehydrogenase (LCHAD (n = 7, and medium-chain acyl-CoA dehydrogenase (MCAD deficiencies (n = 4 and normal controls (n = 9. All were exposed to 50 µM menadione at 37°C. Additional conditions included exposure to 39°C and/or hypoglycemia. Time to 100% cell death was confirmed with trypan blue dye exclusion. Experiments were repeated with antioxidants (Vitamins C and E or N-acetylcysteine, Bezafibrate or glucose and temperature rescue. RESULTS: The most significant risk factor for vulnerability to menadione-induced oxidative stress was the presence of a FAO defect. SCADD fibroblasts were the most vulnerable compared to other FAO disorders and controls, and were similarly affected, independent of genotype. Cell death was exacerbated by hyperthermia and/or hypoglycemia. Hyperthermia was a more significant independent risk factor than hypoglycemia. Rescue significantly prolonged survival. Incubation with antioxidants and Bezafibrate significantly increased viability of SCADD fibroblasts. INTERPRETATION: Vulnerability to oxidative stress likely contributes to neurotoxicity of SCADD regardless of ACADS genotype and is significantly exacerbated by hyperthermia. We recommend rigorous temperature control in SCADD patients during acute illness

  9. O-Alkyl Hydroxamates as Metaphors of Enzyme-Bound Enolate Intermediates in Hydroxy Acid Dehydrogenases. Inhibitors of Isopropylmalate Dehydrogenase, Isocitrate Dehydrogenase, and Tartrate Dehydrogenase(1).

    Science.gov (United States)

    Pirrung, Michael C.; Han, Hyunsoo; Chen, Jrlung

    1996-07-12

    The inhibition of Thermus thermophilus isopropylmalate dehydrogenase by O-methyl oxalohydroxamate was studied for comparison to earlier results of Schloss with the Salmonella enzyme. It is a fairly potent (1.2 &mgr;M), slow-binding, uncompetitive inhibitor against isopropylmalate and is far superior to an oxamide (25 mM K(i) competitive) that is isosteric with the ketoisocaproate product of the enzyme. This improvement in inhibition was attributed to its increased NH acidity, which presumably is due to the inductive effect of the hydroxylamine oxygen. This principle was extended to the structurally homologous enzyme isocitrate dehydrogenase from E. coli, for which the compound O-(carboxymethyl) oxalohydroxamate is a 30 nM inhibitor, uncompetitive against isocitrate. The pH dependence of its inhibition supports the idea that it is bound to the enzyme in the anionic form. Another recently discovered homologous enzyme, tartrate dehydrogenase from Pseudomonas putida, was studied with oxalylhydroxamate. It has a relatively low affinity for the enzyme, though it is superior to tartrate. On the basis of these leads, squaric hydroxamates with increased acidity compared to squaric amides directed toward two of these enzymes were prepared, and they also show increased inhibitory potency, though not approaching the nanomolar levels of the oxalylhydroxamates.

  10. Cellular and physiological effects of medium-chain triglycerides.

    NARCIS (Netherlands)

    Wanten, G.J.A.; Naber, A.H.J.

    2004-01-01

    From a nutritional standpoint, saturated triglycerides with a medium (6 to 12) carbon chain length (MCT) have traditionally been regarded as biologically inert substances, merely serving as a source of fuel calories that is relatively easily accessible for metabolic breakdown compared with long

  11. Superhydrophilic surfaces from short and medium chain solvo-surfactants

    Directory of Open Access Journals (Sweden)

    Valentin Romain

    2013-01-01

    Full Text Available Pure monoglycerides (GM-Cs and glycerol carbonate esters (GCE-Cs are two families of oleochemical molecules composed of a polar part, glycerol for GM-Cs, glycerol carbonate for GCE-Cs, and a fatty acid lipophilic part. From a chemical point of view, GM-Cs include two free oxygen atoms in the hydroxyl functions and one ester function between the fatty acid and the glycerol parts. GCE-Cs contain two blocked oxygen atoms in the cyclic carbonate backbone and three esters functions: two endocyclic in the five-membered cyclic carbonate function, one exocyclic between the fatty acid and glycerol carbonate parts. At the physico-chemical level, GMCs and GCE-Cs are multifunctional molecules with amphiphilic structures: a common hydrophobic chain to the both families and a polar head, glycerol for GMs and glycerol carbonate for GCE-Cs. Physicochemical properties depend on chain lengths, odd or even carbon numbers on the chain, and glyceryl or cyclocarbonic polar heads. The solvo-surfactant character of GM-Cs and overall GCE-Cs were discussed through the measurements of critical micellar concentration (CMC or critical aggregation concentration (CAC. These surface active glycerol esters/glycerol carbonate esters were classified following their hydrophilic/hydrophobic character correlated to their chain length (LogPoctanol/water = f(atom carbon number. Differential scanning calorimetry and optical polarized light microscopy allow us to highlight the selfassembling properties of the glycerol carbonate esters alone and in presence of water. We studied by thermal analysis the polymorphic behaviour of GCE-Cs, and the correlation between their melting points versus the chain lengths. Coupling the self-aggregation and crystallization properties, superhydrophilic surfaces were obtained by formulating GM-Cs and GCE-Cs. An efficient durable water-repellent coating of various metallic and polymeric surfaces was allowed. Such surfaces coated by self-assembled fatty acid esters in a stable coagel state present a novel solution for the water-repellent coating of surfaces.

  12. Aldehyde dehydrogenase protein superfamily in maize.

    Science.gov (United States)

    Zhou, Mei-Liang; Zhang, Qian; Zhou, Ming; Qi, Lei-Peng; Yang, Xiong-Bang; Zhang, Kai-Xuan; Pang, Jun-Feng; Zhu, Xue-Mei; Shao, Ji-Rong; Tang, Yi-Xiong; Wu, Yan-Min

    2012-11-01

    Maize (Zea mays ssp. mays L.) is an important model organism for fundamental research in the agro-biotechnology field. Aldehydes were generated in response to a suite of environmental stresses that perturb metabolism including salinity, dehydration, desiccation, and cold and heat shock. Many biologically important aldehydes are metabolized by the superfamily of NAD(P)(+)-dependent aldehyde dehydrogenases. Here, starting from the database of Z. mays, we identified 28 aldehyde dehydrogenase (ALDH) genes and 48 transcripts by the in silico cloning method using the ALDH-conserved domain amino acid sequence of Arabidopsis and rice as a probe. Phylogenetic analysis shows that all 28 members of the ALDH gene families were classified to ten distinct subfamilies. Microarray data and quantitative real-time PCR analysis reveal that ZmALDH9, ZmALDH13, and ZmALDH17 genes involve the function of drought stress, acid tolerance, and pathogens infection. These results suggested that these three ZmALDH genes might be potentially useful in maize genetic improvement.

  13. ATOMIC-STRUCTURE OF THE CUBIC CORE OF THE PYRUVATE-DEHYDROGENASE MULTIENZYME COMPLEX

    NARCIS (Netherlands)

    MATTEVI, A; OBMOLOVA, G; SCHULZE, E; KALK, KH; WESTPHAL, AH; DEKOK, A; HOL, WGJ

    1992-01-01

    The highly symmetric pyruvate dehydrogenase multienzyme complexes have molecular masses ranging from 5 to 10 million daltons. They consist of numerous copies of three different enzymes: pyruvate dehydrogenase, dihydrolipoyl transacetylase, and lipoamide dehydrogenase. The three-dimensional crystal

  14. Enzymatic urea adaptation: lactate and malate dehydrogenase in elasmobranchs

    Czech Academy of Sciences Publication Activity Database

    Lagana, G.; Bellocco, E.; Mannucci, C.; Leuzzi, U.; Tellone, E.; Kotyk, Arnošt; Galtieri, A.

    2006-01-01

    Roč. 55, č. 6 (2006), s. 675-688 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50110509 Keywords : elasmobranchs * lactate dehydrogenase * malate dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 2.093, year: 2006

  15. Cloning and expression analysis of alcohol dehydrogenase ( Adh ...

    African Journals Online (AJOL)

    Hybrid promoters are created by shuffling of DNA fragments while keeping intact regulatory regions crucial of promoter activity. Two fragments of alcohol dehydrogenase (Adh) promoter from Zea mays were selected to generate hybrid promoter. Sequence analysis of both alcohol dehydrogenase promoter fragments through ...

  16. Study on the triphenyl tetrazolium chloride– dehydrogenase activity ...

    African Journals Online (AJOL)

    A quick analysis of the sludge activity method based on triphenyltetrazolium chloride-dehydrogenase activity (TTC-DHA) was developed to change the rule and status of the biological activity of the activated sludge in tomato paste wastewater treatment. The results indicate that dehydrogenase activity (DHA) can effectively ...

  17. Some Properties of Glutamate Dehydrogenase from the Marine Red ...

    African Journals Online (AJOL)

    Keywords: ammonia assimilation, glutamate dehydrogenase, GDH, Gracilaria sordida, red alga, enzyme activity. Glutamate dehydrogenases (GDH, EC ... Anabolic functions could be assimilation of ammonia released during photorespiration and synthesis of N-rich transport compounds. Western Indian Ocean Journal of ...

  18. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  19. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  20. Action of sulphite on plant malate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, I.

    1974-01-01

    SO/sub 3//sup 2 -/ acts on NAD- and NADP-dependent malate dehydrogenase in several ways. Firstly, SO/sub 3//sup 2 -/ favours the appearance of low MW species (65000 and 39000 daltons) in Sephadex gel chromatography. Secondly, the enzyme from which is obtained by gel chromatography with dithioerythritol plus nucleotide cofactor is changed in the presence of SO/sub 3//sup 2 -/. This is indicated by the appearance of a linear reaction (instead of curvilinear), and by the abolition of the biphasic sigmoidal kinetics on varying substrate and cofactor concentrations. Thus the inhibition of initial velocity at high substrate or cofactor concentrations is even more marked than at lower ones. Thirdly, SO/sub 3//sup 2 -/ strongly reduces the activity in substrate saturating conditions.

  1. Variants of glycerol dehydrogenase having D-lactate dehydrogenase activity and uses thereof

    Science.gov (United States)

    Wang, Qingzhao; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    2017-08-29

    The present invention provides methods of designing and generating glycerol dehydrogenase (GlyDH) variants that have altered function as compared to a parent polypeptide. The present invention further provides nucleic acids encoding GlyDH polypeptide variants having altered function as compared to the parent polypeptide. Host cells comprising polynucleotides encoding GlyDH variants and methods of producing lactic acids are also provided in various aspects of the invention.

  2. Cloning and sequencing of the gene encoding the 72-kilodalton dehydrogenase subunit of alcohol dehydrogenase from Acetobacter aceti.

    Science.gov (United States)

    Inoue, T; Sunagawa, M; Mori, A; Imai, C; Fukuda, M; Takagi, M; Yano, K

    1989-06-01

    A genomic library of Acetobacter aceti DNA was constructed by using a broad-host-range cosmid vector. Complementation of a spontaneous alcohol dehydrogenase-deficient mutant resulted in the isolation of a plasmid designated pAA701. Subcloning and deletion analysis of pAA701 limited the region that complemented the deficiency in alcohol dehydrogenase activity of the mutant. The nucleotide sequence of this region was determined and showed that this region contained the full structural gene for the 72-kilodalton dehydrogenase subunit of the alcohol dehydrogenase enzyme complex. The predicted amino acid sequence of the gene showed homology with sequences of methanol dehydrogenase structural genes of Paracoccus denitrificans and Methylobacterium organophilum.

  3. External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria.

    Science.gov (United States)

    Antos-Krzeminska, Nina; Jarmuszkiewicz, Wieslawa

    2014-09-01

    The mitochondrial respiratory chain of plants and some fungi contains multiple rotenone-insensitive NAD(P)H dehydrogenases, of which at least two are located on the outer surface of the inner membrane (i.e., external NADH and external NADPH dehydrogenases). Annotated sequences of the putative alternative NAD(P)H dehydrogenases of the protozoan Acanthamoeba castellanii demonstrated similarity to plant and fungal sequences. We also studied activity of these dehydrogenases in isolated A. castellanii mitochondria. External NADPH oxidation was observed for the first time in protist mitochondria. The coupling parameters were similar for external NADH oxidation and external NADPH oxidation, indicating similar efficiencies of ATP synthesis. Both external NADH oxidation and external NADPH oxidation had an optimal pH of 6.8 independent of relevant ubiquinol-oxidizing pathways, the cytochrome pathway or a GMP-stimulated alternative oxidase. The maximal oxidizing activity with external NADH was almost double that with external NADPH. However, a lower Michaelis constant (K(M)) value for external NADPH oxidation was observed compared to that for external NADH oxidation. Stimulation by Ca(2+) was approximately 10 times higher for external NADPH oxidation, while NADH dehydrogenase(s) appeared to be slightly dependent on Ca(2+). Our results indicate that external NAD(P)H dehydrogenases similar to those in plant and fungal mitochondria function in mitochondria of A. castellanii. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Science.gov (United States)

    2010-04-01

    ... found in a variety of conditions, including megaloblastic anemia (decrease in the number of mature red... conditions known to cause increased lactic dehydrogenase levels. (b) Classification. Class I (general...

  5. Very long-chain acyl-CoA dehydrogenase (VLCAD-) deficiency-studies on treatment effects and long-term outcomes in mouse models.

    Science.gov (United States)

    Tucci, Sara

    2017-05-01

    Very-long-chain-acyl-CoA-dehydrogenase deficiency is the most common disorder of mitochondrial long-chain fatty acid (LCFA) oxidation, with an incidence of 1:50,000-1:100,000 in newborns. Catabolic situations contribute to the aggravation of symptoms and induce severe metabolic derangement. Treatment for VLCAD-deficiency includes avoidance of fasting and a long-chain fat-restricted and fat-modified diet in which LCFAs are fully or partially replaced by medium-chain triglycerides (MCT). The aim of this work was to investigate the outcome and the effects of long-term treatment in a mouse model of VLCAD-deficiency. The application of a single MCT bolus in a mouse model of VLCAD-deficiency (VLCAD -/- mice) immediately prior to exercise protected the muscles from the accumulation of acylcarnitines providing the required energy and it did not affect hepatic lipid metabolism. However, when MCT was applied over the course of a year as a regular part of the diet, female VLCAD -/- mice developed a severe clinical phenotype comparable to the human metabolic syndrome. Indeed, they were characterized by massive visceral fat infiltration, hepatosteatosis, disturbed fatty acid composition, hyperlipidemia, and systemic oxidative stress. In contrast, male VLCAD -/- mice seemed to be protected and displayed only signs of insulin resistance. Besides the sex-specific response to MCT supplementation with regard to the lipid metabolism, all VLCAD -/- mice developed progressive cardiac dysfunction over time which worsened when they were treated with regular MCT resulting in severe dilated cardiomyopathy. While long term use of MCT oil in mice has adverse effects, no such effects have been demonstrated in humans, likely reflecting the differences in long chain fatty acid oxidation between the two species.

  6. Targeting isocitrate dehydrogenase (IDH) in cancer.

    Science.gov (United States)

    Fujii, Takeo; Khawaja, Muhammad Rizwan; DiNardo, Courtney D; Atkins, Johnique T; Janku, Filip

    2016-05-01

    Isocitrate dehydrogenase (IDH) is an essential enzyme for cellular respiration in the tricarboxylic acid (TCA) cycle. Recurrent mutations in IDH1 or IDH2 are prevalent in several cancers including glioma, acute myeloid leukemia (AML), cholangiocarcinoma and chondrosarcoma. The mutated IDH1 and IDH2 proteins have a gain-of-function, neomorphic activity, catalyzing the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG) by NADPH. Cancer-associated IDH mutations block normal cellular differentiation and promote tumorigenesis via the abnormal production of the oncometabolite 2-HG. High levels of 2-HG have been shown to inhibit α-KG dependent dioxygenases, including histone and deoxyribonucleic acid (DNA) demethylases, which play a key role in regulating the epigenetic state of cells. Current targeted inhibitors of IDH1 (AG120, IDH305), IDH2 (AG221), and pan-IDH1/2 (AG881) selectively inhibit mutant IDH protein and induce cell differentiation in in vitro and in vivo models. Preliminary results from phase I clinical trials with IDH inhibitors in patients with advanced hematologic malignancies have demonstrated an objective response rate ranging from 31% to 40% with durable responses (>1 year) observed. Furthermore, the IDH inhibitors have demonstrated early signals of activity in solid tumors with IDH mutations, including cholangiocarcinomas and low grade gliomas.

  7. Novel Inhibitors Complexed with Glutamate Dehydrogenase

    Science.gov (United States)

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.; Smith, Thomas J.

    2009-01-01

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate using NAD(P)+ as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH. PMID:19531491

  8. Eucalypt NADP-Dependent Isocitrate Dehydrogenase1

    Science.gov (United States)

    Boiffin, Vincent; Hodges, Michael; Gálvez, Susana; Balestrini, Raffaella; Bonfante, Paola; Gadal, Pierre; Martin, Francis

    1998-01-01

    NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed. PMID:9662536

  9. Temperature-sensitive glutamate dehydrogenase mutants of Salmonella typhimurium.

    OpenAIRE

    Dendinger, S M; Brenchley, J E

    1980-01-01

    Mutants of Salmonella typhimurium defective in glutamate dehydrogenase activity were isolated in parent strains lacking glutamate synthase activity by localizcd mutagenesis or by a general mutagenesis combined with a cycloserine enrichment for glutamate auxotrophs. Two mutants with temperature-sensitive phenotypes had glutamate dehydrogenase activities that were more thermolabile than that of an isogenic control strain. Eight other mutants had less than 10% of the wild-type glutamate dehydrog...

  10. Catalytic activity of bovine glutamate dehydrogenase requires a hexamer structure.

    OpenAIRE

    Bell, E T; Bell, J E

    1984-01-01

    Previous workers have shown that the hexamers of glutamate dehydrogenase are dissociated first into trimers and subsequently into monomers by increasing guanidinium chloride concentrations. In renaturation experiments it is shown that trimers of glutamate dehydrogenase can be reassociated to give the hexamer form of the enzyme, with full regain of activity. Monomeric subunits produced at high guanidinium chloride concentrations cannot be renatured. The trimer form of the enzyme is shown to ha...

  11. Pyruvate dehydrogenase complex and lactate dehydrogenase as targets for therapy of acute liver failure.

    Science.gov (United States)

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-23

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate in the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-Ab, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by Gene Ontology Enrichment Analysis. Efficacy of histone acetyltransferase inhibitor garcinol and LDH inhibitor galloflavin at reducing liver damage was evaluated in mice with induced hepatotoxicity. Levels and activities of PDHC and LDH were increased in cytoplasmatic and nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-coA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to response to damage. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus and are targets for therapy of acute liver failure. Acute liver failure is a rapidly progressive and life-threatening deterioration of liver function resulting in high mortality and

  12. The structure of the quinoprotein alcohol dehydrogenase of Acetobacter aceti modelled on that of methanol dehydrogenase from Methylobacterium extorquens.

    Science.gov (United States)

    Cozier, G E; Giles, I G; Anthony, C

    1995-06-01

    The 1.94 A structure of methanol dehydrogenase has been used to provide a model structure for part of a membrane quinohaemoprotein alcohol dehydrogenase. The basic superbarrel structure and the active-site region are retained, indicating essentially similar mechanisms of action, but there are considerable differences in the external loops, particularly those involved in formation of the shallow funnel leading to the active site.

  13. ald of Mycobacterium tuberculosis Encodes both the Alanine Dehydrogenase and the Putative Glycine Dehydrogenase

    Science.gov (United States)

    Giffin, Michelle M.; Modesti, Lucia; Raab, Ronald W.; Wayne, Lawrence G.

    2012-01-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown. PMID:22210765

  14. Effect of fermented sea tangle on the alcohol dehydrogenase and acetaldehyde dehydrogenase in Saccharomyces cerevisiae.

    Science.gov (United States)

    Cha, Jae-Young; Jeong, Jae-Jun; Yang, Hyun-Ju; Lee, Bae-Jin; Cho, Young-Su

    2011-08-01

    Sea tangle, a kind of brown seaweed, was fermented with Lactobacillus brevis BJ-20. The gamma-aminobutyric acid (GABA) content in fermented sea tangle (FST) was 5.56% (w/w) and GABA in total free amino acid of FST was 49.5%. The effect of FST on the enzyme activities and mRNA protein expression of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) involved in alcohol metabolism in Saccharomyces cerevisiae was investigated. Yeast was cultured in YPD medium supplemented with different concentrations of FST powder [0, 0.4, 0.8, and 1.0% (w/v)] for 18 h. FST had no cytotoxic effect on the yeast growth. The highest activities and protein expressions of ADH and ALDH from the cell-free extracts of S. cerevisiae were evident with the 0.4% and 0.8% (w/v) FST-supplemented concentrations, respectively. The highest concentrations of GABA as well as minerals (Zn, Ca, and Mg) were found in the cell-free extracts of S. cerevisiae cultured in medium supplemented with 0.4% (w/v) FST. The levels of GABA, Zn, Ca, and Mg in S. cerevisiae were strongly correlated with the enzyme activities of ADH and ALDH in yeast. These results indicate that FST can enhance the enzyme activities and protein expression of ADH and ALDH in S. cerevisiae.

  15. Influência da fisioterapia complexa descongestiva associada à ingestão de triglicerídeos de cadeia média no tratamento do linfedema de membro superior Influence of complex descongestive physical therapy associated with intake of medium-chain triglycerides for treating upper-limb lymphedema

    Directory of Open Access Journals (Sweden)

    J Oliveira

    2008-02-01

    Full Text Available OBJETIVO: Verificar a influência da utilização da fisioterapia complexa descongestiva associada à dietoterapia com triglicerídeos de cadeia média (TCM como forma de intervenção no linfedema de membro superior (MS. MÉTODOS: Para a avaliação do linfedema, foram utilizadas cirtometria, volumetria, pregas cutâneas e quantidade de água corporal total. A Escala Visual Análoga (EVA foi utilizada para avaliar as sensações de desconforto, peso e dor no MS. Participaram deste estudo dez mulheres mastectomizadas com linfedema de MS homolateral à cirurgia, com idade média de 65,9 ± 10,4 anos e índice de massa corpórea (IMC de 26,8 ± 3,0kg/m² que, após avaliação nutricional, foram divididas aleatoriamente em dois grupos: Grupo Controle (n= 5, submetido ao tratamento fisioterapêutico constando da terapia complexa descongestiva (massagem clássica, drenagem linfática manual, bandagem compressiva e cuidados com a pele três vezes na semana, durante quatro semanas; Grupo TCM (n= 5, submetido ao mesmo protocolo fisioterapêutico somado ao tratamento dietético diário com ingestão de TCM, por quatro semanas. RESULTADOS: Ao final da intervenção, a análise da cirtometria e da volumetria mostraram diferenças significativas entre os grupos (OBJECTIVE: To investigate the influence of complex decongestive physical therapy (CDP in association with diet therapy using medium-chain triglycerides (MCT, as an intervention in cases of upper-limb lymphedema. METHODS: The lymphedema was evaluated by measuring circumferences, volumes, skin folds and whole-body water content. Feelings of discomfort, pain and heaviness in the arms were evaluated using a visual analog scale. Ten women who had undergone mastectomy and presented upper-limb lymphedema homolateral to the surgery participated in this study. Their mean age was 65.9 ± 10.4 years and their mean body mass index (BMI was 26.8 ± 3.0kg/m². After nutritional evaluation, they were randomly

  16. Distribuição estereoespecífica de lipídios estruturados a partir de gorduras de palma, palmiste e triacilgliceróis de cadeia média Stereospecific distribution of structured lipids obtained from palm oil, palm kernel oil, and medium chain triacylglycerols

    Directory of Open Access Journals (Sweden)

    Denise D'Agostini

    2002-09-01

    Full Text Available Por meio de interesterificação química foram sintetizados lipídios estruturados a partir das gorduras de palma, palmiste e triacilgliceróis de cadeia média. O objetivo deste trabalho foi verificar a distribuição estereoespecífica dos ácidos graxos nos lipídios estruturados. Foi possível comprovar a ocorrência da interesterificação através da hidrólise enzimática, que permitiu conhecer a composição dos ácidos graxos em posições específicas dos triacilgliceróis. Foram estudadas 10 amostras, representadas por 3 amostras individuais, 3 misturas binárias e 4 misturas ternárias. As amostras foram submetidas à hidrólise com lipase pancreática suína à temperatura de 40 ºC e posteriormente analisadas por cromatografia gasosa quanto à composição em ácidos graxos na posição sn-2. A partir dos resultados foram calculados os grupos de triacilgliceróis nas amostras individuais e nas misturas antes e após a reação de interesterificação, utilizando as teorias 1,3-random 2-random e 1,2,3-random. Os resultados demonstraram que antes do rearranjo ao acaso houve preferência do ácido oléico pela posição sn-2, enquanto que os ácidos palmítico e esteárico distribuíram-se principalmente pelas posições sn-1 e sn-3. Nos lipídios estruturados, os ácidos graxos saturados aumentaram sua participação na posição central do triacilglicerol, enquanto que os ácidos graxos insaturados apresentaram diminuição nesta mesma posição.Structured lipids were synthesized by chemical interesterification from palm oil, palm kernel oil, and medium chain triacylglycerols. The objective of this study was to verify the fatty acids positional distribution in the structured lipids. It was possible to confirm the interesterification occurrence through enzymatic hydrolysis, which allowed to know the fatty acids composition in specific positions of the triacylglycerols. Ten samples composed by three individual samples, three binary

  17. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiangping [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China); Wang, Ziquan; Lu, Guannan [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); He, Wenxiang, E-mail: wenxianghe@nwafu.edu.cn [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A& F University, Yangling, 712100, Shaanxi (China); Wei, Gehong [College of Life Sciences, Northwest A& F University, Yangling, 712100, Shaanxi (China); Huang, Feng; Xu, Xinlan; Shen, Weijun [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China)

    2017-05-05

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V{sub max}, and K{sub m} variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K{sub m} and V{sub max} values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h{sup −1} in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K{sub i}) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K{sub i} were between 0.7–4.2 mM. Soil total organic carbon and K{sub i} were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V{sub max} and K{sub m}, which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  18. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    International Nuclear Information System (INIS)

    Tan, Xiangping; Wang, Ziquan; Lu, Guannan; He, Wenxiang; Wei, Gehong; Huang, Feng; Xu, Xinlan; Shen, Weijun

    2017-01-01

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V max , and K m variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K m and V max values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h −1 in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K i ) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K i were between 0.7–4.2 mM. Soil total organic carbon and K i were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V max and K m , which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  19. Dehydrogenase activity of forest soils depends on the assay used

    Science.gov (United States)

    Januszek, Kazimierz; Długa, Joanna; Socha, Jarosław

    2015-01-01

    Dehydrogenases are exclusively intracellular enzymes, which play an important role in the initial stages of oxidation of soil organic matter. One of the most frequently used methods to estimate dehydrogenase activity in soil is based on the use of triphenyltetrazolium chloride as an artificial electron acceptor. The purpose of this study was to compare the activity of dehydrogenases of forest soils with varied physicochemical properties using different triphenyltetrazolium chloride assays. The determination was carried out using the original procedure by Casida et al., a modification of the procedure which involves the use of Ca(OH)2 instead of CaCO3, the Thalmann method, and the assay by Casida et al. without addition of buffer or any salt. Soil dehydrogenase activity depended on the assay used. Dehydrogenase determined by the Casida et al. method without addition of buffer or any salt correlated with the pH values of soils. The autoclaved strongly acidic samples of control soils showed high concentrations of triphenylformazan, probably due to chemical reduction of triphenyltetrazolium chloride. There is, therefore, a need for a sterilization method other than autoclaving, ie a process that results in significant changes in soil properties, thus helping to increase the chemical reduction of triphenyltetrazolium chloride.

  20. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci

    Directory of Open Access Journals (Sweden)

    Guillermo Hugo Peralta

    Full Text Available ABSTRACT Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  1. [Informatics analysis of malate dehydrogenase from Taenia saginata asiatica].

    Science.gov (United States)

    Huang, Jiang; Hu, Xu-Chu; Huang, Yan; Yu, Xin-Bing; Bao, Huai-En; Lang, Shu-Yuan; Liao, Xing-Jiang

    2008-06-30

    Tools from bioinformatics websites such as NCBI, ExPaSy were used for the analysis. The malate dehydrogenase full-length gene from Taenia saginata asiatica was 1 212 bp in length, with a coding region of 30-1 028 bp and coding 332 amino acids. It was a complete and full-length gene compared with the homologues in GenBank. The protein showed no transmembrane region, with stable physical-chemical characteristics. Three major linear epitopes located aa95-aa100, aa322-aa327 and aa117-aa122, with certain distance from each other on the surface of spatial structure of malate dehydrogenase (MDH). The last one was the linear epitope of Taenia. This cytosolic malate dehydrogenase gene is a potential antigen for diagnosis.

  2. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (Michigan); (UCSF)

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  3. Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Cord Blood

    Directory of Open Access Journals (Sweden)

    Can Acipayam

    2014-02-01

    Aim: Glucose-6-phosphate dehydrogenase deficiency is an important factor in etiology of pathologic neonatal jaundice. The aim of this study was to indicate the significance of screening glucose-6-phosphate dehydrogenase deficiency in the cord blood of neonates and the frequency of this deficiency in the etiology of neonatal hyperbilirubinemia. Material and Method: The study was performed consecutive 1015 neonates were included. Five hundred fifty six (54.8% of them were male and 459 (45.2% were female. The following parameters were recorded: Gender, birth weight, birth height, head circumference and gestational age. The glucose-6-phosphate dehydrogenase level of neonates were measured with quantitative method in cord blood. Also, hemoglobine, hematocrite, red blood cell count and blood group were measured. The following parameters were recorded in cases with jaundice: exchange transfusion, phototherapy, physiologic and pathologic jaundice, peak bilirubin day, maximum bilirubin level, total bilirubin level at the first day of jaundice, beginning time of jaundice. Results: Enzyme deficiency was detected in 133 (13.1% of neonates and 76 (57% of them were male, 57 (43% were female. Significant difference was detected in low glucose-6-phosphate dehydrogenase enzyme level with jaundice group for total bilirubin level at the first day of jaundice, maximum total bilirubin level and pathologic jaundice (p<0.05. Discussion: The ratio of glucose-6-phosphate dehydrogenase deficiency was found in Edirne in this study and this ratio was higher than other studies conducted in our country. For this reason, glucose-6-phosphate dehydrogenase enzyme level in cord blood of neonates should be measured routinely and high risk neonates should be followed up for hyperbilirubinemia and parents should be informed in our region.

  4. Reversible inactivation of CO dehydrogenase with thiol compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kreß, Oliver [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Gnida, Manuel [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Pelzmann, Astrid M. [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Marx, Christian [Institute of Biochemistry and Biophysics, Friedrich-Schiller-University of Jena, 07745 Jena (Germany); Meyer-Klaucke, Wolfram [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Meyer, Ortwin, E-mail: Ortwin.Meyer@uni-bayreuth.de [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany)

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  5. A influência da suplementação de triglicerídeos de cadeia média no desempenho em exercícios de ultra-resistência Influencia de la suplementacion de trigliceridos de cadena media en ejercicios de máxima resistencia The influence of medium-chain triglycerides supplementation in ultra-endurance exercise performance

    Directory of Open Access Journals (Sweden)

    Antonio Marcio Domingues Ferreira

    2003-11-01

    ípidos, otorgan una cantidad de energía mayor cuando son oxidados. De esta forma, los TCM parecen ser el combustible ideal para las pruebas de larga duración. Por lo tanto, esta revisión pretende como objetivo aclarar como los TCM pueden influir en el desempeño en pruebas de máxima resistencia.The ultra-endurance competitions represent a great challenge in the world of sports. The energetic cost of an ultra-endurance event can vary from 5,000 to 18,000 kcal a day. Because of this great demand, many strategies to improve performance have been developed during the last years, like the medium-chain triglycerides (MCT supplementation in combination with carbohydrates (CBO. The goal of MCT supplementation is to increase the free fatty acids (FFA utilization as energy source, sparing the body glycogen to the end of the competition. When compared to long-chain triglycerides (LCT, MCT are absorbed faster and transported through the body. Besides that, MCT have a speed of oxidation comparable to CHO, but, since they are lipids, they provide a greater amount of energy when oxidized. Therefore, MCT seem to be the ideal fuel for long-term events. To conclude, the aim of this revision is to elucidate how MCT can influence performance in ultra-endurance exercises.

  6. Assay of partially purified glutamate dehydrogenase isolated from ...

    African Journals Online (AJOL)

    Glutamate dehydrogenase (E C 1.4.1.1) isolated from the seeds of asparagus beans was partially purified to a factor of 22 by dialysis after fractional precipitation with solid ammonium sulphate at 40 and 60% saturation. A specific activity of 11.78μmol min-1 mg-1 protein was calculated for the partially purified enzyme when ...

  7. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  8. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Isocitric dehydrogenase test system. 862.1420 Section 862.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  9. New enzymatic assay, parasite lactate dehydrogenase in diagnosis ...

    African Journals Online (AJOL)

    Background: The unique ability of plasmodial lactate dehydrogenase p(LDH) to utilise 3-acetyl pyridine dinucleotide (APAD) in lieu of NAD as a coenzyme in the conversion of pyruvate to lactate, led to the development of a biochemical assay for the detection of plasmodial parasitaemia. Researchers have reported that ...

  10. Crystallization behaviour of glyceraldehyde dehydrogenase from Thermoplasma acidophilum

    Czech Academy of Sciences Publication Activity Database

    Lermark, L.; Degtjarik, Oksana; Steffler, F.; Sieber, V.; Kutá-Smatanová, Ivana

    2015-01-01

    Roč. 71, č. 12 (2015), s. 1475-1480 ISSN 2053-230X Institutional support: RVO:67179843 Keywords : TaAlDH * Thermoplasma acidophilum * bioproduction * cell-free enzyme cascade * glyceraldehyde dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 0.647, year: 2015

  11. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Nisler, Jaroslav; Kopečný, D.; Končitíková, R.; Zatloukal, Marek; Bazgier, Václav; Berka, K.; Zalabák, D.; Briozzo, P.; Strnad, Miroslav; Spíchal, Lukáš

    2016-01-01

    Roč. 92, 1-2 (2016), s. 235-248 ISSN 0167-4412 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GA15-22322S Institutional support: RVO:61389030 Keywords : Cytokinin oxidase/dehydrogenase * Crystal structure * Molecular docking Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.356, year: 2016

  12. Cloning and expression of chicken 20-hydroxysteroid dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Bryndová, Jana; Klusoňová, Petra; Kučka, Marek; Vagnerová, Karla; Mikšík, Ivan; Pácha, Jiří

    2006-01-01

    Roč. 37, č. 3 (2006), s. 453-462 ISSN 0952-5041 R&D Projects: GA AV ČR(CZ) IAA6011201 Grant - others:GA UK(CZ) 216/2004 Institutional research plan: CEZ:AV0Z50110509 Keywords : 20-hydroxysteroid dehydrogenase * SDR family Subject RIV: CE - Biochemistry Impact factor: 2.988, year: 2006

  13. Glucose-6-phosphate dehydrogenase deficiency; the single most ...

    African Journals Online (AJOL)

    Introduction: Glucose- 6-phosphate dehydrogenase deficiency is the most common enzymatic disorder of the red cell and an important risk factor for neonatal jaundice. Methodology: The aim of the study was to determine the incidence of G-6-PD deficiency among jaundiced neonates, and describe the associated morbidity ...

  14. Studies on the structure and function of pyruvate dehydrogenase complexes

    NARCIS (Netherlands)

    Abreu, de R.

    1978-01-01

    The aim of the present investigation was to obtain more information of the structure and function of the pyruvate dehydrogenase complexes from Azotobacter vinelandii and Escherichia coli.

    In chapter 2 a survey is given of the recent literature on

  15. Prevalence of glucose-6-phosphate dehydrogenase deficiency in ...

    African Journals Online (AJOL)

    Pradeep Kumar

    2016-02-06

    Feb 6, 2016 ... Meta-analysis;. Prevalence. Abstract Background: Glucose-6-phosphate dehydrogenase (G6PD) is a house keeping enzyme which catalyzes the first step in the hexose monophosphate pathway of glucose metabolism. G6PD deficiency is the commonest hemolytic X-linked genetic disease, which affects ...

  16. Alcohol consumption, alcohol dehydrogenase 3 polymorphism, and colorectal adenomas

    NARCIS (Netherlands)

    Tiemersma, E.W.; Wark, P.A.; Ocké, M.C.; Bunschoten, A.; Otten, M.H.; Kok, F.J.; Kampman, E.

    2003-01-01

    Alcohol is a probable risk factor with regard to colorectal neoplasm and is metabolized to the carcinogen acetaldehyde by the genetically polymorphic alcohol dehydrogenase 3 (ADH3) enzyme. We evaluated whether the association between alcohol and colorectal adenomas is modified by ADH3 polymorphism.

  17. Perioperative care of an infant with pyruvate dehydrogenase ...

    African Journals Online (AJOL)

    The authors present the anaesthetic management of two infants with pyruvate dehydrogenase complex deficiency (PDCD), a rare genetic disorder of carbohydrate metabolism leading to lactic acidosis and neurological impairment. In the first case, a seven-month-old infant, undergoing closed reduction of a dislocated hip, ...

  18. Substrate Specificity via Ternary Complex Formation with Glutamate Dehydrogenase

    NARCIS (Netherlands)

    Koekoek, Henk; Robillard, George T.

    1977-01-01

    Very little discrimination is observed in the binary binding of dicarboxylic acid substrate analogues to glutamate dehydrogenase as monitored by proton nuclear magnetic resonance. Variation in length, charge, bulkiness and conformational rigidity resulted in only a factor of five variation in KD and

  19. Isolation and characterization of the rat gene encoding glutamate dehydrogenase

    NARCIS (Netherlands)

    Das, A. T.; Arnberg, A. C.; Malingré, H.; Moerer, P.; Charles, R.; Moorman, A. F.; Lamers, W. H.

    1993-01-01

    The concentration of glutamate dehydrogenase (GDH) varies strongly between different organs and between different regions within organs. To permit further studies on the regulation of GDH expression, we isolated and characterized the rat gene encoding the GDH protein. This gene contains 13 exons and

  20. Overexpression of 11β-hydroxysteroid dehydrogenase 1 in visceral ...

    African Journals Online (AJOL)

    Ibrahim Eldaghayes

    2018-02-23

    Feb 23, 2018 ... Alterations in this enzyme are related to the development of metabolic syndrome, obesity and hyperadrenocorticism. (HAC). ..... 11β-hydroxysteroid dehydrogenase type 1 in visceral adipose tissue and portal hypercortisolism in non-alcoholic fatty liver disease. Liver Int. 32(3), 392-399. Carroll, B.J., Cassidy ...

  1. Assessment of the activity of glucose-6-phosphate dehydrogenase ...

    African Journals Online (AJOL)

    Glucose-6-phosphate dehydrogenase (G-6-PD) is an enzyme in the pentose phosphate pathway (PPP) which reduces NADP to NADPH while oxidizing glucose-6-phosphate. In turn, NADPH then provides reducing equivalents needed for the conversion of oxidized glutathione to reduced glutathione, which protects against ...

  2. Characterization of the L-lactate dehydrogenase from Aggregatibacter actinomycetemcomitans.

    Directory of Open Access Journals (Sweden)

    Stacie A Brown

    Full Text Available Aggregatibacter actinomycetemcomitans is a Gram-negative opportunistic pathogen and the proposed causative agent of localized aggressive periodontitis. A. actinomycetemcomitans is found exclusively in the mammalian oral cavity in the space between the gums and the teeth known as the gingival crevice. Many bacterial species reside in this environment where competition for carbon is high. A. actinomycetemcomitans utilizes a unique carbon resource partitioning system whereby the presence of L-lactate inhibits uptake of glucose, thus allowing preferential catabolism of L-lactate. Although the mechanism for this process is not fully elucidated, we previously demonstrated that high levels of intracellular pyruvate are critical for L-lactate preference. As the first step in L-lactate catabolism is conversion of L-lactate to pyruvate by lactate dehydrogenase, we proposed a model in which the A. actinomycetemcomitans L-lactate dehydrogenase, unlike homologous enzymes, is not feedback inhibited by pyruvate. This lack of feedback inhibition allows intracellular pyruvate to rise to levels sufficient to inhibit glucose uptake in other bacteria. In the present study, the A. actinomycetemcomitans L-lactate dehydrogenase was purified and shown to convert L-lactate, but not D-lactate, to pyruvate with a K(m of approximately 150 microM. Inhibition studies reveal that pyruvate is a poor inhibitor of L-lactate dehydrogenase activity, providing mechanistic insight into L-lactate preference in A. actinomycetemcomitans.

  3. Assessment of creatine kinase and lactate dehydrogenase activities ...

    African Journals Online (AJOL)

    Ina bid to investigate the influence of menopausal on coronary heart disease, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) enzymes were analysed on a prospective cohort of 100 women attending Irrua Specialist Teaching Hospital (ISTH), Irrua, Edo state-Nigeria. They were divided into two groups; ...

  4. Properties of glucoside 3-dehydrogenase and its potential applications

    African Journals Online (AJOL)

    These 3-ketoglucosides are useful as building blocks for chemicals such as detergents and polymers. The versatile glucoside 3-dehydrogenase has potential applications in different fields including sugar industry, clinical diagnosis and pharmaceutical intermediates synthesis. This review attempts to describe the glucoside ...

  5. Cloning and in silico analysis of a cinnamyl alcohol dehydrogenase ...

    Indian Academy of Sciences (India)

    Lignin is a major constituent of plant cell walls and indispensable to the normal growth of a plant. However, the presence of lignin complicates the structure of the plant cell walls and negatively influences pulping industry, lignocellulose utilization as well as forage properties. Cinnamyl alcohol dehydrogenase (CAD), a key ...

  6. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    International Nuclear Information System (INIS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-01-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as · OH and ONOO - . In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  7. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Rodacka, Aleksandra, E-mail: olakow@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Serafin, Eligiusz, E-mail: serafin@biol.uni.lodz.p [Laboratory of Computer and Analytical Techniques, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Puchala, Mieczyslaw, E-mail: puchala@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2010-09-15

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as {sup {center_dot}}OH and ONOO{sup -}. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  8. Detection of aldehyde dehydrogenase activity in human corneal extracts

    NARCIS (Netherlands)

    Gondhowiardjo, T. D.; van Haeringen, N. J.; Hoekzema, R.; Pels, L.; Kijlstra, A.

    1991-01-01

    The major soluble protein in bovine corneal epithelial extracts is a 54 kD protein (BCP 54) which has recently been identified as the corneal aldehyde dehydrogenase. Although ALDH activity has been reported in human corneal extracts it was not yet clear whether this was identical with the 54 kD

  9. Natural history of succinic semialdehyde dehydrogenase deficiency through adulthood

    NARCIS (Netherlands)

    Lapalme-Remis, S.; Lewis, E.C.; De Meulemeester, C.; Chakraborty, P.; Gibson, K.M.; Torres, C.; Guberman, A.; Salomons, G.; Jakobs, C.; Ali-Ridha, A.; Parviz, M.; Pearl, P.L.

    2015-01-01

    Objective: The natural history of succinic semialdehyde dehydrogenase (SSADH) deficiency in adulthood is unknown; we elucidate the clinical manifestations of the disease later in life. Methods: A 63-year-old man with long-standing intellectual disability was diagnosed with SSADH deficiency following

  10. Prevalence of glucose-6-phosphate dehydrogenase deficiency in ...

    African Journals Online (AJOL)

    Background: Glucose-6-phosphate dehydrogenase (G6PD) is a house keeping enzyme which catalyzes the first step in the hexose monophosphate pathway of glucose metabolism. G6PD deficiency is the commonest hemolytic X-linked genetic disease, which affects approximately 400 million people worldwide.

  11. Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase

    NARCIS (Netherlands)

    van Noorden, C. J.

    1984-01-01

    Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase has found many applications in biomedical research. However, up to several years ago, the methods used often appeared to be unreliable because many artefacts occurred during processing and staining of tissue sections or cells. The

  12. Serum creatine kinase and lactate dehydrogenase activities in ...

    African Journals Online (AJOL)

    P = 0.002). Conclusion: The significant elevation in serum CK and LDH activities indicates that these can be used as parameters for screening hypothyroid patients but not hyperthyroid patients. Key words: Hyperthyroidism, hypothyroidism, lactate dehydrogenase, serum creatine kinase. Date of Acceptance: 28-Aug-2011.

  13. Cloning and in silico analysis of a cinnamyl alcohol dehydrogenase ...

    Indian Academy of Sciences (India)

    2014-04-16

    Apr 16, 2014 ... 1992; Kim et al. 2004), the relationship between CAD genes and their functions was of great impor- tance. Since the important role in regulation of lignin con- tent and composition, more and more CAD genes and their. Keywords. lignin biosynthesis; cinnamyl alcohol dehydrogenase; clone; in silico analysis ...

  14. Glucose-6-phosphate dehydrogenase deficiency in northern Mexico ...

    Indian Academy of Sciences (India)

    Abstract. Glucose-6-phosphate dehydrogenase deficiency (G6PD) is the most common enzyme pathology in humans; it is X-linked inherited and causes neonatal hyperbilirubinaemia, chronic nonspherocytic haemolytic anaemia and drug-induced acute haemolytic anaemia. G6PD deficiency has scarcely been studied in ...

  15. Pyranose dehydrogenases: biochemical features and perspectives of technological applications

    Czech Academy of Sciences Publication Activity Database

    Peterbauer, C.; Volc, Jindřich

    2010-01-01

    Roč. 85, č. 4 (2010), s. 837-848 ISSN 0175-7598 Institutional research plan: CEZ:AV0Z50200510 Keywords : Pyranose dehydrogenase * Sugar oxidoreductase * Regioselectivity Subject RIV: EE - Microbiology, Virology Impact factor: 3.280, year: 2010

  16. Identification of glucose 6 phosphate dehydrogenase mutations by ...

    African Journals Online (AJOL)

    Identification of glucose 6 phosphate dehydrogenase mutations by single strand conformation polymorphism and gene sequencing analysis. ... Subject: Six DNA samples from Turkish males confirmed to have G-6-PD deficiency where available for the study. Results: One subject was found to have an abnormal mobility shift ...

  17. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in patients ...

    African Journals Online (AJOL)

    This is a study of Glucose-6-phosphate dehydrogenase(G6PD) deficiency in sickle cell anaemia patients attending the haematology clinic of the Jos University Teaching Hospital (JUTH), Jos- Nigeria. The prevalence of G6PD deficiency among the 130 sickle cell anaemia patients studied was found to be 18.5%. G6PD ...

  18. Eniluracil treatment completely inactivates dihydropyrimidine dehydrogenase in colorectal tumors

    NARCIS (Netherlands)

    Ahmed, F. Y.; Johnston, S. J.; Cassidy, J.; O'Kelly, T.; Binnie, N.; Murray, G. I.; van Gennip, A. H.; Abeling, N. G.; Knight, S.; McLeod, H. L.

    1999-01-01

    To determine the effect of eniluracil on colorectal tumor dihydropyrimidine dehydrogenase (DPD) activity. Patients who were to undergo primary colorectal tumor resection received oral eniluracil 10 mg/m(2) twice daily for 3 days before surgery. Mononuclear cells were obtained before the start of

  19. X-irradiation effects on the activity of dehydrogenases in the cockroach, Periplaneta Americana L

    Energy Technology Data Exchange (ETDEWEB)

    Vijayalakshmi, S. (Sri Sathya Sai Inst. of Higher Learning, Anantpur (India))

    1984-05-01

    Sublethal dose of X-irradiation caused an early increase and subsequent normalization in succinate and lactate dehydrogenases of the cockroach, while lethal dose produced an irreversible fall in succinate dehydrogenase and a gradual elevation in lactate dehydrogenase at all post-irradiation periods studied, suggesting dose dependent impairment of aerobic and anaerobic pathways.

  20. Zinc and glutamate dehydrogenase in putative glutamatergic brain structures.

    Science.gov (United States)

    Wolf, G; Schmidt, W

    1983-01-01

    A certain topographic parallelism between the distribution of histochemically (TIMM staining) identified zinc and putative glutamatergic structures in the rat brain was demonstrated. Glutamate dehydrogenase as a zinc containing protein is in consideration to be an enzyme synthesizing transmitter glutamate. In a low concentration range externally added zinc ions (10(-9) to 10(-7) M) induced an increase in the activity of glutamate dehydrogenase (GDH) originating from rat hippocampal formation, neocortex, and cerebellum up to 142.4%. With rising molarity of Zn(II) in the incubation medium, the enzyme of hippocampal formation and cerebellum showed a biphasic course of activation. Zinc ions of a concentration higher than 10(-6) M caused a strong inhibition of GDH. The effect of Zn(II) on GDH originating from spinal ganglia and liver led only to a decrease of enzyme activity. These results are discussed in connection with a functional correlation between zinc and putatively glutamatergic system.

  1. Methanol dehydrogenase biofuel cells and enzyme-based electrodes

    OpenAIRE

    Aston, W. J.

    1984-01-01

    This thesis describes the linking of enzymes to electrodes and their application in biofuel cells and as analytical devices. Methanol dehydrogenase, an NAD independent enzyme was purified by two phase aqueous partition. The enzyme incorporated into a biofuel cell was capable of producing a current in the presence of either a soluble or insoluble mediator. Optimisation of the current was carried out and a variety of alternative membranes, mediators and electrodes were investigated for possi...

  2. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  3. [Studies On Lactic Dehydrogenase Activity In Parasitic Helminths

    Science.gov (United States)

    Lee, Soon Hyung

    1967-06-01

    A series of experiments was performed to determine the lactic dehydrogenase activity of various parasitic helminths. The enzyme activity was determined by the modified method of Wroblewshi and LaDue (1955) using tissue homogenate of 16 kinds of worm parasites. The worms were mostly collected alive from local abattoir and removed from the organ or tissues of the naturally infected animal host and some materials were also obtained from the human host. They were thoroughly washed and homogenized in chilled glass tissue grinder, and then centrifuged. The supernatants were designated as enzyme preparations, and their enzyme activity was measured by spectrophotometry at the wave length of 340 millimicron. In order to know the effects of temperature and substrate concentration on the enzyme activity, the extinction of reduced Coenzyme I(NADH) was measured at the various conditions of incubation temperature and substrate concentration. The results of this experiments were as follows: 1. The lactic dehydrogenase activity occurred over all kinds of parasites used in this study. 2. Most worms of nematodes and trematodes displayed their maximum activity in the range of pH 2.7~3.5, and cestodes revealed their maximum activity in the ranges of both pH 2.7~3.5 and pH 7.4. 3. In nematodes and trematodes, the lactic dehydrogenase activity increased slowly as incubation temperature increases except in the case of Eurytrema pancreaticum, while the activity in cestodes decreased inversely. 4. The lactic dehydrogenase activity increased in proportion to the increase of substrate concentration in most of worm parasites.

  4. Structural and mechanistic aspects of alcohol dehydrogenase function

    OpenAIRE

    Svensson, Stefan

    1999-01-01

    Vertebrates possess a complex alcohol dehydrogenase (ADH) system composed of multiple molecular forms, which are currently classified into seven classes according to their structural properties. ADHs are dimeric zinc metalloenzymes that catalyze the reversible oxidation of alcohols to aldehydes/ketones using NAD+/NADH as electron acceptor and donor, respectively. The classes have broad but only partially overlapping substrate repertoires. This thesis mainly deals with mechan...

  5. Influence of thorax irradiation on lactic dehydrogenase isoenzyme activity

    International Nuclear Information System (INIS)

    Valle, C.; Munnich, A.; Pasquier, C.

    The right hemi-thorax of rats was irradiated with 1200 and 3000 rads ( 60 Co) and blood samples were taken sequentially. The five lactic dehydrogenase (LDH) isoenzymes which have proved to be useful as biochemical indicators of acute pulmonary injury in other experimental animals (dogs), were assayed, after irradiation, as a function of time and as a functon of dose. There was no significant change in LDH isoenzyme activities after lung irradiation in rats [fr

  6. Prognostic values of aldehyde dehydrogenase 1 isoenzymes in ovarian cancer

    OpenAIRE

    Ma, Yu-mei; Zhao, Shan

    2016-01-01

    Yu-mei Ma,1 Shan Zhao2 1Department of Pathology, 2Department of Cancer Second Division, The Second Hospital of Hebei Medical University, Shijiazhuang City, People’s Republic of China Abstract: Aldehyde dehydrogenase 1 (ALDH1) activity has been used as a functional stem cell marker to isolate cancer stem cells in different cancer types, including ovarian cancer. However, which ALDH1’s isoenzymes are contributing to ALDH1 activity in ovarian cancer remains elusive. In addi...

  7. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    White, Tommi A.; Tanner, John J., E-mail: tannerjj@missouri.edu [Departments of Chemistry and Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2005-08-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ{sup 1}-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  8. Isocitrate Dehydrogenase and Glutamate Synthesis in Acetobacter suboxydans1

    Science.gov (United States)

    Greenfield, Seymour; Claus, G. W.

    1969-01-01

    Acetobacter suboxydans is an obligate aerobe for which an operative tricarboxylic acid cycle has not been demonstrated. Glutamate synthesis has been reported to occur by mechanisms other than those utilizing isocitrate dehydrogenase, a tricarboxylic acid cycle enzyme not previously detected in this organism. We have recovered α-ketoglutarate and glutamate from a system containing citrate, nicotinamide adenine dinucleotide (NAD), a divalent cation, pyridoxal phosphate, an amino donor, and dialyzed, cell-free extract. Aconitase activity was readily detected in these extracts, but isocitrate dehydrogenase activity, measured by NAD reduction, was masked by a cyanide-resistant, particulate, reduced NAD oxidase. Isocitrate dehydrogenase activity could be demonstrated after centrifuging the extracts at 150,000 × g for 3 hr and treating the supernatant fluid with 2-heptyl-4-hydroxyquinoline N-oxide. It is concluded that A. suboxydans can utilize the conventional tricarboxylic acid cycle enzymes to convert citrate to α-ketoglutarate which can then undergo a transamination to glutamate. Images PMID:5361215

  9. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    International Nuclear Information System (INIS)

    White, Tommi A.; Tanner, John J.

    2005-01-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ 1 -pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2 1 2 1 2 1 , with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative

  10. Effect of Punica granatum fruit peel on glucose-6-phosphate dehydrogenase and malate dehydrogenase in amphistome Gastrothylax indicus.

    Science.gov (United States)

    Aggarwal, Rama; Bagai, Upma

    2017-03-01

    Increasing anthelmintic resistance and the impact of conventional anthelmintics on the environment, it is important to look for alternative strategies against helminth parasite in sheep. Important lipogenic enzymes like glucose-6-phosphate dehydrogenase (G-6-PDH) and malate dehydrogenase (MDH) show subcellular distribution pattern. Activity of G-6-PDH was largely restricted to cytosolic fraction while MDH was found in both cytosolic and mitochondrial fraction in Gastrothylax indicus. Following in vitro treatment with ethanolic and aqueous extracts of Punica granatum fruit peel and commercial anthelmintic, albendazole G-6-PDH activity was decreased by 19-32 %, whereas MDH was suppressed by 24-41 %, compared to the respective control. Albendazole was quite effective when compared with negative control and both the extracts. The results indicate that phytochemicals of plant may act as potential vermifuge or vermicide.

  11. High substrate specificity of ipsdienol dehydrogenase (IDOLDH), a short-chain dehydrogenase from Ips pini bark beetles.

    Science.gov (United States)

    Figueroa-Teran, Rubi; Pak, Heidi; Blomquist, Gary J; Tittiger, Claus

    2016-09-01

    Ips spp. bark beetles use ipsdienol, ipsenol, ipsdienone and ipsenone as aggregation pheromone components and pheromone precursors. For Ips pini, the short-chain oxidoreductase ipsdienol dehydrogenase (IDOLDH) converts (-)-ipsdienol to ipsdienone, and thus likely plays a role in determining pheromone composition. In order to further understand the role of IDOLDH in pheromone biosynthesis, we compared IDOLDH to its nearest functionally characterized ortholog with a solved structure: human L-3-hydroxyacyl-CoA dehydrogenase type II/ amyloid-β binding alcohol dehydrogenase (hHADH II/ABAD), and conducted functional assays of recombinant IDOLDH to determine substrate and product ranges and structural characteristics. Although IDOLDH and hHADH II/ABAD had only 35% sequence identity, their predicted tertiary structures had high identity. We found IDOLDH is a functional homo-tetramer. In addition to oxidizing (-)-ipsdienol, IDOLDH readily converted racemic ipsenol to ipsenone, and stereo-specifically reduced both ketones to their corresponding (-)-alcohols. The (+)-enantiomers were never observed as products. Assays with various substrate analogs showed IDOLDH had high substrate specificity for (-)-ipsdienol, ipsenol, ipsenone and ipsdienone, supporting that IDOLDH functions as a pheromone-biosynthetic enzyme. These results suggest that different IDOLDH orthologs and or activity levels contribute to differences in Ips spp. pheromone composition. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  12. Human dehydrogenase/reductase (SDR family) member 11 is a novel type of 17β-hydroxysteroid dehydrogenase.

    Science.gov (United States)

    Endo, Satoshi; Miyagi, Namiki; Matsunaga, Toshiyuki; Hara, Akira; Ikari, Akira

    2016-03-25

    We report characterization of a member of the short-chain dehydrogenase/reductase superfamily encoded in a human gene, DHRS11. The recombinant protein (DHRS11) efficiently catalyzed the conversion of the 17-keto group of estrone, 4- and 5-androstenes and 5α-androstanes into their 17β-hydroxyl metabolites with NADPH as a coenzyme. In contrast, it exhibited reductive 3β-hydroxysteroid dehydrogenase activity toward 5β-androstanes, 5β-pregnanes, 4-pregnenes and bile acids. Additionally, DHRS11 reduced α-dicarbonyls (such as diacetyl and methylglyoxal) and alicyclic ketones (such as 1-indanone and loxoprofen). The enzyme activity was inhibited in a mixed-type manner by flavonoids, and competitively by carbenoxolone, glycyrrhetinic acid, zearalenone, curcumin and flufenamic acid. The expression of DHRS11 mRNA was observed widely in human tissues, most abundantly in testis, small intestine, colon, kidney and cancer cell lines. Thus, DHRS11 represents a novel type of 17β-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Characterization of human short chain dehydrogenase/reductase SDR16C family members related to retinol dehydrogenase 10.

    Science.gov (United States)

    Adams, Mark K; Lee, Seung-Ah; Belyaeva, Olga V; Wu, Lizhi; Kedishvili, Natalia Y

    2017-10-01

    All-trans-retinoic acid (RA) is a bioactive derivative of vitamin A that serves as an activating ligand for nuclear transcription factors, retinoic acid receptors. RA biosynthesis is initiated by the enzymes that oxidize retinol to retinaldehyde. It is well established that retinol dehydrogenase 10 (RDH10, SDR16C4), which belongs to the 16C family of the short chain dehydrogenase/reductase (SDR) superfamily of proteins, is the major enzyme responsible for the oxidation of retinol to retinaldehyde for RA biosynthesis during embryogenesis. However, several lines of evidence point towards the existence of additional retinol dehydrogenases that contribute to RA biosynthesis in vivo. In close proximity to RDH10 gene on human chromosome 8 are located two genes that are phylogenetically related to RDH10. The predicted protein products of these genes, retinol dehydrogenase epidermal 2 (RDHE2, SDR16C5) and retinol dehydrogenase epidermal 2-similar (RDHE2S, SDR16C6), share 59% and 56% sequence similarity with RDH10, respectively. Previously, we showed that the single ortholog of the human RDHE2 and RDHE2S in frogs, Xenopus laevis rdhe2, oxidizes retinol to retinaldehyde and is essential for frog embryonic development. In this study, we explored the potential of each of the two human proteins to contribute to RA biosynthesis. The results of this study demonstrate that human RDHE2 exhibits a relatively low but reproducible activity when expressed in either HepG2 or HEK293 cells. Expression of the native RDHE2 is downregulated in the presence of elevated levels of RA. On the other hand, the protein encoded by the human RDHE2S gene is unstable when expressed in HEK293 cells. RDHE2S protein produced in Sf9 cells is stable but has no detectable catalytic activity towards retinol. We conclude that the human RDHE2S does not contribute to RA biosynthesis, whereas the low-activity RA-sensitive human RDHE2 may have a role in adjusting the cellular levels of RA in accord with

  14. The D-Lactate Dehydrogenase from Sporolactobacillus inulinus Also Possessing Reversible Deamination Activity

    OpenAIRE

    Zhu, Lingfeng; Xu, Xiaoling; Wang, Limin; Dong, Hui; Yu, Bo

    2015-01-01

    Hydroxyacid dehydrogenases are responsible for the conversion of 2-keto acids to 2-hydroxyacids and have a wide range of biotechnological applications. In this study, a D-lactate dehydrogenase (D-LDH) from a Sporolactobacillus inulinus strain was experimentally verified to have both the D-LDH and glutamate dehydrogenase (GDH) activities (reversible deamination). The catalytic mechanism was demonstrated by identification of key residues from the crystal structure analysis and site-directed mut...

  15. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  16. Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts.

    Science.gov (United States)

    Glushakova, Lyudmyla G; Judge, Sharon; Cruz, Alex; Pourang, Deena; Mathews, Clayton E; Stacpoole, Peter W

    2011-11-01

    The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Deracemization of Secondary Alcohols by using a Single Alcohol Dehydrogenase

    KAUST Repository

    Karume, Ibrahim

    2016-03-01

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We developed a single-enzyme-mediated two-step approach for deracemization of secondary alcohols. A single mutant of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase enables the nonstereoselective oxidation of racemic alcohols to ketones, followed by a stereoselective reduction process. Varying the amounts of acetone and 2-propanol cosubstrates controls the stereoselectivities of the consecutive oxidation and reduction reactions, respectively. We used one enzyme to accomplish the deracemization of secondary alcohols with up to >99% ee and >99.5% recovery in one pot and without the need to isolate the prochiral ketone intermediate.

  18. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    degradation drank approximately 30% more alcohol per week and had a higher risk of everyday and heavy drinking, and of alcoholism. Individuals with ADH1C slow versus fast alcohol degradation had a higher risk of heavy drinking Udgivelsesdato: 2008/8/25......Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...

  19. Neurotrophic keratitis in a patient with dihydroxypyrimidine dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Kapoor Bharat

    2008-01-01

    Full Text Available We describe a case of neurotrophic keratitis in association with dihydroxypyrimidine dehydrogenase (DHPD deficiency. Ocular manifestations in patients with DHPD are rare and neurotrophic keratitis has never been reported before. A six-year-old boy who was a known case of DHPD deficiency and born of a consanguineous marriage presented to our clinic with non-healing corneal ulcers in both eyes. Reduced corneal sensations were detected and the patient was started on lubricating eye drops. The patient continues to be on lubricant eye drops and there has been no recurrence of the disease.

  20. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...... degradation drank approximately 30% more alcohol per week and had a higher risk of everyday and heavy drinking, and of alcoholism. Individuals with ADH1C slow versus fast alcohol degradation had a higher risk of heavy drinking Udgivelsesdato: 2008/8/25...

  1. Lactate dehydrogenase assay for assessment of polycation cytotoxicity

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Moghimi, Seyed Moien

    2013-01-01

    Cellular toxicity and/or cell death entail complex mechanisms that require detailed evaluation for proper characterization. A detailed mechanistic assessment of cytotoxicity is essential for design and construction of more effective polycations for nucleic acid delivery. A single toxicity assay...... cannot stand alone in determining the type and extent of damage or cell death mechanism. In this chapter we describe a lactate dehydrogenase (LDH) assay for high-throughput screening that can be used as a starting point for further detailed cytotoxicity determination. LDH release is considered an early...

  2. Amino acid substitutions at glutamate-354 in dihydrolipoamide dehydrogenase of Escherichia coli lower the sensitivity of pyruvate dehydrogenase to NADH.

    Science.gov (United States)

    Sun, Zhentao; Do, Phi Minh; Rhee, Mun Su; Govindasamy, Lakshmanan; Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2012-05-01

    Pyruvate dehydrogenase (PDH) of Escherichia coli is inhibited by NADH. This inhibition is partially reversed by mutational alteration of the dihydrolipoamide dehydrogenase (LPD) component of the PDH complex (E354K or H322Y). Such a mutation in lpd led to a PDH complex that was functional in an anaerobic culture as seen by restoration of anaerobic growth of a pflB, ldhA double mutant of E. coli utilizing a PDH- and alcohol dehydrogenase-dependent homoethanol fermentation pathway. The glutamate at position 354 in LPD was systematically changed to all of the other natural amino acids to evaluate the physiological consequences. These amino acid replacements did not affect the PDH-dependent aerobic growth. With the exception of E354M, all changes also restored PDH-dependent anaerobic growth of and fermentation by an ldhA, pflB double mutant. The PDH complex with an LPD alteration E354G, E354P or E354W had an approximately 20-fold increase in the apparent K(i) for NADH compared with the native complex. The apparent K(m) for pyruvate or NAD(+) for the mutated forms of PDH was not significantly different from that of the native enzyme. A structural model of LPD suggests that the amino acid at position 354 could influence movement of NADH from its binding site to the surface. These results indicate that glutamate at position 354 plays a structural role in establishing the NADH sensitivity of LPD and the PDH complex by restricting movement of the product/substrate NADH, although this amino acid is not directly associated with NAD(H) binding.

  3. Effects of fescue and clover forage on serum lactate dehydrogenase and glucose 6-phosphate dehydrogenase isoenzymic profiles in steers.

    Science.gov (United States)

    Rosenkrans, C F; Coffey, K P; Paria, B C; Tarn, C Y; Johnson, Z B; Moyer, J L

    2000-12-01

    We determined the effects of forage type on isoenzymes of lactate dehydrogenase (LDH) and glucose 6-phosphate dehydrogenase (G6PDH). Forty-eight crossbred steers were randomly allotted to replicated pastures consisting of fungus-infected (Neotyphodium coenophialum) fescue or fungus-free fescue each with or without ladino clover overseeding. At the end of the 180-d grazing period, serum was harvested from the steers. Steers were finished in a feedlot and slaughtered after approximately 150 d in the feedlot. Isoenzymes for LDH and G6PDH were separated using PAGE. Five LDH isoenzymes (L1-15) were typically detected. Isoenzyme L1 (most anodic) had the greatest area percent as detected by laser densitometry (72, 12, 10, 5, and 7%, respectively, for L1, L2, L3, L4, and L5). Four proteins had G6PDH activity (G1-G4) with G2 having the greatest area percent (15, 52, 27, and 14, respectively, for G1, G2, G3, and G4). Isoenzymes within a dehydrogenase were correlated (P < .05). In addition, area percentage of L1 was correlated (P < .05; r = .34) with area percentage of G2, and area percentage of L4 was correlated (P < .07; r = .73) with area percentage of G1. Area percentages of L1, L2, and L3 were affected by an interaction (P < .09) of forage types. Body weight gains for steers grazing endophyte-infected fescue were depressed (P < .05); however, steers compensated with increased (P < .05) weight gains during the finishing phase. Fungal toxins produced by Neotyphodium coenophialum may alter an animal's metabolism, growth, and development via shifts in reducing equivalents (NADH).

  4. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus.

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further studies are needed for introducing aldehyde dehydrogenase as a prognostic

  5. Crystal structure of a chimaeric bacterial glutamate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Tânia; Sharkey, Michael A.; Engel, Paul C.; Khan, Amir R.

    2016-05-23

    Glutamate dehydrogenases (EC 1.4.1.2–4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P)+as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD+versusNADP+, but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies, as shown by the apo structure of glutamate dehydrogenase fromClostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia colienzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP+cofactor from the parentE. colidomain II, although there are subtle differences in catalytic activity.

  6. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    International Nuclear Information System (INIS)

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-01-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH

  7. Crystal structure of a chimaeric bacterial glutamate dehydrogenase.

    Science.gov (United States)

    Oliveira, Tânia; Sharkey, Michael A; Engel, Paul C; Khan, Amir R

    2016-06-01

    Glutamate dehydrogenases (EC 1.4.1.2-4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P)(+) as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD(+) versus NADP(+), but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies, as shown by the apo structure of glutamate dehydrogenase from Clostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia coli enzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP(+) cofactor from the parent E. coli domain II, although there are subtle differences in catalytic activity.

  8. Orthodontic Force Application in Correlation with Salivary Lactate Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Erik Husin

    2013-07-01

    Full Text Available Orthodontic tooth movement generate mechanical forces to periodontal ligament and alveolar bone. The forces correlate with initial responses of periodontal tissues and involving many metabolic changes. One of the metabolic changes detected in saliva is lactate dehydrogenase (LDH activity. Objectives: To evaluate the correlation between orthodontic interrupted force application, lactate dehydrogenase activity and the distance of tooth movement. Methods: upper premolar, pre-retraction of upper canine and 1, 7, 14, 21 and 28 days post-retraction of upper canine with 100g interrupted orthodontic force. Results: duration of force (F=11.926 p 14 and 28 days post-retraction of canine. The region of retraction correlated with the distance of tooth movement (F=7.377 p=0.007. The duration of force correlated with the distance of tooth movement (F=66.554 p=0.000. retraction of canine. Conclusion: This study concluded that orthodontic interrupted force application on canine could increase the distance of tooth movement and LDH activity in saliva.

  9. Idiopathic intracranial hypertension, hormones, and 11ß-hydroxysteroid dehydrogenases

    Directory of Open Access Journals (Sweden)

    Markey KA

    2016-04-01

    Full Text Available Keira A Markey,1 Maria Uldall,2 Hannah Botfield,1 Liam D Cato,1 Mohammed A L Miah,1 Ghaniah Hassan-Smith,1 Rigmor H Jensen,2 Ana M Gonzalez,1 Alexandra J Sinclair1 1Neurometabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; 2Danish Headache Center, Clinic of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark Abstract: Idiopathic intracranial hypertension (IIH results in raised intracranial pressure (ICP leading to papilledema, visual dysfunction, and headaches. Obese females of reproductive age are predominantly affected, but the underlying pathological mechanisms behind IIH remain unknown. This review provides an overview of pathogenic factors that could result in IIH with particular focus on hormones and the impact of obesity, including its role in neuroendocrine signaling and driving inflammation. Despite occurring almost exclusively in obese women, there have been a few studies evaluating the mechanisms by which hormones and adipokines exert their effects on ICP regulation in IIH. Research involving 11ß-hydroxysteroid dehydrogenase type 1, a modulator of glucocorticoids, suggests a potential role in IIH. Improved understanding of the complex interplay between adipose signaling factors such as adipokines, steroid hormones, and ICP regulation may be key to the understanding and future management of IIH. Keywords: 11beta-hydroxysteroid dehydrogenase type 1, steroid and adipokines, obesity, leptin

  10. Coenzyme- and His-tag-induced crystallization of octopine dehydrogenase

    International Nuclear Information System (INIS)

    Smits, Sander H. J.; Mueller, Andre; Grieshaber, Manfred K.; Schmitt, Lutz

    2008-01-01

    The crystal structure of octopine dehydrogenase revealed a specific role of the His 5 tag in inducing the crystal contacts required for successful crystallization. Over the last decade, protein purification has become more efficient and standardized through the introduction of affinity tags. The choice and position of the tag, however, can directly influence the process of protein crystallization. Octopine dehydrogenase (OcDH) without a His tag and tagged protein constructs such as OcDH-His 5 and OcDH-LEHis 6 have been investigated for their crystallizability. Only OcDH-His 5 yielded crystals; however, they were multiple. To improve crystal quality, the cofactor NADH was added, resulting in single crystals that were suitable for structure determination. As shown by the structure, the His 5 tag protrudes into the cleft between the NADH and l-arginine-binding domains and is mainly fixed in place by water molecules. The protein is thereby stabilized to such an extent that the formation of crystal contacts can proceed. Together with NADH, the His 5 tag obviously locks the enzyme into a specific conformation which induces crystal growth

  11. The radiation inactivation of glutamate and isocitrate dehydrogenases

    International Nuclear Information System (INIS)

    El Failat, R.R.A.

    1980-12-01

    The reaction of free radicals produced by ionizing radiation with the enzymes glutamate dehydrogenase (GDH) and NADP + -specific isocitrate dehydrogenase (ICDH) have been studied by steady-state and pulse radiolysis techniques. In de-aerated GDH solutions, hydroxyl radicals have been found to be the most efficient of the primary radicals generated from water in causing inactivation. The effect of reaction with the enzyme of selective free radicals (SCN) 2 - , (Br) 2 - and (I) 2 - on its activity has also been studied. In neutral solutions, the order of inactivating effectiveness is (I) 2 - > (Br) 2 - > (SCN) 2 - . In the case of the thiocyanate radical anion (SCN) 2 - , the inactivation efficiency is found to depend on KSCN concentration. The radiation inactivation of GDH at both neutral and alkaline pH is accompanied by the loss of sulphydryl groups. Pulse radiolysis was also used to determine the rate constants and the transient absorption spectra following the reaction of the free radicals with GDH. 60 Co-γ-radiolysis and pulse radiolysis were also used to study the effect of ionizing radiation on the activity of ICDH. The results obtained were similar to those of GDH. (author)

  12. Inosine monophosphate dehydrogenase messenger RNA expression is correlated to clinical outcomes in mycophenolate mofetil-treated kidney transplant patients, whereas inosine monophosphate dehydrogenase activity is not

    NARCIS (Netherlands)

    Sombogaard, Ferdi; Peeters, Annemiek M. A.; Baan, Carla C.; Mathot, Ron A. A.; Quaedackers, Monique E.; Vulto, Arnold G.; Weimar, Willem; van Gelder, Teun

    2009-01-01

    Measurement of the pharmacodynamic biomarker inosine monophosphate dehydrogenase (IMPDH) activity in renal transplant recipients has been proposed to reflect the biological effect better than using pharmacokinetic parameters to monitor mycophenolate mofetil therapy. The IMPDH assays are however

  13. Synthesis of allitol from D-psicose using ribitol dehydrogenase and ...

    African Journals Online (AJOL)

    Purpose: To synthesize allitol from D-psicose by a combination of novel ribitol dehydrogenase (RDH) and formate dehydrogenase (FDH) under optimised production conditions. Methods: RDH and FDH genes were cloned and introduced into pET-22b(+) vectors for expression in Escherichia coli to produce the ...

  14. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7

    Czech Academy of Sciences Publication Activity Database

    Končitíková, R.; Vigouroux, A.; Kopečná, M.; Andree, T.; Bartoš, Jan; Šebela, M.; Moréra, S.; Kopečný, D.

    2015-01-01

    Roč. 468, Part: 1 (2015), s. 109-123 ISSN 0264-6021 R&D Projects: GA ČR GA15-22322S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : aldehyde dehydrogenase 2 (ALDH2) * aldehyde dehydrogenase 7 (ALDH7) * benzaldehyde Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.562, year: 2015

  15. Binding Studies of a Spin-Labelled Oxidized Coenzyme to Bovine-Liver Glutamate Dehydrogenase

    NARCIS (Netherlands)

    Zantema, Alt; Trommer, Wolfgang E.; Wenzel, Herbert; Robillard, George T.

    1977-01-01

    NAD+ with a nitroxide piperidine ring linked to the NH2 group of the adenine possesses full coenzymatic activity with glutamate dehydrogenase. Electron spin resonance spectra in the presence of glutamate dehydrogenase show mixtures of free and strongly immobilized spin-label. Binding studies in

  16. The crystal structure of SDR-type pyridoxal 4-dehydrogenase of Mesorhizobium loti.

    Science.gov (United States)

    Chu, Huy Nhat; Kobayashi, Jun; Mikami, Bunzo; Yagi, Toshiharu

    2011-01-01

    Pyridoxal 4-dehydrogenase catalyzes the irreversible oxidation of pyridoxal to 4-pyridoxolactone and is involved in degradation pathway I of pyridoxine, a vitamin B(6) compound. Its crystal structure was elucidated for the first time. Molecular replacement with (S)-1-phenylthanol dehydrogenase (PDB code 2EW8) was adopted to determine the tertiary structure of the NAD(+)-bound enzyme.

  17. Blood Leukocyte Counts and Genetic Polymorphisms of Alcohol Dehydrogenase-1B and Aldehyde Dehydrogenase-2 in Japanese Alcoholic Men.

    Science.gov (United States)

    Yokoyama, Akira; Brooks, Philip J; Yokoyama, Tetsuji; Mizukami, Takeshi; Matsui, Toshifumi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2016-03-01

    Roughly 40% of East Asians have inactive aldehyde dehydrogenase-2 (ALDH2) encoded by the ALDH2*2 allele, and 90% have highly active alcohol dehydrogenase-1B (ADH1B) encoded by the ADH1B*2 allele. Macrocytosis and macrocytic anemia in alcoholics have been associated with ADH1B and ALDH2 gene variants which increase acetaldehyde (AcH) levels. We investigated the relationship between ADH1B*2, ALDH2*2, and leukocyte counts of Japanese alcoholic men (N = 1,661). After adjusting for age, drinking habits, smoking habits, body mass index, presence of liver cirrhosis, and serum levels of C-reactive protein, we found that total and differential leukocyte counts were lower in the presence of the ALDH2*1/*2 genotype (vs. ALDH2*1/*1 genotype). ALDH2*2/*2 carriers were not found in our study population. Leukocyte, granulocyte, and monocyte counts were also lower in the presence of ADH1B*2 (vs. ADH1B*1/*1 genotype), but the lymphocyte count was higher. The ALDH2*1/*2 genotype was associated with leukocytopenia (counts. The total and differential blood leukocyte counts of Japanese alcoholics were strongly affected by their ADH1B and ALDH2 gene variants. High AcH exposure levels probably play a critical role in the suppression of blood leukocyte counts in alcoholics. Copyright © 2016 by the Research Society on Alcoholism.

  18. Therapeutic Targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer.

    Science.gov (United States)

    Stacpoole, Peter W

    2017-11-01

    The mitochondrial pyruvate dehydrogenase complex (PDC) irreversibly decarboxylates pyruvate to acetyl coenzyme A, thereby linking glycolysis to the tricarboxylic acid cycle and defining a critical step in cellular bioenergetics. Inhibition of PDC activity by pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation has been associated with the pathobiology of many disorders of metabolic integration, including cancer. Consequently, the PDC/PDK axis has long been a therapeutic target. The most common underlying mechanism accounting for PDC inhibition in these conditions is post-transcriptional upregulation of one or more PDK isoforms, leading to phosphorylation of the E1α subunit of PDC. Such perturbations of the PDC/PDK axis induce a "glycolytic shift," whereby affected cells favor adenosine triphosphate production by glycolysis over mitochondrial oxidative phosphorylation and cellular proliferation over cellular quiescence. Dichloroacetate is the prototypic xenobiotic inhibitor of PDK, thereby maintaining PDC in its unphosphorylated, catalytically active form. However, recent interest in the therapeutic targeting of the PDC/PDK axis for the treatment of cancer has yielded a new generation of small molecule PDK inhibitors. Ongoing investigations of the central role of PDC in cellular energy metabolism and its regulation by pharmacological effectors of PDKs promise to open multiple exciting vistas into the biochemical understanding and treatment of cancer and other diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    Science.gov (United States)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  20. The Diagnostic Significance of Serum Alcohol Dehydrogenase Isoenzymes and Aldehyde Dehydrogenase Activity in Urinary Bladder Cancer Patients.

    Science.gov (United States)

    Orywal, Karolina; Jelski, Wojciech; Werel, Tadeusz; Szmitkowski, Maciej

    2017-07-01

    The aim of this study was to investigate a potential role of alcohol dehydrogenase and aldehyde dehydrogenase as tumor markers for urinary bladder cancer. Serum samples were obtained from 41 patients with bladder cancer and 52 healthy individuals. Class III and IV of ADH and total ADH activity were measured by the photometric method. For measurement of class I and II ADH and ALDH activity, the fluorometric method was employed. Significantly higher total activity of ADH was found in sera of both, low-grade and high-grade bladder cancer patients. The diagnostic sensitivity for total ADH activity was 81.5%, specificity 98.1%, positive (PPV) and negative (NPV) predictive values were 97.4% and 92.3% respectively. Area under ROC curve for total ADH activity was 0.848. A potential role of total ADH activity as a marker for bladder cancer, is herein proposed. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. The D-Lactate Dehydrogenase from Sporolactobacillus inulinus Also Possessing Reversible Deamination Activity.

    Directory of Open Access Journals (Sweden)

    Lingfeng Zhu

    Full Text Available Hydroxyacid dehydrogenases are responsible for the conversion of 2-keto acids to 2-hydroxyacids and have a wide range of biotechnological applications. In this study, a D-lactate dehydrogenase (D-LDH from a Sporolactobacillus inulinus strain was experimentally verified to have both the D-LDH and glutamate dehydrogenase (GDH activities (reversible deamination. The catalytic mechanism was demonstrated by identification of key residues from the crystal structure analysis and site-directed mutagenesis. The Arg234 and Gly79 residues of this enzyme play a significant role in both D-LDH and GDH activities. His295 and Phe298 in DLDH744 were identified to be key residues for lactate dehydrogenase (LDH activity only whereas Tyr101 is a unique residue that is critical for GDH activity. Characterization of the biochemical properties contributes to understanding of the catalytic mechanism of this novel D-lactate dehydrogenase enzyme.

  2. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency

    NARCIS (Netherlands)

    Richter, S; Peitzsch, M.; Rapizzi, E.; Lenders, J.W.M.; Qin, N.; Cubas, A.A. de; Schiavi, F.; Rao, J.U.; Beuschlein, F.; Quinkler, M.; Timmers, H.J.L.M.; Opocher, G.; Mannelli, M.; Pacak, K.; Robledo, M.; Eisenhofer, G.

    2014-01-01

    CONTEXT: Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. OBJECTIVE: We assessed whether altered succinate dehydrogenase

  3. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh....... Overexpressions of AdhE in strain BG1E1 with xylose as a substrate facilitate the production of ethanol at an increased yield. Copyright © 2010 S. Karger AG, Basel...

  4. Lactate dehydrogenase inhibition: exploring possible applications beyond cancer treatment.

    Science.gov (United States)

    Di Stefano, Giuseppina; Manerba, Marcella; Di Ianni, Lorenza; Fiume, Luigi

    2016-04-01

    Lactate dehydrogenase (LDH) inhibition is considered a worthwhile attempt in the development of innovative anticancer strategies. Unfortunately, in spite of the involvement of several research institutions and pharma-companies, the discovery of LDH inhibitors with drug-like properties seems a hardly resolvable challenge. While awaiting new advancements, in the present review we will examine other pathologic conditions characterized by increased glycolysis and LDH activity, which could potentially benefit from LDH inhibition. The rationale for targeting LDH activity in these contexts is the same justifying the LDH-based approach in anticancer therapy: because of the enzyme position at the end of glycolytic pathway, LDH inhibitors are not expected to hinder glucose metabolism of normal cells. Moreover, we will summarize the latest contributions in the discovery of enzyme inhibitors and try to glance over the reasons underlying the complexity of this research.

  5. Bilateral cataracts associated with glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Nair, V; Hasan, S U; Romanchuk, K; Al Awad, E; Mansoor, A; Yusuf, K

    2013-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) has an essential role in the defense against cellular oxidative injury. In neonates, the most common manifestation of G6PD deficiency is jaundice and hemolysis due to factors causing oxidative stress. Less known are the ocular associations described with G6PD deficiency, including cataracts. Oxidative injury is involved in the pathogenesis of almost all forms of cataracts, causing the lens proteins to undergo modifications, denaturation and form insoluble aggregates resulting in cataracts. Although cataracts in adult males have been reported in several studies, there are few reports of cataracts in infants with G6PD deficiency. We describe a preterm male neonate with G6PD deficiency who developed bilateral cataracts following an episode of neonatal sepsis and severe hemolysis necessitating an exchange blood transfusion.

  6. 17 beta-hydroxysteroid dehydrogenase activity in canine pancreas

    International Nuclear Information System (INIS)

    Mendoza-Hernandez, G.; Lopez-Solache, I.; Rendon, J.L.; Diaz-Sanchez, V.; Diaz-Zagoya, J.C.

    1988-01-01

    The mitochondrial fraction of the dog pancreas showed NAD(H)-dependent enzyme activity of 17 beta-hydroxysteroid dehydrogenase. The enzyme catalyzes oxidoreduction between androstenedione and testosterone. The apparent Km value of the enzyme for androstenedione was 9.5 +/- 0.9 microM, the apparent Vmax was determined as 0.4 nmol mg-1 min-1, and the optimal pH was 6.5. In phosphate buffer, pH 7.0, maximal rate of androstenedione reduction was observed at 37 degrees C. The oxidation of testosterone by the enzyme proceeded at the same rate as the reduction of the androstenedione at a pH of 6.8-7.0. The apparent Km value and the optimal pH of the enzyme for testosterone were 3.5 +/- 0.5 microM and 7.5, respectively

  7. Phosphoglycerate dehydrogenase (PHGDH) deficiency without epilepsy mimicking primary microcephaly.

    Science.gov (United States)

    Poli, Antoine; Vial, Yoann; Haye, Damien; Passemard, Sandrine; Schiff, Manuel; Nasser, Hala; Delanoe, Catherine; Cuadro, Emma; Kom, Rémi; Elanga, Narcisse; Favre, Anne; Drunat, Séverine; Verloes, Alain

    2017-04-25

    Phosphoglycerate dehydrogenase (PHGDH) deficiency (OMIM 256520) is a rare autosomal recessive disorder of serine synthesis, with mostly severe congenital microcephaly, caused by mutations in the PHGDH gene. Fourteen patients reported to date show severe, early onset, drug resistant epilepsy. In a cohort of patients referred for primary microcephaly, compound heterozygosity for two unreported variants in PHGDG was identified by exome sequencing in a pair of sibs who died aged 4.5 months and 4.5 years. They had severe neurological involvement with congenital microcephaly, disorganized EEG, and progressive spasticity, but never had seizures. Exome usage in clinical practice is likely to lead to an expansion of the clinical spectrum of known disorders. © 2017 Wiley Periodicals, Inc.

  8. Circadian rhythm in succinate dehydrogenase activity in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Álvarez Barón

    2004-07-01

    Full Text Available Neurospora crassa is a widely studied model of circadian rhythmicity. In this fungus, metabolism is controlled by multiple factors which include development, medium characteristics and the circadian clock. The study of the circadian control of metabolism in this fungus could be masked by the use of restrictive media that inhibit growth and development. In this report, the presence of a circadian rhythm in the activity of the enzyme Succinate Dehydrogenase in Neurospora crassa is demonstrated. Rhythmic and arrhythmic Neurospora strains were grown in complete medium without conidiation restriction. A circadian change in the enzymatic activity was found with high values in hours corresponding to the night and a low level during the day. This finding highlights the importance of deeper studies in the circadian control of metabolism in this fungus, given the existence of multiple pathways of regulation of metabolic enzymes and a circadian clock control at the transcriptional and post-transcriptional levels.

  9. Lactate dehydrogenase activity drives hair follicle stem cell activation

    Science.gov (United States)

    Aimee, Flores; John, Schell; Abby, Krall; David, Jelinek; Matilde, Miranda; Melina, Grigorian; Daniel, Braas; White Andrew, C; Jessica, Zhou; Nick, Graham; Thomas, Graeber; Pankaj, Seth; Denis, Evseenko; Hilary, Coller; Jared, Rutter; Heather, Christofk; Lowry William, E

    2017-01-01

    Summary While normally dormant, Hair Follicle Stem Cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier (Mpc1) deletion accelerated their activation and the hair cycle. Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allow them to remain dormant and yet quickly respond to appropriate proliferative stimuli. PMID:28812580

  10. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.

    2002-01-01

    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...... stable at pH 6-7 for 24 h and 30degreesC. K-m values for D-xylitol and NAD(+) were 94 mM and 0.14 mM, respectively. Mn2+ at 10 mM increased XDH activity 2-fold and Cu2+ at 10 mM inhibited activity completely....

  11. Identification of a Novel Activator of Mammalian Glutamate Dehydrogenase.

    Science.gov (United States)

    Smith, Hong Q; Smith, Thomas J

    2016-11-29

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of l-glutamate and in animals is highly regulated. GDH in hyperinsulinism/hyperammonemia syndrome patients lacks GTP inhibition, resulting in hypersecretion of insulin upon protein consumption. This suggests insulin secretion could be stimulated with GDH activators. A high-throughput screen yielded one potent activator, N1-[4-(2-aminopyrimidin-4-yl)phenyl]-3-(trifluoromethyl)benzene-1-sulfonamide (75-E10). 75-E10 is ∼1000-fold more efficacious than the synthetic activator, BCH, and is at least as effective as ADP. 75-E10 compound is highly effective at alleviating GTP inhibition and may be binding to the ADP site. Unlike ADP, 75-E10 is activated over a broad range of conditions.

  12. 17 beta-hydroxysteroid dehydrogenase activity in canine pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Hernandez, G.; Lopez-Solache, I.; Rendon, J.L.; Diaz-Sanchez, V.; Diaz-Zagoya, J.C.

    1988-04-15

    The mitochondrial fraction of the dog pancreas showed NAD(H)-dependent enzyme activity of 17 beta-hydroxysteroid dehydrogenase. The enzyme catalyzes oxidoreduction between androstenedione and testosterone. The apparent Km value of the enzyme for androstenedione was 9.5 +/- 0.9 microM, the apparent Vmax was determined as 0.4 nmol mg-1 min-1, and the optimal pH was 6.5. In phosphate buffer, pH 7.0, maximal rate of androstenedione reduction was observed at 37 degrees C. The oxidation of testosterone by the enzyme proceeded at the same rate as the reduction of the androstenedione at a pH of 6.8-7.0. The apparent Km value and the optimal pH of the enzyme for testosterone were 3.5 +/- 0.5 microM and 7.5, respectively.

  13. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.

    2008-01-01

    /1 genotype. Results for ADH1B and ADH1C genotypes among men and women were similar. Finally, because slow ADH1B alcohol degradation is found in more than 90% of the white population compared to less than 10% of East Asians, the population attributable risk of heavy drinking and alcoholism by ADH1B.1......Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white...... men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence...

  14. [Effect Of Polyelectrolytes on Catalytic Activity of Alcohol Dehydrogenase].

    Science.gov (United States)

    Dubrovsky, A V; Musina, E V; Kim, A L; Tikhonenko, S A

    2016-01-01

    Fluorescent and optical spectroscopy were used to study the interaction of alcohol dehydrogenase (ADH) with negatively charged polystyrene sulfonate (PSS) and dextran sulfate (DS), as well as positively charged poly(diallyldimethylammonium) (PDADMA). As found, DS and PDADMA did not affect the structural and catalytic enzyme properties. In contrast, PSS slightly decreased the protein self-fluorescence over 1 h of incubation, which is associated with partial destruction of its quaternary (globular) structure. Investigation of the ADH activity with and without PSS showed its dependency on the incubation time and the PSS presence. Sodium chloride (2.0 M and 0.2 M) or ammonium sulfate (0.1 M) added to the reaction mixture did not completely protect the enzyme quaternary structure from the PSS action. However ammonium sulfate or 0.2 M sodium chloride stabilized the enzyme and partially inhibited the negative PSS effect.

  15. Idiopathic intracranial hypertension, hormones, and 11β-hydroxysteroid dehydrogenases

    Science.gov (United States)

    Markey, Keira A; Uldall, Maria; Botfield, Hannah; Cato, Liam D; Miah, Mohammed A L; Hassan-Smith, Ghaniah; Jensen, Rigmor H; Gonzalez, Ana M; Sinclair, Alexandra J

    2016-01-01

    Idiopathic intracranial hypertension (IIH) results in raised intracranial pressure (ICP) leading to papilledema, visual dysfunction, and headaches. Obese females of reproductive age are predominantly affected, but the underlying pathological mechanisms behind IIH remain unknown. This review provides an overview of pathogenic factors that could result in IIH with particular focus on hormones and the impact of obesity, including its role in neuroendocrine signaling and driving inflammation. Despite occurring almost exclusively in obese women, there have been a few studies evaluating the mechanisms by which hormones and adipokines exert their effects on ICP regulation in IIH. Research involving 11β-hydroxysteroid dehydrogenase type 1, a modulator of glucocorticoids, suggests a potential role in IIH. Improved understanding of the complex interplay between adipose signaling factors such as adipokines, steroid hormones, and ICP regulation may be key to the understanding and future management of IIH. PMID:27186074

  16. Oxydoreductases activation by γ rayonnement : lipoxygenase and alcohol dehydrogenase

    International Nuclear Information System (INIS)

    Mejri, Sonia

    2004-01-01

    Ionising radiations, which have already been used for increasing the conservation length of food products, amelioration physicochemical properties of some products of some products and enhancing the rate of some reactions. In fact, we have selected soybean lipoxygenase and yest alcohol dehydrogenase in order to check the comportment of those oxydoreductases with the 60Co-gamma rays. Results reveal a significant effect on the increase of the enzymes activity, stability and productivity. His effect was so much more important when it is anhydrous enzyme to the aqueous one. Enhanced activity and productivity of the enzymes were not affected by the same dose level of irradiation. The irradiating dose 12 KGy active the soybean lipoxygenase as aqueous solution and 8 KGy active this last one under his form anhydrous. Nevertheless, alcohol deshydrogenase is activated by the doses of the interval 30-50Gy. (author). 99 refs

  17. [Activity of blood serum lactate dehydrogenase in diabetes mellitus].

    Science.gov (United States)

    Vizir, O O

    1977-01-01

    The activity of lactic dehydrogenase of the blood serum was studied under clinical conditions in 120 patients suffering from diabetes mellitus. Electrophoretic separation of plasma enzymes was used for this purpose. The shifts in the LDH activity proved to be characteristic of all the degrees of diabetes severity, and were expressed in a significant elevation of total LDH, LDH4,5 activity and a decrease of LDH1,2 activity in comparison with healthy individuals. No change of LDH3 activity was noted in mild forms of diabetes. But in severe form the isoenzymatic spectrum was mostly changed on account of LDH3 hyperfermentemia. In mild form of diabetes it approached control values.

  18. Alcohol dehydrogenase polymorphism in barrel cactus populations of Drosophila mojavensis.

    Science.gov (United States)

    Cleland, S; Hocutt, G D; Breitmeyer, C M; Markow, T A; Pfeiler, E

    1996-07-01

    Starch gel electrophoresis revealed that the alcohol dehydrogenase (ADH-2) locus was polymorphic in two populations (from Agua Caliente, California and the Grand Canyon, Arizona) of cactophilic Drosophila mojavensis that utilize barrel cactus (Ferocactus acanthodes) as a host plant. Electromorphs representing products of a slow (S) and a fast (F) allele were found in adult flies. The frequency of the slow allele was 0.448 in flies from Agua Caliente and 0.659 in flies from the Grand Canyon. These frequencies were intermediate to those of the low (Baja California peninsula, Mexico) and high (Sonora, Mexico and southern Arizona) frequency Adh-2S populations of D. mojavensis that utilize different species of host cacti.

  19. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase

    DEFF Research Database (Denmark)

    Madiraju, Anila K; Erion, Derek M; Rahimi, Yasmeen

    2014-01-01

    Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been...... prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered...... hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense...

  20. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    Science.gov (United States)

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  1. Lactate dehydrogenase (LDH isoenzymes patterns in ocular tumours

    Directory of Open Access Journals (Sweden)

    Singh Rajendra

    1991-01-01

    Full Text Available Estimation of lactate dehydrogenase (LDH isoenzymes in the serum and aqueous humor was carried out in 15 cases of benign ocular tumour, 15 cases of malignant tumor and 15 normal cases. Cases of both sexes aged between 1 year and 75 years were included. LDH, isoenzymes specially LDH4 and LDH5 are higher and LDH1 and LDH2 lower in sera of patients with malignant tumor specially retinoblastoma as compared to benign tumor cases and control cases. LDH isoenzymes in aqueous humor are significantly higher and show a characteristic pattern in retinoblastoma cases, the concentration was presumably too low in the control, malignant tumor other than retinoblastoma and benign tumor cases as its fractionation was not possible.

  2. A Case of Hyperammonemia Associated with High Dihydropyrimidine Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Keiki Nagaharu

    2016-01-01

    Full Text Available Over the past decades, 5-Fluorouracil (5-FU has been widely used to treat several types of carcinoma, including esophageal squamous cell carcinoma. In addition to its common side effects, including diarrhea, mucositis, neutropenia, and anemia, 5-FU treatment has also been reported to cause hyperammonemia. However, the exact mechanism responsible for 5-FU-induced hyperammonemia remains unknown. We encountered an esophageal carcinoma patient who developed hyperammonemia when receiving 5-FU-containing chemotherapy but did not exhibit any of the other common adverse effects of 5-FU treatment. At the onset of hyperammonemia, laboratory tests revealed high dihydropyrimidine dehydrogenase (DPD activity and rapid 5-FU clearance. Our findings suggested that 5-FU hypermetabolism may be one of the key mechanisms responsible for hyperammonemia during 5-FU treatment.

  3. Identification of a mitochondrial external NADPH dehydrogenase by overexpression in transgenic ¤Nicotiana sylvestris¤

    DEFF Research Database (Denmark)

    Michalecka, A.M.; Agius, S.C.; Møller, I.M.

    2004-01-01

    (P)H dehydrogenases, was introduced into Nicotiana sylvestris. Transgenic lines with high transcript and protein levels for St-NDB1 had up to threefold increased activity of external NADPH dehydrogenase in isolated mitochondria as compared to the wild type (WT). In two lines, the external NADPH dehydrogenase activity...

  4. Lactate dehydrogenase A silencing in IDH mutant gliomas.

    Science.gov (United States)

    Chesnelong, Charles; Chaumeil, Myriam M; Blough, Michael D; Al-Najjar, Mohammad; Stechishin, Owen D; Chan, Jennifer A; Pieper, Russell O; Ronen, Sabrina M; Weiss, Samuel; Luchman, H Artee; Cairncross, J Gregory

    2014-05-01

    Mutations of the isocitrate dehydrogenase 1 and 2 gene (IDH1/2) were initially thought to enhance cancer cell survival and proliferation by promoting the Warburg effect. However, recent experimental data have shown that production of 2-hydroxyglutarate by IDH mutant cells promotes hypoxia-inducible factor (HIF)1α degradation and, by doing so, may have unexpected metabolic effects. We used human glioma tissues and derived brain tumor stem cells (BTSCs) to study the expression of HIF1α target genes in IDH mutant ((mt)) and IDH wild-type ((wt)) tumors. Focusing thereafter on the major glycolytic enzyme, lactate dehydrogenase A (LDHA), we used standard molecular methods and pyrosequencing-based DNA methylation analysis to identify mechanisms by which LDHA expression was regulated in human gliomas. We found that HIF1α-responsive genes, including many essential for glycolysis (SLC2A1, PDK1, LDHA, SLC16A3), were underexpressed in IDH(mt) gliomas and/or derived BTSCs. We then demonstrated that LDHA was silenced in IDH(mt) derived BTSCs, including those that did not retain the mutant IDH1 allele (mIDH(wt)), matched BTSC xenografts, and parental glioma tissues. Silencing of LDHA was associated with increased methylation of the LDHA promoter, as was ectopic expression of mutant IDH1 in immortalized human astrocytes. Furthermore, in a search of The Cancer Genome Atlas, we found low expression and high methylation of LDHA in IDH(mt) glioblastomas. To our knowledge, this is the first demonstration of downregulation of LDHA in cancer. Although unexpected findings, silencing of LDHA and downregulation of several other glycolysis essential genes raise the intriguing possibility that IDH(mt) gliomas have limited glycolytic capacity, which may contribute to their slow growth and better prognosis.

  5. Biochemical and structural characterization of Plasmodium falciparum glutamate dehydrogenase 2.

    Science.gov (United States)

    Zocher, Kathleen; Fritz-Wolf, Karin; Kehr, Sebastian; Fischer, Marina; Rahlfs, Stefan; Becker, Katja

    2012-05-01

    Glutamate dehydrogenases (GDHs) play key roles in cellular redox, amino acid, and energy metabolism, thus representing potential targets for pharmacological interventions. Here we studied the functional network provided by the three known glutamate dehydrogenases of the malaria parasite Plasmodium falciparum. The recombinant production of the previously described PfGDH1 as hexahistidyl-tagged proteins was optimized. Additionally, PfGDH2 was cloned, recombinantly produced, and characterized. Like PfGDH1, PfGDH2 is an NADP(H)-dependent enzyme with a specific activity comparable to PfGDH1 but with slightly higher K(m) values for its substrates. The three-dimensional structure of hexameric PfGDH2 was solved to 3.1 Šresolution. The overall structure shows high similarity with PfGDH1 but with significant differences occurring at the subunit interface. As in mammalian GDH1, in PfGDH2 the subunit-subunit interactions are mainly assisted by hydrogen bonds and hydrophobic interactions, whereas in PfGDH1 these contacts are mediated by networks of salt bridges and hydrogen bonds. In accordance with this, the known bovine GDH inhibitors hexachlorophene, GW5074, and bithionol were more effective on PfGDH2 than on PfGDH1. Subcellular localization was determined for all three plasmodial GDHs by fusion with the green fluorescent protein. Based on our data, PfGDH1 and PfGDH3 are cytosolic proteins whereas PfGDH2 clearly localizes to the apicoplast, a plastid-like organelle specific for apicomplexan parasites. This study provides new insights into the structure and function of GDH isoenzymes of P. falciparum, which represent potential targets for the development of novel antimalarial drugs. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Evaluation of Serum Lactate Dehydrogenase Activity in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    V.M.T. Trindade

    2013-05-01

    Full Text Available Introduction: Lactate dehydrogenase is a citosolic enzyme involved in reversible transformation of pyruvate to lactate. It participates in anaerobic glycolysis of skeletal muscle and red blood cells, in liver gluconeogenesis and in aerobic metabolism of heart muscle. The determination of its activity helps in the diagnosis of various diseases, because it is increased in serum of patients suffering from myocardial infarction, acute hepatitis, muscular dystrophy and cancer. This paper presents a learning object, mediated by computer, which contains the simulation of the laboratory determination serum lactate dehydrogenase activity measured by the spectrophotometric method, based in the decrease of absorbance at 340 nm. Materials and Methods: Initially, pictures and videos were obtained recording the procedure of the methodology. The most representative images were selected, edited and inserted into an animation developed with the aid of the tool Adobe ® Flash ® CS3. The validation of the object was performed by the students of Biochemistry I (Pharmacy-UFRGS from the second semester of 2009 and both of 2010. Results and Discussion: The analysis of students' answers revealed that 80% attributed the excellence of the navigation program, the display format and to aid in learning. Conclusion: Therefore, this software can be considered an adequate teaching resource as well as an innovative support in the construction of theoretical and practical knowledge of Biochemistry. Available at: http://www6.ufrgs.br/gcoeb/LDH

  7. Functional consequences of piceatannol binding to glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Gerszon, Joanna; Serafin, Eligiusz; Buczkowski, Adam; Michlewska, Sylwia; Bielnicki, Jakub Antoni; Rodacka, Aleksandra

    2018-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the key redox-sensitive proteins whose activity is largely affected by oxidative modifications at its highly reactive cysteine residue in the enzyme's active site (Cys149). Prolonged exposure to oxidative stress may cause, inter alia, the formation of intermolecular disulfide bonds leading to accumulation of GAPDH aggregates and ultimately to cell death. Recently these anomalies have been linked with the pathogenesis of Alzheimer's disease. Novel evidences indicate that low molecular compounds may be effective inhibitors potentially preventing the GAPDH translocation to the nucleus, and inhibiting or slowing down its aggregation and oligomerization. Therefore, we decided to establish the ability of naturally occurring compound, piceatannol, to interact with GAPDH and to reveal its effect on functional properties and selected parameters of the dehydrogenase structure. The obtained data revealed that piceatannol binds to GAPDH. The ITC analysis indicated that one molecule of the tetrameric enzyme may bind up to 8 molecules of polyphenol (7.3 ± 0.9). Potential binding sites of piceatannol to the GAPDH molecule were analyzed using the Ligand Fit algorithm. Conducted analysis detected 11 ligand binding positions. We indicated that piceatannol decreases GAPDH activity. Detailed analysis allowed us to presume that this effect is due to piceatannol ability to assemble a covalent binding with nucleophilic cysteine residue (Cys149) which is directly involved in the catalytic reaction. Consequently, our studies strongly indicate that piceatannol would be an exceptional inhibitor thanks to its ability to break the aforementioned pathologic disulfide linkage, and therefore to inhibit GAPDH aggregation. We demonstrated that by binding with GAPDH piceatannol blocks cysteine residue and counteracts its oxidative modifications, that induce oligomerization and GAPDH aggregation.

  8. Functional consequences of piceatannol binding to glyceraldehyde-3-phosphate dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Joanna Gerszon

    Full Text Available Glyceraldehyde-3-phosphate dehydrogenase (GAPDH is one of the key redox-sensitive proteins whose activity is largely affected by oxidative modifications at its highly reactive cysteine residue in the enzyme's active site (Cys149. Prolonged exposure to oxidative stress may cause, inter alia, the formation of intermolecular disulfide bonds leading to accumulation of GAPDH aggregates and ultimately to cell death. Recently these anomalies have been linked with the pathogenesis of Alzheimer's disease. Novel evidences indicate that low molecular compounds may be effective inhibitors potentially preventing the GAPDH translocation to the nucleus, and inhibiting or slowing down its aggregation and oligomerization. Therefore, we decided to establish the ability of naturally occurring compound, piceatannol, to interact with GAPDH and to reveal its effect on functional properties and selected parameters of the dehydrogenase structure. The obtained data revealed that piceatannol binds to GAPDH. The ITC analysis indicated that one molecule of the tetrameric enzyme may bind up to 8 molecules of polyphenol (7.3 ± 0.9. Potential binding sites of piceatannol to the GAPDH molecule were analyzed using the Ligand Fit algorithm. Conducted analysis detected 11 ligand binding positions. We indicated that piceatannol decreases GAPDH activity. Detailed analysis allowed us to presume that this effect is due to piceatannol ability to assemble a covalent binding with nucleophilic cysteine residue (Cys149 which is directly involved in the catalytic reaction. Consequently, our studies strongly indicate that piceatannol would be an exceptional inhibitor thanks to its ability to break the aforementioned pathologic disulfide linkage, and therefore to inhibit GAPDH aggregation. We demonstrated that by binding with GAPDH piceatannol blocks cysteine residue and counteracts its oxidative modifications, that induce oligomerization and GAPDH aggregation.

  9. STRUCTURE AND KINETICS OF MONOFUNCTIONAL PROLINE DEHYDROGENASE FROM THERMUS THERMOPHILUS

    Science.gov (United States)

    White, Tommi A.; Krishnan, Navasona; Becker, Donald F.; Tanner, John J.

    2009-01-01

    Proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyze the two-step oxidation of proline to glutamate. They are distinct monofunctional enzymes in all eukaryotes and some bacteria, but are fused into bifunctional enzymes known as Proline utilization A (PutA) in other bacteria. Here we report the first structure and biochemical data for a monofunctional PRODH. The 2.0 Å resolution structure of Thermus thermophilus PRODH reveals a distorted (βα)8 barrel catalytic core domain and a hydrophobic α-helical domain located above the carboxyl terminal ends of the strands of the barrel. Although the catalytic core is similar to that of the PutA PRODH domain, the FAD conformation of T. thermophilus PRODH is remarkably different and likely reflects unique requirements for membrane association and communication with P5CDH. Also, the FAD of T. thermophilus PRODH is highly solvent exposed compared to PutA due to a 4-Å shift of helix 8. Structure-based sequence analysis of the PutA/PRODH family led us to identify 9 conserved motifs involved in cofactor and substrate recognition. Biochemical studies show that the midpoint potential of the FAD is −75 mV and the kinetic parameters for proline are Km=27 mM and kcat=13 s−1. 3,4-dehydro-L-proline was found to be an efficient substrate and L-tetrahydro-2-furoic acid is a competitive inhibitor (KI=1.0 mM). Finally, we demonstrate that T. thermophilus PRODH reacts with O2 producing superoxide. This is significant because superoxide production underlies the role of human PRODH in p53-mediated apoptosis, implying commonalities between eukaryotic and bacterial monofunctional PRODHs. PMID:17344208

  10. The role of histidine residues in glutamate dehydrogenase

    Science.gov (United States)

    Tudball, N.; Bailey-Wood, R.; Thomas, P.

    1972-01-01

    1. Glutamate dehydrogenase was subject to rapid inactivation when irradiated in the presence of Rose Bengal or incubated in the presence of ethoxyformic anhydride. 2. Inactivation in the presence of Rose Bengal led to the photo-oxidation of four histidine residues. Oxidation of three histidine residues had little effect on enzyme activity, but oxidation of the fourth residue led to the almost total loss of activity. 3. Acylation of glutamate dehydrogenase with ethoxyformic anhydride at pH6.1 led to the modification of three histidine residues with a corresponding loss of half the original activity. Acylation at pH7.5 led to the modification of two histidine residues and a total loss of enzyme activity. 4. One of the histidine residues undergoing reaction at pH6.1 also undergoes reaction at pH7.5. 5. The presence of either glutamate or NAD+ in the reaction mixtures at pH6.1 had no appreciable effect. At pH7.5 glutamate caused a marked decrease in both the degree of alkylation and degree of inactivation. NAD+ had no effect on the degree of inactivation at pH7.5 but did modify the extent of acylation. 6. The normal response of the enzyme towards ADP was unaffected by acylation at pH6.1 or 7.5. 7. The normal response of the enzyme towards GTP was altered by treatment at both pH6.1 and 7.5. PMID:4345275

  11. Catalytic properties of lipoamide dehydrogenase from Mycobacterium smegmatis.

    Science.gov (United States)

    Marcinkeviciene, J; Blanchard, J S

    1997-04-15

    Lipoamide dehydrogenase from Mycobacterium smegmatis was purified to homogeneity over 60-fold. Of 20 amino acid residues identified at the amino terminus of the enzyme, 18 and 17 were identical to the sequences of Mycobacterium leprae and Pseudomonas fluorescens lipoamide dehydrogenases, respectively. The visible spectrum of the isolated enzyme was characteristic of a flavin in apolar environment. Reduction of the enzyme with dithionite results in the appearance of an absorbance shoulder at 530-550 nm, suggesting that reducing equivalents of the two-electron reduced enzyme reside predominantly on the redox-active disulfidedithiol. The kinetic mechanism of the forward (NAD+ reducing) and reverse (NADH oxidizing) reactions proved difficult to study due to severe substrate inhibition by NAD+ and NADH. The rate of lipoamide reduction was found to depend upon the NAD+/NADH ratio, with the reaction being activated at low ratios and inhibited at high ratios. The use of 3-acetylpyridine adenine dinucleotide allowed initial velocity kinetics to be performed and revealed that the kinetic mechanism is ping pong. In addition to catalyzing the reversible oxidation of dihydrolipoamide, the enzyme displayed high oxidase activity (30% of the lipoamide reduction rate), hydrogen and t-butyl peroxide reductase activity (10% of the lipoamide reduction rate), and both naphthoquinone and benzoquinone reduction (approximately 200% of the lipoamide reduction rate). The enzyme failed to catalyze the redox cycling of nitrocompounds, but could anaerobically reduce nitrofurazone. The lipoamide-reducing reaction was reversibly inactivated by sodium arsenite, but no decrease in diaphorase activity was observed under these conditions.

  12. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology

    Directory of Open Access Journals (Sweden)

    Gopinath eSutendra

    2013-03-01

    Full Text Available Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase (PDH, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs’ cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA shifts the metabolism of cancer cells from glycolysis to glucose oxidation and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs’ cycle intermediates and mitochondria-derived reactive oxygen species (mROS, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T-cells (NFAT and hypoxia-inducible factor 1α (HIF1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic targeting therapies can be translated directly to patients. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors holds promise in the rapidly expanding field of metabolic oncology.

  13. Structure and mechanism of benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633, a member of the Class 3 aldehyde dehydrogenase superfamily.

    Science.gov (United States)

    Zahniser, Megan P D; Prasad, Shreenath; Kneen, Malea M; Kreinbring, Cheryl A; Petsko, Gregory A; Ringe, Dagmar; McLeish, Michael J

    2017-03-01

    Benzaldehyde dehydrogenase from Pseudomonas putida (PpBADH) belongs to the Class 3 aldehyde dehydrogenase (ALDH) family. The Class 3 ALDHs are unusual in that they are generally dimeric (rather than tetrameric), relatively non-specific and utilize both NAD+ and NADP+. To date, X-ray structures of three Class 3 ALDHs have been determined, of which only two have cofactor bound, both in the NAD+ form. Here we report the crystal structure of PpBADH in complex with NADP+ and a thioacyl intermediate adduct. The overall architecture of PpBADH resembles that of most other members of the ALDH superfamily, and the cofactor binding residues are well conserved. Conversely, the pattern of cofactor binding for the rat Class 3 ALDH differs from that of PpBADH and other ALDHs. This has been interpreted in terms of a different mechanism for the rat enzyme. Comparison with the PpBADH structure, as well as multiple sequence alignments, suggest that one of two conserved glutamates, at positions 215 (209 in rat) and 337 (333 in rat), would act as the general base necessary to hydrolyze the thioacyl intermediate. While the latter is the general base in the rat Class 3 ALDH, site-specific mutagenesis indicates that Glu215 is the likely candidate for PpBADH, a result more typical of the Class 1 and 2 ALDH families. Finally, this study shows that hydride transfer is not rate limiting, lending further credence to the suggestion that PpBADH is more similar to the Class 1 and 2 ALDHs than it is to other Class 3 ALDHs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  15. Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily

    Directory of Open Access Journals (Sweden)

    Kristan Katja

    2005-12-01

    Full Text Available Abstract Background 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl is a member of the short-chain dehydrogenase/reductase (SDR superfamily. SDR proteins usually function as dimers or tetramers and 17β-HSDcl is also a homodimer under native conditions. Results We have investigated here which secondary structure elements are involved in the dimerization of 17β-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the αE-helices interact with the Asp121, Glu117 and Asp187 residues from the αE and αF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17β-HSDcl monomeric, while the mutant 17β-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. Conclusion We have shown by site-directed mutagenesis and structure/function analysis that 17β-HSDcl dimerization involves the αE and αF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.

  16. Improved production of propionic acid in Propionibacterium jensenii via combinational overexpression of glycerol dehydrogenase and malate dehydrogenase from Klebsiella pneumoniae.

    Science.gov (United States)

    Liu, Long; Zhuge, Xin; Shin, Hyun-Dong; Chen, Rachel R; Li, Jianghua; Du, Guocheng; Chen, Jian

    2015-04-01

    Microbial production of propionic acid (PA), an important chemical building block used as a preservative and chemical intermediate, has gained increasing attention for its environmental friendliness over traditional petrochemical processes. In previous studies, we constructed a shuttle vector as a useful tool for engineering Propionibacterium jensenii, a potential candidate for efficient PA synthesis. In this study, we identified the key metabolites for PA synthesis in P. jensenii by examining the influence of metabolic intermediate addition on PA synthesis with glycerol as a carbon source under anaerobic conditions. We also further improved PA production via the overexpression of the identified corresponding enzymes, namely, glycerol dehydrogenase (GDH), malate dehydrogenase (MDH), and fumarate hydratase (FUM). Compared to those in wild-type P. jensenii, the activities of these enzymes in the engineered strains were 2.91- ± 0.17- to 8.12- ± 0.37-fold higher. The transcription levels of the corresponding enzymes in the engineered strains were 2.85- ± 0.19- to 8.07- ± 0.63-fold higher than those in the wild type. The coexpression of GDH and MDH increased the PA titer from 26.95 ± 1.21 g/liter in wild-type P. jensenii to 39.43 ± 1.90 g/liter in the engineered strains. This study identified the key metabolic nodes limiting PA overproduction in P. jensenii and further improved PA titers via the coexpression of GDH and MDH, making the engineered P. jensenii strain a potential industrial producer of PA. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Expansion of the mammalian 3 beta-hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose-4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus.

    Science.gov (United States)

    Baker, M E; Blasco, R

    1992-04-13

    Mammalian 3 beta-hydroxysteroid dehydrogenase and plant dihydroflavonol reductases are descended from a common ancestor. Here we present evidence that Nocardia cholesterol dehydrogenase, E. coli UDP-galactose-4 epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus are homologous to 3 beta-hydroxysteroid dehydrogenase and dihydroflavonol reductase. Analysis of a multiple alignment of these sequences indicates that viral ORFs are most closely related to the mammalian 3 beta-hydroxysteroid dehydrogenases. The ancestral protein of this superfamily is likely to be one that metabolized sugar nucleotides. The sequence similarity between 3 beta-hydroxysteroid dehydrogenase and the viral ORFs is sufficient to suggest that these ORFs have an activity that is similar to 3 beta-hydroxysteroid dehydrogenase or cholesterol dehydrogenase, although the putative substrates are not yet known.

  18. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Akduman, Begüm [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Uygun, Murat [Koçarlı Vocational and Training School, Adnan Menderes University, Aydın (Turkey); Uygun, Deniz Aktaş, E-mail: daktas@adu.edu.tr [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Akgöl, Sinan [Biochemistry Department, Ege University, İzmir (Turkey); Denizli, Adil [Chemistry Department, Hacettepe University, Ankara (Turkey)

    2013-12-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  19. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    International Nuclear Information System (INIS)

    Akduman, Begüm; Uygun, Murat; Uygun, Deniz Aktaş; Akgöl, Sinan; Denizli, Adil

    2013-01-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  20. Aldehyde Dehydrogenase 2 Polymorphism Is a Predictor of Smoking Cessation.

    Science.gov (United States)

    Masaoka, Hiroyuki; Gallus, Silvano; Ito, Hidemi; Watanabe, Miki; Yokomizo, Akira; Eto, Masatoshi; Matsuo, Keitaro

    2017-09-01

    Smoking cessation has been known to be associated with drinking behaviors, which are influenced by polymorphisms in genes encoding alcohol metabolizing enzymes. The aim was to evaluate the impact of aldehyde dehydrogenase 2 (ALDH2, rs671) and alcohol dehydrogenase 1B (ADH1B, rs1229984) polymorphisms together with drinking behaviors on smoking cessation. We conducted a cross-sectional study with 1137 former smokers and 1775 current smokers without any cancer at Aichi Cancer Center Hospital between 2001 and 2005. Unconditional logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI) for successful smoking cessation by comparing former smokers (quitters) with current smokers (non-quitters). Older age, lower amount of cumulative smoking exposure, lower number of cigarettes per day, younger age of smoking initiation, shorter smoking duration, longer time to first cigarette in the morning, and lower amount of drinking among ever drinkers were predictors of smoking cessation. After careful adjustment for age, sex, smoking patterns, and drinking status, the ORs for smoking cessation among subjects with ALDH2 Glu/Lys and Lys/Lys were 1.02 (95% CI 0.84-1.23) and 1.78 (95% CI 1.23-2.58) compared with those with ALDH2 Glu/Glu, respectively Mediation analyses confirmed that the effect of ALDH2 Lys/Lys on smoking cessation was independent by dinking behaviors. No statistically significant association between ADH1B polymorphism and smoking cessation was observed. In our Japanese population, ALDH2 polymorphism predicts smoking cessation, independent by drinking behaviors. Interventions for promoting smoking cessation by ALDH2 polymorphism may be useful in Asian populations. We newly show that subjects with ALDH2 Lys/Lys genotype in a functional polymorphism, rs671, are more likely to quit smoking than those with ALDH2 Glu allele in a Japanese population. Our finding suggests that ALDH2 polymorphism may be useful for promoting smoking

  1. Morphological studies of DHSA/ DHSA-Octyl ester/ RBD palm kernel olein/ medium chain triglycerides system

    International Nuclear Information System (INIS)

    Anuar Kassim; Nadarajan, Rathidevi; Mohd Zaizi Desa; Atan Mohd Sharif; Dzulkefly Kuang; Mohd Jelas Haron

    2007-01-01

    Dihydroxystearic acid (DHSA) and octyl dihydroxystearate (DHSA-octyl ester) have been previously prepared from palm oleic acid and preliminary results showed that these compounds are suitable in personal care and cosmetics products. The objective of this research is to study the phase behavior in ternary system of DHSA/DHSA-octyl ester/RBD Palm Kernel Olein (RBDPKOo) and MCT at 85 degree Celsius. From the ternary phase diagram, results showed that all ratios of were completely in two-phase region with various concentrations of RBDPKOo and MCT. The phase changes were observed through polarizing light while the formation of texture was confirmed using polarizing microscope combination with heating. Needles and spherulite textures were found in this system. (author)

  2. Synthesis of medium-chain length capsinoids from coconut oil catalyzed by Candida rugosa lipases.

    Science.gov (United States)

    Trbojević Ivić, Jovana; Milosavić, Nenad; Dimitrijević, Aleksandra; Gavrović Jankulović, Marija; Bezbradica, Dejan; Kolarski, Dušan; Veličković, Dušan

    2017-03-01

    A commercial preparation of Candida rugosa lipases (CRL) was tested for the production of capsinoids by esterification of vanillyl alcohol (VA) with free fatty acids (FA) and coconut oil (CO) as acyl donors. Screening of FA chain length indicated that C8-C12 FA (the most common FA found in CO triglycerides) are the best acyl-donors, yielding 80-85% of their specific capsinoids. Hence, when CO, which is rich in these FA, was used as the substrate, a mixture of capsinoids (vanillyl caprylate, vanillyl decanoate and vanillyl laurate) was obtained. The findings presented here suggest that our experimental method can be applied for the enrichment of CO with capsinoids, thus giving it additional health promoting properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Medium-Chain Chlorinated Paraffins (CPs) Dominate in Australian Sewage Sludge

    NARCIS (Netherlands)

    Brandsma, Sicco H; van Mourik, Louise; O'Brien, Jake W; Eaglesham, Geoff; Leonards, Pim E G; de Boer, Jacob; Gallen, Christie; Mueller, Jochen; Gaus, Caroline; Bogdal, Christian

    2017-01-01

    To simultaneously quantify and profile the complex mixture of short-, median-, and long-chain CPs (SCCPs, MCCPs, and LCCPs) in Australian sewage sludge, we applied and further validated a recently developed novel instrumental technique, using quadrupole time-of-flight high resolution mass

  4. Medium-chain fatty acid binding to albumin and transfer to phospholipid bilayers

    International Nuclear Information System (INIS)

    Hamilton, J.A.

    1989-01-01

    Temperature-dependent (5-42 degree C) 13 C NMR spectra of albumin complexes with 90% isotopically substituted [1- 13 C]octanoic or [1- 13 C]decanoic acids showed a single peak at >30 degree C but three peaks at lower temperatures. The chemical-shift differences result from different ionic and/or hydrogen-bonding interactions between amino acid side chains and the fatty acid carboxyl carbon. Rapid exchange of fatty acid among binding sites obscures these sites at temperatures >30 degree C. Rate constants for exchange at 33 degree C were 350 sec -1 for octanoate and 20 sec -1 for decanoate. Temperature-dependent data for octanoate showed an activation energy of 2 kcal/mol for exchange. Spectra of albumin complexes with the 12-carbon saturated fatty acid, lauric acid, had several narrow laurate carboxyl peaks at 35 degree C, indicating longer lifetimes in the different binding sites. Fatty acid exchange between albumin and model membranes (phosphatidylcholine bilayers) occurred on a time scale comparable to that for exchange among albumin binding sites, following the order octanoate > decanoate > laurate. The equilibrium distribution of fatty acid between lipid bilayers and protein was measured directly from NMR spectra. Decreasing pH increased the relative affinity of fatty acid for the lipid bilayer. The results predict that the relative affinity of octanoic acid for albumin and membranes will be similar to that of long-chain fatty acids, but the rate of equilibration will be ∼ 10 4 faster for octanoic acid

  5. Medium-Chain Chlorinated Paraffins (CPs) Dominate in Australian Sewage Sludge.

    Science.gov (United States)

    Brandsma, Sicco H; van Mourik, Louise; O'Brien, Jake W; Eaglesham, Geoff; Leonards, Pim E G; de Boer, Jacob; Gallen, Christie; Mueller, Jochen; Gaus, Caroline; Bogdal, Christian

    2017-03-21

    To simultaneously quantify and profile the complex mixture of short-, median-, and long-chain CPs (SCCPs, MCCPs, and LCCPs) in Australian sewage sludge, we applied and further validated a recently developed novel instrumental technique, using quadrupole time-of-flight high resolution mass spectrometry running in the negative atmospheric pressure chemical ionization mode (APCI-qTOF-HRMS). Without using an analytical column the cleaned extracts were directly injected into the qTOF-HRMS followed by quantification of the CPs by a mathematical algorithm. The recoveries of the four SCCP, MCCP and LCCP-spiked sewage sludge samples ranged from 86 to 123%. This APCI-qTOF-HRMS method is a fast and promising technique for routinely measuring SCCPs, MCCPs, and LCCPs in sewage sludge. Australian sewage sludge was dominated by MCCPs with concentrations ranging from 542 to 3645 ng/g dry weight (dw). Lower SCCPs concentrations (sewage sludge, which were comparable with the LCCPs concentrations (116-960 ng/g dw). This is the first time that CPs were reported in Australian sewage sludge. The results of this study gives a first impression on the distribution of the SCCPs, MCCPs, and LCCPs in Australia wastewater treatment plants (WWTPs).

  6. Oxidative stabilization of mixed mayonnaises made with linseed oil and saturated medium-chain triglyceride oil

    DEFF Research Database (Denmark)

    Raudsepp, Piret; Brüggemann, Dagmar A.; Lenferink, Aufried

    2014-01-01

    storage was lower in mixed mayonnaise compared to LSO mayonnaise, while in mixed oil mayonnaise the level of peroxides was constantly low. Mixed oil mayonnaise had a lower rate of oxygen consumption than mixed mayonnaise, LSO mayonnaise having the highest rate. The decay of water-soluble nitroxyl radicals...

  7. Characterization and redesign of galactonolactone dehydrogenase, a flavoprotein producing vitamin C

    NARCIS (Netherlands)

    Leferink, N.G.H.

    2009-01-01

    Keywords: aldonolactone oxidoreductases, Arabidopsis thaliana, flavoprotein, galactonolactone dehydrogenase, molecular gatekeeper, oxidase, protein engineering, vanillyl-alcohol oxidase family, vitamin C Redox enzymes are attractive biocatalysts because of their intrinsic (enantio-)selectivity and

  8. Kernicterus by glucose-6-phosphate dehydrogenase deficiency: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Cossio de Gurrola Gladys

    2008-05-01

    Full Text Available Abstract Introduction Glucose-6-phosphate dehydrogenase deficiency is an X-linked recessive disease that causes acute or chronic hemolytic anemia and potentially leads to severe jaundice in response to oxidative agents. This deficiency is the most common human innate error of metabolism, affecting more than 400 million people worldwide. Case presentation Here, we present the first documented case of kernicterus in Panama, in a glucose-6-phosphate dehydrogenase-deficient newborn clothed in naphthalene-impregnated garments, resulting in reduced psychomotor development, neurosensory hypoacousia, absence of speech and poor reflex of the pupil to light. Conclusion Mutational analysis revealed the glucose-6-phosphate dehydrogenase Mediterranean polymorphic variant, which explained the development of kernicterus after exposition of naphthalene. As the use of naphthalene in stored clothes is a common practice, glucose-6-phosphate dehydrogenase testing in neonatal screening could prevent severe clinical consequences.

  9. Studies in Wild Oat Seed Dormancy: II. ACTIVITIES OF PENTOSE PHOSPHATE PATHWAY DEHYDROGENASES.

    Science.gov (United States)

    Adkins, S W; Ross, J D

    1981-07-01

    A selected strain of wild oat (Avena fatua L.) seed has been shown to lose dormancy rapidly during moist soil incubation at 25 C, whereas seed kept similarly at 5 C maintained a high level of dormancy.The activities of cytosolic dehydrogenase enzymes of the pentose phosphate pathway were assayed throughout a period of moist soil incubation at these two temperatures. A distinction was made between extractable dehydrogenases from the embryo and the endosperm regions of the caryopsis.Dehydrogenase activities monitored in seeds incubated at 25 C gradually increased over the course of the investigation. The largest increases in activity occurred during incubation at 5 C, the situation in which dormancy is maintained. No obvious connection could be found between dormancy breakage and increased activity of the pentose phosphate pathway dehydrogenases.

  10. Alcohol Dehydrogenase Activities of Wine Yeasts in Relation to Higher Alcohol Formation

    Science.gov (United States)

    Singh, Rajendra; Kunkee, Ralph E.

    1976-01-01

    Alcohol dehydrogenase activities were examined in cell-free extracts of 10 representative wine yeast strains having various productivities of higher alcohols (fusel oil). The amount of fusel alcohols (n-propanol, isobutanol, active pentanol, and isopentanol) produced by the different yeasts and the specific alcohol dehydrogenase activities with the corresponding alcohols as substrates were found to be significantly related. No such relationship was found for ethanol. The amounts of higher alcohols formed during vinification could be predicted from the specific activities of the alcohol dehydrogenases with high accuracy. The results suggest a close relationship between the control of the activities of alcohol dehydrogenase and the formation of fusel oil alcohols. Also, new procedures for the prediction of higher alcohol formation during alcoholic beverage fermentation are suggested. PMID:16345179

  11. Crystallization and preliminary structural analyses of glutamate dehydrogenase from Peptoniphilus asaccharolyticus

    OpenAIRE

    Oliveira, Tania F.; Carrigan, John B.; Hamza, Muaawia A.; Sharkey, Michael A.; Engel, Paul C.; Khan, Amir R.

    2010-01-01

    Selenomethionine-derivatized glutamate dehydrogenase from P. asaccharolyticus has been crystallized. Diffraction data were collected to 3.5 Å resolution from crystals belonging to the rhombohedral space group H32 and structure determination is in progress.

  12. Immobilisation and characterisation of glucose dehydrogenase immobilised on ReSyn: a proprietary polyethylenimine support matrix

    CSIR Research Space (South Africa)

    Twala, BV

    2010-01-01

    Full Text Available Immobilisation of enzymes is of considerable interest due to the advantages over soluble enzymes, including improved stability and recovery. Glucose Dehydrogenase (GDH) is an important biocatalytic enzyme due to is ability to recycle the biological...

  13. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    Science.gov (United States)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  14. In vitro effects of metals and pesticides on dehydrogenase activity in ...

    African Journals Online (AJOL)

    In vitro effects of metals and pesticides on dehydrogenase activity in microbial community of cowpea (Vigna unguiculata) rhizoplane. CO Nweke, C Ntinugwa, IF Obah, SC Ike, GE Eme, EC Opara, JC Okolo, CE Nwanyanwu ...

  15. Dihydropyrimidine Dehydrogenase Deficiency Caused by a Novel Genomic Deletion c.505_513del of DPYD

    NARCIS (Netherlands)

    van Kuilenburg, A. B. P.; Meijer, J.; Gokcay, G.; Baykal, T.; Rubio-Gozalbo, M. E.; Mul, A. N. P. M.; de Die-Smulders, C. E. M.; Weber, P.; Mori, A. Capone; Bierau, J.; Fowler, B.; Macke, K.; Sass, J. O.; Meinsma, R.; Hennermann, J. B.; Miny, P.; Zoetekouw, L.; Roelofsen, J.; Vijzelaar, R.; Nicolai, J.; Hennekam, R. C. M.

    2010-01-01

    Dihydropyrimidine dehydrogenase (DPD) deficiency is an autosomal recessive disorder of the pyrimidine degradation pathway. In a patient presenting with convulsions, psychomotor retardation and Reye like syndrome, strongly elevated levels of uracil and thymine were detected in urine. No DPD activity

  16. Glucose-6-Phosphate Dehydrogenase deficiency presented with convulsion: a rare case

    Directory of Open Access Journals (Sweden)

    Alparslan Merdin

    2014-03-01

    Full Text Available Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered.

  17. Ozone: a possible cause of hemolytic anemia in glucose-6-phosphate dehydrogenase deficient individuals

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J. (School of Health Sciences, Amherst, MA); Kojola, W.H.; Carnow, B.W.

    1977-01-01

    A theoretical model is described that predicts that individuals with a glucose-6-phosphate dehydrogenase deficiency may experience acute hemolysis on exposure to ozone at levels reached in certain urban centers.

  18. Mitochondrial type II NAD(PH dehydrogenases in fungal cell death

    Directory of Open Access Journals (Sweden)

    A. Pedro Gonçalves

    2015-03-01

    Full Text Available During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(PH dehydrogenases (also called alternative NAD(PH dehydrogenases are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(PH dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(PH dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF-family.

  19. Functional characterization of a vanillin dehydrogenase in Corynebacterium glutamicum

    Science.gov (United States)

    Ding, Wei; Si, Meiru; Zhang, Weipeng; Zhang, Yaoling; Chen, Can; Zhang, Lei; Lu, Zhiqiang; Chen, Shaolin; Shen, Xihui

    2015-01-01

    Vanillin dehydrogenase (VDH) is a crucial enzyme involved in the degradation of lignin-derived aromatic compounds. Herein, the VDH from Corynebacterium glutamicum was characterized. The relative molecular mass (Mr) determined by SDS-PAGE was ~51kDa, whereas the apparent native Mr values revealed by gel filtration chromatography were 49.5, 92.3, 159.0 and 199.2kDa, indicating the presence of dimeric, trimeric and tetrameric forms. Moreover, the enzyme showed its highest level of activity toward vanillin at pH 7.0 and 30C, and interestingly, it could utilize NAD+ and NADP+ as coenzymes with similar efficiency and showed no obvious difference toward NAD+ and NADP+. In addition to vanillin, this enzyme exhibited catalytic activity toward a broad range of substrates, including p-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, o-phthaldialdehyde, cinnamaldehyde, syringaldehyde and benzaldehyde. Conserved catalytic residues or putative cofactor interactive sites were identified based on sequence alignment and comparison with previous studies, and the function of selected residues were verified by site-directed mutagenesis analysis. Finally, the vdh deletion mutant partially lost its ability to grow on vanillin, indicating the presence of alternative VDH(s) in Corynebacterium glutamicum. Taken together, this study contributes to understanding the VDH diversity from bacteria and the aromatic metabolism pathways in C. glutamicum. PMID:25622822

  20. Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria.

    Science.gov (United States)

    Radianingtyas, Helia; Wright, Phillip C

    2003-12-01

    Many studies have been undertaken to characterise alcohol dehydrogenases (ADHs) from thermophiles and hyperthermophiles, mainly to better understand their activities and thermostability. To date, there are 20 thermophilic archaeal and 17 thermophilic bacterial strains known to have ADHs or similar enzymes, including the hypothetical proteins. Some of these thermophiles are found to have multiple ADHs, sometimes of different types. A rigid delineation of amino acid sequences amongst currently elucidated thermophilic ADHs and similar proteins is phylogenetically apparent. All are NAD(P)-dependent, with one exception that utilises the cofactor F(420) instead. Within the NAD(P)-dependent group, the thermophilic ADHs are orderly clustered as zinc-dependent ADHs, short-chain ADHs, and iron-containing/activated ADHs. Distance matrix calculations reveal that thermophilic ADHs within one type are homologous, with those derived from a single genus often showing high similarities. Elucidation of the enzyme activity and stability, coupled with structure analysis, provides excellent information to explain the relationship between them, and thermophilic ADHs diversity.

  1. Molecular and biochemical characterisation of a Teladorsagia circumcincta glutamate dehydrogenase.

    Science.gov (United States)

    Umair, S; Knight, J S; Patchett, M L; Bland, R J; Simpson, H V

    2011-11-01

    A full length cDNA encoding glutamate dehydrogenase was cloned from Teladorsagia circumcincta (TcGDH). The TcGDH cDNA (1614 bp) encoded a 538 amino acid protein. The predicted amino acid sequence showed 96% and 93% similarity with Haemonchus contortus and Caenorhabditis elegans GDH, respectively. A soluble N-terminal 6xHis-tagged GDH protein was expressed in the recombinant Escherichia coli strain BL21 (DE3) pGroESL, purified and characterised. The recombinant TcGDH had similar kinetic properties to those of the enzyme in homogenates of T. circumcincta, including greater activity in the aminating than deaminating reaction. Addition of 1mM ADP and ATP increased activity about 3-fold in the deaminating reaction, but had no effect in the reverse direction. TcGDH was a dual co-factor enzyme that operated both with NAD(+) and NADP(+), GDH activity was greater in the deaminating reaction with NADP(+) as co-factor and more with NADH in the aminating reaction. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Computational design of glutamate dehydrogenase in Bacillus subtilis natto.

    Science.gov (United States)

    Chen, Li-Li; Wang, Jia-Le; Hu, Yu; Qian, Bing-Jun; Yao, Xiao-Min; Wang, Jing-Fang; Zhang, Jian-Hua

    2013-04-01

    Bacillus subtilis natto is widely used in industry to produce natto, a traditional and popular Japanese soybean food. However, during its secondary fermentation, high amounts of ammonia are released to give a negative influence on the flavor of natto. Glutamate dehydrogenase (GDH) is a key enzyme for the ammonia produced and released, because it catalyzes the oxidative deamination of glutamate to alpha-ketoglutarate using NAD(+) or NADP(+) as co-factor during carbon and nitrogen metabolism processes. To solve this problem, we employed multiple computational methods model and re-design GDH from Bacillus subtilis natto. Firstly, a structure model of GDH with cofactor NADP(+) was constructed by threading and ab initio modeling. Then the substrate glutamate were flexibly docked into the structure model to form the substrate-binding mode. According to the structural analysis of the substrate-binding mode, Lys80, Lys116, Arg196, Thr200, and Ser351 in the active site were found could form a significant hydrogen bonding network with the substrate, which was thought to play a crucial role in the substrate recognition and position. Thus, these residues were then mutated into other amino acids, and the substrate binding affinities for each mutant were calculated. Finally, three single mutants (K80A, K116Q, and S351A) were found to have significant decrease in the substrate binding affinities, which was further supported by our biochemical experiments.

  3. Intertissue differences for the role of glutamate dehydrogenase in metabolism.

    Science.gov (United States)

    Treberg, Jason R; Banh, Sheena; Pandey, Umesh; Weihrauch, Dirk

    2014-01-01

    The enzyme glutamate dehydrogenase (GDH) plays an important role in integrating mitochondrial metabolism of amino acids and ammonia. Glutamate may function as a respiratory substrate in the oxidative deamination direction of GDH, which also yields α-ketoglutarate. In the reductive amination direction GDH produces glutamate, which can then be used for other cellular needs such as amino acid synthesis via transamination. The production or removal of ammonia by GDH is also an important consequence of flux through this enzyme. However, the abundance and role of GDH in cellular metabolism varies by tissue. Here we discuss the different roles the house-keeping form of GDH has in major organs of the body and how GDH may be important to regulating aspects of intermediary metabolism. The near-equilibrium poise of GDH in liver and controversy over cofactor specificity and regulation is discussed, as well as, the role of GDH in regulation of renal ammoniagenesis, and the possible importance of GDH activity in the release of nitrogen carriers by the small intestine.

  4. The structure and allosteric regulation of mammalian glutamate dehydrogenase.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2012-03-15

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine, while the most important inhibitors include GTP, palmitoyl CoA, and ATP. Recently, spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds were found to block the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2014-01-01

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine and inhibitors include GTP, palmitoyl CoA, and ATP. Spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds blocked the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  6. The structure and allosteric regulation of glutamate dehydrogenase.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2011-09-01

    Glutamate dehydrogenase (GDH) has been extensively studied for more than 50 years. Of particular interest is the fact that, while considered by most to be a 'housekeeping' enzyme, the animal form of GDH is heavily regulated by a wide array of allosteric effectors and exhibits extensive inter-subunit communication. While the chemical mechanism for GDH has remained unchanged through epochs of evolution, it was not clear how or why animals needed to evolve such a finely tuned form of this enzyme. As reviewed here, recent studies have begun to elucidate these issues. Allosteric regulation first appears in the Ciliates and may have arisen to accommodate evolutionary changes in organelle function. The occurrence of allosteric regulation appears to be coincident with the formation of an 'antenna' like feature rising off the tops of the subunits that may be necessary to facilitate regulation. In animals, this regulation further evolved as GDH became integrated into a number of other regulatory pathways. In particular, mutations in GDH that abrogate GTP inhibition result in dangerously high serum levels of insulin and ammonium. Therefore, allosteric regulation of GDH plays an important role in insulin homeostasis. Finally, several compounds have been identified that block GDH-mediated insulin secretion that may be to not only find use in treating these insulin disorders but to kill tumors that require glutamine metabolism for cellular energy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Dash Ranjan K

    2011-09-01

    Full Text Available Abstract Background Mitochondrial 2-oxoglutarate (α-ketoglutarate dehydrogenase complex (OGDHC, a key regulatory point of tricarboxylic acid (TCA cycle, plays vital roles in multiple pathways of energy metabolism and biosynthesis. The catalytic mechanism and allosteric regulation of this large enzyme complex are not fully understood. Here computer simulation is used to test possible catalytic mechanisms and mechanisms of allosteric regulation of the enzyme by nucleotides (ATP, ADP, pH, and metal ion cofactors (Ca2+ and Mg2+. Results A model was developed based on an ordered ter-ter enzyme kinetic mechanism combined with con-formational changes that involve rotation of one lipoic acid between three catalytic sites inside the enzyme complex. The model was parameterized using a large number of kinetic data sets on the activity of OGDHC, and validated by comparison of model predictions to independent data. Conclusions The developed model suggests a hybrid rapid-equilibrium ping-pong random mechanism for the kinetics of OGDHC, consistent with previously reported mechanisms, and accurately describes the experimentally observed regulatory effects of cofactors on the OGDHC activity. This analysis provides a single consistent theoretical explanation for a number of apparently contradictory results on the roles of phosphorylation potential, NAD (H oxidation-reduction state ratio, as well as the regulatory effects of metal ions on ODGHC function.

  8. Phosphorylation of the pyruvate dehydrogenase complex isolated from Ascaris suum

    Energy Technology Data Exchange (ETDEWEB)

    Thissen, J.; Komuniecki, R.

    1987-05-01

    The pyruvate dehydrogenase complex (PDC) from body wall muscle of the porcine nematode, Ascaris suum, plays a pivotal role in anaerobic mitochondrial metabolism. As in mammalian mitochondria, PDC activity is inhibited by the phosphorylation of the ..cap alpha..PDH subunit, catalyzed by an associated PDH/sub a/ kinase. However, in contrast to PDC's isolated from all other eukaryotic sources, phosphorylation decreases the mobility of the ..cap alpha..PDH subunit on SDS-PAGE and permits the separation of the phosphorylated and nonphosphorylated ..cap alpha..PDH's. Phosphorylation and the inactivation of the Ascaris PDC correspond directly, and the additional phosphorylation that occurs after complete inactivation in mammalian PDC's is not observed. The purified ascarid PDC incorporates 10 nmoles /sup 32/P/mg P. Autoradiography of the radiolabeled PDC separated by SDS-PAGE yields a band which corresponds to the phosphorylated ..cap alpha..PDH and a second, faint band which is present only during the first three minutes of PDC inactivation, intermediate between the phosphorylated and nonphosphorylated ..cap alpha..PDH subunit. Tryptic digests of the /sup 32/P-PDC yields one major phosphopeptide, when separated by HPLC, and its amino acid sequence currently is being determined.

  9. Multiple soluble malate dehydrogenase of Geophagus brasiliensis (Cichlidae, Perciformes

    Directory of Open Access Journals (Sweden)

    Aquino-Silva Maria Regina de

    1998-01-01

    Full Text Available A recent locus duplication hypothesis for sMDH-B* was proposed to explain the complex electrophoretic pattern of six bands detected for the soluble form of malate dehydrogenase (MDH, EC 1.1.1.37 in 84% of the Geophagus brasiliensis (Cichlidae, Perciformes analyzed (AB1B2 individuals. Klebe's serial dilutions were carried out in skeletal muscle extracts. B1 and B2 subunits had the same visual end-points, reflecting a nondivergent pattern for these B-duplicated genes. Since there is no evidence of polyploidy in the Cichlidae family, MDH-B* loci must have evolved from regional gene duplication. Tissue specificities, thermostability and kinetic tests resulted in similar responses from both B-isoforms, in both sMDH phenotypes, suggesting that these more recently duplicated loci underwent the same regulatory gene action. Similar results obtained with the two sMDH phenotypes did not show any indication of a six-banded specimen adaptive advantage in subtropical regions.

  10. Novel inhibitors of mitochondrial sn-glycerol 3-phosphate dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Adam L Orr

    Full Text Available Mitochondrial sn-glycerol 3-phosphate dehydrogenase (mGPDH is a ubiquinone-linked enzyme in the mitochondrial inner membrane best characterized as part of the glycerol phosphate shuttle that transfers reducing equivalents from cytosolic NADH into the mitochondrial electron transport chain. Despite the widespread expression of mGPDH and the availability of mGPDH-null mice, the physiological role of this enzyme remains poorly defined in many tissues, likely because of compensatory pathways for cytosolic regeneration of NAD⁺ and mechanisms for glycerol phosphate metabolism. Here we describe a novel class of cell-permeant small-molecule inhibitors of mGPDH (iGP discovered through small-molecule screening. Structure-activity analysis identified a core benzimidazole-phenyl-succinamide structure as being essential to inhibition of mGPDH while modifications to the benzimidazole ring system modulated both potency and off-target effects. Live-cell imaging provided evidence that iGPs penetrate cellular membranes. Two compounds (iGP-1 and iGP-5 were characterized further to determine potency and selectivity and found to be mixed inhibitors with IC₅₀ and K(i values between ∼1-15 µM. These novel mGPDH inhibitors are unique tools to investigate the role of glycerol 3-phosphate metabolism in both isolated and intact systems.

  11. PIK3CA mutant tumors depend on oxoglutarate dehydrogenase

    Science.gov (United States)

    Ilic, Nina; Birsoy, Kıvanç; Aguirre, Andrew J.; Kory, Nora; Pacold, Michael E.; Singh, Shambhavi; Moody, Susan E.; DeAngelo, Joseph D.; Spardy, Nicole A.; Freinkman, Elizaveta; Weir, Barbara A.; Cowley, Glenn S.; Root, David E.; Asara, John M.; Vazquez, Francisca; Widlund, Hans R.; Sabatini, David M.; Hahn, William C.

    2017-01-01

    Oncogenic PIK3CA mutations are found in a significant fraction of human cancers, but therapeutic inhibition of PI3K has only shown limited success in clinical trials. To understand how mutant PIK3CA contributes to cancer cell proliferation, we used genome scale loss-of-function screening in a large number of genomically annotated cancer cell lines. As expected, we found that PIK3CA mutant cancer cells require PIK3CA but also require the expression of the TCA cycle enzyme 2-oxoglutarate dehydrogenase (OGDH). To understand the relationship between oncogenic PIK3CA and OGDH function, we interrogated metabolic requirements and found an increased reliance on glucose metabolism to sustain PIK3CA mutant cell proliferation. Functional metabolic studies revealed that OGDH suppression increased levels of the metabolite 2-oxoglutarate (2OG). We found that this increase in 2OG levels, either by OGDH suppression or exogenous 2OG treatment, resulted in aspartate depletion that was specifically manifested as auxotrophy within PIK3CA mutant cells. Reduced levels of aspartate deregulated the malate–aspartate shuttle, which is important for cytoplasmic NAD+ regeneration that sustains rapid glucose breakdown through glycolysis. Consequently, because PIK3CA mutant cells exhibit a profound reliance on glucose metabolism, malate–aspartate shuttle deregulation leads to a specific proliferative block due to the inability to maintain NAD+/NADH homeostasis. Together these observations define a precise metabolic vulnerability imposed by a recurrently mutated oncogene. PMID:28396387

  12. Lactate Dehydrogenase in Hepatocellular Carcinoma: Something Old, Something New.

    Science.gov (United States)

    Faloppi, Luca; Bianconi, Maristella; Memeo, Riccardo; Casadei Gardini, Andrea; Giampieri, Riccardo; Bittoni, Alessandro; Andrikou, Kalliopi; Del Prete, Michela; Cascinu, Stefano; Scartozzi, Mario

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver tumour (80-90%) and represents more than 5.7% of all cancers. Although in recent years the therapeutic options for these patients have increased, clinical results are yet unsatisfactory and the prognosis remains dismal. Clinical or molecular criteria allowing a more accurate selection of patients are in fact largely lacking. Lactic dehydrogenase (LDH) is a glycolytic key enzyme in the conversion of pyruvate to lactate under anaerobic conditions. In preclinical models, upregulation of LDH has been suggested to ensure both an efficient anaerobic/glycolytic metabolism and a reduced dependence on oxygen under hypoxic conditions in tumour cells. Data from several analyses on different tumour types seem to suggest that LDH levels may be a significant prognostic factor. The role of LDH in HCC has been investigated by different authors in heterogeneous populations of patients. It has been tested as a potential biomarker in retrospective, small, and nonfocused studies in patients undergoing surgery, transarterial chemoembolization (TACE), and systemic therapy. In the major part of these studies, high LDH serum levels seem to predict a poorer outcome. We have reviewed literature in this setting trying to resume basis for future studies validating the role of LDH in this disease.

  13. Dihydroorotate dehydrogenase: A drug target for the development of antimalarials.

    Science.gov (United States)

    Singh, Anju; Maqbool, Mudasir; Mobashir, Mohammad; Hoda, Nasimul

    2017-01-05

    Malaria is a critical human disease with extensive exploration yet unestablished due to occurrence of frequent drug resistance. This aspect of malaria pharmacology calls for the introduction of new antimalarial. The drugs reported till date targeted different stages of the parasites in order to stop their growth and proliferation. Beside this, various drugs that could inhibit the imperative enzymes of the parasite have also been reported. Amid them, dihydroorotate dehydrogenase (DHODH) has a key worth. DHODH is involved in the de novo pyrimidine biosynthesis of the malarial parasite which acts as a primary source of energy for its survival. Since life of the parasite utterly depends on pyrimidine biosynthesis, so it can be used as an apt drug target for malaria eradication. In addition to this, DHODH is also present in human and their active sites have significant structural dissimilarities, so the development of selective inhibitors may prove to be a milestone in search of new antimalarials. Inhibitors of human DHODH have been used to treat autoimmune diseases such as, rheumatoid arthritis or multiple sclerosis and have been investigated in the treatment of cancer, viral diseases, as well as in plant pathology. Here, we have reviewed the important role of DHODH as a viable drug target against malaria, its importance for the survival of the parasite, and DHODH inhibitors reported so far. The rate of success of the reported DHODH inhibitors and further required improvements have also been accounted. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D., E-mail: vappanna@laurentian.ca

    2014-11-07

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  15. Succinic semialdehyde dehydrogenase deficiency: lessons from mice and men.

    Science.gov (United States)

    Pearl, P L; Gibson, K M; Cortez, M A; Wu, Y; Carter Snead, O; Knerr, I; Forester, K; Pettiford, J M; Jakobs, C; Theodore, W H

    2009-06-01

    Succinic semialdehyde dehydrogenase (SSADH) deficiency, a disorder of GABA degradation with subsequent elevations in brain GABA and GHB, is a neurometabolic disorder with intellectual disability, epilepsy, hypotonia, ataxia, sleep disorders, and psychiatric disturbances. Neuroimaging reveals increased T2-weighted MRI signal usually affecting the globus pallidus, cerebellar dentate nucleus, and subthalamic nucleus, and often cerebral and cerebellar atrophy. EEG abnormalities are usually generalized spike-wave, consistent with a predilection for generalized epilepsy. The murine phenotype is characterized by failure-to-thrive, progressive ataxia, and a transition from generalized absence to tonic-clonic to ultimately fatal convulsive status epilepticus. Binding and electrophysiological studies demonstrate use-dependent downregulation of GABA(A) and (B) receptors in the mutant mouse. Translational human studies similarly reveal downregulation of GABAergic activity in patients, utilizing flumazenil-PET and transcranial magnetic stimulation for GABA(A) and (B) activity, respectively. Sleep studies reveal decreased stage REM with prolonged REM latencies and diminished percentage of stage REM. An ad libitum ketogenic diet was reported as effective in the mouse model, with unclear applicability to the human condition. Acute application of SGS-742, a GABA(B) antagonist, leads to improvement in epileptiform activity on electrocorticography. Promising mouse data using compounds available for clinical use, including taurine and SGS-742, form the framework for human trials.

  16. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white...... men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence......, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1...

  17. Cloning and Polymorphisms of Yak Lactate Dehydrogenase b Gene

    Directory of Open Access Journals (Sweden)

    Yaou Xu

    2013-06-01

    Full Text Available The main objective of this work was to study the unique polymorphisms of the lactate dehydrogenase-1 (LDH1 gene in yak (Bos grunniens. Native polyacrylamide gel electrophoresis revealed three phenotypes of LDH1 (a tetramer of H subunit in yak heart and longissimus muscle extracts. The corresponding gene, ldhb, encoding H subunits of three LDH1 phenotypes was obtained by RT-PCR. A total of six nucleotide differences were detected in yak ldhb compared with that of cattle, of which five mutations cause amino acid substitutions. Sequence analysis shows that the G896A and C689A, mutations of ldhb gene, result in alterations of differently charged amino acids, and create the three phenotypes (F, M, and S of yak LDH1. Molecular modeling of the H subunit of LDH indicates that the substituted amino acids are not located within NAD+ or substrate binding sites. PCR-RFLP examination of G896A mutation demonstrated that most LDH1-F samples are actually heterozygote at this site. These results help to elucidate the molecular basis and genetic characteristic of the three unique LDH1 phenotypes in yak.

  18. Structure of NADP+-dependent glutamate dehydrogenase from Escherichia coli: Reflections on the basis of coenzyme specificity in the family of glutamate dehydrogenases

    OpenAIRE

    Sharkey, Michael A.; Oliveira, Tânia F.; Engel, Paul C.; Khan, Amir R.

    2013-01-01

    Glutamate dehydrogenases (EC 1.4.1.2–4) catalyse the oxidative deamination of l-glutamate to α-ketoglutarate using NAD+ and/or NADP+ as a cofactor. Subunits of homo-hexameric bacterial enzymes comprise a substrate-binding Domain I followed by a nucleotide binding Domain II. The reaction occurs in a catalytic cleft between the two domains. Although conserved residues in the nucleotide-binding domains of various dehydrogenases have been linked to cofactor preferences, the structural basis for s...

  19. Group X Aldehyde Dehydrogenases of Pseudomonas aeruginosa PAO1 Degrade Hydrazones

    OpenAIRE

    Taniyama, Kosuke; Itoh, Hideomi; Takuwa, Atsushi; Sasaki, Yasuyuki; Yajima, Shunsuke; Toyofuku, Masanori; Nomura, Nobuhiko; Takaya, Naoki

    2012-01-01

    Hydrazones are natural and synthetic compounds containing a C=N-N moiety. Here we found that the opportunistic pathogen Pseudomonas aeruginosa PAO1 produced NAD+- or NADP+-dependent hydrazone dehydrogenase (HDH), which converts hydrazones to the corresponding hydrazides and acids rather than to the simple hydrolytic product aldehydes. Gene cloning indicated that the HDH is part of the group X aldehyde dehydrogenase (ALDH) family, which is distributed among bacteria, although the physiological...

  20. Interaction between alcohol dehydrogenase II gene, alcohol consumption, and risk for breast cancer

    OpenAIRE

    St?rmer, T; Wang-Gohrke, S; Arndt, V; Boeing, H; Kong, X; Kreienberg, R; Brenner, H

    2002-01-01

    MaeIII Restriction Fragment Length Polymorphism in exon 3 of the alcohol dehydrogenase II was assessed in serum from 467 randomly selected German women and 278 women with invasive breast cancer to evaluate the interaction between a polymorphism of the alcohol dehydrogenase II gene, alcohol consumption and risk for breast cancer. In both groups, usual consumption of different alcoholic beverages was asked for using semiquantitative food frequency questionnaires. We used multivariable logistic ...

  1. L-leucine methyl ester stimulates insulin secretion and islet glutamate dehydrogenase

    DEFF Research Database (Denmark)

    Knudsen, P; Kofod, Hans; Lernmark, A

    1983-01-01

    , a cloned rat islet tumor cell line. A twofold increase in islet glutamate dehydrogenase activity was induced by 5 mmol/liter L-leucine OMe, a larger effect than that of L-leucine (P less than 0.02), whereas L-arginine OMe had a small inhibitory effect. We conclude that L-leucine OMe is a potent stimulus...... of insulin secretion and that its effect on the beta-cells may be exerted by activating islet glutamate dehydrogenase....

  2. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes

    OpenAIRE

    Sofou, Kalliopi; Dahlin, Maria; Hallb??k, Tove; Lindefeldt, Marie; Viggedal, Gerd; Darin, Niklas

    2017-01-01

    Objectives Our aime was to study the short- and long-term effects of ketogenic diet on the disease course and disease-related outcomes in patients with pyruvate dehydrogenase complex deficiency, the metabolic factors implicated in treatment outcomes, and potential safety and compliance issues. Methods Pediatric patients diagnosed with pyruvate dehydrogenase complex deficiency in Sweden and treated with ketogenic diet were evaluated. Study assessments at specific time points included developme...

  3. Inhibiting sperm pyruvate dehydrogenase complex and its E3 subunit, dihydrolipoamide dehydrogenase affects fertilization in Syrian hamsters.

    Directory of Open Access Journals (Sweden)

    Archana B Siva

    Full Text Available BACKGROUND/AIMS: The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc and its E3 subunit, dihydrolipoamide dehydrogenase (DLD in hamster in vitro fertilization (IVF via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. METHODOLOGY AND PRINCIPAL FINDINGS: Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid. Oocytes fertilized with MICA-treated (MT [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. CONCLUSIONS: This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In

  4. Inhibiting Sperm Pyruvate Dehydrogenase Complex and Its E3 Subunit, Dihydrolipoamide Dehydrogenase Affects Fertilization in Syrian Hamsters

    Science.gov (United States)

    Sailasree, Purnima; Singh, Durgesh K.; Kameshwari, Duvurri B.; Shivaji, Sisinthy

    2014-01-01

    Background/Aims The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc) and its E3 subunit, dihydrolipoamide dehydrogenase (DLD) in hamster in vitro fertilization (IVF) via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. Methodology and Principal Findings Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid). Oocytes fertilized with MICA-treated (MT) [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. Conclusions This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In addition, the

  5. Effects of supplementation on food intake, body weight and hepatic metabolites in the citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mouse model of human citrin deficiency.

    Science.gov (United States)

    Saheki, Takeyori; Inoue, Kanako; Ono, Hiromi; Katsura, Natsumi; Yokogawa, Mana; Yoshidumi, Yukari; Furuie, Sumie; Kuroda, Eishi; Ushikai, Miharu; Asakawa, Akihiro; Inui, Akio; Eto, Kazuhiro; Kadowaki, Takashi; Sinasac, David S; Yamamura, Ken-Ichi; Kobayashi, Keiko

    2012-11-01

    The C57BL/6:Slc23a13(-/-);Gpd2(-/-) double-knockout (a.k.a., citrin/mitochondrial glycerol 3-phosphate dehydrogenase double knockout or Ctrn/mGPD-KO) mouse displays phenotypic attributes of both neonatal intrahepatic cholestasis (NICCD) and adult-onset type II citrullinemia (CTLN2), making it a suitable model of human citrin deficiency. In the present study, we show that when mature Ctrn/mGPD-KO mice are switched from a standard chow diet (CE-2) to a purified maintenance diet (AIN-93M), this resulted in a significant loss of body weight as a result of reduced food intake compared to littermate mGPD-KO mice. However, supplementation of the purified maintenance diet with additional protein (from 14% to 22%; and concomitant reduction or corn starch), or with specific supplementation with alanine, sodium glutamate, sodium pyruvate or medium-chain triglycerides (MCT), led to increased food intake and body weight gain near or back to that on chow diet. No such effect was observed when supplementing the diet with other sources of fat that contain long-chain fatty acids. Furthermore, when these supplements were added to a sucrose solution administered enterally to the mice, which has been shown previously to lead to elevated blood ammonia as well as altered hepatic metabolite levels in Ctrn/mGPP-KO mice, this led to metabolic correction. The elevated hepatic glycerol 3-phosphate and citrulline levels after sucrose administration were suppressed by the administration of sodium pyruvate, alanine, sodium glutamate and MCT, although the effect of MCT was relatively small. Low hepatic citrate and increased lysine levels were only found to be corrected by sodium pyruvate, while alanine and sodium glutamate both corrected hepatic glutamate and aspartate levels. Overall, these results suggest that dietary factors including increased protein content, supplementation of specific amino acids like alanine and sodium glutamate, as well as sodium pyruvate and MCT all show beneficial

  6. Molecular Basis for Converting (2S-Methylsuccinyl-CoA Dehydrogenase into an Oxidase

    Directory of Open Access Journals (Sweden)

    Simon Burgener

    2017-12-01

    Full Text Available Although flavoenzymes have been studied in detail, the molecular basis of their dioxygen reactivity is only partially understood. The members of the flavin adenosine dinucleotide (FAD-dependent acyl-CoA dehydrogenase and acyl-CoA oxidase families catalyze similar reactions and share common structural features. However, both enzyme families feature opposing reaction specificities in respect to dioxygen. Dehydrogenases react with electron transfer flavoproteins as terminal electron acceptors and do not show a considerable reactivity with dioxygen, whereas dioxygen serves as a bona fide substrate for oxidases. We recently engineered (2S-methylsuccinyl-CoA dehydrogenase towards oxidase activity by rational mutagenesis. Here we characterized the (2S-methylsuccinyl-CoA dehydrogenase wild-type, as well as the engineered (2S-methylsuccinyl-CoA oxidase, in detail. Using stopped-flow UV-spectroscopy and liquid chromatography-mass spectrometry (LC-MS based assays, we explain the molecular base for dioxygen reactivity in the engineered oxidase and show that the increased oxidase function of the engineered enzyme comes at a decreased dehydrogenase activity. Our findings add to the common notion that an increased activity for a specific substrate is achieved at the expense of reaction promiscuity and provide guidelines for rational engineering efforts of acyl-CoA dehydrogenases and oxidases.

  7. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy

    Directory of Open Access Journals (Sweden)

    Hayden Bell

    2016-06-01

    Full Text Available The poor efficacy of many cancer chemotherapeutics, which are often non-selective and highly toxic, is attributable to the remarkable heterogeneity and adaptability of cancer cells. The Warburg effect describes the up regulation of glycolysis as the main source of adenosine 5’-triphosphate in cancer cells, even under normoxic conditions, and is a unique metabolic phenotype of cancer cells. Mitochondrial suppression is also observed which may be implicated in apoptotic suppression and increased funneling of respiratory substrates to anabolic processes, conferring a survival advantage. The mitochondrial pyruvate dehydrogenase complex is subject to meticulous regulation, chiefly by pyruvate dehydrogenase kinase. At the interface between glycolysis and the tricarboxylic acid cycle, the pyruvate dehydrogenase complex functions as a metabolic gatekeeper in determining the fate of glucose, making pyruvate dehydrogenase kinase an attractive candidate in a bid to reverse the Warburg effect in cancer cells. The small pyruvate dehydrogenase kinase inhibitor dichloroacetate has, historically, been used in conditions associated with lactic acidosis but has since gained substantial interest as a potential cancer chemotherapeutic. This review considers the Warburg effect as a unique phenotype of cancer cells in-line with the history of and current approaches to cancer therapies based on pyruvate dehydrogenase kinase inhibition with particular reference to dichloroacetate and its derivatives.

  8. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose

    Science.gov (United States)

    Wang, Qingzhao; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(−)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L-1 of optically pure D(−)-lactic acid from glucose in coagulans and the QZ19 derivative can be used to produce either L(+) or D(−) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  9. Maize cytokinin dehydrogenase isozymes are localized predominantly to the vacuoles.

    Science.gov (United States)

    Zalabák, David; Johnová, Patricie; Plíhal, Ondřej; Šenková, Karolina; Šamajová, Olga; Jiskrová, Eva; Novák, Ondřej; Jackson, David; Mohanty, Amitabh; Galuszka, Petr

    2016-07-01

    The maize genome encompasses 13 genes encoding for cytokinin dehydrogenase isozymes (CKXs). These enzymes are responsible for irreversible degradation of cytokinin plant hormones and thus, contribute regulating their levels. Here, we focus on the unique aspect of CKXs: their diverse subcellular distribution, important in regulating cytokinin homeostasis. Maize CKXs were tagged with green fluorescent protein (GFP) and transiently expressed in maize protoplasts. Most of the isoforms, namely ZmCKX1, ZmCKX2, ZmCKX4a, ZmCKX5, ZmCKX6, ZmCKX8, ZmCKX9, and ZmCKX12, were associated with endoplasmic reticulum (ER) several hours after transformation. GFP-fused CKXs were observed to accumulate in putative prevacuolar compartments. To gain more information about the spatiotemporal localization of the above isoforms, we prepared stable expression lines of all ZmCKX-GFP fusions in Arabidopsis thaliana Ler suspension culture. All the ER-associated isoforms except ZmCKX1 and ZmCKX9 were found to be targeted primarily to vacuoles, suggesting that ER-localization is a transition point in the intracellular secretory pathway and vacuoles serve as these isoforms' final destination. ZmCKX9 showed an ER-like localization pattern similar to those observed in the transient maize assay. Apoplastic localization of ZmCKX1 was further confirmed and ZmCKX10 showed cytosolic/nuclear localization due to the absence of the signal peptide sequence as previously reported. Additionally, we prepared GFP-fused N-terminal signal deletion mutants of ZmCKX2 and ZmCKX9 and clearly demonstrated that the localization pattern of these mutant forms was cytosolic/nuclear. This study provides the first complex model for spatiotemporal localization of the key enzymes of the cytokinin degradation/catabolism in monocotyledonous plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. © 2015 Wiley Periodicals, Inc.

  11. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)], E-mail: ganesan.v@duke.edu; Song, Haijing; Affleck, Donna; McDougald, Darryl L. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States); Storms, Robert W. [Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R.; Chin, Bennett B. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)

    2009-11-15

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [{sup 125}I]FMIC and [{sup 125}I]DEIBA were 70{+-}5% and 47{+-}14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  12. The expression of succinate dehydrogenase in breast phyllodes tumor.

    Science.gov (United States)

    Choi, Junjeong; Kim, Do Hee; Jung, WooHee; Koo, Ja Seung

    2014-10-01

    The purpose of this study is to investigate the expression of succinate dehydrogenase (SDH)A, SDHB, and HIF-1α in phyllodes tumors and the association with clinic-pathologic factors. Using tissue microarray (TMA) for 206 phyllodes tumor cases, we performed immunohistochemical stains for SDHA, SDHB, and HIF-1α and analyzed their expression in regard to clinicopathologic parameters of each case. The cases were comprised of 156 benign, 34 borderline, and 16 malignant phyllodes tumors. The expression of stromal SDHA and epithelial- and stromal- SDHB increased as the tumor progressed from benign to malignant (P⟨0.001). There were five stromal SDHA-negative cases and 31 stromal SDHB-negative cases. SDHB negativity was associated with a lower histologic grade (P=0.054) and lower stromal atypia (P=0.048). Univariate analysis revealed that a shorter disease free survival (DFS) was associated with stromal SDHB high-positivity (P=0.013) and a shorter overall survival (OS) was associated with high-positivity of stromal SDHA and SDHB (P⟨0.001 and P⟨0.001, respectively). The multivariate Cox analysis with the variables stromal cellularity, stromal atypia, stromal mitosis, stromal overgrowth, tumor margin, stromal SDHA expression, and stromal SDHB expression revealed that stromal overgrowth was associated with a shorter DFS (hazard ratio: 24.78, 95% CI: 3.126-196.5, P=0.002) and a shorter OS (hazard ratio: 176.7, 95% CI: 8.466-3691, P=0.001). In conclusion, Tumor grade is positively correlated with SDHA and SDHB expression in the tumor stroma in phyllodes tumors of the breast. This result may be attributed to the increased metabolic demand in high grade tumors.

  13. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases.

    Science.gov (United States)

    McKenna, Mary C; Stridh, Malin H; McNair, Laura F; Sonnewald, Ursula; Waagepetersen, Helle S; Schousboe, Arne

    2016-12-01

    The cellular distribution of transporters and enzymes related to glutamate metabolism led to the concept of the glutamate-glutamine cycle. Glutamate is released as a neurotransmitter and taken up primarily by astrocytes ensheathing the synapses. The glutamate carbon skeleton is transferred back to the presynaptic neurons as the nonexcitatory amino acid glutamine. The cycle was initially thought to function with a 1:1 ratio between glutamate released and glutamine taken up by neurons. However, studies of glutamate metabolism in astrocytes have shown that a considerable proportion of glutamate undergoes oxidative degradation; thus, quantitative formation of glutamine from the glutamate taken up is not possible. Oxidation of glutamate is initiated by transamination catalyzed by an aminotransferase, or oxidative deamination catalyzed by glutamate dehydrogenase (GDH). We discuss methods available to elucidate the enzymes that mediate this conversion. Methods include pharmacological tools such as the transaminase inhibitor aminooxyacetic acid, studies using GDH knockout mice, and siRNA-mediated knockdown of GDH in astrocytes. Studies in brain slices incubated with [ 15 N]glutamate demonstrated activity of GDH in astrocytes in situ. These results, in conjunction with reports in the literature, support the conclusion that GDH is active in astrocytes both in culture and in vivo and that this enzyme plays a significant role in glutamate oxidation. Oxidative metabolism of glutamate, primarily mediated by GDH, but also by transamination by aspartate aminotransferase, provides considerably more energy than is required to maintain the activity of the high-affinity glutamate transporters needed for efficient removal of glutamate from the synaptic cleft. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Plapp, Bryce V.; Savarimuthu, Baskar Raj; Ferraro, Daniel J.; Rubach, Jon K.; Brown, Eric N.; Ramaswamy, S. (Iowa)

    2017-07-07

    During catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography. The apoenzyme and its complex with adenosine 5'-diphosphoribose have an open protein conformation with the catalytic zinc in one position, tetracoordinated by Cys-46, His-67, Cys-174, and a water molecule. The bidentate chelators 2,2'-bipyridine and 1,10-phenanthroline displace the water and form a pentacoordinated zinc. The enzyme–NADH complex has a closed conformation similar to that of ternary complexes with coenzyme and substrate analogues; the coordination of the catalytic zinc is similar to that found in the apoenzyme, except that a minor, alternative position for the catalytic zinc is ~1.3 Å from the major position and closer to Glu-68, which could form the alternative coordination to the catalytic zinc. Complexes with NADH and N-1-methylhexylformamide or N-benzylformamide (or with NAD+ and fluoro alcohols) have the classical tetracoordinated zinc, and no water is bound to the zinc or the nicotinamide rings. The major forms of the enzyme in the mechanism have a tetracoordinated zinc, where the carboxylate group of Glu-68 could participate in the exchange of water and substrates on the zinc. Hydride transfer in the Michaelis complexes does not involve a nearby water.

  15. Erythrocyte glucose-6-phosphate dehydrogenase from Brazilian opossum Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Barretto O.C. de O.

    2006-01-01

    Full Text Available In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 ± 38 IU g-1 Hb-1 min-1 at 37ºC, compared to the human erythrocyte activity of 12 ± 2 IU g-1 Hb-1 min-1 at 37ºC. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa. The Michaelis-Menten constants (Km: 55 µM for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 µM were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively. A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.

  16. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    International Nuclear Information System (INIS)

    Vaidyanathan, Ganesan; Song, Haijing; Affleck, Donna; McDougald, Darryl L.; Storms, Robert W.; Zalutsky, Michael R.; Chin, Bennett B.

    2009-01-01

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [ 125 I]FMIC and [ 125 I]DEIBA were 70±5% and 47±14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  17. Triazaspirodimethoxybenzoyls as Selective Inhibitors of Mycobacterial Lipoamide Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Bryk, Ruslana; Arango, Nancy; Venugopal, Aditya; Warren, J. David; Park, Yun-Hee; Patel, Mulchand S.; Lima, Christopher D.; Nathan, Carl (Weill-Med); (SKI); (SUNYB)

    2010-06-25

    Mycobacterium tuberculosis (Mtb) remains the leading single cause of death from bacterial infection. Here we explored the possibility of species-selective inhibition of lipoamide dehydrogenase (Lpd), an enzyme central to Mtb's intermediary metabolism and antioxidant defense. High-throughput screening of combinatorial chemical libraries identified triazaspirodimethoxybenzoyls as high-nanomolar inhibitors of Mtb's Lpd that were noncompetitive versus NADH, NAD{sup +}, and lipoamide and >100-fold selective compared to human Lpd. Efficacy required the dimethoxy and dichlorophenyl groups. The structure of an Lpd-inhibitor complex was resolved to 2.42 {angstrom} by X-ray crystallography, revealing that the inhibitor occupied a pocket adjacent to the Lpd NADH/NAD{sup +} binding site. The inhibitor did not overlap with the adenosine moiety of NADH/NAD{sup +} but did overlap with positions predicted to bind the nicotinamide rings in NADH and NAD{sup +} complexes. The dimethoxy ring occupied a deep pocket adjacent to the FAD flavin ring where it would block coordination of the NADH nicotinamide ring, while the dichlorophenyl group occupied a more exposed pocket predicted to coordinate the NAD{sup +} nicotinamide. Several residues that are not conserved between the bacterial enzyme and its human homologue were predicted to contribute both to inhibitor binding and to species selectivity, as confirmed for three residues by analysis of the corresponding mutant Mtb Lpd proteins. Thus, nonconservation of residues lining the electron-transfer tunnel in Mtb Lpd can be exploited for development of species-selective Lpd inhibitors.

  18. Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase

    International Nuclear Information System (INIS)

    Zhang, R.; Evans, G.; Rotella, F.J.; Westbrook, E.M.; Beno, D.; Huberman, E.; Joachimiak, A.; Collart, F.R.

    1999-01-01

    IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the first step unique to GTP synthesis. To provide a basis for the evaluation of IMPDH inhibitors as antimicrobial agents, we have expressed and characterized IMPDH from the pathogenic bacterium Streptococcus pyogenes. Our results show that the biochemical and kinetic characteristics of S. pyogenes IMPDH are similar to other bacterial IMPDH enzymes. However, the lack of sensitivity to mycophenolic acid and the K m for NAD (1180 μM) exemplify some of the differences between the bacterial and mammalian IMPDH enzymes, making it an attractive target for antimicrobial agents. To evaluate the basis for these differences, we determined the crystal structure of the bacterial enzyme at 1.9 (angstrom) with substrate bound in the catalytic site. The structure was determined using selenomethionine-substituted protein and multiwavelength anomalous (MAD) analysis of data obtained with synchrotron radiation from the undulator beamline (19ID) of the Structural Biology Center at Argonne's Advanced Photon Source. S. pyogenes IMPDH is a tetramer with its four subunits related by a crystallographic 4-fold axis. The protein is composed of two domains: a TIM barrel domain that embodies the catalytic framework and a cystathione β-synthase (CBS) dimer domain of so far unknown function. Using information provided by sequence alignments and the crystal structure, we prepared several site-specific mutants to examine the role of various active site regions in catalysis. These variants implicate the active site flap as an essential catalytic element and indicate there are significant differences in the catalytic environment of bacterial and mammalian IMPDH enzymes. Comparison of the structure of bacterial IMPDH with the known partial structures from eukaryotic organisms will provide an explanation of their distinct properties and contribute to the design of specific bacterial IMPDH inhibitors

  19. Isolation and Expression of Lactate Dehydrogenase Genes from Rhizopus oryzae

    Science.gov (United States)

    Skory, Christopher D.

    2000-01-01

    Rhizopus oryzae is used for industrial production of lactic acid, yet little is known about the genetics of this fungus. In this study I cloned two genes, ldhA and ldhB, which code for NAD+-dependent l-lactate dehydrogenases (LDH) (EC 1.1.1.27), from a lactic acid-producing strain of R. oryzae. These genes are similar to each other and exhibit more than 90% nucleotide sequence identity and they contain no introns. This is the first description of ldh genes in a fungus, and sequence comparisons revealed that these genes are distinct from previously isolated prokaryotic and eukaryotic ldh genes. Protein sequencing of the LDH isolated from R. oryzae during lactic acid production confirmed that ldhA codes for a 36-kDa protein that converts pyruvate to lactate. Production of LdhA was greatest when glucose was the carbon source, followed by xylose and trehalose; all of these sugars could be fermented to lactic acid. Transcripts from ldhB were not detected when R. oryzae was grown on any of these sugars but were present when R. oryzae was grown on glycerol, ethanol, and lactate. I hypothesize that ldhB encodes a second NAD+-dependent LDH that is capable of converting l-lactate to pyruvate and is produced by cultures grown on these nonfermentable substrates. Both ldhA and ldhB restored fermentative growth to Escherichia coli (ldhA pfl) mutants so that they grew anaerobically and produced lactic acid. PMID:10831409

  20. [Glutamate dehydrogenase. Its diagnostic value in Clostridioides difficile diarrhea].

    Science.gov (United States)

    Vaustat, Daniela; Rollet, Raquel

    2017-11-14

    Clostridioides difficile is the main etiological agent of diarrhea associated with health care, it produces toxins and glutamate dehydrogenase (GDH), an enzyme that is highly conserved in this species. Rapid diagnosis and effective treatment produce prompt improvement of the patient and subsequent control of the microorganism spread. There are several techniques whose results are interpreted in the context of algorithms. However, the optimal diagnostic method is yet unknown. The performance of GDH as a screening test for the diagnosis of C. difficile diarrhea was assessed. Six hundred and fifteen stool samples were studied. The presence of GDH and toxins presence was determined by TECHLAB ® C. DIFF QUIK-CHEK COMPLETE and the samples were cultured for the search of C. difficile. The values of sensitivity, specificity, PPV and NPV were calculated with a p value of 0.05 or less. GDH was detected in 266 samples (43.25%), with a sensitivity of 100% and specificity of 87.10%, IC95: 84.58-91.42; toxin/s were detected in 218 (35.45%) and C. difficile developed in 235 cultures (38.21%). From 48 samples with positive GDH and negative toxin/s, 15 toxigenic and 2 non-toxigenic isolates were obtained, the remaining 31 samples were negative for C. difficile. All GDH-negative samples were negative for toxins or culture, therefore, GDH NPV was 100%, while PPV was 81.9%. We conclude that GDH is a suitable screening test for the diagnostic algorithm of C. difficile diarrhea. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Early neonatal bilirubin, hematocrit, and glucose-6-phosphate dehydrogenase status.

    Science.gov (United States)

    Badejoko, Bolaji O; Owa, Joshua A; Oseni, Saheed B A; Badejoko, Olusegun; Fatusi, Adesegun O; Adejuyigbe, Ebunoluwa A

    2014-10-01

    To document the patterns of bilirubin and hematocrit values among glucose-6-phosphate dehydrogenase (G6PD)-deficient and G6PD-normal Nigerian neonates in the first week of life, in the absence of exposure to known icterogenic agents. The G6PD status of consecutive term and near-term neonates was determined, and their bilirubin levels and hematocrits were monitored during the first week of life. Infants were stratified into G6PD deficient, intermediate, and normal on the basis of the modified Beutler's fluorescent spot test. Means of total serum bilirubin (TSB) and hematocrits of the 3 groups of infants were compared. The 644 neonates studied comprised 353 (54.8%) boys and 291 (45.2%) girls and 540 (83.9%) term and 104 (16.1%) near-term infants. They consisted of 129 (20.0%) G6PD-deficient, 69 (10.7%) G6PD-intermediate, and 446 (69.3%) G6PD-normal neonates. The G6PD-deficient and G6PD-intermediate infants had higher mean TSB than their G6PD-normal counterparts at birth and throughout the first week of life (P hematocrits at birth were similar in the 3 G6PD groups. However, G6PD-deficient and -intermediate infants had higher declines in hematocrit, bilirubin levels, and need for phototherapy than G6PD-normal infants (P < .001). The G6PD-deficient and G6PD-intermediate neonates had a higher risk of neonatal hyperbilirubinemia and would therefore need greater monitoring in the first week of life, even without exposure to known icterogenic agents. Copyright © 2014 by the American Academy of Pediatrics.

  2. Simultaneous immobilization of dehydrogenases on polyvinylidene difluoride resin after separation by non-denaturing two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, Youji [Graduate School of Science and Engineering (Science Section) and Venture Business Laboratory, Ehime University, Bunkyo-cho 2-5, Matsuyama City 790-8577 (Japan)], E-mail: yoji@dpc.ehime-u.ac.jp; Kadota, Mariko [Faculty of Science, Ehime University, Matsuyama (Japan)

    2008-06-16

    We detected mouse liver malate, sorbitol and aldehyde dehydrogenases by negative staining, analysis of malate and sorbitol dehydrogenase activities using each substrate, and electron transfers including nicotinamide adenine dinucleotide (NAD) and nitroblue tetrazolium in non-denaturing two-dimensional electrophoresis (2-DE) gel. Dehydrogenases were also identified by electrospray ionization tandem mass spectrometry (ESI-MS/MS) after 2-DE separation and protein detection by negative staining. Spots of dehydrogenases separated by 2-DE were excised, and simultaneously transferred and immobilized on polyvinylidene difuoride (PVDF) resin by electrophoresis. The dehydrogenase activities remained intact after immobilization. In conclusion, resin-immobilized dehydrogenases can be simultaneously obtained after separation by non-denaturing 2-DE, detection by negative staining and transferring to resins.

  3. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).

    Science.gov (United States)

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J

    2014-11-01

    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The conserved Lysine69 residue plays a catalytic role in Mycobacterium tuberculosis shikimate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Rodrigues Valnês

    2009-01-01

    Full Text Available Abstract Background The shikimate pathway is an attractive target for the development of antitubercular agents because it is essential in Mycobacterium tuberculosis, the causative agent of tuberculosis, but absent in humans. M. tuberculosis aroE-encoded shikimate dehydrogenase catalyzes the forth reaction in the shikimate pathway. Structural and functional studies indicate that Lysine69 may be involved in catalysis and/or substrate binding in M. tuberculosis shikimate dehydrogenase. Investigation of the kinetic properties of mutant enzymes can bring important insights about the role of amino acid residues for M. tuberculosis shikimate dehydrogenase. Findings We have performed site-directed mutagenesis, steady-state kinetics, equilibrium binding measurements and molecular modeling for both the wild-type M. tuberculosis shikimate dehydrogenase and the K69A mutant enzymes. The apparent steady-state kinetic parameters for the M. tuberculosis shikimate dehydrogenase were determined; the catalytic constant value for the wild-type enzyme (50 s-1 is 68-fold larger than that for the mutant K69A (0.73 s-1. There was a modest increase in the Michaelis-Menten constant for DHS (K69A = 76 μM; wild-type = 29 μM and NADPH (K69A = 30 μM; wild-type = 11 μM. The equilibrium dissociation constants for wild-type and K69A mutant enzymes are 32 (± 4 μM and 134 (± 21, respectively. Conclusion Our results show that the residue Lysine69 plays a catalytic role and is not involved in substrate binding for the M. tuberculosis shikimate dehydrogenase. These efforts on M. tuberculosis shikimate dehydrogenase catalytic mechanism determination should help the rational design of specific inhibitors, aiming at the development of antitubercular drugs.

  5. Construction of mutant glucose oxidases with increased dye-mediated dehydrogenase activity.

    Science.gov (United States)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2012-11-02

    Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  6. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2012-11-01

    Full Text Available Mutagenesis studies on glucose oxidases (GOxs were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe and Aspergillus niger GOx (PDB ID; 1cf3. We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  7. ROS generation and multiple forms of mammalian mitochondrial glycerol-3-phosphate dehydrogenase.

    Science.gov (United States)

    Mráček, Tomáš; Holzerová, Eliška; Drahota, Zdeněk; Kovářová, Nikola; Vrbacký, Marek; Ješina, Pavel; Houštěk, Josef

    2014-01-01

    Overproduction of reactive oxygen species (ROS) has been implicated in a range of pathologies. Mitochondrial flavin dehydrogenases glycerol-3-phosphate dehydrogenase (mGPDH) and succinate dehydrogenase (SDH) represent important ROS source, but the mechanism of electron leak is still poorly understood. To investigate the ROS production by the isolated dehydrogenases, we used brown adipose tissue mitochondria solubilized by digitonin as a model. Enzyme activity measurements and hydrogen peroxide production studies by Amplex Red fluorescence, and luminol luminescence in combination with oxygraphy revealed flavin as the most likely source of electron leak in SDH under in vivo conditions, while we propose coenzyme Q as the site of ROS production in the case of mGPDH. Distinct mechanism of ROS production by the two dehydrogenases is also apparent from induction of ROS generation by ferricyanide which is unique for mGPDH. Furthermore, using native electrophoretic systems, we demonstrated that mGPDH associates into homooligomers as well as high molecular weight supercomplexes, which represent native forms of mGPDH in the membrane. By this approach, we also directly demonstrated that isolated mGPDH itself as well as its supramolecular assemblies are all capable of ROS production. © 2013.

  8. Contribution of aldehyde oxidase, xanthine oxidase, and aldehyde dehydrogenase on the oxidation of aromatic aldehydes.

    Science.gov (United States)

    Panoutsopoulos, Georgios I; Kouretas, Demetrios; Beedham, Christine

    2004-10-01

    Aliphatic aldehydes have a high affinity toward aldehyde dehydrogenase activity but are relatively poor substrates of aldehyde oxidase and xanthine oxidase. In addition, the oxidation of xenobiotic-derived aromatic aldehydes by the latter enzymes has not been studied to any great extent. The present investigation compares the relative contribution of aldehyde dehydrogenase, aldehyde oxidase, and xanthine oxidase activities in the oxidation of substituted benzaldehydes in separate preparations. The incubation of vanillin, isovanillin, and protocatechuic aldehyde with either guinea pig liver aldehyde oxidase, bovine milk xanthine oxidase, or guinea pig liver aldehyde dehydrogenase demonstrated that the three aldehyde oxidizing enzymes had a complementary substrate specificity. Incubations were also performed with specific inhibitors of each enzyme (isovanillin for aldehyde oxidase, allopurinol for xanthine oxidase, and disulfiram for aldehyde dehydrogenase) to determine the relative contribution of each enzyme in the oxidation of these aldehydes. Under these conditions, vanillin was rapidly oxidized by aldehyde oxidase, isovanillin was predominantly metabolized by aldehyde dehydrogenase activity, and protocatechuic aldehyde was slowly oxidized, possibly by all three enzymes. Thus, aldehyde oxidase activity may be a significant factor in the oxidation of aromatic aldehydes generated from amines and alkyl benzenes during drug metabolism. In addition, this enzyme may also have a role in the catabolism of biogenic amines such as dopamine and noradrenaline where 3-methoxyphenylacetic acids are major metabolites.

  9. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome.

    Directory of Open Access Journals (Sweden)

    Alexander Basner

    Full Text Available Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate exhibited an open reading frame of 987 bp encoding for a peptide of 328 amino acids. The isolated enzyme showed typical sequence motifs of short-chain-dehydrogenases using NAD(P as a co-factor and had a sequence similarity between 33 and 35% to characterized glucose dehydrogenases from different Bacillus species. The identified glucose dehydrogenase gene was expressed in E. coli, purified and subsequently characterized. The enzyme, belonging to the superfamily of short-chain dehydrogenases, shows a broad substrate range with a high affinity to glucose, xylose and glucose-6-phosphate. Due to its ability to be strongly associated with its cofactor NAD(P, the enzyme is able to directly transfer electrons from glucose oxidation to external electron acceptors by regenerating the cofactor while being still associated to the protein.

  10. Soil dehydrogenase activity of natural macro aggregates in a toposequence of forest soil

    Directory of Open Access Journals (Sweden)

    Maira Kussainova

    2013-01-01

    Full Text Available The main objective of this study was to determine changes in soil dehydrogenase activity in natural macro aggregates development along a slope in forest soils. This study was carried out in Kocadag, Samsun, Turkey. Four landscape positions i.e., summit, shoulder backslope and footslope, were selected. For each landseape position, soil macro aggregates were separated into six aggregate size classes using a dry sieving method and then dehydrogenase activity was analyzed. In this research, topography influenced the macroaggregate size and dehydrogenase activity within the aggregates. At all landscape positions, the contents of macro aggregates (especially > 6.3 mm and 2.00–4.75 mm in all soil samples were higher than other macro aggregate contents. In footslope position, the soils had generally the higher dehydrogenase activity than the other positions at all landscape positions. In all positions, except for shoulder, dehydrogenase activity was greater macro aggregates of <1 mm than in the other macro aggregate size.

  11. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    Directory of Open Access Journals (Sweden)

    Olatundun Williams

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5% followed by those Igbo descent (10.6% and those of Igede (10.2% and Tiv (1.8% ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females. Yoruba children had a higher prevalence (16.9% than Igede (10.5%, Igbo (10.1% and Tiv (5.0% children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500. The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively. Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351. In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection.

  12. Glucose-6-phosphate dehydrogenase mutations and haplotypes in Mexican Mestizos.

    Science.gov (United States)

    Arámbula, E; Aguilar L, J C; Vaca, G

    2000-08-01

    In a screening for glucose-6-phosphate dehydrogenase (G-6-PD) deficiency in 1985 unrelated male subjects from the general population (Groups A and B) belonging to four states of the Pacific coast, 21 G-6-PD-deficient subjects were detected. Screening for mutations at the G-6-PD gene by PCR-restriction enzyme in these 21 G-6-PD-deficient subjects as well as in 14 G-6-PD-deficient patients with hemolytic anemia belonging to several states of Mexico showed two common G-6-PD variants: G-6-PD A-(202A/376G) (19 cases) and G-6-PD A-(376G/968C) (9 cases). In 7 individuals the mutations responsible for the enzyme deficiency remain to be determined. Furthermore, four silent polymorphic sites at the G-6-PD gene (PvuII, PstI, 1311, and NlaIII) were investigated in the 28 individuals with G-6-PD A- variants and in 137 G-6-PD normal subjects. As expected, only 10 different haplotypes were observed. To date, in our project aiming to determine the molecular basis of G-6-PD deficiency in Mexico, 60 unrelated G-6-PD-deficient Mexican males-25 in previous studies and 35 in the present work-have been studied. More than 75% of these individuals are from states of the Pacific coast (Sinaloa, Nayarit, Jalisco, Michoacán, Guerrero, Oaxaca, and Chiapas). The results show that although G-6-PD deficiency is heterogeneous at the DNA level in Mexico, only three polymorphic variants have been observed: G-6-PD A-(202A/376G) (36 cases), G-6-PD A-(376G/968C) (13 cases), and G-6-PD Seattle(844C) (2 cases). G-6-PD A- variants are relatively distributed homogeneously and both variants explain 82% of the overall prevalence of G-6-PD deficiency. The variant G-6-PD A-(202A/376G) represents 73% of the G-6-PD A- alleles. Our data also show that the variant G-6-PD A-(376G/968C)-which has been observed in Mexico in the context of two different haplotypes-is more common than previously supposed. The three polymorphic variants that we observed in Mexico are on the same haplotypes as found in subjects from

  13. Identification of succinate dehydrogenase-deficient bladder paragangliomas.

    Science.gov (United States)

    Mason, Emily F; Sadow, Peter M; Wagner, Andrew J; Remillard, Stephen P; Flood, Trevor A; Belanger, Eric C; Hornick, Jason L; Barletta, Justine A

    2013-10-01

    A significant number of patients with paragangliomas harbor germline mutations in one of the succinate dehydrogenase (SDH) genes (SDHA, B, C, or D). Tumors with mutations in SDH genes can be identified using immunohistochemistry. Loss of SDHB staining is seen in tumors with a mutation in any one of the SDH genes, whereas loss of both SDHB and SDHA expression is seen only in the context of an SDHA mutation. Identifying an SDH-deficient tumor can be prognostically significant, as tumors with SDHB mutations are more likely to pursue a malignant course. Although the rate of SDH deficiency in paragangliomas in general is known to be approximately 30%, there are only rare reports of SDH-deficient bladder paragangliomas. Therefore, the aim of this study was to determine the rate of SDH deficiency in bladder paragangliomas. Eleven cases of bladder paragangliomas were identified. Hematoxylin and eosin-stained slides of all tumors were reviewed, and immunohistochemical analysis for SDHB and SDHA was performed. For cases with loss of SDHA expression by immunohistochemistry, mutation analysis of the SDHA gene was performed. Loss of SDHB staining was seen in 3 (27%) cases (2 with loss of SDHB only, 1 with loss of SDHB and SDHA). Patients with SDH-deficient tumors were younger than those with tumors with intact SDH expression (mean age at presentation 39 y and 58 y, respectively). Of the 2 patients with SDHB-deficient and SDHA-intact tumors, one was found to have a germline SDHB mutation, and the other had a family history of a malignant paraganglioma. Both patients developed metastatic disease. The one patient with a tumor that was deficient for both SDHB and SDHA had no family history of paragangliomas and no evidence of metastatic disease. Sequencing of this tumor revealed a deleterious heterozygous single-base pair substitution in exon 10 of SDHA (c.1340 A>G; p.His447Arg) in both the tumor and normal tissue, indicative of a germline SDHA mutation, and a deleterious single

  14. [Activity of the octanol dehydrogenase, of the alcool dehydrogenase and aldehyde dehydrogenase on the farnesol metabolism. Photoperiodic and neurhormonale regulation, controlling the metabolism of the juvenile hormone, in Pieris brassicae (author's transl)].

    Science.gov (United States)

    L'Hélias, C

    1979-01-01

    The antagonistic photoperiodic behaviour of the farnesol dehydrogenases indicates that the photonic control mechanism of the brain acts on the farnesol derivates. This cerebral control is double. The first system, linked at the allatotrope function is proportionnal at the photoperiod and acts on the octanol dehydrogenase 0,32. The second system controle the deshydrogenases ADH bands 0,50--0,58, is linked at the darkness. It is linked also at the neurocerebral activity then it stops its activity at the 4th day of the 5th stage. This last seems to be the determinating control for the establishment of the diapause since in short photoperiod, when the inhibition by this system ends, the alcool dehydrogenases 0,50-0,58 series is suractivated in rate with the lasting of the scotophase. In darkness, the 1st system functionnes cyclically and has a maximum synchron with the single maximum of the 2nd system. Inversally, in continuous light, the 2nd system is synchronisated with the 1st which has a prolongated action, maybe linked with a prolongated activity of the neurosecretory cells of the pars intercerebralis and corpora allata.

  15. Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer.

    Science.gov (United States)

    Chen, Jingjing; Guccini, Ilaria; Mitri, Diletta Di; Brina, Daniela; Revandkar, Ajinkya; Sarti, Manuela; Pasquini, Emiliano; Alajati, Abdullah; Pinton, Sandra; Losa, Marco; Civenni, Gianluca; Catapano, Carlo V; Sgrignani, Jacopo; Cavalli, Andrea; D'Antuono, Rocco; Asara, John M; Morandi, Andrea; Chiarugi, Paola; Crotti, Sara; Agostini, Marco; Montopoli, Monica; Masgras, Ionica; Rasola, Andrea; Garcia-Escudero, Ramon; Delaleu, Nicolas; Rinaldi, Andrea; Bertoni, Francesco; Bono, Johann de; Carracedo, Arkaitz; Alimonti, Andrea

    2018-02-01

    The mechanisms by which mitochondrial metabolism supports cancer anabolism remain unclear. Here, we found that genetic and pharmacological inactivation of pyruvate dehydrogenase A1 (PDHA1), a subunit of the pyruvate dehydrogenase complex (PDC), inhibits prostate cancer development in mouse and human xenograft tumor models by affecting lipid biosynthesis. Mechanistically, we show that in prostate cancer, PDC localizes in both the mitochondria and the nucleus. Whereas nuclear PDC controls the expression of sterol regulatory element-binding transcription factor (SREBF)-target genes by mediating histone acetylation, mitochondrial PDC provides cytosolic citrate for lipid synthesis in a coordinated manner, thereby sustaining anabolism. Additionally, we found that PDHA1 and the PDC activator pyruvate dehydrogenase phosphatase 1 (PDP1) are frequently amplified and overexpressed at both the gene and protein levels in prostate tumors. Together, these findings demonstrate that both mitochondrial and nuclear PDC sustain prostate tumorigenesis by controlling lipid biosynthesis, thus suggesting this complex as a potential target for cancer therapy.

  16. Inactivation of pyruvate dehydrogenase kinase 2 by mitochondrial reactive oxygen species.

    Science.gov (United States)

    Hurd, Thomas R; Collins, Yvonne; Abakumova, Irina; Chouchani, Edward T; Baranowski, Bartlomiej; Fearnley, Ian M; Prime, Tracy A; Murphy, Michael P; James, Andrew M

    2012-10-12

    Reactive oxygen species are byproducts of mitochondrial respiration and thus potential regulators of mitochondrial function. Pyruvate dehydrogenase kinase 2 (PDHK2) inhibits the pyruvate dehydrogenase complex, thereby regulating entry of carbohydrates into the tricarboxylic acid (TCA) cycle. Here we show that PDHK2 activity is inhibited by low levels of hydrogen peroxide (H(2)O(2)) generated by the respiratory chain. This occurs via reversible oxidation of cysteine residues 45 and 392 on PDHK2 and results in increased pyruvate dehydrogenase complex activity. H(2)O(2) derives from superoxide (O(2)(.)), and we show that conditions that inhibit PDHK2 also inactivate the TCA cycle enzyme, aconitase. These findings suggest that under conditions of high mitochondrial O(2)(.) production, such as may occur under nutrient excess and low ATP demand, the increase in O(2)() and H(2)O(2) may provide feedback signals to modulate mitochondrial metabolism.

  17. Construction of an integrated enzyme system consisting azoreductase and glucose 1-dehydrogenase for dye removal.

    Science.gov (United States)

    Yang, Yuyi; Wei, Buqing; Zhao, Yuhua; Wang, Jun

    2013-02-01

    Azo dyes are toxic and carcinogenic and are often present in industrial effluents. In this research, azoreductase and glucose 1-dehydrogenase were coupled for both continuous generation of the cofactor NADH and azo dye removal. The results show that 85% maximum relative activity of azoreductase in an integrated enzyme system was obtained at the conditions: 1U azoreductase:10U glucose 1-dehydrogenase, 250mM glucose, 1.0mM NAD(+) and 150μM methyl red. Sensitivity analysis of the factors in the enzyme system affecting dye removal examined by an artificial neural network model shows that the relative importance of enzyme ratio between azoreductase and glucose 1-dehydrogenase was 22%, followed by dye concentration (27%), NAD(+) concentration (23%) and glucose concentration (22%), indicating none of the variables could be ignored in the enzyme system. Batch results show that the enzyme system has application potential for dye removal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli

    International Nuclear Information System (INIS)

    Castro, Miguel E.; Molina, Roberto C.; Diaz, Waldo A.; Pradenas, Gonzalo A.; Vasquez, Claudio C.

    2009-01-01

    Potassium tellurite (K 2 TeO 3 ) is harmful to most organisms and specific mechanisms explaining its toxicity are not well known to date. We previously reported that the lpdA gene product of the tellurite-resistant environmental isolate Aeromonas caviae ST is involved in the reduction of tellurite to elemental tellurium. In this work, we show that expression of A. caviae ST aceE, aceF, and lpdA genes, encoding pyruvate dehydrogenase, dihydrolipoamide transacetylase, and dihydrolipoamide dehydrogenase, respectively, results in tellurite resistance and decreased levels of tellurite-induced superoxide in Escherichia coli. In addition to oxidative damage resulting from tellurite exposure, a metabolic disorder would be simultaneously established in which the pyruvate dehydrogenase complex would represent an intracellular tellurite target. These results allow us to widen our vision regarding the molecular mechanisms involved in bacterial tellurite resistance by correlating tellurite toxicity and key enzymes of aerobic metabolism.

  19. Homology modelling and docking analysis of L-lactate dehydrogenase from Streptococcus thermopilus

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir R.

    2016-01-01

    Full Text Available The aim of this research was to create a three-dimensional model of L-lactate dehydrogenase from the main yoghurt starter culture - Streptococcus thermopilus, to analyse its structural features and investigate substrate binding in the active site. NCBI BlastP was used against the Protein Data Bank database in order to identify the template for construction of homology models. Multiple sequence alignment was performed using the program MUSCULE within the UGENE 1.11.3 program. Homology models were constructed using the program Modeller v. 9.17. The obtained 3D model was verified by Ramachandran plots. Molecular docking simulations were performed using the program Surflex-Dock. The highest sequence similarity was observed with L-lactate dehydrogenase from Lactobacillus casei subsp. casei, with 69% identity. Therefore, its structure (PDB ID: 2ZQY:A was selected as a modelling template for homology modelling. Active residues are by sequence similarity predicted: S. thermophilus - HIS181 and S. aureus - HIS179. Binding energy of pyruvate to L-lactate dehydrogenase of S. thermopilus was - 7.874 kcal/mol. Pyruvate in L-lactate dehydrogenase of S. thermopilus makes H bonds with catalytic HIS181 (1.9 Å, as well as with THR235 (3.6 Å. Although our results indicate similar position of substrates between L-lactate dehydrogenase of S. thermopilus and S. aureus, differences in substrate distances and binding energy values could influence the reaction rate. Based on these results, the L-lactate dehydrogenase model proposed here could be used as a guide for further research, such as transition states of the reaction through molecular dynamics. [Projekat Ministarstva nauke Republike Srbije, br. III 46009

  20. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    Science.gov (United States)

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Triiodothyronine (T3)-associated upregulation and downregulation of nuclear T3 binding in the human fibroblast cell (MRC-5)--stimulation of malic enzyme, glucose-6-phosphate-dehydrogenase, and 6-phosphogluconate-dehydrogenase by insulin, but not by T3

    DEFF Research Database (Denmark)

    Matzen, L E; Kristensen, S R; Kvetny, J

    1991-01-01

    The specific nuclear binding of triiodothyronine (T3) (NBT3) and the activity of malic enzyme (ME), glucose-6-phosphate-dehydrogenase (G6PD), and 6-phosphogluconate-dehydrogenase (6PGD) were studied in the human fibroblast cell (MRC-5). The overall apparent binding affinity (Ka) was 2.7 x 10(9) L...

  2. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented.

  3. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report

    DEFF Research Database (Denmark)

    Kanavin, Øjvind; Woldseth, Berit; Jellum, Egil

    2007-01-01

    previously reported cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD. PMID: 17883863 [PubMed - in process]......ABSTRACT: BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism...

  4. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation

    DEFF Research Database (Denmark)

    Kanavin, Oivind J; Woldseth, Berit; Jellum, Egil

    2007-01-01

    BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism and a history...... cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD....

  5. Alteration of substrate specificity of leucine dehydrogenase by site-directed mutagenesis

    OpenAIRE

    片岡, 邦重; Kataoka, Kunishige; Tanizawa, Katsuyuki

    2003-01-01

    The residues L40, A113, V291, and V294, in leucine dehydrogenase (LeuDH), predicted to be involved in recognition of the substrate side chain, have been mutated on the basis of the molecular modeling to mimic the substrate specificities of phenylalanine (PheDH), glutamate (GluDH), and lysine dehydrogenases (LysDH). The A113G and A113G/V291L mutants, imitating the PheDH active site, displayed activities toward -phenylalanine and phenylpyruvate with 1.6 and 7.8% of kcat values of the wild-type ...

  6. Metabolic compartmentalization in the human cortex and hippocampus: evidence for a cell- and region-specific localization of lactate dehydrogenase 5 and pyruvate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Kovari Enikö

    2007-05-01

    Full Text Available Abstract Background For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB, such substrates could replace glucose if produced locally. The two key enzymatiques systems required for the production of these monocarboxylates are lactate dehydrogenase (LDH; EC1.1.1.27 that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA and oxydative phosphorylation. Results In this article, we show, with monoclonal antibodies applied to post-mortem human brain tissues, that the typically glycolytic isoenzyme of lactate dehydrogenase (LDH-5; also called LDHA or LDHM is selectively present in astrocytes, and not in neurons, whereas pyruvate dehydrogenase (PDH is mainly detected in neurons and barely in astrocytes. At the regional level, the distribution of the LDH-5 immunoreactive astrocytes is laminar and corresponds to regions of maximal 2-deoxyglucose uptake in the occipital cortex and hippocampus. In hippocampus, we observed that the distribution of the oxidative enzyme PDH was enriched in the neurons of the stratum pyramidale and stratum granulosum of CA1 through CA4, whereas the glycolytic enzyme LDH-5 was enriched in astrocytes of the stratum moleculare, the alveus and the white matter, revealing not only cellular, but also regional, selective distributions. The fact that LDH-5 immunoreactivity was high in astrocytes and occurred in regions where the highest uptake of 2-deoxyglucose was observed suggests that glucose uptake followed by lactate production may principally occur in these regions. Conclusion These observations reveal a metabolic segregation, not only at the cellular but also

  7. Magnetic-Resonance Studies of the Geometry of Bound Substrate, Coenzyme and Activator on Bovine-Liver Glutamate Dehydrogenase

    NARCIS (Netherlands)

    Zantema, Alt; de Smet, Marie-José; Robillard, George T.

    ADP and ATP with a spin-label linked to the terminal phosphate are activators of glutamate dehydrogenase and bind to the same site as the activator ADP. There is hardly any interaction with the coenzyme site. Glutamate dehydrogenase can be modified with a ketone spin-label at a site in the active

  8. Immunohistochemical localization of glutamate dehydrogenase in rat liver: plasticity of distribution during development and with hormone treatment

    NARCIS (Netherlands)

    Lamers, W. H.; Janzen, J. W.; Moorman, A. F.; Charles, R.; Knecht, E.; Martínez-Ramón, A.; Hernández-Yago, J.; Grisolía, S.

    1988-01-01

    In adult rat liver, glutamate dehydrogenase is present in high concentrations around the terminal portal (zone 1) and hepatic (zone 3) veins, whereas its concentration is low in the intermediate zone. Although the size and staining intensity of the periportal glutamate dehydrogenase-positive

  9. Identification of a magnesium-dependent NAD(P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus

    NARCIS (Netherlands)

    Hektor, HJ; Kloosterman, H; Dijkhuizen, L

    2002-01-01

    The Bacillus methanolicus methanol dehydrogenase (MDH) is a decameric nicotinoprotein alcohol dehydrogenase (family III) with one Zn2+ ion, one or two Mg2+ ions, and a tightly bound cofactor NAD(H) per subunit. The Mg2+ ions are essential for binding of cofactor NAD(H) in MDH. A B. methanolicus

  10. Purification, crystallization and preliminary X-ray crystallographic analysis of 3-ketosteroid Delta(1) -dehydrogenase from Rhodococcus erythropolis SQ1

    NARCIS (Netherlands)

    Rohman, Ali; van Oosterwijk, Niels; Dijkstra, Bauke W.

    3-Ketosteroid Delta(1)-dehydrogenase plays a crucial role in the early steps of steroid degradation by introducing a double bond between the C1 and C2 atoms of the A-ring of its 3-ketosteroid substrates. The 3-ketosteroid Delta(1)-dehydrogenase from Rhodococcus erythropolis SQ1, a 56 kDa

  11. Conversion of xanthine dehydrogenase into xanthine oxidase in rat liver and plasma at the onset of reperfusion after ischemia

    NARCIS (Netherlands)

    Kooij, A.; Schiller, H. J.; Schijns, M.; van Noorden, C. J.; Frederiks, W. M.

    1994-01-01

    The aim of this study was to test whether conversion of xanthine dehydrogenase into xanthine oxidase as induced by fasting, ischemia of the liver or both is an in vivo process or only occurs in vitro in homogenates. For this purpose, the conversion rate of xanthine dehydrogenase into xanthine

  12. Functional and structural characterization of a synthetic peptide representing the N-terminal domain of prokaryotic pyruvate dehydrogenase

    NARCIS (Netherlands)

    Hengeveld, A.F.; Mierlo, van C.P.M.; Hooven, van den H.W.; Visser, A.J.W.G.; Kok, de A.

    2002-01-01

    A synthetic peptide (Nterm-E1p) is used to characterize the structure and function of the N-terminal region (amino acid residues 4-45) of the pyruvate dehydrogenase component (E1p) from the pyruvate dehydrogenase multienzyme complex (PDHC) from Azotobacter vinelandii. Activity and binding studies

  13. Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Spaan, András N.; Ijlst, Lodewijk; van Roermund, Carlo W. T.; Wijburg, Frits A.; Wanders, Ronald J. A.; Waterham, Hans R.

    2005-01-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) is most often caused by mutations in the genes encoding the alpha- or beta-subunit of electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETF-DH). Since not all patients have

  14. Purification and characterization of an NAD+-linked formaldehyde dehydrogenase from the facultative RuMP cycle methylotroph Arthrobacter P1

    NARCIS (Netherlands)

    Attwood, Margaret M.; Arfman, Nico; Weusthuis, Ruud A.; Dijkhuizen, Lubbert

    1992-01-01

    When Arthrobacter P1 is grown on choline, betaine, dimethylglycine or sarcosine, an NAD+-dependent formaldehyde dehydrogenase is induced. This formaldehyde dehydrogenase has been purified using ammonium sulphate fractionation, anion exchange- and hydrophobic interaction chromatography. The molecular

  15. Cytokinin oxidase/dehydrogenase genes in barley and wheat. Cloning and heterologous expression

    Czech Academy of Sciences Publication Activity Database

    Galuszka, P.; Frébortová, Jitka; Werner, T.; Yamada, M.; Strnad, Miroslav; Schmülling, T.; Frébort, I.

    2004-01-01

    Roč. 271, č. 20 (2004), s. 3990-4002 ISSN 0014-2956 Institutional research plan: CEZ:AV0Z5038910 Keywords : cereals * cloning * cytokinin oxidase/dehydrogenase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.260, year: 2004

  16. Mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 in tumors

    NARCIS (Netherlands)

    Schaap, Frank G.; French, Pim J.; Bovée, Judith V. M. G.

    2013-01-01

    Heterozygous hotspot mutations in isocitrate dehydrogenases (IDH) IDH1 or IDH2 are frequently observed in specific types of cartilaginous tumors, gliomas, and leukemias. Mutant IDH enzyme loses its normal activity to convert isocitrate into α-ketoglutarate (αKG) and instead acquires the ability to

  17. Coupled reactions by coupled enzymes : alcohol to lactone cascade with alcohol dehydrogenase-cyclohexanone monooxygenase fusions

    NARCIS (Netherlands)

    Aalbers, Friso S; Fraaije, Marco W

    2017-01-01

    The combination of redox enzymes for redox-neutral cascade reactions has received increasing appreciation. An example is the combination of an alcohol dehydrogenase (ADH) with a cyclohexanone monooxygenase (CHMO). The ADH can use NADP(+) to oxidize cyclohexanol to form cyclohexanone and NADPH. Both

  18. Equine biochemical multiple acyl-CoA dehydrogenase deficiency (MADD) as a cause of rhabdomyolysis

    NARCIS (Netherlands)

    Westermann, C. M.; de Sain-van der Velden, M. G. M.; van der Kolk, J. H.; Berger, R.; Wijnberg, I. D.; Koeman, J. P.; Wanders, R. J. A.; Lenstra, J. A.; Testerink, N.; Vaandrager, A. B.; Vianey-Saban, C.; Acquaviva-Bourdain, C.; Dorland, L.

    2007-01-01

    Two horses (a 7-year-old Groninger warmblood gelding and a six-month-old Trakehner mare) with pathologically confirmed rhabdomyolysis were diagnosed as suffering from multiple acyl-CoA dehydrogenase deficiency (MADD). This disorder has not been recognised in animals before. Clinical signs of both

  19. Subcellular Localization and Biochemical Comparison of Cytosolic and Secreted Cytokinin Dehydrogenase Enzymes from Maize

    Science.gov (United States)

    Cytokinin dehydrogenase (CKX, EC 1.5.99.12) degrades cytokinin hormones in plants. There are several differently targeted isoforms of CKX in cells of each plant. While most CKX enzymes appear to be localized in the apoplast or vacuoles, there is generally only one CKX per plant genome that lacks a t...

  20. Regulation of the activity of lactate dehydrogenases from four lactic acid bacteria

    NARCIS (Netherlands)

    Feldman-Salit, A.; Hering, S.; Messiha, H.L.; Veith, N.; Cojocaru, V.; Sieg, A.; Westerhoff, H.V.; Kreikemeyer, B.; Wade, R.C.; Fiedler, T.

    2013-01-01

    Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the